
U n iv e rs ity o f A lb e r ta

O p p o n e n t M o d e l l i n g a n d S e a r c h in P o k e r

by

T eren ce C o n ra d S ch au en b erg
i W i

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of M a s te r o f Science.

Department of Computing Science

Edmonton, A lberta
Spring 2006

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-494-13883-1
Our file Notre reference
ISBN: 0-494-13883-1

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abstract

Poker is a challenging domain th a t contains both elements of chance and imperfect infor­

mation. Though progress has been made in the domain, there is still one m ajor stumbling

block on the way to creating a world-class calibre computer player. This is the task of learn­

ing how an opponent plays (i.e., opponent modelling) and subsequently coming up with a

counter-strategy th a t can exploit th a t information. The work in this thesis explores this

task. A program is implemented th a t models the opponent through game play and then

plans an exploitive counter-strategy using expectimax search. This program is evaluated

using two different heads-up limit poker variations: a small-scale variation called Leduc

Hold’em, and a full-scale one called Texas Hold’em.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgement s

I would like to thank my supervisor, Dr. Jonathan Schaeffer. He has always been there to

guide the way for me and has been instrum ental in helping me accomplish my goals.

I would also like to thank Aaron Davidson and Chris Pinchak. They offered invaluable

feedback on my thesis drafts and were always there to listen to my ramblings and offer me

encouragement when it was needed.

It has been a great pleasure being a member of the University of Alberta Poker Research

Group. I have learned so much from all of you. I especially enjoyed the many good office

conversations I had with Darse Billings, Dr. Michael Bowling, and Neil Burch.

Last, and definitely not least, I have to thank my family. They have always been ex­

tremely supportive and have always believed in me. They will always be my rock.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Contents

1 In troduction 1
1.1 Artificial Intelligence and G a m e s ... 1
1.2 Poker as a T e s tb e d ... 2
1.3 Texas Hold’e m .. 4

1.3.1 Preflop .. 5
1.3.2 F l o p ... 5
1.3.3 T u r n .. 5
1.3.4 River ... 6

1.4 State of the A r t .. 6
1.4.1 P o k i ... 6
1.4.2 P sO p ti... 6
1.4.3 Obstacles to World-class P la y .. 7

1.5 Thesis C on trib u tio n s.. 7

2 R elated W ork 9
2.1 Heuristic-Based A p p ro a ch .. 10

2.1.1 Heuristics in Poker L ite ra tu re .. 10
2.1.2 Heuristic Betting Strategies in P rog ram s.. 10

2.2 Simulation-Based A p p ro a ch ... 11
2.3 Game-Theoretic A pproach .. 13
2.4 Heuristic Search Based A p p ro ach ... 14

2.4.1 Minimax Search .. 15
2.4.2 Expectimax S earch .. 16
2.4.3 Opponent Modelling in Expectimax S e a r c h .. 17
2.4.4 Lessons from RoShamBo ... 19

3 E xpectim ax Search for A ction-se lection in Poker 21
3.1 Imperfect Information Game T r e e s .. 21
3.2 Expectimax Search T r e e .. 22
3.3 Example Kuhn Poker T r e e s ... 22

3.3.1 Kuhn Poker R u l e s ...23
3.3.2 Kuhn Poker Imperfect Information Game T r e e ..23
3.3.3 Kuhn Poker Expectimax Search T re e ... 24

3.4 Backup Rules in Expectimax S e a r c h ...26
3.5 Handling the Effects of the Opponent’s Strategy ..26

3.5.1 Leaf Node E valua tions.. 27
3.5.2 Opponent Action S e le c t io n .. 27
3.5.3 Probability of Community Cards Being D e a l t ...28

3.6 Miximax and Miximix S e a rc h .. 29
3.6.1 Example: Kuhn Poker Miximax C alcu lation .. 31
3.6.2 Example: Kuhn Poker Miximix C a lcu la tio n .. 34

3.7 Practical Search C onsiderations.. 35

4 O pponent M od elling 42
4.1 Designing a Model for Use in a Poker P r o g r a m ...42

4.1.1 Strategy Class of Models ...42
4.1.2 Observation Class of Models .. 43
4.1.3 Relationship Between the Two Classes of M o d e ls ..43
4.1.4 Pros and Cons: A Comparison of the Model C la s s e s 46

4.2 Building Observation Class Models for P o k e r ..48
4.3 Generalizing Observed D ata for Texas Hold’e m .. 49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.3.1 Instance-based L ea rn in g ..49
4.4 Instance-based Learning of Opponent Action Frequencies ..50
4.5 Instance-based Learning for Estimation of Winning at Show dow n..................... 51

4.5.1 Showdown Similarity E x am p les ...53
4.5.2 Combining Data From Different Similarity L evels..................................... 56
4.5.3 Default Modelling In fo rm a tio n .. 56
4.5.4 Handling the Effects of Recency ...57

5 R esu lts 58
5.1 Leduc Hold’em R esu lts ...58

5.1.1 Leduc Hold’em Rules ... 58
5.1.2 Experiment S e t u p ... 60
5.1.3 Results Against C a l lP la y e r ...62
5.1.4 Results Against R aisePlayer... 63
5.1.5 Results Against N ash P lay er... 65

5.2 Texas Hold’em R e su lts ..66
5.2.1 Results Against P o k i .. 67
5.2.2 Results Against P s O p t i ... 69
5.2.3 Previous Related Results .. 73

6 C onclusions 75
6.1 Future Work .. 77

B ibliography 78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

3.1 # of Leaves in 2-player Texas Hold’em Search Tree when First to Act 38
3.2 # of Leaves in 2-player Texas Hold’em Search Tree when Second to Act

Following a C h e c k ... 38
3.3 # ° f Leaves in 2-player Texas Hold’em Search Tree for Flop Decisions Sam­

pling River Cards ... 39
3.4 4r of Leaves in 2-player Texas Hold’em Search Tree Against Always Call and

First to Act ... 40
3.5 # of Leaves in 2-player Texas Hold’em Search Tree Against Always Call when

Second to Act Following a C h e c k ... 40
3.6 # of Leaves in 2-player Texas Hold’em Search Tree Against Always Call for

Flop Decisions Sampling River Cards ... 40

4.1 Example Showdown Sim ilarities.. 54
4.2 Example S4, S3, S2, and SI Showdown S im ilarities .. 55
4.3 Example S3, S2, and SI Showdown S im ila ritie s .. 55
4.4 Example S2 and SI Showdown Sim ilarities.. 55
4.5 Example SI Showdown S im ilarities ... 56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

3.1 Kuhn Poker Imperfect Information Game T r e e .. 24
3.2 Kuhn Poker Expectimax Search Tree .. 25
3.3 Leaf Node E v a lu a t io n .. 28
3.4 Opponent Decision Node EV Backup ... 29
3.5 Chance Node EV B a c k u p .. 30
3.6 Decision-maker’s Miximax EV Backup ... 31
3.7 Decision-maker’s Miximix EV B a c k u p .. 32
3.8 Miximax/Miximix A lg o r ith m ... 33
3.9 Player l ’s Best-Response Strategy When Holding a Queen (Miximax) 34
3.10 Player l ’s Soft Best-Response Strategy When Holding a Queen (Miximix) . . 35
3.11 Texas Hold’em Expectimax Search T r e e ... 36
3.12 2-player Texas Hold’em Betting Round Tree ... 37

5.1 BRPlayer vs. CallPlayer ..63
5.2 BRPlayer vs. R a iseP lay e r..64
5.3 BRPlayer vs. N a sh P la y e r ..65
5.4 BRPlayer vs. NashPlayer (First 500,000 G a m e s) ...66
5.5 BRPlayer vs. Poki - 3 M a tc h e s ... 68
5.6 BRPlayer vs. Poki (First 5,000 Games) - 3 Matches .. 69
5.7 BRPlayer vs. PsOpti4 - 3 M a tc h e s ... 70
5.8 BRPlayer vs. PsOpti4 (First 5,000 Games) - 3 M a tc h e s 71
5.9 BRPlayer vs. PsOpti4 (First 50,000 Games) - 3 Matches 71
5.10 BRPlayer (Default Model) vs. PsOpti4 (First 50,000 Games) - 3 Matches . . 72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

1.1 A rtificia l In te lligen ce and G am es

Artificial Intelligence (A.I.) researchers have long used games as research testbeds. Games

make excellent testbeds because they have well-defined rules and goals th a t are easy to

represent. Because of these properties, games provide researchers with a concrete problem

framework th a t they can use to explore ideas and easily quantify their results. In fact,

because games are used so often as testbeds in A.I. research, they are often called the

drosophila of A.I.. T hat is, games are to A.I. research what the fruit fly is to genetics

research.

Games th a t are of interest to researchers are often categorized based on the accessibility

of the game state to the players. If all players in a game have complete knowledge of

the entire game state, it is called a game of perfect information. Otherwise, it is a game

of imperfect information. Chess, checkers, go, and backgammon are all games of perfect

information because all the players have access to the entire game state by just looking

at the board. On the other hand, poker, bridge, and Scrabble are examples of imperfect

information games because each player has their own cards or tiles th a t are kept hidden

from the other players in the game.

Both perfect and imperfect information games can be further categorized based on

whether or not they contain chance elements. A chance element, such as the roll of dice

in backgammon or the deal of cards in poker, is an event th a t introduces randomness or

nondeterminism into a game. If a game contains elements of chance, it is referred to as a

stochastic game. Otherwise, it is refereed to as a deterministic game.

In the past, most games-related A.I. research focused on decision-making in deterministic

perfect information games. Computationally speaking, these games are the easiest to deal

with[30] and this research focused mostly on studying, enhancing, and applying brute-force

minimax-based search algorithms. This research made outstanding progress and resulted

in many programs achieving a level of playing strength th a t is comparable to or superior

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

to the best humans (e.g. Deep Blue in chess [13], Chinook in checkers [42], and Logistello in

Othello[12]).

This research, however, has been criticized for working in an over-simplified domain.

The main point of this criticism is th a t this research has little carry-over value to the much

larger class of problems, such as those seen in the real world, tha t are stochastic and/or

have imperfect information.

In recent years, A.I. researchers have addressed this criticism by branching out and fo­

cusing on decision-making in domains th a t contain elements of chance and /o r imperfect

information. Again, games are an excellent domain for exploring these issues. Prom the

computational decision-making point of view, these games promise great research potential

because they offer many new and interesting challenges not present in traditional determin­

istic perfect information games.

This newer direction of research has already made some great progress both with the

development and implementation of various novel A.I.-related ideas. For example,

• Gerry Tesauro successfully tackled the stochastic element of backgammon and his

program, TD-Gammon, achieved world-class playing strength [54, 55].

• Brian Sheppard’s Scrabble program, Maven, plays better than the best humans [45].

• M att Ginsberg’s bridge program, GIB, reached a strong level of play at the declarer

aspect of the game[22, 23].

• The University of Alberta Poker Research Group recently applied a game-theoretic

approach to full-scale two-player Texas Hold’em poker creating a program th a t was

competitive with a world-class player [6].

Following this newer direction of A.I. research using games, this thesis continues the Uni­

versity of A lberta Poker Research Group effort of discovering new computer-based decision­

making techniques th a t can be applied to poker[3, 10, 37, 11, 9, 38, 41, 18, 7, 17, 6, 8, 51].

The goal of this research is to eventually discover and implement techniques tha t enable a

poker program to perform at a level th a t exceeds th a t of the best humans in the world. The

bigger picture, however, is to gain new insights into reasoning with imperfect information

in a stochastic domain which is essential when tackling most real-world problems.

1.2 P oker as a T estb ed

Poker is a card game th a t proceeds in stages. In each stage, active players are dealt cards

(some of which are dealt face up for all players to see and some of which are dealt face down

to each player to keep private). Players then wager against each other th a t their hand of

cards is the best (or will be the best a t the end of the game). Because each player knows only

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

their cards and not all their opponents’, poker is an example of an imperfect information

domain. In addition, because players have no control over which cards are dealt, poker is

also an example of a stochastic domain.

To remain active in the game and therefore to proceed through the stages of play, a

player must match the amount of money wagered by each of their opponents. If one player

makes a wager tha t no opponent matches, then the game ends immediately with tha t player

winning all the wagered money (the pot) regardless of their cards. Otherwise, play continues

until there are no stages left in the game and at tha t point all the active players enter into a

showdown. During the showdown, all active players reveal their hidden cards and the player

with the highest ranked poker hand[7] wins the pot (equally ranked hands split the pot).

Since poker is a gambling game where the goal of a rational player is to maximize their

to tal profit for as long as they play, players typically play in sessions of games against

the same players. This repeated interaction gives players the opportunity to learn their

opponents’ playing strategies with the hopes th a t they can use this knowledge to exploit

weaknesses in their opponents’ play to maximize their profit. As a result, any decision in

any game has the potential to affect a player’s overall success rate.

All of the above characteristics make poker a very challenging game th a t is strategically

very complex despite its simple rules. These characteristics make poker an excellent testbed

for many im portant A.I.-related concepts:

• d ec is io n -th eo ry a n d p ro b a b ilis tic re aso n in g - The randomness from the deal of

cards and the lack of knowledge of the opponents’ cards make poker a noisy and uncer­

tain domain. This forces a player to be adept at both decision-theory and probabilistic

reasoning.

• risk a sse ssm en t - Poker is played in stages containing both the deal of additional

cards and wagering. To be able to handle this type of domain, a successful player

must be able to assess risks.

• o p p o n e n t m o d e llin g - In poker there are repeated games against the same adaptive

adversaries. This type of environment allows a player to use opponent modelling to

learn their opponents’ playing strategies and attem pt to exploit this knowledge to

increase their profit.

Because poker provides an excellent testbed for all these A.I.-related concepts, there is

potential for poker research to carry over into other A.I.-related problems, such as:

• u se r m o d e llin g - Opponent modelling is a form of user modelling. User modelling

is a popular focus of current A.I. research. In typical user modelling research, a

modeller observes a user to try to identify patterns of interest in their behavior. The

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

identified patterns can then be used to customize an application to take advantage of

the identified user preferences. For example, many online websites use user modelling

to observe user browsing patterns so th a t they can customize their advertisements to

target their users’ interests.

• p o licy -m ak in g o r n e g o tia tio n a g e n ts - Game theorists such as John Von Neu­

mann and John Nash long ago realized poker could be used to illustrate fundamental

principles of game theory th a t have subsequently been applied to a variety of fields

including law, politics, economics, and the military. The development of automated

decision-making in poker could lead to advancements in creating tools for use in these

domains.

• o n lin e a u c tio n a g e n ts - Poker is a similar domain to online auctions, so it is natural

to believe tha t research into building a successful poker player might carry over into

novel ideas for building successful online auction agents.

1.3 Texas H o ld ’em

The research in this thesis is applied to the specific variation of poker called Texas Hold’em.

Texas Hold’em is the poker variation used to determine the world champion each year at the

World Series of Poker and it is one of the most popular versions of poker played in casinos.

It has a higher skill-to-luck ratio than other poker variations and is also one of the most

strategically complex. Texas Hold’em is typically played with two to ten players.

In Texas Hold’em, play proceeds in stages where cards are dealt and then a round of

betting occurs. In a betting round, each active player (proceeding clock-wise around the

table starting a t the first active player to the left of the dealer) gets a chance to make a

betting decision to wager th a t they have the best poker hand. A betting decision has to

take the form of one of the following three actions:

fold - If a player folds, they are announcing th a t they are quitting the hand and relinquish­

ing any chance at winning the pot.

ch eck /ca ll - If a player checks or calls, they are performing the logically equivalent action

of staying active in a hand by matching the wagers previously made by each of their

opponents. If no money needs to be put into the pot at the time of the action, then

this action is referred to as a ‘check’. Otherwise, it is referred to as a ‘call’.

b e t / r a is e - If a player bets or raises, they first m atch their opponents’ wagers, and then

they increase the betting level by making their own additional wager. Again, a bet

and a raise are logically equivalent in th a t they both raise the betting level, but the

term ‘b e t’ is used to denote the action when it costs no money to match opponent

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

wagers and the term ‘raise’ is used otherwise. Typically, the number of bets/raises in

a betting round are limited to some finite maximum number (in casinos, the maximum

is typically four).

In Texas Hold’em the size of a bet allowed depends on the particular variation of the

game being played. In limit Texas Hold’em, the size of the bet is fixed in each betting round

such th a t a bet/raise in the first two rounds is always the size of a small bet and a bet/raise

in the last two betting rounds is always the size of a big bet. The size of a small bet and

big bet are determined and fixed before any game is started. For example in $10-$20 limit

Texas Hold’em, the small bet is fixed at $10 and the big bet is fixed at $20 and thus any

bet/ra ise in the first two rounds has to be $10 and any bet/raise in the last two rounds

has to be $20. There are more complicated betting variations for Texas Hold’em such as

pot-limit or no-limit where players are given more flexibility in choosing their bet sizes, but

the research in this thesis focuses solely on the limit version.

In Texas Hold’em play proceeds sequentially through four stages: preflop, flop, turn,

river.

1.3.1 Preflop

The first stage in a game of Texas Hold’em is called the preflop. Here, the game starts with

the two players immediately to the left of the dealer posting forced bets called blinds. A

blind is a form of ante and it is used to stimulate betting by making sure th a t each game

starts with some money in the pot for players to win.

Once the blinds are posted, the dealer deals two hole cards face down to each player th a t

are to be kept private from their opponents. After these cards are dealt, a round of betting

ensues starting with the player immediately to the left of the players th a t posted the blinds.

1.3.2 Flop

The second stage in Texas Hold’em is called the flop. Here, the dealer first deals three

community cards face up on the table. Community cards are dealt face up so th a t they are

visible to all players. These cards can be used by all active players to make their five-card

poker hands. After these cards are dealt, all active players go through a round of betting.

1.3.3 Turn

The third stage in Texas Hold’em is called the turn. Here, the dealer deals one more

community card face up and the active players participate in another round of betting.

5

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.3.4 River

The fourth and final stage in a game of Texas Hold’em is called the river. Here, the dealer

again deals one community card face up and another round of betting ensues. After this

betting round, if there are a t least two active players remaining, then those players enter into

a showdown. In the showdown, the active players reveal their two hole cards to determine

the winner of the pot. The winner is the player tha t has the best five card hand using any

combination of their two hole cards and the five community cards according to standard

poker hand rankings[7]. If more than one player ties for the best hand, the pot is split

equally among the tied winners.

If another game is to be played in the session, the player immediately to the left of the

current dealer becomes the dealer for the next game, and a new game is started and played

as described above.

1.4 S ta te o f th e A rt

The current state of the art Texas Hold’em computer playing programs are the University

of A lberta Poker Research Group’s Poki[17] and PsOpti[6). Both of these programs have

had varying degrees of success, but neither player has reached a level of world-class playing

strength.

1.4.1 Poki

Poki is a program designed to play full-ring (i.e. 10-player) limit Texas Hold’em. It has

been a consistent winner against human competition in “play-money” games on both the

Internet Relay Chat (IRC) poker channel and on the University of Alberta Poker Research

Group’s own poker server[17]. In full-ring games, Poki is believed to play at an intermediate

level of playing strength [17].

However, in games with few opponents, Poki’s playing strength decreases. Poki’s main

problem is th a t it cannot adapt its strategy fast enough to exploit its opponents or prevent

its own exploitation. As the number of opponents in a game decreases, the success rate

of “tricky” plays (like bluffs) increases. This allows stronger opponents the opportunity to

change their strategy to exploit their weaker and slower-adapting opponents. As a result,

even though Poki is an intermediate player in full-ring games, it plays heads-up (i.e. two-

player) Texas Hold’em weakly.

1.4.2 PsO pti

PsOpti is a program designed to play only heads-up limit Texas Hold’em. Its playing

strength is considered to be at an advanced level. PsO pti was built using a game-theoretic

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

approach (i.e. building on the ideas of an equilibrium strategy for both players) for an

abstract form of poker to make the problem tractable.

In all experiments, PsOpti performed well and even held its own against world-class com­

petition for 7,000 hands (which is small by computer standards, but long by hum an stan­

dards). However, given enough time, strong competition can still eventually find PsO pti’s

weaknesses and exploit them [6]. The experiments conducted on PsOpti confirmed the pres­

ence of two problems inherent to programs th a t are designed and built using a “pseudo-

optimal” game-theoretic approach:

• In pseudo-optimal game-theoretic solutions, there are weaknesses due to approxima­

tions and those weaknesses are permanent. This means th a t once an opponent dis­

covers the program’s weaknesses, those weaknesses can be exploited forever.

• Because game-theoretic solutions are non-exploitive, strong players can adopt a style

of play th a t probes for weaknesses without the fear th a t game-theoretic programs will

punish them while they perform this (usually very predictable) activity.

1.4.3 Obstacles to W orld-class Play

Billings et al{7] identified the following attributes th a t are required for successful poker play:

hand strength, hand potential, bluffing, unpredictability, and opponent modelling. Of these

required attributes, the one tha t remains the biggest obstacle to world-class play is opponent

modelling. This was echoed by the world-class opponent, Gautam Rao, who after testing

PsOpti said [6]:

You have a very strong program. Once you add opponent modeling to it, it will

kill everyone.

1.5 T h esis C ontribu tions

The work in this thesis focuses solely on the domain of heads-up limit Texas Hold’em.

Computationally speaking, the two-player game of Texas Hold’em is more tractable than

one with more players, but a t the same time it is more strategically complex. In heads-up

poker, players can adopt tricky playing styles in order to confuse and exploit their opponent.

World-class players have to be deceptive so th a t their opponent cannot exploit them and at

the same time look for opportunities to exploit their opponent.

The main goal of this thesis is to explore techniques to improve both opponent modelling,

and decision-making to exploit an opponent based on opponent modelling information. By

exploring possible techniques for doing this and implementing the best ones, this thesis

advances the state of the art in computer poker playing by creating a fully dynamic adaptive

program that tailors its play to exploit its opponent’s weaknesses.

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

All previous attem pts at creating poker programs were weak at doing this and this work

intends to provide the next “stepping stone” on the road to creating a world-class caliber

computer poker playing program.

The remaining structure of the thesis is as follows:

1. Chapter 2 discusses past attem pts by other researchers to build poker programs. It is

intended to provide a setting which can be used to illustrate the novelty and advantages

to the design and implementation of the program described in this thesis.

2. Chapter 3 presents a search-based action-selection procedure tha t exploits opponent

modelling information.

3. Chapter 4 looks at the problem of opponent modelling in poker as it relates to the

search-based action-selection decision-making described in Chapter 3.

4. Chapter 5 presents the experimental results of the implementation presented in this

thesis and tries to quantify its level of performance.

5. Chapter 6 discusses future work and conclusions.

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

R elated Work

A.I.-related games research on perfect information games such as chess has made great

progress over the years to the point th a t the problem is understood well enough th a t there

is now a well-defined action-selection framework for tackling similar problems (alpha-beta

search). The same cannot be said for imperfect information games such as poker. The

technology for understanding a game like poker th a t is fundamentally based on imperfect

information is less m ature and researchers are still working towards developing an effective

action-selection framework there.

In the 1970’s, Nicholas Findler made the first major effort to build a poker program[21].

His program was designed to play 5-card draw poker and he built this program as a testbed

to explore computer models of human cognitive processes in the domain. This program was

reportedly able to learn, but it did not achieve a strong level of play despite the fact th a t

5-card draw poker is not as strategically complex as other forms of poker (such as Texas

Hold’em).

The next effort may have been in 1984 with Mike Caro’s heads-up no-limit Texas Hold’em

program Orac (Caro spelled backwards). Orac reportedly played a few short exhibition

matches against strong players. Unfortunately, there is no good documentation available

detailing either the program ’s technical details or the match results. From a scientific point

of view, none of the results were statistically significant. This makes it difficult to critically

assess both its success and its technical innovation.

Aside from these two efforts, there have also been hobbyist efforts, such as Greg Wohletz’s

ROOlbot that used to play on Internet Relay C hat (IRC), and commercial efforts, such as

Turbo Texas Hold’em\ 50], All of these known efforts probably play at best a t an intermediate

level of strength and are far from a world-class level of play.

In recent years, computer science researchers have used poker to explore such things

as Bayesian decision making[31, 51], game-theoretic analysis[29, 30, 43, 53, 46, 6], rein­

forcement learning[16], and opponent modelling[31, 17]. This research is summarized here

with the intention of illustrating how it relates to creating an effective poker betting strat-

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

egy. In order to present a structured presentation of this related work, the research is

categorized into four approaches based on the type of betting strategy used in the vari­

ous programs. These approaches are: heuristic-based, simulation-based, game-theoretic, and

heuristic search-based.

2.1 H eu ristic-B ased A pproach

In a heuristic-based approach to playing poker, a rule-based expert system is used to make a

poker betting decision. To make a decision, the expert system first abstracts a complicated

game state into some simplified scenario tha t has a heuristic (or multiple weighted-heuristics)

associated with it and then it uses th a t heuristic information to make a decision.

2.1.1 H euristics in Poker Literature

A heuristic-based approach to playing poker is a crude but possibly effective strategy tha t

is appealing to beginning players because it gives them an easy-to-use starting point. Poker

authors have capitalized on this appeal and over the years have generated a wealth of poker

literature[47, 48] th a t aims to help players learn the game. This literature mainly works by

describing common game scenarios along with associated heuristics th a t can be used to help

with decision-making in them. For example, most literature contains heuristics for helping

a player with:

p re flo p h a n d se lec tio n - used to help decide which hands are playable in the preflop stage

(i.e. Sklansky and M almuth’s preflop hand groups[48]).

ac tio n -se lec tio n - used to help a player decide whether to fold, call, or raise (i.e. pot odds,

free card danger).

d e lib e ra te h a n d m is re p re s e n ta tio n - used to help a player disguise their hand (i.e.

bluffing, slow-playing, check-raising).

h a n d re ad in g - used to help a player infer their opponent’s private cards based on their

actions.

2.1.2 H euristic B etting Strategies in Programs

The easy-to-use nature of the heuristic-based approach provides a natural starting point

for building poker programs. Generally, in this approach, the heuristics or ad hoc rules in

these programs use various game information, such as a player’s table position and betting

history, and various computed information, such as their hand strength and hand potential,

to generate a probability triple th a t is used to select a fold, call, or raise action.

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

There are many ways to create the heuristics used to govern betting strategies. For

example, they can be knowledge-engineered by a domain expert or they can be derived and

refined through trial and error. A heuristic-based approach is problematic because there

are so many different decision scenarios and over time the system quickly becomes hard to

maintain and test. Despite these problems, the perceived simplicity of this approach has

resulted in several implementations.

In the 1970’s, Waterman[57] attem pted to learn heuristics th a t were represented as

production rules to define a betting system for 5-card draw poker. He reported th a t this

system achieved roughly about the same level of skill as an experienced human player.1

Smith[49] later reinvestigated the same problem and attem pted to learn heuristics through

the application of a genetic algorithm. He compared his results to W aterman’s and reported

th a t comparable performance was achieved despite using less domain knowledge.

Korb et a/[31] created a computer player for heads-up 5-card stud poker. Their player

used a Bayesian network tha t incorporated opponent information obtained through playing

experience to provide their heuristic betting strategy with a better estimate of the chance

of winning a hand. They report th a t this player won against their two simplistic test

opponent programs and lost against an experienced am ateur poker player (though the loss

was reported not to be statistically significant).

The University of Alberta Poker Research Group’s programs, such as Loki\2>7] and the

formula-based version of Poki[17], also used a heuristic-based betting strategy th a t incorpo­

rated opponent modelling information. In these two programs, opponent modelling infor­

mation was used to increase the accuracy of the computed hand strength and hand potential

values used by their expert-defined formula-based betting strategy. These programs were

consistent winners in the full-ring Texas Hold’em games for which they were designed to

play and they reached about an intermediate level in playing strength. Unfortunately, the

consensus reached among the researchers responsible for these programs was th a t programs

built using this approach would never scale to world-class play [7]. The main reason for this

decision was th a t they believed th a t poker simply has too many different decision scenarios

to be sufficiently handled by any knowledge-engineered heuristic-based betting strategy. In

addition, these programs became difficult to test and debug because they needed a poker

expert to identify mistakes with the betting strategy and suggest how to modify it.

2.2 S im u lation -B ased A pproach

In games of imperfect information like poker each player does not know their opponents’

cards. This makes it difficult for players to decide which actions will be the most profitable.

To overcome this information gap and figure out which action to choose, a player could

15-card draw poker is considered less strategically complex than Texas H old’em.

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

make guesses about their opponents’ cards and then forecast possible ways the hand could

play out to assess the profitability of their chosen action. This technique is the main idea

behind a simulation-based approach to playing poker.

In the simulation-based approach to playing poker, a program chooses among actions2 at

a decision point by running simulations for each action. In each simulation a hypothesized

action is taken and then future play for all players is simulated through to completion of

the hand to see how profitable the action is. Since each simulation is subject to statistical

variance, many simulations are performed (often hundreds or thousands) and their results

are averaged to estimate an expected value (EV) for each action. Once EVs are obtained

for each action, the program can use this information to create a betting strategy for the

decision point. For example, the action with the highest EV could be chosen, or a probability

distribution could be used to stochastically select actions.

The quality of the EVs obtained from the simulations depends, of course, on the quality

of the simulated play. This simulated play, in turn, depends on which cards the opponent is

assigned in the simulation and how they play out the hand. Therefore, to generate accurate

simulated play, the simulation needs to assign cards to opponents th a t are consistent with

the betting sequence leading up to the decision point. That is, if an opponent only raises

with strong cards and they raised in the play leading up to the decision point, then they

should be assigned cards tha t tend to be stronger rather than weaker.

This simulation-based approach to choosing actions in poker is related to the very suc­

cessful approach of heuristic-search based action-selection (e.g. minimax search with alpha-

beta pruning) in perfect information games. Both approaches can be thought of as looking

forward in a game tree to identify the most profitable moves. In the simulation-based ap­

proach the game tree is explored by following many separate paths th a t each extend from a

decision point all the way to the leaves of the game tree. In contrast, heuristic-search based

approaches basically explore the game-tree completely down to some specified depth from

the decision point.

The simulation-based approach to poker was used in both Greg Wohletz’s ROOlbot that

used to play on Internet Relay Chat (IRC), and the simulation-based version of Poki[17].

Despite the fact th a t simulations have been used successfully in other imperfect informa­

tion games such as Scrabble[45] and bridge [22, 23], the simulation-based version of Poki did

not result in a substantial performance improvement over its formula-based counterpart [17].

This result is unfortunate because simulations have a couple of advantages over the heuristic-

based approach, namely:

• the automatic discovery of a dynamic betting strategy th a t can automatically adjust

2In poker these are the checking/calling and betting/raising actions, but not the folding action because
the result of that action is fully known.

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

to different game conditions, and

• a simple uniform framework th a t does not rely on heavy knowledge-engineering ob­

tained from a domain expert.

The main reason Poki’s simulations did not perform as well as hoped was attributed to

the method being dependent on the difficult problem of simulating the opponents’ future

play in a hand. Also, it was not robust to all the noise and inaccuracies present in trying

to do simulations[17].

2.3 G am e-T h eoretic A pproach

Game Theory is a branch of mathematics and economics th a t is devoted to the analysis of

games. Since many real-world decision problems can be modelled as games, game theory

has become a powerful tool for understanding various decision-making scenarios involving

law, politics, economics, and the military.

Poker has had a long standing connection to game theory. In fact, pioneering game the­

orists, including John Von Neumann, John Nash and Harold Kuhn, used simplified versions

of poker to illustrate what became fundamental principles in their field [56, 32, 36, 35].

In the game-theoretic approach to building a poker program, the specific poker game of

interest, in this case two-player Texas Hold’em, is analyzed to find a set of strategies, one

for each player, th a t form a Nash equilibrium. A set of strategies are said to be in Nash

equilibrium if no player can do better by unilaterally deviating from their strategy. Com­

puting these so-called game-theoretic optimal strategies and using them to play is attractive

for two reasons:

• the program has a known strategy for achieving the best possible results against its

worst-case adversary (i.e. an adversary employing a best-response strategy), and

• the program’s strategy can be fully known by an opponent and despite this the oppo­

nent cannot gain any advantage from this knowledge.

The above two statem ents imply th a t a poker program th a t plays a game-theoretic

optimal strategy will be guaranteed to at least break even in the long run no m atter what

opponent it faces, and it also cannot be exploited to lose money even as its opponents learn

its strategy.

Unfortunately though, computing the game-theoretic strategies for a full scale poker

variation is almost certainly intractable due to the size of the problem[30].3 As a result,

anybody using this approach will have to settle for approximations which, of course, cannot

guarantee the two attractive properties listed above.

3For example, the two-player Texas H old’em imperfect information game tree contains more than 1018
nodes[7].

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To compute approximate game-theoretic optimal strategies for poker one could look

at abstracting the problem and computing an exact solution (for example, via linear pro­

gramming) for the smaller abstract problem. This approach has been explored for poker

by Takusagawa[53], Shi and Littman[46], and the University of Alberta Poker Group[6].

Dahl [16] also explored learning game-theoretic optimal strategies in a simplified game of

poker by using reinforcement learning.

Finding approximate game-theoretic optimal strategies could still result in successful

play, but the main problem with taking the game-theoretic approach and settling for ap­

proximations is th a t the final result will be a fixed strategy which can theoretically be

exploited. Of course, the extent to which the strategy can be exploited in practice depends

on whether its weaknesses can be discovered in all the statistical noise and uncertainty tha t

is associated with poker.

It is important to note that game-theoretic optimal strategies do not punish exploitable

play no m atter how obviously exploitable th a t play is. An exploitive or maximal player,

on the other hand, could be made to recognize an opponent’s mistakes and take advantage

of them. Of course, by trying to exploit an opponent with the intention of increasing

their overall profit, a player risks opening themselves up to exploitation. Game-theoretic

optimal strategies side step both this risk and this potential extra profit. Intuitively, they

are defensive and built to not lose by guaranteeing to at least break even in the long run.

The most successful application of game-theoretic techniques to create a poker program

has been the University of Alberta Poker Research G roup’s PsOpti [6]. PsOpti was built to

play two-player Texas Hold’em and plays it at an advanced level of playing strength. In

tests against world-class opposition, it held its own for quite awhile before the world-class

opposition learned to beat it. Unfortunately, because PsOpti employs a fixed strategy, once

its weaknesses are discovered they can be permanently exploited. To address this problem,

PsO pti’s strategy would have to be recomputed so th a t it is a better approximation, or

alternatively, it would need to be augmented with some dynamic capability th a t recognizes

and patches a weakness an opponent is exploiting.

Research needs to be done to understand how to create a dynamically adapting program

th a t is capable of both exploiting an opponent and preventing itself from being exploited.

This knowledge would be useful to create a poker playing program on its own, or to be

able to extend a game-theoretic based program so th a t it can fix its own weaknesses as an

opponent discovers and exploits them.

2.4 H eu ristic Search B ased A pproach

The heuristic search-based approach to action-selection tries to plan a betting strategy

stemming from a particular game state by performing backward induction on the game tree

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

rooted at that game state. Given a particular game state where an action needs to be

chosen, this approach works as follows:

• Recursively consider taking each possible action and getting to a new resultant game

state until the end of the game is reached.

• At the end of the game, the result of the game is known (i.e. win, loss, draw, etc.).

• Since the action taken leading to th a t end game state is known, the value of taking

th a t action is then simply the value of th a t end game state.

• Once all the actions available to a particular player have their values calculated, as­

sumptions are made about which actions th a t player will choose. These assumptions

represent their betting strategy and are used to calculate the value of the decision

point itself so th a t the process can be repeated for earlier decisions.

2.4.1 M inimax Search

One example of this approach is the minimax algorithm with the alpha-beta enhancement.

This algorithm has proven itself in the past as a successful means of action-selection in

perfect information games such as chess, checkers, and Othello. For the purposes of the

following discussion, the alpha-beta enhancement will be ignored since it is not critical to

the point being made here and instead the focus will be on the underlying minimax part of

the algorithm.

The minimax algorithm’s name is based upon the particular assumptions made for each

player in the backward induction process:

• The program invoking the algorithm is assumed to want to choose its best available

action. To do this, it will only ever choose the highest valued actions. As a result of

this action preference, this player could be labelled the “max” player which contributes

the “max” part to the algorithm’s name.

• The opponent is also assumed to want to choose their best available action. In two-

player zero-sum games, this is equivalent to the opponent choosing the action which is

the worst for its opponent (which in this case is the program invoking the algorithm).

From the perspective of the program invoking the algorithm then, the opponent will

only ever choose the lowest valued actions. Because of this action preference, the

opponent can be labelled as the “min” player which contributes the “min” part to the

algorithm’s name.

These min and max player action-selection assumptions are nice because the resulting

minimax algorithm (assuming a full-depth full-width search) computes game-theoretic opti­

mal strategies (i.e. strategies in a best-response equilibrium) in perfect information games.

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

As mentioned in the previous section, these strategies guarantee a player the best possible

result against a worst-case opponent and also mean its opponent cannot exploit its strategy

even after learning it.

Games such as chess, checkers, and Othello are unfortunately too large to completely

search to the end of the game. Instead, in large games like these, a game is searched as

deeply as possible in the time constraints allowed and an evaluation function is used to

approximate the value of each particular state where the search is stopped early (i.e. the

value th a t would have been backed up for th a t state had the subtree rooted there been

able to be searched all the way to its leaves). This means these programs are likely not

playing perfect game-theoretic optimal strategies due to errors introduced by the evaluation

function, but nonetheless they are still very successful.

One of the great strengths of using heuristic search for action-selection is th a t it selec­

tively focuses a program’s computation and memory resources only on the decision a t hand.

It would be desirable to do something analogous in poker.

The addition of stochastic elements can make games substantially larger but their pres­

ence does not require abandoning either of the min and max player assumptions. Techniques

for doing search in perfect information stochastic games include expectiminimax[40] and *-

Minimax[2, 24], which adds pruning to make the search more efficient.

Unfortunately, the minimax algorithm, itself, cannot be used in poker because of the

imperfect information caused by the hidden cards. To determine the best action for the

players within the search, the likelihood of the cards they could hold must be known. The

actions they have taken to get to the decision point where their action must be chosen

determine the distribution of cards they could hold. These actions though depend on their

strategy which is being determined within the search.

2.4.2 Expectim ax Search

One way to incorporate heuristic search into action-selection for poker is to give up having

to determine the best actions for the opponent within the search and instead assume that

they will choose their actions on their own accord (i.e. their choice of actions is given a

priori or can be learned by an opponent model).

This different problem formulation now results in a calculation th a t returns the best

way of playing against a specific opponent and not a hypothetical worst-case opponent.

In game-theoretic terms, this search process will find a best-response playing strategy for

one player in response to a particular opponent and not a pair of best-response equilibrium

playing strategies, one for each player, which guarantees each player some particular value

for the game regardless of how their opponent plays.

This heuristic search procedure is typically called the expectimax algorithm[33, 40].

16

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Again, as was the case with minimax, assumptions about each player’s play are used to

derive the algorithm’s name:

• The program invoking the algorithm is still assumed to want to choose their best

available action. Therefore, they choose only actions with the highest possible value

amongst their choices. This action preference contributes the “max” part to the

algorithm’s name.

• The opponent is assumed to choose their actions according to some predetermined

strategy. This assumption effectively turns an opponent decision into an element of

chance where there is a probability distribution over their observed actions. As a

result, the value of an opponent decision node is calculated as the expected value of

their possible actions. That is, it is a sum of the values of the various actions available

to them weighted by the probability tha t they will take each of those actions. This

expected value calculation contributes the “expecti” part to the algorithm’s name.

Using expectimax search and opponent modelling for decision-making in poker was first

explored by Aaron Davidson[17]. The work presented in this thesis reimplements his work

and extends it. Because the work in this thesis builds heavily upon th a t work, it will not

be discussed here and instead will be discussed in the following chapters.

The overview of this approach presented here is meant to be only enough detail so tha t

other researchers’ more distant related work can be discussed and th a t this approach can

be motivated. The remaining chapters of this thesis will provide a more detailed discussion

on this approach.

2.4.3 Opponent M odelling in Expectim ax Search

The idea of combining opponent modelling information with decision-making in games has

been explored in the past. For example, different forms of opponent modelling have been

incorporated into various forms of heuristic-search in perfect information games [14, 25, 28].

Opponent modelling has also been used before in poker playing programs. For example,

various forms of opponent modelling were present in some of the different poker programs

mentioned earlier such as heuristic-based Poki[17], simulation-based Poki[17], and Korb and

Nicholson’s Bayesian Poker Player[31].

For the interests of using an opponent model in conjunction with an expectimax-based

heuristic search framework, the following work is the most relevant and will be summarized

here.

R eibm an and B allard’s *-M in Search

In their work[39], Reibman and Ballard modified the conventional minimax search proce­

dure to use opponent modelling as a means to account for opponent fallibility. In their

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

approach, conventional minimax backups are done at all nodes in the search tree except for

the top-most level of opponent nodes stemming from the decision point. For these nodes the

conventional min backup is replaced with an expected value backup where the conventional

minimax values of the subtrees are weighted (by the predicted likelihood th a t the opponent

will choose the action th a t leads to the subtree) and summed. This effectively turns these

min nodes into chance nodes.4

To predict the probability of the opponent choosing each of their available actions, the

opponent is assigned a predicted strength value th a t represents their playing strength. This

value is then used as input into a fixed formula th a t generates an action probability distri­

bution. The formula is designed in such a way th a t as the opponent’s predicted strength

decreases, their likelihood for choosing an action with an inferior minimax value increases.

When the opponent is given the maximum possible predicted strength value, they only

choose their best available action which is the same action chosen with conventional mini­

max search. When the opponent is given the minimum possible predicted strength value,

they are equally likely to choose any available action.

Reibman and Ballard tested the performance of this approach on randomly generated

perfect information game trees. According to Donkers[19], there are no known applications

of this approach in a practical game setting.

Jan sen ’s P robi-m ax Search

Jansen[26, 27] explored how play should change from default minimax behavior when a

player is in a known losing chess position and facing an opponent known to be fallible. As

part of this work, Jansen explored a search procedure where the values of all opponent nodes

are calculated via expected value backups, rather than conventional min backups, and the

values of the invoking program are calculated via conventional max backups. He called

his search procedure “probi-max” search. To generate the probability distribution over

opponent actions used in the expected value backups for opponent nodes, Jansen used fixed

heuristic-rules th a t were meant to capture typical fallible play common at th a t particular

decision point.

Sen and A urora’s M axim um E x p ected U tility P layer

Sen and Aurora created a Maximum Expected Utility (MEU) player for perfect information

games th a t exploits its opponents via a learned opponent model [44]. Their work is inspired

by the decision-theoretic principle of Maximum Expected Utility [40].

Sen and Aurora’s MEU player chooses its actions so as to maximize its expected utility.

A probability distribution over opponent actions is used to represent the uncertainty about

4Chance nodes are traditionally denoted w ith asterisks, hence the work’s name.

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

which actions the opponent will choose. Though they do not explicitly mention how their

player chooses its actions so as to maximize its expected utility, there is a diagram tha t

hints it uses the expectimax search procedure.

To learn the opponent model used in their experiments, they used a training phase

where opponent moves were observed by the MEU player. A tally of move counts was kept

in term s of the difference between the minimax value of the best move the opponent could

have chosen and the minimax value of the value th a t the opponent did choose.

Their MEU player was tested using the two-player perfect information game of Connect

Four. They presented their results by comparing their player’s performance to a conventional

minimax player’s performance against a simple heuristic player known to have exploitable

weaknesses.

PrO M Search

Probabilistic opponent-model (PrOM) search[19, 20] is an extension of opponent-model

(OM) search[14, 25]. In OM search, opponent modelling in added to traditional minimax

search by allowing the max player to know the min player’s evaluation function (which

can be different from the max player’s). PrOM search extended this idea by allowing the

max player to consider a distribution of n different opponent evaluation functions (called

opponent types) rather than just one.

In PrOM search, for each min player decision, each of the opponent types is used to find

the move they consider the best (i.e. the node which appears to give the minimum value to

the max player from each opponent type’s perspective). The values of these move choices

are then weighted by the likelihood of each opponent type according to the max player’s

distribution of opponent types, and summed to compute the min node’s value. Though each

move for each opponent type is selected according to a min backup, the weighted sum used

to compute the min node’s value results in an expected value backup at min nodes.

The quality of PrOM search was evaluated both via theoretical analysis and experimental

analysis. As part of the experimental analysis PrOM search was explored using the perfect

information game, Lines of Action.

2.4.4 Lessons from RoSham Bo

RoShamBo, sometimes called Rock Paper Scissors, is a game where two players simultane­

ously choose either rock, paper, or scissors and their respective choices result in either one

player winning, or the two players tying. In this game, a player’s success comes from their

ability to “out guess” their opponent to make a winning choice.

In 1999 and 2000, Darse Billings conducted the First and Second International RoShamBo

Programming Competitions[5, 4], The results of these competitions illustrate many key

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

points which are believed to carry over to poker and help justify the potential of an action-

selection approach tha t is able to exploit a learned opponent model.

D eterm in in g an O pponent’s W eaknesses

To choose the best action in a game of imperfect information, it is essential to first determine

how an opponent is weak. In domains of perfect information, information present in the

game itself is typically sufficient to identify an objectively correct move independent of the

opponent’s weaknesses. In domains of imperfect information, the correct move can often only

be identified once the opponent’s weaknesses are discovered. In RoShamBo, for example,

you can only prefer one action over another once you have identified your opponent’s own

action preferences. This basic idea holds true in poker as well. If your opponent bluffs too

much then you need to call more and fold less. If they do not bluff enough, you need to

call less and fold more. If they fold too much, then you need to bluff more. If they call too

much, you need to bluff less.

E arning as M uch A s P ossib le

In poker the goal of a player is to earn as much money as possible. For RoShamBo, this

is the same as a program trying to win as many games as possible. Since opponents are

often fallible and their weaknesses can be learned through repeated interaction, the most

successful RoShamBo programs were the ones th a t were the best a t adopting strategies th a t

attacked their opponents’ weaknesses. Overall, the results showed th a t the best programs

were the ones th a t were able to accurately model their opponent, even if they were changing,

so th a t they could better exploit them.

D efensive N atu re o f G am e-T heoretic A pproaches

A game-theoretic strategy sacrifices potential success by not attacking opponents’ weak­

nesses to guard against its own exploitation. Since players in the competition were evaluated

in terms of their to tal winnings, game-theoretic players finished in the middle of the pack

because all of their matches were statistical ties regardless of how fallible their opponents

were.

It is im portant to note th a t despite not being a successful strategy for winning the

competition, the defensive characteristic of a game-theoretic strategy still proved useful as

a safe defensive strategy th a t opponents could use to fall back on to stop losing to a better

opponent.

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

Expectim ax Search for
A ction-selection in Poker

Aaron Davidson first explored using expectimax search for action-selection in pokerfl?].1

In th a t work, he defined two different search procedures, Miximax and Miximix, which are

basically variants of traditional expectimax search modified so th a t they can be applied

to the imperfect information domain of Texas Hold’em. Davidson’s work illustrated the

potential for these search procedures, but never explored them in depth. The research in

this thesis reimplements th a t work and extends it.

3.1 Im perfect In form ation G am e Trees

Imperfect information games can be represented graphically as a tree whose nodes represent

various states of the game and whose edges connecting the nodes represent the possible

actions which cause a transition from a state to its successor. In game theory, this represen­

tation of a game is referred to as its extensive form representation and it provides a useful

visualization of the game when doing game-theoretic analysis (i.e. when both players are

considered simultaneously so as to assign them both strategies).

In an imperfect information game like poker, game state nodes can be categorized into

who is choosing the action at th a t game state. In two-player Texas Hold’em there are

decision nodes where each player chooses their actions, chance nodes2 where some random

process (often called nature) deals cards, and term ination states called leaf nodes which

indicate th a t the game is over and there are no further actions allowed.

The one im portant thing th a t separates imperfect information games from perfect infor­

mation games is the presence of hidden information. The presence of hidden information

is important because it means th a t for each player, different action nodes become indistin­

xThe concepts underlying the work were conceived jointly by Aaron Davidson and Darse Billings.
2Sometimes called stage nodes since the betting in Texas Hold’em is split into stages where cards are

dealt before any betting occurs.

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

guishable and the player acting there is required to act the same way in all of them. In

game theory, a group of indistinguishable action nodes is referred to as an information set.

In Texas Hold’em, the hidden information takes the form of an opponent’s private hole

cards. This means th a t in Texas Hold’em, all of a player’s action nodes th a t share both

the same public information (i.e. the betting actions and community cards) and the same

private information (i.e. the player’s hole cards) but differ solely because of the opponent’s

private hidden information (i.e. the opponent’s hole cards) belong to the same information

set.

In the extensive form representation of the game, an information set appears as an oval

grouping together a set of player action nodes. The use of information sets is not needed

in perfect information games because the absence of hidden information means th a t each

information set contains exactly one node.

3.2 E x p ectim a x Search Tree

The tree traversed during expectimax search arises by looking at the imperfect information

game tree solely from the perspective of choosing the best strategy for one player (i.e. the

best-response player) while assuming some other predetermined strategy for the opponent . 3

W hen considering the game from one player’s perspective only, the fact th a t the player

has to act the same way in each node of their information sets allows parts of the imperfect

information game tree to be merged together into the expectimax tree. More specifically,

all of the nodes making up each of th a t player’s information sets and the subtrees rooted at

those nodes can be merged together according to which information is observable and not

hidden from tha t player.

After this merging process, each of the new expectimax tree’s nodes can be thought of

as a single representative for a group of nodes in the imperfect information game tree tha t

are indistinguishable to the player. Likewise, the edges connecting the nodes in the new

tree are a single representative of a group of edges th a t are also indistinguishable.

The effect of merging all indistinguishable nodes and actions into single representatives

in the expectimax tree is th a t at each node in the expectimax tree there is an implicit

probability distribution over the information th a t occurred but was kept hidden and remains

unknown.

3.3 E xam p le K u hn P oker Trees

To illustrate the differences between the trees, an example of each tree is shown for the

game of Kuhn Poker. Kuhn Poker is used because it is small enough to present graphically

3Rather than from the perspective of simultaneously choosing the best strategies for both players, as
would be done in game-theoretic analysis.

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and at the same time allows the examples to be focused on poker.

3.3.1 Kuhn Poker Rules

Kuhn poker is described in some detail by Koller and Pfeffer[30], but the essential details

are as follows:

• Two players, each of whom has two dollars.

• 3 card deck - Jack (J), Queen (Q), King (K).

• Each player antes one dollar and is dealt one card th a t remains hidden from the

opponent.

• Each player can then make standard poker betting decisions as permissible by their

stack size (i.e. there is a maximum of one bet since each player only has one dollar

remaining in their stack after the ante): bet (increase the stakes), check/call (stay in

the hand), or fold (quit and lose all money invested up to th a t point).

3.3.2 Kuhn Poker Im perfect Inform ation Game Tree

Figure 3.1 illustrates a section of the Kuhn poker imperfect information game tree where

the first player is dealt a Queen . 4

The root node of this tree is a chance node where each player is dealt their hidden cards.

The chance node is represented graphically as an octagon labelled with a The edges

coming from this chance node represent the possible deals th a t can occur. The two edges

shown in the image correspond to the only two possible situations where player 1 is dealt a

Queen. The leftmost edge, labelled as “Queen, Jack” , represents the situation where player

1 is dealt a Queen and player 2 is dealt a Jack. The rightmost edge, labelled as “Queen,

King” , represents player 1 being dealt a Queen and player 2 being dealt a King.

Below each of these two edges representing the dealt cards are subtrees of the possible

legal betting actions. In each betting subtree, player l ’s decision nodes are denoted by

circles and player 2’s decision nodes are denoted by squares. At the leaf node at the end of

each path through the betting tree, called a betting sequence, player l ’s payoff is illustrated . 5

In the betting subtree, the edges coming from each player’s decision nodes are labelled

with single characters denoting possible player actions. Checking is represented with a ‘k’,

calling with a ‘c’, betting with a ‘b ’, and folding with an ‘f ’. To make things more readable,

player l ’s actions are shown in lowercase, and player 2 ’s actions are shown in uppercase.

4 T o keep the size of the example small, the other possible deals that can occur in the game are not
shown. This corresponds to four possible deals where player 1 and player 2 are respectively dealt a Jack
and a Queen, a Jack and a King, a King and a Jack, and a King and a Queen.

5Since this game is zero-sum, player 2’s payoff is sim ply the value of player l ’s payoff negated.

23

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 3.1: Kuhn Poker Imperfect Information Game Tree

The dot-dot-dashed ovals and the dashed ovals in Figure 3.1 illustrate player l ’s and

player 2’s information sets, respectively. For example, player l ’s first decision node in each

betting subtree are grouped together because from player l ’s perspective they appear the

same; all player 1 knows is th a t player 2 is holding either a Jack or a King but they cannot

distinguish which one. Likewise, player 2’s subsequent decision nodes appear as half ovals

because the other nodes th a t would appear in those information sets correspond to nodes

in other subtrees tha t have been left off the diagram. For example, the leftmost player 2

decision node would be grouped with a corresponding decision node in the betting subtree

where player 1 is dealt a King and player 2 is dealt a Jack.

3.3.3 Kuhn Poker Expectim ax Search Tree

Figure 3.2 illustrates the expectimax search tree for player 1 when they are dealt a Queen

and are considering their first action. Many of the nodes in the imperfect information game

tree shown in Figure 3.1 are merged together into the expectimax tree. In fact, the two

separate betting subtrees in the imperfect information game tree are effectively merged

together into a single betting tree. Whereas the imperfect information game tree showed all

of the opponent’s hidden information explicitly even when it was indistinguishable to player

1 , the expectimax search tree shown for player 1 only focuses on information it is allowed

to observe.

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Jack, King Jack, King

P2 P2

tO
Jack, King

Figure 3.2: Kuhn Poker Expectimax Search Tree

The top-most player 1 decision node in the expectimax search tree merges both of the top­

most player 1 decision nodes in the imperfect information game tree. The left-most player

2 decision node in the search tree represents both of the left-most player 2 information sets

in each of the betting subtrees in the game tree. Likewise, the right-most player 2 decision

node in the search tree represents both of the right-most player 2 information sets in each

of the betting subtrees in the game tree. Finally, the bottom-most player 1 decision node

in the search tree represents both of the bottom-most player 1 decision nodes in each of the

betting subtrees of the game tree.

The effects of merging decision nodes is illustrated at the leaf nodes which go to a

showdown. For example, the leftmost leaf node in this figure corresponds to the leftmost

leaf nodes in each of two betting subtrees in the extensive form representation in Figure

3.1. In this image, player l ’s payoff is no longer shown as a simple integer value and instead

is replaced by a distribution representing the likelihood of player 2 holding either a Jack

or a King. Showing this distribution rather than the player’s payoff is done to illustrate

the effects of merging different nodes in the imperfect information game tree into a single

representative node in the expectimax tree. Player l ’s payoff a t this node in the expectimax

tree depends on the likelihood of each of player 2 ’s possible holdings (or equivalently, the

likelihood of being in each of the different corresponding nodes in the imperfect information

game tree tha t have been merged into the representative node). For example, assuming th a t

player 2 is likely to have a Jack 80% of the time and a King the remaining 20% of the time

they go to th a t particular showdown leaf node, then player 1 would receive a payoff of 1

for the 80% of the time player 2 holds a Jack and they would receive a payoff of -1 for the

remaining 20% of the time th a t player 2 holds a King. For this example, this would result

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

in an expected payoff of (80%)*(1) + (20%)*(-l) = 0.6. Depending on how this distribution

changes, player l ’s payoff a t this leaf node in the expectimax tree falls somewhere in the

range of 1 to - 1 inclusive.

3.4 B ackup R u les in E x p ec tim a x Search

The purpose of the expectimax search procedure is to construct an autom ated player’s best-

response playing strategy. To do this, the algorithm recursively backs up expected values

(EVs) from child decision nodes to parent decision nodes using backup rules th a t correspond

to how the decision-maker would make the decision at tha t point in the game tree. In the

domain of two-player Texas Hold’em, there are three types of game tree decision nodes for

which the search procedure needs to define backup rules:

• opponent decision - The EV of an opponent decision node is simply the sum of its

children’s EVs weighted by their probability of occurrence. The opponent’s strategy

dictates their choice of actions and as a result, the values of these probabilities are

specific to it.

• best-response (or, the program’s) decision - Since the best-response strategy attem pts

to maximize its EV, the value of a best-response decision node is simply the maximum

value of its children’s EVs. By recording the maximum valued actions th a t would be

chosen at each decision point as it is reached in the search, a best-response strategy

can be constructed.

• chance event - In addition to player decision nodes, games can have chance nodes

which are used to represent random events, such as rolled dice or dealt cards. For

these chance nodes, each branch originating from them represents a different possible

random outcome and the weight of each branch represents the probability of th a t

outcome occurring. As a result, the backup rule applied to a chance node is a standard

expected value calculation where the backed up values of each subtree representing

the occurrence of a random event are weighted by their probability of occurrence and

then summed together.

3.5 H an d lin g th e E ffects o f th e O p p o n en t’s S tra teg y

The opponent’s strategy affects three things th a t have to be accounted for when apply­

ing expectimax search to action-selection in poker: leaf node evaluations, opponent action

selection, and the probability of community cards being dealt.

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3.5.1 Leaf N ode Evaluations

To use expectimax search it is necessary to calculate the expected values (which are always

defined from the best-response player’s perspective since they invoked the search) of leaf

nodes. It is im portant to remember when doing this th a t a leaf node in the expectimax

search tree represents more than one node in the imperfect information game tree.

In poker, there are two types of leaf nodes: those resulting from one player folding, and

those where neither player folds and a showdown occurs. For leaf nodes where one player

folded, the expected value is simple to calculate: if the best-response player folds they lose

all the money they wagered, and if their opponent folds the best-response player wins all the

money their opponent wagered. Because a player’s folding action is sufficient to determine

the value of the leaf node (i.e., the payoffs at every node in the imperfect information game

tree represented by this node in the expectimax game tree are exactly the same), it does not

m atter what distribution of imperfect information game tree nodes is actually represented

at the expectimax search tree leaf node.

For leaf nodes tha t require a showdown, the expected value depends on the distribution

of imperfect information game tree nodes represented by th a t node. At a showdown, each

imperfect information game tree node would correspond to each of the possible hands the

opponent would hold there. Since each of these leaf nodes has a payoff associated with

them, once the distribution of these nodes is known the expected value of the expectimax

leaf node can be computed via a weighted sum. An example of this calculation was shown

earlier when the Kuhn Poker expectimax tree was described.

Figuring out the value of a showdown leaf node then depends on being able to figure

out an opponent’s distribution of possible holdings there. This task will be left to the

opponent modelling system presented in the next chapter. To abstract this problem away

to the opponent modelling system, the expectimax search formulation used here simply

assumes tha t it can ask the opponent modelling system for the best-response player’s chance

of winning at a showdown6 which can then be used to estim ate an expected value for a

showdown leaf node. Pseudocode for a leaf node evaluation is provided in Figure 3.3.

3.5.2 Opponent A ction Selection

To perform the expected value backup at opponent decision nodes, the probability of the

opponent taking each action at each of their expectimax decision nodes needs to be known.

The values of these probabilities, of course, depend on their actual strategy. To handle this,

it assumed tha t an opponent model used in this approach will be able to return a probability

distribution over opponent actions at each expectimax opponent decision node.

6The chance of winning is the sum of the percentage of the tim e the player wins outright and half the
percentage of the tim e that the player ties.

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

// Compute the EV at end of game
double getLeafEV(GameState gs) {

if (! gs. isShowdownO) {
if(gs.opponentFoldedO) {

pwin = 1.0; // opponent folded
> else {

pwin = 0.0; // decision-maker folded
>

else {
// showdown - estimate pwin with opponent model
pwin = oppModel.estWin(ourHand, gs);

>

return (gs.getSizeOfPotO * pwin) - gs.getOurSpentO;
>

Figure 3.3: Leaf Node Evaluation

It is im portant to remember th a t each expectimax opponent decision node can represent

more than one opponent information set in the imperfect information game tree. The

opponent’s strategy would dictate how they act in each of their information sets, and the

observed opponent actions at an opponent decision node in the expectimax search tree would

then appear as a weighted combination of what the opponent’s strategy would do in each

information set contained there.

The model is only assumed to be able to provide a probability distribution over what

actions the best-response player will see the opponent take at each of their expectimax nodes.

This allows the opponent modelling system the flexibility to choose between modelling the

opponent’s strategy and computing these values or modelling the observed values directly.

Pseudocode for an expected value backup at an opponent decision node is shown in Figure

3.4.

3.5.3 Probability o f Com m unity Cards Being D ealt

A chance node in the imperfect information game tree is straight forward. Every possi­

ble chance outcome occurs with uniform probability (provided the game is fair), and all

outcomes which are not possible due to previously dealt cards occur with zero probability.

Because of the way the expectimax tree merges all of the nodes in a best-response

player’s information set into a single representative, every chance node in the expectimax

tree represents a group of chance nodes in the imperfect information game tree.

The distribution of the imperfect information game tree chance nodes merged into a

single expectimax search tree representative corresponds exactly to the distribution of op­

ponent hidden card holdings at th a t point in the game. This is because the opponent hidden

card holdings are what defines the nodes in the best response player’s information sets in

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

// Compute EV of an opponent decision node
double getOppDecisionEV(GameState gs) {

// get legal actions
List actions = getLegalActions(gs);

for(int i = 0; i < actions.length; i++) {
// take an action
GameState temp = new GameState(gs);
temp.takeAction(actions[i]);

// use miximix to compute the child EV
EVs[i] = miximix(temp);

// estimate the probability of opponent taking action
probs[i] = oppModel.getActionFreqs(gs, i);

>

// return weighted sum of children EVs
return weightedSum(probs, EVs);

>

Figure 3.4: Opponent Decision Node EV Backup

the first place. This means the distribution of imperfect information game tree chance nodes

represented by an expectimax search tree chance node depends on the opponent’s strategy

since their strategy determines the likelihood of each of their holdings at th a t point in the

game.

As a result, the probability on each branch coming from an expectimax search tree chance

node is a weighted sum of the probability of th a t branch for each imperfect information game

tree chance node contained there. Intuitively, this means th a t the more likely the opponent

is holding a specific card, the less likely th a t card will be dealt a t th a t chance node, and

vice versa.

To handle this effect of the opponent’s strategy, the expectimax search routine presented

here assumes th a t any opponent model used will be able to provide the probability associated

with each expectimax chance node branch. Pseudocode for an expected value backup at a

chance node is shown in Figure 3.5.

3.6 M ix im ax and M ix im ix Search

Two variants of expectimax search have been proposed for action-selection in poker[17].

The first, Miximax, corresponds exactly to the backup rules described above. T hat is, the

value of an opponent decision node is computed via an expected value over all their available

actions. The value of a decision node for the player invoking the search is defined to be the

maximum value of all its available actions. Because the player invoking the search takes the

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

// Computes the EV of a chance node
double getStageEV(GameState gs) {

// generate cards to deal
List cards = generateCardsToDealO;

for(int i = 0; i < cards.length; i++) {
// update state with dealt board cards
GameState temp = new GameState(gs) ;
temp.updateBoard(cards[i]);

// use miximix to compute the child EV
EVs[i] = miximix(temp);

// estimate chance event probability using opponent model
probs[i] = oppModel.getChanceFreq(gs, cards[i]);

>

// return weighted sum of children EVs
return weightedSum(probs, EVs);

>

Figure 3.5: Chance Node EV Backup

maximum action, the strategy th a t results from this expectimax search is a best-response

strategy against the opponent. Pseudocode for a max backup for the player invoking the

search is shown in Figure 3.6.

The second variant proposed, Miximix, keeps the opponent’s backup calculation the

same but allows the decision-maker invoking the search to choose their action according

to a probability distribution, rather than requiring th a t player always choose a maximum­

valued action. This means th a t the value of a decision node for the player invoking the search

is now an expected value backup just like the one described for the opponent. A probabilistic

approach to choosing actions is im portant in poker since this allows the decision-maker to

be less predictable. Pseudocode for a mix backup for the player invoking the search is shown

in Figure 3.7.

The implementation of expectimax search used in this thesis for action-selection in poker

uses a Miximix variant which dynamically creates a probability distribution for the decision­

maker by taking a softmax[52] over its available actions. T hat is, given the values of the

actions available to it a t a decision node, the player invoking the search uses those values to

construct a probability distribution th a t is biased towards higher-valued actions but does

not completely rule out choosing lower-valued actions. This probability distribution is then

used to both select actions at the decision node and also to backup values there so th a t the

backward induction process can continue up the tree.

The actual choice of how to construct this probability distribution is still an open research

question and has a lot to do with how one wants to address the exploration/exploitation

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

// Computes the EV of the decision-maker’s node (max backup)
double getMaxDecisionEV(GameState gs) {

// get legal actions
List actions = getLegalActions(gs);

for(int i = 0; i < actions.length; i++) {
// take an action
GameState temp = new GameState(gs);
temp.takeAction(actions[i]);

// use miximix to compute the child EV
EVs[i] = miximix(temp);

>

// return the EV of the maximum valued action
return max(EVs [i]);

>

Figure 3.6: Decision-maker’s Miximax EV Backup

tradeoff[52]. The more biased the distribution is towards maximum-valued actions, the

more exploitive the player plays based on its current beliefs about the opponent. This

implies tha t it is less likely to explore taking other actions which it currently believes to

be worse just to try and discover if better alternatives exist. Intuitively, addressing the

exploration/exploitation tradeoff gives a player the means to take a short-term loss to achieve

a long-term gain.

For the implementation used in this thesis, the player’s action distribution is con­

structed as a standard Gibbs, or Boltzmann, distribution[52]. This allows the player’s

exploration/exploitation tradeoff to be controlled by a single temperature parameter. This

method is admittedly simple but it provides a simple mechanism for addressing the explo­

ration/exploitation tradeoff while other research issues are being tackled first.

Pseudocode for the Miximax and Miximix algorithms is shown in Figure 3.8. It calls the

pseudocode presented earlier in this chapter (i.e., Figure 3.3, Figure 3.4, Figure 3.5, Figure

3.6, Figure 3.7).

3.6.1 Example: Kuhn Poker M ixim ax Calculation

Figure 3.9 illustrates an example miximax calculation for the situation in Kuhn Poker where

player 1 is deciding upon their first action and they hold a Queen. Performing the search

in the situations when player 1 is dealt a Jack or King would be a similar calculation in a

different part of their larger overall search tree.

In this particular example, player 1 is invoking the search so they are the best-response

player and the search is done from their perspective. Player l ’s decisions are denoted by

circles, and they are choosing maximum-valued actions at each of their decision nodes.

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

// Computes the EV of the decision-maker’s node (mix backup)
double getMixDecisionEV(GameState gs) {

// get legal actions
List actions = getLegalActions(gs);

for(int i = 0; i < actions.length; i++) {
// take an action
GameState temp = new GameState(gs);
temp.takeAction(actions[i]);

// use miximix to compute the child EV
EVs[i] = miximix(temp);

>
// compute the probability distribution for selecting actions
probs = getMixProbs(gs, EVs);

// return weighted sum of EVs
return weightedSum(probs, EVs);

>

Figure 3.7: Decision-maker’s Miximix EV Backup

Player 2 is the opponent and their decision nodes are denoted by squares. The value of

player 2’s nodes will be computed via an expected value calculation. To calculate player 2’s

values, player 1 is assumed to have an opponent model which will specify how they think

player 2 will act.

To illustrate this search, player l ’s assumed opponent model for player 2 contains the

following information:

• the relative frequencies of player 2’s choice of actions: player 2 checks 50% of the time

(K = 0.5) and bets the remaining 50% of time (B = 0.5) when they have to act after

player 1 checks; player 2 folds 50% of the tim e (F = 0.5) and calls the remaining 50%

of the time (C = 0.5) after player 1 bets, and

• player l ’s chances of winning (pwin) at a showdown leaf node: player 1 wins 80% of

the time (pw in = 0 .8) when player 1 checks and then player 2 checks; player 1 wins

2 0 % of the time (pw in = 0 .2) when player 1 checks, player 2 bets and then player 1

calls; player 1 wins 0 % of the time (pw in = 0 .0) when player 1 bets and player 2 calls.

To see exactly how the calculation would be done, s ta rt at player l ’s root decision point

and sta rt doing a depth first expansion of subsequent nodes. Player l ’s first action to

expand is a check, denoted by a ‘k’ on the branch which points towards the left. Following

this action leads to the left-most opponent decision node in the figure. From this opponent

decision node, their first action to expand is also a check. Following this action there is a

showdown leaf node which player l ’s opponent model says they will win 80% of the time.

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

// Compute the EV of a game state using miximix/miximax
double miximix(GameState gs) {

if (gs. isStageNodeO) return getStageEV (gs) ;
if (gs.isLeafNodeO) return getLeafEV(gs) ;
return getDecisionEV(gs);

>

// Compute EV of decision node
double getDecisionEV(GameState gs) {

if (gs. isOppDecisionO) {
// opponent decision
return getOppDecisionEV(gs);

> else {
// decision for player invoking the search
if (MIXIMIX) {

// Miximix: stochastic action-selection
return getMixDecisionEV(gs);

} else {
// Miximax: purely max action-selection
return getMaxDecisionEV(gs);

>
>

>

Figure 3.8: Miximax/Miximix Algorithm

At this showdown node, there are 2 betting units in the pot, corresponding to each player’s

1 unit antes, which means player 1 has an EV of 0.6 units there.

Now, continuing the depth-first expansion, the betting action, or right-pointing branch,

at the left-most opponent decision node is then considered. This action leads to a player 1

decision node. At this decision node, player 1 can fold, which has an EV of -1 betting units

since they give up their ante, or they can call which leads to a showdown leaf node. At this

showdown leaf node, their opponent model says they have a 2 0 % chance of winning which

corresponds to an EV o f -1.2 units.

Since player 1 is trying to maximize their earnings, they will choose to take the action

which gives them the highest EV. In this case, this would mean they would choose to fold

which gives their decision node an EV of -1 units. Since player 2’s betting action led directly

to this node the value of th a t action is also - 1 units.

Since both of player 2’s actions have values, there is now enough information to calculate

the value of player 2’s decision node following player l ’s original check. Player 2’s decision

node value is calculated as the weighted sum of each of their actions weighted by their

likelihood of taking those actions. This means, the value of player 2’s decision node after

player 1 checks (and therefore the value of player 1 checking since it leads immediately to

th a t node) is then 0.5(0.6) + (0.5)(—1.0) = —0.2 units.

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(-0 .2)

Pr(K) = 0.5 Pr(F) = 0.5Pr(B) = 0.5 Pr(C) = 0.5

(-2)(0 -6)
(-1)

P2
(-0 .2)

P2
(-0.5)

-1 (- 1 -2)

Figure 3.9: Player l ’s Best-Response Strategy When Holding a Queen (Miximax)

To complete the depth-first expansion of player l ’s original node, player l ’s betting

action and its subtree need to be expanded. Following the same procedure as was done for

player l ’s checking action, player l ’s betting action has a computed EV of -0.5 units.

Since player l ’s check has a higher expected value than a bet (i.e. -0.2 is greater than

-0.5), player l ’s best-response action would be to check since it is more profitable.

3.6.2 Example: Kuhn Poker M ixim ix Calculation

Figure 3.10 illustrates a miximix calculation for the same example. In this example, the

decision-maker invoking the search will sometimes choose with low probability what it be­

lieves to be inferior actions for the sake of exploration and /o r unpredictability.

Since the decision-maker’s action preferences are now a form of a softmax[52] rather

than a strict max, the resulting strategy computed during this search is a soft best-response

rather than a true best-response.

In this example, the probability distribution th a t player 1 uses to select its actions is

derived using a Gibbs distribution with a tem perature value of 0.1. In the figure, player l ’s

probability distributions for choosing actions are denoted along player l ’s action branches:

since folding is slightly better than calling after player 1 checks and player 2 bets, player 1

computes its action distribution to choose folding ~ 8 8 % of the time and calling « 1 2 % of

the time; since checking appears better than betting when player 1 first has to act, player

1 chooses checking « 95% of the time and betting the remaining « 5% of the time.

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(-0.23)

Pr(k) = 0.95 Pr(b) = 0.05

Pr(K) = 0.5 Pr(B) = 0.5 Pr(F) = 0.5 Pr(C) = 0.5

(0 -6) (-2)
(-1.02)

’r(c) = 0.12Pr(f) = 0.8a

P2
(-0.5)

P2
(-0 .21)

-1 (-1-2)

Figure 3.10: Player l ’s Soft Best-Response Strategy When Holding a Queen (Miximix)

One thing to note is how acting according to a softmax method explores taking some sub-

optimal actions and also how taking those sub-optimal actions affects the expected values

of player l ’s decision nodes. For example, the expected values are lower all over the tree

for player 1 in Figure 3.10 compared to the values for player 1 in the Figure 3.9 because of

the non-zero chance of taking exploratory moves which are currently believed to result in

somewhat inferior payoffs.

3.7 P ractica l Search C onsideration s

Real variations of poker such as Texas Hold’em are obviously much larger than Kuhn Poker.

As games get larger issues arise th a t need to be addressed if expectimax search is to remain

practical.

Figure 3.11 illustrates a portion of the expectimax search tree for Texas Hold’em. In

this tree there are four distinct game rounds (preflop, flop, turn, and river) where cards are

dealt and then players take betting actions. The hexagons in the figure represent the chance

nodes where cards are dealt. Each solid triangle represents the betting tree of all possible

legal sequences of player betting actions.

The betting tree in our domain of 2-player Texas Hold’em, with a maximum of 4 to tal

bets and raises per round, can be seen in Figure 3.12. The possible player actions are denoted

as: ‘f ’ for fold, ‘k’ for check, ‘c’ for call, ‘b ’ for bet, and ‘r ’ for raise. To make things more

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 3.11: Texas Hold’em Expectimax Search Tree

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Figure 3.12: 2-player Texas Hold’em Betting Round Tree

readable, lowercase letters denote the first player’s actions and uppercase letters denote the

second player’s actions.

The root of Figure 3.11 is a hexagon which denotes the preflop chance node. This

chance node has branches representing each of the possible 5 2 C2 = 1,326 ways to deal

the best-response player’s hole cards. The left-most branch originating from this node

leads to a subtree following one of these possible deals. The right-most branch leads to a

dashed triangle containing ellipses which is simply meant to indicate th a t the larger subtree

structure on the left would again be represented there. The ellipses in between the two

branches represent all of the remaining 5 2 C 2 — 2 = 1,324 similar subtrees th a t exist but are

left out for space constraints.

Following each preflop deal branch is a triangle representing a preflop betting tree. As

illustrated in Figure 3.12, there are nine betting sequences in the tree th a t do not end in

folds and continue on to the next round. There are eight betting sequences in the tree tha t

end a fold which ends the game . 7

For each of the nine betting sequences (only two are shown in the diagram and ellipses

are used to hint at the presence of the other seven) th a t continue onto the flop, there is a

hexagon denoting the chance node th a t deals out all possible 5 0 C3 = 19,600 3-card flops.

Just like in the preflop round, each one of these deals is followed by a betting tree with each

of the nine flop betting sequences tha t do not end in a fold leading to a tu rn chance node

where each of 47 possible tu rn cards would be dealt. Each one of these tu rn card deals is

then followed by a turn betting tree with the nine tu rn betting sequences not ending in folds

each leading to a river chance node where 46 possible river cards are dealt. Each of these

7There are actually ten permissible sequences that end the game but two of them, f and kF, are strictly
dominated by the action sequences, k and kK respectively, (since a player might as well never fold when
they can check for free) and hence are ignored here.

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Decision Point Where Search is Invoked # of Leaves in Search Tree
start of game before preflop cards are dealt « 697 trillion
after preflop cards dealt fa 525 billion
before flop cards are dealt « 58.4 billion
after flop cards are dealt « 2.98 million
before turn card is dealt 331,162
after turn card is dealt 7,046
before river card is dealt 782
after river card is dealt 17

Table 3.1: # of Leaves in 2-player Texas Hold’em Search Tree when First to Act

Decision Point Where Search is Invoked # of Leaves in Search Tree
after preflop cards dealt and check « 292 billion
after flop cards are dealt and check « 1.656 million
after turn card is dealt and check 3,914
after river card is dealt and check 9

Table 3.2: # of Leaves in 2-player Texas Hold’em Search Tree when Second to Act Following
a Check

river cards is likewise followed by a river betting tree where eight sequences end in folds and

the remaining nine end in showdowns.

To get an idea of the size of the tree th a t would need to be searched for a decision at

various points in the game, consider Tables 3.1 and 3.2. Table 3.1 shows the size of the

complete tree (in terms of the its number of leaf nodes) tha t would need to be searched

when the best-response player is first to act and assuming a worst-case opponent, in terms

of search size, where every opponent action choice has to be considered within the search.

When the best-response player is first to act, their decision is the first in the round so

this search has to consider both their check and bet actions. This results in the worst-case

search situation for the best-response player since they need to search almost twice as many

nodes as compared to when they are second to act. To illustrate this difference, Table 3.2

shows the size of the complete tree th a t would need to be searched for some corresponding

situations when the best-response player is second to act and assuming th a t the first player

checked (this assumption results in the largest remaining tree to search).

Looking at the numbers in these tables, it is easy to see th a t the game is too large to

search completely to the leaves from early parts in the game in the amount of time th a t

a program would routinely be allowed to make a poker decision (i.e., around one second).

Search times start becoming reasonable for a real-time decision once the search is invoked

at a decision point after the flop cards are dealt (assuming a relatively efficient search and

opponent model).

As with most search algorithms, the search could go to a certain depth and then call an

evaluation function to estim ate the value th a t would have been backed up for the subtree

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Decision Point Where Search is Invoked # of Leaves in Search Tree
before flop cards dealt (first to act) « 7.677 billion
after flop cards dealt (first to act) 391,706
after flop cards dealt (second to act after check) 217,614

Table 3.3: # of Leaves in 2-player Texas Hold’em Search Tree for Flop Decisions Sampling
River Cards

had it not been cutoff during the search. Properly estimating these values is difficult since

each estim ate has to implicitly consider all the various ways to win and lose money. This

includes factors such as the likelihood of folds and the chance of winning showdowns.

Because implementing this evaluation function properly could potentially be difficult and

beyond the scope of the work presented here, the decision was made to always search to a

leaf node where it is easier to estimate the values needed to start the backup procedure. For

searches invoked on the tu rn or river, this is not a problem since a full-width and full-depth

search finishes very quickly. Unfortunately, for searches invoked on the preflop or flop, the

search must be modified to make it possible to both search down to leaf nodes and finish in

a reasonable amount of time.

For searches invoked in the flop stage, sampling is used to deal only a subset of the to tal

possible river cards for each dealt tu rn card. More specifically, the search proceeds normally

up to a river chance node where only six of the possible 46 cards are dealt uniformly at

random rather than enumerating each of them. This type of sampling is naive but cuts the

search tree down significantly as seen in Table 3.3.

For searches invoked in the preflop stage, the search procedure had to be modified

even more. The actual implementation of the preflop search procedure was w ritten by

Aaron Davidson and is used with his permission. In this search procedure, regular chance

nodes tha t deal cards are replaced by abstract chance nodes tha t discretize actual cards

tha t could be dealt into a small number of “buckets” . These buckets and their associated

probabilities were computed via offline simulations and are looked up when needed in the

search procedure.

One other thing th a t is im portant to note is th a t the size of the search tree th a t needs

to be searched depends on the opponent. Consider the situation where the best-response

player is playing against an opponent th a t always checks or calls. Against this particular

opponent, the best-response player’s search tree becomes significantly smaller (i.e. compare

Tables 3.4, 3.5, 3.6 to Tables 3.1, 3.2, 3.3, respectively).

Against this opponent, a perfect opponent model would return this opponent’s observed

relative action frequencies for any particular decision as 0 % for fold, 1 0 0 % for check/call,

and 0% for bet/raise. Recalling how the expectimax search backs up the value for an

opponent decision node, it is easy to see th a t the subtrees under the opponent’s fold and

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Decision Point Where Search is Invoked # of Leaves in Search Tree
start of game before preflop cards are dealt « 4.55 trillion
after preflop cards dealt « 3.43 billion
before flop cards are dealt « 1.144 billion
after flop cards are dealt 58,374
before turn card is dealt 19,458
after turn card is dealt 414
before river card is dealt 138
after river card is dealt 3

Table 3.4: # of Leaves in 2-player Texas Hold’em Search Tree Against Always Call and
First to Act

Decision Point Where Search is Invoked # of Leaves in Search Tree
after preflop cards dealt and check « 816 million
after flop cards are dealt and check 17,296
after turn card is dealt and check 184
after river card is dealt and check 2

Table 3.5: # of Leaves in 2-player Texas Hold’em Search Tree Against Always Call when
Second to Act Following a Check

Decision Point Where Search is Invoked # of Leaves in Search Tree
before flop cards dealt (first to act) « 149 million
after flop cards dealt (first to act) 7,614
after flop cards dealt (second to act after check) 2,256

Table 3.6: # of Leaves in 2-player Texas Hold’em Search Tree Against Always Call for Flop
Decisions Sampling River Cards

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

raise branches would never have to be searched because no m atter what value is returned

for those subtrees, it would be multiplied by its probability of occurrence, which in this case

would be 0 %.

Though this is an idealized opponent and most real-world opponents would lie between

this one and the worst-case one where every action has to be considered, this example

illustrates th a t opponent modelling information could provide information to improve the

efficiency of the search via opponent specific pruning. This would lead to a search th a t is

much more selective, which in tu rn would make the search smaller and allow it to be invoked

a t earlier decision points in the game.

In addition, this opponent modelling information could be used to help decide when to

call an evaluation function. If a branch is believed to be extremely rare (i.e. the opponent

model says it occurs some very small percentage of the time), it may be appropriate to

call an evaluation function at tha t point to prune the search. Intuitively this seems like a

prime candidate for applying an evaluation function because the evaluation function error

is bounded by its likelihood within the expectimax search. On top of this, because these

situations occur so rarely, the opponent may have a “canned approach” to playing them

which could potentially be more easily captured in an evaluation function than other more

common situations where the opponent may have a carefully planned out deceptive strategy.

Though these ideas seem like they might offer good potential, they are left for future

work. The implementation presented in this thesis only prunes an opponent decision branch

within the search when it believes the opponent will never take th a t action (i.e. its proba­

bility according to the model is 0 %).

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

Opponent M odelling

4.1 D esign in g a M od el for U se in a P oker P rogram

In poker, though players have the same access to the public game information, such as

betting actions and up-turned cards, a player’s private hole cards ensures th a t each player

has some game information tha t only they know. It is the presence of this hidden information

th a t makes poker an interesting game.

Each player’s hidden information plays a m ajor role in determining how 1) action will

proceed through the hand and 2) who wins if the game proceeds to a showdown. This is

reflected in the action probabilities and the leaf node expected values used in the expectimax

search for action-selection presented in the previous chapter.

Learning information about the opponent th a t can be used to infer these two im portant

pieces of information needed for expectimax search is referred to in this thesis as opponent

modelling. In this section, two different classes of opponent models are characterized tha t

could be used to learn this information.

4.1.1 Strategy Class of M odels

The first class of opponent model described here is referred to as a strategy model in this

thesis, since it tries to learn an opponent’s behavior strategy directly. The term “behavior

strategy” comes from the field of game theory and is defined to mean a mapping of ev­

ery player decision point (information set in the game theory literature) to a probability

distribution over the player’s choice of available actions allowed there.

Models of this class represent the opponent’s decision-making process explicitly. That

is, the modelling information maintained tracks how an opponent acts according to the

information th a t they know at the tim e of their decisions. This known information includes

the opponent’s hidden cards plus the sequence of publicly observable game actions tha t

include both betting actions and public cards. As an example, in Kuhn Poker this class of

model could maintain the information th a t when the opponent is holding a Jack and facing

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

a bet, they would fold 50% of the time, call the remaining 50% of the time, and never raise.

Because this model focuses on the opponent’s strategy, it is inconvenient for games of

imperfect information like poker where there is a folding action th a t allows the opponent’s

private cards to remain hidden. In these situations where there is a fold and the opponent’s

cards are never revealed, it is not clear how to update this class of model.

4.1.2 Observation Class o f M odels

To get around the problem tha t the folding action presents to the strategy class of models,

an alternative model formulation can be considered th a t is based on modelling observations

from the decision-maker’s perspective. In this alternative class of models, called observation

models in this thesis, the decision-maker only considers the information accessible to them

at each point in the game and tries to model the probability of observing game actions there.

Since the game actions tracked in this class of model are seen from the decision-maker’s

perspective they are referred to here as observations. These observations correspond to

actions taken by other decision-making entities such as nature (or more specifically, the

dealer in poker) in the case of chance events and other players in the case of opponent

actions (the opponent revealing their cards is included as an observable opponent action as

well).

Using Kuhn Poker as an example, this type of model could maintain the following in­

formation: given tha t the decision-maker holds a queen and bet, this model would record

what actions the decision-maker observes their opponent making in the resulting situation.

Because observations in this model are based only on the decision-maker’s perspective,

and therefore correspond only to what they can observe, all the information needed to update

the model is always known and can never be kept hidden. For models of this class, folds

are no longer problematic. In models of this class, when a fold occurs, the only information

needed is the observation th a t the opponent folded and not what specific cards they folded.

4.1.3 R elationship Betw een the Two Classes o f M odels

Since observation class models contain observations from the decision-maker’s perspective,

they can naturally provide the opponent modelling information needed for the expectimax

action-selection search described in C hapter 3. For example, an opponent’s actions observed

a t one of their decision points can be used to predict the frequency of each of their actions at

the same decision point within the expectimax search. The cards an opponent is observed

revealing at each showdown can be used to predict the chance of the decision-maker winning

a showdown in the expectimax search. The cards observed being dealt a t each chance node

can be used to predict the frequency of the cards being dealt a t the same chance node in

the expectimax search.

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

On the other hand, a strategy class model contains information about how an opponent

chooses their actions in their information sets. Since the expectimax action-selection search

is done from the decision-maker’s perspective, some additional work first needs to be done to

convert the opponent’s strategy information stored in this class of model into the decision­

maker’s observation information needed in the search. The procedure to do this conversion

is described below for the opponent action frequencies, the chance element frequencies, and

the cards revealed at a showdown.

O pponent A ction Frequencies

As mentioned in Chapter 3, each node in the expectimax search tree is a single represen­

tative for a set of nodes in the extensive form game tree. For the case of the expectimax

opponent decision nodes, each of these nodes represent a set of opponent decision nodes in

the extensive form game tree that share the same public information leading to tha t decision

(i.e. the betting and the community cards), but correspond to the different possible hidden

information (i.e. their possible hole cards) th a t the opponent could have.

This means th a t the probability of a decision-maker observing the opponent taking

a particular action at an expectimax decision node depends on the probability th a t the

opponent will take tha t action at each of the extensive form nodes represented there. In

addition, the probability of the observation also depends on the relative probability of the

extensive form node in the set of nodes represented by the expectimax node.

Fortunately, these probabilities can be obtained from the opponent’s behavior strategy.

The probability th a t the opponent will take a particular action at an extensive form deci­

sion node is specified in their behavior strategy, or likewise in a strategy class model the

decision-maker may have of the opponent. The probability distribution over the extensive

form nodes represented by an expectimax node can be computed by applying Bayesian

updating[40] using the opponent’s behavior strategy and all the game information leading

to th a t opponent decision node.

To illustrate how to convert the opponent strategy information into observed action

frequencies, the following example is presented. Consider the situation in Kuhn Poker

where the decision-maker is first to act and they hold a Queen and bet. The opponent

has to make the next decision. In this situation, the opponent has not yet acted so the

only information th a t influences the probability distribution over their hidden information

is th a t the decision-maker holds a Queen . 1 So, assuming the deck is fair and knowing

tha t the opponent cannot hold the Queen, before they act they hold either a Jack or King

with equal probability. Now assume, the decision-maker has a strategy class model of the

opponent tha t says th a t when the opponent holds a Jack they will fold 80% of the time and

xThe decision-maker’s bet does not change the distribution over the opponent’s hidden hands.

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

call the remaining 20% of the time, and when they hold a King, they will call 100% of the

time. Given this information, in this example situation, the decision-maker would expect to

observe the opponent folding 40% of the time and calling the remaining 60% of the time.

Chance Event Frequencies

Like the expectimax opponent decision nodes, each of the expectimax chance event nodes

represent a set of chance nodes in the extensive form game tree th a t share the same public

information leading there but different opponent hidden information. This means th a t the

probability of observing a particular chance outcome in the expectimax tree depends on

both the probability of th a t chance outcome occurring a t one of the represented extensive

form nodes and the probability of tha t extensive form node in the set.

Like in the case of the opponent action frequencies, these probabilities can be easily

obtained. The probability of a chance outcome occurring at an extensive form node is

specified both in the rules of the game and in the extensive form game tree. The probability

of an extensive form node in the set can be computed by applying Bayesian updating using

the opponent’s behavior strategy and the game information leading up to the chance node.

Unfortunately, Kuhn poker does not have any chance nodes other than the initial root

chance node where each player is dealt their cards. Since this chance node is right a t the

beginning of the game, it does not serve as a useful chance node to illustrate how observed

chance event frequencies can be obtained from opponent strategy information. As a result,

an abstract scenario will be used instead to illustrate this.

Assume th a t there is a deck consisting of four cards. For example, a Ten, Jack, Queen

and King. The decision-maker is dealt the Queen and the opponent is dealt a card face

down to be kept hidden from the decision-maker. The players then proceed to do some

betting based on their cards and there is now a chance node where another card is dealt

from the deck th a t both players can see.

To calculate the probability of the decision-maker observing each of the possible chance

outcomes, the distribution over the opponent’s hidden information would first have to be

calculated using Bayesian updating. This updating is based on the information tha t has been

revealed up to th a t point in the hand including any known cards and betting. However,

since this is an abstract scenario and no opponent strategy has actually been specified,

the Bayesian updating cannot be shown. Instead, assume for the sake of completing the

calculation, th a t a t this expectimax chance node there is a 40% chance the opponent holds

a Ten, a 50% chance they hold a Jack and a 10% chance they hold a King. Remember

there is no chance th a t they can hold a Queen since the decision-maker was dealt the only

Queen in the deck. From the rules of the game, it is also known tha t in this situation: when

the opponent holds a Ten, a Jack or King will be dealt with equal probability; when the

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

opponent holds a Jack, a Ten or King will be dealt with equal probability; and when the

opponent holds a King, a Ten or Jack will be dealt with equal probability. Combining this

information, at this example expectimax chance node, the decision-maker would expect to

observe a Ten being dealt 30% of the time, a Jack 25% of the time, and a King the remaining

45% of the time.

Cards R evealed at a Show dow n

Like the other nodes in the expectimax tree, the showdown nodes in the expectimax tree

represent a set of showdown nodes in the extensive form game tree. The extensive form

nodes represented at each expectimax showdown node all share the same public information

leading to th a t showdown, but each represent the different possible hidden cards th a t the

opponent can have but are kept private from the decision-maker.

As a result, it is this set of hidden cards th a t the decision-maker observes the opponent

revealing at each showdown node. The distribution of elements in this set, and therefore of

the actual cards the opponent reveals, can be computed by applying Bayesian updating using

the opponent’s behavior strategy and the game information th a t leads to the showdown. To

illustrate how this is done, a Kuhn poker example is used.

Consider the showdown in Kuhn Poker where the decision-maker is dealt a Jack and

as the first player to act bets and is called by the opponent. After the decision-maker sees

their card (the Jack), and assuming a fair deck, by applying Bayesian updating the opponent

must hold either a Queen or King with equal probability. The decision-maker’s subsequent

bet does not provide any information to change these probabilities. On the other hand,

the opponent’s subsequent choice to call in response to the decision-maker’s bet provides

information th a t can change the distribution of cards they hold after choosing tha t action.

For example, assume th a t the opponent’s strategy is such th a t when they are facing a bet

and holding a Queen, they would fold 50% of time and call 50% of the time, and when they

are holding a King they would never fold and would call 100% of the time. Then by applying

Bayesian updating, after their call the opponent’s hidden card distribution is revised to have

them hold a Queen 1/3 of the time and a King the remaining 2 /3 ’s of the time. Since this

call leads to the showdown, these are also the probabilities of the decision-maker observing

the opponent revealing either of those cards there.

4.1.4 Pros and Cons: A Com parison of the M odel Classes

Since strategy class models just specify a probability distribution over legal actions at each

of the opponent’s information sets, it is easy to ensure th a t models of this type correspond

to legal game-playing strategies. As long as the probability distributions are valid and

correspond to legal actions and th a t each reachable information set has a valid distribution

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

associated with it, the model corresponds to a legal strategy. Given th a t the rules of the

game are known, this is relatively trivial.

On the other hand, it is much more difficult to ensure th a t observation class models are

constructed such tha t they correspond to legal game-playing strategies. The information

in a particular part of an observation class model may appear legal (i.e. there is a valid

probability distribution over valid observed actions - th a t is, it sums to one), but despite

this, it is possible tha t the information in the model could never be realized given an actual

legal game strategy.

To illustrate this, consider the opponent decision node th a t leads to the showdown

described in the showdown example above. According to the assumed strategy, the opponent

is expected to be observed folding 25% of the time at th a t decision node, and calling the

remaining 75% of the time. When they do call, they will reach a showdown, and as shown

above they are expected to reveal a Queen 1/3 of the time and a King the remaining 2 /3 ’s

of the time there.

Now imagine constructing an observation model based on observations of actual game

play. It is not hard to imagine observing the opponent call a few times before ever seeing

them fold and show a King with each call. These observations might suggest tha t in tha t

particular situation, the opponent will always call and always show a King and never fold.

This seems perfectly reasonable and consistent when just considering the observations.

However, the rules of the game forces them to have a Queen sometimes in th a t situation.

That is, the rules guarantee th a t they hold a Queen 50% of the time they face the decision

to fold or call. Thus, if they never fold they must show Queens some of the tim e when they

call, or if they never show a Queen when they call, then they must fold some of the time.

As a result, there is no possible legal strategy they can employ in th a t situation where they

only call and never fold and yet still only show a King (despite the small sample size of

observations indicating otherwise).

It is unfortunate th a t the observation class of models can have these problems since

models of this class can be built with much simpler techniques than strategy class models.

Since the observation class of models rely strictly on observations tha t are always accessible,

the model can be built by simply keeping track of which observations occurred in each

situation. The strategy class of models, on the other hand, have the problem tha t they are

based on the opponent’s perspective and in games like poker a folding action sometimes

keeps the opponent’s private information from ever being revealed.

For the opponent models described and implemented in this thesis, observation class

models were used instead of strategy class models. This choice was made for the following

three reasons:

• observation class models provide a convenient way of dealing with folding actions tha t

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

are prevalent in poker and are problematic in strategy class models,

• observation class models can be built using simple techniques, and

• observation class models contain information in a format tha t can naturally be used

in expectimax action-selection search.

4.2 B u ild in g O bservation C lass M od els for Poker

For opponent models to be used within the expectimax action-selection search presented in

chapter 3, they have to be able to supply three different types of information as seen from

the decision-maker’s perspective:

• probability distribution over observed opponent actions at an opponent decision node,

• probability distribution over observed chance event outcomes at chance nodes, and

• probability of the decision-maker winning a showdown.

The simplest way to build models th a t keep this information, and the way it is done

in this thesis, is to simply keep counts of the information being modelled as it is observed

through actual game play.

Taking this approach, the model keeps track of opponent action frequencies for each

of their decision points by maintaining counts of each action observed there. The rela­

tive counts can then be used to construct a probability distribution for observed opponent

actions.

To illustrate this, consider an example where, a t a particular opponent decision point,

the opponent might have been observed choosing an action 10 times in the past: 5 folds, 3

calls, and 2 raises. These counts can then be used to construct a probability distribution

over observed opponent actions at one of their decision points by taking the counts of each

action there and dividing each by the to tal number of action observations made at tha t

decision point. In this example, the resulting probability distribution constructed from the

example counts would suggest th a t the opponent would be observed folding 50% of the

time, calling 30% of the time, and raising the remaining 20% of the tim e they are faced

with choosing an action in th a t decision situation. Similarly, if the opponent was then later

observed calling at tha t decision point, the updated model would suggest th a t the opponent

folds 45.4% of the time (5 folds observed out of 11 to tal actions), calls 36.4% of the time (4

calls observed out of 1 1 to tal actions), and raises 18.2% of the time (2 raises observed out

of 1 1 to tal actions).

Modelling chance node frequencies could be done in exactly the same manner. However,

to keep the models in the thesis more manageable when applied to Texas Hold’em, the

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

simplifying assumption is made tha t the chance node frequencies do not need to be modelled

and can instead be approximated by assuming th a t they occur with uniform frequency.

Though this assumption will be incorrect for some opponents, it is assumed th a t the error

introduced by this assumption is small compared to errors present in the opponent model.

To model the decision-maker’s chance of winning at each showdown leaf node, counts

are kept of which hands the opponent has revealed there in past game play. Given the

decision-maker’s hand, their probability of winning can be estimated by summing up the

to tal number of observed hands th a t are worse along with half of the hands observed that

tie and then dividing tha t sum by the to tal number of hands observed.

4.3 G eneralizing O bserved D a ta for T exas H o ld ’em

In Texas Hold’em there are a large number of possible distinct scenarios where opponent

modelling information is needed. This makes its difficult to learn an effective opponent

model. As the number of situations increase, the amount of data needed to learn about

these situations also increase. In the case of trying to build a model during actual poker

play, this is particularly unfortunate because it means tha t many games will need to be

played with an ineffective model before an effective model is ever learned. This, of course,

may result in potentially substantial losses.

To combat this problem, the opponent modelling implementation used in this thesis

for Texas Hold’em attem pts to generalize da ta observed in one situation to other similar

situations. The intuition here is th a t data in one specific game situation can be used to infer

data in another related situation, allowing an effective model to be learned more quickly by

needing fewer d ata points.

For example, consider two different poker hands where the players bet exactly the same,

but where there is a slight difference in the community cards. It seems reasonable th a t if

the difference amongst the community cards is small between the two different hands, the

information about the cards the players had in the first hand could be similar to the cards

they had in the second. Similarly, it also seems reasonable th a t the cards shown in two

different hands could be quite similar if the actions were not exactly the same but matched

quite closely.

4.3.1 Instance-based Learning

Generalizing observed data is a problem th a t occurs in all types of machine learning and

artificial intelligence applications. In machine learning, the problem of generalizing data

can be viewed at as a problem of function approximation. In this view, inpu t/ou tpu t pair

examples are viewed as sample points of a function and the goal of the problem is to construct

a function using the sample examples th a t can then accurately map inputs to outputs for

49

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

any query input.

For the specific problem formulation in this thesis, there are essentially two generalization

tasks. The first task needs to map an opponent action node to the actions the decision­

maker will observe the opponent making there. The second task needs to map a showdown

node to the chance of the decision-maker winning there with a particular hand. To tackle

both of these generalization tasks, an instance-based learning method is used.

In instance-based learning methods[34], training examples are simply stored in memory.

Each future query is assigned an output value by finding similar query examples previously

stored in memory and considering their output values. The k-Nearest Neighbor learning

algorithm[15] is a well-known example of this type of method.

An instance-based learning method is particularly convenient for tackling the problem of

learning opponent modelling information during actual game play. As each game is played,

the information observed in the game is simply stored in memory. This provides an easy way

to incrementally add more information to the opponent model as more games are played.

4 .4 In stan ce-b ased L earning o f O p pon en t A ctio n Fre­
quencies

The method used for learning opponent action frequencies implemented in this thesis is the

same as the one used by Davidson[17], In this method, opponent actions are observed and

stored in memory and these observations are used to approximate the opponent’s actual

frequencies. For any particular opponent decision point, the probability distribution over

an opponent’s chosen actions can be approximated by taking the observation counts for each

of their fold, call, and raise actions there and dividing each by the sum of all three.

In Texas Hold’em there are too many distinct opponent decisions to keep track of ob­

servations for each one. To lessen the number of observations th a t need to be tracked, and

at the same time try to speed up learning, only the betting actions made by both players

from the start of the current game until the opponent decision point are used as the context

where observations of the opponent actions are maintained.

The sequence of betting actions th a t form one of these simplified contexts can naturally

be viewed as a string, and is referred to as a betting string or betting sequence in this thesis.

A trie, called a context tree by Davidson[17], is then used to store these contexts in a manner

tha t makes it easy to add and retrieve opponent action frequencies. In the context tree, an

opponent action context can be found by simply following the path of actions contained in

a betting string starting at the root of the context tree.

When an opponent action is observed, a count is incremented on the branch representing

th a t action in the context tree. A probability distribution over observed opponent actions

at an opponent decision can then be estimated from the counts on each branch th a t stems

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

from a particular opponent decision node in the tree.

This method of learning opponent action frequencies can be viewed as a simplistic exam­

ple of instance-based learning. The distance metric corresponding to this implementation

simply uses an exact match of all betting actions to determine which observations are related

or unrelated to each other. W ith this particular distance metric, all related observations

have equal weight when generalizing, and all unrelated observations are simply ignored.

This distance function is admittedly simplistic since it does not permit a high degree of

generalization and it ignores potentially useful information such as the public board cards.

On the other hand, this distance function is conceptually easy to use. It is used since it

is believed th a t a player conveys a lot of information by their betting actions alone in a

m ajority of situations. Though this method of generalization is simplistic, it allowed us to

produce a basic implementation th a t can be built on in future work.

4.5 In stance-based Learning for E stim a tio n o f W in n in g
at Show dow n

The approach used in this thesis for estimating the chance of the decision-maker winning

a showdown is based on similar techniques to those used for estimating opponent action

frequencies and is an extension to the approach used by Davidson[17].

In this approach, when an opponent’s cards are revealed at a showdown, the hand rank

(HR) of those cards is computed. To compute the opponent’s HR, the opponent’s hand is

compared to all the other possible hands th a t could be made using the five board cards and

any two hole cards (other than the ones the opponent holds) to see how often the opponent’s

cards would win, lose or tie.

Once the win, loss, and tie counts are known, the opponent’s HR is simply the number

of wins plus half the number of ties divided by the to tal number of possible hands. This

resulting HR represents a percentile ranking of the opponent’s two card holding compared

to all possible two card holdings given the particular board. This value is between 0 and 1

and it can be stored in a histogram of discretized HRs.

This histogram of discretized opponent HRs is used to estim ate the decision-maker’s

chance of winning a showdown. To do this, decision-maker’s own HR is computed and then

compared to the histogram of opponent HRs to see how often it would have won, lost, or

tied at that showdown in the past.

In Davidson’s work, showdown histograms were kept for every possible unique betting

string. This provided a mechanism for some generalization (i.e. because the player’s hole

cards and the community cards were ignored), but the amount of generalization was fixed.

This meant th a t there was no way to increase generalization early in a match when data is

sparse and decrease it later in a m atch when data is more plentiful.

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To try and address this problem, a distance function was created to define how similar

observations in one showdown context are to observations in another. To keep the distance

function simple, only ten levels of similarity were defined. Starting with the highest level of

similarity and then successively moving to lower levels, these are:

• context tree - W ith this distance function, this is the highest level of similarity tha t

showdown observations can have. Showdown observations having this level of simi­

larity correspond to showdowns where the betting actions for both players leading to

the showdown match exactly and the players are acting from the same positions. The

showdown observations tha t exhibit this level of similarity correspond exactly to the

showdowns automatically grouped together in the context tree. Generalization occurs

between observations at this similarity level because the decision-maker’s hole cards

and the public board cards are ignored.

• s4 (with and without position) - This is the next highest level of similarity defined for

showdown observations. Showdown observations having this level of similarity corre­

spond to showdowns which share the same sum to tal of the bets and raises made by

each of the decision-maker and opponent in the preflop and flop rounds, and share

the same number of bets and raises made by each player on each of the tu rn and

river rounds. This level of similarity is actually broken into two different sub-levels

according to whether the players are in the same relative positions in the showdown

observations. Showdowns exhibiting s4 similarity with the players in the same posi­

tions are considered more similar than when the players are in opposite positions. By

matching on the sum of the bets and raises each player made on the first two rounds,

s4 provides more generalization than the context tree.

• s3 (with and without position) - Showdown observations having this level of similarity

match the sum of bets and raises made by each player over the preflop, flop, and turn

rounds, and also matches exactly the number of bets and raises made by each player

on the river round. Like the s4 similarity level, this level is actually two different levels

according to the relative positions of the players in the showdowns being compared.

By just matching on the sum of bets and raises each player made on the first three

rounds, this method provides more generalization than s4.

• s2 (with and without position) - Showdown observations having this level of similarity

share the same number of to tal bets and raises made by each player over the course

of the entire hand. Like the s3 and s4 similarity levels, this similarity level is actually

two different similarity levels depending on the players’ relative positions. This level

of similarity is quite general and is simply meant to capture how the opponent’s shown

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

aggression and the opponent’s perception of the modelling player’s shown aggression

relates to the opponent’s shown HR.

• s i (with and without position) - Showdown observations having this level of similarity

only need to match in terms of the to tal number of bets and raises the opponent made

over the course of a hand. This is the lowest level of similarity defined and it is just

meant to capture how the opponent’s shown HR relates to their level of aggression.

Like the other “s” similarity levels, this level actually specifies two different levels

based on the positions of the players.

• unrelated - Showdown observations tha t do not have match any of the above similarity

levels are deemed completely unrelated.

4.5.1 Showdown Similarity Examples

To help illustrate the distance function for showdown contexts, Table 4.1 is provided. The

first row in this table contains a target showdown context, denoted by the betting sequence

bR c/kK /bC /bR rC . The remaining rows show other possible showdown contexts and their

assigned level of similarity to the target context. Examples are provided for each of the

context tree, s4, s3, s2, and si similarity levels.

The columns of Table 4.1 are defined as follows:

• B ettin g Sequence - The betting sequence leading to the showdown context in the

row. The lowercase actions in this sequence are taken by player p and the uppercase

actions are taken by player p ’s opponent, player o.

• P p, Fp, T p, Rp - The to tal number of bets and raises made by player p in each of

the preflop, /lop , turn, and river betting rounds, respectively.

• P 0, F 0, T 0, R 0 - The to tal number of bets and raises made by the opponent o in

each of the preflop, /lop , turn, and river betting rounds, respectively.

• S im ilarity - The level of similarity between the showdown context in the row and

target showdown context in the top row of the table. The values in this column either

belong to the context tree, s4, s3, s2, or s i similarity levels defined above. In addition,

the s4, s3, s2, and s i similarity levels have (sp) or (dp) associated with them to

indicate whether the players are acting in the same relative positions or in different

relative positions compared to the target showdown context.

To show how the information in Table 4.1 is combined to define similarity levels, Table

4.2, Table 4.3, Table 4.4, and Table 4.5 are also provided.

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Betting Sequence Pp Po Fp Fo Tp To Rp Ro Similarity
bRc/kK/bC/bRrC 1 1 0 0 1 0 2 1
bRc/kK/bC/bRrC 1 1 0 0 1 0 2 1 Ctx. Tree
kK/bRc/bC/bRrC 0 0 1 1 1 0 2 1 s4 (sp)
Kk/KbRc/KbC/KbRrC 0 0 1 1 1 0 2 1 s4 (dp)
BrC/Kk/KbC/KbRrC 1 1 0 0 1 0 2 1 s4 (dp)
bRc/bC/kK/bRrC 1 1 1 0 0 0 2 1 s3 (sp)
kK/bC/bRc/bRrC 0 0 1 0 1 1 2 1 s3 (sp)
BrC/KbC/Kk/KbRrC 1 1 1 0 0 0 2 1 s3 (dp)
Kk/BrC/KbC/KbRrC 0 0 1 1 1 0 2 1 s3 (dp)
bRrRc/bC/bC/kK 2 2 1 0 1 0 0 s2 (sp)
kK/kK/bRrC/bRrC 0 0 0 0 2 1 2 1 s2 (sp)
KbRc/KbRrC/Kk/KbC 1 1 2 1 0 0 1 s2 (dp)
Kk/Kk/KbRrC/KbRrC 0 0 0 0 2 1 2 1 s2 (dp)
kBc/kBc/kK /kK 0 1 0 1 0 0 0 0 s i (sp)
bC/bC/bC/bRrRc 1 0 1 0 1 0 2 2 s i (sp)
Bc/Bc/K bC /K bC 0 1 0 1 1 0 1 0 s i (dp)
BrRc/K k/K k/K bC 1 2 0 0 0 0 1 0 s i (dp)

Table 4.1: Example Showdown Similarities

In Table 4.1, the second row has the exact same betting sequence as the target context

and the players are in the same relative positions so this entry is assigned the context tree

level of similarity.

The next three rows are all assigned the s4 level of similarity. As seen in Table 4.2, for

each of these entries, the sum of both player p ’s and his opponent o’s preflop and flop bets

(i.e. P p + F p and P 0+ F 0 in Table 4.2, respectively) match the same information in the

target showdown context, and in addition each player’s tu rn (i.e., T p and T 0 in Table 4.2)

and river bets (i.e., R p and R 0 in Table 4.2) match the target context too. In the first of

these entries, the players are acting in the same relative positions as in the target showdown

context, and in the other two they are acting in different relative positions.

The next four rows in Table 4.1, show example contexts th a t have the s3 level of simi­

larity. To achieve this level of similarity, each context must m atch the sum of each player’s

bets in the first three betting rounds (i.e., P p+ F p-fT p and P 0+ F 0+ T 0 in Table 4.3) and

also match each player’s bets on the river (i.e., R p and R„ in Table 4.3).

Following the s3 contexts, there are four s2 contexts. For the s2 level of similarity, these

contexts must match the target showdown context’s sum to tal of bets and raises put in by

each player over all four betting rounds (i.e., P p+ F p-|-Tp+ R p and P 0+ F 0+ T 0-(-Ro in

Table 4.4).

The last four entries in Table 4.1 are considered s i similar to the target showdown

context. To exhibit this similarity, these contexts need only match the target context’s to tal

number of raises made by the opponent (i.e., P 0+ F 0+ T 0-|-R0 in Table 4.5).

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Betting Sequence P p + F p P o + F 0 Tp T 0 Rp Ro Similarity
bRc/kK/bC/bRrC 1 1 1 0 2 1
kK/bRc/bC/bRrC 1 1 1 0 2 1 s4 (sp)
Kk/KbRc/KbC/KbRrC 1 1 1 0 2 1 s4 (dp)
BrC/Kk/KbC/KbRrC 1 1 1 0 2 1 s4 (dp)
bRc/bC/kK/bRrC 1 0 2 1 s3 (sp)
kK/bC/bRc/bRrC 1 0 1 1 2 1 s3 (sp)
Kk/KbC/BrC/KbRrC 1 0 1 1 2 1 s3 (dp)
Kk/BrC/KbC/KbRrC 1 1 1 0 2 1 s3 (dp)
bRrRc/bC/bC/kK 3 2 1 0 0 0 s2 (sp)
kK/kK/bRrC/bRrC 0 0 2 1 2 1 s2 (sp)
KbRc/KbRrC/Kk/KbC 3 2 0 0 1 0 s2 (dp)
Kk/Kk/KbRrC/KbRrC 0 0 2 1 2 1 s2 (dp)
kBc/kBc/kK /kK 0 2 0 0 0 0 s i (sp)
bC/bC/bC/bRrRc 2 0 1 0 2 2 s i (sp)
Bc/Bc/K bC/K bC 0 2 1 0 1 0 s i (dp)
BrRc/Kk/Kk/KbC 1 2 0 0 1 0 s i (dp)

Table 4.2: Example S4, S3, S2, and SI Showdown Similarities

Betting Sequence P p + F p + T p P o + F o + T o Rp Ro Similarity
bRc/kK/bC/bRrC 2 1 2 1

bRc/bC/kK/bRrC 2 1 2 1 s3 (sp)
kK/bC/bRc/bRrC 2 1 2 1 s3 (sp)
Kk/KbC/BrC/KbRrC 2 1 2 1 s3 (dp)
Kk/BrC/KbC/KbRrC 2 1 2 1 s3 (dp)
bRrRc/bC/bC/kK 4 2 0 0 s2 (sp)
kK/kK/bRrC/bRrC 2 1 2 1 s2 (sp)
KbRc/KbRrC/Kk/KbC 3 2 1 0 s2 (dp)
Kk/Kk/KbRrC/KbRrC 2 1 2 1 s2 (dp)
kBc/kBc/kK /kK 0 2 0 0 s i (sp)
bC/bC/bC/bRrRc 3 0 2 2 s i (sp)
Bc/Bc/K bC/K bC 1 2 1 0 s i (dp)
BrRc/Kk/Kk/KbC 1 2 1 0 s i (dp)

Table 4.3: Example S3, S2, and SI Showdown Similarities

Betting Sequence P p+Fp-f-Tp+Rp P o+Fo+To+Ro Similarity
bRc/kK/bC/bRrC 4 2
bRrRc/bC/bC/kK 4 2 s2 (sp)
kK/kK/bRrC/bRrC 4 2 s2 (sp)
KbRc/KbRrC/Kk/KbC 4 2 s2 (dp)
Kk/Kk/KbRrC/KbRrC 4 2 s2 (dp)
kBc/kBc/kK /kK 0 2 s i (sp)
bC/bC/bC/bRrRc 5 2 s i (sp)
Bc/Bc/K bC /K bC 2 2 s i (dp)
BrRc/Kk/Kk/KbC 2 2 s i (dp)

Table 4.4: Example S2 and SI Showdown Similarities

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Betting Sequence P o+Fo+To+Ro Similarity
bRc/kK/bC/bRrC 2
kBc/kBc/kK /kK 2 s i (sp)
bC/bC/bC/bRrRc 2 s i (sp)
Bc/Bc/K bC/K bC 2 s i (dp)
BrRc/Kk/Kk/KbC 2 s i (dp)

Table 4.5: Example SI Showdown Similarities

4.5.2 Com bining D ata From Different Similarity Levels

For the opponent modelling implementation used in this thesis, the opponent model com­

bines showdown observations of different similarity levels by starting with the most similar

observation and then successively moving to more and more distant ones until the to tal

number of observations at a showdown reach a predefined threshold. In addition, when the

data is combined, the weight an observation is assigned depends on its similarity with the

most similar observations given the most weight and the least similar ones given the least

weight.

This method for combining data provides a simple way to automatically tailor the level of

generalization used to the amount of d ata available. For example, when the data is sparse

more generalization occurs, and as more da ta is gathered the amount of generalization

decreases.

4.5.3 D efault M odelling Inform ation

The type of modelling described in this thesis is problematic when there are no observa­

tions. To get around this problem, some default opponent modelling information is used in

these cases. Defining default modelling information is tedious, and as a result, the default

modelling information used in this thesis is rather simplistic.

Four different opponent HR showdown distributions were defined and used when a show­

down node is encountered in the expectimax search th a t has no data. These four basic

opponent HR distributions represent showdowns where the opponent is most likely to hold

a very weak, somewhat weak, somewhat strong, or very strong hand. The amount of betting

the opponent did leading to a particular showdown is used to decide which of the four dis­

tributions is used when the defaults are needed. The more the opponent bets, the stronger

the hand they are assumed to have.

When there is no data for observed opponent action frequencies, a simplistic heuristic

rule-base is used to assign a default observation probability triple. These heuristics consider

the opponent’s actions leading to the decision point where the opponent modelling infor­

mation is needed. If the opponent has been aggressive the default triple is biased towards

raising and otherwise it is biased towards calling. The defaults always assume the opponent

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

will never fold.

4.5.4 Handling the Effects of R ecency

Since the scope of the work in this thesis focused on opponents th a t do not change their

strategy, little effort was devoted to bias observations so th a t recent observations are given

more consideration than older ones. This issue is expected to be addressed in future work.

57

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

R esults

5.1 Leduc H o ld ’em R esu lts

The purpose of this first set of experiments and results is to show th a t given enough expe­

rience, a computer poker player th a t implements the ideas presented earlier in the thesis is

capable of achieving the best results possible against an opponent whose strategy does not

change.

For these experiments, a small-scale variation of Texas Hold’em, called Leduc Hold’em,

is used. Leduc Hold’em was designed by the University of A lberta Computer Poker Research

Group to create a simple testbed th a t retains the same strategic elements of the full game,

but th a t is computationally easier to work with.

5.1.1 Leduc H old’em Rules

A six card deck is used in Leduc Hold’em. This deck consists of two suits tha t each contain

the same three ranks: a Jack, a Queen, and a King. The game is played with two players

and starts off with each player posting an ante of one betting unit. After the antes are

posted, each player is dealt one hole card face down. There is then a standard round of

poker betting (starting with the player th a t is not the dealer) where players are allowed to

fold, check/call, and bet/raise. In the betting round, there is a two-bet maximum, meaning

th a t after one player bets, and the other player raises, no further raising is allowed in the

round. In this first betting round, the size of each bet or raise is two betting units. If

one player folds during the betting round, the game ends with the player th a t did not fold

winning the pot.

If neither player folds, play proceeds to the second round of the game. This round starts

with a community card being dealt face up th a t both players use to make their two-card

poker hand. Following the deal of this community card, a second round of betting takes

place. It is the exact same as the first round except th a t the size of each bet or raise is four

betting units. The doubling of the bets mimics the betting structure of Texas Hold’em.

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

If no player folds during the second betting round, the game goes to a showdown where

each player reveals their private hole card. The best two-card poker hand wins the pot and

tied hands split it equally. In this game, the two-card poker hands are ranked from best to

worst as follows: a pair of Kings, a pair of Queens, a pair of Jacks, one King and one Queen,

one King and one Jack, and one Queen and one Jack.

Leduc H old ’em P roblem Size

In Leduc Hold’em, the extensive form game tree has 5520 leaves. The root chance node of

the game tha t deals a hole card to each player has 30 possible branches. Following each of

these branches is a first round betting subtree. Ignoring the two betting sequences1 where a

player folds when they could check for free (i.e., f and kF), there are four betting sequences

th a t result in leaf nodes where the game ends due to one player folding (i.e., kBf, kBrF, bF,

and bRf) and five betting sequences which lead to the second round (i.e., kK, kBc, kBrC,

bC, and bRc). Each of the betting sequences th a t leads to the second round of the game

has a chance node th a t has four branches for each community card th a t can be dealt there.

Following each of these community card branches is the second round betting subtree which

when ignoring the betting sequences where a player folds when they could check for free

(i.e., f and kF) has nine distinct betting sequences leading to leaf nodes (i.e., kK, kBf, kBc,

kBrF, kBrC, bF, bC, bRf, and bRf).

There are 936 information sets in Leduc Hold’em: 468 for the first player and 468 for

the second player. Each player can be dealt 6 possible cards to s ta rt the game. For each

possible hole card they can be dealt, each player has three information sets in the first

betting round. For player 1 this corresponds to them having to make the first action of the

game plus their two decisions immediately following the kB and bR betting sequences. For

player 2, their three information sets in the first round immediately follow the k, kBr, and

b betting sequences. In the first betting round, four of the nine possible betting sequences

th a t end the betting round end the game (i.e., kBf, kBrF, bF, and bRf) and the remaining

five possible betting sequences th a t end the betting round lead to the second round of the

game (i.e., kK, kBc, kBrC, bC, and bRc). For each of these five betting sequences leading

to the second round of the game, there are five distinct community cards which can be dealt

which each lead to the second betting round where each player again has three information

sets.

In the expectimax search tree, there are 1374 leaf nodes: 750 showdown leaves and 624

fold leaves. The root chance node has six branches for each of the possible hole cards a

player can be dealt. These six branches each lead to the first round betting subtree where

there are four betting sequences th a t lead to fold leaf nodes (i.e., kBf, kBrF, bF, and bRf)

1The notation used here for betting sequences is the same notation used in Chapter 3 where it was
explained.

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

and five betting sequences th a t lead to the second round (i.e., kK, kBc, kBrC, bC, and

bRc). The five betting sequences th a t lead to the second round each have a chance node

with five possible branches each leading to the second betting round where there are four

betting sequences leading to fold leaf nodes and five betting sequences leading to showdown

leaf nodes.

5.1.2 Experim ent Setup

The purpose of the experiment is to show tha t a computer player implementing the ideas

presented in this thesis is able to learn to play a best-response strategy against an opponent

whose strategy is not changing given enough game-playing experience against th a t opponent.

To do this, the computer player implementing the ideas in the thesis (named BRPlayer

since it plays a best-response strategy) will play against three different opponents: one tha t

always checks and calls (CallPlayer), one tha t always raises (RaisePlayer) when allowed

by the rules of the game and calls otherwise, and one tha t plays according to a Nash

equilibrium strategy (NashPlayer) th a t was solved via linear programming. To give the

BRPlayer a chance to build an accurate opponent model, each m atch consists of 4,000,000

hands. To help lessen the effects of luck on the m atch results, 20 matches are played and

averaged.

Since Leduc Hold’em is small enough, the BRPlayer is implemented with an observation

model for its opponent th a t contains no abstracted or generalized opponent information sets.

This would not be possible in Texas Hold’em, where the size of the game makes abstraction

necessary. Using Leduc Hold’em in this experiment makes it possible to show results under

ideal modelling conditions. In addition, the BRPlayer’s opponent model explicitly models

the probabilities of each chance node outcome rather than simply assuming possible chance

node outcomes happen with uniform probability.

The BRPlayer’s opponent model contains simplistic defaults th a t are used only when no

other modelling information is present and are no longer used as soon as a single observation

is made. This is a drastic shift in opponent modelling information and in almost all cases a

single data point would not provide good opponent modelling information. Since only long

term results are the focus of this experiment, more sophisticated opponent modelling is not

needed because eventually enough data will be collected to correct problematic information

in the opponent model.

For showdown leaf nodes, before any showdown observations are made, the BRPlayer’s

hand rank is used to estimate its chance of winning at a showdown. For chance nodes, before

any observations are made all possible chance node outcomes are assumed to occur with

uniform probability. For opponent action nodes, before the opponent is observed making

any action at one of their information sets, they are assumed to call 80% of the time, and

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

raise the remaining 20% when they are allowed to raise, or call 100% of the time if they are

not allowed to raise. The BRPlayer updates its model of the opponent after every hand,

and its model is completely reset at the start of every match trial so th a t no modelling

information carries over between trials.

W ithin the BRPlayer’s action-selection search, the BRPlayer only uses “max backups”

to compute values for each of its information sets. This allows the BRPlayer to always know

which action and information set currently looks the best according to its opponent model.

The action-selection search is invoked the first time the BRPlayer has to choose an action

in a hand, and the values of each action are cached so as to save having to perform future

searches for future decision points within the hand. When it comes time to actually take

an action in the game, the BRPlayer considers the value of each of its available actions and

then chooses the maximum valued action 90% of the time and takes an exploratory action

the remaining 10% of the time. This action-selection mechanism is a form of soft-max tha t

ensures all actions get tried to make sure an accurate model of the opponent is learned for

all possible game situations. For the BRPlayer, its exploratory actions can only ever be a

check/call or bet/raise and are never folds (the outcome of folding is always known exactly

and never needs to be explored).

Since the purpose of this experiment is to show th a t the BRPlayer’s strategy evolves

into a best-response strategy given enough game experience, the BRPlayer outputs w hat it

believes to be its best possible strategy against its current opponent model after every 25,000

hands (and it outputs its strategy before a single hand is played so th a t its default strategy

is recorded as well). To do this, the BRPlayer performs its normal action-selection search

tha t it uses to choose its actions every hand. At every one of its information sets it records

which available action has the highest value. These recorded actions then correspond to

what the player believes to be its best behavioral strategy against its opponent.

These strategy snapshots for the BRPlayer can then be used in conjunction with the

opponent’s known behavior strategy to compute the expected value of each strategy when

matched up against each other. To do this, the extensive form game tree is used to backup

values from leaf nodes at the end of the game, where payoffs are known, to the start of the

game. Since the game is zero-sum, the backups can be done strictly from one strategy’s

perspective and the value of the other strategy can then be obtained by just negating the

result. The backup procedure at every player decision node is an expected value over the

values of each action possible there, given the likelihood th a t the strategy employed by tha t

player would choose each of those actions. The backup procedure at the chance nodes is

also computed as an expected value over the value of each subtree corresponding to each

chance outcome given the likelihood of the chance outcomes (which comes directly from the

rules of the game).

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

The expected values of the BRPlayer’s strategy snapshots against its opponent’s strategy

are then averaged across each of the twenty trials to show a plot of how the BRPlayer’s

strategy improves after every 25,000 hands of experience. It is im portant to note th a t

in every 25,000 hands of experience, each player plays 12,500 hands as the first player

and 12,500 hands as the second player since each player switches being the dealer (and

the consequently, the second to act) after every hand in the match. To separate how the

BRPlayer’s strategy is evolving when they are first to act (i.e., not the dealer) and when they

are second to act (i.e., the dealer), the results of each are plotted separately. In addition,

the expected value of a best-response strategy (BRV, in the subsequent graphs) against the

opponent’s known strategy is also plotted for each playing position. The expected value of

the best-response strategy was precomputed prior to the m atch2 and graphically represents

what the expected value of the BRPlayer’s learned strategy should approach and eventually

equal given sufficient experience.

5.1.3 R esults Against CallPlayer

Figure 5.1 contains the results for the BRPlayer against the CallPlayer, whose strategy is

to only check and call. Against the CallPlayer, a best-response strategy has an expected

value of 1.466667 bets/hand for both the first to act and second to act positions.

The BRPlayer starts out with a default model for this type of opponent tha t actually

results in a best-response strategy even though the model is not completely accurate. Since

the CallPlayer does not exhibit any sort of hand selection, at any showdown they have an

equally likely chance to hold any card th a t is unknown to the BRPlayer at th a t showdown

(i.e., any card tha t is not the BRPlayer’s hole card or the community card). The BRPlayer’s

use of its own hand rank to estimate its chance of winning a showdown models this exactly

In addition, this lack of hand selection for the CallPlayer also makes the BRPlayer’s default

assumption correct tha t a t any chance node at the sta rt of the second round, each com­

munity card will be observed with equal probability. The BRPlayer’s default model for its

opponent’s observed action frequencies is incorrect since it assumes the CallPlayer will raise

20% of time when a raise is possible even though the CallPlayer will never do that. This

systemic error for this particular opponent, however, does not affect the relative values of

the different actions tha t the BRPlayer has to choose between at an information set enough

to actually cause the BRPlayer to choose inferior actions.

Looking at Figure 5.1 as the BRPlayer plays more games, the quality of its strategy snap­

shots first decreases and then increases steadily until it settles on a best-response strategy

(first achieved after 200,000 hands and maintained for all subsequent snapshots).

2This strategy and its associated value can be computed using an expectimax backup procedure as
described in Chapter 3, after converting the opponent’s known behavior strategy into an observation model
as described in Chapter 4.

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1.6

1.4

1.2

1

i2 oe o.8
>
U J

0.6

0.4

0.2

0
0 100000 200000 300000 400000 500000

Games

Figure 5.1: BRPlayer vs. CallPlayer

The quality of the BRPlayer’s preferred strategy initially starts to decrease since it im­

mediately starts to switch to its opponent modelling information as soon as any information

is available. While switching after a single data point is fine for estimating opponent ac­

tion frequencies in this particular case, it hurts the model’s accuracy when predicting the

BRPlayer’s chances of winning a showdown and when predicting the chance of a chance

outcome occurring at a chance node. Eventually, though, as more and more games are

played, the accumulation of data in the model increases the model’s accuracy which also

causes the quality of the BRPlayer’s strategy snapshots to increase.

5.1.4 R esults A gainst R aisePlayer

Figure 5.2 contains the results for the BRPlayer against the RaisePlayer, whose strategy is

to raise whenever it is legal to do so and call otherwise. The best-response strategy against

the RaisePlayer has an expected value against it of 2.366667 bets/hand in both the first to

act and second to act positions.

The results in Figure 5.2 are similar to the results in Figure 5.1. In both figures, the

initial strategy the BRPlayer chooses in response to its default model is a best-response

strategy against its opponent’s strategy. Then as the BRPlayer gains more experience, like

in the matches against the CallPlayer, the quality of its strategy snapshots first decrease

63

BRPlayer vs. CallPlayer - EV of BRPlayer’s Strategy

! } ■ j

;
i

EV when Fi
EV when Seco

First and Second to Act BRV (1.466667 bei i i v i

rst to Act --------
nd to A c t--------
ts/game)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BRPlayer vs. RaisePlayer - EV of BRPlayer’s Strategy

2.6

2.4

2.2

2

1.8

1.6

£ 1 4<Dn
2i 1-2

1

0.8

0.6

0.4

0.2

0
0 250000 500000 750000 1e+06 1.25e+06 1.5e+06 1.75e+06 2e+06

Games

Figure 5.2: BRPlayer vs. RaisePlayer

while relying on its experience-based model tha t takes some time to become accurate and

then increase until the quality reaches the expected value of a best-response strategy.

Though the CallPlayer and the RaisePlayer choose completely different actions, the

RaisePlayer’s strategy, like the CallPlayer’s, is not based on hand selection. As a result,

the BRPlayer’s default model perfectly predicts both the chance of winning a showdown

and the probability of chance outcomes against the RaisePlayer. Also, as was the case with

the CallPlayer, the BRPlayer’s default model does not perfectly predict the RaisePlayer’s

observed action probabilities since it assumes the RaisePlayer will call 80% and raise 20% of

the time when it will actually always raise when possible. Despite this systemic modelling

error, the relative values of the actions the BRPlayer has to choose are still correct enough

for a best-response strategy to be chosen.

Despite the similarities in the results, there are also two obvious differences: the expe­

rience needed before the BRPlayer adopts a best-response strategy, and the actual best-

response value. Comparing the results in Figure 5.2 with Figure 5.1, it takes longer for

the BRPlayer to learn a best-response strategy through experience against the RaisePlayer

than against the CallPlayer. For example, against the RaisePlayer it took 1,825,000 hands

of experience for the value of the BRPlayer’s strategy snapshots to converge to the best-

response value, while it only took 200,000 hands to do the same against the CallPlayer.

64

! (| | i —■ T— T..

v ' rr-"' r i i i

First and Second To Act BRV (2.366^67 bets/gam
EV when First to A

EV when Second to A
i i i i i i

e)
c t --------
ct

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BRPlayer vs. NashPlayer - EV of BRPlayer’s Strategy

0.1

0.05

-0.05

- 0.1(0
©

.Q

m -0.15

- 0.2

-0.25

EV when First to Act
EV when Second to Act

First To Act BRV (-0.085606 bets/game)
Second to Act BRV (0.085606 bets/game)

-0.3

-0.35
0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

Games

Figure 5.3: BRPlayer vs. NashPlayer

This difference in necessary experience is to be expected since the RaisePlayer’s strategy

naturally leads to more decisions for the BRPlayer than the CallPlayer’s strategy does. For

example, anytime the RaisePlayer raises when it could have called, the BRPlayer is faced

with making an additional decision th a t it would never have seen against the CallPlayer.

As for the actual best-response value, it is much higher against the RaisePlayer than the

CallPlayer since the RaisePlayer will consistently put more money in the pot with its raising.

5.1.5 R esults Against NashPlayer

Figure 5.3 shows the BRPlayer’s results against the NashPlayer for 20 averaged trials of

4,000,000 hand matches. In addition, Figure 5.4 is also provided to give a more detailed

view of the results for the early stages of the matches where the strategy snapshots improve

the fastest.

The NashPlayer employs a game-theoretic optimal strategy for the game of Leduc

Hold’em tha t was solved via linear programming using the techniques described in [29].

By employing this strategy, the NashPlayer is guaranteed th a t the best any opponent could

do against them would be to win on average 0.085606 bets/hand when they are the second

player to act and to lose on average 0.085606 bets/hand when they are the first player to

act.

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BRPlayer vs. NashPlayer (First 500,000 Games) - EV of BRPlayer’s Strategy

0.1

0.05

-0.05

- 0.1
IB

w -0.15

- 0.2

-0.25

EV when First to Act
EV when Second to Act

First To Act BRV (-0.085606 bets/game)
Second to Act BRV (0.085606 bets/game)

-0.3

-0.35
1000000 200000 300000 400000 500000

Games

Figure 5.4: BRPlayer vs. NashPlayer (First 500,000 Games)

The BRPlayer uses the same default opponent model for this match as it did in its

matches against the CallPlayer and the RaisePlayer. However, unlike in the matches with

the CallPlayer and the RaisePlayer, this default model proved to be poor against the Nash­

Player as the BRPlayer’s default strategy snapshot loses -0.3359 bets/hand when first to

act, and wins 0.02178 bets/hand when second to act.

As the BRPlayer’s experience increases, its model of the NashPlayer becomes more

accurate and the expected value of BRPlayer’s strategy snapshots increase towards the best-

response values. The final expected value of the BRPlayer’s averaged strategy snapshots

very closely approached the known best-response values. For example, the final strategy

snapshot values taken after 4,000,000 hands of experience and averaged over 20 trials ended

up with the BRPlayer losing at a rate of -0.08638 bets/hand when first to act (which is

0.000774 bets/hand worse than the best-response value), and winning at a ra te of 0.08512

bets/hand when second to act (which is 0.000486 bets/hand worse than the best-response

value).

5.2 Texas H o ld ’em R esu lts

The main purpose of this second set of experiments is to evaluate the ideas presented in this

thesis in the domain of Texas Hold’em. Since Texas Hold’em is a large real-world domain,

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

these experiments are meant to test how practical the ideas presented in this thesis are for

real-world problems.

In this set of experiments, a program implementing the ideas in this thesis, the BRPlayer,

plays matches against the University of Alberta Computer Poker Research Group’s two

current state of the art opponents mentioned previously:

• P o k i - Poki[17] was designed to play full-ring game poker. As a result, it has some

weaknesses when playing heads-up.

• P s O p ti - PsOpti[6] was specifically designed to play heads-up poker. I t ’s strategy

was computed using game-theoretic analysis and is designed to be difficult to beat.

I t ’s considered to have an advanced level of playing strength.

Because Texas Hold’em is a large domain, the BRPlayer used in these experiments

implements the ideas presented in Section 3.7 and in Section 4.3 as a means of coping with

the additional computational challenges tha t appear as a domain gets larger. These same

ideas were not implemented in the BRPlayer in the Leduc Hold’em experiments presented

earlier since th a t domain is so much smaller.

The ideas in Section 3.7 were implemented to ensure th a t the BRPlayer’s action-selection

search procedure executes quickly enough to allow the BRPlayer to act in a realistic amount

of time (approximately one or two seconds per action). This is im portant because it means

th a t the computer players acting in the matches in these computer experiments are subject

to the same time constraints as humans are subject to when playing their matches. The

ideas in Section 4.3 were implemented to ensure th a t the BRPlayer’s opponent model is

practical for normal computer hardware (i.e. does not take up too much memory and can

return necessary information quickly enough) and to also try to help lessen the time it takes

for the BRPlayer to build an accurate opponent model.

These matches were setup so th a t after every hand the player designated as the dealer

switches from one player to the next. This simulates how matches are played in a casino.

Also, each computer player starts each match with their initial default state. No experience

from a previous m atch in used in a subsequent one. For both the BRPlayer and for Poki,

this means they sta rt each match assuming their opponent plays according to their default

opponent model.

5.2.1 R esults A gainst Poki

Figure 5.5 shows three different 40,000 hand matches between the BRPlayer and Poki. All

three matches were stopped after 40,000 hands because by th a t point it is clear th a t the

BRPlayer is able to exploit weaknesses in Poki’s heads-up strategy. In fact, in matches 1

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

35000
BRPIayer’s Results vs Poki - 3 Matches

30000

25000

20000
<o<5CQ

15000<o
E«

10000

5000

BRPIayer’s Match 1 Winnings (0.776 small bets/game)
BRPIayer’s Match 2 Winnings (0.868 small bets/game)
BRPIayer’s Match 3 Winnings (0.585 small bets/game)

15000 20000 25000
-5000

5000 10000 30000 35000 400000
Games

Figure 5.5: BRPlayer vs. Poki - 3 Matches

and 2, over the course of the 40,000 hand matches Poki would have lost less money to the

BRPlayer if it had folded every hand.3

To show more detail in the early stages of the same matches, Figure 5.6 is also provided.

This figure zooms in to show only the results from the first 5,000 hands of each match shown

in Figure 5.5. Since poker matches played against humans are always much shorter than

matches th a t can be run between computer opponents, it is im portant to consider these

early results. Though there are not enough samples to draw definitive conclusions, these

graphs appear to indicate th a t the BRPlayer is able to start beating Poki after around 500

games of experience and prior to th a t slightly loses or breaks even.

Though the three independent matches give a sense of how the BRPlayer does against

Poki, more matches would need to be run to accurately determine the BRPIayer’s average

win rate. In addition, to estimate the BRPIayer’s maximum win ra te against Poki, these

matches would likely have to extend past 40,000 hands in order to see if the win rate is still

changing. Since both of these tasks require significant additional computation to complete,

they are left to future work.

3 Folding every hand would correspond to losing at a rate of 0.75 small bets/hand (where a small bet is
the size of a bet or raise in the preflop and flop betting rounds in limit Texas Hold’em).

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3500
BRPIayer’s Results vs Poki (First 5,000 Games) - 3 Matches

3000

2500

2000
in
IS

1000

500

0

-500
0 1000 2000 3000 4000 5000

Games

Figure 5.6: BRPlayer vs. Poki (First 5,000 Games) - 3 Matches

5.2.2 Results Against PsO pti

Figure 5.7 shows three different 500,000 hand matches between the BRPlayer and PsOpti4.

PsOpti4 is a newer version of the PsO pti programs described to in [6]. PsOpti4 was con­

structed according to the same process as PsOpti2 but used an expert crafted preflop stra t­

egy instead of PsOpti2’s preflop strategy th a t was computed via solving a three round

preflop model. The hand crafted preflop strategy for PsOpti4 was designed to be mixed to

help disguise its play and make it more difficult to learn against. Like PsOpti2, PsO pti4’s

preflop strategy is used for both actual preflop play and also to generate the conditional

probabilities tha t serve as input for the computation th a t solves its different postflop models.

The three matches against PsOpti4 are significantly longer than the matches against

Poki. The Poki matches were stopped after 40,000 hands because by then it was clear tha t

the BRPlayer had adopted an effective playing strategy capable of exploiting Poki. In the

matches against PsOpti4, the BRPlayer had a much more difficult time learning a winning

playing strategy and the matches were allowed to continue for 500,000 hands in order to

show th a t the BRPlayer could eventually adopt a winning playing strategy given enough

experience. Though the final average winning rate is quite different in all three matches,

the upward curving shape of the BRPIayer’s plotted winnings is present in all three matches

and show that the BRPIayer’s strategy is improving as more game experience is obtained.

69

BRPIayer’s Match 1 Winnings (0.509 small bets/game)
BRPIayer’s Match 2 Winnings (0.623 small bets/game)
BRPIayer’s Match 3 Winnings (0.401 small bets/game)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BRPIayer’s Results vs PsOpti4 - 3 Matches

40000
BRPIayer’s Match 1 Winnings (0.022 small bets/game)
BRPIayer’s Match 2 Winnings (0.043 small bets/game)
BRPIayer’s Match 3 Winnings (0.075 small bets/game)35000

30000

25000

C O 20000<5
CD

CO
^ 15000

10000

5000

-5000
50000 100000 150000 200000 250000 300000 350000 400000 450000 5000000

Games

Figure 5.7: BRPlayer vs. PsOpti4 - 3 Matches

It is disappointing th a t the BRPlayer takes so long to adopt an effective strategy against

PsOpti4. After the first 5,000 hands of each of the three matches, as seen in Figure 5.8,

the BRPlayer is losing in all three matches. After 50,000 games, as seen in Figure 5.9,

the BRPlayer is winning in the third match, but losing in the first two. Having only three

matches makes it difficult to make any conclusive statem ents about how long it actually takes

the BRPlayer to finally adopt a winning strategy against a tough opponent like PsOpti4.

Given the current implementation of the BRPlayer, it looks like PsOpti4 would have an

advantage in a short-term match and th a t the BRPlayer can eventually exploit PsOpti4 in

the long-term.

At the beginning of the match, the BRPlayer only has its default model. When this

model is inaccurate and the BRPlayer adopts a poor strategy based on it, the BRPIayer’s

performance will be poor until it can learn a more accurate model from experience. To

explore this further, consider Figure 5.10. This figure shows how the BRPlayer would do

in the same matches when it relies only on its default model and none of its actual game

experience against PsOpti4. Comparing Figure 5.9 to Figure 5.10, it appears the strategy

the BRPlayer adopts with less than 10,000 hands of experience achieves roughly the same

performance as the strategy it would adopt if it only used its default model. As more

experience is gathered, the BRPIayer’s strategy gradually improves.

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BRPIayer’s Results vs PsOpti4 (First 5,000 Games) - 3 Matches

400
BRPIayer's Match 1 Winnings (-0.197 small bets/game)
BRPIayer’s Match 2 Winnings (-0.039 small bets/game)
BRPIayer’s Match 3 Winnings (-0.080 small bets/game)200

-200

C O -400©
CD

| -600

-800

-1000

-1200

-1400
1000 2000 3000 4000 50000

Games

Figure 5.8: BRPlayer vs. PsOpti4 (First 5,000 Games) - 3 Matches

BRPIayer's Results vs PsOpti4 (First 50,000 Games) - 3 Matches
1500

BRPIayer’s Match 1 Winnings (-0.034 small bets/game)
BRPIayer’s Match 2 Winnings (-0.039 small bets/game)
BRPIayer’s Match 3 Winnings (0.017 small bets/game)

1000

500

wa>m
-500co

Eco
-1000

-1500

-2000

-2500
20000 30000 40000 500000 10000

Games

Figure 5.9: BRPlayer vs. PsOpti4 (First 50,000 Games) - 3 Matches

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

BRPIayer’s (Default Model) Results vs PsOpti4 (First 50,000 Games) - 3 Matches
500

BRPIayer’s Match 1 Winnings (-0.087 small bets/game)
BRPIayer’s Match 2 Winnings (-0.073 small bets/game)
BRPIayer’s Match 3 Winnings (-0.076 small bets/game)

-500

-1000

-1500

«<Dm -2000

(0
E -2500 co

-3000

-3500

-4000

-4500

-5000
0 10000 20000 30000 40000 50000

Games

Figure 5.10: BRPlayer (Default Model) vs. PsOpti4 (First 50,000 Games) - 3 Matches

To be more effective, the BRPlayer must be able to adopt a winning strategy more

quickly and this weakness definitely has to be addressed in future work. There are many

possible reasons why the BRPlayer could have difficulty learning against a tough opponent

like PsOpti4 and it is difficult to isolate if it is just one thing or a combination of things.

One possible reason could be due to ineffective exploration. If the BRPlayer does not

sufficiently explore different alternative actions against its opponent, it can continue playing

according to a strategy th a t is based on an incorrect model. W ith the current system,

an incorrect model can only be corrected through additional observation of data. On the

other hand, if the BRPlayer performs too much exploration, its performance also suffers

because every time it explores a bad action, though it learns new information, it gives up

the potential profit made available by choosing a better action.

Another possible reason for the BRPIayer’s slow learning could be due to the way it uses

data to build its model. In the current system, the BRPIayer’s model relies on counts of

observations to form an opponent model. This approach is powerful since it does not assume

much about the opponent (just some basic assumptions about which observations can be

generalized together in a naive attem pt to speed up learning). However, waiting for enough

observations to create an effective opponent model may take too much tim e for complex

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

opponent like PsOpti4.4 The model learning process could be potentially sped up if the

BRPlayer used the observations as a means of choosing between different opponent types

th a t could be characterized by a few parameters (like, the work in [51]). This, of course,

more strongly biases the types of opponent models tha t can be learned, but this bias could

result in faster learning.

5.2.3 Previous R elated R esults

The BRPlayer used in these experiments closely resembles the program Vexbot discussed in

[8]. Both of these programs share the same action-selection search procedure. They differ

only in the type of opponent model used. Both the BRPlayer and Vexbot use a context

tree for modelling their opponent’s action frequencies, and they both assume chance node

outcomes occur with uniform probability. The difference between the two player’s models

lies in how they model their opponent’s showdown information.

Aside from being separate opponent model implementations,5 Vexbot’s showdown mod­

elling, when considered from a high level, corresponds to the BRPIayer’s model with more

coarse-grained generalization. Using terms described in Section 4.5, Vexbot’s showdown

modelling essentially grouped showdown observations into predefined groups according to

whether they were deemed to have an s i, s2, or context tree level of similarity. The data

from the different groups was then weighted and combined to form the showdown data

requested from the opponent model.

It is difficult to directly compare Vexbot’s results in [8] to the BRPIayer’s results pre­

sented here. Both Vexbot and the BRPlayer were able to significantly exploit weaknesses

in Poki’s play. Comparing the averaged winning rate of the three 40,000 hand matches

presented above, 0.743 small bets/hand, to the winning rate of Vexbot reported in [8], 0.601

small bets/hand, it appears th a t the BRPlayer is able to beat Poki a t a higher rate. However,

neither experiment performed enough trials of these matchups to be able to conclusively say

which player was able to exploit Poki better.

The results against PsOpti4 are even more difficult to compare. The implementation of

PsOpti4 used in the experiments presented in this thesis fixed a bug th a t was present in

the implementation used in [8]. This bug fix appeared to improve the playing strength of

PsOpti4 because the BRPlayer presented in this thesis went from being able to beat the

bugged version of PsOpti4 at an average ra te of 0.165 small bets/hand over three matchups

of 40,000 hands, to losing at a rate of -0.0086 small bets/hand over the same three matchups

of 40,000 hands. Comparing the BRPIayer’s average winning ra te of 0.165 small bets/hand

4In addition, as mentioned in Chapter 4, this problem can be further compounded by the fact that
the observation class of models can unfortunately be misled to predict that its opponent can behave in a
way that is not actually possible in the game when the model only contains a small random sampling of
observations.

5Vexbot’s model explicitly created predefined classes that grouped similar observations together as they
were observed.

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

against the version of PsOpti4 containing a bug to Vexbot’s winning rate of 0.052 small

bets/hand suggests the BRPlayer was able to exploit th a t particular player better, though

more matchups are needed to be able to conclusively say that.

Experiments were never setup to test the BRPIayer’s performance against human com­

petition. Arranging experiments of this type is difficult to do due to a lack of interested

participants, the difficulty of being able to accurately determine the skill level of the par­

ticipants, and the difficulty of getting participants to play a significant number of hands so

th a t some sort of reliable conclusions can be drawn.

The only experimental evidence th a t suggests how the BRPlayer might do against human

competition comes from a few short matches. Unfortunately, because these matches were so

short and so few, they really only serve as anecdotal evidence and should not be used to draw

any significant conclusions. In four matches reported in [8], Vexbot beat three intermediate

players but lost to an expert player. At the World Poker Robot Championship held July,

2005 in Las Vegas, the BRPlayer was a m ajor component in the University of Alberta

poker program, Poki-X , which lost a short 290 hand match against poker professional, Phil

Laak[l]. Setting up matches against humans and seeing how the BRPlayer performs in those

matches is an interesting task for the future.

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Conclusions

Poker is a challenging domain th a t contains both elements of chance and imperfect infor­

mation. As a result, it serves as a good testbed for exploring decision-theory, probabilistic

reasoning, risk assessment, and opponent modelling. The challenges present in poker are

also present in many other real-world applications such as user modelling, policy-making or

negotiation, and online auctions.

Over the years poker has received some attention from computer scientists. The Uni­

versity of Alberta Computer Poker Research Group has done a lot of work in the domain

including the development of two substantial computer poker players:

• P o k i - Poki[17] was designed to play full-ring game poker. Over the years it has

played on the IRC poker channel and the University of A lberta’s own public server.

Its results while playing in these games indicate th a t Poki plays full-ring game poker

at an intermediate level of playing strength. Unfortunately, Poki’s weaknesses increase

as the number of players in the game decrease.

• P s O p ti - PsOpti[6] was specifically designed for heads-up poker play. Its strategy

was computed using game-theoretic analysis and is designed to be difficult to beat.

PsOpti is considered to have an advanced level of playing strength and was competitive

in a 7000 hand match played against a world-class opponent.

Though this prior work has substantially advanced the state of the art of computer poker

players, there is still one major difficulty hindering the development of a world-class calibre

player. This is the task of of learning how an opponent plays (i.e. opponent modelling) and

subsequently coming up with a strategy th a t can exploit th a t information. The work in this

thesis explores this task and applies the techniques to the domain of heads-up limit Texas

Hold’em.

The computer program implemented in this thesis consists of two main components:

heuristic search for action-selection, and a model of the opponent’s play. The basics for a

computer poker player utilizing these components was first described by Davidson in [17] but

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

were only briefly explored there. This thesis presents the ideas in more depth and provides

a separate implementation with improved results.

The heuristic search action-selection procedure implemented here is an example of ex-

pectim ax search. It takes opponent modelling information and plans a strategy th a t exploits

th a t information. The opponent modelling information takes the form of observations th a t

the computer player observes in actual game play. These observations include the oppo­

nent’s actions, the cards dealt a t chance nodes, and the cards revealed by the opponent at

showdowns. These observations are added to the model after each game is played.

To apply the ideas to Texas Hold’em, approximations were necessary to keep them

practical. Texas Hold’em is too large to do a full-depth full-width action-selection search,

so the search procedure had to be approximated using sampling. The size of Texas Hold’em

also means th a t generalization had to be added to the opponent model. To do this, instance-

based learning was introduced to lessen the number of games needed to learn an effective

opponent model.

Overall, the resulting computer player implemented using the ideas in this thesis contains

minimal expert knowledge. The expert knowledge th a t is present in the system consists of

the initial defaults used when there is no opponent modelling information available, how

information is generalized in the opponent model, and how to sample within the action-

selection search.

The ideas in this thesis were evaluated in two different sets of experiments. In the first

set, the simplified poker domain of Leduc Hold’em was used. This domain is small enough

th a t the ideas could be tested under ideal circumstances. T hat is, a complete full-depth

full-width action-selection search can be used along with an opponent model utilizing no

generalization. In the second set, the evaluation was done using Texas Hold’em. Texas

Hold’em presents an opportunity to see how the ideas with their approximations perform

in a real-world domain.

In the Leduc Hold’em experiments, the player implementing the ideas in this thesis

played against three different static opponents to show how the player’s strategy improved

as the matches proceeded. Against the first two simplistic opponents, one th a t always called

and one tha t always raised, the player learned a best-response strategy. Against the third

opponent, one tha t played a game-theoretic optimal strategy, the player’s learned strategy

very closely approached a best-response strategy.

In the Texas Hold’em experiments, the player implementing the ideas in this thesis was

evaluated against both Poki and PsOpti. The results against Poki were quite impressive: in

two out of three 40,000 hand matches, it beat Poki at a rate worse than if Poki folded every

hand. The results against PsOpti were less impressive. Though the player implementing the

ideas in the thesis eventually learned to beat PsO pti in each of the three matches played, it

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

took too long for this to occur.

6.1 Future W ork

Overall, the ideas presented in this thesis seem to be a promising step forward towards

being able to learn and exploit opponent models in heads-up limit Texas Hold’em. There

is, however, interesting work tha t still remains to be done to extend these ideas into a

world-class calibre computer poker player. This future work includes:

• fa s te r o p p o n e n t m o d ellin g - The current opponent modelling system does not

learn fast enough. To compete at a world-class level, an effective model needs to be

formed in as little as 100 hands. One potential way to speed up learning is to use the

observations to choose from previously constructed or parameterized opponent models

rather than building opponent models out of the observations. This type of approach

was explored in [51] and appears promising.

• a d d re ss in g th e e x p lo ra t io n /e x p lo ita t io n tra d e o ff - The action-selection search

implemented in this thesis hardly addresses this interesting tradeoff. Knowing when

to explore to improve the current model and when to exploit is a very interesting

problem. A proper exploration scheme helps find an effective model while trying to

avoid suboptimal results due to excess exploration. Against a learning opponent, the

issue of exploiting them so much th a t they learn to correct their play also becomes an

issue.

• h an d lin g ch an g in g o p p o n e n ts - The current implementation does not address how

to handle an opponent th a t changes their strategy. This is certainly a characteristic

present in world-class calibre poker players so it will need to eventually be addressed.

• e x te n d in g to m u lti-p la y e r - The current system only plays heads-up Texas Hold’em.

To extend these ideas to multi-player poker, many more approximations need to be

added to the ideas in this thesis to help them remain computationally practical.

• b e t t e r d e fau lt m o d e ls - The current system stands to gain a lot from simply

having a better default model. Having a better default model would help the player

implementing the ideas in this thesis lose less at the beginning of a match when it

hardly has any opponent modelling information.

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[1] Results from the World Poker Robot Championship 2005. 2005. http://ww w .poker-
academy. com/wprc /.

[2] Bruce W. Ballard. The *-minimax search procedure for trees containing chance nodes.
Artificial Intelligence, 21(3):327-350, 1983.

[3] D. Billings. Computer poker. M aster’s thesis, University of Alberta, 1995.

[4] D. Billings. The first international RoShamBo programming competition. International
Computer Games Association Journal, 23(l):42-50, 2000.

[5] D. Billings. Thoughts on RoShamBo. International Computer Games Association
Journal, 23(l):3-8, 2000.

[6] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and
D. Szafron. Approximating game-theoretic optimal strategies for full-scale poker. In
International Joint Conference on Artificial Intelligence, pages 661-675, 2003.

[7] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The challenge of poker. Artificial
Intelligence, 134(l-2):201-240, 2002.

[8] D. Billings, A. Davidson, T. Schauenberg, N. Burch, M. Bowling, R. Holte, J. Schaeffer,
and D. Szafron. Game tree search with adaptation in stochastic imperfect information
games. In Computers and Games (CG ’04), 2004. To appear.

[9] D. Billings, D. Papp, L. Pena, J. Schaeffer, and D. Szafron. Using selective-sampling
simulations in poker. In A A A I Spring Symposium on Search Techniques for Problem
Solving under Uncertainty and Incomplete Information, pages 13-18, 1999.

10] D. Billings, D. Papp, J. Schaeffer, and D. Szafron. Opponent modeling in poker. In
A A A I National Conference, pages 493-499, 1998.

11] D. Billings, L. Pena, J. Schaeffer, and D. Szafron. Using probabilistic knowledge and
simulation to play poker. In A A A I National Conference, pages 697-703, 1999.

12] M. Buro. The Othello match of the year: Takeshi Murakami vs. Logistello. Interna­
tional Computer Chess Association Journal, 20(3):189—193, 1997.

13] M. Campbell, A. J. Hoane, and F. Hsu. Deep Blue. Artificial Intelligence, 134(l-2):57-
83, 2002.

14] D. Carmel and S. Markovitch. Incorporating opponent models into adversary search.
In A A A I National Conference, pages 120-125, 1995.

15] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, 13:21-27, 1967.

16] F.A. Dahl. A reinforcement learning algorithm applied to simplified two-player Texas
Hold’em poker. In 12th European Conference on Machine Learning (EC M L’01), pages
85-96, 2001.

17] A. Davidson. Opponent modeling in poker: Learning and acting in a hostile and
uncertain environment. M aster’s thesis, University of Alberta, 2002.

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.poker-

[18] A. Davidson, D. Billings, J. Schaeffer, and D. Szafron. Improved opponent modeling
in poker. In International Conference on Artificial Intelligence (IC -A I’2000), pages
1467-1473, 2000.

[19] H.H.L.M. Donkers. Nosce Hostem - Searching With Opponent Models. PhD thesis,
Universiteit Maastricht, 2003.

[20] H.H.L.M. Donkers, J.W.H.M. Uiterwijk, and H.J. van den Herik. Probabilistic
opponent-model search. Information Sciences, 135(3-4): 123-149, 2001.

[21] N. Findler. Studies in machine cognition using the game of poker. Communications of
the ACM, 20(4):230-245, 1977.

[22] M. Ginsberg. GIB: Steps toward an expert-level bridge-playing program. In Interna­
tional Joint Conference on Artificial Intelligence, pages 584-589, 1999.

[23] M. Ginsberg. GIB: Imperfect information in a computationally challenging game. Jour­
nal of Artificial Intelligence Research, 14:303-358, 2001.

[24] T. Hauk. Search in trees with chance nodes. M aster’s thesis, University of Alberta,
2004.

[25] H. Iida, J. Uiterwijk, J. van den Herik, and I. Herschberg. Thoughts on the application
of opponent-model search. In H.J. van den Herik, I.S. Herschberg, and J.W.H.M.
Uiterwijk, editors, Advances in Computer Chess 7, pages 61-78. Univ. of Limburg,
Maastricht, 1994.

[26] P. Jansen. Using Knowledge About the Opponent in Game-Tree Search. PhD thesis,
Carnegie-Mellon University, 1992.

[27] P. Jansen. KQKR: Speculatively thwarting a human opponent. International Computer
Chess Association Journal, 16(1):3-17, 1993.

[28] A. Junghanns. Are there practical alternatives to alpha-beta? ICCA Journal, 21(1):14-
32, 1998.

[29] D. Roller, N. Megiddo, and B. von Stengel. Fast algorithms for finding randomized
strategies in game trees. In 26th Annual A C M Symposium on the Theory o f Computing,
pages 750-759, 1994.

[30] D. Roller and A. Pfeffer. Representations and solutions for game-theoretic problems.
Artificial Intelligence, 94(1):167-215, 1997.

[31] R. Rorb and A. Nicholson. Bayesian poker. In Uncertainty in Artificial Intelligence,
pages 343-350, 1999.

[32] H. W. Ruhn. A simplified two-person poker. In H. W. Ruhn and A. W. Tucker, editors,
Contributions to the Theory of Games, volume 1, pages 97-103. Princeton University
Press, 1950.

[33] D. Michie and R. A. Chambers. BOXES: An experiment in adaptive control. In E. Dale
and D. Michie, editors, Machine Intelligence 2, pages 137-152. Oliver and Boyd, 1968.

[34] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[35] J. F. Nash. Non-cooperative games. Annals o f Mathematics, 54:286-295, 1951.

[36] J. F. Nash and L. S. Shapley. A simple three-person poker game. In H. W. Ruhn and
A. W. Tucker, editors, Contributions to the Theory o f Games, volume 1, pages 105-116.
Princeton University Press, 1950.

[37] D. Papp. Dealing with imperfect information in poker. M aster’s thesis, University of
Alberta, 1998.

[38] L. Pena. Probabilities and simulations in poker. M aster’s thesis, University of Alberta,
1999.

[39] A. L. Reibman and B. W. Ballard. Non-minimax search strategies for use against
fallible opponents. In A A A I National Conference, pages 338-342, 1983.

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[40] S. Russell and P. Norvig. Artificial Intelligence: A Modem Approach. Prentice Hall,
2nd edition, 2003.

[41] J. Schaeffer, D. Billings, L. Pena, and D. Szafron. Learning to play strong poker. Work­
shop on Machine Learning in Game Playing at the Sixteenth International Conference
on Machine Learning (ICML-99), 1999.

[42] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron. A world
championship caliber checkers program. Artificial Intelligence, 53(2-3):273-290, 1992.

[43] A. Selby. Optimal heads-up preflop poker. 1999.
http: / / www.archduke.demon.co.uk/sim plex/.

[44] S. Sen and N. Arora. Learning to take risks. Working Papers o f the A A A I-97 Workshop
on Multiagent Learning, pages 59-64, 1997.

[45] B. Sheppard. Computer Scrabble. Artificial Intelligence, 134(l-2):241-275, 2002.

[46] J. Shi and M. Littman. Abstraction models for game theoretic poker. In Computer
Games’00, pages 333-345. Springer-Verlag, 2001.

[47] D. Sklansky. The Theory of Poker. Two Plus Two Publishing, 1992.

[48] D. Sklansky and M. Malmuth. Hold’em Poker for Advanced Players. Two Plus Two
Publishing, 2nd edition, 1994.

[49] S. Smith. Flexible learning of problem solving heuristics through adaptive search. In
IJCAI, pages 422-425, 1983.

[50] Wilson Software. Turbo Texas Hold’em. http://wilsonsoftware.com .

[51] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Billings, and C. Rayner.
Bayes’ bluff: Opponent modelling in poker. In 21st Conference on Uncertainty in
Artificial Intelligence (UAI-2005), pages 550-558, 2005.

[52] R.S. Sutton and A.G. Barto. Reinforcement Learning: A n Introduction. MIT Press,
1998.

[53] K. Takusagawa. Nash Equilibrium o f Texas Hold’em Poker. Undergraduate thesis,
Stanford University, 2000.

[54] G. Tesauro. Temporal difference learning and TD-Gammon. Communications of the
ACM, 38(3):58-68, 1995.

[55] G. Tesauro. Programming backgammon using self-teaching neural nets. Artificial In ­
telligence, 134(1-2):181-199, 2002.

[56] J. von Neumann and O. Morgenstern. The Theory of Games and Economic Behavior.
Princeton University Press, 2nd edition, 1947.

[57] D. Waterman. A generalization learning technique for autom ating the learning of
heuristics. Artificial Intelligence, 1:121-170, 1970.

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://www.archduke.demon.co.uk/simplex/
http://wilsonsoftware.com

