
If the whole process of modeling has succeeded, something will have happened in 
our head, namely that an understanding of the relationships has emerged.

- Volker Grimm
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Abstract

Landscapes are heterogeneous and animals respond to this heterogeneity by altering 

their movement patterns. This thesis was motivated by the need to understand the 

impact of a particular type of heterogeneity, anthropogenic linear features, on wolf 

(Canis lupus) movement in the central east slopes of the Rocky Mountains (Alberta, 

Canada). First passage time refers to the length of time taken to first encounter an 

object, such as a prey item. Novel first passage time analysis methods for animal 

movement were developed and applied to wolves in the presence of linear features. 

The underlying movement model was parameterized using paths obtained from GPS 

collars. These animal movement paths were confounded by measurement error. I 

developed a mechanistic, empirically-based method for buffering linear features that 

minimized the underestimation of animal use of linear features introduced by GPS 

measurement error. Mean first passage time analysis showed that wolves found prey 

faster in landscapes with higher densities of linear features, resulting in an increased 

functional response, which was most prominent at low prey densities. These findings 

have implications for management of species at risk in highly developed landscapes.
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Chapter 1

Introduction

Natural landscapes are spatially heterogeneous. Variation in landscape structure 
and composition influences animal movement rates and directionality (Weins, 2001). 
Because movement is a fundamental component of many animal interactions spatial 
heterogeneity must be considered. One question about animal movement is: At what 
rate do animals encounter features of their landscape? This question, which has not 
previously been addressed using mechanistic movement models, is the topic of this 
thesis. The theoretical work is motivated by a need to understand the predator- 
prey relationship between wolves and ungulates in the central east slopes of the 
Rocky mountains, Alberta, Canada, where anthropogenic linear features create a 
heterogeneous landscape.

Chapter 1 develops a method necessary for the subsequent analysis of wolf 
movement data in Chapter 3 by addressing the problem of GPS measurement 
error in the wolf locations. Ignoring GPS measurement error may result in 
incorrect calculation of movement distributions (Jerde and Visscher, 2005), and 
misinterpretation of movement behaviours (Hurford, 2005) or habitat selection 
patterns (Samuel and Kenow, 1992; Rettie and McLoughlin, 1999; Frair et a l, 2004). 
I develop and demonstrate a mechanistic, empirically-based method for buffering 
linear features that minimizes the underestimation of animal use of linear features 
introduced by GPS measurement error.

Chapter 2 reviews and expands current mathematical approaches to modeling 
animal movement. I show that mean first passage time, the average time taken for 
an animal to reach a specified site (or set of sites) in the landscape for the first 
time (Berg, 1993; Redner, 2001), provides a way of understanding how landscape 
heterogeneity affects search times. Using the random walk framework, I derive a

1

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



new equation for the mean first passage time in a heterogeneous landscape. The 
ability of mean first passage time to capture the effect of changes in small-scale 
animal movements on landscape-level processes is illustrated with a simple model 
of a territorial predator searching for prey. Solutions to the mean first passage time 
equation are used to extend Holling’s disk equation by including different searching 
movement behaviours.

The focus of Chapter 3 is understanding the potential effects of increasing linear 
feature development on wolf-ungulate interactions. Previous studies have found 
linear features alter animal movement (Jalkotzy et al., 1997). Although most species 
experienced negative impacts, positive effects were observed for predators. For 
example, wolves used seismic lines and trails as travel corridors (James and Stuart- 
Smith, 2000; Whittington et al., 2005) and moved over two times faster on seismic 
lines than in the forest (James, 1999). In contrast, seismic lines were associated with 
a higher risk of predation for ungulates (James and Stuart-Smith, 2000; Frair et al., 
2005). These observations suggest linear features, and seismic lines in particular, 
may alter wolf-ungulate interactions. I quantified wolf movement in relation to 
seismic lines by considering how characteristics of a wolf’s movement path changed 
as a function of distance from seismic lines. I used the mean first passage time model 
developed in Chapter 2, parameterized with wolf movement data, to determine the 
potential effects of small-scale response to seismic lines on the time to find a prey, 
and potential impact on the wolf’s functional response.

In my concluding remarks I draw connections between chapters and indicate areas 
of future work.

2
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Chapter 2

Assessing linear feature use in 
the presence of GPS 
measurement error

2.1 Introduction

Global Positioning System (GPS) collars are used frequently by ecologists to collect 
location data for animals moving across a landscape. The data can be used to classify 
animal locations into habitats or to recreate movement paths for the purposes of 
testing hypotheses about habitat use, movement, and behavior. However, location 
data is subject to measurement error (Thomas et al., 1993). As such, it is necessary 
to incorporate location error into analysis techniques to ensure correct biological 
inference. For example, if measurement error is ignored, habitat selection patterns 
may be misinterpreted (Samuel and Kenow, 1992; Rettie and McLoughlin, 1999; 
Frair et al., 2004), movement distributions miscalculated (Jerde and Visscher, 2005), 
or behaviors misinterpreted (Hurford, 2005).

A number of studies have addressed the measurement error associated with 
telemetry data (Nams and Boutin, 1991; Samuel and Kenow, 1992; Rettie and 
McLoughlin, 1999; D’eon and Delparte, 2005; Jerde and Visscher, 2005), but see 
Saltz (1994)). The most commonly used approach is to buffer locations by replacing 
th e  point location  w ith  an area of fixed radius. T h e  buffer accounts for the 
imprecision in the location by assuming the animal is located within an area rather 
than at an exact point location. A uniform distribution of measurement error is 
usually implicitly assumed without obtaining support from observed data (but see 
Samuel and Kenow (1992)). Furthermore, there is no consistent method for choosing

5
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the buffer radius, leading to widely varying buffer sizes (e.g., Dickson and Beier 
(2002), McLoughlin et al. (2002), and Dickson et al. (2005)). It is not clear how 
sensitive the biological conclusions in the above studies were to the choice of buffer 
radius, or whether it is reasonable to compare results from studies where different 
buffer radii were used.

Linear anthropogenic features, such as roads, seismic lines, and pipelines, are 
ubiquitous in many North American landscapes (Timoney and Lee, 2001) and are 
known to alter animal distribution, movement, and behaviour (Thurber et al., 1994; 
James, 1999; Dyer et al., 2001, 2002; Whittington et al., 2005). Measurement error 
creates a particularly difficult problem for detecting animal use of linear features 
because the width of a linear feature is generally less than the measurement error 
(McLoughlin et al., 2002). Consequently, there is increased probability the location 
will be classified as off a linear feature when in truth it is on the linear feature (Type 
I error), resulting in a bias towards underestimating linear feature use (McLoughlin 
et al., 2002; Rettie and McLoughlin, 1999).

Here we develop a mechanistic, empirically-based method of buffering linear 
features addressing the underestimation bias caused by GPS measurement error. 
We illustrate how to select an appropriate buffer radius that accounts for both the 
error distribution and the width of the linear feature such that bias introduced by 
measurement error is minimized. This method is an advancement over previous 
approaches because it is based on an empirical distribution of measurement error 
and an a priori accepted level of location misclassification. We also show how to 
test for the robustness of the location classification against the two types of error. 
Here Type I error is the misclassification of a location off a linear feature when 
the true location is on, and Type II error is the misclassification of a location on a 
linear feature when the true location is off. We demonstrate the effectiveness of the 
method at reducing the Type I error using simulated location data and illustrate 
how considering measurement error changes our inference of linear feature use.

2.2 Exposition of the theoretical approach

Quantifying the error distribution. The distribution of GPS measurement error 
describes the probability of observing a location x  =  (x, y) at a given distance from 
the true location x  =  (x , y). The error |x — x|, which follows a distribution, reflects 
the precision of locations obtained by the GPS collar. For example, a leptokurtic 
error distribution, such as the Laplace, has a larger number of short and long

6
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measurements than an equivalent normal distribution with the same variance (Kot 
et al., 1996).

We propose symmetric two-dimensional normal (Eq 2.1a), exponential (Eq 
2.1b), and Bessel (Eq 2.1c) distributions as potential models for the distribution 
of GPS measurement error. We write the two-dimensional distributions in one 
dimension by transforming locations to Euclidean distances using the substitution 
r = \/{x  — x )2 +  (y — y )2. To compare the models to the observed measurement 
error, it is necessary to multiply each of Eq 2.1a-c by 27rr to account for the 
transformation from one to two-dimensions.

kind (Appendix 2.A). These models were chosen because they represent a range of 
shapes from mesokurtic to leptokurtic (Figure 2.1A). We considered only symmetric 
models because the acquisition of GPS locations is not directionally biased (Moen 
et al., 1996). Model selection techniques are used to determine which of the three 
models is the best representation of the GPS measurement error.

Selecting the buffer. The best model of the error distribution is used to select a 
buffer for the linear features, which reduces the location misclassification introduced 
by the measurement error. We derive a method for choosing the appropriate buffer 
radius in a hypothesis testing framework. The radius is chosen by finding the 
rejection region of the test of the null hypothesis that the true location is somewhere 
on the linear feature against the alternate hypothesis that the true location is not on 
the linear feature, where the test statistic is the observed location x. Under the null 
hypothesis, the distribution of the observed location fe{x), where 0  is a generalized 
parameter, is derived in Appendix 2.B. The amount of acceptable Type I error (a) is 
specified a priori and corresponds to the proportion of location estimates classified 
as off the linear feature when the true location is actually on the linear feature. The 
choice of a  fixes the position of the rejection region, and thus the half-width of the 
buffered linear feature (Figure 2.2). The rejection region is found by solving

(a) /<r(r | x) -  ^ 2 e (b) //?(r  I x ) =  2^ 2 e 0 fp(r I x ) =  2^ K °(p r }
(2.1)

Here a, /?, and p are parameters and K q is the modified Bessel function of the second

(2 .2)

for the quantity B, which is the half-width of the buffered linear feature.

7
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Figure 2.1: A) Candidate models for the distribution of GPS measurement error. 
Normal (dashed), exponential (dotted), and Bessel (solid) distributions are shown 
with comparable variances. B) Maximum likelihood fits of the candidate models to 
the data (gray bar).

Assessing robustness to Type I  and Type II  error. The robustness of the location 
classification is evaluated using the power function f3(x) (Appendix 2.C), which 
shows the expected Type I and Type II errors for location on and near the linear 
feature. Formally, the power function represents the probability that the null 
hypothesis will be rejected given a true location, x, and is particularly useful because 
it graphically represents both Type I (a) and Type II (/?) errors simultaneously. The 
Type I error described by /3(x) is different from the Type I error specified by a  in Eq
2.2 because the hypotheses under consideration are slightly different. Previously we 
knew only the true location was on the linear feature, whereas for j3(x) we know the 
true location, leading to a different value of a. The types of error can be calculated 
directly from the graph of the power function. For a location x  on the linear feature, 
the Type I error is the value of the power funtion at x. If x  is off the linear feature 
the Type II error is 1 minus the value of the power function at x. Ideally the power 
function would be 0 for any x that is on the linear feature and 1 for any x  that 
is off the linear feature. In other words, for a true location on the linear feature

8
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1-a

-B -w/2 0 w/2 B
<   >

RR A ' RR
Observed Location x

Figure 2.2: Rejection regions (RR) for testing the hypothesis that the true location 
is on the linear feature of width w, based on the distribution of the observed 
location /©(x | x  € fl), where 0  represents the parameter of the distribution and (1 
corresponds to the region on the linear feature. The linear feature is shown in gray 
and the buffer in white.

we should never observe a location estimate off the linear feature, and vice versa. 
It is not possible to achieve this ideal because of the measurement error, but an 
appropriate buffer will have a power function near 0 for all x  on the linear feature 
and close to 1 for all x off the linear feature (Casella and Berger, 2002).

2.3 M ethods

Data. Two sets of GPS data were collected in the central east slopes of the Rocky 
Mountains, Alberta, Canada (52°27' N, 115°45/ W) using a Lotek GPS-3300 collar 
(Lotek Wireless, Ontario, Canada). To select between candidate models for the 
distribution of GPS measurement error, location data were collected from a GPS 
collar placed in closed conifer forest 1 m off the ground recording location estimates

9
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at 5-minute intervals over 4 days in February 2005 (n =  1422). The law of large 
numbers states that if observations are independent, then the sample mean is a 
consistent estimator for the population mean in the absence of bias (Casella and 
Berger, 2002). We assume there is no directional bias in location estimates (Moen 
et al., 1996), so given the large sample size, we use the mean to estimate the true 
location.

To assess the performance of the best model for the GPS error distribution, 
data were collected from a collar placed at 9 consecutive locations along a transect 
perpendicular to a 6.2 m wide linear feature. Locations were recorded at 5-minute 
intervals for 24 hours at the center and edges, as well as 25, 50, and 75 meters 
on either side of the linear feature. These distances were chosen from estimated 
standard deviations of GPS collars (D’eon and Delparte, 2005) so as to vary the 
amount of overlap between the error distribution and the linear feature.

Model selection and validation. To determine the best model for the error 
distribution of the Lotek GPS_3300 collar, the three candidate models for 
measurement error distribution were fit to the location data using maximum 
likelihood. Maximum likelihood estimates for the parameters of the normal and 
exponential distributions are

" “ t / 2 ! ?  “ d  < 2 - 3 >

The maximum likelihood estimate for the Bessel distribution parameter was found 
numerically by maximizing the log likelihood function,

n  /  2 \
L L ( p \ r i , . . . , r n) = Y ^ lo^ ( ^ K 0{ p n ) j  , (2.4)

i= 1 ' '

using the BFGS quasi-Newton method implemented by Mathematica (Wolfram 
Research, Inc.). In all likelihood estimates, r* is the distance of the ith location from 
the true location and n  is the sample size. Confidence intervals for the parameter 
estimates were constructed using the parametric bootstrap (Efron and Tibshirani, 
1993). The best model was selected using Akaike Information Criterion (AIC) 
(Burham and Anderson, 1998).

To validate the model, for each transect location we found the proportion of 
observed locations on the linear feature and compared this with the proportion 
predicted by the model. The relevant measure for calculating the proportion 
of locations predicted by the model to be on the linear feature is the marginal
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distribution f e { x \x )  of the model /©(r |x). The marginal distribution describes 
the univariate distribution of x  for all values of y. Thus, the proportion of locations 
predicted by the model to be on the linear feature, for each transect location, is 
the integral of fe (x  ] x) from —w/2  to w/2, where w is the width of the linear 
feature and x is the transect location. We compare the observed proportions to the 
model predictions using non-parametric bootstrapped confidence intervals (Efron 
and Tibshirani, 1993). It was possible to do this only for the three central transect 
locations because all others had fewer than 25 locations observed on the linear 
feature (Efron and Tibshirani, 1993). We used Bonferroni adjusted 90% confidence 
intervals to protect experiment-wide error.

2.4 Results

The distribution of measurement error. All collars had fix rates (i.e. #  successful 
locations/total #  attempted locations) of greater than 97%. The observed 
distribution of GPS error was peaked with several long distance outliers (Figure 
2.IB), and the Bessel model was the best representation of the empirical distribution 
of GPS measurement error (Table 2.1). The marginal distribution of the Bessel 
model is the Laplace distribution (Broadbent and Kendall, 1953). Therefore, the 
predicted proportion of locations on the linear feature given the transect location x, 
is

/ w/ 2 n
dx. (2.5)

■w/2 2

The closer the true location was to the center of the linear feature, the greater the 
proportion of location estimates observed and predicted to be on the linear feature 
(Figure 2.3). In all cases the predicted proportion was either within or near (< 1%) 
the Bonferroni adjusted 90% confidence intervals, indicating that the Bessel model 
is a good representation of the observed GPS error distribution.

Buffer selection and assessment. Based on the Bessel model of error distribution, 
we derived the formula for the half-width of the buffered linear feature using (Eq 
2.2) and replacing th e  general d istribution  /© (£ )  w ith  f p (x )  (see A p p en d ix  2 .A ). For 

the case where f p(x) dx < a /2 , meaning the probability of observing a location 
between the center and edge of the linear feature is less than a/2 , the half-width of
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Table 2.1: Results of maximum likelihood parameter estimation and model selection. 
Confidence intervals for the parameters are shown in brackets.

Model Parameter Estimates (95% C.I.) AAIC
normal a -» 17.7213 (17.2694,18.1979) 2617
exponential $  -> 7.0157 (6.7588,7.2522) 190
Bessel p -» 0.1123 (0.1072,0.1175)___________0

the buffered linear feature is given by

B  = (2 6) 
P

Recall p is the parameter of the Bessel distribution and a  is the specified amount 
of Type I error. For the case where f (x ,  p) dx > a /2 , meaning the probability 
of observing a location being between the center and edge of the linear feature is 
greater than a /2 , (Eq 2.2) must be solved numerically. Once the half-width of the 
buffered linear feature is chosen, the power function for assessing the Type I and 
Type II error associated with the buffer is derived in Appendix 2.B to be

P ( x )  =
1 — epx sinh(pB) if x < —B,
e_p6cosh(px) if —B < x < B, (2.7)
1 — e~px sinh (pB) if x  > B.

2.5 Exam ple data analysis

In this section we demonstrate how to apply our approach using location data 
simulated with ArcGIS (ESRI) and Mathematica (Wolfram Research, Inc.). “True” 
locations were randomly placed in a landscape containing 9 m wide linear features, 
and constrained so that 250 points fell on the linear features and 750 points fell off 
the linear features. For each true location, an “observed” location was generated 
using the Bessel error distribution for the Lotek GPS_3300 collar. Buffer selection 
included three steps. (1) Choice of a priori Type I error rate. For this analysis we 
selected an a-level of 0.05, which means we are willing to accept a misclassification 
of a location off the linear feature 5 times out of 100. The choice of a  will vary 
depending on the biological question under consideration and knowledge of the 
study system. The implications of the choice of a  are further considered in the 
discussion. (2) Quantification of the error distribution. For this example, we used
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Figure 2.3: Validation of the Bessel model for GPS measurement error using a 
transect accross a linear feature. Circles represent the theoretical probability of 
being on the linear feature. Boxes represent the observed probability of being on 
the linear feature, shown with 90% Bonferroni adjusted C.I. where possible.

the error distribution obtained from the Lotek GPS-3300 collar, which followed the 
Bessel distribution with parameter p =  0.1123. (3) Calculation of the buffer. From 
Eq 2.6, B  = 27 m for a linear feature width of 9 m. B  represents the half-width 
of the buffered linear feature, so the total width of the buffered linear feature is 
54 m. The buffer calculation must be repeated for each linear feature of different 
width. Once the buffer is selected, we graphically assess the robustness of the buffer 
to classification error by computing the power function (Eq 2.7) and graphing it 
(Figure 2.4C). The probability of Type I error ranged from 4.8% for locations at the 
center to  5.5% for location s at th e  edge. For true location s off th e  linear feature th e  

probability of Type II error was high near the edge (94.5%), but dropped to 50% at 
the edge of the buffer (22.5 m from the edge of the linear feature), and was trivial 
(< 1%) at 60 m from the edge of the linear feature. When the true locations are 
know we can directly assess the performance of the buffering method (Table 2.2).
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Figure 2.4: A) The distribution of distances of the simulated location data to the 
nearest linear feature. The region from 0 m to the dotted line is enlarged in B). The 
arrow labeled B  indicates the edge of the buffer. C) The power function (solid line) 
of the buffer chosen for the example data analysis.

Table 2.2: Results of location classification for the example data. The first four 
columns show the number of points classified as the first habitat type, given that 
they are truly located in the second.

Classification on | on off | on on | off off | off
Type I 

Error
Type II 

Error
Proportion 

of use
Truth 250 - - 750 - - 0.25
No Buffer 101 149 8 742 0.60 0.01 0.11
Buffer 243 7 56 649 0.03 0.08 0.30
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For example, the total number of correctly classified locations in these example data 
increased with the addition of the buffer from 843 to 937. Correct classification of 
locations on linear features increased by 57% and misclassification of locations on 
linear features increased by only 5%. Significant reduction in Type I error caused 
only a small increase in Type II error. However, the estimate of the proportion of 
locations on linear features changed from 0.11 to 0.30, while the true proportion was 
0.25. This particular example highlights both the effectiveness and the limitations 
of the buffering method. The implications of these results are further addressed in 
the discussion.

2.6 Discussion

Measurement error is common in biological studies and often confounds our ability 
to detect ecological mechanisms (Rettie and McLoughlin, 1999). Here we considered 
the effect measurement error in GPS locations has on the classification of animal 
locations relative to linear features. Because linear features are usually small relative 
to GPS measurement error, there is a bias to underestimate animal use of linear 
features (McLoughlin et al., 2002). We developed a general framework for addressing 
measurement error and showed that incorporating measurement error into location 
classification reduces this bias. Our method advances previous approaches because 
it incorporates empirical measures of the error distribution, allowing for robust 
statistical inference.

We found that the Bessel distribution best represented the measurement error of 
the Lotek GPS-3300 collar in a closed conifer forest (Table 2.1). This result differs 
from previous studies where normal distributions (Jerde and Visscher, 2005; Samuel 
and Kenow, 1992) or uniform distributions (Conner et al., 2003) for measurement 
error were assumed, but were not validated. Collar type and habitat variables may 
affect the distribution of GPS measurement error (Moen et al., 1996; Frair et al., 
2004; Cain et al., 2005), therefore researchers should quantify error distributions for 
each collar and habitat type. If habitat type is heterogeneous within the study area, 
it may be necessary to use GPS measurement error distributions specific to each 
habitat type. However habitat-specific distributions may increase the complexity of 
applying the method. Therefore, the effect of habitat type on the GPS measurement 
error distribution should be investigated before adopting this approach.

Adding buffers increases the area of linear features, thereby reducing bias in 
misclassification. While past studies have employed buffers (Dickson and Beier,
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2002; McLoughlin et al., 2002; Dickson et al., 2005), there was no standard method 
for selecting the buffer radius. If buffer radii are chosen arbitrarily, their effects on 
location classification and biological inference are unknown. Our approach produces 
a known level of Type I error, which permits flexibility in the choice of buffer 
size depending on the research question. Recall that Type I error corresponds 
to classifying a location as off a linear feature, when in truth it is on a linear 
feature. For example, when it is important for conservation to understand the value 
of specific corridors (Haddad et al., 2003), animal behaviours associated only with 
linear features Dyer et al. (2001), or predator-prey interactions on linear features 
James (1999), a researcher is likely to choose a conservative Type I error rate to 
avoid underestimating linear feature use.

While our method ensures that location classification achieves a specified level of 
Type I error, there is no direct control of Type II error (i.e. classifying a location 
as on a linear feature, when in truth it is off a linear feature). Because the level of 
Type II is not constrained in the method, it may remain constant or increase after 
the application of the buffers. The probability of making a Type II error depends 
on the distribution of animal locations relative to the linear features. For example, 
if animals are found either on linear features or quite far away from linear features, 
buffering is unlikely to cause a large increase in Type II error. However, if the 
animals are often found off linear features, but near the edges, then Type II error 
will increase with buffering. In the latter case, the importance of the edge habitat 
will be missed and the importance of the linear feature overestimated. Therefore, 
buffers may not always lead to better estimates of habitat use since total error (i.e. 
the sum of the Type I and Type II errors) may increase or decrease.

Two approaches can be used to gain insight into the Type II error. First, the 
distribution of animal locations can be used to help determine whether Type II 
error is likely to remain constant or increase significantly after buffering. If there are 
relatively few animal locations between the edge of the linear feature and the edge of 
the buffer, as compared to the total number of locations, it is unlikely Type II error 
will increase significantly with buffering. This is not the case in our example, where 
locations are more uniformly distributed relative to linear features, with numerous 
locations occurring between the edge of the linear feature and the edge of the buffer 
(Figure 2.4A,B). As a result, buffering leads to an overestimation of the proportion 
of use of linear features (Table 2.2). This result suggests animal location data should 
be assessed before applying the buffering method in order to determine if Type II
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error is likely to be a significant problem. Second, by inspecting the graph of the

making a Type II error becomes small. Using these approaches to examine the 
data, researchers can make decisions about the trade-off between Type I and Type 
II error by varying the chosen value of a  and comparing the corresponding power 
functions.

A focus on GPS measurement error and animal use of linear features is timely 
because GPS technology is now commonly used to acquire animal location data, 
linear feature densities are likely to increase in the future (Timoney and Lee, 
2001), and linear features effect several aspects of animal ecology (Thurber et al., 
1994; James, 1999; Dyer et al., 2001, 2002; Whittington et al., 2005). We showed 
that ignoring GPS measurement error may lead to location misclassification and 
subsequent confounded inference about animal linear feature use. We developed 
and demonstrated a new method of buffering linear features that reduces the Type 
I errors in classification of locations on linear features due to GPS measurement 
error. Although GPS telemetry is more accurate than traditional radio telemetry, 
access to more precise location data has stimulated biological inquiry at increasingly 
finer scales (Deutsch et al., 1998). As technology advances, it is necessary to 
acknowledge that limitations still exist. Rigorous methods for quantifying and 
addressing measurement error are needed to ensure biological investigation occurs 
at an appropriate scale given the measurement error inherent in the data (Ryan 
et al., 2004). We are confident that appropriate use of buffers to correct for GPS 
measurement error will lead to more accurate, consistent, and informed inference 
about animal use of linear features.

Appendix  

2. A  The modified Bessel function o f the second kind

After Abramowitz and Stegun (1972), the modified Bessel function of the second 
kind, K n(x), is one of the solutions to the modified Bessel differential equation. For 
the special case where n = 0 it can be written as

power function (Figure 2.4C), it is possible to evaluate where the probability of

(2.A-1)
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2.B The distribution of the observed locations

We derive the distribution of the observed locations x  where the true location x is 
on the linear feature. Given no prior information regarding the distribution of true 
locations, we assume a uniform distribution for x  such that

6(x ) = f  w x e  [-w/2,  w/2],
' \  0 elsewhere.

If prior information is available indicating that animals prefer using certain regions 
of the linear features, such as the edges, the procedure could be adjusted to account 
for this by assuming an alternate distribution for x. Using Bayes’ Rule, the marginal 
distribution of x is given by

i  rw /2
fe (x )  = — f e ( x \ x ) d x .  (2.B-1)

w J - w/ 2

Replacing the general error distribution with the Bessel model,

/

w/2 n 

' epx s i n h ( ^ )

1—e ' cosh(px)
if x < —w/2, 

if —w/2 < x < w/2,
e p& s in h (^ ) .f  A , w v 2 7~ if X  > w/2,

(2.B-2)

where the solution is found using a change of variable as in Kot et al. (1996).

2.C Derivation of the power function

Given a buffered linear feature of half-width B, the rejection region (RR) for the 
hypothesis test is (—oo, —B\ U [B, oo). The power function fi{x) is defined to be

_  |  F(Type I Error) if x  € [—w/2, w/2\,
f3(x) — Px(x e RR)

P(Type I
P(  1 — Type II Error) otherwise

-  /  f e ( x  | x)dx.  (2.C-1)
J - B
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Replacing the general error distribution with the Bessel model and following Kot 
et al. (1996),

P ( z )  = . -  j B dx

1 — epx sinh(pB) if x < —B  
e~pb cosh(par) if —B  < x < B  
1 — e~px sinh (pB) if x > B.

(2.C-2)
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Chapter 3

Animal movement in a 
heterogeneous environment: 
space use and first passage tim e

3.1 Introduction

Ecological processes such as dispersal, territorial defence, resource acquisition, 
and reproduction often occur on spatially heterogeneous landscapes in nature. 
Variation in landscape structure and composition has been shown to influence animal 
movement rates and directionality (Weins, 2001). Because movement is often an 
inherent component of ecological processes, these seemingly obvious observations 
have profound implications for dispersal, distribution, species interactions, and 
population dynamics (Kareiva et al., 1990; Turchin, 1991; Lima and Zollner, 1996; 
Weins, 2001). For example, the distribution of wolves is influenced by variation 
in topography, presence of conspecifics, and local prey densities (Moorcroft and 
Lewis, 2006). Similarly, Tewksbury et al. (2002) found that pollination and seed 
dispersal depended on the connectedness of the landscape. These examples highlight 
two central questions in spatial ecology: How are animals distributed in space? 
and At what rate do animals encounter features of their landscape? Answers to 
these questions emerge from considering how landscape heterogeneity affects animal 
movement.

Empirical studies of animal movement typically use qualitative observations or 
phenomenological models to describe how animals interact with and respond to 
landscape features at a small scale (Crist et al., 1992; Schultz and Crone, 2001; 
Frair et al., 2005; Whittington et al., 2005). While empirical studies are central
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to ecologists’ understanding of individual movement mechanisms, the problem 
of understanding the effect of changes in small-scale movement at landscape or 
population scales remains (but see Kareiva and Odell (1987)).

Mechanistic, or behaviourally-based, movement models present one method to 
address the problem of scaling up observations of small-scale movement patterns 
to larger-scale ecological processes (Turchin, 1998; Okubo and Levin, 2001). These 
models directly incorporate detailed small-scale empirical observations while offering 
predictions about large-scale ecological processes. For example, from a spatially 
explicit model for wolf territoriality, that included wolf movement and scent marking 
only, Lewis and Murray (1993) predicted the existence of the observed buffer zones 
between adjacent wolf packs, which acted as prey refuges. Behaviourally-based 
movement models connect individual movement mechanisms and advection-diffusion 
equations using the diffusion approximation of the random walk (Skellam, 1991; 
Turchin, 1998; Okubo and Levin, 2001). The random walk was first used to describe 
movement by Pearson (1905). Subsequently, the random walk framework was used 
by Pearson and Blakeman (1906) to describe the migration of animals and by 
Brownlee (1911) to model the spread of epidemics. Skellam (1955) advanced the 
use of diffusion processes for ecological questions, such as population growth and 
competition between two species in heterogeneous habitats, the spread of invaders, 
and the study of critical patch size. Diffusion models continue to be applied to 
many ecological processes (Holmes et al., 1994; Turchin, 1998; Okubo and Levin, 
2001), with increasing attention to the connection between animal behaviour and 
the random walk (Moorcroft and Lewis, 2006).

For example, the behaviourally-based mechanistic approach to modeling animal 
movement has frequently been used to address the first central question: How are 
animals distributed in space (Turchin, 1998; Okubo and Levin, 2001; Moorcroft 
and Lewis, 2006)? Under the assumption of random (Brownian) motion, the mean 
squared displacement of an animal grows linearly with time at rate 2d, where d 
is the diffusion coefficient for the animal with units (Turchin, 1998). The
location of an animal undergoing Brownian motion is a random variable, indexed 
by time, and so is a stochastic process (Taylor and Karlin, 1998). The probability 
density function for the location at any given time t, denoted u(x,t),  satisfies the 
diffusion equation

=  d^ , =  U°
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on 0 < x < L, where L  is the length of the domain on which the animal is moving 
and u q ( x )  is the possible probability density function specifying the possible initial 
locations of the animal. If the animal is known with certainty to be initially located 
at x — xo, then uo(x) — S(x — xo), where 6 is the delta-distribution or “impulse 
function” with area one and all its mass at the single point x  =  Xq.  T o solve Eq 
3.1 boundary conditions on u or its spatial derivative must be specified at x = 0 
and x = L. We consider two cases where an animal is moving under Brownian 
motion on the domain of length L: (i) the animal is captured as soon as it touches 
either end of the domain (x = 0 or x = L), (ii) the animal is captured as soon as 
it touches one end of the domain (x =  0), but reflected when it touches the other 
end of the domain (x = L). As soon as the animal is captured, it is removed 
from the domain. Boundary conditions for Eq 3.1 that correspond to case (i) 
above are u(0,t) =  u(L,t) — 0, and those corresponding to case (ii) above are 
u(0,t) =  ^ ( L , t )  =  0. In physics, Eq 3.1 with the first set of boundary conditions 
can be use to describe the temperature distribution in a rod where both ends of 
the rod are kept at zero degrees. The boundary conditions in (ii) modify the 
problem to account for insulation of the rod at x  = L. The solutions to these 
problems (Appendix 3.A), shown in Figure 3.1, illustrate the increasing likelihood 
of capture as time progresses. The area under the curve, u(x, t) dx, denotes 
the probability of no capture by time t. In both cases the distribution of animals 
spreads out over time, eventually becoming zero as the animals are absorbed at 
the boundaries (Figure 3.1). For more complex animal movement behaviour in 
heterogeneous landscapes, the distribution of animals is described by the Fokker- 
Planck, or ‘space use’ equation, with variable coefficients (Moorcroft and Lewis, 
2006),

W  =  + (3'2)
Now we return to the second central question: At what rate do animals encounter 

features of their landscape? This was first addressed mathematically in an ecological 
context by Berg (1993) who calculated the ‘mean time to capture’ of a randomly
m oving bacteria  by a  stick y  disk  at th e  center o f a hom ogeneous P etri dish. M ean  

time to capture is more generally known as the mean first passage time, and defined 
as the length of time on average taken by an animal to reach a specified site (or 
set of sites) in the landscape for the first time (Redner, 2001). Mean first passage 
time has been widely applied to many stochastic processes such diffusion-limited
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Figure 3.1: Solutions to the simple diffusion equation on a one-dimensional
homogeneous domain, [0, L]. Lines represent the solution for different times, t =  1 
(solid), t — 5 (dashed), t — 20 (dot-dashed), and t =  100 (dotted), (a) Boundary 
conditions are absorbing at both ends (Eq 3.A-1-3.A-2). (b) Boundary conditions 
are absorbing at x = 0 and reflecting at x =  L  (Eq 3.A-3-3.A-4). The initial 
condition is f (x )  — 5(x — 0.6), the diffusion coefficient is d = 0.002, and L  =  1.

aggregation, neuron firing, the triggering of stock options, and DNA binding (Berg, 
1993; Redner, 2001).

Ecologists have adopted a narrower definition of mean first passage time as the 
time required for an animal to first cross a circle of given radius centered at the origin 
of the movement (Johnson et al., 1992), but see Benichou et al. (2005). In ecology, 
mean first passage time has been used as an alternate summary statistic to the mean 
squared displacement (Johnson et al., 1992), to measure search time along a path 
(Fauchauld and Tveraa, 2003), and to distinguish between movement behaviours at
different spatial scales (Frair et al., 2005). I suggest that mean first passage time, as
defined more generally outside the ecology literature, offers ecologists a framework 
in which to address questions about animal encounter rates with landscape features.

In a homogeneous landscape the mean first passage time for an animal starting 
at location x, ui(x), is described by the differential equation (Berg, 1993)

4 ? + i = o ' <3-3>
where the diffusion coefficient d is the same as in the corresponding space use 
equation (Eq 3.1). On a domain of length L  Eq 3.3 has solution

w{x) ^ - ^ ( L x  -  x2) (3.4)
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if the animal is captured at the edges of the domain, and

w(x) = -^(2Lx  -  x2) (3.5)

if the animal is captured at x — 0 and reflected at x = L  (Appendix 3.B). An animal 
starting closer to the point of capture will on average always become captured sooner 
than an animal beginning further (Figure 3.2).

3  0.75

P  0.25

0.2 0.4 0.6 0.8 1

1

3  0.75

0.5

0.25

5
0.80.2 0.4 0.6 1

Initial location (x) Initial location (x)

Figure 3.2: Solutions of the mean first passage time equation (Eq 3.3) for two types 
of boundary conditions, (a) Dirichlet conditions, the animal is captured at x =  0 
and x — L (Eq 3.4). (b) Neumann conditions, the animal is captured at x =  0 and 
reflected at x =  L  (Eq 3.5). The other parameter values are L  =  1, d =  0.5.

In Section 3.2 I review the derivations of the space use and mean first passage 
time equations in a one-dimensional homogeneous environment (Okubo and Levin, 
2001; Berg, 1993) and draw connections between the mathematical methods and the 
biological interpretations. Using similar methods, in Sections 3.3 and 1.4 I extend 
the mathematical theory by deriving new equations for the mean first passage time 
in one- and two-dimensional heterogeneous environments where animal movement 
is more complex, with movement rates and distributions of movement directions 
varying in space. In Section 3.5 the potential of the mean first passage time to 
capture the effect of small-scale movement on landscape-level processes is illustrated 
using a model of red fox ( Vulpes vulpes) movement. Here the model is based on the 
H olgate-O kubo form ulation o f random  m ovem ent w ith  a  bias towards a den site 
(Okubo and Levin, 2001). The effects of this movement pattern on the length of 
time taken to find a prey item at various distances from the den site are calculated.

The mean first passage time is also connected to the functional response, which 
describes the number of prey consumed by a single predator as a function of prey
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density and predator behaviour (Solomon, 1949; Holling, 1959). In the derivation 
of the Holling disk equation, Holling (1959) assumed that predators moved at a 
constant speed and searched a constant area per unit time, resulting in a linear 
prey encounter rate and asymptotic functional response when the time associated 
with handling a prey was included. This directed searching movement is similar 
to advection. How does the underlying predator movement change the form of the 
functional response? Mean first passage time, derived from individual movement, 
can be used to derive a functional response which incorporates the effect of different 
types of movement. In Section 3.6 I derive functional responses without and 
including handling time for pure advection and simple diffusion in a homogeneous 
landscape, and discuss their biological interpretations.

3.2 M odels for space use and mean first passage tim e  
in a homogeneous environment

Space use. Diffusion describes how a group of individual particles spread out due 
to the irregular motion of each particle (Okubo and Levin, 2001). When applied 
to animals, diffusion may alternatively be viewed as describing the distribution of a 
large population of animals or the expected location of an individual animal in space 
and time. Because diffusion is the continuous limit of a random walk, individual 
small-scale movement can be translated into a diffusion equation (Skellam, 1991).

Although the diffusion-advection equation (Fokker-Planck) equation is a very 
general model for animal movement, the simplest derivation comes from a random 
walk with time steps r  and space steps S. Suppose the probability the animal is 
located at x  at time t is given by the function u(x,t).  During each time interval 
r  the animal may jump a step S to the right or left with equal probability, 1/2. 
Then the probability an individual is at location x at time t + r  is the sum of the 
probabilities of arriving at x from all other possible previous locations and can be 
written as

1 1
u(x, t + r) = - u ( x  - 5 , t )  + -u ( x  + 5, t). (3.6)

Eq 3.6 summarizes the movement rules depicted in Figure 3.3(a) using mathematical 
notation and is often called the master equation. Expanding u(x — 5) and u(x +  S) 
using Taylor series, which approximates the functions as sums of powers of x, and 
taking the diffusion limit, Eq 3.6 can be translated into Eq 3.1 (Appendix 3.C).
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The diffusion approximation relates movement in discrete and continuous space by 
assuming that the animal takes shorter and shorter steps 5 in shorter and shorter 
time intervals r , so that 6 and r  approach zero. As a consequence of the limit, 
it is theoretically possible for the animal to move with infinite speed and change 
direction infinitely many times during one time interval (Turchin, 1998). However, 
the probability of travelling arbitrarily far in an arbitrarily short time period is 
very small and the average animal takes a long time to travel long distances, which 
is more consistent with our intuition about movement (Holmes et al., 1994). The 
diffusion approximation of the random walk has been shown to adequately describe 
the distribution of animals in time and space for many ecological systems (Holmes 
et al., 1994; Okubo and Levin, 2001).

1/2 1/2 1/2 1/2 

— i-------- 1-------- 1---------1------- 4------- 1—
x  — 8 x  x  +  S x  — 8 x  x  +  8

(a) (b)

Figure 3.3: Pictorial representation of the random walks corresponding to the 
(a) space use and (b) mean first passage time equations in a one-dimensional 
homogeneous landscape.

Mean first passage time. The random walk framework can be used to derive 
an equation describing the mean first passage time (Berg, 1993; Redner, 2001). 
Unlike the equation for space use, which describes how the distribution of animals 
changes over time, the mean first passage time equation describes the time taken 
for an animal to arrive at some specified final location as function of the starting 
location. I derive the mean first passage time equation corresponding the the space 
use equation derived above, meaning that they are based on the same movement 
rules. Suppose w(x) is the mean first passage time from location x. An animal 
located at x  has equal probability 1/2 of jumping a step S to the left or right 
(Figure 3.3(b)). Then the mean first passage time from the current location x  is 
equal to the sum of the mean first passage times from all possible next locations,
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multiplied by the probability of moving to those locations, plus the time taken to 
move, t .  This is summarized by the master equation,

w(x) = t  +  ^:w(x — 6)  +  ]:w(x +  8 ) .  (3.7)z z
Using a similar approach as for the space use equation, Eq 3.7 can be translated 
into Eq 3.3 (Appendix 3.D). In contrast to the space use equation, which can 
be solved on an infinitely large domain, in order for the mean first passage time 
problem to be well-defined the animal must be moving in some finite domain. This 
restriction is natural, because otherwise the animal could potentially wander away 
from the specified final location indefinitely. Therefore we must define boundary 
conditions, or rules governing animal movement at two places in the domain: at 
the specified final location and at the edges of the domain. The final location 
in Berg’s example was a sticky disk. Because we assume the animal’s movement 
terminates once it arrives at the specified end location, the disk ‘absorbs’ the animal. 
Intuitively the mean first passage time for an animal beginning on the edge of the 
disk is zero, since the animal is already at the end location. Mathematically this 
called is a Dirichlet boundary condition and can be written as w(e) =  0, where 
e is the end location. When the animal reaches the edges of the domain, it is 
reflected back into the domain. Therefore, at the edge of the domain, the mean 
first passage time does not change with space. This type of boundary condition is 
called a Neumann condition and is written as ^  =  0. Domains often can be chosen 
so that reflecting boundary conditions are biologically reasonable. Islands, lakes, 
home ranges, or habitat patches with impermeable boundaries are all examples of 
biologically reasonable domains. Once boundary conditions are defined, solutions 
to Eq 3.3 can be found analytically (for example Eqs 3.4 and 3.5). For different 
diffusion coefficients d\ < cfo, the mean first passage time is always shorter for 
animals with the larger diffusion coefficient cfo (Figure 3.4). This is consistent with 
the intuition that on average, faster moving animals will arrive at the specified final 
location sooner then slower moving animals.

The review of the derivations of the space use and mean first passage time 
equations in  a  one-d im entional hom ogeneous landscape h igh lights three m ajor  

results. First, an equation for mean first passage time can be derived from movement 
behaviour specified by a random walk. This is done by taking the diffusion 
approximation of a master equation, which gives rise to a differential equation. 
Additionally, the diffusion coefficient of the mean first passage time equation is the
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Figure 3.4: Solutions to the mean first passage time equation (Eq 3.3) for different 
diffusion coefficients. The solid line is the solution for d =  0.5 and the dashed line is 
the solution for d — 0.1. The boundary conditions are Neumann at x =  L (animals 
are reflected at x  =  L) and Dirichlet at x  =  0 (animals are captured at x  =  0). The 
other parameter value is L  =  1.

same as the diffusion coefficient of the corresponding space use equation. Second, 
the mean first passage time equation must be solved on a finite domain. Mean 
first passage time at the edge of the domain is subject to Neumann (reflecting) 
conditions and the specified final location is defined using Dirichlet (absorbing) 
conditions. Third, mean first passage time decreases monotonically (i.e. is strictly 
decreasing, meaning the slope does not change signs) with distance of the starting 
location from the specified end location. This means that individuals who begin 
closer to the end location will on average reach it faster than individuals who start 
farther away.

Mean first passage time, w(x), is a less common way of thinking about animal 
movement in ecology, whereas the concept of space use, u(x,t),  is prevalent. 
Nevertheless, mean first passage time may be just as useful for understanding 
the connection between individual small-scale movement and landscape-level 
ecological processes. However, equations describing realistic animal movement 
must incorporate animal response to spatial heterogeneity. For example, instead 
of considering two animals diffusing at different rates, we can consider one animal 
moving between two patches with different diffusion coefficients. In the following 
section I review how more complex anim al m ovem ent is translated  in to  an equation  

describing space use and derive a new equation for the corresponding mean first 
passage time.
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3.3 M ovement in a heterogeneous environment

The influence of landscape heterogeneity on animal movement is divided into 
two parts: movement rate and movement direction. Habitat structure may vary, 
resulting in varying movement rates between habitats (Weins, 2001). For example, 
wolves are observed to move greater than two times faster on linear features than 
in the forest (James, 1999) and prairie butterflies move faster in regions between 
habitat patches than regions in habitat patches (Schultz and Crone, 2001). This 
spatial variability in movement speed is incorporated into the movement model 
by allowing the dilfusion coefficient to vary in space. Animals may also bias 
their movement directions relative to landscape features. For example, red fox 
movements are directionally biased towards the home range centre (Siniff and Jessen, 
1969) and male checkerspot butterflies bias their movement in the uphill direction 
when searching for mates (Turchin, 1991). Directional bias is incorporated into 
the movement model by adding an advection term, which describes the directed 
component of movement.

Spatially variable movement rates. We begin by defining movement rules to allow 
for spatially variable movement rates. Similar to the random walk in a homogeneous 
landscape animals may move to the right or left with equal probability. However 
to have spatially variable movement rates, the animal is also allowed to remain 
still. Thus, animals may move to the right and left with probability where
0 < N{x) < 1 is the probability of not moving during a time step (Figure 3.5(a)). 
For the space use equation, the probability of staying still will be associated with 
the previous location of the animal. Then the master equation becomes

u(x,t+r)  =  — iV(a; +  5,t )^

(3.8)
which, using similar techniques as in the homogeneous case, can be translated into 
the diffusion equation (Appendix 3.E)

I  -  <3-9>

with spatially variable diffusion coefficient d(x) =  lim^r_o if jV(:r) =  0
then the probabilities of jumping to the right and left are 1/2 and Eq 3.9 reduces to 
the simple diffusion equation (Eq 3.1). Now consider the corresponding mean first
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Figure 3.5: Pictorial representation of random walks corresponding to space use and 
mean first passage time in a one-dimensional heterogeneous landscape with variable 
diffusion.

passage equation. In this case the probability of not moving is associated with the 
current location (Figure 3.5(b)). The master equation for the mean first passage 
time equation is

w{x) =  r  +  w (x  — ^) +  W X̂ ^  +  ^ ( x )w x̂ )’ (3.10)

which corresponds to the diffusion equation (Appendix 3.J)

< i ( x ) ^ )  +  l  =  0, (3.11)

with spatially variable diffusion coefficient d(x) as given for Eq 3.9. Again if 
N(x) = 0, meaning the animal moves at every time step, the diffusion coefficient 
simplifies to the original coefficient found by Berg (1993). As with the homogeneous 
case, the diffusion coefficients for the space use and mean first passage time equations 
are the same. It is possible to solve Eq 3.11 analytically for simple landscape 
configurations. For example, if we divide =  [0, L] at x =  a into two patches of fast 
and slow diffusion, subject to boundary conditions ru(0) =  0 (Dirichlet, absorbing) 
and ^§(1) =  0 (Neumann, reflecting), the solution of the mean first passage time 
equation is (Appendix 3.G, Figure 3.6)

W r l - J  i ( 2ax -  x2) +  i  ~  a) * 6 (0 , a)
\  Wi ~  + A  (2xl ~ x2) x e  (a> 0-
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We see that if di =  cfo, then Eq 3.12 reduces to the solution of the homogenous 
equation (Berg, 1993). Figure 3.6 shows that spatial variation in the diffusion 
coefficient affects the mean first passage time. For all starting locations, animals 
moving in the patchy landscape arrive at the end location on average later than 
animals travelling in the homogeneous landscape with a faster diffusion coefficient, 
but a sooner than animals in the homogeneous landscape with a slower diffusion 
coefficient.

S' 5

0.2 0.4 a 0.6 0.8 1
Initial location (x)

Figure 3.6: Solution of the mean first passage time equation with variable diffusion 
coefficient (Eq 3.11) in a patchy environment with absorbing boundary conditions 
at x =  0 and reflecting boundary conditions at x — L. The solid and dotted lines 
are the solutions to the homogeneous problem (Eq 3.1) with d = 0.1 and d =  0.8 
respectively. The dot-dashed line is the solution to heterogeneous problem (Eq 3.12) 
with d\ =  0.1, c?2 =  0.8. The other parameter values are L =  1, a =  0.5. The mean 
first passage time in a heterogeneous landscape is bounded by the mean first passage 
times in the homogeneous landscapes.
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Attraction towards a bias. To incorporate directional bias into the animal 
movement rules, I allow the probabilities of jumping to the right R(x ) and left 
L(x) to be unequal (Figure 3.7(a)). Because the animal must either move to the 
right or left, or stay still at each time step, R(x) +  L(x) +  N(x) = 1.

R(x  -  S)

x  — S

N( x)

O  L(x  +  S) H x )

\  r " \

N( x)

O
x x  +  6 x  — S x

R(x)

x  +  S

(a) Space use (b) Mean first passage time

Figure 3.7: Pictorial representation of the random walks corresponding the space 
use and mean first passage time in a one-dimensional heterogeneous landscape.

These movement rules incorporate both variable movement rates and directions. 
Again we see that for the space use equation these probabilities depend on the 
animal’s previous location. Under these new assumptions, the master equation for 
space use becomes

u(x, t +  t )  =  R(x  — 5, t)u(x — <5, t) + L( x  — S, t)u(x + 5,t) + N  (x)u(x, t ) (3.13)

and using the diffusion approximation, the corresponding advection-diffusion
equation is (Appendix 3.H)

d n  r  /  \  i  ^  r  » /  \  i  / n .-  = - - [ c ( x )u] + W 2 [d(x)«], (3.14)

where c(x) =  lim ^ ^o  S(RW~L(X̂  is the spatially variable advection coefficient with 
units dl̂ e ° - and d(x) = lim^T^o S is the spatially variable diffusion
coefficient with units dlstt̂ e2. If R(x) = L(x) Eq 3.14 simplifies to Eq 3.9. The 
master equation for the corresponding mean first passage time is (Figure 3.7(b))
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w(x) =  L(x)w(x — 6,t) + R(x)w(x + 6, t) + N(x)w(x,t)  (3.15)

which is translates to the advection-diffusion equation (Appendix 3.1)

, ,du  „ . d2w
c(x)&  +  <iWa ?  +  1 =  0’ (3.16)

where c(x) and d{x) are the same advection and diffusion coefficients as for the space 
use equation (Eq 3.14).

It is possible to solve Eq 3.16 analytically if c and d are constant. On a domain of 
length L with boundary conditions w(0) =  0 and w(L) — 0 (homogeneous Dirichlet 
conditions) Eq 3.9 has solution

w(x) —
L(exp[-c/d(x)] -  1) x 

c '
(3.17)c(exp[—c/d(L)] — 1)

Figure 3.8 shows the effect of several movement biases on the mean first passage 
time.
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Figure 3.8: Solution of the mean first passage time equation (Eq 3.16) with 
constant coefficients and homogeneous Dirichlet boundary conditions (w(x) =  0 
and w(L) = 0). The solid line is the solution to the mean first passage time with 
simple diffusion, c =  0, d = 0.5. The dotted and dashed lines are solutions to the 
mean first passage time with c = ±3 respectively. The other parameter is L = 1. For 
most starting locations on average individuals moving with advection are captured 
by a boundary faster than individuals moving according to simple diffusion.

Two observations arise from the derivations of the space use and mean first 
passage time equations in heterogeneous space. First, comparable to the equations 
in homogeneous landscapes, the advection and diffusion coefficients are the same
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for the corresponding space use and mean first passage time equations. Second, 
spatial variation in advection and diffusion coefficients affects the mean first passage 
time, demonstrating how the mean first passage time is able to translate small-

movement in a heterogeneous landscape to two dimensions, following Moorcroft and 
Lewis (2006) I generalize Eqs 3.14 and 3.16 to a more biologically reasonable case 
where animals may move steps of different lengths in any one time step. Consider the 
lattice {—L , . . . ,  —6,0, <5,..., L}, and suppose an animal is located at x. In the next 
time step the animal can make a jump of size ±n<$, where n > 0 is a movement to 
the right, n < 0 is a movement to the left, and n  =  0 represents the event the animal 
stays still. To express the probability of all possible moves we define a redistribution 
kernel k(x,x+nS,  r) , which is a probability mass function describing the probability 
that an animal jumps from location x to a new location x  + n8 in the next time step 
r . Because k incorporates all possible jumps, Y^L-oo k(x ,x  + nS, r)  =  1. Using the 
redistribution kernel, rewrite the master equations for the space use and mean first 
passage time as

scale changes in animal movement due to landscape heterogeneity into differences 
in ecological processes at the landscape scale.

Variable step length and the redistribution kernel. Before extending the models for

OO
(3.18)

and

OO

Taking the limit as the step size 6 —* 0 and using the definition of the integral these 
equations become

u(x ,t  + r) =  k(x' , x , t ) u ( x '  ,t)dx' , (3.20)(3.20)
J — OO

and

(3.21)

where x is the current location and x'  is the location the animal is arriving from 
(in the case of the space use equation) or going to (in the case of the mean first
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passage time equation). We define a new variable for the distance between x and 
x', a =  x1 — x. Then the redistribution kernel can be rewritten as K(x, a, r )  where 
x  is the current location and a is the jump distance in time step r . After applying
the diffusion approximation to Eqs 3.20 and 3.21, we obtain Eq 3.14 (Appendix 3.J)
where now the advection and diffusion coefficients are given as the first and second 
infinitesimal moments of the redistribution kernel (Moorcroft and Lewis, 2006),

1
c(x) =  lim -  / aK(x ,a ,r )  da, (3.22)a,r—o r  ,/_00

1 f°°
d(x) — lim — /  a2K(x ,a ,r )  da. (3.23)

a,r—0 2r  J _ 00

As before the mean first passage time equation is given by Eq 3.16, but with c{x) 
and d{x) now given by Eqs 3.22-3.23.

These equations incorporate spatially variable diffusion and advection, as well 
as variable step length. The coefficients are functions of the redistribution kernel, 
which describes the probability of moving from the current location to any other 
location. This shows that small-scale animal movements and the distribution of 
animals and their encounter rates with landscape features are connected through 
the advection and diffusion coefficients. Given the understanding provided by 
considering simple cases in a one-dimensional landscape, extending the model to 
two dimensions becomes a task of algebraic accounting.

3.4 M ovement in a two-dimensional heterogeneous 
environment

Space use. In two dimensions, the redistribution kernel is a two-dimensional 
probability density function, fc(x',x, t ) ,  describing the probability of moving from 
a previous small rectangle [x',x' +  dxr) at time t  to the current small rectangle 
[x, x  +  dx) at time t + r. Let u(x, t) be probability density function for an animal 
located at x =  (x, y) at time t. Then the master equation in 2-dimensions is

u (x , t  +  r )  =  J  k(pc', x ,  r , t )u (x ')  cht!. (3.24)

Redefining the redistribution kernel as before to be K (x, a, r) where a  =  xr — x, and 
following the method of (Moorcroft and Lewis, 2006), the corresponding advection- 
diffusion equation is (Appendix 3.K)
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d u  V7 r _ / „  , d 2 [dx x ( x , t ) u ]  , d 2 [dXy ( x , t ) u ]  , d 2 [dy x ( x , t ) u ]  , d 2 {dyV{ x . , t ) u ]
d t  -  V  d x 2 +  d x d y  +  0 ^ Q X  +  0 ^ 2  ’

(3.25)
~ T

, V2 =  V • Vu =  +  & ,  and the coefficients are given bywhere Vu  = cte’ l)y

c(x) =  l i m -  f  a if(x , a, r) da, (3.26)

1 Z100
dxx(x) =  l i m— / a2if(x , a, r)  da, (3.27)

t —>0  Z T  j _ o o

1 f 00
d ^ x )  =  lim — / a ia 2K (x ,a , r )  da, (3.28)r—o 2r y_00
dyx(?t) — dpy(x), (3.29)

i  r 00
dyy(x) =  lim — / a|jRT(x, a, r)  da. (3.30)

t —>0 2r d - o o

Mean ./irst passage time. Similarly, let io(x) be the mean first passage time for an 
individual initially located at x =  (x, y). Writing the master equation as

/OO

fc(x,x/,r)u;(x/) dx'. (3.31)
-OO

and then redefining the redistribution kernel and using the diffusion approximation 
yields the advection-diffusion equation (Appendix 3.K)

d2w d2w d2w d2w
c(x) • Vw  +  4 x ( x ) ^ 2  +  +  dw(x ) ^ 2- + 1 =  °> (3-32)

where the spatially dependent advection and diffusion coefficients are given by Eqs 
4.2-4.6. The derivation of the space use and mean first passage time equations in 
two-dimensions preserves the property of similarity between coefficients for both 
equations that was observed in one-dimension.

Now I consider the interpretation of the mean first passage time in a two- 
dimensional landscape. The solution to the Eq 3.32 is a surface whose height is 
the mean time to arrive at a specified location for the first time as a function of the 
starting location x. The surface gives the mean first passage time for every possible 
starting location in the domain. While the surface provides a qualitative picture 
of how the mean first passage time changes throughout the landscape, it may be 
difficult to use the information without a summary statistic. This is particularly
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true if the mean first passage time is being compared across different domains. One 
possible summary statistic is the spatial average of the mean first passage time 
throughout the domain,

MFPTav9 =  [  u0(x)w(x) dx, (3.33)

where tto(x) is the initial probability distribution of the animals is space. If u q ( x )  is 
assumed to be a uniform distribution, MFPTat)g is equivalent to the expected mean 
first passage time from a random starting location (Benichou et al., 2005). If the 
initial distribution of animals in space is known, the MFPTa„5 is equivalent to the 
expected mean first passage time conditional on the initial distribution of animals. 
Therefore, the mean first passage time surface provides a map of how long it would 
take to arrive at the specified end location given different starting locations and can 
be summarized into a metric that facilitates comparison of the mean first passage 
times among landscapes.

3.5 Influence of home range behaviour on first passage 
tim e to  prey

The notion of a home range was first proposed by Burt (1943) as “that area traversed 
by the individual in its normal activities of food gathering, mating, and caring for 
young.” Subsequent analysis of animal locations support Burt’s suggestion that 
movement of non-migratory animals is not random in the landscape, but focused 
within a home range (Siniff and Jessen, 1969). A simple model for animal movement 
in a home range was first proposed by Holgate (1971) and further described 
by Okubo and Levin (2001). The Holgate-Okubo model assumes a centralizing 
tendency in the animal’s movement directions because of the need to care for young 
located at the den site. During denning many canids, including the red fox ( Vulpes 
vulpes), display behaviour that is well-described by this model (Mech and Boitani, 
2003; Siniff and Jessen, 1969). The space use equation for the Holgate-Okubo model 
was mechanistically derived and parameterized by Moorcroft and Lewis (2006) using 
red fox location  d a ta  due to  S iniff and Jessen  (1969). The exp ected  location  of the 
red fox is described by the Fokker-Planck equation

^  =  -V-[c(x)u]  +  V2H ,  (3.34)

with constant diffusion coefficient d =  0.041 km2/hr and advection vector c pointing
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in the direction of the home range centre, which is assumed to be at the origin, with 
magnitude 0.085 km/h (Figure 3.9(a)). The steady state solution to Eq 3.34 is 
(Figure 3.9(b))

u(x,y) = ^ E i [ c / d ( y / x 2 + y2)}, (3.35)

where E\  is the exponential integral

E t (u)=  r ^ t ± d t .  (3.36)
Jn *

e

-1.5

E

-1 .5
1.5-1.5 0

x (km) x (km)

(a) Advection field (b) Steady state solution

Figure 3.9: Red fox movement with centralizing tendancy. (a) The vector field 
representing the advection coefficient c(x) at each point in the domain, (b) The 
steady state solution to the space use equation for the red fox (Eq 3.34).

Figure 3.9(b) shows that the expected pattern of space use is radially symmetric 
around the home range centre, and that the individual is more likely to be found 
close to the home range centre. How might the centralizing tendency in red fox 
movement affect the time to locate prey as a function of prey distance from the 
home range centre? To answer this question I compare the mean first passage times 
of a red fox moving according to the Holgate-Okubo centralizing tendency model to 
that of one moving randomly.
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Following the random walk approach illustrated earlier, the corresponding mean 
first passage time equation for the Holgate-Okubo model was found to be,

c(x) • Vu; +  dV2w +  1 =  0, (3.37)

where previously the coefficients, c(x) and d, were shown to be the same as those 
in the space use equation. If c(x) =  0 Eq 3.37 describes the mean first passage 
times for movement without a centralizing tendency. To obtain mean first passage 
time for a red fox moving with and without the centralizing tendency, Eq 3.37 was 
solved for c(x) #  0 and c(x) =  0 on a square domain similar in area to the 95% 
minimum convex polygon for the expected location of the red fox (3 km x 3 km). The 
edges of the domain were subject to Neuman (reflecting) conditions. Biologically 
this corresponded to the red fox remaining within its home range. This is different 
than the centralizing tendency, which impacts movement throughout the domain. 
Prey were specified at distances of 0, 0.25, 0.5, 0.75, 1, 1.25, and 1.5 km from the 
home range centre by a disk of radius 10 m with Dirichlet (absorbing) conditions. 
Solutions were found numerically (Appendix 3.L) and summarized using MFPTa ŝ , 
where the initial distributions of expected locations were assumed to be the steady 
state solution of Eq 3.34 for the red fox with centralizing tendency and uniform for 
the red fox without a centralizing tendency.

The mean first passage time surfaces differ for movement with and without a 
centralizing tendency (Figure 3.10). The MFPT0„fl for both models increases with 
increasing prey distance from home range center (Figure 4.12). For prey near 
the home range centre, animals with centralizing tendency locate the prey faster, 
whereas animals without the centralizing tendency locate the prey farther from the 
home range centre faster. For this choice of parameter values the switch occurs 
when the prey is 1 km from the home range centre.
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Figure 3.10: The mean first passage time of a red fox to a prey located 1 km from the 
den site. Surfaces are solutions to Eq 3.37 (a) with and (b) without the centralizing 
tendency. Differences in the surfaces are apparent in the height of the far left side 
of the domain and in the asymmetry near the prey.

e  800

200

0 0.25 0.5 0.75 1.0 1.25 1.5
Prey distance from den (km)

Figure 3.11: S p atia lly  average o f th e  m ean first passage tim e o f a  red fox to  
prey assum ing m ovem ent w ith  (solid  line) and w ith ou t (d otted  line) a  centralizing  
tendency.
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3.6 Incorporating movement mechanisms into the  
functional response

The Holling disk equation for the functional response assumes a constant area is 
searched for new prey per unit time (Holling, 1959). This is consistent with pure 
directed motion (advection), where displacement of an individual increases linearly 
with time. Here the size of the region searched scales linearly with the time elapsed. 
However, for random motion (diffusion) it is the mean squared displacement that 
increases linear with time. In this case, the size of the area searched scales with the 
square root of the time elapsed. In other words, to search an area of twice the size 
requires four times longer. This scaling arises from the fact that Brownian motion 
allows individuals to move back and forth over regions recently searched, via random 
switching of direction. In this section I deduce the effect of random versus directed 
movement behaviour on the functional response. I consider the case where prey are 
stationary and located randomly in space.

Consider an infinite one-dimensional landscape where prey are distributed 
according to a Poisson process with intensity A per unit length (A is equivalent to 
N,  the expected density of prey ). The waiting times, or times between consecutive 
events, of a Poisson process are exponentially distributed (Taylor and Karlin, 1998). 
Denote the locations of prey as { ... , x s , x - 2, x - i ,  0, x\,X2,X3, . . .} . Translating 
this to a Poisson process for prey locations in space indicates the distances between 
prey, X{, are exponentially distributed,

Without loss of generality, consider the sub-domain [0, zq], where prey are located 
at 0 and aq. Suppose w(x) is the solution to the mean first passage time equation 
on [0, aq], given some underlying movement and homogeneous Dirichlet boundary 
conditions at x — 0 and aq =  0. Then the expected mean first passage time on 
[0 , aq], assuming a uniform distribution of starting locations, is

1 fXl
E[w{x)\x\[ =  — I w(x) dx. (3.39)

x\ Jo
Now, the expected mean first passage time over all sub-domains is

g(xi) =  Aexp[-Aaq]. (3.38)

r  oo
E[w(x)\ = /  E[w(x)\xi]g(xi) 

Jo
(3.40)
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Then the rate at which predators encounter prey as a function of prey density

predators undergoing pure advection, simple diffusion, and a mixture of advection 
and diffusion.

Pure advection. The mean first passage time equation for pure advection is given 
by Eq 3.16, where d — 0 and c is constant. For this case, the solution is

Substituting Eq 3.41 into Eq 3.39 the expected mean first passage time for a fixed 
x\  is

Therefore the encounter rate is 2cA. This is equivalent to the Holling Type I 
functional response where a =  2c, f c{N) =  2cN.

Simple diffusion. Now consider a predator moving according to simple diffusion. 
Then w(x) is given by Eq 3.4 and the expected mean first passage time for a fixed 
x\  is

The rate that a single predator encounters prey as a function of prey density A is 
6 dA2, f ( N )  =  6 d N 2 (Figure 3.12).

calcu lations to  include handling tim e Tft for predation. Follow ing th e  argum ent 

of Gurney and Nisbet (1998), the average number of prey items ingested by an 
individual predator per unit time is given by

is given by E[w(x)\ 1. This method is used to derive functional responses for

L - x
w(x) = -------c (3.41)

(3.42)

and the expected mean first passage time is

(3.43)

(3.44)

and the expected mean first passage time over all x\,

(3.45)

Including handling time. I extend the results from the above encounter rate

(3.46)
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Q.

Prey density (N)

Figure 3.12: Shape of the functional response for underlying movement mechanisms 
of pure advection (solid) and simple diffusion (dashed) when no handling time is 
included.

where predators capture prey at an average rate R  per unit time. For each 
underlying movement mechanism, R  can be obtained from the encounter rates above 
(Figure 3.13. Therefore the functional responses with handling time assuming pure 
advection and simple diffusion are respectively

U N )  = 

fd (N) =

2  cN
l  + T t f c N ’

6  dN2 
1 +  Th6dN2'

(3.47)

(3.48)

<D0)c
8.(/)
2
asco
Gc3
UL

Prey density (N)

Figure 3.13: Shape of the functional response for different underlying movement 
mechanisms, pure advection (solid) and simple diffusion (dashed) including handling 
time.
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3.7 Discussion

While advection and diffusion processes have been widely applied in ecology to 
answer questions about how animals use space (Turchin, 1998; Okubo and Levin, 
2 0 0 1 ), no similar framework exists for studying animal encounter rates with 
landscape features. In this chapter I suggest that mean first passage time could 
provide such a framework. New equations for mean first passage time were derived 
from first principals. These equations incorporate directed (advective) and random 
(diffusive) motion in spatially heterogeneous landscapes. The solution to these 
equations specifies the average time taken to first reach a given location in space. 
Immediate applications of mean first passage time to predator-prey encounter rates 
and predator functional response were demonstrated.

Using red fox movement within a home range as an example, I showed that mean 
first passage time can be used to calculate the effect of detailed movement behaviours 
on encounter rates between a predator and a single prey item. Mean first passage 
time analysis revealed that foxes moving with a centralizing tendency found prey 
near the den site faster, but took longer to find prey near the territory boundary, 
than randomly moving foxes.

The connection between mean first passage time and predator movement was 
extended to analyse the effects of random versus directed movement behaviour 
on functional response. While directed (advective) movement resulted in a linear 
functional response, equivalent to the Holling type I functional response, random 
movement produced a quadratic functional response. When handling time was 
included, directed movement resulted in the traditional Holling Type II functional 
response, while random movement led to a sigmoidal functional response, similar in 
shape to the Holling type III functional response. Therefore, mean first passage time 
analysis demonstrated that random movement could be an alternative biological 
mechanism to prey refugia or prey switching, which gives rise to the Holling type 
III functional response.

The underlying movement model for the mean first passage time equation is 
diffusion-advection. This is a general formulation for random and directed motion of 
animals (Turchin, 1998). It is an approximation which uses sum m ary statistics c(x) 
and d(x) (Eq 4.2-4.6) for complex spatial movement patterns (Holmes et al., 1994). 
The first advantage of this general formulation for mean first passage time is that it 
yields an equation that need only be solved once either by analytical (Sections 3.1- 
3.3) or by numerical methods (Section 3.5). This contrasts with individual-based
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simulation of the same process. Obtaining a mean first passage time surface by 
simulation requires that n realizations of well-defined rules for animal movement 
be simulated from each possible initial starting location, where n is large enough 
to provide a reasonable measure of the mean. Whereas this intensive simulation 
process may be possible for simple problems it becomes intractable for complex 
animal movement patterns in large heterogeneous domains (Grimm, 1999). The 
mean first passage time framework developed in this chapter provides an elegant 
alternative. The second advantage of the general formulation is the ability to model 
animal movement where the underlying master equation is unknown. If the specific 
behavioural interactions that give rise to the master equation are known, it would 
be possible to analyse mean first passage time directly from the master equation 
without taking the diffusion approximation. However, behavioural mechanisms are 
rarely known with certainty for ecological processes (Lima and Zollner, 1996; Belisle,
2005). Instead empirical movement data, such as mean move distance and move 
direction, can be used to calculate summary statistics for animal motion. This 
approach was demonstrated in the red fox example and is the basis of the model of 
wolf movement discussed in Chapter 3.

This chapter introduces a new modelling framework for mean first passage 
time, which compliments the Fokker-Planck equation, and demonstrates two initial 
applications to predator-prey interactions. Future applications of mean first passage 
time could include interactions between adjacent territory holders, dispersal and 
mate finding in heterogeneous landscapes, the effect of environmental heterogeneity 
on predator-prey encounter rates (Chapter 3), or time to first contact in spatial 
disease models. Additionally, the framework could be extended to consider moving 
prey or predators searching using prey-taxis.

Appendix

3.A  Solution to  the diffusion equation

The solution to Eq 3.1 on a domain of length L  for an initial distribution of animals 
f ( x ) ,  is found by th e  m eth od  o f separation  o f variables (H aberm an, 2003). If anim als  

are absorbed at the edges of the domain then

oo r o/ X . f n jKX\ /n7T\2u(x, t) = 2_s Bn sin (̂ — J exp -  (̂ — J kt
n=  1

(3.A-1)
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where

Bn = J/ J  f ( x ) sin ( “X ") dx• (3.A-2)/ o
In contrast, if the animals are absorbed at x = 0 and reflected at x = L, then

n=1 ' '

{ n - V 2 ) A 2kt (3.A-3)

where

D . -  (3.A-4)

3.B  Solution to  the mean first passage tim e equation  
in one-dimensional homogeneous domain w ithout 
advection

Consider the first passage time equation

d ^  + 1 = 0, (3.B-1)

on the domain f2 =  [0, /]. The solution is found using the method of separation of 
variables. First, rewrite the equation as

d2w _  1

dx2 d ’ (3.B-2)

and let u =  Then

so

Integrating again,

dx

"  =  - 3 + C l -

J  dw =  / ( - £  +  * )  dx.

Therefore the general solution to the original differential equation is
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X 2
w(x) = + C1X  + C2 . (3.B-3)

Consider two types of boundary conditions in order to determine constants ci,C2 -
In the first case w(0) = w(l) =  0 (homogeneous Dirichlet conditions). Then
d  -  ^ , c 2 =  0  and

w{x) =  ^ { l x  -  x2). (3.B-4)

In the second case w(Q) =  0 and 35? (I) =  0 (mixed Dirichlet and Neumann 
conditions). Substituting these conditions into Eq 3.B-3, C2 =  0, hence

w(x) = ^ ( 2 ^  -  x2). (3.B-5)

3.C Random walk to  simple diffusion

To arrive at the diffusion equation from a random walk, begin with the master 
equation

u(x, t +  r)  =  ̂ tt(a; -  5, t) + ^n(x +  8, t). (3.C-1)
Z  z

Expand u(x, t +  r) , u(x — 6, t), and u(x +  8, t) using Taylor series,

du I f , ,  du 82 d2u \  I f  du 82 d2u \u{X, i )+ r-Bi = -  t) -  < 5 - +  j  +  -  j u f e  t) +  J _  +  _ _ |  +  h.o.t.

(3.C-2)
where h.o.t. represents higher order terms. Divide through by r  and rearrange,

du 82 d2u , .
m  “ 2 7 to 2 + h '0't ' <3'c ' 3)

By taking the limit as 8, r  —> 0 we obtain the diffusion equation

du _  d2u
dt ~  dx2’ ( ^

where d — lim ^ ^o  fy is the diffusion coefficient.
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3.D Random walk to  mean first passage tim e

Using the random walk framework following (Berg, 1993), write the mean first 
passage time equation as

1 1
w(x) =  r  +  -w{x  -  8) +  -w (x  + 8). (3.D-1)

Using Taylor series rewrite the above equation as

. . I f , ,  A w  82 d2w \  I f . .  A w  82 <fw\

(3.D-2)
Divide through by r  and rearrange to obtain

62 d2w_ _  +  1 +  h.0, .  =  °. (3.D-3)

Take the limit as S —> 0 to arrive at the equation for the mean first passage time

d ^  + 1 =  0, (3.D-4)

where d =  lim<5_>o fp is the diffusion coefficient.

3.E Random walk to  diffusion w ith spatially variable 
diffusion coefficient

Begin with the master equation for the expected location of the individual,

u(x , t+r ) =  ^ u ( x - S , t ) + ^ j — u(x+6,t)+N(x)u(x,t).

Simplify and collect terms to rewrite the equation as

u(x ,t  + r ) =  ^ (u(x — 6,t) — N(x  — 8,t)u(x — 6,t) + u(x +  5,t)

—N(x  +  6, t)u{x + 6, t) + N(x)u(x , t )). (3.E-1)

Expand u(x, t  4 - r) , u(x — 8, t), u(x +  8,t) ,N(x  — 8,t), and N(x + 8, t ) using Taylor 
series, divide by r, and take the limit as 8, r  —> 0  to obtain the diffusion equation

du d2 . , . .
at =  w {i{x)u)’

where d(x) =  lim^^^o is the spatially variable diffusion coefficient.
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3.F Random walk to  mean first passage tim e with  
spatially variable diffusion coefficient

The master equation describing the random walk is

Expand w (x  — S), and w (x +  S) using Taylor series, divide by r , and take the limit 
as 5, t  —► 0 to obtain the mean first passage time equation

3.G Solution to the mean first passage tim e equation in 
a patchy environment

Consider the mean first passage time equation in a two-patch heterogeneous 
environment. Use the method of separation of variables to obtain the following 
solution

w(x) = T  + L j p * y \  w{x -  s ) + w(x + + N (x )w(x)

Simplify and collect terms to rewrite the equation as

1 +  d(x) —  0,

where d{x) =  6 V - is the spatially variable diffusion coefficient.

w(x) =  / / du dv. (3.G-1)
Jo Jv d{u)

There are two cases depending on the location of x is in the domain. For the first
case, x € (0, a). Then

For the second case x  £ (a, I) and,

— - du dv 
D2

(3.G-3)
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Combining Eqs 3.G-2 and 3.G-3 the complete solution is,

,#)W J  & ( 2 a x - x 2) + % ( l - a )  x e ( 0 , a )

\  ~  m  + m  i2lx ~  x2) x e ( a , i )

3.H Random walk to  Fokker-Planck equation

The master equation from the random walk is given by

u(x, t  +  r)  =  R(x — 8, t)u(x — 8,t) + L(x — 8,t)u(x +  8,t) +  N(x)u(x, t).

Expand u(x -  6, t), u(x +  6, t), R(x  -  8, t), and L(x +  8, t) using Taylor series, divide 
by r  and take the limit as <5, r  —*• 0 to obtain the Fokker-Planck equation,

du d  . , . . d2 , ,, . .
-  = - - ( c ( x )u) + ^ ( d { x ) u ) ,

where c(x) =  lim ^^o  S(R{X)~L^  is the advection coefficient and d(x) =
lim5)T_>o S is the diffusion coefficient.

3.1 Random walk to  mean first passage tim e equation  
including advection and diffusion

The master equation is given by

w{x) =  L{x)w{x — £,£) +  R(x)w(x + 8,t) + N(x)w(x,t) .

Expand u(x — 8) and u(x +  8) using Taylor series, divide by r  and take the limit as
5 —> 0  to obtain the mean first passage time equation,

d  d2
C(X) f a ( W) +  d^ Q x 2  (w) +  1 =  0 ,

where c(x) =  lim^)T̂ o *(R (X) ~ L (X)2 is the advection coefficient and d(x) =
lim ,5 T .o {R(x)+L{x)) jg diffusion coefficient.

3.J Incorporating variable step length

Space use. Begin with the master equation
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/oo
k(x \  x, t ) u ( x ' ,  t)dx'.

•OO
Write x' =  x  — a and the redistribution kernel as K{x — a,a,r),  where a is the 
directed length of the move. The equation becomes

/ OO

K (x  — a, a, t ) u ( x  — a, t)da.
-OO

Expand u(x, t + r), u(x — a, t), and K (x  — a, a, r)  using Taylor series,

du f°° f du(x,t) + r —  = J  <.[K(x, a, t ) u ( x ) ]  — a— [K(x,a,r)u(x,t)\

0,2 q2 "j
+ —  [K(X1 t ) u ( x ,  t)] +  h.o.t. > da.

Divide by r  and use the fact that f ^ g K ( x ,  a, r)u(x)da = u(x) to obtain

du
dt

f°° f a d a2 d2 1
=  J  <.---^[K(x,a ,T)u(x ,t )]  + — ^ [ K ( x , a , T ) u ( x , t ) ] + h . o . t . \ d a .

Switch the order of integration and differentiation and take the limit as 8, r  —» 0 to 
rewrite the equation as

where

a r°°
c(x) = lim -  / K(x ,a ,r )da ,

S,T *0 T  J  QQ

q 2 roo
d (x )— lim — I K (x ,a , r )  da.

(5, r -> 0  2 r  J _ 00-00

Mean first passage time. Begin with the master equation

/oo
k(x, x', T ) w ( x ' ) d x ' .

-OO

Let x' =  x  +  a and define a new redistribution kernel as K(x, a, r) , where a is the 
directed length of the move and the equation becomes

/OO

K(x, a, t ) w ( x  +  a)da.
-OO
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Expand w(x +  a) using Taylor series,

foo ( Q a2 q2 'I
w ( x ) = t  + J  K ( x ,a , t )  <.w(x) + a— w(x) + - - ^ - ^ w ( x ) +  h.o.t.> da.

Divide by r  and use the fact that Ĵ °00K(x,  a, r, t) da = 1 to obtain

f  d u  a ?  ct2 1
J  K (x ,a , r )  <.—a— w(x) + - - ^ - ^ w ( x )  + h,.o.t.> d a + 1 = 0.

Because the derivatives are independent of a it is possible to remove them from the
integral. Take the limit as 6, r  —> 0 and the equation becomes

. .dw .. . d2w cW _  +  < i M ^  +  i  =  o

where

a f°°
c(x) = lim -  / K(x ,a ,r )da ,

filT *0 J —oo

a2 f°°
d(x) = lim — / K (x ,a ,r )  da.

S,t —>0 2 T  J _ 0O

3.K Extension from one- to  two-dimensions

Space use. Let x  =  (x, y). Then the master equation is

u(x, t +  r)  =  J  u(x', t)fc(x', x, r)  dx'.

Re-write x ' =  x  — a and define a new redistribution kernel K (x  — a, a, r), where a 
is the vector representing the move. The equation becomes

u(x, t +  r)  =  j  u(x  — a, t ) K (x -  a, a, r)  da.

Expland tt(x, t +  r), u(x -  a, t) and K (x — a, a, r)  using the two-dimensional Taylor 
series to obtain
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/ \ ® / \ u{x,t) + r —u(x,t)  =

/{ u(x, t ) K (x, a, r)  -  01  ̂ [ u ( x ,  f)ifT(x, a, r)]

- a ^ [ u ( x , t ) K ( x , a , r ) )  +  ^ ~ ^ [ u ( x , t ) K ( x , a , T ) ]

. aifl2 d 2 . . . . a2ai 92 r , . ..

+ — te ^ l“(x' t)K(x’a’T)1 + “ T  % a iWx' ‘)iir(x’a'T)1
(a; ) 2 c>2 

2 ch/2 '
[n(x,i)i;£r(x, a ,r)] +  h .o .t. | da (3.K-1)

Divide by r , and use the fact that f  K (x ,a ,r )u(x , t )da  = u (x , t ) to rearrange. 
Taking the limit as r  —> 0 gives the Fokker-Planck equation

^  i ■ d 2 ld x x ( x , t ) u ]  , a 2 [4 y(x,f)n] | d 2 [dy x ( x , t ) u \  t d2 [rfw (x,t)u]
<9t cte2 cfcrch/ dy<9x 9y2

(3.K-2)
where

c(x,t) =  lim -  [  aK (x ,a ,r )  da, (3.K-3)r-^o r  y

dxx fc t )  = lim —  J  a2K(x ,a ,T) da, (3.K-4)

dxy(x.,t) = J  o>ia%K{x, a, r)  da, (3.K-5)

dyx(x , t ) =  ^ ( x ) ,  (3.K-6)

dvv(x , t ) =  lim -7- [  a2K(x ,  a, r)  da, (3.K-7)r-+o 2r  y

Mean first passage time. From the random walk the master equation is

u;(x) =  r  +  J  k(x,x' ,  t ) w ( x ' )  d x 1.

R e-w rite x 1 = x  -I- a  and define a new redistribution kernel K(x,  a, r) , where a is a 
vector representing the move. The equation becomes

w(; ( x ) = r  +  J  k(x, a, t ) w ( x .  +  a) da.

Expland w(x  +  a) using the two-dimensional Taylor series the equation to obtain
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Divide by r, and using the fact that f  K(x,  a, r)u>(x)da = w(x), rearrange and take 
the limit as r  —> 0  to obtain the mean first passage time equation

3.L Num erical M ethod

The spatially heterogeneous mean first passage time problem was solved using 
COMSOL Multiphysics. The landscape was defined in COMSOL using the draw 
tools. The model was defined using the PDE, coefficient form (stationary analysis) 
application mode. The general pde in this form is

where is the computational domain, dQ. is the boundary, and n  is the outward 
normal on dQ,. The second equation is the generalized Neumann boundary condition 
and the third equation is the generalized Dirichlet boundary condition. To adapt the

where

J  aK  (x, a, r)  da,

-  J  a,iK(x, a, r)  ds

- J  a ia 2if(x ,a , r) (3.K-10)

(3.K-11)

(3.K-12)

(3.K-9)

(3.K-8)

d y x  (x) — d x y  (x),

dy y  ( x )

V • (— cVu — a u  + 7 ) +  (3 • V u  +  au = f  in Q 

< n  • (cV +  a u  — 7 ) +  qu = g — hTn on dQ (3.L-1)

hu = r on dQ,
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general equation for the mean first passage time equation I specified the coefficients 
as follows

da, a, 7 , a =  0 

/  =  1
P = [~CX (x ,y )  — C Y ( x , y ) } 

c = d

where CX(x , y) and CY(x,  y) are MATLAB functions that compute the spatially 
dependent advection coefficients and d is the constant diffusion coefficient. The 
insulating boundary condition on the exterior boundaries is specified using the 
generalized Neumann boundary condition (q = g = 0) and the absorbing boundary 
condition on the interior boundary is specified using the generalized Dirchlet 
boundary condition {h — 1 and r =  0). Therefore the mean first passage time 
problem is stated as

V • (c(x)Vm) +  /?(x) • Vu  +  1 =  0 in Q,

< n • (cVit) = 0  on cft)ext (3.L-2)

u = 0 on dClmt

Sample code.

1. Example m-file the advection coefficient vector 

7.
% First Passage Time paper: Red fox example
°/0 functin cx defines the x component of the advection vector
7.
function cx = CX(x,y) 
global pde 
7.
7. compute scalar speed of advection
7,7.c = pde.c; 
c = 0.085;
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7.
7. initialize cx and find size sx, required later to reshape cx
7.
cx = zeros(length(x),1);
sx = size(x);
7.
7. loop through each mesh point (x,y) and compute cx
7.
for i=l:length(x)

7. find direction of unit vector pointing to homerange center
7. (which is at (0,0))
xdir = -x(i) / norm([x(i) y(i)]);
7, multiply by scalar speed of advection 
cx(i) = c*xdir;

end
7.
7. reshape cx for FEMLAB
7.
cx = reshape(cx,sx);

7.
7. First Passage Time paper: Red fox example
7. functin cy defines the y component of the advection vector
7.
function cy = CY(x,y) 
global pde
7.
7« compute scalar speed of advection
7.7. c = pde.c; 
c = 0.085;
7.
7. initialize cx and find size sx, required later to reshape cx 
7.
cy = zeros(length(y),1); 
sy = size(y);
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7.
% loop through each mesh point (x,y) and compute cx 
7.
for i=l:length(y)

7. find direction of unit vector pointing to homerange center
7, (which is at (0,0))
ydir = -y(i) / norm([x(i) y(i)]);
7. multiply by scalar speed of advection 
cy(i) = c*ydir;

end
7.
7. reshape cy for FEMLAB 
7.
cy = reshape(cy,sy);
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Chapter 4

The effect of linear features on 
mean first passage time: 
implications for predator-prey 
interactions

4.1 Introduction

To understand predator-prey interactions in a spatial context, it is critical to 
unravel the links among spatial heterogeneity, animal movement, and predation 
rate. The relationship between the number of prey consumed per predator and the 
prey density is known as the functional response (Solomon, 1949; Holling, 1959). 
The functional response couples prey and predator populations by connecting prey 
death rate and predator birth rate, and therefore lends insight into predator-prey 
dynamics. A major component of the functional response is search time, the time 
taken by a predator to locate a prey (Bell, 1991). Search time depends in turn on 
animal movement, which is influenced by spatial heterogeneity (Weins, 2001). The 
effect of animal movement behaviour on search time, and therefore the functional 
response, is not well-understood. In this chapter I demonstrate, through a case 
study of wolf-ungulate interactions in the central east slopes of the Rocky mountains 
(A lberta , C anada), how spatia l heterogeneity affects wolf movement behaviour, and 
subsequently wolf functional response.

Spatial heterogeneity in both the abiotic components of the landscape (e.g. terrain 
structure) and the spatial distribution of prey can impact predator movement 
(Jalkotzy et al., 1997; James, 1999; Linke et ah, 2005) and predator search time (Bell,
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1991; Cuddington and Yodzis, 2 0 0 2 ). Spatial heterogeneity affects animal movement 
rate and direction (Weins, 2001), and therefore animal mobility. Using spatially 
explicit, individual-based population models, McCauley et al. (1993) showed that 
increased mobility led to increased encounter rates between predators and prey. 
Conversely, spatial structures that impeded animal movement altered the dynamics 
of predator-prey systems (De Roos et al., 1991) and led to a reduction in predation 
rates (Cuddington and Yodzis, 2002). Predator search time is also a function of prey 
spatial distribution (Bell, 1991). Cain (1985) found that in a stochastic simulation 
model herbivores found uniformly dispersed plants more easily than clumped plants.

To associate spatial heterogeneity with predator movement, I break the predator’s 
movement path into distributions of move distances and move directions (Turchin, 
1998), and consider how these distributions vary in relation to landscape features. 
Small-scale individual movement responses are linked to search time using the mean 
first passage time (MFPT) framework developed in Chapter 2. Defined generally, 
MFPT is the average time taken to reach a site, or set of sites, for the first time (Berg, 
1993; Redner, 2001). MFPT has been used in spatial ecology as an alternative metric 
to mean squared displacement (Johnson et al., 1992), as a method for distinguishing 
between movement behaviours (Fauchauld and Tveraa, 2003; Frair et al., 2005), and 
as a measure of search efficiency along a foraging path (Bailey and Thompson, 2006). 
In the context of predators searching for prey, MFPT is the average time required 
for a moving predator to locate a stationary prey. I use MFPT as a proxy for search 
time.

Connecting spatial heterogeneity and its affect on animal movement to functional 
response is crucial for understanding predator-prey dynamics in patchy or 
fragmented landscapes. One such landscape is the central east slopes of the Rockies, 
which are highly developed by the forestry and energy industries. This area is home 
to several ungulates species, including moose (Alces alces), elk ( Cervus elaphus), 
mule deer (Odocoileus hermionus), and white-tailed deer (Odocoileus virginianus) , 
whose main predator is the gray wolf (Canis lupus). An increasingly common type of 
spatial heterogeneity here is created by seismic lines, long, narrow, linear stretches of 
forest, cleared for energy exploration (Timoney and Lee, 2001). These linear features 
negatively impact most species by increasing habitat fragmentation, disturbances, 
and mortality, and decreasing habitat quality, but they may benefit predators, who 
enjoy increased travel efficiency along the low human-use linear features (Jalkotzy 
et al., 1997). Wolves both avoid and use linear features, depending on the linear
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feature density and level of human use (Thurber et al., 1994; James, 1999; Callaghan, 
2002; Whittington et al., 2005). When wolves used linear features as travel corridors 
(James and Stuart-Smith, 2000), they moved up to 2.8 times further per unit time on 
linear features than in the forest (James, 1999). Consequently, linear features were 
associated with higher predation risk for caribou (Rangifer tarandus) (James and 
Stuart-Smith, 2000) and elk (Frair et al., 2005). Edmonds and Bloomfield (1984); 
Bergerud and Elliot (1986) hypothesized that increasing densities of linear features 
would affect predator-prey dynamic between wolves and ungulates by increasing the 
mobility of wolves.

Here I test this hypothesis by asking whether increasing linear feature density 
in the central east slopes of the Rockies could alter the predator-prey interactions 
between wolves and ungulates. To address this question I develop a new method 
for linking spatial heterogeneity and movement to the functional response, which 
is an integrated empirical and modeling approach. From high-frequency GPS 
location data I quantify the movement response of wolves to linear features in the 
central east slopes. Using a MFPT model, parameterized by wolf movement data, I 
determine how search time changes with increasing linear feature densities and prey 
distribution, and conclude with a discussion of how this will affect the functional 
response and predator-prey dynamics.

4.2 Theoretical framework for investigation

The formal framework for investigating the connections among spatial heterogeneity, 
movement response, search time, and functional response is developed here. The 
MFPT in a spatially heterogeneous landscape can be written as the partial 
differential equation

d^w d^w d^w d^w
c ^ y V w  +  d x x ^ ) - ^  +  d * y ( . x ) - Q ^ y  +  +  d» ( x ) ^ 2  + 1 =  °>

■V—

Advection Diffusion (4.1)

where the coefficients
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c(x) =  lim -  I aK(x ,a ,  r)  da, (4.2)

dXx(x) = lim — / aiK (x ,a , r )  da,
T - f 0  2 T

1 Z100
(4.3)

*/ —00

/oo
a\d2K(x ,a ,  r)  da.

•00

(4.4)

(4.5)

(4.6)

dyx (x )  — dxy ( x ) ,

— OO

specify the spatially variable movement behaviour of the predator. Here x is the 
current location of the predator, a  is a vector describing the distance and direction 
of the next move, and K  is the redistribution kernel, which is a probability density

2006). Eq 4.1 includes random (diffusive) and directed (advective) motion which 
together give rise to animal movement. For example, far from landscape features 
wolves may move in a random fashion, but their movement may become more 
directed as they interact with landscape features. The solution to Eq 4.1 is a three-

x. This surface provides a picture of how MFPT varies in space, and is conveniently 
summarized by the spatial average of the MFPT, which is the expected MFPT for 
a randomly located predator. Thus, MFPT provides a way of calculating predator 
search time which incorporates the influence of spatial heterogeneity on animal 
movement.

To understand how search time contributes to the functional response, we return 
to the original derivation of the Holling disk equation (Holling, 1959). Holling (1959) 
assumed that prey were randomly distributed in the landscape at some density N  
and that predators searched a constant area per unit time. Therefore, the number 
of prey encountered by a predator was

where a is the encounter rate (number of prey encountered by a single predator 
per unit of time searching) and Ts is the time spent searching. To obtain the disk 
equation Holling (1959) showed that the time spent searching could be written as

function describing the potential movement of the individual (Moorcroft and Lewis,

dimensional surface w(x), where the height is the MFPT for a predator located at

Ne = aTsN (4.7)

Ts = Tt — TcNe — Tmf N e, (4.8)
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where Tt is the total time, Tc is the time spent chasing prey encountered, and Tm 
is the time spent manipulating the fraction /  of prey encountered that are caught. 
Assuming that /  is constant we can combine Tc and Tm into an overall prey handling 
time, Th, so that Eq 4.8 becomes

Ta = Tt -  NeTh. (4.9)

Substituting Ts into Eq 4.7, solving for Ne and dividing by the total time we obtain 
the Holling disk equation, or Holling type II functional response,

=  1 + aThN '  (4,1°)

From the shape of the curve (Figure 4.1), we can see that at low prey densities 
the functional response is dominated by the encounter rate (a), while at high prey 
densities it is governed by the handling time (TX). A direct connection exists between 
the encounter rate and the search time (MFPT),

a =  A - M F P T ’ (4'n )
which highlights how the functional response is affected by predator movement via 
search time.
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Figure 4.1: The shape of the Type II functional response for different values of 
encounter rate a.
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4.3 M ethods

4.3 .1  S tu d y  area

The study area, consisting of approximately 15,000 km2 of foothill and mountainous 
landscape, is located in the central east slopes of the Rocky mountains, Alberta, 
Canada (52°27’N, 115°45’W). Elevation of the area ranged from 500-1500 m. The 
average daily mean temperature was -7.5°C in winter (January/February, 2005) and 
1°C in spring (March/April, 2005). Total snowfall was 54 cm in winter and 24 cm 
in spring. The area consists predominantly of forest (68.7%), interspersed with wet 
and dry meadows (7.1%), areas of harvested forest (4.3%), bare soil/rock (12%), 
water (2.1%), regeneration areas (< 1%), and urban area (4.1%) (Frair et al., 2005). 
Development by energy and forestry sectors has led to increased anthropogenic 
disturbance, including construction of linear features. Here I focus exclusively on a 
subset of linear features, seismic lines required for oil and gas exploration. At the 
time of the study there were > 25000 km of linear features present in the landscape, 
with densities varying from 0.18 km/km2 near the western boarder to 4.4 km/km 2 

near Rocky Mountain House (mean =  1.8 km/km2). Linear features experienced 
human use year-round for hunting, trapping, snowmobiling, off-roading, and hiking. 
The area supports populations of moose (Alces alces), mule and white-tailed deer 
(Odocoilues hemionus and Odocoiles virginianus), and elk (Cervus elaphus), as well 
as their main predator, wolves (Canis lupus). Wolf populations were estimated at 
5-7 wolves per 100 km2 (Clarkson et al., 1984; Schmidt and Gunson, 1985).

4 .3 .2  D a ta

As part of a larger study, four wolves from three packs were captured in December 
2005 via helicopter netgunning (University of Alberta Protocols #391305 and 
#353112) and fitted with Lotek GPS-3300 collars (Lotek Engineering, Newmarket, 
Ontario). Collars were programmed to collect locations at 5 minute intervals during 
the winter of 2005 (Appendix 4.A) and recorded locations on 90% of fix attempts. 
Data were downloaded upon retrieval via a remote-release mechanism (3 wolves) or 
recapture (1 wolf). Data from wolves were considered to be independent because 
they were either from different packs (i.e. wolves 230, and 234) or the data were 
collected during different time periods (i.e. wolves 232 and 233). Wolves occupied 
territories across a gradient of linear feature densities from 1.73-3.60 km/km2.

69

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.3 .3  Q u an tita tive  descrip tion  o f  m ovem ent

Calculation of movement variables. Two movement variables were used to describe 
wolf movement. To quantify move distance I calculated the straight-line distance 
(p : p < 0) between the current and next consecutive wolf location (Figure 4.2(a)),

P =  y/(xt ~  %t+1 )2 +  (Vt ~  Vt+1)2- (4.12)

Although locations contained GPS measurement error, all move distances were used 
to avoid introducing bias. Movement direction relative to the nearest linear feature 
was quantified using the relative move direction (£ : —n < £ < n ) . The relative move 
direction was defined as defined the angle between the ‘beeline’ move direction of 
the animal (Turchin, 1998) and the direction from the current location towards the 
linear feature,

^ sgn fx-yJ-)cos'*  ( i i ^ ) .  (4 13)

where the variables are as defined in Figure 4.2(b), • represents the vector dot 
product, and || • || is the norm. Note that £ is defined everywhere, as it is 
the direction towards the centre of the linear feature. In the context of animal 
movement, £ =  ± 7 t/ 2  represent moves along the linear feature, £ =  0 represents 
moves towards the linear feature, and £ =  ± 7 r  represent moves away from the linear 
feature. GPS measurement error may result in incorrect inference of move direction 
between locations that are less than 5 standard deviations of the GPS error kernel 
apart (Jerde and Visscher, 2005; Hurford, 2005). To avoid incorrect inference only 
those relative move directions with corresponding move distances greater then 55 m 
(Chapter 2) were used.
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(a) Move distance (b) Relative Move direction

Figure 4.2: Movement variables used to quantify wolf response to linear features, (a) 
p is the distance between two consecutive wolf locations, (b) £ is the angle between 
the ‘beeline’ move and the direction of the nearest linear feature.
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Temporal autocorrelation in moves. Animal move directions may be temporally 
correlated over short times (Turchin, 1998). The relevant way of computing 
correlation between angles from a non-normal population is using the statistic (paa)s, 
which is obtained from the ranks of circular measurements, and is analogous to the 
Spearman rank correlation coefficient (Mardia, 1975; Zar, 1996). I tested the null 
hypothesis that move directions were uncorrelated (Hq : (paa)s =  0 ) against the 
alternate hypothesis that move directions were correlated (H\ : (paa)s 7̂  0), using 
a non-parametric correlation procedure (Mardia, 1975; Zar, 1996). Because of large 
sample sizes (n > 1500) the power of the test was large, and therefore rejection of the 
null hypothesis was likely even for small deviations of (raa)s from zero (Royall, 1997). 
Move directions were statistically correlated (Appendix 4.B). A common approach 
for eliminating correlation is to subsample the data at a longer time interval. I 
chose not to take this approach, as I was interested in wolf movement over a short- 
time scale. Because the correlation was small, I did not consider the correlation in 
subsequent analysis. However, this may have led to underestimation of the mean 
move distance (Kareiva and Shigesada, 1983).

Classification of locations. To understand how distance to linear feature affected 
movement variables, wolf locations were classified into three categories: on, near, or 
far from linear features. Linear features were assumed to have an average width of 
5 m and were buffered by an additional 24.5 m to account for GPS measurement 
error in wolf locations. The size of the buffer was chosen using the method outlined 
in Chapter 1. Locations within the GPS error buffer were classified on the linear 
feature. Locations between the GPS error buffer and the range at which wolves 
perceived linear features were classified near. Because animal perceptual range is 
not well-understood (Lima and Zollner, 1996), I used two distances in the analysis. 
The first represented the distance at which linear features might be visible to wolves 
(50 m) and the second represented a distance at which wolves stopped responding 
to linear features (200 m) (Whittington et al., 2005). Locations beyond the wolf’s 
perceptual range were classified as far from a linear feature.

Differences in movement distances. Move distances of canids are well-described 
by an exponential distribution (Moorcroft and Lewis, 2006). Therefore, I assumed 
the distribution of move distances p followed an exponential distribution

f (p) = ^  exp [-p /a , ] (4.14)

where a  is the expected move distance. The maximum likelihood estimate for a
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is &m le  = P- To test whether the distribution of distances travelled by wolves 
differed as a function of distance from a linear feature 90% confidence intervals for 
&m l e , obtained with non-parameteric bootstraping (Efron and Tibshirani, 1993), 
were compared among distance classes.

Movement along linear features. Using locations on linear features, I tested 
whether wolves on linear features tended to continue along the linear feature in 
the next move. The von Mises distribution is commonly used for animal movement 
directions (Fisher, 1993; Moorcroft and Lewis, 2006). It is a symmetric unimodal 
distribution similar to the circular normal distribution. The probability density 
function is written as

^  =  2ttI0(k) 6XP [KCOŜ  ~ ^ )] > (4T5)

where Jo is the Bessel function of the first kind, —7r < <f>' < 7r is the mean direction, 
and k > 0  is the concentration parameter defining the degree of non-uniformity of 
the distribution. In the limits, as k —> 0 the distribution converges to the uniform 
distribution and as k —► oo the distribution tends to a delta function centred on the 
mean direction. A bivariate von Mises distribution can be written as a combination 
of two von Mises distributions,

P — p\
f(4>) = 27rj 0( " ( exP [« i cos(^ “  & ) ]  +  2 7 r exp cos^  “  ^  ’ (4-16)

where and k\,K 2 are the mean directions and concentration parameters of
the univariate distributions, and 0 < p < 1. I assumed the distribution of relative 
move directions on linear features £ followed a bivariate von Mises distribution

^  =  4tt I o ( k )  exptKC0S^  +  +  4ttI0(k ) exp[KC0S^  “  (4-17)

and tested the null hypothesis Hq : n =  0 against the alternate hypothesis Hi : n > 0 
using the parametric bootstrap likelihood ratio (PBLR) test (Barnard, 1963; Dennis 
and Taper, 1994). The PBLR was used in this case because the parameter of interest, 
k , is bounded by 0 and therefore the likelihood ratio test does not follow the Chi- 
squared distribution (Barnard, 1963).

Movement towards linear features. I used locations classified as near linear 
features to determine if wolves near linear features biased their next move towards 
the linear feature. The distribution of relative move directions was assumed to be
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(4.18)

and the null hypothesis Ho : k =  0  was tested against the alternate hypothesis 
H i : k > 0 using the parametric bootstrap likelihood ratio test (Barnard, 1963; 
Dennis and Taper, 1994). I repeated the same test on locations far from linear 
features to determine whether wolves beyond the perceptual range moved randomly 
with respect to linear features.

4 .3 .4  M ean  first passage tim e  analysis

Predator search time under different scenarios was assessed using mean first passage 
time methods (Chapter 2). The mean first passage time for each scenario was 
summarized using the spatial average of the mean first passage time,

a randomly located wolf. Definitions of animal movement, landscape configuration, 
and prey locations are required to parameterize the mean first passage time model 
4.1. I considered combinations of four wolf movement behaviours, eleven landscapes 
of varying linear feature density, and four prey distributions.

Wolf movement behaviour. Four models of wolf response to linear features were 
considered. In the no response model (NR), wolves did not alter their movement in 
response to linear features. Although this model may be biologically unreasonable 
(Thurber et al., 1994; James, 1999; Whittington et al., 2004, 2005), it provides a 
baseline for comparison. The anisotropic diffusion model (AD) incorporated faster 
movement rates on linear features, as well as the tendency to continue along linear 
features. The anistotropic diffusion and bias model (AD+BIAS) was an extension 
of AD, where wolves near linear feature biased their movements towards the linear 
feature. The final model was a modification of AD+BIAS that arose from an 
observation of wolf m ovem ent. In this case movements near linear features were 
biased towards linear features, but were also shorter. This model is referred to as 
the anisotropic diffusion and bias with reduced diffusion model (AD+BIAS+RD). 
The wolf responses were incorporated into the models by the advection and diffusion 
coefficients. Formulae for the coefficients of each model were derived following the

where is a landscape or area A  and w is the mean first passage time from initial 
location x. Biologically MFPTW? can be interpreted as the expected search time of

MFPT,
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method of Moorcroft and Lewis (2006) (Appendices 4.C and 4.D).
Linear feature density. Geographical locations of linear features were mapped 

to a resolution of 5 m using Indian Remote sensing satellite imagery. Landscapes 
were created based on a section of the study area near Rocky Mountain House with 
linear feature density of 3.8 km/km2 (Figure 4.3). To create landscapes of lower 
linear feature densities, while controlling for the configuration of the linear features, 
I randomly selected linear features to be removed from the landscape, such that 
landscapes of approximately 0, 20, 40, 60, and 80 % of the original linear feature 
density were obtained. Landscapes of approximately 120, 140, 160, 180, and 200% 
of the original linear feature density where generated by combining the original 
landscape with each of the new lower density landscapes rotated by 90°.
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(a) 0.9 km/km2 (b) 1.6 km/km2 (c) 2.2 km/km2

(d) 3.1 km/km2 (e) 3.8 km/km2 (f) 4.7 km/km2

(g) 5.4 km/km2 (h) 6.0 km/km2 (i) 7.6 km/km2

Figure 4.3: Landscapes of varying linear feature densities. The original landscape is 
shown in (e). Landscapes of lower and higher linear features densities were created 
by removing randomly selected linear features or combining the original landscape 
with each reduced landscape rotated by 90°.
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Prey distribution. Prey were represented as disks or radius 100 m. The choice of 
radius will not affect relative comparison of mean first passage times among models. 
One hundred prey were placed in each landscape according to distributions that 
were random, clumped, near (within 2 0 0  m) and far (beyond 2 0 0  m) from linear 
features (Figure 4.4).

t v .
V  k . '

* *•
S '

•H

‘y

*5 '

•
•• * 
V

(a) Random (b) Clumped

(c) Near: 0.9 km/km2 (d) Far: 0.9 km/km2

Figure 4.4: Prey distributions. Each landscape contains 100 prey placed in the 
landscape (a) randomly, (b) clumped, (c) near (within 2 0 0  m), or far (beyond 2 0 0  

m) from linear features. One example is shown for the landscape with 0.9 km/km2 

where prey are distributed near and far from linear features.
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4.3 .5  F unctional response

The functional response was calculated using Eqs 4.10 and 4.11. To comply with the 
assumption of randomly distributed prey (Holling, 1959), mean first passage time 
was calculated from model scenarios where prey were randomly distributed. Wolves 
had movement behaviour described by model AD and landscapes with linear feature 
densities of 0, 3.1, and 7.6 km/km2 were used. I compared functional responses 
between linear feature densities using a ratio of Holling Type II functional responses 
(Holling, 1959),

(aLFN) / ( l  + aLFThN)
9[1 j (aN) / ( l  + aThN) ’

where N  is the prey density, is the handling time (defined by Holling (1959) as 
the combined chasing and manipulation times), and a,LF,a  are the encounter rates 
for landscapes with and without linear features. A handling time of T^ =  48 hrs was 
assumed, but had no effect on the comparison among linear feature densities. Ratios 
greater than 1 indicated wolves killed more prey per unit of time in landscapes with 
linear features than without linear features.

4.4 Results

4.4 .1  Q u an tita tive  descrip tion  o f  w olf m ovem ent

Effect of location on movement distance. The mean distance moved by wolves on 
linear features ranged from 100-190 m, and was farther than in other parts of the 
landscape (Figure 4.5). While wolves 230, 232, and 234 had shorter move distances 
far from linear features, wolf 233 showed the opposite trend, with shorter move 
distances near linear features. Mean move distances of wolves far from linear features 
were similar among all wolves, ranging from 50-100m.
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Figure 4.5: Mean move distance of wolves at different distances from linear features. 
Near and far were defined using perceptual ranges of 50 m and 200 m. Bars are 90% 
non-parametric bootstrapped confidence intervals.

79

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Movement along linear features. When on linear features, three of the four wolves 
(230, 233, and 234) had distributions of relative move directions that differed from 
the uniform distribution (Table 4.1, Figure 4.6). These wolves selected movement 
directions along the linear feature more often then any other direction. However, 
wolf 232 had a uniform distribution of relative move directions, suggesting it moved 
randomly with respect to the nearest linear feature.

Table 4.1: Results of the parametric bootstrap likelihood ratio test for moves on 
linear features. The null hypothesis for the test is /(£; k — 0) and the alternate 
hypothesis is /(£; k = 0). Number of bootstrap samples =  2000.

Wolf KMLE LRT statistic Critical value p-value Conclusion
230 1.43 0.009 0.457 < 0 .0 0 1 Reject H o
232 0.61 0.902 0.428 0.31 Do no reject H q

233 1.76 0.004 0.406 < 0 .0 0 1 Reject H q

234 1.54 0.003 0.419 < 0 .0 0 1 Reject H q
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Figure 4.6: Distribution of relative move directions of wolves on linear features. 
Bars represent the empirical distribution, solid lines axe the maximum likelihood fit 
of the model chosen using the PBLR test. Wolves 230, 232, and 234 (panel a,c, and 
d) had distributions of relative move directions that varied from uniform, while wolf 
230 (panel b) had a uniform distribution of relative move directions.
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Movement towards linear features. Wolf 233 had a non-uniform distribution of 
relative move directions within 50 and 200 m of a linear feature (Table 4.2 and 
Figures 4.7, 4.8). The single mode of the distributions corresponded to movements 
towards linear features, suggesting a bias to move towards linear features when near 
them (both within 50 and 200 m). All other wolves had uniform distributions of 
move distances within 50 and 200 m of a linear feature and displayed no bias to 
move towards linear features when near them.

Table 4.2: Parametric bootstrap likelihood ratio test for moves near linear features. 
The null hypothesis for the test is <?(£;« =  0) and the alternate hypothesis is 
<?(£; k = 0). Number of bootstrap samples =  2000.

Wolf & M LE LRT statistic Critical value p-value Conclusion
Within 50 m:
230 0 . 1.003 0.434 0.82 Do not reject H q

232 0 . 1 .0 0 1 0.427 0.60 Do not reject H q

233 0.34 0.078 0.452 0 .0 1 Reject H o
234 0.04 0.959 0.412 0.38 Do not reject H q

Within 200 m:
230 0 .0 1 0.990 0.453 0.43 Do not reject H q

232 0 . 1.007 0.464 0.96 Do not reject H o

233 0.24 0.040 0.432 0.003 Reject H q

234 0 .0 1 0.990 0.430 0.43 Do not reject H q
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Figure 4.7: Distribution of relative move directions of wolves within 50 m of a linear 
feature. Bars represent the empirical distribution, solid lines are the maximum 
likelihood fit of the model chosen using the PBLR test. Wolf 233 (panel c) displayed 
a bias to move towards the linear feature, while wolves 230, 232, and 234 (panels a, 
b, and d) did not.
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Figure 4.8: Distribution of relative move directions of wolves within 200 m of a 
linear feature. Bars represent the empirical distribution, solid lines are the maximum 
likelihood fit of the model chosen using the PBLR test. Wolf 233 (panel 3) displayed 
a bias to move towards the linear feature, while wolves 230, 232, and 234 (panels a, 
b, and d) did not.
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The distribution of relative move directions of wolves far from linear features did 
not differ from a random distribution (Table 4.3 and Figures 4.9, 4.10). Therefore 
wolves did not bias their movements towards linear features when they were beyond 
either 50 and 200 m.

Table 4.3: Parametric bootstrap likelihood ratio test for moves far from linear 
features. The null hypothesis for the test is <?(£; k =  0) and the alternate hypothesis 
is <?(£; k =  0). Number of bootstrap samples =  2000.

Wolf & M LE LRT statistic Critical value p-value Conclusion
Beyond 50 m:
230 0.081 0.601 0.420 0.18 Do not reject H o
232 0 . 1 .0 1 0.419 0 .8 6 Do not reject H o

233 0.083 0.575 0.428 0.15 Do not reject H o

234
Beyond 200 m:
230 0.081 0.862 0.459 0.29 Do not reject H q

232 0.041 0.952 0.447 0.37 Do not reject H o
233 0.018 0.990 0.445 0.42 Do not reject H q

234 0 . 1 . 0.460 0.48 Do not reject H q
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Figure 4.9: Distribution of relative move directions of wolves beyond 50 m of a linear 
feature. Bars represent the empirical distribution, solid lines are the maximum 
likelihood fit of the model chosen using the PBLR test. All wolves had uniform 
distributions of relative move directions.
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Figure 4.10: Distribution of relative move directions of wolves beyond 200 m of a 
linear feature. Bars represent the empirical distribution, solid lines are the maximum 
likelihood fit of the model chosen using the PBLR test. All wolves had uniform 
distributions of relative move directions.
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4 .4 .2  M ean first passage tim e  analysis

The mean first passage time model was parameterized using the movement data 
from wolf 233 and a perceptual range of 50 m (Table 4.4).

Table 4.4: Movement parameters for wolf 233. Near was defined using a perceptual 
range of 50 m. Four models were considered: NR =  no response, AD =  anisotropic 
diffusion on linear features, AD+BIAS extends AD to include bias towards linear 
features, and AD+BIAS+RD is the AD+BIAS model with reduced diffusion near 
linear features. Parameters were estimated from the distributions of move distance 
and move direction using maximum likelihood.

Parameters
Model P (km) p* (km2) K
NR:

0.071 0.017 0

AD:
On 0.139 0.043 1.76
Off 0.071 0.017 0

AD+BIAS:
On 0.139 0.043 1.76
Near 0.071 0.017 0.34
Far 0.071 0.017 0

AD+BIAS+RD:
On 0.139 0.043 1.76
Near 0.049 0 .0 1 2 0.34
Far 0.071 0.017 0

Mean first passage time surfaces had local differences. For example, surface height, 
location and presence of peaks, and steepness of gradients differed among mean 
first passage time surfaces for different wolf movement behaviours, linear feature 
densities, and prey distributions (Figure 4.11).
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Figure 4.11: MFPT surfaces showing local variation. The model scenarios are (a) 
AD movement with linear feature density of 3.1 km/km2 and randomly distributed 
prey, (b) AD movement with linear feature density of 7.6 km/km2 and randomly 
distributed prey, (c) AD movement with linear feature density of 3.1 km/km2 and 
clumped prey, and (d) AD+BIAS+RD movement with linear feature density of 3.1 
km/km 2 and randomly distributed prey. The movement models are denoted by AD 
for anisotropic diffusion and AD+BIAS+RD for anisotropic diffusion and bias, with 
reduced diffusion near linear features. In each case the contours represent a different 
of 2 0  hr, however please note the different vertical scales.
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Mean first passage time decreased linearly with increasing linear feature density 
(Figure 4.12). While mean first passage times for landscapes where prey were 
distributed near and far from linear features are more variable, due to stochasticity 
in prey locations, the general trend remains decreasing. When prey were clumped 
mean first passage times were approximately 6  times longer than for all other 
prey distributions considered. In contrast, mean first passage times for randomly 
distributed prey and prey distributed near and far from linear features were 
similar. Wolves that responded to linear features had shorter mean first passage 
times than those that did not (model NR). There was no difference between 
wolf movement with and without bias towards linear features (models AD and 
AD+BIAS). However, wolves with bias and reduced movement rates near linear 
features (model AD+BIAS+RD) found prey consistently more slowly than other 
wolves responding to linear features.
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Figure 4.12: Spatial averages of the mean first passage time for varying wolf 
responses and linear feature densities when prey (n= 1 0 0 ) distributions are (a) 
random and (b) clumped, (c) near, and (d) far from linear features in a landscape 
626 km2. Wolf responses are NR (square), AD (star), AD+BIAS (triangle), and 
AD+BIAS+RD (diamond). Note the different vertical scales.
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4.4 .3  F unctional response

In landscapes with linear features the wolf’s functional response saturated more 
quickly than in landscape without linear features (Figure 4.13(a)). At low prey 
densities, wolves in landscapes with linear feature densities of 3.1 and 7.6 km/km2 

killed approximately 1.2 and 1.4 times more prey than wolves in landscapes with no 
linear features (Figure 4.13(b)). The relative increase in kill rates was larger at low 
prey densities and became negligible at high prey densities.
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Figure 4.13: Illustration of the effect of linear features on a Holling type II functional 
response for a wolf. The change in the rate of approach to the saturation is shown 
in (a) for linear feature densities of 0 (solid), 3.1 (dashed) and 7.6 (dotted) km/km2. 
Panel (b) shows the ratio of the functional response of wolves in landscapes with 
linear features to landscapes without linear features, where linear feature density is
3.1 (solid) and 7.6 (dashed) km/km2.
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4.5 Discussion

In this chapter I investigated how spatial heterogeneity can influence predator-prey 
dynamics. Specifically, I determined how changing the linear feature density in the 
landscape affected the functional response of wolves using data from the central east 
slopes of the Rocky mountains (Alberta, Canada). The approach was to use mean 
first passage time analysis, which incorporated observed wolf movement behaviour 
and landscape heterogeneity, to understand the effect of increasing linear feature 
density on search time. Search time was then connected to the functional response 
through the encounter rate.

Empirical data showed that linear features altered wolf movement. Differences in 
mean distance moved per unit time of wolves as a function of distance from linear 
features were consistent with differences observed by James (1999) (Figure 4.5). 
However, the tendency of wolves to continue along linear features when on them 
had not previously been shown (Figure 4.6). While wolves have been shown to 
alter their direction with respect to linear features when near them (Callaghan,
2002), I observed bias towards linear features for only one out of four wolves 
(Figures 4.7 and 4.8). One explanation is that the wolves observed did not bias 
their movement towards linear features. Alternatively, inference of such fine-scale 
directional response from GPS location data may not be possible (Callaghan (2002) 
relied on movement paths obtained through snow-tracking), or grouping individual 
move directions into distributions swamped weak directional biases.

Analysis of wolf movement using mean first passage time models, parameterized 
with empirical movement data, showed that increasing linear feature density led to 
decreased mean first passage time. Therefore, wolves found prey faster in landscapes 
containing higher densities of linear features. The observed decrease in search time 
is caused by increased predator mobility due to increased mean move distances 
of wolves on linear features, as well as their tendency to continue along linear 
features once they are on them (Figures 4.5 and 4.6). This finding is supported 
by spatially-explicit individual-based predator-prey models which showed increased 
predator mobility would led to increased encounter rates with prey (i.e. decreased 
search time) (McCauley et al., 1993). Because wolves are widely foraging predators 

that rely on covering large areas in search of prey (Pianka, 1966; Mech and Boitani,
2003) and searching success is linked to predator mobility (Bell, 1991), the MFPT 
model presented here provides the first empirically-based evidence for the hypothesis 
that linear features would affect predator-prey dynamics (Edmonds and Bloomfield,
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1984; Bergerud and Elliot, 1986). Although linear feature configuration was not 
considered here, it is likely the natural interconnected arrangement of linear features 
in the landscape influenced the results. It is expected that in landscapes with similar 
densities of parallel, rather than intersecting linear features, MFPT would decrease 
at a slower rate.

Decreasing MFPT (i.e. increasing encounter rate) resulted in an increased 
predator functional response (Eq 4.11, Figure 4.1), as suggested by McCauley et al. 
(1993). Therefore, for a constant prey density, wolves in landscapes with higher 
linear feature densities had higher per capita kill rates, assuming constant predation 
sucess. For the parameter estimates and range of linear feature densities considered 
here, the model estimated a 1.4 times increase in the number of prey killed by a 
single predator per unit time at low prey densities (Figure 4.13). The effect of 
linear features on kill rate was reduced as prey densities increased. One possible 
explanation is that mobility constrains searching success more at low rather than 
high prey densities when prey are randomly distributed (Cain, 1985). For example, 
at low prey densities prey are spaced further apart, therefore the relative benefits 
of increased mobility are greater than at high prey densities when prey are closer 
together. For extremely high prey densities, search time becomes insignificant and 
the functional response is dominated by handling time (Holling, 1959). In this case, 
the increased encounter rate facilitated by linear features would have relatively little 
effect. However, at low prey densities, when the functional response is driven by 
search time, the effect of linear features on predator mobility is expected to be 
relatively large. One possible consequence of this increased functional response 
would be a numerical increase in the wolf population and subsequent depletion of 
ungulate populations. Therefore, in terms of conservation, increasing linear feature 
density will have a larger relative impact on predator-prey dynamics when the prey 
is at risk (i.e. low density), as is the case for caribou in Alberta (Dzus, 2001). In 
general, any mechanism that increases or decreases encounter rate, such as increased 
mobility, will lead to an increase or decrease in the functional response.

The spatial distribution of prey also affected the functional response via the 
encounter rate. The MFPT was longer when prey were aggregated than when 
they were distributed randomly, near, or far from linear features (Figure 4.12). 
These results are consistent with simulations done by Cain (1985), who showed 
that herbivores found uniformly dispersed plants more easily than clumped plants. 
However, as linear feature density increased, the proportionate decrease in MFPT
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was the same for each prey distribution. For non-random prey distributions the 
Holling disk equation cannot be used to calculate the effect of increasing linear 
feature density on the prey consumption rate (Holling, 1959). However, because 
the proportionate change in MFPT was similar among prey distributions, the 
change in predator-prey functional response is also expected to be similar. Thus for 
example, the wolf’s functional response to elk, which tend to aggregate (Hebblewhite 
and Pletscher, 2002) and moose, which tend to be more dispersed across the 
landscape (Schwartz and Franzmann, 1998), would have the same relative change 
with increasing linear feature density. The variation in absolute MFPT among 
different prey distributions suggests the time required for predators to find prey 
in their landscape is a function of both spatial heterogeneity affecting predator 
movement and heterogeneity in prey distribution. MFPT provides a combined 
measure of both of these types of heterogeneity.

There was no difference in MFPT for prey distributed near and far from linear 
features. This result followed from the effect of wolf bias towards linear features on 
MFPT. Specifically, addition of bias towards linear features to the wolf’s movement 
response did not affect the MFPT (Figure 4.12). However, when the bias was 
coupled with shorter mean move distances near linear features, as was observed for 
wolf 233 (Figures 4.5, 4.7, and 4.8), MFPT was longer. Because bias alone did 
not alter MFPT, the observed difference in this case can be explained solely by the 
decreased movement rate near the linear features.

The finding that MFPT did not decrease when bias was included in the movement 
behaviour was unexpected, particularly when prey were distributed near linear 
features. Consider first the insignificant effect of bias. A possible explanation for 
why the addition of bias did not change the MFPT is that the direction of the bias 
changes over a small spatial range throughout the landscape. For example, wolves 
located within a radius of 1 0 0  m may experience different bias directions, depending 
on the direction of the nearest linear feature. Therefore, due to the local nature 
of the bias, the overall effect on the MFPT is small. Alternatively, because the 
behavioural mechanism underlying a wolf’s bias towards linear features is not well- 
understood, I took at behaviourally-minimalistic approach to modelling wolf bias 
(Lima and Zollner, 1996). This approach dictates that movement models include 
only behavioural traits that are likely to be of most importance for describing animal 
movement. As indicated by Lima and Zollner (1996), the informed decisions required 
of the researcher about what behaviour should be included constitute a major
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challenge of this approach. To further explore the effects of movement bias on MFPT 
and predator-prey interactions, it would be important to understand the underlying 
mechanism for the potential bias. Perhaps it is a function of extrinsic factors such 
as local prey density, or current state of the linear feature (i.e. presence of humans, 
deep snow) not considered here. More complex still, perhaps intrinsic details, such as 
level of hunger, behavioural state (travelling, hunting, territorial defence, mating), 
or spatial memory (i.e. knowledge of areas of high prey density or cognitive maps 
of linear feature locations) are essential for making correct biological inferences. 
Untangling the important aspects of the mechanism underlying wolf use of linear 
features would require a large amount of data, as well as extensive and creative 
model analysis. I now return to the insignificant effect of prey distributed near or 
far from linear features. This result was contrary to studies suggesting predation risk 
for caribou and elk increased near linear features (James and Stuart-Smith, 2000; 
Frair et al., 2005). It is possible that while encounter rates are similar throughout 
the landscape, wolves have a higher capture success rate near linear features. In 
the Holling type II functional response, capture success is assumed to be 100%, 
and therefore this mechanistic difference would not be captured in my analysis. 
Additionally, James and Stuart-Smith (2000) found that wolves were significantly 
closer to linear features than expected, and therefore perhaps calculating the average 
MFPT under the assumption of a uniform distribution of predator starting locations 
is not appropriate.

This study found that increasing linear feature density led to decreased search 
time and increased predator functional response, particularly at low prey densities. 
This result has specific implications for the effects of linear features on wolf-ungulate 
dynamics and management in the central east slopes of the Rocky mountains 
(Alberta, Canada). I also developed and illustrated a new application of MFPT 
for investigating the effects of spatial heterogeneity on predator movement, search 
time, and predator-prey dynamics. While alternate searching strategies (Zollner 
and Lima, 1999; Bailey and Thompson, 2006), the cost of searching (Cain, 1985), 
and population dynamics (e.g. numerical response of predators) (McCauley et al., 
1993) were not considered here, I acknowledge the potential of the integration of 
these subjects with the mean first passage time method. This framework could be 
more generally applied to similar ecological questions about the impact of spatial 
heterogeneity on dispersal, mate-finding, and resource acquisition.
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Appendix  

4.A W olves monitored for the winter 2005

Table 4.5: Wolves monitored during the winter of 2005.

Wolf Pack Dates N Linear feature density 
km/km2

230 Radial Lake Jan 29, Feb 2 & 26, 
Mar 2,26, & 30

5345 2.44

232 Blackstone Jan 22 & 26, Feb 19 & 23, 
Mar 19 k. 23

6477 1.73

233 Blackstone Feb 5 & 9, Mar 5 &; 9, 
Apr 2 & 6

5076 1.73

234 Prairie Creek Jan 29, Feb 2 &; 26, 
Max 2,26, & 30

5109 3.60
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4.B Temporal correlation in move direction

Table 4.6: Circular correlation coefficients for move directions (5-min). Results of a 
non-parametric angular-angular correlation test of the null hypothesis Ho : (paa)s = 
0 against the alternative Hi  : (paa)s 7  ̂ 0, where raa is analogous to the Spearman 
rank correlation coefficient.

Wolf n (raa)s Test Statistic p-value
~~230 3174 -0.10 -3.840 < 0.001

232 2002 -0.16 -4.668 < 0.001
233 3094 -0.12 -4.284 < 0.001
234 1551 -0.09 -3.533 < 0.001
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4.C M ovement in a landscape with linear features

I derive general formulas for the diffusion and advection coefficients of the first 
passage time equation given univariate and bivariate von Mises distributions of 
relative move directions. The derivation follows the method of Moorcroft and Lewis 
(2006). In the derivation I make use of the following:

1. The trigonometric identities,

cos(2 4>) — cos(2(</> — 4>>) + 2<t>') =  cos(2(0 — </>')) cos(2< /̂) — sin(2(</> —07)) sin(20/) 

sin(20) =  sin(2(0 — <j)') +  2 </>') =  sin(2(<  ̂— (/>')) cos(20') +  sin(2< /̂) cos(2 (4> — 4>'))

2. If K{6) is a von Mises distribution with concentration parameter k  then

3. The first and second moments of the distribution of move distances are defined

. sin(20)sin(</>) cos(^) =  — -—

* cos(nO)K(e) dO =
-7T ^ O ( ^ )•7T

to be
and

4. The series expansions of the modified Bessel functions:
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K  is a  un ivariate von  M ises d istribu tion

K  = K(4> -  4>') = 27rj * ^ y exp[«;cos(0 -  <j>')\

Diffusion

dXx{x) =  Inn J \x '  -  x )2k(x, a, r)  da
1 POO  P7T

= Inn —  p2f ( p ) d p j  cos2{<i>)K(4> -  $ )  d(j>

= J q P2 /(p ) dp ^ 1  +  cos(2 (j)') J  cos( 2 ((f) -  (t>'))K{4> -  (/>') d4

=  lim j -  f  1 +  cos
t->o At \  k ^ ; I0(k) J

dyy(x) = Jnn J {y' -  y)2 fc(x, a, t )  da
1 POO /*7T

=  Jim — J  p2f{p)  dp J  sin2(<(>)K((j)-(/>') d<t>

=  l™ob Jo p2^ pS) dp (* ~~cos(2<̂ ) /  cos(2(^ “  4 t ) ) K (<t> -  <?) d<t>

= lim j -  ( 1  -  cos(2 <fi') y j ^ r )
t - > o  4t \  k y j I0(k) J

dX2/(x) =  lirn J (x ' -  x){y' -  y)k(x, a, r)  da
1 pO O  p 'K

= J™o27 Jq P2f ( p ) dP j  sin(< )̂cos(<j))K((f> — <j/) d<f>

=  p2f {p)  dp(sin{2<t>') J  cos(2 (<?i> -  4l))K{<j> -  (j)') d<$>

=  lim j -  rsin(2 ^/) | 2| - | ^
r->0 4t \  K Y J I0(k) J

dyx 0 0  =  d%y (x).

A dvection

To find the advection coefficient I make use of a geometric interpretation of the 
dot product. The dot product of c and v, where v =  [cos(</>', sin <f>'] is unit vector
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pointing in the direction ft ,  can be interpreted as the length of the projection of c 
onto the vector v (Figure). The

c(x) • v(x) =  lim -  f  (x' -  x)fc(x, a, r) da 
t —o r  J

■j pO O  p 'K

— lim -  /  pf{p) dp /  cos(0 — ft)K{4> — ft) d<f>
T-*° r  Jo J_n

= lim ^  (4.C-1)
r —+0 2 T  V !

Multiplying c by a unit vector perpendicular to v, v-1- =  [— sin f t , cos ft] I find,

c(x) • v ± (x) =  lim -  [ (x' -  x)fc(x, a, r)  da 
T - + 0 T  J

1  p o o  p i t

= lim -  /  pf(p) dp /  sin(0 — ft)K(<j> — ft) dcfixv
r  Jo J - k

= 0

because K  is even. Therefore since there is no advection in the direction 
perpendicular to f t  the vectors c and v are collinear and the formula for the scalar 
speed is given by equation 4.C-1.

K  is a  b ivariate von  M ises d istr ib u tion
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Diffusion

dXx (x) =  lim J ( x f -  x)2k(x, a, r)  da

=  T ™ b J 0 dp/  cos2( ^  _ +  - ^ 2) ) d<̂
1 Z"00 /  f n 1

= J™o47yo p2f{p) dp \ l  +  cos(2fa) j  cos{2(<f) -  fa))-K{4> -  fa)

+  cos{2fa) J  c o s ( 2 (</> -  fa))^K{(j> -  f a )  d$j

= “a  £  G + G cos(2,w+^cos(%)) ( H I ) )
dra(x) =  lim j (y' -  y)2k{x, a, r) da

= JSo ~b Jo p2f ^ dp /  cos2^  ^  _  ^2) )  ^
i  z100 /  r* i

=  1™ ^  yo P2/(p ) dp -  cos(2^i) J  cos(2(0 -  fa))-K{(j> -  fa )
— cos(2 0 2 ) J  cos(2{(f) -  fa))^K(<j) -  fa) dfij

= S a s  i 1 -  ( H I ) )
dxy(x) =  lim J ( x '  -  x){y' -  y)fc(x,a,r) da

= f 0 p2f (p}dp/  sin̂ ) cos^ ) +
1 (  f n 1

=  t i m — J  p2f{p) dp ^sin(2^i) j  cos(2(<£ -  fa))-K(<t> -  fa)

+  sin(2 >̂2) J  cos{2{4> -  fa))^K((/> -  fa) d ^ j

= T"a Tt Q sin(2<w+5 sln(2,fe)) (H I )
dya;(x) — dxy(pt)'

A dvection

The advection coefficient,
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is the first moment of the redistribution kernel k(x, a, t ) .  Because the bivariate von 
Mises distribution is symmetric, the first moment is zero. Therefore the advection 
coefficient is also zero.

4.D Coefficients o f the mean first passage tim e m odel
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Table 4.7: Coefficients of the mean first passage time model for wolf movement 
in response to linear features. Models: NR =  no response, AD =  anisotropic 
diffusion on linear features, AD+BIAS =  AD including bias towards linear features, 
AD+BIAS+RD =  AD+BIAS with reduced diffusion near linear features. Movement 
parameters estimated from distributions of move distances (p) and relative move 
directions (k). The direction towards the nearest linear feature is //.

d (x) =  /  limr^° 47 ( 5  sin(2(M +  tt/2 )) +  \ sin(2 (/z -  t t/ 2))) ( , on 
\  0 ,off

d y x  (x) — d Xy  (x)
c(x) =  0

AD+BIAS/AD+BIAS+RD:
f lim ^ o  £  ( l  + \  (cos(2 (m +  ?r/2 )) +  \  cos(2 (/i -  t t /2 ))) ( 7^ ) )  , on

d Xx ( x )  =  i limT^ 0 £ ( l  + cos(2 / x ) ^ | j  , near

I limT_+0^ ,f a r
f limT̂ o £  f 1 -  \  (cos(2 (/i +  tt/2 )) +  \  cos(2 (/i -  t t /2 ))) ( § $ ) )  , on

d y y i * )  =  S limr ^ 0 -  cos(2 /i)^Q ) ,near

{  limT_>0 far
( limT_ 0 £? ( 5  sm(2{p +  t t /2 )) +  \  sin(2 (/i -  t t /2 ))) , on

d x y ( x )  =  < limT̂ 0 £  ( s i n ( 2 ^ ) ^ j  ,near 
[ 0, far

d y x  (x) =  d Xy  (x)

NR:
2

dxx(x) =  dyy(x) = limT^ 0 , everywhere 
dxy (x) =  dyx (x) =  0 

c(x) =  0

AD:

A (x] = {  lim— ° €  (* +  ( 1  cos(2 (/x +  t t /2 )) +  \  cos(2 (// -  t t /2 ))) ) , on
X X \  J  1 o

limT_>o ^  ( l  -  ( 5  cos(2 (/i +  tt /2 )) +  ± cos(2 (/i -  t t /2 ))) ( 7^ ) )

c(x) = lim—
0 , elsewhere

v(x), near
0 , elsewhere
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4.E R esults for 5-min data

Table 4.8: Movement rates in different regions (5-min)

Wolf N Region_______ Parameter (ct) 90% Cl
w230 308 On 100.74 (87.44,115.24)

361 Near<50 m 80.64 (70.56,139.08)
1017 Near< 100m 76.88 (71.19,82.92)
959 Far> 50m 71.21 (65.73,76.79)
303 Far> 100m 63.44 (55.02,71.74)

w232 116 On 160.79 (130.81,191.24)
152 Near< 50m 107.22 (78.42,139.08)
512 Near< 100m 91.57 (79.82,103.88)
754 Far> 50m 78.70 (69.71,88.03)
394 Far> 100m 72.99 (61.46,84.46)

w233 147 On 138.58 (118.97,160.2)
373 Near< 50m 49.49 (41.87,57.28)
952 Near< 100m 53.83 (48.84,59.32)
1078 Far> 50m 71.19 (65.73,76.50)
498 Far> 100m 88.15 (78.97,97.38)

w234 155 On 188.76 (163.17,208.29)
250 Near< 50m 123.74 (107.75,139.27)
827 Near< 100 m 1 0 1 .1 2 (93.71,108.88)
1191 Far> 50m 85.59 (79.62,91.02)
614 Far> 100m 80.21 (72.77,87.55)
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4.F Num erical m ethod

The spatially heterogeneous mean first passage time problem was solved using 
COMSOL Multiphysics. Solving a model required three steps (see sample code 
below for further details). First, the landscape (locations of linear features and 
prey) was defined in ESRI ArcMap, imported into MATLAB and saved as a .mat 
file. Second, the PDE data structure was defined and initialized, so that it contained 
all the information necessary to solve the equation. Finally, the model was defined
and solved in COMSOL. The model was defined using the PDE, coefficient form
(stationary analysis) application mode. The general pde in this form is

V • (—cVu — au  +  7 ) +  0  • Vu +  au =  /  in 

< n  • (cV +  au — 7 ) +  qu =  g — hT y, on dft (4.C-2)

hu =  r  on dQ.

where fI is the computational domain, Oil is the boundary, and n  is the outward 
normal on d£l. The second equation is the generalized Neumann boundary condition 
and the third equation is the generalized Dirichlet boundary condition. To adapt the 
general equation for the mean first passage time equation I specified the coefficients 
as follows

da, a, 7 , a = 0 

/  =  1
0  =  [ — look(x, y, 5) — look(x, y, 6 ) ]

_  look(x, y, 1) look(x,y,2 ) 
look(x, y ,3) look(x,y ,4)

where look(x,y,i)  is a MATLAB function that looks up the spatially dependent 
advection and diffusion coefficients in a matrix defined in the PDE data structure. 
The insulating boundary condition on the exterior boundaries is specified using 
the generalized Neumann boundary condition (q =  g =  0) and the absorbing 
boundary condition on the interior boundary is specified using the generalized 
Dirchlet boundary condition (h — 1 and r  =  0). Therefore the mean first passage 
time problem is stated as
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' V • (c(x)Vtt) +  /?(x) • Vu +  1 =  0 in ft

< n  • (cVu) =  0 on dftext (4.C-3)

u =  0  on dfiint

Sample code.

1. Example m-file defining the PDE data structure and initializing the coefficient 
matrices

%
% MATLAB M-file defining the model:
% MILOPu 
%

tic;
global pde 

% domain definition
pde.area = [25.020,25.020]; % size of the domain,
% distance in x and y.
pde.delta = 0.03; % grid size for coefficients
load(,prey_uniform.mat’); % load the prey locations
pde.prey = P; % location of prey (x,y), radius of perception range
load(’points20.mat’); % load the landscape configuration
pde.land = X; % configuration of LFs in the landscape
% grid number, region, direction towards nearest linear feature

% time definition
pde.t = 0.08; % timestep (1/frequency of data)

% movement definition 
y. on
pde.ml.on = 0.071; % mean move distance 
pde.m2_on = 0.017; % mean squared move distance 
pde.kappa_on = 0; °/, concentration parameter 
% near

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pde.ml_near = 0.071; °/« mean move distance 
pde.m2_near = 0.017; 7, mean squared move distance 
pde.kappa_near =0; 7« concentration parameter 
7. far
pde.ml_far = 0.071; 7. mean move distance 
pde.m2_far = 0.017; % mean squared move distance 
pde.kappa_far = 0; 7. concentration parameter

% initialize the coefficient matrices
g e t d x x ;

g e t d x y ;

g e t d y x ;

g e t d y y ;

getcx;
g e t c y ;

7o initalize the geometry
geominit
pde.s = s;
7. save the .m file that defines the pde 
saveC’MlLOPu’,’pde’)

7« clear pde 
clear pde 
toe;

2. Functions to find the advection and diffusion coefficients (getdxx, getdxy, 
getdyx, getdyy, getcx, and get cy)

7. function to calculate the coefficient dxx
7. Inputs: info = matrix (Nx3) {ID,Region.AngleTowards}
% O u t p u t s :  d x x  = m a t r i x  (NxN) w ith , c o e f f i c i e n t s  f o r  e a c h  c e l l

7. d e f i n e  t h e  g l o b a l  v a r i a b l e s  

g l o b a l  p d e

% initialize coefficient matrix 
n = size(pde.land,1);

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dxx = zeros(l,n);
% loop through each cell and compute the coefficient 
for i = l:n
region = pde.land(i,2) \ % define switch 
7. switch cases based on region 
switch region 
case 1
dxx(i) = (pde.m2_on/(4*pde.t))...
*(l+(besseli(2,pde.kappa_on)/besseli(0,pde.kappa_on))... 
*(0.5*cos(2*(pde.land(i,3)-pi/2))...
+ 0.5*cos(2*(pde.land(i,3)+pi/2)))); 
case 2
dxx(i) = (pde.m2_near/(4*pde.t))...
*(l+(besseli(2,pde.kappa_near)/besseli(0,pde.kappa_near))... 
*(cos(2*pde.land(i,3)))); 
case 3
dxx(i) = pde.m2_far/(4*pde.t);
end
end
pde.dxx = reshape(dxx,sqrt(n),sqrt(n));

% function to calculate the coefficient dxy
7, Inputs: info = matrix (Nx4) {ID,Region,AngleAlong,AngleTowards}
7. Outputs: dxy = matrix (NxN) with coefficients for each cell 
% define the global variables 
global pde
7. initialize coefficient matrix 
n = size(pde.land,1); 
dxy = zeros(l,n);
7. loop through each cell and compute the coefficient 
for i = l:n
region = pde.land(i,2) ;7« define switch 
7. switch cases based on region 
switch region 
case 1
dxy(i) = pde.m2_on/(4*pde.t)...
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*(besseli(2,pde.kappa_on)/besseli(0,pde.kappa_on))... 
*(0.5*sin(2*(pde.land(i,3)-pi/2))+...
0. 5*8111(2* (pde. land(i ,3) +pi/2))); 
case 2
dxy(i) = pde.m2_near/(4*pde.t)...
*(besseli(2,pde.kappa_near)/besseli(0,pde.kappa_near))...
*(sin(2*pde.land(i,3)));
case 3
dxy(i) = 0;
end
end
pde.dxy = reshape(dxy,sqrt(n),sqrt(n));

% function to calculate the coefficient dyx
% Inputs: info = matrix (Nx4) {ID,Region,AngleAlong,AngleTowards}
°/( Outputs: dyx = matrix (NxN) with coefficients for each cell 
•/. define the global variables 
global pde
% initialize coefficient matrix 
n = size(pde.land,1); 
dyx = zeros(l,n);
°/, loop through each cell and compute the coefficient 
for i = l:n
region = pde.land(i,2);% define switch 
% switch cases based on region 
switch region 
case 1
dyx(i) = pde.m2_on/(4*pde.t)...
*(besseli(2,pde.kappa_on)/besseli(0,pde.kappa_on))... 
*(0.5*sin(2*(pde.land(i,3)-pi/2))...
+ 0.5*sin(2*(pde.land(i,3)+pi/2))); 
case 2
dyx(i) = pde.m2_near/(8*pde.t)...
*(besseli(2,pde.kappa_near)/besseli(0,pde.kappa_near))... 
*(sin(2*pde.land(i,3))); 
case 3
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dyx(i) = 0;
end
end
pde.dyx = reshape(dyx,sqrt(n),sqrt(n));

7. function to calculate the coefficient dyy
7. Inputs: info = matrix (Nx3) {ID,Region,AngleTowards}
7. Outputs: dyy = matrix (NxN) with coefficients for each cell 
7.
7. define the global variables 
global pde
7, initialize coefficient matrix 
n = size(pde.land,1); 
dyy = zeros(l,n);
7, loop through each cell and compute the coefficient 
for i = l:n
region = pde.land(i,2) ;7. define switch 
7. switch cases based on region 
switch region 
case 1
dyy(i) = (pde.m2_on/(4*pde.t))...
*(l-(besseli(2,pde.kappa_on)/besseli(0,pde.kappa_on))... 
*(0.5*cos(2*(pde.land(i,3)-pi/2))...
+ 0.5*cos(2*(pde.land(i,3)+pi/2)))); 
case 2
dyy(i) = (pde.m2_near/(4*pde.t))...
*(l-(besseli(2,pde.kappa_near)/besseli(0,pde.kappa_near))... 
*(cos(2*pde.land(i,3)))); 
case 3
dyy(i) = pde.m2_far/(4*pde.t);
end
end
pde.dyy = reshape(dyy,sqrt(n),sqrt(n));

7. function to calculate the coefficient cx
7. Inputs: info = matrix (Nx3) {ID,Region,AngleTowards}
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% Outputs: cx = matrix (NxN) with coefficients for each cell
7. define the global variables 
global pde
7. initialize coefficient matrix 
n = size(pde.land,1); 
cx = zeros(l,n);
7. loop through each cell and compute the coefficient 
for i = l:n
region = pde.land(i,2);7, define switch
7, switch cases based on region
switch region
case 1
cx(i) = 0;
case 2
cx(i) = (pde.ml_near/(2*pde.t))...
*(besseli(l,pde.kappa_near)/besseli(0,pde.kappa_near))...
*cos(pde.land(i,3));
case 3
cx(i) = 0;
end
end
pde.cx = reshape(cx,sqrt(n),sqrt(n));

7. function to calculate the coefficient cy
7. Inputs: info = matrix (Nx3) {ID,Region,AngleTowards}
7, Outputs: cy = matrix (NxN) with coefficients for each cell 
7. define the global variables 
global pde
7. initialize coefficient matrix 
n = size(pde.land,1); 
cy = zeros(l,n);
7. loop through each cell and compute the coefficient 
for i = l:n
region = pde.land(i,2) ;7. define switch 
7. switch cases based on region 
switch region
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case 1 
cy(i) = 0; 
case 2
cy(i) = (pde.ml_near/(2*pde.t))...
*(besseli(l,pde.kappa_near)/besseli(0,pde.kappa_near))...
*sin(pde.land(i,3));
case 3
cy(i) = 0;
end
end
pde.cy = reshape(cy,sqrt(n),sqrt(n));

3. The routine to initialize the geometry (domain and prey locations)

7h
7. script that takes a matrix pde.L and converts it into a 
7, form that can be used to initialize a geometry in FEMLAB 
7/O
% Inputs:
% domain = a 1 x 2 vector that contains the length and height of
7, the rectangular domain. The corner is assumed to be at (0,0).
7, prey = a 1 x 3 vector specifying the location of the prey
7. and the radius of capture.
7/•
7. global structures: pde
7/•
global pde 
domain = pde.area; 
prey = pde.prey;
7. create the rectangular domain
rl = rect2(domain(l),domain(2),’base’,’corner’,’pos’,[0,0]);
7«r2 = rect2(3,3,’base’,’center’,’pos’, [0,0]);
7. create a solid 
s = solid2(rl);
7. create the circles that represents the prey 
for i=l:size(prey,1)
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p = circ2(prey(i,3),’base’,’center’,’pos’,[prey(i,l),prey(i,2)]); 
°/0 take the difference of the prey and the rest of the solid 
s = s - p; 
end
% make it part of the global pde structure 
pde.geom = s;

4. The look function which looks up the coefficients for COMSOL

°/, fmiction to lookup coefficients in the tables
% Inputs: x = vector of x coordinates of the nodes
'/, y = vector of y coordinates of the nodes
% c = string representing the coefficient wanted
%
function coeff = look(x,y,c)
'/, define global variables
global pde
% initialize ans
coeff = zeros(length(x),1);
scoeff = size(x);

for i = 1:length(x)
% find index for coefficient matrix 
m = ceil((pde.area(l)-y(i))/pde.delta); 
n = ceil(x(i)/pde.delta);
°/, define switch 
switch c(i) 

case 1
coeff(i) = pde.dxx(m,n); 

case 2
coeff(i) = pde.dxy(m.n); 

case 3
coeff(i) = pde.dyx(m.n);
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case 4
coeff(i) = pde.dyy(m,n); 

case 5
coeff(i) = pde.cx(m,n); 

case 6
coeff(i) = pde.cy(m.n);

end
end
°/» reshape ans
coeff = reshape(coeff.scoeff);
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Chapter 5

Concluding Remarks

This thesis was motivated by a need to understand the potential implications of 
increasing linear feature density for the predator-prey dynamics of wolves and 
ungulates in the central east slopes of the Rocky mountains (Alberta, Canada). 
In the concluding remarks I draw connections among chapters and highlight the 
major contributions of the thesis, while indicating areas for further research.

In Chapter 1 1 demonstrated that ignoring GPS measurement error led to location 
misclassification and subsequent confounded inference about animal use of linear 
features. To address this problem I developed a new method of rigourously selecting 
buffers for linear features, which was applied in the analysis of wolf movement on 
linear features in Chapter 3. This particular method could be extended to address 
small habitats in general. Understanding the potential for misclassification in these 
rare habitats would be critical for their conservation and management.

Chapter 2 introduced mean first passage time as an alternate approach to animal 
movement analysis, which compliments the Fokker-Planck equation for space use. I 
showed that mean first passage time can be used to answer questions about animal 
encounter rates with landscape features, and applied the method to understanding 
how encounter rates between predators and prey were impacted by spatial variation 
in animal movement due to territoriality (Chapter 2) and landscape heterogeneity 
created by linear features (Chapter 3). Mean first passage time was calculated 
using a differential equation, which I mechanistically derived from first principles 
following the approach of Moorcroft and Lewis (2006). Because of the mechanistic 
nature of the derivation, the differential equation accounts for movement behaviour 
in response to landscape heterogeneity and allows empirical data to be directly 
incorporated into the model. I also used first passage time to extend the Holling disk
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equation, deriving new functional responses for animals moving according to pure 
advection and simple diffusion processes. I showed that diffusive movement with 
handling time led to a sigmoidal functional response. Therefore, the Holling Type 
III functional response can be derived from the assumption of diffusive movement, 
without invoking prey switching or prey refuges arguments. Because of its ability 
to incorporate spatial variation in animal movement behaviour and distribution 
of ‘capture’ locations, mean first passage time has the potential to be applied to 
many other questions in spatial ecology, such as mate-finding, interactions between 
territory-holders, or spatial disease dynamics.

In Chapter 3 I proposed and tested with empirical data a mechanism through 
which linear features may impact wolf-ungulate interactions. I characterized the 
individual movement response of wolves to linear features using GPS location data 
and statistical techniques. Wolf response to linear features varied among individuals 
and additional data would be required to further understand this variation. To 
connect individual movement to search time for prey I used first passage time 
analysis. I applied the methods developed in Chapter 2 to demonstrate the potential 
impact of wolf movement behaviour, increasing linear feature density, and prey 
distribution on search time. The implication of changing search times for wolf- 
ungulate encounters was demonstrated using the functional response. I concluded 
that linear features would increase encounter rates between wolves and ungulates, 
and predicted that assuming a Holling Type II functional response this would lead 
to increased consumption of ungulates.

This thesis develops and uses a new theoretical approach, first passage time 
analysis, to address a question of significant ecological interest, the effect of 
increasing linear feature density on wolf-ungulate interactions in the central east 
slopes of the Rockies. It contributes a new equation for animal movement, and opens 
up the potential for further research of animal movement in spatial heterogeneous 
landscapes.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Literature cited

Moorcroft, P., and M. Lewis. 2006. Mechanistic Home Range Analysis. Princeton 
University Press.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


