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Abstract

Scale-space representation for an image is a significant way to generate features

for object detection/classification. The size of the object we are looking for as

well as its texture contents are related to the multi-scale representations. However,

any scale-space based features face the inevitable issues of high dimentionality and

scale selection. Scale-space analysis of image provides a set of extremely high

dimensional features at each scale- the number of pixels in a filtered output image

is the feature dimensionality at that scale. Moreover, considering all the output

images at various scales, the dimensionality of the feature set is staggeringly high.

Selection of features from this high dimensional space is daunting. In addition, the

scale selection process is still ad-hoc, while applying scale-space based features

for object detection/classification. In this research these two issues are resolved by

designing a suitable kernel function on the scale space based features and applying

multiple kernel learning (MKL) approach for sparse selection of scales.

A novel shift invariant kernel function for scale space based features is designed

here. Also a novel framework for multiple kernel learning is proposed that utilizes a

1-norm support vector machine (SVM) in the MKL optimization problem for sparse

selection and weighting of scales from scale-space. The optimized data-dependent

kernel accommodates only a few scales that are most discriminatory according to

the large margin principle. With a 2-norm SVM this learned kernel is applied to the

classification problem.

In this thesis we have applied the proposed classification method for oil sand

image analysis. Automatic analysis of oil sand video images is non-trivial due to

the presence of dirt and fine materials. In addition, changeable weather and lighting

condition make the video quality worse. Two challenging problems in oil sand min-



ing which are detection of large lump and steam from videos are investigated here.

Difference of Gaussian (DoG) and wavelet scale space are applied for these two

different detection problems, respectively. Our method yields encouraging results

on these difficult-to-process video images and compares favourably against other

existing methods.
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Chapter 1

Introduction

This thesis addresses the problem of selecting useful information from multi-scale

representation of images of the real physical world. The term “useful” essentially

depends on the goal of the image analysis tasks at hand. Some of the most ba-

sic questions that still remain to be answered concern what type of information in

images is relevant to solve different real world problems, how this information is

extracted from the image data and how such features can be related to properties of

environment. Scale-space framework is one of the most promising methodologies,

where significant structures can be extracted from an image in a solely bottom-up

way, without any priori information.

The concept of scale-space was first named and presented to the image analysis

community by Witkin in 1983 [6]. The main idea in Witkin’s work is that impor-

tant signal features would persist through relatively coarse scales even though their

location may be distorted by a filtering process. Especially, such regions, which

appear to stand out from the surroundings in the original image, seem to be further

enhanced within the scale-space. Scale-space analysis typically consists of apply-

ing filters at different scaling parameters to an image to obtain a number of output

images. The size of the object we are looking for as well as its texture contents are

related to these multi-scale (scale-space) representations. However, a high dimen-

sional feature space is generated at each scale by the scale-space analysis of image

- the number of pixels in a filtered output image is the feature dimensionality at that

scale. Moreover, considering all the output images at various scales, the dimension-

ality of the feature set is exceedingly high. It is challenging and nontrivial to select
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features from this high dimensional feature space.

The scale-space theory describes a well-founded framework that provides a rich

representation of the behavior of the data across scales. However, it does not address

the problem of selecting appropriate scales for further analysis. In many cases it

is also important to select a particular scale or a group of appropriate scales. For

example, scale selection methods are shown to be crucial for interest point detection

[5], object detection [5, 7], tracking [8] and segmentation [9].

A general methodology for feature detection with automatic scale selection has

been proposed by Lindeberg [10, 11, 12]. The basic idea proposed by Lindeberg

is to apply the feature detector at all scales, and then select scale levels from the

scales at which normalized measures of feature strength assume local maxima with

respect to scale. Intuitively, this approach selects the scales at which the operator

response is the strongest. Several methods for scale selection are found in literature

based on the entropy measures or error measures over scales [10, 12]. Actually

these scale selection methods are analogous to the method for feature detection.

However in this work, we are interested to select scales and weigh them according

to their discriminative power to classify images between two classes. Thus in this

work, the scale selection problem is similar to the feature weighting problem.

In this thesis, multiple kernel learning technique (MKL) is proposed to deal

with the two problems related to the multi-scale representation discussed above.

The high dimensionality of the multi-scale feature is handled by designing suit-

able kernel functions on the multi-scale images viz., dealing with high dimensional

scale-space data and relevant scale selection/weighting. A kernel function com-

putes similarity or dissimilarity between two sets of (usually high dimensional)

features. For example, if the two sets of features come from the same class, the

kernel function assigns high similarity score to the two sets. Otherwise, if the sets

of features belong to two different classes, then the kernel function assigns a low

similarity score to them. Here we have proposed a method for scale selection via

multiple kernel learning. MKL is an interesting approach to address several, chal-

lenging real world applications in computer vision involving several possibly het-

erogeneous data sources to design and integrate kernels. MKL simplifies feature/
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feature-group selection to kernel selection from a set of basis kernel functions. If

the basis kernel functions are defined on the individual scales of scale-space then

their corresponding weights determine the importance of that scale in the classi-

fication process. Some traditional feature selection methods for example forward

selection or backward elimination methods do not have any well defined objective

function [13] [14]. As a result, continuous scale selection and scale weighting is

not possible with these kind of approaches. Also these ad-hoc methods suffer from

the high computational cost. On the other hand, MKL provides the flexibility of

continuous scale selection where weights of the scales are obtained by simply min-

imizing an objective function. Scale selection using multiple kernel learning is a

completely novel idea. In the thesis we have designed a new kernel based on circu-

lar convolution function to obtain the shift invariance similarity measure between

two scale space based features.

MKL problems can be sometimes tackled via exhaustive cross validation (CV).

However, if the number of parameters is large, then CV is not computationally

feasible. Recently, several researchers have focused on finding more efficient meth-

ods for multiple kernel learning. The MKL framework proposed by Lanckriet et

al. [15] is the conic combinations of kernel matrices which results in a convex

quadratically-constrained quadratic program (QCQP). However, the semidefinite

programming based method proposed by Lanckriet et al. [15] can solve this prob-

lem only for a small number of kernels and a small number of data points. It be-

comes rapidly intractable as the number of learning examples or kernels increases.

To overcome this limitation Bach et al. [16] have reformulated the problem so that

sequential minimal optimization techniques can be applied to handle medium-scale

problems. Their method is known as support kernel machine (SKM). Sonnenburg

et al. [17] also reformulate the binary classification MKL problem as a semiinfinite

linear program, which can be solved by recycling the standard SVM implementa-

tions. Sonnenburg’s large-scale multiple kernel learning (LSMKL) method makes

the MKL approach tractable for large problems, employing existing support vec-

tor machine code iteratively. All the aforementioned MKL techniques used linear

combination of kernels which may be restrictive in some cases. Varma et al. [18]
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show how existing MKL formulations can be easily extended to learn general kernel

combinations subject to regularizations on the kernel parameters. This generalized

multiple kernel learning (GMKL) method provides richer representations of feature

spaces by combining kernels in other fashions rather than linear combination. As

a competitive alternative to the aforementioned MKL techniques, here the princi-

ple of large margin is utilized in 1-norm support vector machine to solve the MKL

problem.

As a novel and significant application of the proposed MKL based scale se-

lection method, two important detection problems in oil sand video analysis are

solved. We have posed these detection problems as binary image classification

problem. Following section discusses the motivation from oil sand image analysis.

1.1 Motivation from Oil Sand Image Analysis

Oil sands were described as “Canada’s greatest buried energy treasure” by Time

Magazine. Canada has become the largest supplier of oil and refined products to the

United States, ahead of Saudi Arabia and Mexico. Most of the oil sands of Canada

are located in three major deposits in northern Alberta covering over 140,000 square

kilometers that preserve almost 1.75 trillion barrels of bitumen. However, only

about two percent of this valuable resource has been harnessed to date [19, 20].

Oil sand is composed of sand, bitumen (heavy black viscous oil), mineral rich

clays and water. A thorough processing of oil sand is required to convert it into an

upgraded crude oil before it can be used by refineries to produce gasoline and diesel

fuels. Oil sands mining occurs around the year, even during the cold winter season

in northern Alberta. In surface mining, oil sand is first shoveled, then moved to

the processing crusher by conveyor belts and then crushed by a crusher to produce

smaller particles that are suitable for bitumen extraction. At several steps of oil

sand mining, robust and reliable image processing algorithms are applied to auto-

matically obtain accurate information with which operational decisions are made.

Oil sands are observed at many points in the ore preparation pipeline, and each sce-

nario defines a separate problem and presents different challenges. What follows
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is a description of two important and challenging problem towards automating the

screening process of oil sand mining process.

 

Figure 1.1: Simplified illustration of the ore preparation pipeline [2].

          

Figure 1.2: (a) Two haul trucks empty their load of oil sand into the top of a double
roll crusher [3] and (b) People are employed to remove large lump in crusher caused
jam event.

One of the major difficulties in the oil sand processing is the presence of large

lumps which can be huge chunks of rock materials or a collection of smaller parti-

cles frozen together in cold winter. These large lumps can block the crushers, which

are used to crush oil sand materials in the processing steps. Jamming of the crusher

causes significant production downtime, and as jamming needs to be cleared, it

translates directly into economic losses. According to one mining company data,

the amount of downtime of a crusher due to the presence of large lump depends

on many factors and varies greatly. It can take from ten minutes to more than two

hours to deal with a lump jamming event. Also, during some months, one of the
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crushers can be down over 100 hours due to lump jams, while in other months it

may be zero. On an average the crushers can process 7000 tph (tonnes per hour) of

ore and it takes about 2 tonnes of ore to produce 1 barrel of oil. Roughly to give

an idea of production loss, if a crusher is down due to a large lump event for an

hour the total production loss will be around 7000 tonnes i.e., almost 3500 barrels

of oil. The traditional approach of visual inspection by the operator is tedious for

large lump detection. Thus, it is very important to design an effective and reliable

automatic detection system. The goal of an automated alarm system will be to de-

tect the presence of large lumps in oil sands from the video images captured on

the conveyor belt. Once this detection is performed, preventive measures can be

taken to reduce the chances of jamming the crusher. An essential feature of such

automated technique is real time detection with low false alarm rate.

Figure 1.3: Examples of oil sand images containing large lumps.

Figure 1.4: Examples of oil sand images with no large lump.

Mining images pose considerable challenge for automated processing, because

of severe clutter due to poor lighting, varying weather, and harsh outdoor imaging

conditions. Moreover, the shape, size and texture of oil sands show a significant
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variation. The apparent brightness of the individual sample varies from object to

object. Most of the times, large lumps are mixed with dirt and fine materials. The

aforementioned factors constitute the principle challenges to automatically detect

large lumps from these images. The oil sand images are relatively novel images.

To date, very little research toward automated analysis has been performed on these

images. Figure 1.3 shows some of typical images of large lumps in oil sand and

Figure 1.4 shows images with no significant large lump.

Another challenging problem in the oil sand image processing is the presence

of steam. Since the ore is dug from the moist ground and water is used in screening,

steam is produced and obscures the view of the camera. Segmentation of ore frag-

ments must exclude images heavily covered by steam. From an image processing

point of view, one can treat the problem of steam event detection. Figure 1.5 shows

some of typical images covered with steam and Figure 1.6 shows images with no

significant amount of steam.

 

 

 

 

 

 

  

Figure 1.5: Examples of oil sand images with steam.

 

 

 

 

 

 

  

Figure 1.6: Examples of oil sand images with no steam.
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1.2 Solution Overview

Automatic analysis oil sand images is non-trivial due to the presence of dirt and

fine materials. In addition, changeable weather and lighting condition make the

situation worse. Here, we model the problem of large lump detection and steam

detection as event detection problems. The goal of the event detection is to identify

specified spatiotemporal patterns in videos. This task is similar to object detec-

tion in many respects since the pattern can be located anywhere in the scene (in

both space and time) and requires reliable detection in the presence of significant

background clutter.

Similar to many image object detection systems, we use a sliding window ap-

proach in video, as shown in Figure 1.7. First, we specify a model of the event that

we are interested in detecting. We scan this model across all locations in the video

in space and time. A binary classier is trained to classify the model. When the

classifier decides that we have a match, we label the event at that particular location

and time, as shown by the arrow sign in Figure 1.7. We propose a novel feature for

representing events. However, we use the sliding window framework throughout

the entire work.

For any image classification problem we need a set of effective features which

are often tackled via segmentation and/or edge-feature detection in practice. Edge

detection applied to oil sand images usually results in a tangled web of edges, caus-

ing the detection problem more difficult to solve. Also previous researches on oil

sand images show that segmentation is an extremely difficult task due to poor qual-

ity of these images [21].

To avoid the non-trivial edge detection and segmentation process, the multi-

scale features are investigated here. Two important multi-scale representation namely

difference of Gaussian (DoG) and wavelet are exploited for the detection of large

lump and steam from oil sand videos, respectively. However as discussed before

it is neither practical nor profitable to use the entire scale-space. Rather, it is im-

portant to find relevant scales for object detection. A novel framework for MKL

is proposed for selecting only the useful scales in the image scale-space while dis-
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Figure 1.7: A sliding window approach to event detection. The model is scanned at
all spatio-temporal locations in the video. We are able to localize the event detection
in both space and time.

carding the rest.

1.3 Contribution

The main contributions of the thesis are summarized below:

• A well known issue in scale-space-based classification is the high dimension-

ality of scale-space data. The issue of high dimensionality is dealt by design-

ing suitable kernel functions on the scale-space image features. Towards this

end we have designed a shift invariant circular convolution kernel function

for scale-space image features.

• The second issue with scale-space data is scale selection for image classifi-

cation. To select the appropriate scales via those kernel functions we have

proposed a novel multiple kernel learning (MKL) technique for sparse selec-

tion and weighting of scales. Thus the scale selection problem is mapped
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to MKL problem. The proposed MKL utilizes a 1-norm support vector ma-

chine (SVM). The optimized data-dependent kernel accommodates only a

few scales that are most discriminatory according to the large margin prin-

ciple. With a 2-norm SVM this learned kernel is applied to detect/classify

objects.

• Finally in this thesis challenging detection problems from novel oil sand

videos, namely large-lump detection and steam detection are selected to solve.

The proposed method shows promising performance for both of the detection

problems.

1.4 Outline of the Thesis

The rest of this thesis is organized in the following way:

• Chapter 2 presents an overview to the scale space feature. Different types

of scale-space representations are described. The concept of scale selection

and literature review on different scale selection methods are also discussed.

Finally a brief literature review on multi-scale feature detection methods are

given.

• Chapter 3 mainly focused on SVM based binary classification. An overview

of different types of SVM classifiers and kernel methods are given. This chap-

ter also provides an overview and literature review on kernel selection and

optimization. Kernel optimization techniques are discussed from two differ-

ent points of view: first, different kinds of objective/cost functions adopted by

different researchers are reviewed and then existing multiple kernel learning

techniques are discussed.

• Chapter 4 discusses the proposed the scale-space based feature extraction

process. Methods for construction DoG and wavelet scale-space for our prob-

lems are shown. Each step of the proposed method are described in detail.

• Chapter 5 describes how to use MKL approach for space space based feature

selection. It describes the construction process of the novel kernel function
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based on circular convolution of two scale-space. The algorithm of the pro-

posed 1-norm SVM based MKL is described in detail.

• Chapter 6 shows the application of our proposed method on oil sand video

images. A literature review on the automatic oil sand image analysis is

discussed. The experimental set up, datasets, and results for large lump

and steam detection problems are reported. Different parts of our proposed

method are evaluated with extensive experimental studies.

• Chapter 7 concludes this thesis by summarizing the whole research work and

pointing some future plans.
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Chapter 2

Scale-Space Feature

This chapter introduces the scale-space representation of image data that replaces

an image by a family of smoothed versions of the same image. The scale-space

based multi-scale features have proved as powerful for vision task as it allows a vi-

sual system to “concentrate” on the appropriate level of detail and to relate “things”

across different levels of detail. This chapter is organized as follows. The con-

cepts of multi-scale feature extraction and some examples are given in first section.

Next section gives a brief summary of the scale-space methods. Several linear

scale-spaces are also discussed. Some useful properties of scale-space are given in

section 2.3. Finally an overview of multi-scale feature detection are given in the

last section.

2.1 Multi-Scale Feature Extraction

Feature extraction is usually performed as a first step for image classification/object

detction problems. Usually, a segmentation algorithm is applied to divide the im-

age into semantically significant regions, or objects, to be recognized by further

processing steps. However, it is well known that semantically significant regions

are found in an image at different scales of analysis. It is often not trivial to de-

termine the correct scale of analysis in advance, because different kinds of images

require different scales of analysis, and furthermore in many cases significant ob-

jects appear at different scales of analysis in the same image. One of the remedy

of this problem is to use scale-space information as features. There are several dif-
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ferent multi-scale image processing techniques such as wavelets [22], scale-space

[10], quad-tree and pyramid [23]. In the following subsection we will focus on

mainly two important multi-scale approaches which we have utilized for our detec-

tion problems in this thesis.

2.2 Scale-Spaces

The structure of images has a close relationship with multi-scale representation

[6, 11]. For automatically analyzing and deriving information from real-world mea-

surements, we need some kind of operator to extract meaningful information from

the image data. The relationship between the size of the actual structures in the data

and the size of the operators plays an important role to determine the type of infor-

mation to be extracted. If one can address this relationship properly, the task of in-

terpreting the operator response becomes simple and efficient. Scale-space concept

was first named and presented to the image analysis community by Witkin in 1983

[6]. The main idea in Witkin’s work is that important signal features would per-

severe through relatively coarse scales even though their location may be distorted

by a filtering process. Later, scale-space theory was also investigated by several

other researchers to handle the multi-scale nature of image data. An example of

multi-scale representation of an image is shown in Figure 2.1.

There are two important advantages of the scale-space approach. First, scale-

space representation allows multiple interpretations of the data from a fine degree

of detail to a higher level of description of the overall structure of the image content.

Second, the scale-space approach provides the flexibility for selecting a scale or a

set of scales by looking at how the interpretation of the structure captured in the

scale-space changes as the scale is varied [7].

Different principles can be employed to obtain scale-spaces that achieve a de-

scription of image structures through scales. According to the application, different

scale operators are applied to derive the scale-space stack. A classical approach

for choosing a scale-space representation for a particular application is to establish

a set of scale-space axioms [11], describing basic properties of the desired scale-
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Figure 2.1: Multiscale representation of an image.

space representation. Different operators are investigated in the literature to obtain

scale-space. However, the scale-spaces may be classified in two main groups: linear

scale-spaces and non-linear scale-spaces.

2.2.1 Linear Scale-Spaces

The fundamental theme of the linear scale-space representation is to obtain suc-

cessively higher level descriptions of a signal by convolving it with a filter. Given

an image I(x, y) the linear scale-space representation is obtained by convoluting

I(x, y) with the Gaussian kernel

G(x, y;σ) =
1

2πσ2
e−(x

2+y2)/2σ2

such that

LσI (x, y) = G(x, y;σ) ∗ I(x, y), (2.1)

where σ is the smoothing parameter that controls the scale. A higher value of σ

corresponds to coarser scale, describing the overall features of the data, while a

smaller value of σ means finer scales containing the details. The Gaussian filter

does not introduce any new feature points as the scale increases. Starting from fine
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to coarse scales, the number of features generated in scale-space either remains the

same or decreases. Actually merging of adjacent features at coarser scales causes

a decrease in the total number of features. The Gaussian kernel is unique in this

respect for use in scale-space operator as discussed in [24, 11, 7].

2.2.2 Examples of Scale-Spaces

This section contains the brief description of different kinds of scale-spaces. How-

ever, the technical details are avoided here to make the concepts simple and easy to

understand. In Chapter 3, we discuss the two scale-space approaches we have used

in our application in detail.

DoG Scale-Space

Construction of Difference of Gaussians (DoG) scale-space involves the subtrac-

tion of one smoothed version of an original grayscale image from another, less

smoothed version of the original. The smoothed images are obtained by convolving

the original grayscale image with Gaussian kernels having differing standard devi-

ations (scales). The difference of Gaussians is a band-pass filter that retains only

some frequency components present in the original grayscale image. Smoothing an

image using a Gaussian kernel subdues high-frequency spatial information. Sub-

tracting one image from the other preserves spatial information that lies between

the range of frequencies that are preserved in the two smoother version of images.

Figure 2.3 shows the DoG scale-space of the example image of Figure 2.2.

 

Figure 2.2: Example oil sand image
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Figure 2.3: DoG filter responses for image in Figure 2.2 at different scales.

Wavelet Scale-Space

Over last fifteen years wavelet scale-space representation developed and investi-

gated by many researchers from different fields [22]. The idea of wavelet transform

was first introduced by Alfred Haar in 1990s. The wavelet transform of a signal

is defined as the internal product between the signal and the mother wavelet func-

tion in a specific scale and shifted by some factor. The most important properties of

wavelets are the admissibility and the regularity conditions and these are the proper-

ties which gave wavelets their name. Due to admissibility condition the frequency

component of the function at frequency zero must be zero. And due to the latter

condition the wavelet function must be local in both time and frequency domains.

These two conditions together imply that a wavelet function must be a band pass

filter. The linear scale-space is a particular case of the wavelet transform when the

derivatives of the Gaussian functions are used to extract information. The relation-

ship between the wavelets and the basic linear scale-space that were demonstrated

by Mallat [22].
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 Figure 2.4: Wavelet responses for image in Figure 2.2 at different wavelength and
orientation.

Gabor Scale-Space

Gabor filter is a linear filter particularly suitable for texture representation and dis-

crimination. Frequency and orientation representations of Gabor filters are analo-

gous to those of the human visual system. In the spatial domain, a 2D Gabor filter is

a Gaussian kernel function modulated by a sinusoidal plane wave. The Gabor filters

are self-similar: all filters can be generated from one mother wavelet by dilation and

rotation.

Gabor scale-space is created by convolving the signal with Gabor filters of dif-

ferent scales and orientation . This process is closely related to processes in the pri-

mary visual cortex [25]. The Gabor scale-space is used widely for image processing

applications such as optical character recognition, iris recognition and fingerprint

recognition. An example of Gabor scale-space is shown in Figure 2.5.

17



 Figure 2.5: Gabor responses for image in Figure 2.2 at different scales and orienta-
tion.

Steerable Scale-Space

The Steerable scale-space is a linear multi-scale, multi-orientation image decompo-

sition. In order to overcome the limitations of orthogonal separable wavelet decom-

positions, this representation was proposed in 1990s [26]. The basis functions of

the steerable pyramid are directional derivative operators, that are usually designed

in different sizes and orientations.

The steerable pyramid performs a polar-separable decomposition in the fre-

quency domain, thus allowing independent representation of scale and orientation.

More importantly, the representation is translation and rotation invariant which can

make a big difference in applications that involve representation of position or ori-

entation of image structure. The pyramid can be designed to produce any num-

ber of orientation bands, k. However the primary drawback of steerable filter is

in computational efficiency: the steerable pyramid is substantially overcomplete.

Also, the space-domain implementation of steerable filter does not provide perfect-

18



 Figure 2.6: Steerable filter responses for image in Figure 2.2 at different scales and
orientation.

reconstruction.

2.2.3 Non-Linear Scale-spaces

Non-linear scale-space formulations are the extensions of basic linear scale-space

theory committed to specific purposes [27, 28]. Different non-linear scale-spaces

are proposed in literature in connection to address different problems. Each of these

non-linear scale-space representations has its own properties. To use the multi-scale

representation for high-level image processing it is important to understand what

kind of information is present in the decomposition and how this high level process

can be benefited from this representation. The Gaussian kernel actually blurred the

image region uniformly. As a result, some important regions of interest like edges

can also become blurred. Furthermore, localization of the structures of interest be-

comes highly imprecise at larger scales. In many cases it is difficult to trace the

object at a very large scale due to excess blurring and the appearance of spurious
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extrema in two dimensions. Various solutions have been proposed to reduce this

problem. One possible solution is to use non-linear scale-spaces. Among some im-

portant non-linear scale-spaces, anisotropic diffusion proposed by Perona and Ma-

lik [28] are inhibited by high gradient values. In simple words, this method encour-

ages smoothing within homogeneous regions in preference to smoothing across the

edges. Blurring is then performed individually in each region, letting region bound-

aries remain sharp. Later Alvarez et al. [29] proposed non-linear image smoothing

by mean curvature motion. Further improvement of non-linear scale-space called

tensor-dependent diffusion proposed by Osher and Rudin [30]. The principle ad-

vantage of this evolution is better edge enhancement, longer edge conservation and

intra-region smoothing.

Another significant non-linear scale-space is morphological scale-space [31]. In

this case multi-scale system can be obtained by applying different basic morpho-

logical elements in a smarter way. The first morphological scale-space approach is

associated to a continuous-scale family of openings or closings. Although standard

morphological openings also displace the contours, they do not create spurious ex-

trema. Later, an improved morphological filter called the openings and closings by

reconstruction was proposed to preserve the contours. Reconstruction filters have

been widely applied in the field of image enhancement, segmentation and feature

detection [31, 9].

2.3 Useful Properties of Scale-Space

This section describes some properties of the scale-space representation. These

properties give an idea of why the scale-space representation could be useful to

vision. In other words this properties also answer the question of what abilities

a visual system should possess in order to perceive the physical world around it.

Here, the ideas are presented concisely rather than with technical details.
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2.3.1 Simplification

It is apparent that the details are lost with the increase of the scale value. From

the original data at scale σ the slices of scale-space make a transition to constant

intensity at infinite scale. This transition essentially corresponds to a gradual sim-

plification of the image content. This gradual simplification is an important property

of the scale-space representation because it allows the level of details to be chosen

appropriate to the image content for some application. Some of the mathematical

notions of simplifications are given below.

Non-Creation of Local Extrema in One Dimension Simplification property of

one dimensional scale-space was first formulated by Witkin [6]. His definition

of non-creation of local extrema implies that going from small to large scales no

new local extrema along space will appear as he observed that the number of zero-

crossings in the second derivative of the signal decreased monotonically with scale.

Non-Enhancement of Local Extrema

The simplification property of scale-space must be characterized somewhat dif-

ferently in higher dimention since here it is possible that new local extrema appear

with increasing scale. A view of simplification that applies in any dimension is

that all local maxima should decrease with increasing scale and conversely all local

minima should increase.

Koenderink [32] first formulated the simplification property for two dimension,

called causality which means that new level curves must not be created when the

scale parameter is increased. In other words, it should always be possible to trace a

grey-level value existing at a certain level of scale to a similar grey-level at any finer

level of scale. However, the reverse statement does not need to be true. Combined

with spatial homogeneity and isotropy constraints, which essentially mean that all

spatial points and all scale levels are a priori equivalent and should be handled in a

similar manner. It was shown that these criteria necessarily and sufficiently lead to

a formulation in terms of the diffusion equation, both in one and two dimensions.
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2.3.2 Translation and Rotation Invariance

Translation and rotation invariance are two indispensable properties to a visual sys-

tem. For a visual system, it is important that the information content of a description

remain unchanged if it is translated or rotated. This concept is expressed in terms

of translation and rotation invariance as follows: translation/rotation of an image

before computation of scale-space is identical to translation/rotation after construc-

tion of scale-space. Technically this can be describes as follows: Let T denotes

the coordinate transformation T (x) = Mx + a for some vector a ∈ RN and some

orthonormal N × N matrix M and f ◦ T denotes the concatenation of T and f ,

i.e. (f ◦ T )(x) = f(T (x)). Then the translation and rotation invariance of the

scale-space can be verified as follows:

(G(:, σ) ∗ (f ◦ T ))(x) = ((G(; , σ) ∗ f) ◦ T )(x) (2.2)

where G is the gaussian kernel defined as G(x, σ) = 1√
(2π)σ

e−x
2/2σ2

.

2.3.3 Differentiability

Differentiability is one of the technically useful properties of the scale-space repre-

sentation. Which means L(x;σ) = (G(:;σ) ∗ f)(x) can be differentiated up to any

order by the relation

∂n1
1 · · · ∂

nN
N L(x;σ) = ((∂n1

1 · · · ∂
nN
N G(:, σ)) ∗ f)(x) (2.3)

This property is widely applied in the first steps of processing the scale-space

representation.

2.4 Scale Selection

The scale-space theory describe each object within an image at its appropriate scale.

With increasing scale the degree of smoothing increases, as a result objects vanish

from the image, small objects first and larger objects later. The degree of smoothing

at which an object vanishes basically measures the size of the object. It is impor-

tant to analyze the image at all scales and then select those that are “particularly

informative”.
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Unfortunately, scale-space theory, which is designed to describe each object at

its appropriate scale, has not been dealt with the problem of scale selection for al-

most a decade. In fact, scale-space theory has, for a long time, focused on invariance

requirements rather than the scale selection problem. These two problems are com-

pletely different in the sense that invariance requirements “conserve” information

under some specified transformations of the data. On the other hand scale selec-

tion “destroys” information in the sense that the particularly informative scales, or

positions and scales, of some operator response do not contain the same informa-

tion as the original data. Of course the purpose of scale-selection is not to destroy

information, but rather to distinguish between relevant and irrelevant scales.

A general methodology for feature detection with automatic scale selection has

been proposed by Lindeberg [10, 11, 12]. The basic idea proposed by Lindeberg

is to apply the feature detector at all scales, and then select scale levels from the

scales at which normalized measures of feature strength assume local maxima with

respect to scale. Intuitively, this approach selects the scales at which the operator

response is the strongest. Several methods for scale selection are found in literature

based on the entropy measures or error measures over scales [10, 12].

2.5 Multi-Scale Feature Detection

In computer vision, feature detection usually refers to the computation of local

image features as intermediate results of making local decisions about the local

structure in the image; Most of the feature detectors extract features at a single

scale, which are determined by the internal parameters of the detector. However,

the framework of multi-scale differential geometry can be applied to calculate dif-

ferent types of multi-scale feature detectors. This feature detector then used to

produce meaningful features for further higher level application in computer vision

such as object detection, object tracking, image matching and image reconstruction.

Several multi-scale or multi-resolution feature detector are investigated in literature

[33]. In [34] interest points are detected at the local maxima of the Harris function

applied at several scales. However, multi-scale approaches cannot cope well with
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the case where a local image structure is present over a range of scales, which re-

sults in multiple interest points being detected at each scale within this range. As a

result, there are many points, which represent the same structure, but with slightly

different localization and scale. The ambiguity and the computational complex-

ity of matching and recognition are increased with the increasing number points.

Therefore, efficient methods for selecting accurate correspondences of the features

among the several scales are necessary at further steps of the algorithms.

To overcome the problem of redundant detections, scale-invariant methods have

been introduced. Both the location and scale of the local features are determined

efficiently by this multi-scale approach. The idea for detecting local features in

scale-space was first introduced by Crowley et al. [35]. Low pass filters are applied

to construct representation and a feature point is detected if it is at a local maximum

of a surrounding 3D cube (x,y and scale) and if its absolute value is higher than a

certain threshold. After then several different approaches have been proposed for

selecting points in scale-space. However the approaches actually differ in terms of

the differential expression that is used to build the scale-space representation.

A normalized LoG function was applied in [36] and [37] to build a scale-space

representation and search for scale-space extrema. Derivatives of Gaussian kernels

of increasing size are applied to blur the high resolution image successively. Au-

tomatic scale selection is performed by selecting local maxima in scale-space. The

LoG operator, which is circularly symmetric and is thus invariant to rotation. It is

also useful for detecting bloblike structures. In [38] automatic scale selection are

investigated for detecting scale invariance point. A combined framework for corner

detection and blob detection with automatic scale selection were also proposed in

[39] for feature tracking. Lowe [5] proposed an efficient algorithm called Scale In-

varint Feature Transform (SIFT) for object recognition based on local 3D extrema

in the scale-space pyramid built with DoG filters. The local 3D extrema in DoG the

pyramid representation determine the localization and the scale and interest points.
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Chapter 3

Support Vector Machine based
Classification

In this chapter, a brief overview to the relevant background information of SVM

based classifier including the formulation for standard 2-norm and 1-norm SVM,

construction of kernel matrix, kernel selection are given. Based upon our litera-

ture review, a number of research groups have dedicated their efforts in developing

optimized application dependent kernel. A summary to some of the representative

approaches is presented as well in section 3.2. Finally discussion and literature

review on different multiple kernel learning are illustrated in section 3.3

3.1 Binary Classification of Image

In binary classification, images are classified into two labeled categories on the

basis of whether they have some property or not. Researchers have made great

efforts in developing classification methods for improving binary image classifica-

tion accuracy. The main process of binary image classification has been divided into

two basic steps: (a) a preprocessing step to build a feature set and (b) classification

method on the feature set to classify images. The classification processes inherently

relies on feature extractor. One of the best approaches suitable for learning binary

classifiers is support vector machines [40]. Other significant methods include the

Bayesian networks, decision trees and neural networks [41].
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3.1.1 Support Vector Machine

A comprehensive mathematical formulation of SVM can be found in [4]. We only

provide here a brief description of the SVM method . Support vector machines

are one of the most effective approaches for supervised learning problems. The

algorithm of SVM was originated from the statistical learning theory developed by

Vapnik and Chervonenkis [42, 43]. It is a hyperplane classifier, which intends to

locate a hyperplane on a feature space that can separate the features belonging to

different classes.

To describe SVM, let us consider a binary classification problem. Let us have

a training data set {xi, yi}, i = 1, ..., l; where yi ∈ {−1, 1} represents the label of

arbitrary example xi ∈ RN ; N being the dimension of input space. The equation of

a linear decision surface is given by the equation

f(x) = w.x+ b = 0 (3.1)

The goal of learning is to find w ∈ RN and the scalar b ∈ R such that the margin

between positive and negative examples is maximized. An example of the decision

surface and the margin are shown in Figure 3.1.

The parameters of equation 3.1.1 can be determined by solving the following

quadratic optimization problem:

minimize 1
2
‖w‖22 + C

∑N
i=1 ξi

with respect to w ∈ RN , ξ ∈ RN
+ , b ∈ R

subject to yi(〈w,xi〉+ b) ≥ 1− ξi and ξ ≥ 0∀i (3.2)

Here C is a predefined positive trade-off parameter between model simplicity

and classification error, ξ is the vector of slack variable, and b is the bias term of the

separating hyperplane.

The Lagrange dual of the primal problem 3.2 can be written as follows:

LD =
1

2
‖w‖22 + C

N∑
i=1

ξi −
N∑
i=1

αi(yi(〈w,xi〉+ b)− 1 + ξi)−
N∑
i=1

βiξi (3.3)
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Figure 3.1: An example of decision surface and margin in SVM [4]

Now taking the derivatives of LD with respect to the primal variables gives

∂LD
∂w

= 0⇒ w =
N∑
i=1

αiyixi

∂LD
∂b

= 0⇒
N∑
i=1

αiyi = 0

∂LD
∂ξi

= 0⇒ C = αi + βi ∀i (3.4)

From 3.3 and 3.4, the dual formulation is obtained as

maximize
∑N

i=1 αi −
1
2

∑N
i=1

∑N
j=1 αiαjyiyj 〈xi,xj〉

with respect to α ∈ RN
+

subject to
∑N

i=1 αiyi = 0

C ≥ αi ≥ 0 ∀i (3.5)

where α is the vector of dual variables corresponding to each separation con-

straint. The solution of the above equation can be given by w =
∑Ns

i=1 αiyixi and
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the decision function can be written as:

f(x) = sgn(
Ns∑
i=1

αiyi 〈xi, x〉+ b) (3.6)

However, in most of the practical problems, the data items are distributed in a

more complicated way which makes the data set non-linearly separable. To solve

this problem, an SVM applies a kernel function k to map all the training data from

the input space onto a higher-dimensional feature space and derives a decision

boundary based upon it. Given a testing datum x, the SVM obtains its mapping

onto the feature space and grants its membership to a class according to its geo-

graphical location on the feature space. The decision function then can be obtained

by replacing 〈xi, x〉 by k(xi, x) as follows:

f(x) = sgn(
Ns∑
i=1

αiyik(xi, x) + b) (3.7)

where k is the kernel function, αi is the coefficient associated with a support vector

xi and Ns is the number of support vector.

3.1.2 1-norm SVM

The loss+penalty formulation of standard 2-norm SVM can be given by

minimize
N∑
1

[1− yi(< w.xi > +b)]+ + λ ‖w‖22 (3.8)

Here λ is the tuning parameter that controls the tradeoff between the loss and

the penalty terms. The loss (1−yf)+ is called hinge loss and penalty term is called

ridge penalty. 1-norm SVM proposed by Zhu et al [44] replaces ridge penalty by

lasso penalty as follows:

minimize
N∑
1

[1− yi(< w.xi > +b)]+ + λ ‖w‖1 (3.9)

which is an equivalent Lagrange version of the optimization problem. One of the

important properties of the lasso penalty is to handle sparsity. Because of L1 nature

of penalty, making λ sufficiently large will cause some of the coefficients w s to be

exactly zero. Thus 1 norm SVM performs a kind of continuous feature selection,

while in case of standard 2-norm SVM this is not the case. In the presence of the

noisy features, the performance of the 2-norm SVM is affected severely by noise.
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3.1.3 Kernel Selection and Optimization

Kernel functions provide a powerful way of detecting nonlinear relationship using

some linear algorithms in an appropriate feature space. Given a kernel function k

and a training set S = {x1, · · · , xl}, we can construct the kernel or Gram matrix K

as follows:

Kij = k(xi, xj), for i, j = 1, · · · , l. (3.10)

This kernel matrix is regarded as the point-wise similarity matrix between all

pairs of points in the training data set. The kernel matrix is a symmetric, positive

semidifinite matrix, which completely determines the relative positions of those

points in the feature space. This matrix acts as an information bottleneck as it

contains all the information needed to perform the learning step. For example,

learning algorithms obtain information about the choice of feature space and also

about the training data only through the kernel matrix. Thus, kernel matrix acts as

an interface between the data feature and the learning algorithm [40].

The choice of kernel function in kernel based methods plays an important role

for solving various problems in machine learning. Data mapped to the high di-

mensional feature space through kernel function are expected to show better linear

separability in the feature space than in the input space. However, improper choice

of kernel function can make the situation worse. Therefore, careful selection of

kernel function plays a very important role in kernel methods. There are several

popular kernels. For example:

• Linear kernel: k(x, x′) = xTx′

• Polynomial kernel: k(x, x′) = (xTx′ + 1)d

• Gaussian radial basis (RBF) kernel: k(x, x′) = exp
(
−‖x−x

′‖2
2σ2

)
Figure 3.2 shows the discriminants and support vectors found by SVM with

three kernels on a toy data set using the KerMet toolbox [45]. Actually, the range of

valid kernels is extremely large, some are given in closed form, others can only be

computed by means of recursion or other algorithms [40]. Thus the most challeng-

ing part of applying the kernel based methods is to select the best kernels among
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this wide-range of possibilities. Apart from the fact that the kernel matrix should

be positive definite there is almost no proposition on how to select kernels for an

application. The selection of kernel can depend on our prior knowledge about the

data and the types of patterns we want to identify.

 

(a) Linear

 

(b) Polynomial

 

(c) Gaussian

Figure 3.2: SVM solutions on a toy data set using three different kernels. The
solid lines show the discriminants learned and the dashed lines show the margin
boundaries. The bold circle data represent the support vectors stored

When designing a kernel function for a specific application domain, it is crucial
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that the kernel should incorporate as much domain knowledge as possible. Kernel

optimization is a technique to design data dependent kernel by incorporating such

domain knowledge. In other words, an optimized kernel function that adapts well

to the input data and the learning tasks can increase the performance of the ker-

nel based methods significantly. Several methods have been proposed for kernel

optimization in the last decade. Early work on kernel optimization was limited to

learning parameters of some popular kernel functions. Recently several researches

encouraged optimizing the kernel function instead of optimizing the kernel param-

eters.

3.2 Literature Review of Kernel Optimization

A brief description of some of the notable optimization techniques from the litera-

ture are provided in this section. Kernel optimization techniques from two different

points of view have been been discussed. First, different kinds of objective/cost

functions adopted by different researchers are reviewed and then multiple kernel

learning techniques, which are closely related to proposed MKL method are dis-

cussed .

3.2.1 Objective Function for Kernel Optimization

A good objective function should be selected in the kernel optimization technique,

to evaluate the quality of chosen kernel functions for a target classification task.

Kernel Alignment

Cristianini et al. [46] use a measure called kernel alignment to evaluate the com-

pliance of a kernel to the data. The alignment between two kernels K1 and K2 is

calculated as follows:

A(K1, K2) =
〈K1, K2〉F√

〈K1, K1〉F 〈K2, K2〉F
(3.11)

where 〈K1, K2〉F =
∑N

i=1

∑N
j=1 k1(x

1
i , x

1
j)k2(x

2
i , x

2
j) This similarity can be thought

of as the cosine of angle between K1 and K2.
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In [46] the alignment objective between a kernel and the ideal kernel yyT is

defined as

A(K, yyT ) =

〈
K, yyT

〉
F√

〈K,K〉F 〈yyT , yyT 〉F

=

〈
K, yyT

〉
F

N
√
〈K,K〉F

(3.12)

is maximized where K is the kernel matrix, y = [y1, · · · , yn] are the training data

labels, and n is the number of training data points. Lanckriet et al. [15] employ

semidefinite programming techniques to learn a kernel matrix, which is actually

a linear combination of positive semidefinite matrices. The hard margin, 1-norm

soft margin and 2-norm soft margin of the support vector machine are used as cost

functions. They optimized these cost functions with respect to kernel matrix in a

semidefinite programming setting to determine the value of the coefficients of linear

combination.

Fisher Discriminant

Xiong et al. [47] used Fisher discriminant criterion as an objective function to op-

timize the kernel function to augment the margin between different classes. Fisher

scalar j for measuring the class linear separability, is defined as follows:

j = tr(Sb)/tr(Sw)) (3.13)

Where Sb is the between-class scatter matrix, Sw is the within-class scatter ma-

trix, and tr denotes the trace of a matrix. However, Fisher criterion is optimal

only under the assumption that all the classes are generated from underlying multi-

variate normal distributions of common covariance matrix but different means and

each class is expressed by a single cluster [48]. As a result this discriminant cri-

terion is not an appropriate choice as an objective function of kernel optimization

for multimodally distributed data. In order to solve this problem, Chen et al. [48]

investigated many improved discriminant criteria (DC) such as local Fisher crite-

ria (LFC), subclass Fisher criteria (SFC), marginal Fisher criteria (MFC), localized

kernel Fisher criteria and so on. Inspired by the kernel optimization method of [47],

32



Yeung et al. [49] proposed a class separability criterion as cost function that is sim-

ilar to those used by linear discriminant analysis (LDA). In [47] finding optimal lin-

ear transformation corresponds to solving a generalized eigenvalue problem, which

requires that the pooled within-class scatter matrix be invertible. This condition can

be a problem in some application like face recognition and microarray data analysis

where the dimensionality of the input space is larger than the sample size. Yeung et

al. [49] reformulate a different optimization criterion j as: j = Tr(Sb)− αtr(Sw)

where α > 0 is a parameter that can be determined using some technique, for ex-

ample cross-validation. Their proposed reformulation of the cost function does not

require inversion of the singular within-class scatter matrix.

Other Similarity Measures

He et al [50] choose the distance between the combined kernel matrix and ideal ker-

nel as the objective function to optimize instead of optimizing the kernel alignment

score as follows ∥∥K − yyT∥∥2
F

(3.14)

Nguyen et al. [51] proposed another cost function called feature space-based

kernel matrix evaluation measure(FSM) is defined as follows

FSM(K, y) =
s+ + s−

‖m+ −m−‖2
(3.15)

where s+, s− are standard deviations of positive and negative classes and m+,m−

are class centers in the feature space.

Ying et al [52] proposed a novel information-theoretic approach to learn the

kernel combinatorial weights. They proposed to quantify the similarity between

combined kernel and the optimal kernel through a Kullback-Leibler (KL) diver-

gence or relative entropy term as follows:

KL(N(0, K)||N(0, yyT )) (3.16)

The weight of the kernel combinations are calculated by using a projected gradient

decent method.
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3.3 Multiple Kernel Learning (MKL)

Recent research on the kernel method based classification such as SVM has proved

that using a weighted combination of multiple kernel functions can improve the in-

terpretability of the decision function and can improve classifier performance [15].

The reasoning of MKL is very similar to combining different classifier to increase

the accuracy. There are two main advantages of MKL as discussed follows:

• Different kernels provide different kinds of similarity of the data. MKL does

optimum selection of the kernels instead of choosing the best one or applying

cross validation. A better accuracy can be obtained by selecting multiple

kernels instead of selection of a specific one.

• Different kernels may be constructed from heterogenous data sources or modal-

ities. In this case combining kernels means combining multiple information

sources.

There are several techniques available for combining multiple kernels. One promis-

ing technique to combine multiple kernel functions is proposed by Lanckriet et al.

[15]. This article discussed the optimization over the coefficients in a linear com-

bination of kernel functions. In such cases, the kernel k(x, x′) is considered as a

convex linear combination of other basis kernels. The proposed weighted kernel

function is given by the following equation:

k(x, x′) =
∑
i

wik
i(x, x′) (3.17)

where wi represents the non-negative weighting factor for the corresponding

basis kernel function ki. By minimizing SVM dual problem with respect to wi for

all i the authors proposed to learn k. This problem can be posed as a semidef-

inite problem which reduces to second order cone program when wi parameters

are constrained to be nonnegative. Each basis kernel ki may either use the full set

of variables describing x or only a subset of these variables. Alternatively, ker-

nels ki can simply be traditional kernels (such as Gaussian or polynomial kernel)

with different parameters, or may rely on different data sources associated with the
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same learning problem. Within this framework, the problem of data representation

through the kernel is then converted to the choice of weights wi.

The objective function ω(K) in the MKL framework proposed in [15] is defined

as

ω(K) = maximize
∑N

i=1 αi −
1
2

∑N
i=1

∑N
j=1 αiαjyiyj 〈xi,xj〉

with respect to α ∈ RN
+

subject to
∑N

i=1 αiyi = 0

C ≥ αi ≥ 0 ∀i (3.18)

The combined kernel matrix is selected from the following set:

KL =

{
K : K =

P∑
m=1

ηmKm, K � 0, tr(K) ≤ c

}
(3.19)

here the selected kernels should be positive semidifinite.

The resulting optimization problem that minimizes the objective function value

corresponding soft margin SVM optimization problem is formulated as

minimize ω(Ktra
η )

with respect to Kη ∈ KL

subject to tr(Kη) = c

where Ktra
η is the kernel matrix calculated over only the training set and the

problem can be posed as the following semidifinite programming formulation:

minimize t

with respect to η ∈ RP , t ∈ R, ν ∈ RN
+ , δ ∈ RN

+ subject to tr(Kη) = c(
(yyT )Ktra

η e+ ν − δ + λy
(e+ ν − δ + λy)T t− 2CδT e

)
� 0 Kη � 0.

Later Lanckriet et al. reformulated the semidefinite programming formulation

to the following Quadratically constrained quadratic programming (QCQP) formu-
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lation as follows:

minimize 1
2
ct−

∑N
i=1 αi

with respect to α ∈ RN
+ t ∈ R

subject to tr(Km)t ≥ αT ((yy)TKtra
m )α ∀m∑N

i=1 αiyi = 0

C ≥ αi ≥ 0 ∀i

where the weights are restricted to have non negative values by selecting the

kernel matrix from

KL =

{
K : K =

P∑
m=1

ηmKm, η ≥ 0 K � 0, tr(K) ≤ c

}
(3.20)

Solving this formulation the support vector coefficients and kernel weights can

be obtained jointly. The interior point methods are applied to solve this QCQP

formulation.

Unfortunately, the semidefinite programming based method proposed by Lanck-

riet et al. can solve this problem only for a small number of kernels and a small

number of data points and become rapidly intractable as the number of learning

examples or kernels become large. To overcome this limitation Bach et al. [16]

have reformulated the optimization problem as a Second-order cone programming

(SOCP) as follows:

minimize 1
2
γ2 −

∑N
i=1 αi

with respect to α ∈ RN
+ γ ∈ R

subject to γ2d2m ≥
∑N

i=1

∑N
j=1 αiαjyiyjkm(xmi , x

m
j ) ∀m∑N

i=1 αiyi = 0

C ≥ αi ≥ 0 ∀i

In the above formulation, sequential minimal optimization (SMO) like tech-

niques have been be applied to handle medium-scale problems. The optimal kernel

weights can be obtained from the optimal dual variables and the weights satisfy
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∑P
m=1 d

2
mηm = 1. The dual problem equivalent to the Lanckriet’s QCQP formula-

tion if you consider dm =
√
tr(Km)/c. Sonnenburg et al. [17] again reformulate

the binary classification MKL problem as a semiinfinite linear program (SILP),

which can be efficiently solved using a simple LP solver and a standard SVM im-

plementation.

minimize γ

with respect to γ ∈ R,α ∈ RN
+

subject to
∑N

i=1 αiyi = 0

C ≥ αi ≥ 0 ∀i

γ ≥ 1
2

∑N
i=1

∑N
j=1 αiαjyiyjkm(xmi , x

m
j )−

∑N
i=1 αi ∀m

(3.21)

Sonnenburg’s method makes the MKL approach tractable for large-scale prob-

lems, employing existing support vector machine code iteratively. However, this

method needs several iterations before converging to a reasonable solution. A more

efficient approach is proposed in [53], where the authors tried to tackle the MKL

problem through an adaptive 2-norm regularization formulation. Weights on each

kernel matrix are included in the standard SVM empirical risk minimization prob-

lem with a constraint to allow sparsity [53]. All the aforementioned MKL tech-

niques used linear combination of kernels which may be restrictive in some cases.

Varma et al. [18] show how existing MKL formulations can be easily extended to

learn general kernel combinations subject to regularizations on the kernel param-

eters. This generalized multiple kernel learning (GMKL) method provides richer

representations of feature spaces by combining kernels in other fashions rather than

linear combination.

Recently Gonen et al. [54] introduced a regularized multiple kernel learning

framework that use the response surface methodology to search for the best regu-

larization parameter set using validation data. Optimizing such regularization pa-

rameters author claimed to obtain more robust decision functions for the classifica-

tion task. Kernels which are not helpful to increase the classification accuracy are

pruned by selecting their regularization parameters accordingly, obtaining smoother
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discriminants.
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Chapter 4

Multi-Scale Feature Extraction

Chapter 1 sketches an outline of the problem we are addressing and how it is in-

tended to be solved. This chapter illustrates the multi scale feature extraction pro-

cess. DoG and wavelet scale-spaces are described in detail and corresponding ex-

amples are shown.

4.1 Multi-Scale Feature Extraction

Multi-scale feature extraction is particularly useful when designing methods for

automatically analyzing and deriving information from real-world measurements

[10]. As discussed in Section 2.2, scale-space framework has been developed to

handle the multi-scale nature of image data. In the multi-scale approach we can

get a description of the signal changes at different scales by applying different sizes

of scale operators on an image. In general, for a small scale operator, we get fine

details of the intensity changes and the operator is more noise sensitive; for a large

scale operator, we get coarse intensity change information. Tracking the behavior

of some features of the signal across varying scales in multi-scale analysis unveils

valuable information about the nature of the underlying physical process. For many

applications, no single scale response is emphatically right. In the following two

sections, construction of DoG and wavelet scale-space are discussed in detail.
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4.1.1 Difference of Gaussian

Difference of Gaussians is actually an edge enhancement algorithm for grayscale

images which is obtained by subtracting one Gaussian-smoothed image from an-

other less Gaussian-smoothed image. Smoothing the image using Gaussian kernel

has the excellent property of suppressing noise. Most of the edge enhancement al-

gorithms used in digital image processing often produce the undesirable side effect

of increasing random noise in the image. While the Difference of Gaussians algo-

rithm removes high frequency detail that often includes random noise. As a result,

DoG is most suitable for processing images with a high degree of noise like oil sand

images. The Difference of Gaussians is a band-pass filter that retains only handful

of spatial frequencies that are present in the original grayscale image. The Differ-

ence of Gaussians is very similar to the architecture of the retina’s visual receptive

field [55]. The retina actually implements DoG bandpass filters at several spatial

frequencies. The plot of the cross sectionss of two Gaussian curves with different

standard deviations and their difference is shown in Figure 4.1 and corresponding

2D difference of gaussian is drawn in Figure 4.2.
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Figure 4.1: Gaussians and Difference of gaussian in one dimension.

An interesting scale-space is produced by Difference of Gaussian (DoG), which
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Figure 4.2: Difference of Gaussian in two dimension.

is the difference of two Gaussians with nearby scales separated by a constant mul-

tiplicative factor c [5]:

Dσ
I (x, y) = (G(x, y; cσ)−G(x, y;σ)) ∗ I(x, y), (4.1)

where G is the Gaussian kernel and I is the image. DoG filter provides a close

approximation to the scale normalized Laplacian of Gaussian (LoG) filter, and it is

computationally more efficient than the LoG filter [5].

The efficient approach for construction of Dσ
I (x, y) as discussed in [5] is shown

in Figure 4.3. The input image is successively convolved with Gaussian functions

to produce a scale-space stack, where scales of the smoothed images separated by

a constant factor c are shown in the left column. Each octave of scale-space are

divided into an integer number, s, called sub-level, so that c = 21/s. Adjacent

image scales are subtracted to produce the DoG images shown on the right. Once a

complete octave has been processed, the Gaussian smoothed images are re-sampled

that has twice the initial value of σ by taking every second pixel in each row and

column. This technique is able to reduce the computation greatly. [5].

The octave index o and sub-level index s respectively are mapped to the corre-
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Figure 4.3: Efficient approach for calculating DoG scale-space(taken from [5]).

sponding scale σ using the following equation:

σ(o, s) = σ02
o+s/S, o ∈ Omin + [0, · · · , O − 1], s = [0, · · · , S − 1]. (4.2)

where O is the number of octaves, S is the number of sub-levels and σ0 is the base

scale level.

DoG plays an important role in blob-like object detection [5]. For the applica-

tion at hand, Figure 4.5 and Figure 4.7 show the DoG scale-spaces with different

scales for images in Figure 4.4 and Figure 4.6 respectively. Note that the image

containing a large lump and not containing one have different filter responses spe-

cially at coarser scales. In the presence of the large lump there is a clear blob like

structure which corresponds to the large lump structure in most of these scales.
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Figure 4.4: Image of large lump.

 

Figure 4.5: DoG responses for image in Figure 4.4.
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Figure 4.6: Image with no large lump.

 

Figure 4.7: DoG responses for image in Figure 4.6.

4.1.2 Wavelet Scale-Space

Multi scale analysis is basic to wavelet analysis. Analogous to human vision sys-

tem, discrete wavelet transform (DWT) decomposes images into different frequency

subbands which make it efficient for the processing and classification of images.

The wavelet transform encompasses a variety of unique but related transformations

44



which are related by their expansion functions called “wavelets”, of varying fre-

quency and limited duration. The wavelet kernel can be represented by three sepa-

rable 2-D wavelets

ψH(x, y) = ψ(x)φ(y)

ψV (x, y) = φ(x)ψ(y)

ψD(x, y) = ψ(x)ψ(y)

(4.3)

where ψH(x, y), ψV (x, y) and ψD(x, y) are called horizontal, vertical and diagonal

wavelets, respectively and one separable 2-D scaling function

φ(x, y) = φ(x)φ(y) (4.4)

Both φ(x) and ψ(x) can be expressed as linear combinations of double resolu-

tion copies of themselves via the series expansions as follows:

φ(x) =
∑
n

hφ(n)
√

2φ(2x− n)

ψ(x) =
∑
n

hψ(n)
√

2φ(2x− n)

(4.5)

where hφ and hψ - the expansion coefficients of fast wavelet transform (FWT) are

called scaling and wavelet vectors respectively. The iterative approach of FWT are

shown in Figure 4.8

The Wφ(j,m, n) and {W i
ψ(j,m, n) for i = H, V,D} are the DWT coefficient

at scale j. The input image is downsampled by 2 by extracting every other point

from a sequence of points. The hφ(−n) and hψ(−m) are lowpass and highpass

decomposition filters are applied to decompose it into four lower resolution sub-

bands. The Wφ coefficients are created via two lowpass filters and are thus called

approximation coefficients and {W i
ψ for i = H,V,D} are horizontal, vertical and

diagonal detail coefficients.
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Figure 4.8: A two dimensional four band filter bank.

In this context, the wavelet transform can be interpreted as frequency decompo-

sition, with each set having a spatial orientation. To handle steam detection prob-

lem via supervised classification, we have used wavelet subbands at different scales.

Figure 4.10 and Figure 4.12 show the wavelet coefficients for image frame without

steam and with steam.

Figure 4.9: Image frame without steam.

With this large number of subbands, appropriate features need to be extracted to

obtain a representation that is as discriminative as possible in the transform domain.

In several previous researches, especially on texture image classifications such as
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Figure 4.10: Wavelet responses at different decomposition levels for the image con-
taining no steam of Figure 4.9.

in [56] and [57], features from all wavelet subbands are used. However, it is well

understood that proper feature selection is likely to improve the classification ac-

curacy with fewer numbers of features [58]. Recently a wavelet feature selection

algorithm based on statistical dependence proposed in [59] showed significant im-

provement in case of image classification. Wavelet feature selection is equivalent

to selecting a set of subbands for image decomposition. Therefore, wavelet feature

selection and wavelet subband selection are interchangeably used in this thesis.
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Figure 4.11: Image frame with steam.

Figure 4.12: Wavelet responses at different decomposition levels for the image con-
taining steam of Figure 4.11.
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Chapter 5

Multiple Kernel Learning for Scale
Selection

Various methods are proposed in the literature to combine information from multi-

ple scales to solve different types of problems [18]. However multi-scale systems

have some limitations: they provide no information on how to relate the descriptions

of different scales, or which scales to select under what condition. The ambiguity

introduced by multi-scale system is inherent and unavoidable. Thus the goal of

scale dependent representation is to manage and combine the multi scale responses

while reducing the ambiguity where possible. The multi-scale system involves two

aspects:

• how to handle the large dimensionality of multi scale feature

• how to select the scales and combine them effectively

In this thesis we solve the above problems via multiple kernel learning approach.

5.1 Proposed Basis Kernel Function Construction

After constructing the scale-space images from the input images, the next step is

to consider a basis kernel function defined on an individual scale. The choice of

kernel function in kernel-based methods plays an important role. In considering

such a kernel function, inclusion of prior knowledge about possible variations of the

patterns can play a significant role to design a robust support vector machine (SVM)

classifiers. Shift invariance is important for our application, because the object of
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interest that is large lumps/steam can appear anywhere in the image frame and yet

the kernel function needs to find out similarity among all these cases. Applying the

standard kernels of SVM, such as linear, Gaussian or polynomial kernels, are not

always appropriate to be used with scale-space features. One principal reason is

that these kernels are not shift invariant. In [60], we propose a base kernel function

defined with circular convolution, which is shift invariant. The circular convolution

between two scale-space images Dσ
I and Dσ

J of size M ×N obtained from images

I and J can be computed as follows:

(Dσ
I ⊗c Dσ

J)(i, j) =
M∑
u=1

N∑
v=1

Dσ
I (i− u, j − v)Dσ

J(u, v) (5.1)

Thus we can define the base kernel function for scale σ as

kσ(I, J) =
M∑
i=1

N∑
j=1

((Dσ
I ⊗c Dσ

J) (i, j))2 (5.2)

and call this kernel function as circular convolution kernel. Note that this is equiv-

alent to point-wise multiplication of the Fourier transform coefficients of Dσ
I and

Dσ
J and sum of their squares. Thus, this kernel not only takes into account the shift

invariance, it also compares frequency bands produced in the scale-space features.

It can be shown that circular convolution kernel function is indeed a kernel function

i.e., symmetric and positive semi-definite.

Similarly, if U = (I1, I2, . . . , IT ) and V = (J1, J2, . . . , JT ) are two video se-

quences of the same length, then the circular convolution kernel function can be

extended between them as

kt,σ(U, V ) = kσ(It, Jt) (5.3)

for t = 1, 2, . . . , T .

5.1.1 Proof of Symmetric and Positive Semi-Definiteness

In this section we prove that the function given by (5.2) is a kernel function i.e.

circular convolution kernel function is symmetric and positive semi-definite. To

prove this, we need to define a kernel matrix Kp,q, which is defined for a set of
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images I1, I2, ..., and a kernel function k as:

Kp,q = k(Ip, Jq), ∀ i, j = 1, 2, · · · , . (5.4)

To prove k is a kernel function, we need to show that the associated kernel matrixK

is symmetric and positive semi-definitive. Toward this goal, we prove the following

Lemma.

Lemma 1: If A and B are two doubly block circulant matrices, then ATB = BAT .

Proof: We first prove the result for circulant matrices. LetX and Y be two circulant

matrices:

X =


x0 xN−1 · · · x1
x1 x0 · · · x2
...

...
...

...
xN−1 xN−2 · · · x0


and

Y =


y0 yN−1 · · · y1
y1 y0 · · · y2
...

...
...

...
yN−1 yN−2 · · · y0


Then, the (k, l)th element of matrix XTY is

(XTY )k,m =
N−1∑
l=0

(XT )k,l(Y )l,m =
N−1∑
l=0

xl−kyl−m

=
N−1∑
l=0

xl−m+m−kyl−m

=
N−1∑
p=0

xp+m−kyp

On the other hand

(Y XT )k,m =
N−1∑
l=0

(Y )k,l(X)Tl,m =
N−1∑
l=0

yk−lxm−l

=
N−1∑
l=0

yk−lxm−k+k−l

=
N−1∑
p=0

ypxp+m−k
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So, XTY = Y XT .

We will now extend the result to the doubly block circulant matrices. Note that

a doubly block circulant matrix has a block structure, which is circulant; moreover

each block is a circulant matrix. For two such matrices A and B, let us consider

(k,m)th block of ATB:

[ATB]k,m =
∑
l

[AT ]k,l[B]l,m =
∑
l

[A]Tl−k[B]l−m

=
∑
p

[A]Tp+m−k[B]p

On the other hand,

[BAT ]k,m =
∑
l

[B]k,l[A
T ]l,m =

∑
l

[B]k−l[A]Tm−l

=
∑
l

[A]Tm−l[B]k−l =
∑
p

[A]Tp+m−k[B]p :

Therefore, ATB = BAT

Poposition 1: The function given in (5.2) is a kenel function.

Proof: In order for a function to be a kernel function, it needs to be (a) symmet-

ric and (b) positive semidefinite. Symmetry is satisfied for function (5.2) because

circular convolution is commutative. It remains to show if function (5.2) is positive

semidefinite. To show this let F and G be two matrices of size N ×M . Thus cir-

cular convolution between them is defined as:

(F ⊗c G)i,j =
∑N−1

u=0

∑M−1
v=0 Fi−u,j−vGu,v

= [Fi,j Fi,j−1 · · ·Fi,j−M+1 · · ·Fi−N+1,j · · ·Fi−N+1,j−M+1]

[G0,0 G0,1 · · ·G0,M−1 · · ·GN−1,0 · · ·GN−1,M−1]
T

In a similar way,
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(F ⊗c G)i,j =
∑N−1

u=0

∑M−1
v=0 Gi−u,j−vFu,v

= [Gi,j Gi,j−1 · · ·Gi,j−M+1 · · ·Gi−N+1,j · · ·Gi−N+1,j−M+1]

[F0,0 F0,1 · · ·F0,M−1 · · ·FN−1,0 · · ·FN−1,M−1]T

Let F1, F2, · · · are 2D matices for which function (5.2) is computed pairwise.

Let K denote the kernel matix. (p, q)th element of K is given by

where the notation F̄ stands fo the following column vector of size MN × 1

F̄ = [F0,0 F0,1 · · ·F0,M−1 · · ·FN−1,0 FN−1,1 · · ·FN−1,M−1]T F̃ is a doubly block

circulant matrix of size MN ×MN

F̃ =


F0,0 F0,M−1 · · · F0,1 · · · F1,0 F1,M−1 · · · F1,1

F0,1 F0,0 · · · F0,2 · · · F1,1 F1,0 · · · F1,2
...

...
...

...
FN−1,M−1 FN−1,M−2 · · · FN−1,0 · · · F0,M−1 F0,M−2 · · · F0,0


Thus using lemma 1

Kp,q = F̄q
T
F̃p

T
F̃qF̄p

= F̄q
T
F̃qF̃p

T
F̄p = (F̃q

T
F̄q)

T (F̃p
T
F̄p)

Thus K can be written as K = LLT for some matrix L. Hence K is a positive

semidefinite symmetric matrix.

5.1.2 Proposed Multiple Kernel Learning

Instead of choosing any particular single scale-based kernel, we propose to use a

data dependent kernel function, which is a weighted linear combination of base

kernel functions (kt,σ) defined on individual video frames and scales. For the large

lump detection problem, the reason for considering multiple kernel functions can

be justified from a frequency domain perspective that an object can span over more

than a single scale in the scale space. We can consider the convex combination of

base kernel functions:

k(U, V ) = w0,0 +
∑
t

∑
σ

wt,σk
t,σ(U, V ), (5.5)
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Each kernel kt,σ is the base kernel function for video frame t and scale σ and

w is the weight for the same frame and scale. The goal of MKL is to obtain an

optimized combination of these coefficients. There is a straightforward interpreta-

tion of Equation (5.5) as follows. If the base kernel functions kt,σ are considered

features, then k in (5.5) is a prediction function with linear combination of non-

negative weights that need to be learned from the data. The standard machinery of

large margin hyper plane classifier, viz., SVM can be applied on (5.5) with slight

modifications to yield non-negative weights. If a linear program is applied for the

1-norm SVM then the only extra constraints are non-negativity. Alternatively, one

can use Mangasarian’s unconstrained minimization [61]. The 1-norm SVM has the

advantage of a sparse solution [44]. In our case, the sparse solution ensures that

only a handful of the coefficients wt,σ’s will be non-zero and a few convolutions

corresponding to these scales need to be evaluated at the runtime.

Once the base kernel weights (wt,σ) are learned, the next step is to classify a test

video. We have applied a non-linear 2-norm SVM to classify an video sequence V :

f(V ) = α0 +
∑
i

αiyik(Ui, V ), (5.6)

where {U1, U2, · · · } are support vectors (training video clips) with weights {α1, α2, · · · }

and corresponding labels {y1, y2, · · · }. We assume yi = 1 implies a large lump,

and yi = −1 implies non-large lump. Here, α0 is the bias. The prediction label

for an unknown video sequence V is obtained as the sign of f(V ). In our experi-

ments, each training video clip consists five image frames. For a test video stream

(J1, J2, . . . ), if the current time is denoted by t, then the test video clip V for the

current time t would consist of five frames: V = (Jt−2, Jt−1, Jt, Jt+1, Jt+2). We

learn the two classifiers (5.5) and (5.6) in a cascaded way. Notice that because∑
i αiyi = 0 in a standard 2-norm SVM, the bias term w0,0 in (5.5) is not required

in (5.6). Below we provide the proposed MKL algorithm.

Proposed MKL Learning Algorithm

Inputs:

Training video set {U1, U2, U3, · · · , Ul} and hold-out test video set {V1, V2, V3, · · · , Vp}
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Outputs:

1. kernel weights wt,σ for t = 1, 2, · · · , T and σ = σ1, σ2, · · · , σN

2. SVM weights α0, α1, α2, · · · , αl

Perform the following three steps (a) through (c) in sequence:

(a) From the training set, obtain all possible pairing of video sequences of the form

(Ui, Uj). With these paired videos compute the non-negative weights (wt,σ) for

(5.5) using linear 1-norm SVM.

(b) Using the training set, compute the support vector weights α0, α1, α2, · · · , αl
in (5.6) with a standard 2-norm nonlinear support vector machine with mixture

kernel function k in (5.5).

(c) Obtain classification accuracy on the hold-out test set using (5.5).

1-norm SVM and 2-norm SVM each has one tuning parameter. Thus, the pro-

posed MKL learning algorithm is run on all possible combinations of these two

tuning parameters. The combination that yields the highest classification accuracy

is considered and the associated learned parameters α0, α1, α2, · · · , αl and wt,σ’s

are retained. Our algorithm requires only a linear equation solver or alternatively

the method proposed in [61] making our MKL implementation simple, fast, and

easily accessible.

In the proposed algorithm we have done pairing of the training samples. As a

result, training space is artificially inflated from n to n2. Also the study of the gen-

eralization properties of this case is a challenging task, since the pairs of samples

violate the central i.i.d. assumption of binary classification. Usunier et al. [62]

show that classifiers trained on interdependent data will “inherit” the generalization

bound of the same classifier trained on i.i.d. In [62], a new framework is proposed

to study the generalization properties of classifiers over data which can exhibit a

suitable dependency structure. Bipartite ranking problem is considered as special

case of the classification problem where pairing of the training set are done. The
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generalization bounds for classifiers trained over interdependent examples are in-

ferred using generalization results known for binary classification. This property

is illustrated by proving a new margin-based, data-dependent bound for SVM-like

algorithms optimizing the area under the ROC Curve (AUC).

It is natural to ask if our proposed margin function yy′k(x,x′) has a concen-

tration around an empirical estimation from paired sample points belonging to an

independent and identically distributed (i.i.d.) set of patterns and their responses

S = {(x1, y1), · · · , (xn, yn)}. To derive a concentration bound, note that

yy′k(x,x′) = yy′φ(x)Tφ(x′) = ρ(z)Tρ(z′), (5.7)

where the kernel function k can be expressed as a inner product of some feature

map φ and we denoted z = (x, y) as a pattern (x) and corresponding response (y)

together, further, we note that

ρ(z) = yφ(x) and ρ(z′) = y′φ(x′). (5.8)

With this setup, the expectation of our proposed margin function is as follows:

E[yy′k(xx′)] = E[ρ(z)Tρ(z′)] = E[ρ(z)]TE[ρ(z′)] = E[ρ(z)]TE[ρ(z)] = ‖E[ρ(z)]‖2

The second equality holds because z and z′ are independent. The third equality

holds because z and z′ are identically distributed.

The empirical expectation estimated from the set S = {z1, · · · , zn} with paired

sample points (zi, zj) is as follows:

Ê[yy′k(x,x′)] =
2

n(n− 1)

∑
i>j

yiyjk(xi,xj) =
2

n(n− 1)

∑
i>j

ρ(zi)
Tρ(zj) (5.9)

Let us now define a function g(S) on the set of i.i.d. sample S as follows:

g(S) =
2

n(n− 1)

∑
i>j

ρ(zi)
Tρ(zj)− ‖E[ρ(z)]‖2 (5.10)

Thus, it is our aim now to find a bound on |g(S)|. To do so, let us consider another

i.i.d. set of sample points S̃ = {z1, z2, · · · , zi−1, z′i, zi−1, · · · , zn}, where only the
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ith sample point is different between the sets S and S̃. Now, we find a bound on the

following:∣∣∣g(S)− g(S̃)
∣∣∣ =

2

n(n− 1)

∣∣∣∣∣(ρ(zi)− ρ(z′i))
T
∑
k 6=i

ρ(zk)

∣∣∣∣∣ ≤ 4R

n
, (5.11)

assuming the kernel function has a bound |k(x,x′)| ≤ R, a standard assumption

(see for example the treatments in [40]). Because S is an i.i.d. sample and the

function g(S) has a bounded variation for each sample point zi, we can apply Mc-

Diarmid’s inequality [40] and obtain:

P{g(S)− E[g(S)] ≥ ε} ≤ exp(− nε
2

8R2
), (5.12)

where ε is any given positive number. Further, we note that

E[g(S)] = E[
2

n(n− 1)

∑
i>j

ρ(zi)
Tρ(zj)]− ‖Eρ(z)‖2 (5.13)

=
2

n(n− 1)

∑
i>j

E[ρ(zi)
T ]E[ρ(zj)]− ‖Eρ(z)‖2

= 0.

The significance ofE[g(S)] being zero is that our empirical estimate using pairwise

sample points is unbiased. Thus, we obtain:

P{g(S) ≥ ε} ≤ exp(− nε
2

8R2
). (5.14)

However, reversing the sign of g(S) and following practically the similar derivation

as above, we also obtain:

P{−g(S) ≥ ε} ≤ exp(− nε
2

8R2
). (5.15)

Adding these two inequalities, we obtain:

P{|g(S)| ≥ ε} ≤ 2exp(− nε
2

8R2
). (5.16)

Setting the right hand side to δ and solving for ε =
√

8R2

n
ln(2

δ
), we are able to

assert that with probability 1− δ, the following bound holds:

|g(s)| ≤
√

8R2

n
ln(

2

δ
), (5.17)
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i.e,
∣∣∣E [yy′k(x, x′)]− Ê [yy′k(x, x′)]

∣∣∣ ≤√8R2

n
ln(

2

δ
) (5.18)

This is the intended concentration bound, which does not depend on the dimen-

sion of the patterns x. The concentration bound proves that the empirical estimate

Ê[yy′k(x, x′)] of our proposed margin function, embedded in a loss (e.g., hinge loss

of SVM), is a reasonable target for optimization that a binary classifier can achieve

with paired sample points from an i.i.d set.
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Chapter 6

Applications to Oil Sands Image
Classification

In this chapter we describe the experiments and results of our proposed multi-scale

based method on the oil sand video image analysis. The chapter is mainly divided

into three main sections. In the first section a brief literature review of oil sand

image analysis is given. Second section describes the experimental setup, data set

and comparative results of DoG scale-space based MKL method for large lump

detection problem. The final section highlights the experimental setup and results

for wavelet based steam detection problem. For both detection problems we have

performed vigourous testing and comparison of different parts of the algorithm to

some of the state of art methods.

6.1 Related Work on Oil Sands Image Analysis

Oil sand images are relatively novel images. To date, very little research toward

automated analysis have been done on these images. Zhang [2] investigated the

application of different image processing algorithms to improve efficiency, reduce

cost, and minimize the environmental impact in various stages of oil sands min-

ing process. Majority of work on oil sands image analysis concentrated on im-

age segmentation for size analysis [21, 63, 64, 65]. These methods apply various

machine learning techniques combined with active contour or snake [21], water-

shed [63, 64], and grayscale image threshold method [65]. Ray et al. show that

connected operator-based pre-filtering helps snake methods to a significant degree
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in oil sands mining image segmentation [66].

6.1.1 Large lump Detection

Most of the research works have been done for oil sand image segmentation, only

few works have been proposed in large lump detection problem. Recently Wang

et al. [67] describe a particle filter based solution for detecting large lump from

oil sand images. They proposed application specific observation model for the

Bayesian tracker for joint detection and tracking of large lump in an image se-

quence. To define the observation model, a feature detector is proposed. First, a

local Otsu thresholding is done on the original image to get the thresholded image.

Then, foreground pixel density within a local window for each location is calculated

to get a density image. This step is due to the observation that in the thresholded im-

age, foreground pixels in the real lump region tend to be more compact and smooth

than the foreground pixels in the clutter regions, and consequently real lump pix-

els have higher densities in the density image than clutter pixels. Finally, a global

thresholding on the density image is done to get the final observation. However,

this method is heavily dependent on thresholding parameters. In addition it does

not perform well on images with very low contrast and images captured in more

difficult outdoor condition for example nightlight and snow.

6.1.2 Steam Detection

Automatic detection of steam from oil sand images is a challenging problem as the

background of the images are not static. Steam detection is a relatively novel field.

Ferrari et al.[1] proposed a real-time steam detection technique in oil sand video

images. They treated the detection problem as a supervised pattern recognition

problem which uses the dual-tree complex wavelet transform (DT-CWT) and the

statistical HMT model computed for small 48×48 local regions of the image frames

in order to characterize the steam texture pattern. A image processing technique is

employed to automatically decide whether the frame can be used for further analysis

by detecting the total area covered by steam in a video frame.

Steam detection problem is the similar to the problem of smoke detection, which
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is a well researched area for industrial applications. In [68] the background of the

scene is estimated and decrease of high frequency energy of the scene is monitored

using the spatial wavelet transforms of the current and the background images to de-

tect smoke. In addition, chrominance values of pixels, periodic behavior in smoke

boundaries and convexity of smoke regions are also analyzed and combined to ob-

tain a final detection result.

A three step method is proposed in by Kim et al. [69]. The first step of the

method decides whether the camera is moving or not. If the camera is moving,

subsequent steps are skipped. Otherwise, the areas of change in the current input

frame against the background image are detected and the regions of interest (ROIs)

are located by connected component analysis in the second step. The block-based

approach is applied in both the first and second steps. The final step is to determine

whether each blob of the current input frame is smoke by using temporal infor-

mation of color and shape in the detected blobs. The aforementioned methods only

work if the background is stationary since the method used background information

detect the features for smoke detection. This method will not perform well if the

background is not static or the camera is moving. Also, changes in lighting (from

clouds, time of day, etc.) is another factor that can easily disturb these methods as

previous methods also depend on color information.

Kenji et al [70] applied fractal encoding concepts to extract smoke regions from

an image. The self-similarity property of smoke are produced by fractal encoding of

an image. Several papers showed that the smoke detection problem can be treated

as a dynamic texture classification problem. Many authors proposed to model the

spatio-temporal dynamics of image regions by using Gauss-Markov models, and

infer the model parameters as well as the boundary of the regions in a variational

optimization framework using the level-set technique.

Inspired by the work of Treyin et al. [68] and Ferrati et al. [1], which used

wavelet-based technique for smoke and steam detection respectively, in this thesis

we have proposed new wavelet based approach for steam detection from oil sand

image. Local extrema in the wavelet domain correspond to the edges in an image.

Steam gradually decreases the values of these extrema which eventually reduces the
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texture detail in an image. Because of the semi-transparent nature of steam these

exterma values do not vanishes, they just loose some of their energy that results in

degradation of sharpness of edges in image. To capture this information we have

proposed to use wavelet subbands as feature to differentiate steam image from non

steam image.

6.2 Results for Large Lump Detection

This section is divided into four subsections. First we describe the data sets used

in our experiments. Next, we illustrate the efficacy of the proposed kernel function

compared to other standard kernel functions, such as Gaussian, polynomial etc.

Next section shows the performance of some standard object detection features,

such as HoG, bag of visual words etc. on the large lump dataset. Finally, we

compare our proposed MKL with three other popular MKL techniques from recent

literature.

6.2.1 Description of Data

Figure 6.1: Region of interest for largelump detection.

Experiments have been performed on three oil sand data sets captured in three

different outdoor conditions: normal daylight, night light and snowy day. For all

experiments, a region of interest is defined as shown in Figure 6.17. The image
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sequence is cut according to the region of interest and perspective corrected to make

it rectangular.

In daylight video set there are 768 image frames. Within those, 183 frames

contain large lump and 585 contain no large lump. The main challenge with day-

light dataset is the changing of the lighting condition. Night light video set has 585

frames with 316 large lump frames and 269 no large lump images. Although the

lighting is fixed in this dataset, the main problem is the presence of shadow. Video

on the snowy day contains 378 frames with 144 positive cases and 234 negative

cases. Most of the image frames of this dataset contains snow flakes captured in a

heavy snowy day. Some of the example large lump images from three data sets are

shown in Figure 6.2.

                        

 
(a) (b) (c) 

Figure 6.2: Example large-lump images from (a) Daylight (b) Nightlight and (c)
Snow datasets.

6.2.2 Experimental Setup

Any large lump is usually comprised of several image frames which correspond to

multiple stages of a large lump evolution event. For example, Figure 6.3 shows five

stages of a large lump event. Given such a multistage structures, it makes sense

to extend the frame based classification to video clip based classification as we

discussed above.

For each data set, we first construct training set with 50 video clips. Where 25

clips came from large lump events and 25 clips came from non- large lump events.

Each such training video clip contains T = 5 consecutive frames. The labeling
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of each clip is done based on the middle frame information. If the middle frame

(which is 3rd frame in our case) of a training clip contain a large lump we label this

video clip as a positive sequence otherwise negative sequence. The number of DoG

scales N = 40. Thus, the MKL algorithms will be sparsely choosing weights from

5× 40 = 200 base kernel functions.

        

 

Figure 6.3: Large lump event sequence from Daylight dataset.

 

Figure 6.4: Large lump event sequence from Night dataset.

 

Figure 6.5: Large lump event sequence from Snow dataset.

For testing we have used sliding window approach discussed in section 1.2.

Basically, we are testing each frame of the test video sequence. Each frame of the
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input video are classified based on the information of five consecutive frames.

The performance of our classification method is evaluated with precision, recall,

accuracy and MCC (Matthew Correlation Coefficient) defined as follows:

Precision =
tp

tp+ fp
,

Recall =
tp

tp+ fn
,

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
,

MCC =
tp ∗ tn− fp ∗ fn√

(tp+ fn) ∗ (tp+ fp) ∗ (tn+ fp) ∗ (tn+ fn)

where tp, fp, tn and fn are true positive, false positive, true negative and false

negative. MCC is generally regarded as a balanced measure that is very effective if

the classes are of quite different sizes.

6.2.3 Convolution Kernel Function vs. Others

For each data set, we have generated its DoG scale-spaces, which contains 40 DoG

responses corresponding to 40 consecutive scales. For each scale, we have con-

structed the base kernel kσ. To compare our base convolution kernel function (5.2)

with traditional kernel functions we have created kernel matrix from our training

data using linear, polynomial, Gaussian, sigmoid kernel functions and calculate the

kernel alignment score [46] for each scale to evaluate the compliance of a kernel

to the data. The range of the alignment score is [0, 1]. The larger its value is, the

better the kernel function. The graph in Figure 6.6 shows the alignment score on

daylight training set for different scales using different kernel functions. The pro-

posed circular convolution kernel function obtains a better alignment score than the

other traditional kernel functions, especially in the coarser scales. This score plot

illustrates that circular convolution kernel is appropriate for our application.

6.2.4 DoG vs. Other Features

In this section we have compared DoG with different popular features for object

detection namely, Histogram of oriented gradient(HoG), bag of visual words and
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Figure 6.6: Alignment scores for different kernels at different scales.

dense word.

Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) proposed in [71] is one of the popular

feature descriptors used widely for object detection problem. HoG calculates oc-

currences of gradient orientation in localized portions of an image. The key con-

cept behind the HoG descriptors is that local object appearance and shape of the

image objects can be represented by the distribution of intensity gradients or edge

directions. To calculate the descriptors, images are divided into cells which are

small connected regions, and for each cell a histogram of gradient directions or

edge orientations for the pixels is calculated. The combination of these histograms

then represents the descriptor. For improved accuracy, the local histograms can be

contrast-normalized by calculating a measure of the intensity across a larger re-

gion of the image, called a block, and then using this value to normalize all cells
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within the block. This normalization results in better invariance to changes in illu-

mination or shadowing. The HOG descriptor has several important advantages over

other descriptor methods. HoG descriptor is invariant to geometric and photometric

transformations as it operates on localized cells. The HOG descriptor is thus partic-

ularly suited for human detection in images. Table 6.1 shows the performance for

different block sizes on daylight dataset.

Table 6.1: Prediction performance of HoG features for different block sizes on
Daylight Dataset

Block Size Recall Precision MCC Accuracy
5× 5 0.6230 0.7451 0.5936 0.8597
9× 9 0.7532 0.8655 0.6147 0.8034
13× 13 0.6230 0.7451 0.5936 0.8597
17× 17 0.6011 0.7639 0.5929 0.8610
19× 19 0.6736 0.8291 0.6178 0.8228

Table 6.2: Prediction performance of different features for Daylight dataset

Feature Recall Precision MCC Accuracy
HoG 0.6011 0.7639 0.5929 0.8610
Bag of visual words 0.6612 0.7035 0.5869 0.8532
Dense word 0.6503 0.7391 0.6058 0.8623
DoG 0.7760 0.8023 0.7247 0.9013

Bag of Visual Words

This feature is proposed in [72]. Bag of Visual Words is one of the most pop-

ular techniques in object categorization because of their simplicity and relatively

good performance over other prevalent methods. In this method, the SIFT descrip-

tors are extracted at Hessian-Laplace points and quantized in a vocabulary of 3000

words, trained on features from several object instances. By using agglomerative

information bottleneck (AIB) introduced in [72] vocabulary is then discriminatively
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compressed down to 64 words for each class. In our experiment, the same training

images as before from each class are used.

Table 6.3: Prediction performance of different features for Nightlight dataset

Feature Recall Precision MCC Accuracy
HoG 0.7532 0.8655 0.6147 0.8034
Bag of visual words 0.8418 0.8693 0.6916 0.8462
Dense word 0.8323 0.8709 0.6854 0.8427
DoG 0.9076 0.8333 0.7043 0.8525

Dense Word

Dense word features applied in [73] for object detection are used here for large lump

detection problem. This feature is also based on the SIFT descriptor. Rotationally

invariant SIFT descriptors are extracted on a regular grid of five pixels at four mul-

tiple scales with raddi r = 10, 15, 20 and 25 pixels, zeroing the low contrast ones.

Finally descriptors are quantized into 300 visual words.

Tables 6.2, 6.3 and 6.4 show the performances of the different features for

three different data sets. Notice that the performance of the proposed MKL-based

DoG feature appears as the last row in these tables and compares very well with its

competitors.

Table 6.4: Prediction performance of different features for Snow dataset

Feature Recall Precision MCC Accuracy
HoG 0.6736 0.8291 0.6178 0.8228
Bag of visual words 0.6528 0.9400 0.6904 0.8519
Dense word 0.8333 0.7453 0.6463 0.8280
DoG 0.8056 0.9431 0.8039 0.9074

6.2.5 Proposed MKL vs. Others

After constructing basis kernels on each DoG scales, MKL algorithms are applied

for sparse selection and weighting of kernels. For performance comparisons, three
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popular existing MKL techniques i.e. SKM [16], LSMKL [17] and GMKL [18] are

chosen. For each MKL method a five-fold cross-validation has been performed to

determine the value of the tuning parameters.

First, a comparison of the computational time by proposed method, SKM, LSMKL

and GMKL on the three data sets are presented. All experiments were run on Intel

core (R) TM(2) Dual processor with 2.43 GHz 64 bit machine with 3 GB RAM. The

proposed 1-norm based MKL is implemented in Matlab 2009. The Matlab code of

SKM and LSMKL is downloaded from the website http://homes.esat.kuleuven.be

/ sistawww/bioi/syu/l2lssvm.html and the Matlab code of GMKL are downloaded

from http://research.microsoft.com/en-us/um/people/manik/code/GMKL/download.html.

For LSMKL, MOSEK Optimization Software which combines the convenience of

MATLAB with the speed of C code is used to solve optimization problems. Ta-

ble 6.5 shows the CPU time needed for each multiple kernel learning method. It

can be seen that the computational efficiency of the proposed method is compara-

ble to the other popular MKL techniques.

Table 6.5: The CPU time (in seconds) needed for each method

Dataset Proposed Method SKM LS-MKL GMKL
Daylight 0.6473 0.6138 0.3105 2.4056
Nightlight 0.6510 0.6867 0.3495 2.3910
Snow 0.6033 0.3411 0.3126 3.7630

Table 6.6 shows the number of base kernels selected by each method. Although

the average number of selected scales of the proposed algorithm with respect to

other MKL methods is relatively high, the number is still sparse represents only

12% of the total kernels on average. As a result our method is reasonable for real

time application.

Figure 6.7 shows the selected weights from different frames for different datasets

using our method. From these plots we can see, most of weights are selected in mid-

dle frames comparing to beginning frames and trailing frames. It is because we have

designed the training set in such a way so that for the positive video clip the middle

frame will always contain large lump and for the negative video clip the middle
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frame will have no large lump. The beginning and trailing frames may or may not

contain large lump based on the time point of the middle frame. For example if

the middle frame is the staring point of large lump event then the beginning frames

will not have any large lump while if the middle frame is end point of large lump

event then begging frames will certainly contain the image of that large lump. So

middle is always more important than other frames for classification process which

we actually want to classify using our classifier.

Table 6.6: Number of kernels needed for each method

Dataset Proposed Method GMKL SKM LS-MKL
Daylight 21 15 9 9
Nightlight 21 40 11 12
Snow 32 18 7 10

Table 6.7: Prediction Results of different MKL methods for Daylight dataset re-
spectively.

Method Recall Precision MCC Accuracy
Proposed Method 0.7760 0.8023 0.7247 0.9013
GMKL 0.7049 0.7914 0.6742 0.8857
SKM 0.6995 0.7901 0.6700 0.8844
LS-MKL 0.6831 0.6720 0.5759 0.8455

Table 6.8: Prediction Results of different MKL methods for Nightlight dataset.

Method Recall Precision MCC Accuracy
Proposed Method 0.9076 0.8333 0.7043 0.8525
GMKL 0.8766 0.8318 0.6727 0.8376
SKM 0.6234 0.8955 0.5534 0.7573
LS-MKL 0.7500 0.8525 0.5964 0.7949
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(b) Nightlight
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(c) Snow

Figure 6.7: Selected kernel weights for different datasets
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Table 6.9: Prediction Results of different MKL methods for Snow dataset.

Method Recall Precision MCC Accuracy
Proposed Method 0.8056 0.9431 0.8039 0.9074
GMKL 0.8125 0.9213 0.7914 0.9021
SKM 0.6875 0.9612 0.7312 0.8704
LS-MKL 0.7986 0.9350 0.7923 0.9021

From tables 6.7, 6.8 and 6.9 we can see that our sparse MKL method outper-

forms other three popular multiple kernel learning techniques with respect to most

of the performance metrics for daylight and night light data sets. For the snow data

set our method achieves the same performance as LSMKL and they perform better

than the other two other methods.
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Figure 6.8: Daylight Data: the value of recall and precision versus ε+ (x-axis) for
a SVM training using weighted circular convolution kernel. As ε+ (values are in
fraction) increases, the precision increases while the recall drops.

Our system is also able to tune precision or recall based on user requirement.

Here we have combined the scheme provided in [74] in our proposed system to

adjust precision and recall in support vector machine and provide the performance
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using recall-precision curve. The balance between recall and precision can be con-

trolled using the following technique: the diagonal elements of the optimized ker-

nel matrix are supplemented by fixed positive contributor ε+ and ε−. Controlling

these two parameters one can vary precision and recall. This method actually cor-

responds to an asymmetric margin; i.e., the class with smaller ε will be kept further

away from the decision boundary. Figure 6.8 to 6.13 show the recall precision

graph of the proposed classifier with (ε−=0) and varying (ε+) and with (ε+=0) and

varying (ε−) on three different dataset respectively.
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Figure 6.9: Daylight Data: the value of recall and precision versus ε− (x-axis) for
a SVM training using weighted circular convolution kernel. As ε− (values are in
fraction) increases, the recall increases while the precision drops significantly.
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Figure 6.10: Nightlight Data: the value of recall and precision versus ε+ (x-axis)
for a SVM training using weighted circular convolution kernel. As ε+ (values are
in fraction) increases, the precision increases while the recall drops.
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Figure 6.11: Nightlight Data: the value of recall and precision versus ε− (x-axis)
for a SVM training using weighted circular convolution kernel. As ε− (values are
in fraction) increases, the recall increases while the precision drops significantly.
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Figure 6.12: Snow Data: the value of recall and precision versus ε+ (x-axis) for
a SVM training using weighted circular convolution kernel. As ε+ (values are in
fraction) increases, the precision increases while the recall drops.

To compare with other MKL methods more concisely, we have interpolated

the above recall-precision curves to obtain recall values of our method at different

precision levels and the compared with other methods at the same precision levels

obtained by those methods. Following bar diagrams show the comparison of the

recall values of our method on different dataset with GMKL, SKM and LS-MKL

respectively.
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Figure 6.13: Snow Data: the value of recall and precision versus ε− (x-axis) for
a SVM training using weighted circular convolution kernel. As ε− (values are in
fraction) increases, the recall increases while the precision drops significantly.

Figure 6.14: Comparison with GMKL for different dataset
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Figure 6.15: Comparison with SKM for different dataset

Figure 6.16: Comparison with LSMKL for different dataset

6.2.6 Statistical Significance Test

McNemars test [75] is used to decide whether any apparent difference in error-

rates between the proposed algorithm and existing algorithms. McNemar’s test

is a non-parametric method, used widely to test the significance of the results of

binary classifier. This test is performed by summarizing the classification results

of the two algorithms tested on the same dataset. McNemar’s test is given by the

following equation:

M =
|b− c| − 1)2

b+ c
> χ2

1,α (6.1)
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where b is the number of examples correctly classified by classifier 1 but misclassi-

fied by classifier 2 and c is the number of examples misclassified by classifier 1 but

correctly classified by classifier 2

M is distributed approximately as χ2 with 1 degree of freedom. For a 95%

confidence test, χ2
1,095 = 3.84. So if M > 3.84 then with 95% confidence, we can

reject the null hypothesis H0 that the two classifies have the same error rate.

McNemar’s test has been applied to the classification results obtained using

DoG features and other types of features. Table 6.10 shows the M values. McNe-

mar’s test has also been applied to test the significance of our MKL method results

with the results obtained by other MKL algorithms. Table 6.11 shows the M values

between our MKL approach and other MKL methods.

Table 6.10: McNemar’s test result (value of M ) for different types of features

Dataset HoG Bag of visual words Dense word
Daylight 7.2000 10.5366 7.1271
Nightlight 5.5603 0.2049 0.0804
Snow 19.1489 11.7015 6.6852
Overall 25.8786 16.1571 9.8908

Table 6.11: McNemar’s test result (value of M ) for different MKL algorithms

Dataset GMKL SKM LSMKL
Daylight 1.8333 2.4853 24.1644
Nightlight 0.9552 24.0079 16.0147
Snow 0 5.3333 0
Overall 2.9400 30.4253 34.7222

From the above two tables, if we consider the overall results on the three datasets,

we can say that DoG worked significantly better than other features on the oil sands

images. Similarly, proposed MKL performed significantly better than LSMKL and

SKM. However the performance difference between proposed method and GMKL

is not significant. This is with 95% confidence.
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6.3 Results on Steam Detection

This section is divided into four subsections. Data sets and experimental setup used

are discussed first. Next, a comparative study of using different wavelet families

are shown. The comparison of the proposed circular convolution kernels with some

standard kernel functions are discussed in section 6.3.2. A performance evaluation

the proposed MKL with three other popular MKL techniques are also studied on

steam dataset in section 6.3.3. Final section shows the comparison with existing

steam detection method proposed in [1].

 

Figure 6.17: Region of interest for steam detection.

The steam dataset contains 648 image frames among which 563 are positive i.e.

large lump frames and 85 are negative i.e. no large lump sequences. We have used

the same sliding window approach as we used for large lump detection problem.

The system is trained with 20 video clips from which 10 video clips came from

steam images and 10 video clips came from no steam images. Each such training

video clip contains T = 5 consecutive frames and labeled according to the informa-

tion of middle frame of the clip. Each image in the clip are decomposed in 10 level

into 40 wavelet subbands. Thus, the MKL algorithms will be sparsely choosing

weights from 5× 40 = 200 base kernel functions.
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Figure 6.18: Selected kernel weights for steam datasets

6.3.1 Wavelet Families

A large choice of wavelet families exists depending on the choice of wavelet func-

tion. In our work, we have compared Haar, Daubechies, Symlets, Coiflets and

Biorthogonal on our test dataset, assuming in their capability to localize different

information in time and frequency. Following graphs show the performance of these

wavelet families for steam detection problem:

6.3.2 Comparison with Different Kernel Functions

To compare our basis cross correlation kernel with traditional kernel functions we

have created kernel matrix from our training data using linear, polynomial, Gaus-

sian, sigmoid kernel functions and calculate the kernel alignment score proposed in

[46] for each scale to evaluate the compliance of a kernel to the data.

80



 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

db2 coif2 bior2.2 sym2

(a) MCC

 

0

10

20

30

40

50

60

70

80

90

100

db2 coif2 bior2.2 sym2

(b) Accuracy

Figure 6.19: Performance of different wavelet families in terms of MCC and accu-
racy

Table 6.12: Results for Steam dataset using different kernel.

Kernel Precision Recall MCC Accuracy
Polynomial 0.8353 0.8987 0.8472 0.9660
Linear 0.6852 0.8706 0.7339 0.9306
Gaussian 0.7209 0.9394 0.6644 0.8182
Circular Convolution 0.9359 0.8588 0.8818 0.9738

6.3.3 Proposed MKL vs. Others

After constructing basis kernels on each wavelet subbands, the proposed MKL al-

gorithms are applied for sparse selection and weighting of kernels. Three popular

existing MKL techniques discussed before i.e. SKM [16], LSMKL [17] and GMKL

[18] are also applied to generate optimized kernel weights. From tables 6.13 we can

see that our sparse MKL method outperforms other three popular multiple kernel

learning techniques with respect to most of the performance metrics.
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Table 6.13: Results for steam dataset using different multiple kernel learning algo-
rithm.

Method Precision Recall MCC Accuracy
Proposed Method 0.9359 0.8588 0.8818 0.9738
SKM 0.7642 0.9529 0.8292 0.9552
GMKL 0.7524 0.9294 0.8092 0.9506
LS-MKL 0.7570 0.9529 0.8245 0.9537

6.3.4 Statistical Significance

In this section the statistical significance of the proposed method are given over

other existing MKL approaches. Table 6.14, shows the McNemar’s test values on

steam dataset. From the M values we can conclude that the proposed method per-

form significantly better than all the other MKL approaches.

Table 6.14: McNemar’s test result(value of M ) for different MKL algorithms on
Steam dataset

Dataset GMKL SKM LSMKL
Steam 7.2593 4.3214 4.9655

6.3.5 Comparison with Previous Steam Detection Method

The proposed steam detection method is compared to the Ferrari et al’s steam de-

tection method. The small 48× 48 local regions of the image frames are classified

by the steam texture pattern which are computed using dual-tree complex wavelet

transform (DT-CWT)[76] and the statistical HMT model. After classifying each

small regions the whole image frames are classified according to a voting. If 1/4th

of the image region are covered with steam we classify the image frame as steam

images. Following table shows the performance of the method proposed in [1]

82



Table 6.15: Results for Steam dataset obtained using [1].

Kernel Precision Recall MCC Accuracy
Linear 0.4848 0.5647 0.4449 0.8642
Polynomial 0.6184 0.5529 0.5261 0.8966
Gaussian 0.5625 0.4235 0.4230 0.8812

The steam detection method does not give good result in case of this database.

The reason of poor performance is due to the nature of the dataset. The oil sand

dataset we used here is really challenging. Following example shows some of mis-

classified images using the steam detection method in [1].

 

 

 

  

Figure 6.20: Example of false positive obtained with steam detection method in [1].
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Figure 6.21: Example of false negative obtained with steam detection method in
[1].

84



Chapter 7

Conclusion and Future Work

This chapter gives the summary and outlook of the proposed method. The future

research works are also described in the last section.

7.1 Summary

Over the last few decades the scale-space representation of images has obtain sig-

nificant attention in computer vision field. The representation produces a family of

blurred versions of the input image where the details of the original image are lost

with increasing smoothness. The degree of smoothing at which an object vanishes

basically measures the size of an object and provides information about the appro-

priate level of detail that allows the visual system to concentrate on the object under

consideration. In this research work, scale-space based multi-scale image represen-

tation are proposed as potential features for image classification. To overcome two

basic limitations of using scale-space images as features we have employed mul-

tiple kernel learning. The first limitation i.e the high dimensionality of the feature

space are managed by designing appropriate kernel functions from theses features.

The second problem of scale selection are solved by applying MKL approach on

the kernels designed from scale-space image features.

Towards designing such efficient scale-space based classification system shift

invariant, convolution kernel function is proposed which is suitable for the proposed

features. Further, a novel framework of multiple kernel learning based on 1-norm

SVM is proposed which requires only a linear equation solver or alternatively the
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method proposed in [31] to make the MKL implementation simple, fast, and easily

accessible.

The proposed scale-space based MKL method is applied to solve novel image

application problems on oil sand mining videos. Oil sand images are completely

novel image and the research works performed on this images are very insignifi-

cant. Two important detection problems mainely large lump detection and steam

detection are cracked here by using the proposed classification framework. For

large lump detection problem DoG scale-space is investigated. At larger scale DoG

response provides clear and big blob like structure which corresponds to largelump.

However in the small scale there is only small blobs. This responses provides clue

of using DoG scale-space for large lump detection. We have applied some other

popular scale-space i.e. wavelet, steerable filter and gabor on the large lump images

to show the response at different scales. From the response we can see that the

responses are really not useful to discriminate large lump from no large lump im-

ages. For steam detection problem we have applied wavelet scale-space. Since the

steam has quite different texture than the background oil sand images, multi-scale

analysis of discrete wavelet transform is an effective feature to differentiate images

with steam and no steam.

The large dimensionality of scale-space features are managed by designing ap-

propriate kernel and applying kernel based method. We have proposed a novel

circular convolution kernel to provide shift invariance through kernel calculation.

Shift invariant kernel is effective both for DoG and wavelet scale-space as large

lump or steam can appear any part of the image frame and still we need to detect

those.

Any scale-space based features face the inevitable issue of scale selection. The

principal novelty of our proposed image analysis is that we turn this scale selection

into a multiple kernel learning (MKL) problem by designing a new kernel function

involving scale-space. Our proposed MKL selects only a few relevant scales from

the complete scale space and classify images using a support vector machine (SVM)

classifier.

Vigorous Experimental tests are performed for different types of oil sand videos.
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Also the different parts of the proposed method are compared with some existing

approaches. For example the performance of circular convolution kernel are com-

pared with some standard and popular kernel functions like polynomial, gaussian

etc. Results shows the clear improvement of the detection accuracy using circular

convolution kernel. The proposed MKL approach are compared with another three

standard MKL techniques and result showed the better performance of the proposed

1-norm SVM based MKL. Most of the cases the improvements are statically signif-

icant. In addition, the proposed method is very simple and efficient.

7.2 Future Works

7.2.1 Best Basis Selection

Discrete wavelet packet transform, which is the generalization of the DWT, pro-

vides richer subband analysis without the constraint of a dyadic decomposition. It

generates a huge number of features, as a result an extremely high dimensional

feature space is generated most of which are redundant for accurate and efficient

classification process. Selection of effective features from this high dimensional

space is really challenging as we see in this thesis. In the case of wavelet packet

feature selection method, an image is only needed be decomposed into the wavelet

subbands selected by the best basis selection method during the training stage. To

determine subbands suited well for classification, it is important to identify an ap-

propriate selection criterion and a search strategy to optimize this criterion. The

choice over the entire collection of possible subband combinations is called best

basis selection [77], since the selection of different subbands corresponds to the

selection of different basis functions for representing the image.

Best basis selection is a well-studied field. A cost function based on L1-norm

is proposed by Chang and Kuo [78] for wavelet tree pruning in a top down man-

ner. Acharyya and Kundu [79] proposed a similar idea of adaptive decomposition

algorithm by employing an energy based cost function to identify most significant

subbands and then decide whether further decomposition of the particular chan-

nel would require for better result or not. Although these top down approaches
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are computationally efficient, the top-down search method employed in a best ba-

sis selection algorithm cannot guarantee an optimal solution. Saito and Coifman

[80] proposed to maximize the differences in time-frequency energy distributions

of each class. To measure the dissimilarity between energy distributions of a partic-

ular subband for all classes they applied symmetric Kullback-Leibler (KL) distance.

Recently a wavelet subband selection algorithm based on statistical dependence of

different subbands is proposed by Huang et al [81]. The use of MKL framework to

map the best basis selection problem are left for our future work.

7.2.2 Non-Linear Scale-Space

Different non-linear scale-spaces are proposed in the literature in connection to ad-

dress different problems. Each of this non-linear scale-space representation has its

own properties. To use the multi-scale representation for high-level image process-

ing it is important to understand what kind of information is present in the decom-

position and how this high level process can be benefited from this representation.

From the study it seems that the proposed classification system takes advantage

of DoG scale-space based decomposition as the most important components that

the structures of large lumps are preserved through scales as blob like structure.

However, linear scale-space like DoG scale-space poses several disadvantages. The

Gaussian kernel blurs the image region uniformly. As a result some important re-

gion of interest like edges can also become blurred. Furthermore, localization of

the structures of interest becomes highly imprecise at larger scales. In many cases

it is difficult to trace the object at very large scales due to excessive blurring and

the appearance of spurious extrema in two dimensions. Various solutions have been

proposed to reduce this problem. One possible solution is to use non-linear scale-

spaces.

7.2.3 Multiple Object Localization

Object localization is one of the challenging task for the automatic understanding of

images. It is also important to separate an object from the background, or to analyze

the spatial relations of different objects in an image to each other. However most of
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the object detection techniques including many state-of the-art methods only solve

a binary classification problem. Also our research work on object detection can

decide whether an object is present in an image or not, but not where exactly in

the image the object is located. As our future work, we propose to apply our MKL

framework to perform object localization. However the main challenge of applying

our method for object localization is the computational efficiency.

To add the object localization functionality to generic object categorization sys-

tems, the common approach is to apply sliding window which has been established

as a state of-the-art. Most successful localization techniques at the recent PASCAL

VOC 2007 challenge on object category localization relied on this technique [82].

The sliding window principle treats localization as localized detection. A classifier

function is applied subsequently to subimages within an image and the maximum

of the classification score indicates the presence of an object in this region. How-

ever, as the number of subimages grows as n4 for images of size nxn, the sliding

window approach becomes computationally too expensive to evaluate the quality

function exhaustively for all of these.

We can tackle this problem by using integral image. In the context of realtime

face detection, Viola and Jones have proposed to use integral images [83], which

allow for very fast computation of any box-type convolution filter.

7.2.4 Explore Different Application Domains

We have shown the usefulness of using scale-space based MKL method for de-

tection problem in oil sand image analysis. However, it is only one piece of the

puzzle in solving the automatic detection problem. There are several broad areas

that may be useful for further investigation. For example some very popular ap-

plication domain like fingerprint verification, speaker identification and verification

our scale-space based MKL can be very promising.
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Appendix A

Appendix

A.1 Modification of 1-norm SVM for non-negative
Weights

Following [61] 1-norm linear SVM for the binary classification problem can be

written as:

min
z,w,w0

C ‖Z‖1 + ‖w‖1 s.t., D(Aw − ew0) + z ≥ e, z ≥ 0. (A.1)

wherem×nmatrix A representm points in Rn to be separated by maximal margin

with a separating plane: xTw = w0. D is a m ×m diagonal matrix with elements

Dii = +1, or − 1 according to the class of each row of A. e is a vector all ones in

equation A.1. The objective term ‖w‖1 minimizes the classification error weighted

with the positive user tuning parameter C. The term ‖w‖1 called lasso penalty max-

imizes the 1-norm margin between the positive and negative samples. In our case

the vector of weights w = [wσ1 , · · · , wσN ]T are non-negative, additionally. So, one

can rewrite equation A.1 as:

min
z,w,w0

CeT z + eT s.t., D(Aw − ew0) + z ≥ e, z, w ≥ 0. (A.2)

The above linear program in A.2 is solvable because it is feasible and its objective

function is bounded below by zero. For a fairly large-scale problem, a standard

package, such as CPLEX, is able to solve the linear program A.2. Alternatively,

one can also apply the unconstrained Newton optimization method [61] defined for

a large-scale linear programming of the form such as A.2.
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