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ABSTRACT

A study has been made of the problem of estimating
parameters or coefficients in systems of ordinary differ-'
ential equations from experimental data. The sfudy was
limited to a special class of problems. However, the basic
concepts which were developedlcan, in principle, be extended
to more general problems without much difficulty.

It was assumed that fo; a given physical system,
several experiments have been performed with different, but
known initial conditions. It was further assumed that some
or all of the state variables had Peen measured at one or
more values of the independent variable. Of course, it is
also necessary to assume that the given physical system can
be adequately modeled by a system of ordinary differential
equations which is known to within a few parameters.

This identification pr&blem was formulated as a
multipoint boundary value problem which was inevitably non-
linear. Attempts to use quasilinearization directly did not
always cénverge. To alleviate this difficulty, the cdhcept
of boundary value or data pertubation was introduced. This
concept is based on the assumption that quasilinearization
will converge provided the initial guess is sufficiently
close. If this is so, then pseudo-boundary conditions can be

set up near the trajectories produced by the initial guess.



These pseudo-boundary conditions are chosen so that the
actual solution may be approached in a finite number of
steps, each step being solved by quasilinearization. This

procedure was found satisfactory for a number of examples.
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I. INTRODUCTION

In recent years, with the exponential advances in
technology, it has been increasingly evident that more
sophisticated mathematical models must be employed if
industrial processes are to be designed and operated more
efficiently.

Management, in the not too distaﬁt past, took pride
in the amount of. "over production” that was obtained from
a particular plant. Howeverr now with their thinking on a
more sophisticated level, they realize that the "over
production" is a direct result of inadequate design proce-
dures which resulted in a considerable amount of investment
capital being wasted on large safety factors.

Recent tendencies toward automation are completely
dependent on having adequate mathematical models. A large
part of optimization theory assumes that the models exist;
hence the development of techniques for obtaining these
models is of utmost importance.

Finding mathematical models which are adequate for
these various uses is not a trivial problem. A'purely
theoretical épproach is sufficient in only the simplest of
cases. In more complex caseé, either.the'system is not well
enough understood or its model is so complicated that it can

not be solved in a reasonable amount of time, if at all. The



definition of "a reasonable amount of time", of course depends
6ﬁ the particular problem. With these complex systems, a
correlative procedure is needed.

For most control systems, the simplest acceptable
correlative model is a system of ordinary differential équa-
tions. Theoretical considerations usually can be used to
derive the system of ordinary differential equations in which
only a few parameters need to be determined.

'Similarly, many désign models are also in the form of
a system of ordinary differential equations, known except for
a few constant parameters. Plug flow and batch reactors are
the examples of this type of system; these are used extensive-
ly in this work.

In general, data taken from the actual system or a
laboratory scaled model of the system are used to identify the
unknown parameters in the mathematical model. |

Unfortunately, once the data are taken, there are no
completely satisfactory general techniques for finding these
parameters. The techniques that do exist often depend on some
specific characteristic of the problem (such as linearity).

A good summary of the existing techniques with an
extensive list of pertinent references has been supplied by
Cuenod and Gage (5).

Many of the existing techniques reéuire that the experi-

ments be performed and the data collected in a predetermined



" manner. More specifically, the procedure for identifying
certain control systems is based on observed deviations of

the syétem from a taréet value or set point caused by
disturbances‘introduced into the system. The nature of

these disturbances is dependent on. the particular method being
employed. An example is the sinusoidal disturbance required
for the frequency response method. .

With many systems, it is not convenient to introduce
arbitrary disturbances which are a function of the independgnt
variable. This is especially true with the identification of
certain design models.

There are a few methods for handling the identification
problem which are not as dependenf on the types of disturbances
employed, provided that they adequately excite all the different
modes of the system. To discuss some of these methods, a system

will be considered described below

dy
dt

with y being the state vector, t the independent variable, and
a the unknown parameter vector.

One approach that is quite favored because of its
simplicity is to measure y and a% as functions of the

independent variable and minimize the objective function

- 2
tf dy

7 = = -g (g, a, t) dat (I-2)
J dt .
(o]



with | |x|| being the length of the vector X, -dﬁ being the measured
value of the derivative and i being the ﬁ:asured value of the
state vector. If the measurements are not taken continuously,
but at discrete values of the independent variable, the cor-
résponding objective function is

-

Z

et : 2
l”a:— 'E(Y_ir E.tj_)H (I-3)

The principal objection to this method is that it is quite

sensitive to noise in the data which make it difficult to

-

determine accurate valueg of £ . For some systems, the
direct measurement of g% is ggt difficult and this method
can be employed profitably.

An alternative approach is to reformulate the problem
by letting the vector a be a function of the independent
variable which is a solution to the differential equation

da
— =0 (I-4)
dt ' _

Doing this, the identification problem may be formulated as

an optimization problem with the objective function

tf . 2
Z = [ lly - vl a4t ' (I~-5)
o

if ¢ may be measwed as a continuous function of time. If the

measurements i are made at discrete values of the independent



variable, then the objective function is

2
z = 3 |ly -yl (1-6)
1

With the first objective function (I-5) the identification
problem has been formulated as an. optimal control problem.
When the second objective function must be used, the
identification problem has been formulated as a multi-
point boundary value problem. It is this formulation and
the solution of the resultant boundary value problem that

is the subject of the remainder of this work.



IT. THEORY

A. Formulation of the Problem

Suppose that the behavior of a physical system can
be adequately approximated by the following vector differen-

tial equation:

d}i '
— = £ (x, & t) (11-1)
dt T
where x = vector of state variables (order p)
a = vector of constant system parameters (oxrdexr q)
t = independent variable

Suppose further that n different experiments have
been conducted on the actual physical system with the initial
conditions-zj (0), j =1, 2, ... n. At certain discrete )
values of t, some or all of the elements of x have been
observed and recorded as data.

The set of vector differential equations describing

all these experiments is:
— = £, &, a 8, 3=1,2 ...n (II-2)

with the initial conditions X (0) and the functions

£ (?."jri' t) being specified for each experiment. The data

pertinent to the jth

jth data set throughout the remainder of this work.

experiment will be referred to as the



if tjk is taken. to be the kth discrete value of

t for thie jth experiment, then ;ijk may be defined as the

observed value of the ith

state variable at tjk‘
Since xijk represents the value predicted by equation
(II-2) for the value tjk of the independent variable, an

error .

i3k may be defined as:

~

€isk = Fisk T ¥ijk (II-3)

Let ¢ be defined as the error vector containing all the ele-
ments e, iy ordered in some arbitrary way.

The problem may now be posed mathematically as one
of finding a such that some objective function 2 of ¢ is

minimized. The two most popular objective functions are

1) - the "least squares" criterion:

where W is a positive definite diagonal matrix with the
diagonal elements representing weightingvfactors, and 2) ..

the "Chebyshev" criterion:

Z = max, |w (II-5)

ijk "isk eijk|

To solve this problem directly as it stands, an
optimum seeking method would be required such as Rosenbrock's
hill climbing procedure (25) or the Marquardt (22) procedure
as proposed by Ball and Groenweghe (1). Another way to solve

this problem, as shown by Bellman and Kalaba (2), is to



formulate it as a boundary value problem by taking the para-

meter vector a to be the solution of the vector differential
equation:

dt

Now the complete system of differential equations may be
written as:

ax.
= f. (x., a t) j=1, 2 ... n
at 3 (—j' a, ) 3] '
(1I-7)

da

—_— = 0

dt

The initial conditions x. (O) are specified for j = 1,

2 ... nbut a (0) is unknown.

This is inherently a boundary value problem, as the
initial condition for a (O) is not known. Equation (II-7)
may be rewritten in a more condensed form by letting:

—’7‘17

r=:
X
-

.

£, (%, &, t) (II-8)
and

g (y, t)

En.(?_{_ r &, t)

n' 2
L_Q




Then, in the new notation, the problem becomes:

dy
= = g (y, t) (II-9)
dt

y and g are vectors of order r x 1 where r = np + Q.
The problem of determining the optimum parameters

which characterize the given physical system has now been

formulated as a boundary value problem. This boundary

value problem is almost certainly nonlinear.

B. Ouasilinearization and the Solution of Nonlinear Boundary

Value Problems

There are no good general techniques for handling
nonlinear boundary value problems. However, there exists
powerful techniques for linear boundary value pfoblems which
make their solution almost routine. Bellman and Kalaba (2)
have takeﬂ advantage of this, by using Kantorovich's (13)
extension of the Newtoh-Raphson (6) method to function space,
which results in a succession of linear boundary value prob-
lems which hopefully converge to the original nonlinear
boundary value problem.

The sequence of linear problems is defined by the

following recurrence relationship:
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(m+1)

a
M ___‘g_(m) + g" El(mﬂ) _ z(m):]
dt
=£m)lmﬂd+,[im)_lm)zm)]
m=20,1, 2, ... (II-10)

where Q(m)(t) is the Jacobian matrix of partial derivatives.

T
ayl ayr
g - (11-11)
agr . . . . agr
ayl ayr

Given an initial guess solution 1(0), and solving the succes-
sion of linear problems represented by equation (II-10) with
the same boundary conditions as given for the original problem,
the recurrence relations will converge to the solution of the
nonlinear problem such that:

limit y™ =y | (II-12)

m »> o«

To assure convergence of this scheme for any arbitrary
initial guess 1(0), certain limitations on equation (II-9)
must be imposed. First, each of the functions which make up
the function vector gl(y, t) must be strictly convex. By

definition, this means that for each function, the Hessian
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matrix iz positive definite. The Hessian matrix is defined

as:
2 T .2 29, 7]

979, 879y . . . . 2 %

- = 2 9%.9 X

axiaxj S 37Xy . 1" "r

2. L] 2.
a gk L ] - L ] [ ] agk
k = 1, 2 ese I . (II-13)

This property makes it possible to write:

d
d—x- = g (y, t) = Max [g(z, t) + J(z, t) (y-2)] (1I-14)
t z

Now if the function w is introduced as the solution to the
associated linear equation:

dw
— = g (2, t) + J3(2z, t)(w-2) (11-14)
at

then, provided that a certain positivity property holds, it
has been shown by Kalaba (12) that the solution of (I1-14)

is given by:
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Yy = Max w (t, g)* (II-15)
: 2z

Once this has been established, Kalaba (12) has further
éroved that the sequence of linear problemS'represented by
equation (II-10) will converge monotonically and quadra-
tically to the solution of the original nonlinear problem.

The required positivity property is that if

with u (0) =0 (I1-16)
thenu > 0, t > O

A sufficient condition for this property to hold is that the
off-diagonal eleﬁents of J should be non-negative as shown
by Kalaba (1l2).

The convexity and positivity. properties discussed
above are not present in a large number of practical problems.
However, this algorithm will often converge in spite of this,

(0)

provided that the initial guess y is sufficiently close to

the answer y.

* A similar minimization operaticn can be defined for
concave problems
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To obtain an initial guess within the domain of
convergence of a particular problem is often no trivial
task. An obvious approach would be to use some type of
multi-variable search or hill-climbing method to obtain-an‘
approximate result.

Another less obvious approach would be to set up an
artificial problem whose solution is closer to the arbitrary
initial guess. This is. the approach followed in the remainder

of this wérk.

C. Boundary Value or Data Perturbation

Let the initial guess x(o) be the solution of the

following vector differential equation:

ay ©

dt

= g 9, v - (II-17)

with the initial condition y(® (o) = b
where the .constant vector b is an intelligent guess of the

actual initial condition y (0) which is not entirely known.

Now let §ik be the given boundary value for the ith

element offxﬁ at a discrete value of the independent variable

ty and let yéﬁ) be the value of §ik predicted by equation

(0)

If y is within the domain of convergence for the

given problem, the quasilinearization procedure may be applied

>
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(0)

directly. However, if the initial guess y 'is outside the
domain of convergence for the actual problem, it should be
in the domain of convergence for another problem.

If an artificial set of boundary COpditions.y;k are

defined by:

—. (0): - _ . (0)
Yio = Yy ot Rlyge — Yy

0 <R <1 (II-18)

then perhaps the quasilinearization procedure may be applied
to solve the derived problem. Once the derived problem is

solved, the solution y* may be used as the initial guess 1(0)

(0)

and the procedure may be repeated until y is sufficiently
close to the actual solution so that the actual boundary
values Yix may be used in place of the pseudo-boundary condi-
tionsygk. This stepping, as illustrated in Figure 1 should
always succeed, provided there is a domain of convergence
around 1(0) which is sufficiently large so that the solution
may be reached in a finite number of steps.

Applying this procedure to the parameter identification
problem is straight forwérd. The only initial conditions that
are not known are those for the parameter vector. Therefore,
to define z(o), it is necessary only to supply a guess for

each of the unknown parameters. The data is treated just as

boundary values in the perturbation stepping procedure.
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D. The Linear Boundary Value Problem

A systematic method for solving the successive
linear boundary value problems will now be discussed.
Each of the linear boundary value problems is of

the form:

(m+l)

da
L o g yml) L otm) _gm) m) (g
dt

with the appropriate boundary conditions. The vectors g(m’

(m)

and y'', and the matrix E(m) are all known functions of the

independent variable t. The general solution of (II-18) is:

y L) oy (mbl) o(mel) o, (med) (II-19)

as given in Coddington and Levinson (4). YE??I) is the

fundamental matrix which is the solution to the matrix differ-

ential equation:

dy(m+1)

= agm (m+l) (I1-20)
dt - T

with the initial conditions ¥ {T+1)

~=(rxr)

(m+1)
The vector Y(g)

differential equation:

is a particular solution to the vector

gy (m+l)
u w glm oy kL) g m) g m) () (1I-21)
dt
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. . " (m+l) _
with the initial condition B0) = Qrx1)

The constant vector g(m+l) is the vector of the initial
condition of 1égrl&hich may be determined from the boundary .
conditions.

In principle, the above relations may be applied
directly to any boundary value problem using a numerical
integration procedure to generate X{ﬂ?l) and gzgg. However,
if a large number of experiments are to be considered, each
with a different initial condition, and if the number of
state variables is large, then the order r of the vector y,
as can be seen from equation (II-8), is quite high. The total
number of differential equations that would have to be inte-
grated numerically is r2 + r. The value of r is np + q where
n is the number of experiments, p is the number of state
variables, and g is the number of parameters.

However, g(m) has a special structure, and because
- of this, the magnitude of the problem may be reduced consider-

ably. The structure of g(m)’ as can be seen by again referring

to equation (II-8), is as follows:



_ _ (m)
ixl L] . 9 * L] L] 9. Q‘al
O L ] * J L] L] L ] [ ] 0 J .
g_(m) - - —xj = =aj (II-22)
o Ixn Yan
L_ 0 . . . . . Y 9 9_ _
. — (m)
with oy L, afl;T
IX. IX_ .
1] Pl
(m) . - _
d o f
EI [} L ] . - L] E !
9 9 .
| 9%y *p3j |
J = l' 2' o & » n
and "9 £, . ’ g, ™
l ! L ] . L ] L] . L] ll
3a1 sa
(m) L ] ® )
gaj = . . (ITI-24)
9 f o f
—'Bl 'y . . . . . —'Rl
La al aaq ]




The equation (II-18) may be rewritten as:

dt

Since each vector Ej

vector g(m+l)

(m+1)

(m)

f
1<

- 19 -

{(m+1)

(m+1)

(m)

] (m)

(II-25)

is coupled only with the parameter

, and not with any other state variable vector

from a different experiment, the general solution can be

written as:

X
-

a
=

(m+1)

9

(m+1)

(m+1)

By

(m+1)
s

(II-26)

where the first term on the right hand side represents the

fundamental matrix and the last term represents a particular
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solution.

The block diagonal entries in the fundamental matrix

+1) . + .
E;? ) (3 =1, 2, ... n) and Eém 1) are the solutions of:
(m+l) _ L(m) o(m+l) o
dEx.! - ‘lxj ng (J - ll 2’ LI ] n)
at (I1-27)
(m+1) _
£x3 (©) = L (pxp)
(m+1)
dr . (m+1) - _
and —=__ =0 Fa ©) = I 1xq) (I1-28)
dt
From (II-28) it follows that
(m+1) _
fa (€)= L(gxq) (1I-29)
(m+1)

The other block entries in the fundamental matrix gaj

(j =1, 2 ... n) are the solutions of:

dG(m+l)
Zaj o glm) o(ml) , g(m) g lmel)
ae —=xj =aj —aj —a
- g(m) o (m+l) (m) _
= Jy3 Saj * Jaj (1I-30)

with the initial condition

G(m+l)

I CY

= g(pxq)

The entries in the particular solution uy

and u, are the solutions of:
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du(m+1)

) - gm L (m+l) gm) m+l) e
dat —xj = I -

_gm o m) g m) () (II-31)
=xj =j -aj =

with the initial condition Egm+l)(o) =0

=(px1)
du (m+l)
and ——— =0 (II-32)
at
with the initial condition u ™) (0) =0 (II-33)
—a =(agx1)

and, therefore, equation (II-31) may be rewritten as:

au ) (m) . (m+1) (m) . (m) (m) _ (m)
i R L Cglm g g g

. e eas o (m+1) (11-34)
with the initial condition Ej (0) = g(pxl)'

Thus, the number of differential equations to be
integrated has been reduced to (np2 + npg + np) from
(np + q)2 + (np + q). This is a considerable reduction in
the memory and computation requirements for this method.
Equation (II-26) may be expanded in terms of each

(m+1)

state variable vectors X as follows:

(m+l) _ . (m+l) (m+1) (m+1) {m+1) (m+1)
£y = Fyy =8 * Gay Ca Yy
(II-35)

It is known from the formulation of the problem that:
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(m+1l) _ (m+1)
=2 - (0)
Ea(lm+l) - E(m+l) (0) } (II-36)
- 2(m+l)

In a large number of problems, gj(o) is known, and there-
fore can be assumed to be exact. This assumption further

simplifies the problem.

Let zsm+l) be defined by:
gL | plmel)  mel) o (wed) (11-37)
=J —X) =J =]

Using this definition, egquation (II-35) becomes:

(m+1) _ _ (mt+l) (m+1) (m+1) _
Ej = !j + gaj a (I1-38)

With the assumption that §j(0) is exact, the integration

of equation (II-27) and (II-31) may be replaced with

z$m+l) which is the solution to:

dz}m+l)

=5 o g (m+l) _ _(m) | _ -(m) _(m) (m)
dt “x l:y'j =3 Jaj 2 * &

(II-39)
. s s (m+1) _ .
with the initial condition Yy (0) = Ej(O) (j =1, 2 ... n).

The matrix gé?*l) must still be evaluated as before,

with equation (II-30). Thus, all the vectors i(m+l) (j = 1,

(m+1)

2 ... n) can be expressed linearly in terms of a alone
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and the least squares analysis may be carried out.
This simplification means that the number of differ-
ential equations per iteration is only (np + npg) as com-

2 4 npq.+ np) for the case where the initial

pared to (np
conditions are treated as unknown. The number of variables
to be considered in the least squares analysis has also been
decreased from (np + q) to (gq). This is impoktant because
of the inherent ill-conditioning problems associated with the !

least squares analysis. This problem can also be avoided by

using the Chebyshev criteria.
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III. PRACTICAL APPLICATION

The theoretical concepts presented in the previous
section can be incorporated into a practical algorithm.
To do this, a step by step procedure must be outlined in
an organized way, which may be programmed for the digital

computer.

A. Data Perturbation and a Stepping Procedure

An empirical procedure was devised for the purpose
of controlling the step size. Perhaps a more efficient
method could be devised. However, this one has been success-
fully implemented. The procedure is outlined below.

Step 1l: The maximum step size S the maximum allowable

max '’
relative change in the parameters for one iteration

Cmax' and the minimum allowable change in the para-
are all specified. The

initial guess for the parameter vector g(o) is

meters for one step Cmin
supplied.
Step 2: The maximum element 1in the error vector (ljk i{j,k|)

(0)

is computed using the current value of a

Step 3: If max I k|
ij ax

R is defined by the equation

Smax

R = 1 -

max
1.3,%/%4,9,x]



Step 4:

Step 5:

Step 6:
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If max
i3,k |%i,9.%x| = Smax
then ﬁ =0

Define the pseudo-data set as

* -~ ~ -
Xi,9,k = ¥4,5,k + R (xi,j,k - xi,j,k)
for all values of i, j, k
Note that if ﬁ = O then the pseudo-data set is
equal to the real data set.
The quasilinearization procedure is initiated with
g(o) ﬁeing the initial guess for the parameter
vector and the data set x;,j,k (for all i, j, and
k) being the required boundary conditions. Norm-
ally, this STEP is terminated if some convergence
criteria is met or if a specified number of itera-

tions has been completed. If during the procedure

q m+l m m+l
i lay" " - ay 171 &y 1> Cpay

for any m (m=1, 2, ...) then the procedure is
terminated, Smax is halved and STEP 2 is re-initiated.
IfR =0 and STEP 5 is successfully completed, the
problem is solved and the perturbation procedﬁre

may be terminated.
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Step 7: If

3 (M) (0) M)
£ lag —ag I/l agt | < Gy
i=1
then Smax is tripled.
Step 8: g(o) is defined as being equal to g(m) and

Step 2 is re-initiated.

The above outline covers the basic steps used in
attempts to solve the indentifications problem. Many of
the finer details are not included here for the sake of
simplicity. The complete algorithm is listed in the form

of a Fortram IV program in Appendix A.

B. Quasilinearization

In principle, the data perturbation procedure does
not require the use of quasilinearization. It does, how-
ever, require a rapidly converging method for the solution
of the nonlinear boundary value problems encountered with
each step. As the perturbation insures that the initial
guess is quite close to the solution for each step, quasi-
linearization is ideally suited.

Assuming the initial conditions to be exact is not
essential to data perturbation. This assumption is made

solely to reduce the computational load in the evaluation
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of the fundamental matrix. and in the subsequent least squares

analysis.

To solve each of the successive nonlinear boundary

value problens,

simultaneously for each iteration.

£ ©
—1 _ = f, (xso), a(o), t)
dt =] =]

(k)
d§. (k—l) L‘ (k) (k 1):| (k) a(k)’
dt -
j=1, 2, ... n
k=1, 2, ... m
dv(m+1)
=3 o gm [ m¥l) (m)] (m) (m)
dt —XJ —J
+ g (m+l) (x (m) (m') £)
J r
j=1, 2, ... n
dG(m+l)
Faj o gm S(m#l) S (m)
dt =X —aj =23

j=1, 2, ... n

with the initial conditions

x© ) =x. (0 F=1,2, ...

=] =]
2 o) =z @ 3=1,2, .

+the following equations must be integrated

(III-1)

(I11-2)

(ITI-3)

(III-4)
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v$m+l) (0) = x. (O) j=1, 2, ... n
-3 =]

(m+1) _ .
G j (0) - O J - 1, 2’ . e n

Equation (III-1) is used to generate the initial
guess; equation (III-2) is used to generate the previous
m solutions; and equations (III-3) and (III-4) are required

to determine 2}m+l).

All the parameter vectors 2(0)’ 3(1), cee gw must
be stored to be used in the evaluation of the above system
of differential eguations.

Once the above system is solved, the following
relationship

G(m+l) a + V§m+l) _ xfm-i-l)

. =0 III-5
=j =] =3 ( )

may be used ta form ghe linear constraints regquired for
the solution of the least squares problem. In general
these constraints may not always be linear.

To extend the algorithm to include nonlinear
boundary conditions would not be difficult in principle.
However, it was decided to leave the eonsideration of more

complex boundary conditions to be studied in future work.
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IV. APPLICATION IN CHEMICAL REACTION KINETICS

At the heart of almost any major chemical process
is the reactor. Reactor engineering and design is thus of un-
questionable importance to the chemical industry.

To design a reactor effectively reguires an intimate
knowledge of the chemical kinetics, and it is highly desirable
to have some type of reliable mechanistic rate equation. The
determination Of kinetic rate parameters has, justifiably, been
of prime concern in the analysis of kinetic data.

E.S. Lee (18, 19) bas suggested the application of
quasiiiﬁearization to the identification of kinetic rate para-
meters. He has illustrated this approach by considering the
difficult problem of analyzing the kinetic data obtained from
a tubular reactor in which axial diffusion was important. He
considered both nonlinear boundary conditions and the analysis
of non—isothermal‘data. Unfortunately, however, guasilineari-
zation is unstable for many problems.

If this is the case for a particular problem, either
the problem must be modified, or some way must be found to
extend the domain of convergence. Boundary value or data

perturbation is one hope for daing the latter.

A. A Nonlinear Example

A hypothetical reaction described by the following

differential equations was studied.
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1. _ 2 _ _ _
= A (%] - kg1%y) - ay(xy = kg %3)
dx2 2
azf- = al(x1 - kelxz) - a3(x2 - ke3x3) (Iv-1)

Following the conventions set forth. earlier, the

state vector is

X B
x=|1 (IV-2)

%2
with*x1 and X, being the composition of components one and
two. The composition of component three is given by the

following linear relationship:

Xy = 1 - X) = X, (IV-3)

The unknown parameter vector is
a1

as
3

(IV-4)

|
i

a

The other barameters kel’ ke2’ and ke3 are equilibrium con-
stants which are assumed to be known.

The purpose for considering this example was ﬁo test
out the algorithm and to examine the convergence rates. To
do this, values were chosen for the parameter vector and the
equilibrium constants and exact data was generated for three

-

different initial conditions as given in Table 1. The parameter
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and equilibrium constantsused to generate this data were:

a; = 2.0 kel = 1.8
a, = 3.5 ke2 = 3.0 (IV-5)
az = 5.0 ke3 = 1.0

Using the algorithm developed in the previous section, the
parameter vector was then determined from the data in Table
1.

In order to evaluate the equations (III-2), (III-3),
and (III-4), the following relations are used together with

an initial guess.

oot

[ . -
- falxl + a2(1 + ke2):l [alkel - a, ke2_—_l
J —
e a3ke3] - E‘lkel +agll + ke3):|
j=1,2,3 (IV-6)
B - ]
- E‘l kelx?] Lxl * kgy (L =% = "2’] [l
J a =
=aj 5 '
_ E‘:L kel":zj [o] E‘z *keg (=X - xz’] A
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2
- ag(x) = ko1Xy) - a3 (x; = Kg3%3)
- (IV-8)
- 2
a; (x] = kg3Xy) = a3 (% = K 3%3)

3=1, 2, 3

5o = [§5] 50 -[9] =z - 5] (1v-9)

The first guess vector considered was

0.0000001
0.0000001 (Iv-10)
0.0000001

,(0)

From this initial guess, the quasilinearization procedure
could be used directly without the aid of data perturba-
tion. The successive parameter vectors are given in Table
2. The convergence of the corresponding concentration pro-
files is shown in Figures 2, 3, and 4. The rapid conver-
gence of the quasilinearization procedure is verified.
vHowever, as mentioned before, the dbmain of converyence is

often quite small.
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TABLE 2

Without Data Perturbation

Iteration a, a, a,
0 0.00 0.00 0.00
1 0.48 0.36 0.51
2 1.16 1.01 1.68
3 2.01 1.92 3.08
4 2.26 2,75 4.13
5 2.06 3.33 4,83
6 2.00 3.49 5.00
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Figure 2 Convergence of nonlinear example using
Quasilinearization (data set one)
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Figure 3  Convergence of nonlinear example using

Quasilinearization (data set two)
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Figure 4  Convergence of nonlinear example using
Quasilinearization {data set three)
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With another initial guess,

10
a©® | 10 (Iv-11)
10

attempts to find the solution using the quasilinearization
directly were frustrated. In one iteration, the parameter

vector changed from the values given in (Iv-11) to

-2.74
= |-73.88 (IV-12)
-17.12

L (1)

With the values in (IV-12) the integration of the funda-
mental matrix becomes unstable and further progress was
not possible.

However, by perturbating the data to within ten
percent of the concentration profiled generated from the
initial guess, a solution can be obtained through the
stepping procedure combined with quasilinearization. After
five steps, the derived initial guess is within the domain
of convergence for the direct application of the quasilineari-
zation procedure. The stepping procedumeproducea the sequence
of derived initial guess given in Table 3. For each step,

a maximum of three quasilinearization iterations were appiied
to determine the next initial guess. If convergence to
three significant figures was obtéined, the step was consider-

ed completed.
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The,sﬁééessive profiles yielded by the stepping

procedure are shown in Figures 5, 6, and 7.

TABLE 3

Convergence of the Nonlinear Example with

Data Perturbation

Step No. a4y a, ag
0 10 10 10
1 9.61 7.96 9.32
2 8.36 5.64 8.27
3 7.28 4.76 7.65
4 4.83 3.83 6.40
5 3.12 3.58 5.54
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Convergence of nonlinear example using
Data Perturbation (data set one)
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0.00 0.02 0.04 0.06 0.08 0.10
TIME

Figure 6 Convergence of nonlinear example using
Data Perturbation (data set two)
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Figure 7 Convergence of nonlinear example using
Data Perturbation (data set three)
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With the completion of the stepping procedure, the

initial guess is

(0)

a

3.12

(IV-13)

From this guess, the direct application of the quasilineari-

zation procedure yielded the answer quite rapidly as shown

in Table 4.

TABLE 4

Convergence of the Last Step

for the Nonlinear Example

Iteration No. al a2 a3
0 3.12 3.58 5.54
1l 1.81 3.45 4.89
2 2.002 3.498 5.000
3 2.000 3.500 5.000
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From this, it is evident that data perturbation,

together with quasilinearization, can be a powerful tool

in the solution of this type of problem. The main dis-
advantage, at present, is that there is no way that the
optimum step size can be determined in advance. Choosing

it too small will waste a large amount of computational time,
but it must be chosen small enough to ensure convergence.
At present, the empirical procedure for changing the step
size mentioned in the previous chapter, is used. This pro-

cedure has proven satisfactory in this problem as well as the
-lothers in this work. It is recommended, but there is room

for a considerable amount of improvement.

B. Sensitivity to the Choice of Experiments and to Experimental

Error

Wei and Prater (27) presented a method for identify-
ing the kinetic rate constants in a linear kinetic model.
This method involved choosing experiments in an organized
manner - so that the eigenvector directions characteristic of
the system could be determined. Once all the eigenvector
directions are determined, the rate constants may be calcula-
ted directly. If some of the eigenvector directions are not
known, the rate constants can not be uniquely determined.
Logically, it follows that the experiments, from which the

data sets are taken, must have strong components in each of
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the eigenﬁector directions if the parameter vector is to be
uniquely determined. It would also seem probable that.an
analogous situation would exist with nonlinear systems.

To test these principles, an example, which was used

be Wei and Prater (27), was chosen.

1l - Dbutene

cis-2 - butene ~F trans - 2 - butene
-3

The above mechanistic diagram may be represented

by the following system of differential equations.

T T "3y (%) - kgyxy) - a, (x; -k ,x3)
(IV-14)

— = 2 (%) - k%)) - ag (x; - k3X%,)

with X, and X, being the concentration of l-butene and
cis - 2 - butene respectively. The concentration of trans -

2 - butene which is X3 is given by the relationship

X =1 - X1~ X (IV-15)

3 2
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The equilibrium constants are:

kgy = — = 0.4469
1
a_, _
k = —£ = 0.2685 (IV-16)
el
a
2
a_s
kgg = —= = 0.6002
aj

The actual parameter vector determined by Wei and

Prater is:
a, 10.344
a= a, = 3.724 (IV-17)
a3 5.616

Using the parameters given in (IV-17) data was generated
from seven different initial conditions. This data was
then perturbated with the use of a random number generator
in order that the effects of experimental error could also
be observed.

It is interesting to note that this is a linear
system, but when the parameter determination problem is formu-
lated as a boundary value problem, the problem is nonlinear
because of the cross terms between the state vector and the
parameter vector. This means that the Jacobians for this

problem are not constant matrices as shown below:
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- [3) +ay; (k,0] [31ke; - ajkgy ]
ij = _ (IV-18)

[3) - agkezl - [31kg + a3 (Q+k 5)]

| ,

j=1,2 ... 7

keoxp = %31 [kgp(-x, - %] [9]

Jaj = (IV-19)
[x; - keyxp] 01 [ke3 (k= x, = %)) = x,]]

j=1’ 2 e & e 7

Data were generated for the seven different initial
conditions given in Table 5. This data was then perturbated
with a random relative error with a normal distribution.
These errors were generated using the IBM 360 scientific sub-
routine package (10) with a mean of zero and standard devia-

tions of 0.001, 0.01, 0.1.
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TABLE 5

Initial Conditions for l-Butene Problem

Data Set No. X, (0) X2(O)
1 1.0 0.0
2 0.0 1.0
3 0.0 0.0
4 0.24 0.76
5 0.3492 0.6508
6 0.0 0.4937
7 0.413 6.0

The phase plane diagram shown in Figure 8 shows the rela-
tive trajectories of xl(t) and x2(t). The straight line
trajectories represent eigenvector directions.

Using the initial guess parameter vector:

(0) (IV-20)

|Q

and all the data sets, the solutions in Table 6 were obtained
using quasilinearization directly without the aid of data

perturbation.
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1-BUTENE

EXPERIMENT 1

EQUILIBRIUM COMPOSITION

£
f\’PER/ME Ny
2

Cis-2-BUTENE TRANS-2-BUTENE

Figure 8. Phase Plane Diagram for 1-Butene Problem (These Trajectories were Produced by the True Parameters,)
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TABLE 6

Solutions Using All Available Data

for 1-Butene Problem

Sum
Standard No. of
" . X a a a of Errors
Deviation Iterations 1 2 3 Squared
0.1 7 10.930 | 3.619 | 5.540 0.09481
0.01 6 10.404 | 3.713 | 5.609 0.00095
0.001 5 10.350 | 3.722 | 5.615 0.00009
actual values 10.344 | 3.724 | 5.616 -

From the results in Table 6, it can be seen that when
all the data is considered together. the quasilinearization
procedure is relatively insensitive to experimental error.

In order to established the relative importance of
each of the data sets, several additional runs were made.

The results of these numerical experiments verified the logical
concludions made earlier in this section.

Data sets five and six were generated from the initial

conditions:

[0.3492]
&5(0) =
[0.6508
_ (Iv-21)
. 0.0 |
and x:(0) =
0.4937]
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These initial conditions are in the two dif-

Attempts to find the para-

meter vector using only one of these two data sets proved

fruitless, no matter how close the initial guess.

words, a solution could not be found.

In other

However, by using both of these data sets, a solution

was easily found as shown in Table 7.

vector was the same as before.

TABLE 7

Eigenvector Directions

Solutions Using Data from the

The initial guess

Sum

Standard No. of
. . . a a a of Errors
Deviations Iterations 1l 2 3 Squared
0.1 9 12.227 2.242 6.146 0.02946
0.01 6 10.513 3.588 5.658 0.00030
0.001 5 10.361 3.710 5.620 0.000003
actual values 10.344 3.724 5.6l6 -

This confirms that data must be taken in a manner such

that all the different eigenvector directions are adequately

defined.
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It would seem possible that one experiment, if
properly chosen, could be used to find a solution. This
experiment would have to be chosen so that its data set
contained sufficiently strong components in each of the
eigenvector directions. Data sets one and two, with the

initial conditions:

x,(0) = 0'0 x| (Iv-22)

8

satisfied this requirement. Using the same initial guess
for the parameter vector, the results listed in Tables 8

and 9 were obtained for data sets one and two respectively.

TABLE 8

Solutions Using Data Set One

Sum
Standard No. of ;
. : . a a a of Errors
Deviation Iterations 1 2 3 Squared
oscillating
0.1 without "9 .6 ngd .9 n3.2 v0.013
convergence
0.01 7 10.167 3.932 5.189 0.001226
0.001 6 10.324 3.746 5.569 0.0000012
actual values 10.344 3.724 5.616 -
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TABLE 9

Solutions for Data Set Two

Sum
Standard No. of
I . a, a a of Errors
Deviation Iterations i 2 3 Squared
0.1 N o Convergence Obtained
0.01 7 10.473 4.129 5.575 | 0.0001856
0.001 6 10.355 3.758 5.614 | 0.00000186
actual values 10.344 3.724 5.616 -

The remaining data sets were all too close to one or
the other of the two eigenvector directions to get any meaning-
ful results.

From the results obtained in Tables 8 and 9, it is
evident that one experiment, if properly chosen can be used
to find the parameters. However, it is also evident that
when one such experiment is used, that the results as well as
the convergence may be quite sensitive to any experimental
error. In general, it was observed that the more experiments
that are included in the analysis, the less sensitive is the
prcoedure to experimental error.

As the proposed method depends on having accurate
initial conditions for each experiment, it would seem advis-
able to check the sensitivity of the results to this assumption.
To do this, the first three data sets were used with exact and

perturbated initial conditions. The perturbated initial
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conditions were

1.0 - vy 0.0 + vy 0.0 + ¥
x (0) = i X,(0) = ; and x,(0) =
' 0.0 + 1.0 - 0.0 + ¥y

The results for a standard deviation of 0.001 and 0.1 are
presented in Tables 10 and 1ll.
TABLE 10

Solution for l-Butene Problem Using Perturbated

Initial Conditions (o = 0.001)

Y a; a, aj
0.00 10.346 3.727 5.631
0.01 10.177 3.724 5.545
0.10 8.487 3.968 4.876
TABLE 11

Solutions for l-Butene Problem Using Perturbated

Initial Conditions (o = 0.1)

Y a a, a3
0.00 10.638 3.930 5.471
0.01 10.479 3.921 5.389
0.10 8.866 4.143 4.749
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From these results it is evident that small inaccur-
acies can be tolerated. However, if a large discrepancy
exists, the solution may be strongly affected.

In conclusion, it may be said, that the design and
execution of the experiments may determine whether or not a
unique solution can be found. Further, if a solution is
found, the dependability of the results will be reflected by
the design of the experiment. Experimental design is an ex-
tensive topic in itself and it will not be discussed further

here.

C. A Non-Isothermal Reaction

The two previous examples were somewhat artificial in
that actual experimental data was not used. The example
presented in this section uses data for the non-isothermal
pyrolysis of propane obtained by Kershenbaum and Martin

(14, 15). Thev suggested the followinag rate expression:

- O 1 - f [«

af s | E P (L)
= = A' exp (- )
dw F RT (1) EI'T(LS 1+ 5 + £
F
—3 -— L -— -
P(L) =P, - 5— (P, - P) (IV-23)
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= fractional conversion

distance from reactor entrance (cm)

| s
I

8

= total length of reactor (cm)
= reactor cross-—-sectional area (cm2)

temperature along reactor (°K)

E
i

E
I

pressure along reactor (mmHg)

= inlet pressure (mmHg)

-

exit pressure (mmHg)

o

= feed rate of propane (g-moles/sec)

= feed rate of inerts (g-moles/sec)

-3 Kcal

= ideal gas constant (1.987 x 10 )
(g—mole)(oK)

' m2 mmH
R' =  ideal gas constant (62361 -Z =
‘ (g-mole) ("K)

o

W 2% = ™ o9 ™ o9 !
]

A' = kinetic rate constant (g—mole/cc)l-a sec™ !

= activation energy (Kcal/g-mole)

order of reaction

e
i

The temperature was measured at twenty-seven equally
spaced points along the reactor; T(L) could thus be accurately
established. Conversion was measured only at the outlet.

Data for sixteen different experiments were used in the ana;y—
sis.

Using the notation given before, the state vector is

x=f (IV-24)
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and the parameter vector is

Al
a = | E (IV-25)
When the problem is formulated as in equation

(Iv-23), certain computational probléms arise. These prob-

lems were also reported by Lee (19) who suggested that

double precision arithmetic is needed. However, it was

found that if A' and E are normalized to the same approxi-

mate order of magnitude, that higher precision was not

‘necessary. This was done by 1etting

a' = 1074 exp (A) (IV-26)
and substituting into equation (IvV-23)
o [
df _ _ 5 exp(d - wrber ) |monl) 1 - f
dL Fx10 RT(L R'T (L) 1+ No.+ £

F
(IV=-27)
With this formulation, no computational problems were
encountered. The parameter vector now is
A

E

a

(IV-28)

1
"
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and the parameter vector is

AI
E ' (Iv-25)

(o
!

When the problem is formulated as in equation
(IV-23) , certain computational problems arise. These prob-
lems were also reported by Lee (19) who suggested that
double precision arithmetic is needed. However, it was
found that if A' and E are normalized to the same approxi-
mate order of magnitude, that higher precision was not

necessary. This was done by letting

-4 exp () | (IV-26)

A' =10
and substituting into equation (IV-23)

£ ¢}
+ £

o
A . 5 expia- B [2EL][L
dL Fx10 RT:L; R'T(L) l_+

NO
F
(IV-27)

With this formulation, no computational problems were

encountered. The parameter vector now is

A
E , (Iv-28)

[+

|
n
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This problem was broken into two parts by first con-
sidering it with the order of the reaction fixed at unity,
and then considering the effects of allowing the third
parameter a to be free.

With the first problem, the unknown parameter vector

is reduced to

A
a = (IV-29)

Several indirect methods were used by Kershenbaum
and Martin (14, 15) in attempté to find suitable values for
A; and E. All of these methods took advantage of the fact
that equation (IV-23) is separablé and an explicit expression
for A' in terms of E could be found. This yielded a set of

algebraic expressions of the form
(IV-30)

with one equation being for each of the n different experi-
ments.

An attempt to find A' and E by minimizing

n 2
2 = Ei(E) - A':] (Iv-31)
i=1

1=

by using steepest descent required an excessive amount of

digital computer time and this method was abandoned.
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They finally resorted to a method which took advan-

tage of the approximate relation given below

log ¢i(E) *Vv,E +u, (Iv-32)

i=l’ 2 e o 0 n

A straight line could be plotted for each experiment.
The slope and intercept could be measured and then A' and E
could be determined by a linear least squares analysis.

This ingenious approach will give a reasonable
approximation to A' and E. However, it will not necessarily
give: the best unbiased estimate of the parameters in a
least squares sense.

Using the algorithm proposed in this work, a direct
solution to this problem can be obtained. With the least

squares criterion, the objective function to be minimized is

n n 2
z =. §=l [%i(Lm) - fi(Lmi] (IV-33)

with fi(Lm) and Ei(Lm) being the predicted and experimental
conversions for the reactor.

The solution obtained was

ar~ 6.3 x 10%°
- (IV-34)

with 2 = 0.034
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This is somewhat better than the solution obtained by the

indirect approach which was

Al 2.4 x 10!
= (IV-35)
E 52.1

with 2 = 0.27

Quasilinearization combined with data perturbation
was used to obtain the solution given in equation (IV-34).
The same solution was obtained with several different ini-

tial guesses.

TABLE 12

Convergence Rates for the First

Propane Problem

Initial Guess

A E/R No. of Steps i?ﬁe3?g{g?
35 26 8 3.90
10 10 17 4.56

30 30 16 4.34
40 40 16 4.44

0 0 36 7.73

50 50 16 4.03
35.40 26.22 15 3.98
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From Table 12, it is evident that the solution can
be obtained in a reasonable amount of computational time.
However, it is not a trivial problem. When the third para-
meter o was allowed to be free, the computational task
becomes larger.

The solution obtained for the second problem was

A ~2.13 x 10°

E | = |42.68 (IV-36)
o | 1.109

with 2 = 0.0303

This solution was obtained from each of the initial guess

listed in Table 13.

TABLE 13

Convergence Rates for the Second

Propane Problem

Initial Guess

A E/R o No. of Steps i?ﬁe3f3{gz
18 15 1.0 9 6.94

18 15 0.5 12 8.35
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It was found that if the initial guess for o« was greater
than 1.5, a very small step size was required and thus
an excessive amount of computational time was needed.

Allowing ¢ to be free yielded only a small
improvement in the objective function. From this, it
could be concluded that the first order model is suffi-
cient to represent the data from the given sixteen experi-
ments .

From this example, it is evident that reasonably
small non-isothermal kinetic systems can be handled with
the proposed algorithm. For larger systems, with several
different unknown activation energies, a large amount of
computational time may be required due to the extreme be-
havior of the exponential function.

As the computational time is directly proportional
to the number of experiments considered, it would seen de-
sirable to use the minimum number of experiments needed
to define the parameter vector uniquely. Then once an approxi-

mate solution is obtained, the additional experiments could be

used to improve the initial result.

D. A Catalytic Reaction

Solid catalyzed gas reactions such as:

2HC1 + % O — Cl

2 <= 2

+ HZO (IV-37)
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in the presence of a chromic oxide catalyst, normally
can be modeled with a Langmuir-Hinshelwood type rate

expressions such as the equation

Pu_ofc1
% 2 2
a, (P2 - )
1 0, K P2
e "HCl
RO = (IV-38)
2 Pr,0%C1,
1 + a2PHcl + a3PH20 + ay " Pz
e "HC1
RO = rate of reaction (g-mole of oxygen/g-catalyst)
2 / (min)
Ke = known equilibrium constant (atm_%)
PHzo = partial pressure of water (atm)
Pq = partial pressure of oxygen (atm)
2
PCl = partial pressure of chlorine (atm)
2
PHCl = partial pressure of hydrogen chloride (atm)

Equation (IV-38) was proposed by Jones, Bliss and Walker
(11) to model the above reaction with a fourth order un-

known parameter vector.

a

[\
[N w N |

(IV-39)

1)

[+]
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For this type of problem, although the nonlinear
differential equation modeling the system is of first
order the parameter vector is of high order. Models with
up to seven constants are not unusual. An extensive
experimental and analytical research program is required
if such a model is to be identified properly. For this
reason, Levenspiel (21) suggests that simpler empirical
expressions could be satisfactorily fitted to the data
for the purpose of design. However, if the data is to
be extrapolated, a mechanistic model is desirable.

Extrapolation is at best a dangerous procedure.
But, a mechanistic equation does give some qualitative
insight into what may be exrected under other conditions,
and may be used to design further experimental studies.
For these reasons, the application of the proposed algo-
rithm to this type of eguation was considered.

The analysis of this type of problem for the most
part has been limited to the least squares analysis of

algebraic relations similar to equation (Iv-38). The
rates are measured and the parameters are determed by non-
linear least squares. Frequently, the relations may be
manipulated to form a linear system with respect to the

parameters. Rewriting equation (Iv-38) as
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PH20PC12
l/al (1 + a2PHCl + a3PH20 + a, E—;i————)
e HCl
1 . PH20P012
= — (®F - —= = (IV-40)
Ro2 2 Ke Phca

produces such a linear syvstem, but with the sacrifice of
the desired fitting criterion.

If the rates cannot be measured directly. they
must be obtained by numerically differentiating the inte-
grated data, thus introducing a large amount of error.
Under these circumstances, it would seem desirable to
attack the integrated data directly. Such an approach
leads to the inevitable boundary value problem to which
guasilinearization and data perturbation may be applied.

As an example, the problem presented in the ecuation
(IV-37) and (IV-39) was considered. Taking the partial

pressure of oxygen to be the dependent variable

N dPp

R, = .- B 0, (Iv-41)

2 W'P,” dt

i
with
Ny = total number of gm-moles initially present
in the reactor

w! = ‘weight of catalyst present in the reactor (gm)

the initial pressure in the reactor (atm)
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If the system were free from external interference,
the total pressure and the partial pressure of each of the

other components in the reactor would be a function of

PO . Presuming this, the total pressure would be given
2
by
P, N
Piot = T F«B— (Mg - P—B PO):l (IV-42)
B - 2 i 2

However, the pressure measurements~throughout the experi-
ment did not follow this relation too closely, indicating
some external interference, probably stemming from the
operation of the recirculation pump. It was found that
the pressure data could be better represented by a rela-

tion of the form

P = P—l EI - (N - -1\12 P ):l B(t) (Iv-43)
tot NB B O2 Pi O2 _

where B(t) is a correction factor correlated from the
actual pressure data. The correction factor never
exceeded. 15% and was correlated to be within one and a
half bercent with polynomials of up to the third order.
The error in the correction factors was small compared
with the experimental error in the data.

The partial pressures of the other components are

given by the relations



Puci =
Pe1, =
P =
H20
with NO2 = no.
NHcl = no.
i _
Cl2 = no.
N
H20 = no.
The total
reactor is given
N = N
B O2
where = th

N1

in

N ]
B
N -4 (N - =— P, )
HC1 0, P, 0,
T Pror (IV-44)
] - (0 -~ = P_.)
B O2 Pi O2 |
Np ]
N + 2 (N - = P_ )
Cl2 O2 Pi O2 5
NB tot (IV-45)
N - (N - = P_)
B O2 Pi O2 i
Ng ]
NHZO + 2 (N02 - §I POZ)
N, Piot (IV-46)
N - (N - = P_)
B 02 Pi O2 _
of moles of 0, initially in the reactor
of moles of HCl initiallv in the reactor
of moles of CL2_initially in the reactor
of moles of H,0 initially in the reactor
number of moles initially present in the
by
+ NHCl + Ncl + NH2O + NI
e number of moles of inerts initially present

the reactor.
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Combining ecuations (IV-44), (IV-45), and (IV-46)

with (IV-43) produces

R : Ng 1 &
P = |n _ 4m. - B B )| <:B(t) (1Iv-47)
HCL R o, N
p —N 2 (N B, )T Ci B(t) (IV-48)
c1, e, 0, T B Fo)| W

B Np P,
P = | + 2. - =2 p. )| =EB(t) (1v-49)
H,0 RS o, P, To,)| T

Partial pressure data was made available for nine experi-
ments at 355°C, eleven experiments at 340°C, and nine
experiments at 3259 . *

Jones, Bliss and Walker (11) determined the rate
parameters for each temperature by using linear least
squares with equation (IV-40). The rates were obtained by
plotting the data and estimating the slope. Subsequently
Mezaki and.Bliss (23) fitted the data for all three tem-
peratures using nonlinear least squares.

Both of these correlations made use of numerical
differentiation of the observed data and therefore suffer-

ed from the inevitable loss of accuracy.

* Data was taken by A M. Jones and was kindly supplied

by Professor Harding Bliss of Yale University.
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Attempts to solve for the parameters for each
temperature separately using quasilinearization and
data perturbation yielded mixed resulté.

For the data at 355°C, the following results

were obtained.

9.8 x 10747

13.2
a = (IV-50)
47.9

| 762 1

with a least square error of 0.000747. The parameter

vector reported by Jones, Bliss, and Walker (1l1l) was

— 5.4 x 1074

3.1
a = (Iv-51)
25

| 230 _

with a least square error of 0.00315.

Using the data given for 340°C, the results were

m5.57 x 1074

0.791
(IV-52)

Y
I

121.3

| -34.8
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with a least square error of 0.00144. Jones, Bliss and
Walker (11l) found

—0.92 x 10”47

0.22
a = (IV-53)
21

| 142

with a least scuare error of 0.00708. The results given
in egquation (IV-52) contain a negative rate constant.
This is inconsistent with kinetic theory. However., given
this set of data, this model and the unweighted least
square criteria, the parameter vector given in eaquation
(IV-52) is .an optimum for reproducing the experimental
data.

For the data given at 325°C, the parameters tended
to grow, seemingly without bound, with each successive
step. Using the parameters found by Jones, Bliss, and
Walker (l1l1) as an initial guess, the results of several

different steps are presented in Table 14.
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TABLE 14

Hydrogen Chloride Problem Results for 325°C Data

} Sum of
sgg? a) as as ay g;ig;:a
0 0.26x10”4 | 0.01 11.0 18.0 0.0183
4 0.68x10™% | 1.71 24.5 672 0.0135
5 3.11x107% | 10.7 101 2,259 0.0097
7 34x10”4 124 1076 [19,964 0.0083

It can be seen from Table 14, that there are at
least several parameter vectors which will reproduce the
data better by the least square criteria than those given
by Jones, Bliss, and Walker (11). However, most of these
other parameter vectors are physically inconsistent with
the results obtained at the other temperatures.

From this, it appears that the integrated rate
data is taken over a domain which is insufficient to excite
all modes of the system. A similar situation may exist
with the data given at 340°, producing the inconéistent
negative rate constant. If this is so, the parameters can-
not be properly identified.

The convergence for the data at 355°C and 340°C was
quite rapid when an order of magnitude guess was supplied.

There is then good reason to suppose that the proposed
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procedure will be quite useful in the analysis of
Langmuir-Hinshelwood models when integrated rate data

is obtained. However, the discouraging results obtained
from the data given at 325°C and 340°C indicates that a
considerable amount of caution should be exercised when
attempting to correlate with this type of model.

In principle, it would not be too difficult to
modify the proposéd procedure so that constraints on the
parameter vector could be incorporated. If this were
done, rates obtained by direct measurement could be
incorporated so that all integrated and differential data
could be fitted by the same correlation techniquz. This
would be of considerable advantage in attacking problems

such as the one above.

E. A Complex Nonlinear Reaction

To identify the parameters in a complex reaction
model is at best a very difficult problem. This will be
illustrated by the problems encountered in attempts to

identify a system with the proposed mechanistic model.
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(IV-54)

Several experiments were performed at each of the
two temperatures 80°C and 100°C in a batch reactor. The
concentrations of X1r Xoy and Xy were measured at several
different times during the reaction. The c¢mponents X,
and Xy were unmeasurable intermediates and Xe was given
by the following linear relation derived from the stoichio-

metry

X = C - (xl + X3 + X, + x5) (IV-55)

Hydrogen ion concentration (H+), water concentration (W)
and the constant Co remained fixed throughout any one

experiment. At the request of Chemcell, who generously
_supplied the data for this example, the other components

will not be identified.
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From the proﬁbsed mechanistics model, the system

of ordinary differential equations may be written:

dx +

—_—= - alH Xq + ag X, (IV-56)
dt

dx, +

E:— = a2Wx4 + asxg - agX,Xg - a7H XeXo (IV-57)
dx3

dt

dx, +

EE_ = alH X; - agX, - a2Wx4 + acX Xe (IV-59)
dxg + ‘

E:— = a2Wx4 - agX3Xg - azXg + a7H XXy = 8yXg (IV-60)

with the unknown parameter vector being

"2,

(IV-61)

|
i
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and the state vector being:

[ %]

"

»

(IV-62)

1=

]

x K
(5 - S PV RN O I o

»

L5

Attempts to solve this system directly met with
difficulties, as the system of ordinary differential
equations was unstable to numerical integration. ‘This
was caused by the tremendous difference in magnitude of
the time constants associated with the different com-
pounds. To avoid this problem, the stationary state

.approximation was employed by setting

dx4 -
—_— = 0 (IV-63)
dt :
and dx5
dt

and using the resultant system of algebraic equations to

obtain the following relations.
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+ + +
(a7H Xy - azw)alH Xy - a7H xz(Co - Xy - x3)(al + a2)

X =
5 ¥ ¥
(azw-a7H x2)a6x2 -(a6x24-a34-a44-a7H xz)(a5 + a2W)
(IV-65)
+
A a,H x a x
T s . (1v-66)
a5 + a2W a5 a2W :

Substituting (IV-65) and (IV-66) into the differen-
tial equations (IV-56), (IV-57), and (IV-58) produced'a
stable system with the state vector being reduced to

order three

x = | %, (IV-67)

Although, with this modification, no integration
stability problems were encountered, attempts to find
all seven parameters were not successful. If the data
sets are examined, it will be found that all the initial

conditions are of the form:

x(0) = | 0 (IV-68)
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It was suspected that data taken from this initial con-
dition alone. was not sufficient to ideﬁtify distinctly
the various forward and backward rate parameters in the
first two steps in the mechanistic model;‘

A simplified model was then proposed:

+ a3
x1 + H + W c—p x2 + x4

— x, +x; ¥ ut

a
3 +
which may be described mathematically by the differential

equations:

H+le (IV-69)

_ _ + + _

dx3
(Iv-71)
dt

and the algebraic relations

Xg = C - (xl + X3 + x4) (IV-72)
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o .
a.Xx.HW + a.x,(C_. - x; = X,)
x, = ——* 2 o 1 3 (IV-73)
a2 + a3 + aSH x2

The relation (IV-72) comes.from the stoichiometry and the
expression for Xy (Iv-73) again comes from the stationary
state approximation. The parameter vector has now been

reduced to

a = a, (IV-74)

| ®s

In attempts to identify the parameters in the vec-

tor (IV-74), an interesting phenomenon was encountered.
The parameters a; and ag were accurately identified for
the data given at the two different temperatures. For
the pafameters a, and aj; a large number of different solu-
tions could be obtained. Each yielded the same least
squares minimum.

On closer examination of the model, it will be

found that the following relation is approximately true

X4 R (IV-75)
a + a
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and X, only appears in two terms where is is dominant.
The first is the term a, x, in equation (IV-70) and the
second is asx, in equation (Iv-71).

From the above:

)
a.x o RO, SE— (IV-76)
274 a, + a
: 2 3
a3
and a.X o e — (IV-77)
374
a, + aj

Since the concentration of Xy is not specified,
other than being several orders of magnitude smaller than
the principal components, as long as the terms on the
right hand sides of equations (IV-76) and (IV-77) remain
constant, the model will reproduce the data equally well.
The constant a, was found to be much larger than a3.

Therefore the approximations

ajy
. 1 _ (IV-78)
a2+a3
a a
and ——3— = 3 (IV-79)
a2+a3 a2
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may be made. So, if the ratio of az to a, is the same,
different parameter vectors will produce the same solution
profiles. This is what was observed.

To verify these observations, examine the’
following table of solutions fbr the data at 100°C.
The concentration profiles produced by any one of the
' three parameter vectors given in Table 15 are shown in

Figures 9, 10, 11, 12, 13 and 14.

TABLE 15

Chemcell Problem

Various Solutions for 100°c pata

Sum of

a a a a a,/a Errors
1 2 3 5 3772 Squared
0.0815 0.982 0.151 7.15 0.154 0.00023
0.0815 2.11 0.323 7.11 0.153 0.00023
0.0815 0.174 0.027 7.47 0.155 0.00023

Similarly, the results for the data given at 80°c

verified the above as shown in Table 16.
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TABLE 16
Chemcell Problem -

Various Solutions for 80°C pata

Sum of

a a a a a,/a Errors
1 2 3 5 3772 Squared
0.0106 0.183 0.025 1.37 0.136 0.000072
0.0106 1.02 0.138 1.30 0.135 0.000070
0.0106 2.23 0.302 1.29 0.135 0.000070

All of the parameters vectors given in Tables
15 and 16 reproduced the data equally well. When the
profiles were plotted for each experiment, the different
curves could not be distinguished. |

For each experiment there were data points taken
at 24 and 48 hours. These points were not used in the
fitting procedure in order to eliminate the large amount
of integration time required. However, once the para-
meters have'been determined, these points may be used to
check the results.

With each of the sets of parameters given in
Table 14 for the éo°c data, the predicted values of the
data at 24 and 48 hours were the same. This is shown in

Figures 15, 16, 17, 18 and 19.
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Even though a, and ag could not be uniquely
determined, the model has been successfully fitted to
the given data, and may be used to produce information,
with reasonable certainty, in the range of conditions
under which the experiments were performed.

To establish a, and ay uniguely measurements
need to be made of the intermediate Xy This, however,
is not necessary if the model is only to be used for the
above purposes.

The most important conclusion that can be drawn
from this example, is that identifying complex systems
is not a routine operation. The analysis must be closely

coupled with the design and execution of the experiments.



- 94 -

V. IDENTIFICATION OF SIMPLE CONTROL MODELS FOR

COMPLEX SYSTEMS

For many complex systems, the sophisticated
mathematical models that are needed to accurately
simulate them require a large amount of time for
solution, or they may defy solution altogether. Time
is not of critical importance in most design problems -
as long as a solution is obtained, and the cost of ob-
taining that solution can be justified economically.
However, for control problems with the independent
variable being time itself, it is essential that solu-
tions be obtained quickly so that the appropriate mani-
pulations of the control variables can be made at the
proper times. For these complex systems then, it is
important to develop simple theoretical or correlative
models which can be used over a narrow range of operating
conditions.

In many cases, the initial conditions are not
known for some of the state variables. This being the
case, the proposed algorithm, in its simplified form,
cannot be used. However, there are some cases for which
this is not true. An example is given and discussed

in this section.
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A. Flow of a Tracer Through a Packed Bed

The analysis of flow through packed beds is of
considerable importance in a number of systems, the
least of which is certainly not the non-homogeneous
catalytic reactor.

The partial differential equation

2

X 1 9°x X

P e B v
e

X - dimensionless concentration

L - dimensionless length

t - dimensionless time

Ny - Peclet number

e
is a mathematical model which can be used to describe
the unsteady state behavior of a tracer flowing through
a packed bed. This model has already been simplified.
The radial diffusion terms have been dropped, leaving
only the axial diffusion and convective terms on the
right hand side of the equation.

Equation (V-1) can be solved numerically
without a great deal of difficulty. With packed bed
reactors, however, the nonlinear rate expressions

must be added, and the resultant nonlinear partial
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differential equations are quite difficult to handle.
This example was considered with the application to
more complex systems being the ultimate éoal.

Data was generated by H.S. Koonar (17) for
the transient behavior of (V-1) with the initial con-
dition

x(0,L) = 0.75 (v-2)

and the boundary conditions

oxX
- (trl) = 0 (V"3)
oL
x (t,0) = £(t)
= 0.75 + 0.25 SIN(wt) (Vv-4)

It was solved by using central finite difference rela-
tions to approximate the terms on the right hand side

of the equation. Doing this results in a system of
linear ordinary differential equations with time being
the independent variable. Eleven grid points were used
and the system of linear ordinary differential equations
was solved by finding the eigenvalues and eigenvectors of
the coefficient matrix. In Table 17 are the outlet con-

centrations generated from v = 0.1, 1.0, 5.0, 10.0.
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TABLE 17

t/w 0.1 1.0 5.0 10.0

0.0 0.7500 0.7500 0.7500 0.7500
0.5 0.7954 0.7602 0.7523 0.7888
1.0 0.7523 0.8250 0.7599 0.8423
1.5 0.7384 0.9095 0.7708 0.6853
2.0 0.7575 0.9692 0.7828 0.8100
2.5 0.7737 0.9781 0.7951 0.7404
3.0 0.7611 0.9341 0.8073 0.7188
3.5 0.7370 0.8459 0.8194 0.8204
4.0 0.7354 0.7351 0.8314 0.6784
4.5 0.7588 0.6286 0.8432 0.8041
5.0 0.7735 0.5525 0.8548 0.7447
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It has been suggested that (26), (24) many com-
plex systems can be modeled sufficiently for control
purposes by a second order differential equation with

a time delay such as

a%x(t,1) dx (t,1)
T va, /T 4 Al Mx(t,1) - fe-t )] =0
e 1 T 2 [X(ts p’]
(V-5)
with ty being the time delay. By defining
x; = x(t,1) (V-6)
and dx (t,1)
X, = ———— (v-7)
dt

equation (V-5) can be written as a system of first order

differential equations

dxl
dat

—2 - - ax, - a, ]:xl - f(t-tD):I (v-8)

with the unknown parameter vector

a
a = l:l:I (v-9)
a2
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The time delay tD cannot be treated directly by guasi-
linearization and data perturbation. For small prob-
lems such as this, the time delay can be determined by
a search procedure. For more complex systems with
many different unknown time delays, other methods must
be employed.

With several different values for tD the parameter

vector was determined with the initial guess being

1.0 '
a = I— (v=10)
L1.0:|

"Table 18 contains these values.



- 100 -

TABLE 18

Solutions of Tracer Problem

ty a ) Erig?songgied
0.100 4.39 6.69 0.003203
0.150 5.40 8.59 0.000891
0.170 5.96 9.59 0.000466
0.180 6.28 10.18 0.000371
0.187 6.54 10.62 0.000350*
0.190 6.65 10.83 0.000353
0.200 7.07 11.57 0.000418
0.210 7.56 12.42 0.000560
0.230 10.68 17.79 0.001863

* Value for optimum time delay

The parameters obtained for each of the given
estimates of the time delay all reproduce the data
well. This can be seen by observing Table 19 which
contains the deviations from the actual solution,
presented in Table 17, for the optimum time delay

(tD = 0.187).
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TABLE 19

Deviation of the Model from the Actual Values

for Tracer Problem

|%(t,1) - x(t,1)]

t/w 0.1 1.0 5.0 10.0

0.0 0.0000  0.0000 0.0000 0.0000
0.5 0.0007  0.0019 0.0015 0.0026
1.0 0.0022  0.0036 0.0024 0.0010
1.5 0.0062  0.0035 0.0024  0.0013
2.0 0.0042  0.0036 0.0028 0.0048
2.5 0.0001  0.0019 0.0029 0.0013
3.0 . 0.0002  0.0017 0.0028 0.0035
3.5 0.0041  0.0017 0.0028 0.0031
4.0 0.0074  0.0022 0.0029 0.0013
4.5 0.0035  0.0027  0.0029 0.0045
5.0 0.0004  0.0032 0.0030 0.0013

These results confirm that a second order dif-
ferential equation with a time delay can be used as an
adequate control model for the flow of a tracer through

a packed bed.
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The computational time required to solve this
problem was quite small (less than one minute of
360/67 computational time). Therefore, with small
problems, it is quite practical to find the unknown

time delay by searching procedure.
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VI. DISCUSSION AND CONCLUSIONS

Quasilinearization and data perturbation has been
shown to be a powerful tool in the solution of certain
 identification problems. Certain limitations, however,
‘were evident from the experience gained in anhalyzing

the examples given in this work.

A. Numerical Problems

There are two major numerical operations which
must be performed. Both of tﬁese operations can be a
source of difficulties.

The first is the integration of the large number
of initial value problems associated with each itera-
tion of the quasilinearization procedure. In some in-
stances, these equations may be unstable to numerical
integration. If this is the case, there are three
alternatives. The first is to use a small step size which
will result in consuming a large amount of computer time..
The second alternative is to find a better numerical
integration procedure. Perhaps one of the multistep
methods such as Hammings prediction corrector method (7)
could be used to replace the fourth order Runge Kutta
method (8) presently being used. The final alternative

is to make use of a hybrid computer.
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The second numerical opération is the solution
of the least squares problem at the completion of each
quasilinearization iteration. It is well-known that
this problem is subject to ill-conditioning if the
number of the unknown parameters and‘initial conditions
becomes large (greéter than'seven{. This problem, as
has been mentioned before, can be avoided by using the

Chebyshev criteria for fitting the data.

B. Experimental Design

Advances have been made recently in the theory
of the design of experiments. Especially noted is the
work done by Box, Hunter,.and their co-workers (3), (9),
.and (16). It is evident from their work that if a
mechanistic or correlative model is the ultimate aim of
an experimental péogram, it is essential to determine
the nature of the model early so that subseqguent experi-
mentation can be designed appropriately. :  With the proper
design of experiments, at least some of the identificah
tion failures will be eliminated. Unfortunately, most
of the work that has been done has been associated with
the identification of systems which can be represented by

algebraic relations or can be reduced to this form.
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Until the theory of experimental design has
been extended to function space, intuition and judge-
ment must be used in the identification of systems
which can be described adequately only by a system of
ordinary differential equations. The theory for linear
systems is more advanced (20), (27) and can be used as
a guide to the solution of problems which are of a non-

linear nature.

C. Computer Time Requirements

Few of the problems presented in this work requir-
ed more than five minutes of time on the IBM 360/67 com-
puter. However, there were indications that the time
requirements may be disproportionately larger for more
complex systems. If this is true, then ways must be devised
to improve the efficiency of this procedure or another more
effective method must be found.

Two‘obvious ways of cutting down the time require-
ments are to improve the programming and to use more
efficient numerical techniques. Some improvement un-
doubtedly c¢ould be made in this direction.

As the amount of time required is directly pro-
portional to the number of experiments being considered,

it would seem advisable to minimize the total number
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used to identify the system. Once a few experiments
had been used to get an approximate result, all of
the experiments could then be used to find the true
solution. This approach may be profitable in complex
problems, if the few experiments chosen are sufficient
to identify the system. The choice of these few experi-
ments is closely coupled to the problem of experimental
design discussed above.

The method fof adjusting the step size for the
data perturbation is completely arbitrary. If a technique
were developed for choosing the optimum step size for each

step, a considerable advantage would be gained.

D. Future Work

To extend the present work to more general systems
would be of obvious advantage.

In principle, the modification of the method to
handle more general boundary conditions, both linear and
nonlinear, is not difficult. However, the addition of
nonlinear boundary conditions and constraints will pro-
bably require larger amounts of computer time.

It has been noted that the data perturbation

procedure will work satisfactorily only if reasonably
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large steps may be taken. If the number of steps
becomes large, the computer time required will become
excessive.

To circumvent this problem, it may prove advan-
tageous to combine this method with one of the hill
climbing methods such as Rosenbrock's (25). 1In general,
the rate of convergence of the hill climbing procedures
tends to be slower as the solution is approached. This
is quite the contrary to the rate of convergence of the
quasilinearization procedure, which tends to accelerate
as the solution is approached. A combination of these

two methods may yield fruitful results.
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NOMENCLATURE

A - normalized Arrhenius rate constant

- Arrhenius pre-exponential rate constant

a - parameter vector
B - pressure correction factor
Cmax - maximum allowable relative change in the
parameters for one iteration
Cmin - minimum allowable relative change in the
parameters for one step
S - constant
c - vector of initial conditionsy (O)
E - activation energy in the Arrhenius
expression
F - feed rate of reactant
Fa - block entry in the fundamental matrix
contributed by the parameter vector
. - block entry in the fundamental matrix
—%J ‘ contributed by the jth state vector s
f - fractional conversion
£.(x,; a, t) - rate of change of x. with respect to
375 the independent variable
Ga. - block entries in the fundamental matrix
J contributed by coupling of the state
vector Xy with the parameter vector
gly, a, t) - rate of change of the total state vector
y with respect to the independent
variable
H+ - concentration of hydrogen ion
Jd - Jacobian of g, (y, a, t) with respect to

Y
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Jacobian of f.(x., a, t) with respect
to a J )

Jacobian of f.(x., &, t) with respect
to §j 173

equilibrium constant

the distance from the entrance of a
tubular reactor

the total length of a tubular reactor

the superscript referring to the cuasi-
linearization iteration count

the number of moles of chlorine initially
present in the reactor

the total number of moles initially
present in the reactor

the number of moles of hydrogen chloride
initially presert in the reactor

the number of moles of water initially
present in the reactor

the number of moles of inerts initially
present in the reactor

Peclet number
feed rate of inerts
the number of exreriments

the total pressure of a point in the
tubular reactor

the partial pressure of chlorine
the exit or final pressure
the partial pressure of hydrogen chloride

the partial pressure of water



1Q

R'

- 110 -

the inlet of initial pressure
the partial pressure of oxygen
the total pressure of the reactor

the order state variable vector x.
(j = 1[ 2' o o 0 n) J

the order of the parameter vector a

tge ideal gas constant (Kcal)/(g-mole)
(7K)

the ideal gas constant (cmz)(mmHg)/
(g-mole) (CK)

the relative step size

the rate of reaction of oxygen
the order of the vector N

the initial maximum step size

the cross section areg of a tubular
reactor

temperature
the independent variable (or time)
the kth discrete value of t

the kth discrete value of t for which
data is given for the jth experiment

a particular solution to the system of
first order linear differential equa-
tions

an intermediate solution required for
the jth experiment when the initial
conditions are assumed exact

the concentratibn of water

the weight of catalyst present in the
reactor
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a solution to the linear systems
associated to the maximum operation

the predicted value of the ith state
variable for the jth experiment for the
kth discrete value of t for which data
are taken

the experimental value of X, 5k

the pseudo-experimental value of Xs 2y
derived from data perturbation J

the state vector for the jth experiment
the fundamental matrix

the state vector which includes the
states for all experiments and the
parameters

the predicted value of the ith element
of y for the kth discrete value of t
for which data is taken

the experimental value of y.,

the pseudo-experimental value of Yik
produced by data perturbation

objective function

dummy vector required for the maximum
operation

the order of the reaction

perturbation constant for the initial
conditions

a vector which must be greater than or
equal to zero for all t if the posi-
tivity requirement is to be satisfied
the vector of errors

the deviation of xijk from xijk
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APPENDIX A

Documentation of the Basic Program and the

Norilinear Example

The gquasilinearization and data perturbation
procedure was programmed in Fortran IV to solve the
probiém of finding the characteristic parameter
vector é of a system described by a system of differ-

ential equations of the form:

dt = g (ir a, t) A (A-1)

It was assumed that n different experiments were per-
formed with the known initial conditionlej(O) j=1,
2, ... n and that some or all of the state variables
were measured at several discrete times. Given the
model and the data, the parameter vector is found such
that the unweighted least squares are minimized.

The Fortran IV program, listed on the following
pages, is broken up into a main line and five subroutines.
The purpose of each subroutine is stated in the comment
cards at its beginning. The main line program reads in
the required data and controls the data perturbation
stepping procedure. Comment cards in the main line pro-

gram defined each variable which is read in as data. All
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of the subroutines are general, except for the sub-
routine SLOPE which defines the functions and Jacobians
required for the particular problem. The subroutine
SLOPE must be supplied. A well documented example is
listed with the rest of the program.

The SLOPE subroutine listed is the one required
to solve the nonlinear example which was described by

the differential equations:

dx1 5 _

— = -a,(x7 - k_.x,) - a, |x;-k_,(l-x,-x,)
it 1'%y el®2 2 |_1 e2 1 2]
dx, 2

Py ay (x7 ~kgi%y) - ag E‘z -k 3(1"‘1"‘2):'

(A-2)

The input data required by the program may be
broken into three blocks. With the first three read
statements, the variables which control the program
are defined. In the second block the data for each
different experiment is read into memory. The third
block of data is that which is read on the first entry
into the subroutine SLOPE. This third block consists of
the extra data reaired to define the functions and

Jacobians for each experiment. In many cases, such as
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with this example, the third data block is not needed.
A complete description of each variable read from the
data cards is given on the comment cards contained in
the Fortran IV listing.

The data was obtained for this example by using

equation (A-2) with the values of

a; = 2.0 kel = 1.8
a, = 3.5 ke2 = 3.0 (A-3)
az; = 5.0 ke3 = 1.0

for the parameters and the equilibrium constants. Three

different initial conditions were used.

1 ) 0
X, (0) = ; X, (0) = ; X, (0) =
=1 ol ~ T2 1 =3 0

(A-4)

The data generated for each of these initial conditioggu
is correct to within * 0.00005. It would, therefore, be
expected that ﬁhe parameters extracted from the data
would be almost identical with those given in (A-3).
This was verified with the results obtained from the
first and third sets of control data cards shown immedi-

ately following the program listing and input data.
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THE PURPOSE OF THIS PROGRAM IS TO IDENTIFY CERTAIN
UNKNUWN. PARAMETERS IN. A _SYSTEM .OF. ORDINARY.

DIFFERENTIAL EQUATIUNS, WHICH MODEL A GIVEN
PHYSICAL SYSTEM FRUOM WHICH EXPERIMENTAL DATA HAS
BEEN OBTAINED.

THE PROBLEM IS TREATED AS A NUNLINEAR MULTIPOINT
BOUNDARY.. VALUE PROBLEM _AND SOLVED USING A

COMBINATICON OF QUASILINEARIZATION AND BOUNDARY
VALUE PERTUBATIOGON.

sl Xkl nisN sl KX 2K el

REAL UB(104y10)5C(11,10)sX0(30410)4TC(30415)9XB(30,15,10
L 1)eHaXBAR(30 .

1915410), X31(30’15010)1RP RATIU;RMAXI,CU(lO)nX(10110)1Ch
1MAX,

1P(1Q)sTs SUMA,SUMB

INTEGER NEsNKsRMAX ,NDSLL,ICUTM, ICUTI yNOyNPTCTyNP(30) 4NP
11J(30415) 4N

o AC(302153 o NPITOTL30) sKS1(30215510)sMLsM2sNCIsJslelleddsK

l9SslL
LolKJIMeLKJIIy ICHECKy LKJSRMAXS s ICUTS
COMMON /AB8/X0s1,NDS/AB3/CoNEsNK 1 NO/AB4/UB ¢ X 9P oHsToNCJ,

LLL/ABLO/TC,

1XBy ERRORy CHMAX yRMAXI ¢y KSI yNPIJyNCyNPyNPITOT RMAXyNPTOT 4R
ledeMleM2o X1 R e e

143445y ILHECK/AB4/LKJM9LKJI/AB6/CG

TGO USE THIS PRUGRAM THE DIFFERENTIAL EQUATIONS MUST
Be NORMALIZED SUCH THAT:

1 NGNE OF THE STATE VARIABLES EXCEEDS 10.

2 THE INDEPENDENT VARIABLE VARRIES FROM ZERO

TO A VALUE NUT EXCEEDING 100y WITH THE INITIAL
CUNDITION BEING GIVEN AT ZERO.

3 THE ELEMENTS OF THE PARAMETER VECTOR ARE OF
THE SAME APPROXIMATE OURUER OF MAGNITUDE.

THE MAIN LINE PROGAM HAS THE FUNCTIONS OF READING = .

IN THE DATA SETS AND CONTROLLING THE PERTURBED DATA
STEPPING PRUCEEDURE. THE DATA ARE WRITTEN EXACTLY
AS THEY ARE READ. *BEGIN PHASE I* IS THEN WRITTEN

OO OO0CooIo OO OOoOOOaGIoOOOe0O

OUT SIGNIFYING THE BEGINING UF THE STEPPING
PROCEEDURE. IT IS ALSC WRITTEN OUT EACH TIME THE
_STEP SILE IS DECREASED AND THE PROCEEDURE 1S
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RE-INITIATED. AT THE BEGINING GOF EACH STEP THE STEP

NGao. IS WRITTEN ALONG WITH THE_CURRENT. . ESTIMATES OF _

THE PARAMETERS AND THE SUM OF THE ERRORS SQUARED.
'BEGIN PHASE II* IS WRITTEN WHEN THE ACTUAL DATA
POINTS ARE USED. PHASE I1 IS TERMINATED WHEN

CCNVERGENCE 1S UBTAINED OR WHEN TEN SUCCESSIVE
ITERATIONS HAVE BEEN COMPLETED WITHUUT CONVERGENCE

—.OR_WHEN. PHASE. I HAS BEcN RE-ENTERED.BECAUSE OF AN

EXCESIVELY LARGE CHANGE IN THE PARAMETERS IN
SUCCESSIVE ITERATIOUNS. IN THE LATER CASE *BEGIN
PHASE I' IS AGAIN WRITTEN OUT.

CAUXILIARY. _SUBROUTINES .REQUIRED. ARE:S.

1 GENER - USED TO GENERATE THE SOLUTIGONS FOR
APPROXIMATE PARAMETERS NEEDED FOR THE STEPING

PRGCEEDURE AND FOR GENERATING THE FINAL SOLUTION
SC THAT THE SUM OF THE ERRORS SQUARED MAY BE
CALCULATED.. .. ...

2 QUASI - USED TO CONTROL THE QUASILINEARIZATION
ITERATIVE PROCEEDURE.

3 INTE - CALLED FROM QUASI AND USED TO INTEGRATE

_ . THE SYSTEMS OF DIFFERENTIAL EQUATIONS ENCOUNTERED = . .

WITH THE QUASILINEARIZATICN PROCEEDURE.

4 LEAST — CALLED FROM QUASI ANG USED TO DETERMINE

hﬁﬁﬁﬁﬁfﬁﬁhﬁﬁﬁﬂﬁﬁr:ﬁﬁﬁhﬁr)ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂ

}
!
t
i
¢

THE LEAST SQUARE MATRIX EQUATION wHICH IS SOLVED
IN THE GAUSS ELIMINATION SUBROUTINE.

5 GAUSS - CALLED FROM LEAST AND IS USED AS
 DESCRIBED ABOVE.

¢ SLOPE - CALLEL FROM GENER ANU INTE AND IS USED TO
EVALUATE THE FUNCTIGONS AND JACOBIANS. THIS
SUBROUTINE MUST BE SUPPLLED_ALONG WITH THE DATA.

THE FURMAT OF THIS SUBROUTINE IS EXPLAINED IN THE
SAMPLE GIVEN IN THIS LISTING.

THE FOLLUWING INTEGERS ARE REAU IN ON A 1615 FORMAT.

NE ~ THE NO. OF STATE VARIABLES. NE<11

NK THE NG. OF PARAMATERS. NK<11

eXeXslokaksl akaksl siakslngisE el gN el

RMAX THE MAXIMUM NU. OF COMPLETE ITERATIONS TO BE
_..MADE AT EACH STEP. RMAX<11l .




C
C NDS  THE NC,. OF DATA _SETS. NDSL31 e e e e
C
C iL PRINT GUT CONTROL FOR STATE VARIABLE PROFILES:
C FOR EXAMPLE IF LL=2, THEN EVERY SECOND
C INTEGRATION STEP IS PRINTED. A * IS PRINTED TGO
C THE LEFT OF EVERY VALUE OF THE INDEPENDENT
C VARIABLE FOR_WHICH DATA ARE . .GIMEN e e
C
¢ ICUTM THE MAXIMUM NU. OF STEPS.
C
C LKJM PRINT SUPRESSION CONTRGL.
C LKJNM=0 PRINTING OF STATE VARIABLE PROFILES IS
¢ . SUPRESSED., . R e e e e e
C LKJM=K STATE VARIABLE PROFILES ARE PRINTED
C IN PHASE I AND II FOR EVERY K TH ITERATION.
C LKJM==K STATE VARIABLE PROFILES ARE PRINTED
C FOR EVERY K TH ITERATICN IN PHASE II ONLY.
C
L .- — - N .
REAC(5,1) NEsNKyRMAXyNDS LLy ICUTMsLKJIM
WRITE{691) NE:NKeRMAXyNDSeLL sICUTM,LKJIM
LKJS=LKJM
RMAXS=RMAX
ICUTS=ICUTM
NO=1
C
C
C Cca THE INITIAL GUESS FOR_THE PARAMETER VECTOR IS
C READ IN ON A 5El6.6 FORMAT.,
C
C. . . . e
READ(5911) (CO(II)sII=1yNK)
WRITE(6911){CC(III)ys11I=1yNK)
C
C
C THE FCLLCWING CONTROL VARIABLES ARE READ IN UN A
¢ __A4El6.6 FORMAT. e e
C
C ERRUR THE MAXIMUM AMOUNT OF RELATIVE ERRUR ALLOWED
C IN THE DESIRED PARAMETERS,.
C
C RMAXI THE INITIAL STEP SILZE.
¢ e e e e
C CHMAX THE MAXIMUM ALLOWABLE RELATIVE CHANGE IN THE
C PARAMETERS FOR UNE ITERATION. IF CHMAX IS
C EXCEEDED RMAXI IS HALVED AND PHASE I IS
C RE-INITIATED.
C
C CHMIN THE MINIMUM ALLOWABLE RELATIVE CHANGE IN THE




A=-T

PARAMETERS FOR ONE STEP BEFORE RMAXI IS
TRIPLED.,

oo

READ(S,11) ERRCRsRMAXI oCHMAX CHMIN

11

WRITE{6911)ERRORyRMAXI 9y CHMAX yCHMIN
FORMAT(5E16.6)
NPICT=Q

THE DATA FOR _EACH EXPERIMENT ARE READ IN

SEQUENTIALLY AS GIVEN BELOW. ALL INTEGERS ARE READ
IN CN A 16I5 FORMAT AND ALL OTHER DATA CN A 8F10.6

READ IN.

T iS THE INDFPENDENT VARTABLE.

EORMAT.. THE DATA LIS _PRINTED OUT _EXACTLY AS IT IS . ...

ococCcpoOoooOocepfoOn

DO 101 I=1sNDS ..

XO0(IsJd) THE INTIAL CONDITION FOR THE J TH STATE
VARIABLE FOR THE | TH EXPERIMENT.

aopoo

READ(542) (XC{I4J)sd=14NE)

WRITE(622){XC(1sJddsd=1,NE)

NP(I) THE NO. OF VALUES OF T FOR WHICH DATA ARE
GIVEN IN THE I TH EXPERIMENT, .

OO0

REAC(541) NP(I)
WRITE(69 LINP(I)

MLl=NP(I)

NPIJ{I,J) THE NC. OF DATA POINTS WHICH ARE GIVEN

ooOoCcikO

FOR THE J TH VALUE OF T FOR WHICH DATA ARE
GIVEN FOR THE I TH EXPERIMENT.

T RERB S T NPT TT TGV 3aimiy

WRITE(G631)(NPIJ(I»d)d=1,4M1)

OO0

TC{1,J) THE VALUE OF THE J TH VALUE OF T FOR WHICH
DATA ARE GIVEN FOR THE I TH EXPERIMENT.

READTS 2y TR T i ISRy e - o

WRITE(692)(TC(1eJd)sJd=14M1)

eNeNellgl

NC(le¢Jd) THE NO. OF INTEGRATION POINTS REQUIRED
BETWEEN TC(IyJ) AND TC(I-149J) WITH TC(OsJ)
BEING TAKEN AS ZEROU.




c
READ(S5+1) ANC(IsJdded=1lsM1)
WRITE(621)(NC(IyJ)ed=1yM1)
NPITOT{I)=0
DO _1Q0 J=1,M1
M2=NPI J(I,J)
NPITOT(I)=NPITOT(I)+M2
C S
C KSI(I4JsK) THE STATE VARIABLE INDEX OF THE K TH
C DATA POINT AT TC(I.dJd).
C
READ{5,1) (KSl(IthK)9K=11M2)
WRITE(6sL)(KSI(I9d oK) K=1,M2)
C X81{IsJsK) THE VALUE OF THE K TH DATA PGINT AT
C TC(IsJ) WITH THE INDEX KSI{IydJdsK)e
C
REAG(542) (XBLl(IsJdsK)eK=14M2)
100 WRITE(652)(XBLl{IyJsK)gK=14M2)
101 NPTGT=NPTOT+NPITOTAI) -
C
C
C THE TOTAL NO. OF DATA PCQINTS IS WRITEN OUT.
C
C
WRITE(65922) NPTOX —
22 FORMAT{'0OTHE TOTAL NO. OF DATA POINTS IS ',I5)
1 FORMAT(16(1X,14))
2 FORMAT(8(1X,F9.61))
C
C
______ C ILF_THE TOTAL NQ. OF DATA PGINTS EXCEEDS 500 THEN ... .. ... .
C THE PROGRAM IS TERMINATED.
C
C
IF{NPTOT.LE.500) GUTC 120
WRITE(6,21)
21 _FORMAT(*ONO. OF DATA POINTS EXCEEDS 500°)
STGP
C
C
C PHASE I IS INITIATED.
C
¢ ) I
1260 ICUTI=C
lle4 ICHECK=1

WRITE(6518)

18

FORMAT("OBEGIN PHASE I*)
LKJM=LKJS
RMAX=RMAXS




ICUTM=ICUTS

C
C
C GENERATE THE SOLUTICN FROM THE APPROXIMATE
C PARAMETERS.
C
C
110 _RP=C.0

DO 107 I=14NK
167 Cl1,1)=C0{1)
SUMB=0.0

DO 103 I=1,NLS
1=0.0
DO._104._11=1sNE

104 x(1'11,=x0(l'11{w”muMnmm””wmw,W
M1=NP(I)
DO 103 J=1.M1

NCJ=NC(I,4J)
H={TC(IsJ)-T)I/NCJ
CALL GENER ...

M2=NPIJ(14J)
CO 103 K=1yM2
S=KSI{1yd.K)

XBAR(I 3J9KI=X(14S)
SUMA=ABS(XBL{IsJsK)=XBAR(1yJ1K))
.SUMB=SUMB+SUMAX%Z

103 IF(SUMA-GT<RP) RP=SUMA
ICUTI=ICUTI+1

C
C
C START STEP ICUTI ANC CHECK TO SEE If ICUTM HAS BEEN
C
C
WRITE(6,14) ICUTI
14 FORMAT(?C'y10Xs"BEGIN STEP'415)
WRITE(6925) (I1,CO(I),I=1,4NK)
........... WRITE(6,19) SLMB
IFLICUTILTL.ICUTM) GUTO 119
WRITE(6,20)
20 FORMAT ('OSTEP CCUNT EXCEEDED!')
STOP
119 RATIU=1.0-RMAXI/RP
C
C CHECK TO CETERMINE IF PHASE I1 MAY BE ENTERED.
C
C

IF(RP«GT<RMAXI) GOTO 111
WRITE(6,17)
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17 FCRMAT('1BEGIN PHASE II*)

RMAX=10

RATIG=0.0
LKJM=TABS{LKJM)
ICUTM==ICUTHM

c
C
C DETERMINE PSEUDD DA A  SET S e et s s
C
c
111 0Q 106 I=1,NES
M1I=NP(I)
DG 1C6 J=1yMl1
M2=NPLadA Laadd o
DO 106 K=14yM2
XBUIyJsK)=XBLUI 9 d 9o KI+RATIGH(XBAR(I 5 J9K)I=XBL{I9JuK))
106 CONTINUE
C
C
C ENTER._GUASILINERIZATION ITERATIVE PROCEEDURE e s
C
c
CALL QUASI
C
C CHECK FOR PHASE I RE-ENTRY.
c U
C
IF{ICHECK.LT.0) GOTO 114
C
C
C CHECK FOR PRUGRAM COMPLETION.
C
IF(ICUTM.LT.0) GOTO 112
SUMA=C.0
0O 118 I=1sNK
118 SUMA=SUMA+ABS((C(1,1)-CUCI))/C(1,1))
C
C
C CHECK TO CETERMINE LF STEP SIZE SHOULD BE INCREASED.
C
C

IF(SUMALLT.CHMIN) RMAXI=3.0%RMAXI
G010.110

THE FINAL PARAMETERS ARE USED TO DETERMINE THE SUM

aXskelnEeN el

CF THE ERRORS SQUARED AND THE SOLUTIUN IS WRITTEN.




A-11

112 B0 115 I=14NK
115 €Ll 1)=CCLI) R

SUMB=0.0
DO 116 I=1,4NCS
I=0.0

DO 117 1I=14NE
117 XUlaII)=XC(1411)

DG 116 J=1,4M1
NCJ=NC(I,4J)
H=4TC(1ad)=-T)/NCJ

e MAENP ALY e e e

CALL GENER
M2=NP1J{14J)

S=KSI(14JdsK)
116 SUMB=SUMB+(XBLl{IsJsKI=X(1,S))**2
JF{ICHECKEQo0) WRITE(H,23)

DO X16_ K=LleM2

23 FORMAT ('OCONVERGENCE TU THE DESIRED ACCURACY WAS NOT *,

10BTAINED AFTER 10 ITERATIONS IN PHASE 11%)

WRITE(6924) . . .

54 FORMAT('OTHE FINAL SOLUTION OBTAINED')

WRITE(6925) (I,COCI)sI=14NK)

25 FORMAT(*0 K'912s" =%4E1646)

WRITE(6,19) SUMB

19 FURMAT(*G?,9X,*THE SUF GF THE SQUARES GF THE ERRORS IS*

1sElaes)

16 FORMAT('G AFTER',I15,% STEPS')

STGP
END




SUBROUTINE QUASI

INTEGER. KS1(30915+310)sNPIJ(30915) 9 NC{30,15)sNP(30),NPIT

1CT(30) yNE,

INKsRMAXs NDSyNPTUT yR9I 9 Je MLy M29 INDEXy ICOUNT s I15JdJySsLLsN

1C

1oLKJIMyLKJIICHECK

REAL UB(10510)¢X({10,10),P(10),TC(30+15)+X0{(30,410)+XB(30

2 1215910)sT4H

1,C{11,10),CR{10)
REAL*8 8(500,10),Q(500)

CUMMON /ABOG/CR/ABL/B,Q /ABB/X0O2]1.NDS/AB3/CNE-NK,NO/AB4

1/UByXsPeHy

1TeNCJsLL/ABLO/TC o XBy ERRORyCHMAX 9 RMAXT 9 KSL9 NPIJ o NCoNP4NP

1ITCT sRMAX,

INPTOT yReJsML o M29119JJ9Sy ICHECK/AB4/LKIM,LKJII

THE PURPOSE OF THIS SUBROUTINE IS TU CONTROL THE
QUASILINEARIZATIUN ITERATIVE PROCEEDURE.

OGO o

LKJI=0
PO 103 R=1,RMAX

LKJI=LKJI+1
INDEX=0Q
DO_104 1I=14NDS

S=R-~1
Ir(LKJT «NEoLKJM) GOTO 113
WRITE(695) S,I,NPITOT(I)

112

DO 112 II=14NE
WRITE(6936) 114X0{1,11)
WRITE(648) (CIRyII)sI1=1,NK)

5

WRITE(G6,T)

FORMAT (15H1FGR ITERATION ,14,11H

DATA SET 914y WITH !

lyl4,* PCOINTS */*OTHE INITIAL CONDITION IS'/)

6 FORMAT(10X,1HXyI12y2H =,F10.6)

TLFORMAT(1HO 3 L4X91HT 98Xy 2HX1L 98X 9 2HX2 98X92HX3 y8X92HX4 98Xy

12HX548X92HX628X92HXT 98X 2HX8 98X 2HX9,8Xe3HX10/)

8 FORMAT(19HOTHE CONSTANTS ARE /10X,8El6.6)

THE INITIAL CUNDITIONS FOR THE 1 TH DATA SET ARE
INITIALIZED AND T IS SET TO ZERU.

OO0 O

113

T=0.0
00 105 Ii=1,4NE

106

DO 106 JJ=1yNK

UB(11yJJd}=0.0
DO 107 _JJ=14R




107
105

X{JJdsII)=XO(1411)
P{II)=xQ(1s11)

M1=NP(I)
D0 104 J=14M1
NCJI=NC (T ,d)

H=(TC(I,J)-T)/FLOAT{NCJ)

THE SUBROUTINE INTE IS CALLED TG INTEGRATE THE
MATKIX DIFFERENTIAL EQUATIONS FROM T TO TC(I,Jd),
UPGN RETURN T=TC(I,J).

OO0 0O

CALL_INTE(R)

IF(LKJI<NE.LKJM) GCTO 114
WRITE(699) To(X(RyI1)s1I=14NE)
FGRMAT (7 X, 1H*.10F10.6)

SET. UP_THE LINEAR _EGATIONS ANG_CALL _SUBROUTINE LEAST

TO DETERMINE THE IMPROVED ESTIMATE OF THE PARAMETER
VECTGR.

oo OoO

114

M2=NPIJ(I4d)
DO 110 K=1,M2

ICOUNT=K+INDEX
S=KSI{IysJsK)

G(ICOUNTI=XBII,J,K}=P(S)

110
104

CO 110 JJ=1,NK
B(ICOUNT yJdJ)=UB(SsJJ)
INDEX=INDEX+M2

IF(LKJM.EQeLKJI) LKJI=O
CALL LEAST(NK,NPTOT)
SUMA=0.0

108

DO 108 II=1,NK
SUMA=SUMA+ABS(C(RyII)=CR{IIII/(ABS{C(Ry11))+0.1)
C(R+1,I1)=CR(II)

IF(SUMA.GT.CHMAX) GOTO 116
IF{SUMA.LT.EKROR) GUTO 115
IF{R.EQ.,10) ICHECK=0

103

IF(R.EG.10) GOTO 118
CONTINUE

THE PARAMETERS ARE WRITTEN OUT AT THE END OF THE
STEP IF RMAX IS EXCEEDEU. THIS GCCURS WHEN THE ERROR

OO0 00

SPECIFICATIGN IS NOT MET IN RMAX ITERATIONS. THIS 1S
NCT TCO CRITICAL IN MOST CASES AS ACCURATE
SCLUTICNS TO EACH STEP ARE NOT NECESSARY.




R=RNMAX+1
WRITE(6410) RMAX
WRITE(6458) (C(RyII)yII=1,NK)

10
115
116

FCRMAT (7HOAFTER 415512H ITERATIUONS)
RETURN
RMAXI=RMAX]*Q.5

117

DG 117 II=1sNK
CRUIII=C(1,I1)
ICHECK==-]

118

RETURN
END




SUBROUTINE GENER
REAL UB(lO,lO),P(lO)yX(lOle)yXA(lOle),KP(4,10)1G(10):
1TeTAH

1,JX(10,10),JK(10,10),C(11,10)
INTEGER NCJ¢NEsNKoLL NOyN,II,I
COMMON ZAB3ZC NE NKsNO/ABAG/UB XoPoHeToNC ol 1 JABS/IX s K

1XA,G

THE PURPOSE OF THIS SUBROUTINE IS TO GENERATE THE
SOLUTION OF THE SYSTEM OF DIFFERENTIAL EQUATIONS
GIVEN A SEY OF PARAMETERS, THE &4 TH ORDER RUNGE

KUTTA PROCEEDURE IS USEDe.

conhoopo

DO 100 N=1,NCJ

DO 101 II=1.4
GOT0(102,102,104,105),11

102 TA=T
DO 106 I=1,NE
106 XALLa T)=XA1 T

GOT0 107
103 TA=T+0.5%*H
DO 108 I=1,NF

108 XA({1,1)=X(1,1)+0.5%KP(1,1)
GOTO 107

..104.D0_109 1=1,NE
109 XA{lsI)=X(1,1)1+0.5%KP(2,1)
GOTO 107
105 TA=T+H

DO 110 I=1.NE
110 XA(1,I)=X{1,1)+KP{3,1)
107 CALL SLOPE(1sTAs=1)

DO 101 I=1,NE
101 KP(I11,1)=H*G(I)
I=TA

DO 100 I=1,NE
100 X(1sI1)=X(1sI)4(KPLLyI)42,0%(KP(2,1)+KP(3,1))+KP(4,1))/6

R 1.0 -
RETURN
END




SUBRUUTINE INTE(R)

REAL UB{10+10)sP(10)sX(10+10Q0),UBAC10,10),PA(10) XA(10s1
1C)sKX{491Cy

110) sKUB(4910410) 9KP(4910)9G{10)yTyTAyHySUMAySUMByJX{10,
110},

1JK{1C,10),C(11,10)

INTEGER NCJyReI gJ s ILIsNEsNKsL gLLeSyNyNOsLKINMJLKII

CUMMON _/ZAB3/CeNEsNKsNO/AB4G/UB ¢ XsPoHe TeNCIo LL/ABS/IXs K
LXA,G
1/AB4/LKJIMyLKJI

THE PURPUSE OF THIS SUBROUTINE IS TO GENERATE THE
SGLUTION_OF THE SYSTEMS QF MATRIX DIFFERENTIAL
EQWUATICNS REQUIRED FOR THE SOLUTIUN OF THE LINEAR
BCUNCARY VALUE PROBLEMS ENCGOUNTERED IN EACH
ITERATION OF THE QUASTLINEARIZATIGN PROCEEDURE. THE
INIFLAL GUESS IS ALSO GENERATED. THE 4 TH ORDER
RUNGE KUTTA PROCEELURE IS USED.

ocoppocopoOoooOooOoOor

L=0

00 1CO N=1,NCJ

0O 1CL II=1l,4
GOTC(102,103,1044105),11

- 102 TA=1
CU 106 I=1,NE
PALL)=P(I)

LO 108 J=1.R

168 XA(J1)=X(Jy 1)
DG 109 J=1,yNK

109 UBA( L. dl=UB(1,J)
GOTC 110

103 TA=T+0.5%*H
L0 143 I1=1,.NE
PALLI=P(I)+0.5%KP(1l,1)
CO 112 J=1,KR

112 XA{J 1 d=X (e k)0 53K X (Laudsl)
0O 113 J=1yNK

113 UBA(L,J)=UB(19J)40.5%KUB(Lylsd)
GCGTGC 110

1C4 DG 1l4 I=14NE
FA(I)=P(1)+0.5%KP(2,1)
PG _116 J=]1sR

116 XA(Js1)=X(Jg[)+0.5%KX(29d91])
DG 114 J=1lsiK
114 UBA(T ) =UB(1,u)+0,5%KUB(2+10J)

GGTC 110 :
105 TA=T+H
DO_117 I=1,NE




119 XA(JsI)=X(Jdy 1)+KX(35ds1)

PALI)=P(I)+KP(3,1)
80119 . 4=1,.R

0O 117 J=1,sNK
UBA(T o J)=UB(TsJ)¢KUB(39]sJ)

115
118

-DQ.115 I=1.NE —

CALL SLGPE(RyTAs1)
IF{R.NE«1) GGTO 118

SUMA=G(1I)
KX(1Ly1sI)=H%*SUMA
DO 120 I=14NE

122

SUMA=G(I)
DC 121 J=1,4NK

L SUMB=JIK (1 aJ)

SUMA=SUMA-JK (L sJ)*C{RsJ)
LO 122 S=1,yNE
SUMB=SUMB+JX{1+S)*UBA(S.J)

i 130 SUMA=SSUMA+ X (Lo ) ¥ (PALJ)=XALRsJ)D

121

120

KUB(IIyI,Jd)=H*SUMB
DU 130 J=1,sNE

KP(II,sI)=H*SUMA
IF(R.EWel) GCTO 101
DO 124 S=2,R

CALL SLOPE(S~-1,TA,1)
IF{S«NE«s2) GCTO 1C7

DG 111 1=1sNE

1113

SUMA=G(])
KX{II41y1)=H*SUMA
CONTINUE

1C7

CO 124 I=14NE
SUMA=GI(I)

DO 125 J=1aNE

SUMASSUMA+JIX (I3 J)*(XALSeJd)=XALS=144))

DU 126 J=1yNK

SUMA=SUMA+JK (T2 J)¥(C(SsJ)=C{S=1,J))

KX{I1sSyl)=H*SUMA
CONTINUE
L0 127 I=1sNE

PUI)=PLI)+(KF(lyI1)+2.0%{KP(241)+KP(341))+KP(4,1))/06.0

CO 127 J=1yNK

Ub(IgJ)=UB(I.J)+(KUB(1-I,J)+2.0*(KUB(2,I.J)fKUB(BgI.J))

1+KUB(49144)
1)/6.0

CHECK TU ULETERMINE IF THE FUNUAMENTAL MATRIX 1S
BOUNDED, IF NOT EXECUTION IS TERMINATED.

IF THERE

loNoleal oEeRakel

IS A FAILURE AT THIS POINT, IT IS LIKELY THAT THE
INTEGRATICN PROCEEDURE IS UNSTABLE FCR THIS SYSTEM
WITH THE GIVEN NO. CF_INTEGRATICN POINTS NC(I,J)
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AND WITH THE CURRENT ESTIMENT OF THE PARAMETER
VECIOR.

oo e

IF(ABSIUB(T.J)) .0 Ta1.0FE 5%0) GOTO 127

2

WRITE(642)
FURMAT{'OTHE INTEGRATICN OF THE FUNDAMENTAL MATRIX IS?,

127

1% UNBOUNDED!)

STop
CONTINUE
DO 129 S=1,R

129

DO 129 I=1,4NE
X{Sal)=X{Se L)+ (KX(LySel)#2,0%(KX(2ySyI)+KX(39So1))+KX (4
125:100/6,8

T=TA
L=L+1
LE(L sNE.LL) GGTO 100

LAEINSEQLNCY) 60TO 100

1
100

L=0
IF{LKJLl.NE.LKJMIGCTO 100

WRITE(6sl) TH(X{RsI)yI=1,4NE)
FORMAT (8X,10F10.06)
CONTINUE

RETURN
END




SUBRJUTINE GAUSS{N)
INTEGER _II1(10)efeudsKoNol oMeHeMMoT

REAL*8 A(10,10)9R(10),X{(10)s5,U
REAL Xx{10)
COMMGN /ZAB2/A.RIABEOL XX

C
C
C THE PURPUSE _OF THIS SUBROUTINE 1S 10 SOLVE.THE
C SYSTEM OF LINEAR ALGLEBRAIC EQUATIUNS ASSOCIATED
C WITH THE LINEAR LEAST SQUARES PRUBLEM. THE GAUSS
C EL IMINATICN PROCEEDURE IS USED WITH THE PIVOT
C ELEMENT BEING THE LARGEST IN THE UNREDUCED PART
c OF THE MATRIX.
C
C

M=N=-1

DG 10 I=1,n

10 II(I)=1
DO 11 J=1¢M
$=0.0

00 12 I=JyN
DU 12 k=JsN
U=DARSIA(T,J))

IF(U.LELS) GCTU 12
S=u
L=1

12

T=K
CUNTINUE
IF(L.EGeJ) GCTQ 19

0O 14 I=JyN
S=A(L,I)
AllLI)=A(J.1])

14

AlJyI)=S
S=R{L)
ROLI=R(J]

19

R{J)=S
[IF(KeEGeJ) GCTU 13
DO 20 I=JseN

20

S=A(I,T)
Al(I,T)=A(1yJ)
A{I.d)=8

I=11(T)
I(T)I=114(J)
110J1=]

13

IF{DABS(A(JyJ))oGT.1.0D-35) GOTO 15
IF(JsEGel) GUTO 15
WRITE(G,3)

15

STOP
MM=J+1
DO_11 I=MMsN
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IF(DABS(A(I,J))eLT.1.0D-35) GOTO 11

o S=EALI e ILA L
A(l,J2=0.0
LU0 16 K=MVMyN
16 A(IQK)=A‘JQK)"S*A(I|K)

REI)=REJ)=-S*R(1]
11 CONTINUE
e DOLL T K= 1o N

I=N+1-K
$=G.0
IF(]l.cbieN) GCTO 17

MM=I+1
DO 18 J=WMMyN
18 S=StallaJ)*X(J) R

14 XCL)=(R(I)=-S)1/AL141)
0O 21 1I=1l,N
K=11(I)

IF(I.EqeK) GUTO 21
S=X{K)

K =X LT - e e -

X(1)=5
I1(I)=11(K)
IT{K)=K

e 23 XX L1 =XLL)

21 CUNTINUE
DO 23 I=14N

3 FURMAT(16HJMATRIX SINGULAK)
RETURN
END




SUBRUUTINE LEAST(NyM)
INTEGER  T.sdeNsMsS

REAL*8 A(500,10),5(10,10),R{500),C{10),SLMA,SUMB
REAL X{10}
COMMON /AB2/B,C/AB6/X/AB1/ALR

e THE. PURPOSE OF _THIS_ SUBRQUTINE. IS .TO REODUCE THE

LEAST SQUARE PRUBLEM TO A SYSTEM OF LINEAR
ALGEBRAIC EQUATIONS.

chococooo

IF{M.GT.N) GUTO 14

o AE (M EGCNIGCTG LT

WRITE(Ey2)

2 FURMAT(1BHJINSUFFICIENT DATA)

STQOP

17 0O 15 1=14N

C(1)=R(1I)

...B0. 15 J=1,N

15 Blled)=Al1,d)

GOTO 1€

14 €0 10 I=1,N

11 SUMA=SUNMA+A(S,1)%*A(S4d)

U 12 J=1,N
SUMA=0.C
CC 11 _S5=1,M

B(IsJ)=SUMA

12 B{J,I)=SLMA

SUMA=0.C
0O 13 S=1+M

13 _SUMA=SUMA+A{S,L)*R(S)

10 C(I)=5UMA
16 CALL GAUSS{(N)

RETURN

END
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SUBROUTINE SLCPE(RSTIJACK)
REAL X(1010)yuX{(10,10)sJK{i0+10)+G(10)sT7,C(11,10),X0(3

1G,10)
INTEGER ReNEsNK¢NOyIIyNDS»IJACK
COMMUN /AB3/C o NESNKyNOZABS/JUX s JK s X s G/ABB/ XL 9 I14NDS

THIS SUBRCUTINE MUST BE SUPPLIED ALCNG WITH THE

CATA FOR THE PAKRTICULAR PRuUBLEM. THE PURPUSE OF THIS
SUBROUTINE IS TO EVALUATE THE FUNCTIONS ANU THE
JACLBIAN MATKRICIES, THE FOURMAT GF THIS SUBROUTINE

MUST BE A'S SHUOWN IN THIS EXAMPLE.

THE SUBRUUTINEy REALy INTEGER AND COMMON STATEMENTS
MUST BE SUPPLIEUL EXACTLY AS ApOVE.

ACDITICNAL REALs INTEGER COR OTHER TYPE STATEMENTS
MAY BE SuPPLIED IMMEOIATELY BELOW If NECESSARY.

eYaleoleEel alekekaleiel aX el X RE N

REAL X1sX2,K1sK2sK3,KEL,KE2yKE3

INTEGER 1I,J

CHECK TO CETERMINE IF THE STATE VARIABLE BOUND IS
EXCEECED. IF SO THE EXECUTION OF THE PROGRAM IS
TERMINATEC. THERE ARE SEVERAL REASONS FGR FAILURE

AT THIS PCINT, SUME OF WHICH ARE:

1 THE CIFFERENTIAL EQUATIUNS ARE NOT PROPERLY

NGRMALIZED.

2 _THE NUMERICAL INTEGRATIUN PROGCEEDURE IS

UNSTABLE FUKR THIS SYSTEM wWITH THE GIVEN NO.
OF INTEGKATIUN PUINTS NC(Isd)e.

3 CHMAX IS TUGC LARGE AND THEREFORE, THE STEP
SIZE RMAXI IS ALSUG TCG LARuE.

sllelalslaskeli aXekal alalel SN RS

DC 16 I=1,NE
IF{ABS(X{RyI))eLE.10,0) GUTO 16

WRITE{6417)
STCP
16 CONTINUE

ao

17 FORMAT('OSTATE VARIABLE BOUNUL EXCEEDED')
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C THE I TH ELEMENT OF THE STATE VECTOR IS TRANSFERED
C THROGUGH X{Ryl) AS SHUWN BELUWe.
C
C
X1=X{R,1)
X2=X{R,2)
C
C
C THE I TH ELEMENT OF THE PARAMETER VECTOR IS
C TRANSFEREL THROUGH C(RyI) AS SHGWN BELOW.
C
c
K1=C(Rs1)
Ke=C(Ry2)
K3=C{R,43)
C
C
C THE STATENMENTS 11 UP TO 12 INCLUDE ALL CPERATIONS
C THAT ARE TOUO BE EXECUTED OGNLY ONCE ON THE FIRST
C CALLING OF THIS SUBROUTINE SUCH AS: INITIALIZING
C CONSTANTS AND VARIABLES AND READING IN DATA.
C
C I CATA 1S TO BE READ IT IS PLACED IMMEUIATELY
C AFTER THE DATA REAL IN THE MAIN LINE PRUCGRAM.
C
C
GOTC(11412)4NC
11 B0 13 I=1l,NE
G(I)=C.0
CO 14 J=1,NE
14 JX{1,43=C.0
EO_ 15 Jd=1,NK
13 JK{I,4)=0.0
NO=2
KEl=1.8
KEZ2=3.0
KE3=1,C
C
C
c THE FUNCTIGNS AKE EVALUATED IN THE FOLLCWING
C STATEMENTS BEGINING WITH STATEMENT 12,
C
C

12

GULl)==K1A(XL*%2-KE1%X2)—K2%{ X1=-KE2%(1l.0-X1-X2))

GUZ)=K1*( X1*#2-KE1%X2)-K3%(X2-KE3%(1.0-X1-X2))

OO, O

IfF THIS SUBKUUTINE HAS BEEN CALLEL FRCOM GENER,y THE
FCLLOWING IF STATEMENT wILL CAUSE A RETURN.
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IF TH1S SUBROUTINE HAS BEEN CALLED FROM INTE, THE
JACCBIANS JXx AND JK WILL BE EVALUATED IN THE

STATEMENTS FULLOWING THE IF STATEMENT BEFORE A
RETURN IS MADE.

OGO oOO0

IF{IJALK.LTL0) GUTO 15
JXL1el)==2,C¥K1¥X]=K2=K2*KE2

JX{1,2)=K1*¥KE1-K2*KEZ2
JX{291)=2.0%K1%X1=-K3*KE3
JX(242)=-K1*KE1-K3*KE3-K3

JKELgl)==(X1¥%2=KE1*X2)
JKL{1y2)==(X1-KE2*%{1le(C=X1=X2))
JK(2,1)=X1%%2-KE1*X2

JKLZ243)==-({X2-KE3%(1.0-X1-X2})
RETURN
END
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APPENDIX B

The l-Butene Problem

For Example Two, exact data was generated from

the model
dx, _
—_— = -a,(x, - k %) -a_ [a; -k_,(1-x,-%,)
at 1*71 el™2 2 L]. e2 1 2]
dx2
—2 = a (x, - k_1%x,) —a, [x, - k_,(l-%x;-%,)
dt 1'1 el™2 3 [2 93 1 2]

(B-1)

A normally distributed error was then obtained from a
random number generator. Then each exact data point was

perturbed by setting

igk = Figx BT ooEig)

with gijk representing an experimental observation 6f
xijk which is the actual value of the ith state variable
for the jth experiment at the kth discrete value of time.
The relative error o€,k for this point has a standard
deivation of o. Three values of ¢ (0.1, 0.01, 0.001) were

used to perturbate the data generated from equation B-1
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with the parameters and equilibrium constants listed

below

a; = 10.344 kel = 0.4469
a, = 3.724 ke2 = 0.2685 (B-3)
ay = 5.616 ke3 = 0.6002

and the initial conditions as given in Table B-l.

TABLE B-1

Initial Conditions for Example Two

Experiment Numbef x, (0) x, (0)
1 1.0000 0.0000
2 0.0000 1.0000
3 0.0000 0.0000
4 ' 0.2400 0.7600
5 0.3492 0.6508
6 0.0000 0.4937
7 0.4130 0.0000

Several different attempts were made to determine
the parameter vegtor from the data. Different combina-
tions of experiments were used to test the sensitivity
of the method to the choice of experiment as well as to
experimental error. The results of these attempts are

presented in the following tables. Each attempt was made
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with the initial guess of
1.0 _
al® = | 1.0 (B-4)

for the parameter vector. This guess was sufficiently

close to the answer to use guasilinearization directly.
Tables B-2, B-3, and B-4 contain the convergent

sequences of parameters when all the seven experiments

are included.

TABLE B-2
1-Butene Problem

All Seven Data Sets o = 0.1

Iteration a4 a, aj
0 1.000 1.000 1.000
1 2.389 2.417 2.523
2 5.820 3.727 4.449
3 9.937 3.790 5.380
4 10.845 3.662 5.512
5 10.943 3.616 5.540
6 10.929 3.619 5.540

7 10.930 3.619 5.540
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TABLE B-3

1-Butene Problem

All Seven Data Sets o = 0.01
Iteration a; a, 3

0 1.000 1.000 .000

2.383 2.44s8 .546
2 5.584 3.885 .532
3 0.409 3.885 .482
4 10.381 3.72l .605
5 10.404 3.713 .609
6 10.404 3.713 .609

TABLE B-4
l1-Butene Problem
All Seven Data Sets o = 0.001

Iteration

1 2 3
0 1.000 1.000 .000
1 2.383 2.451 .549
2 £.t60 3.901 .541
3 0.357 3.894 .491
4 10.331 3.728 .613
5 10.350 3.722 .615
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In the following three tables, the results of
using the data given in the two eigenvector directions
are presented. Experiments five and six are in the two

respective eigenvector directions.

TABLE B-5

l-Butene Problem

Data Sets Five and Six o = 0.1

Iteration a, a, aj
0 1.000 1.000 1.000
1 2.608 2.407 2.515
2 6.801 3.515 4.424
3 10.751 2.948 5.615
4 12.464 2.293 6.088
5 12.111 2.225 6.135
6 12,247 2.242 6.146
7 12.222 2.242 6.146
8 12.223 2.242 6.146
9 12.223 2.242 6.146
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TABLE B-6

l1-Butene Problem
Data Sets Five and Six o= 0.01.

Iterations al a2 : a3
0 1.000 1.000 1.000
1 2.407 2.434 2.547
2 5.682 3.844 4,537
3 9.540 3.789 5.523
4 . 10.504 3.598 5.653
5 10.513 3.588 5.658
6 10.513 3.588 5.658
TABLE B-7

1-Butene Problem

Data Sets Five and Six o = 0.001

Iteration a, a a

2 3
0 1.000 1.000 1.000
1 2.387 2.436 2.550
2 5.567 3.877 4,548
3 0.362 3.877 5.510
4 10.343 3.714 5.618
5 10.361 3.710 5.620

Using the data from the first experiment, the results in

Tables B-8, B~9, and B-10 wz2re obtained.
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TABLE B-8

1-Butene Problem

Data Set One o = 0.1
Iteration a; a, aqy
0 1.000 1.000 1.000
1 4,670 0.198 34.811
2 12.749 ~-1.617 23.507
3 5.855 7.626 -2.158
4 9.454 5.182 3.252
5 8.796 5.725 1.782
6 9.744 4.806 3.515
7 9.361 5.173 2.815
8 9.673 4.887 3.337
9 9.519 5.028 3.074
10 9.615 4.941 3.235

complete convergence not obtained
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TABLE B-9
l-Butene Problem

Data Set One ¢ = 0.01

Iteraﬁion a; a, aj
0 1.000 1.000 1.000
1 4.321 5.667 30.005
2 12.267 -1.394 24.771
3 0.281 4.514 2.203
4 10.275 3.873 5.511
5 10.177 3.923 5.203
6 10.167 3.932 5.188
7 10.167 3.932 4.189
TABLE B-10

1-Butene Problem

Data Set One o = 0.001

Iteration a; a, aj

0. 1.000 1.000 1.000
1 4.287 0.604 29.525
2 12.224 ~1.376 24.913
3 9.784 4.061 3.017
4 10.453 3.659 5.894
5 10.325 3.745 5.570
6

10.324 3.746 5.569

For data from the second experiment the results

in Tables B-11l, B-12, and B-13 were obtained.
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TABLE B-11

1-Butene Problem

Data Set Two ¢ = 0.01

Iteration a; a, ' aj
0 1.000 1.000 1.000
1 4.403 31.596 1.686
2 15.161 31.968 1.825
3 7.605 8.436 6.205
4 11.859 - 10.018 5,230
5 14.661 14.493 4.516
6 18.369 21.451 3.464
7 28.487 38.500 0.678
8 775.187 1092.55 -193.895

The integration of fundamental matrix became unstable and

a solution was not obtained.

TABLE B-12
1-Butene Problem

Data Set Two ¢ = 0.001

Iteration aq a, ' as
0 1.000 1.000 1.000
1 4.614 32.859 1.622
2 11.088 23.740 3.063
3 0.733 -0.267 5.722
4 10.404 4.016 5.600
5 10.355 3.758 5.614
6 10.355 3.758 5.614
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Attempts were also made to identify the parameters
from exper‘ment: three, from experiment five, and from
experiment six. All three of these attempts were com-
plete failures. The results diverged and were out of
bound within a few iterations.

To test the sensitivity of the method to error in
the initial conditions, perturbations were introduced
into the initial conditions for experiments one, two and
three. Attempts were then made to determine the para-
meters using the first three data sets Qith standard
deviations of 0.001 and 0.1.

First with the exact initial conditions of

1.0 0.0 : [jo.o )
a;(0) = i X,(0) = ;o Xq(0) = (B-5
1 0.0 2 [ 1.0 3 0.0

the solutions (10.346 ]

a = | 3.727 (B-6)

| 5.631

~and
10.638

|
]

' 3.930 (B~7)

5.471 _

were found for standard deviations of 0.001 and 0.1

respectively.



- B-11 -

Perturbating the initial condition to

) [0.99] [0.01:{ [0.01]
x,(0) = ;7 X, (0) i x,(0) =
1 0.01 2 0.99 3 0.01

(B-8)
produced the results
10.177
a = 3.724 (B-9)
| 5.545 _
and
10.479 7]
a = 3.921 (B-10)
| 5.389 |

respectively for the two standard deviations of 0.001
and 0.1.

With the initial conditions perturbated to

0.9 0.1 0.1
x,(0) = i X,(0) = ;7 %5(0) = (B-11)
1.0 0.9 0.1

the results for the standard deviation of 0.00l were

8.487
a = | 3.968 (B-12)
4.876

and for the standard deviation of 0.1 they were
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8.866

4.143 (B-13)

|
"

4,759

The input data which was used to produce the
results in Tables B-2, B-3, and B-4 is presented immedi-
ately following the Fortran IV listing of the SLOPE
subroutine required for this problem. The input data used
for the other results can be formed by deleting the data

sets for the appropriate experiments.
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SUBROUTINE SLCPE(R.T,I1JACK)
SLOPE_SUBROUTINE FOR THE 1-BUTENE PROBLEM

REAL X(10510)sJX(10410)4JK{10410)+G{10)yToC(11,10),X0(3
10,410}
INTEGER RoNEoNKsNO9 IToNDSs FJACK

COMMON /AB3/CsNEJNKsNO/ZABS/IXs JK9XyG/ABB/ XUy I14NDS
REAL XlgX23K19K29K3yKEL1sKE2,KE3
INTEGER LsJ

0O lo I=14NE
IF(ABS(X(RyI)).LE.10.0) GOTO 16
WRITE(6.17)

16
17

STGP
CONTINUE
FORMAT('OSTATE VARIABLE BOUND EXCEEDED)

X1=X{Ry1l)
X2=X{Ry2)
K1=C(Rys1l)

K2=C({Rs2)
K3=C(Ry3)
GOTO(112)12) s NG

11

DO 13 I=1yNE
G(I)=0.0
L0 14 .d=1,.NE

14

JX{Iy41=C.0
0O 13 J=1yNK

A3 JK(1sd)=0.0

NO=2
KE1=0.4469
KEZ=0,2685

12

KE3=0.6002
G{1)=-K1*(XLl=KE1%*X2)=-K2*(X1-KE2*{1.0-X2-X1))
G(2)=K1¥{X1=KE1*X2)=K3*(X2-KE3*{1.0=-X2-X1))

IF(IJACK.LT.0) GUTO 15
JX{1ly1)==Kl-K2-KEZ2%*KZ2
JX(1,2)=K1*KEL1-K2*KEZ

JX{291)=K1-K3*KE3
JX(292)=-K1*KE1-K3-K3*KE3

oK1y 1)=~X1+KE1%*X2

JK{1y2)==X14+KE2%(1.0-X2~X1)}
JK(2,1)=X1-KEL1*X2
JK(2,3)=—X2+KE3%(1.0—-X2=X1)

15

RETURN
END
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APPENDIX C

Non-Isothermal Pyrolysis of Propane

To model the non-isothermal pyrolysis of pro-
pane in a tubular reactor, the following equation is

sufficient.

. E o 1-f @
%% = S 7 ©XP A~ P(L) N
Fx10 R'T(L) | |[RT (L) L 4+ <2 £
7

4

(C-1)

To determine the parameters A, E, and a, data
from sixteen different experiments was available.

The conversion at the outlet of the reactor f(Lm)
was measured for each experiment. The temperature was
measured at twenty-seven equally spaced points, so that
intermediate points could be accurately established by
linear interpolation. The pressure was measured at both
the inlet and outlet of the reactor. Intermediate values
were determined by assuming that pressure was a linear
function of L. The inlet feed rate of propane F and of
inlet feed rate of inerts No were also observed. All of
this information is presented in Table C-l.

In addition to this information, the physical

dimensions of the reactor must be specified. The cross
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sectional area s is 0.0742242 cmz. The length Lo is

69.0118 cm.

The constants R and R' in equation (C-1) are

the ideal gas constants with the appropriate units.



Data Set No.

rx10? (L0022,
Naun4(E§§§i§)
Pi (mmHg)
Pe (mmHg)

z(L,)

Temp. at
Equally
Sgaced Points
(°F)

Data

1

8.80
41.5
974
742
0.6660

340
631
928

1082

1166

1218

1279

1376

1430

1437

1456

1499

1583

1621

1638

1647

1650

1647

1623

1589

1542

1474

1412
238
070
873
670

* This data has

- C-3 -

TABLE C-1¥*

2

5.30
28.1
896
742
0.5890

290

545

820
1057
1190
1286
1363
1442
1504
1551
1574
1598
1617
1635
1634
1637
1627
1610
1582
1548
1501
1438
1349
1262
1033

810

595

3

4.26
17.5
834
742
0.6685

280
584
875

1123

1264

1364

1444

1507

1552

1581

1583

1593

1591

1588

1578

1558

1534

1499

1462

1409

1351

1272

1169

1082
841
604
405

4

1.93
46.4
986
740
06173

364

646

962
1182
1300
1374
1444
1520
1581
1617
1636
1656
1682
1693
1690
1678
1651
1619
1877
1525
1454
1367
1277
1152

939

738

560

for Propane Pyrolysis

5

1.85
3l.6
915
744
0.6090

462

761
1055
1242
1359
1447
1518
1575
1612
1634
1637
1637
1633
1622
1602
1578

1503
1449
1387
1308
1213
1123
964
744
526
360

1543

6

2.69
30.9
915
734
0.6318

486
792
1087
1273
1382
1460
1523
1578
- 1617
1637
1641
1641
1640
1631
1611
1587
1551
1512
1461
1403
1324
1228

964
747
543
390

1129

7

3.57
29.9
900
734
0.6992

443

746
1029
1224
1335
1417
1486
1549
1593
1618
1628
1629
1629
1622
1608
1585
1551
1512
1463
1407
1329
1235
1141

986

779

573

415

been taken from Kershenbhaum's Ph.D.
digesertation (University of Michigan 1964)

1.72
19.9
839
739
0.6952

510
842
1116
1288
1397
1474
1530
1567
1584
1589
1589
1577
1559
1533
1497
1454
1402
135Q
1288
1221
1133
1020
920
725
517
336
205




. Data Set No.

Fxloj(iéggli)

NE;IO
Pi (mmHg)
Pe (mmHg)

Z(Lm)

Temp. at
Equally
Sgaced Points
(°F)

TABLE C-1 (Continued)

- C-4 -

Data for Propane Pyrolysis

9

1.69
19.1
839
739
0.7909

233
543
858
1117
1273
1365
1433
1479
1506
1514
1514
1511
1499
1477
1449
1411
1373
1325
1276
1216
1149
1063

953

862

. 676
489
323

10

2.33
27.4
890
728
4771

321

713
1063
1316
1459
1550
1618
1671
1710
1720
1719
1716
1710
1696
1683
1654
1624
1583
1541
1479
1406
1312
1187
1081

829

596

405

11

0.93
53.3
1013
727
.6391

182
449
798

1107

1268

1364

1433

1507

1588

1637

1663

1687

1711

1739

1741

1740

1723

1692

1656

1602

1539

1461

1358

1281

1073
879
686

12

0.80
55.3
994
727
.3740

342

706
1057
1300
1431
1504
1569
1642
1720
1749
1767
1798
1832
1843
1840
1824
1801
1771
1728
1677
1605
1517
1415
1296
1050

845

655

13
0.82
37.0
1014

740

.3876

396
718
972

1117

1188

1226

1408

1609

1684

1726

1751

1772

1789

1797

1797

1793

1783

1766

1737

1697

1638

1564

1483

1273
929

~ 682}

530

14

1.01
50.7
1001
740
.5592

522
805
1039
1151
1217
1292
1509
1619
1677
1708
1727
1741
1751
1751
1751
1739
1719
1691
1696
1609
1542
1468
1363
1lo0l
786
583
420

15

1.31
40.3
927
740
.7197

516

792
1028
1154
1234
1302
1473
1579
1629
1654
1668

1669
1667
1659
1642
1620
1592
1554
1507
1454
1381
1303
1207

963
642
455
334

16

1.42
25.2
854
740
.8022

545

836
1074
1217
1312
1384
1476
1537
1558
1558
1553
1543
1526
1502
1472
1437
1397
1349
1297
1235
1159
1073

971

742

454

293

205
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Two problems were considered. In the first, o
was fixed at one and the other two parameters were
determined such that the least square error was mini-
mized. Secondly, all three parameters were determined
simultaneously.

The maximum step size Smax’ the maximum allowable
relative change in the parameters for one iteration cmax’

and the mihimum allowable relative change in the parameters

for one step C which were used with the different initial

min
guesses for A and E/R are specified in Table C-2. The 360/67

machine time is also given in this table.

TABLE C~2

Contreol Data for Fiyxst Propane Problem

Initial Gueas

g o e IBM 360/67
A E/R max max min Time (min)
35.0  26.0 2%10™° 2,0 0.5 3,90
10.0 10,0 1x10™4 5.0 0.5 4,56
30,0  30.0 k10”4 5,0 0.5 4,34
40,0  40.0 1x10™4 5.0 0.5 4,44
0.0 0,0 1x20™4 5.0 0.5 7,73
50,0 50,0 1x10”4 5,0 0,8 4,03

38.4  26.22 1x10™4 5,0 0.5 2,98



The convergent sequences of parameters which evolved
from each of the initial guesses in Table C-2 are shown in

TableS C—3' C-4, C_5, C_6, C—7, C_8’ and C-go

TABLE C-3

First Propane Problem First Initial Guess

Sﬁgp A E/R gggogg Comment
) Squared
0 35.00 26.00 .4456 Begin Phase I
1 34.92 25.90 .4390
34.77 25.71 .4260
3 34.81 25.33 .4005
33.94 24.63 .3525
5 32.99 23.41 .2679
6 31.54 21.52 1424
7 29.80 19.20 .0382 Begin Phase II

8 29.46 18.73 .0335 Solution




Step
NOI

L= S S B S B =

10
1l
12
13
14
15
16
17

- c-7 -

TABLE C-4

First Propane Problem Second Initial Guess

A

10.00
15.41
16.24
17.08
17.88
18.63
19.37
20.08
20.79
21.49
22.19
22.90
23.62
24.36
25.17
26.10
27.33
29.45

E/R

10.00"

14.98
15.40
15.73
15.94
16.06
16.13
16.17
16.19
16.20
l16.21
16.23
16.25
16.31
16.41
16.65
17.20
18.72

Sum of
Errors Comment
Squared

2.535 Begin Phase I
2.535

2.535

2.535

2.534

2.534

2.532

2.530

2.525

2.515

2.494

2.454

2.375

2.219

1.925

1.399

0.6114 Begin Phase II

0.0345 Solution



- C-8 -
TABLE C-5

First Propane Problem Third Initial Guess

Sgg? A E/R ggﬁogg Comment
Squared
0 30.00 30.00 © 2.534 Begin Phase I
1 2914 28.86 2.534
2 27.79 26.06 2.534
3 26.02 24.66 2.533
4 24.19 22.06 2.533
5 22.78 10.83 2.532
6 22.00 18.26 2.529
7 21.81 17.30 2.524
8 22.02  16.78 2.514
9 22.46 16.50 2.494
10 23.03 16.37 2.453
11 23.68 16.32 2.374
12 24.40 16.34 2.219
13 25.18 16.43 1.924
14 26.10 16.65 1.398
15 27.33 17.20 0.6109 Begin Phase II
16 29.45 18.72 0.0336 Soiution
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TABLE C-6

First Propane Problem Fourth Initial Guess

A

40.00
39.73
39.20
38.23
36.56
34.03
30.88
27.86
25.67
24.48
24.10
24.22
24.66
25.31
26.16
27.36
29.45

E/R

40.00
39.65
38.98
37.73
35.58
32.30
28.16
24.07
20.86
18.76
17.56
16.93
16.64
16.57
l16.72
17.23
18.72

Sum of
Errors Comment
Squared

2.530 Begin Phase I
2.530
2.529
2.529
2.529
2.527
2.525
2.520
2.510
2.489
2.449
2.370
2.214
1.920
1.394
0.6081 Begin Phase II

0.0336 Solution
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TABLE C-7

First Propane Problem Fifth Initial Guess

Sum of
Sggp a E/R Errors Comment
' Squared
g 8.g0 8.00 g,sgg Begin Phase/I
[] 0 .00 .5 B- g . 2
2 0.00 0.00 2.535 sggx > sm:“/z
3 0.00 0.00 2,535 Bnan ghaX /o
4 0.00 0.00 2.535 uma: + 532:/2
5 0.00 0.00 2,535 Brax ~* Bmay/ 2
6 0.00 0.00 2,535 Snax uma*/z
7 0.00 0.00 2.535 Bnan * sma:/z
8 0.26 0.19 2.535
9 0.80 0.62 2.535
10 1.48 1.20 2,535
11 2,06 1.71 2,535
12 2.67 2,27 2,535
13 3,20 2.76 2.535
14 4.08 3.60 2,535
15 4.86 4,36 2.535
16 6.08 5,55 2.535
17 7.00 6.46 2.535
18 8.48 7.91 2,535
19 10.43 9.79 2.535
20 12.56 11,78 2.535
21 14,52 13.46 2,535
22 16.11 14,63 2,535
23 17.36 15,35 2.534
24 18,36 15,75 2.534
25 19,23 15.97 2,532
26 20.01 16.09 2,530
27 20.75 16.15 2,525
28 21.47 16.18 2,515
29 22.18 16.20 2,494
30 22.89 16.22 2.454
31 23.62 16.25 2.375
32 24.36 16.30 2,219
33 25.17 16.41 1.925
34 26.10 16.65 1.399
35 27.33 17.20 0.6114 Begin Phase II

36 29.45 18.72 0.0336 Solution



Step
No.

~J =) (8] o w [\ =

o

10
11
12
13
14
15
16

First Propane Problem

50.00
49.94
49.82
49.59
49.14
48.27
46.66
43.92
39.88
35.15
30.97
28.17
26.75
26 .35
26.64
27.54
29.45

- C-11 -

TABLE C-8

E/R

50.00
49.92
49.77
49.48
48.90
47.79
45.74
42.24
37.06
30.93
25.37
21.39
18.99
17.73
17.24
17.43
18.72

Sixth Initial Guess

Sum of

Errors Comment
Squared

2.502 Begin Phase I
2.501

2.501

2.501

2.501

2.499

2.497

2.492

2.483

2.463

2.433

2.343

2.187

1.892

1.367

0.488 Begin Phase II

0.0336 Solution



Step
No.

W 0O ~ o o1 &= W N =2 o

L = =
;B e W N B~ O

First Propane Problem

35.40
35.40
35.40

© 35.40
35.39
35.59
35.38
35.34
35.02
35.20
35.01
34,63
33.93
32.71
30.89
29.45

- c-12-

TABLE C-9

E/R

26.22
26,22
26.22
26.22
26.21
26.21
26.19
26.16
26.10
26.97
25.73
25.26
24,38
22.85
20.54
18.72

Seventh Initial Guess

Sum of
Errors
Squared
0.2728
'0.2728
0.2728
0.2727
0.2726
0.2722
0.2715
0.2701
0.2673
0.2617
0.2507
0.2297
0.1913
0.1289
0.0564

0.0336

Comment

Begin Phase I

Begin Phase II

Solution
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For the second case, with o being unknown, the
computer time required was considerably larger, as shown
in Table C-10. Also given in Table C-10 are the three
initial guesses which were used and the corresponsing

initial control variables.

TABLE C-10

Control Data for Second Propane Problem

Initial Guess

s c c . IBM 360/67
.\ E/R a max max min Time (Min)
18 15 1.0 2x1073 2.0 0.5 6.94
18 15 0.5 1x10”4 2.0 0.5 8.35
18 15 1.5 1x10™7 2.0 . 0.5 > 15

The convergent sequence of parameters for each of the
~initial guesses.given in Table C-10 are listed in Tables C-11,
C-12, and C-13. The ~ird initial guess was not carried all
the way to solution because of the large amount of computing

time required.



Step
No.

Second Propane Problem

18.00
25.87
26.00
26 17
26.49
27.12
“28.34
30.90
33.43

- C-14 -

TABLE C-11

E/R

15.00
20.14
20.06

19.97
19.82 ~
.19.62

19.55
20.24
21.48

First Initial Guess

1.000
0.749
0.7599
0.7740
0.800
0.844
0.916
1.025
1.109

sSum of
Errors: . Comment
Squared

2.533 Begin Phase I
0.9034
0.8717
0.8304
0.7513
0.6068
0.3711
0.944 Begin Phase II

0.0303 Solution



Step
No.

> w N [

N oy ot

10

11
12

TABLE C-12

- C-15 -

Second Propane Problem Second Initial Guess

18.00
18.01
18.02
18.05
18.12
18.24
18.47
18.93
10.78
21.30
23.80
27.76

33.43

E/R

© 15400

15.00
15.01

15.02

15.04
15.89
15.18
15.34
15.66
16.20
17.12
18.70

- 21.48

o

0.500
0.500
0.501
0.502
0.505
0.510
0.520
0.540
0.576
0.641

0.748

0.908
1.109

Sum of
_Brrors
Squared

0.7150
0.7146
0.7138
0.7122
0.7090
0.7025
0.6897
0.6644
0.6155
0.5241
0.3671
0.1496
0.0303

Comment

Begin Phase I

Begin Phase II

Solution



- C-16 -

TABLE C-13

Second Propane Problem Third Initial Guess

e
0 18.00
1 12.49
2 11.22
3 10.93
4 11.91
5 11.95
6 12.69
7 13.80
8 14.84
9 15.66

10 16.45
11 17.19 .
12 17.92
13 18.63
14 19.34
15 20.04
16 20.75
17 21.47
18 22.21
19 22.99
20 23.87
21 24.45
22 26.52

E/R

15.00
13.12
12.37

' 12.68

13.59
13.61
14.05
14.64
15.07
15.26
15.38
15.45
15.49
15.52
15.53
15.54
15.55
15.57
15.61
15.68
15.82
16.13
16.82

1.500
1.180
1.111
1.042

o 1.022

0.987
0.972
0.969
0.971
0.970
0.970
0.970
0.970

0.970

0.970
0.970
0.970
0.971
0.972
0.973
0.977
0.984
1.000

Sum of
Errors
Squared

2.535
2.535
2.535
2.535
2.535
2.535
2.535
2.535
2.535
2.535
2.535
2.534
2.533
2.532
2.528
2.522
2.509
2.483
2.432
2.331
2.135
1.769
1.141

Comment

Begin Phase I

Stopped after

15 minutes

The required SLOPE subroutines for the two problems

are listed on the following pages.
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SUBRGUTINE SLOPE(R,Ts1JACK)
_WHSLQEE.SU&RUUIINENEORWIHEWP&EBANEwﬂﬁﬂﬁLEMWﬁIIH THE

CROER OF REACTION FIXED AT UNITY.
REAL X(lOle),JX(lole),JK(lOvIO)yG(lO)chC(11110),X0(3
10,1C)

INTEGER RyNE NKyNA,ILoNDSyIJACK ;
COMMON /Ab3/C1NE1NK)NA/AB5/JX1JKQX:G/ABB/XG'II!NDS

mWREAL,NC(1011Eilb)JPllelJREilblilLllezlJJDLLZILLQL;LLLM~WM_~M“

1RRyGsZyAsEy
1TENP,SUMA
DU 16 I=1,NE

16
17

IF(ABS(X{RyI)) LE.10.0) GOTO 16
WRITE(641T)
ST G e e e

CONTINUE
FURMAT('CSTATE VARIABLE BUUNL EXCEEDED')
Z=X{Ry1)

11

A=C(Ryl)
t=C(R12) -
GOTOCLL s L2) o NA ot i i

DO 13 I=1,NE
G(I)=0.0
CO 14 J=1.NF

14

13

JX{1,43=C.0
DO 13 J=1,NK
JK UL 0d 1200 0 i e i

NA=2
DO 15 1=14NDS
READ(5s1) F(I)sNOU1),PI(L).PE(])

WRITE(évl)F(I)rNU([)1PI(I)1PE(I)
READ(591) (TLULyJ)d=142T7)
WWRITE(brll(TLlILJ)JJ?lJZ1)”M"m_,mmwwwWWW”Mwmmwm”M

FURMAT(8Xy9FBe2)
S=7.42242
L=0.069C113

17

RR=623€1C00.C

0=0.026543

DO lé6 J=1427

DO 17 I=1yNDS
TL(I,J)=(TL{I,J)+46C.0)/1800.0

16
12

IF(JeEL.Ll) GOTO 16

pL{J)=DL{J=1)+D

CUNTINUE

J=1.0+T/D
TEMP=(TL(ll,J)*(DL(J+1)—T)+TL(II,J+1)*(T—DL(J)))/D
P=PILIL)~-T*(PI{I1)-PELITN)/L

SUMA=SYEXP(A-E/TEMP) P/ (RRETEMP*F(L1})
G(1)=SUMA%(L+C—Z2)/ (1 C+NCUIL)/FULII)+Z)
IF(1JACK.LT.0) GGTO 15
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JX{1yl)==SUMA%{2.,04NOCLI)/F{I1})/ UL O+NOCII)/FL{II)+Z)*%*
N S

JK{1,1)=6G(1)
JK(19s2)==G(1)/TEMP
15_RETURN

END
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SN

SUBROUTINE SLOPE(R,T,yI1JACK)
SLOPE SUBROUTINE FOR THE PROPANE PROBLEM WITH THE
DRDER._QF. _REACTION UNSPECIFEIED,

REAL X10,10),J%X(10,10),JK{10,10),G(10),T,C(11,10),X0(3
10,10)
INTEGER R ¢NE ¢NK NA,TT,NDS,ITJACK

COMMON /AB3/CosNEysNKsNA/ABS5/JXsJKsX+G/ABB /X0y 114NDS
REAL NO(16)sF(16),PT(16)4PE(16)sTLI164927)4,DLL27)4+DySyL,
~1RR3QaZsAsE,

1TEMP, SUMA
DO 16 I=14NE
IE(ABS(X(R,I)).LEL10,0) GOTO 16

w1 6. CONTINUE...

WRITE(6417)
STOoP

17 FORMAT (! OSTATE VARIABLE BOUND EXCEEDED? )
I=X(R,y1)
A=C(R,1)

e GOT0(.11 9 121 5 NA

E=C{(R,y2)
Q=C{R,y3)

11 DO 13 I=1,NE
G(I1)=0.0
DO_14 J=1,NE

L3 JdK 1, J)=0.0

14 JX([4d)=0.0
DO 13 J=1yNK

NA=2
DO 15 I=14NDS
READ(S,1) F(I),NO(I),PTI(T),PE(T)

L5 WRITE(Os L) ATL A s d)ad=1027)

WRITE(6sL)F(I)4NOLI),PI(I),PE(])
READ(5,1) (TL{I,J),J=1,27)

1 FORMAT(8X4y9F8.2)
S=T7.42242
1=0,690118

RR=62361000.0
D=0.026543
o DL(1)=0600

DO 16 J=1,27
DO 17 I=1,NDS
17 Ti(T,d)=(TL (1,4)+460,0)/1800,0

16 CONTINUE =

IF(J.EQ.1) GOTO 16
DL(JI=DL(J-1)+D

12 J=1.0+T/D
TEMP={TL(II,J)*(DL{J+1)=TI+TL(II,J+1)*{T-DL(J))}/D
P=PICII)-Tx(PI(II)-PECIT}I/L

SUMA=S*EXP(A-E/TEMP)/F(IT1)
G{1)=SUMA%{P%(1.0-2)/(RRYTEMP*(1.0¢NO(II)/FLIT)+Z)))%**Q




IF(IJACK.LT.0) GOTO 15
JX(171)=-SUMA*Q*(2-0+NO(II)/F(II))*(1.0-2)**(@—1.0)*(P/

1{RR*TEMP).LX

1%Q/ (1 O#NO(ITI)/F(TI)+Z)¥%{1.0+Q)

JK({1,1)=G(1)
JK(1,2)=-G(1)/TEMP

e 15 RETURN ...

JK(1,3)=G(1)*ALOG(P*(1.0-Z)I(RR*TEMP*(1.0+N0([I)/F(II)+
12)))

END
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APPENDIX D

Catalytic Hydrogen Chloride Oxidation*

The data obtained for the oxidation of hydrogen
chloride was taken from a system which was essentially
a batch reactor. Once the charge entered the reactor,
the system was free from external interferénce except
for the agitation produced by a circulating pump and the
removal of the samples for analysis.

An adequate mathematical model of this system is

given in the following eduations.

Pro FPc1
5 2 2
a, (pF - —2 %
1 %o, .
4o, W'P, Ke Prc1
1
— = P P (D_l)
dt Ny H,0 "Cl,
1+ 3Puey * 23fh0 T B T o2
e PHCO
Ny P,
Pocy = |Mmer = 4Wo, " B, Po))| w; B (b-2)
B - Np P,
.. =N + 2. - =£ p_ )| == B(t) (D-3)
c1, ~ flei, o, B, Fo,)| &

* All the raw data for this example was supplied by Harding

Bliss of Yale University.



B(t)

P(t)

I

NB Pi

] + 2(N - == P_. )| = B(t) (D-4)
H20 O2 Pi O2 NB

P(t)

-— s

- Pi NB (D-3)
— IN, - (N - = P )]

NB [B 02 Pi O2

known eguilibrium constant

partial pressure of water

partial pressure of oxygen

partial pressure of chlorine

partial pressure of hydrogen chloride

total number of gm-moles initially present in the
reactor

number of moles of oxvgen initially in the reactor
number of moles of HCl

number of moles of chlorine

number of moles of water initially in the reactor
weight of catalyst present in the reactor.

the initial pressure of the reactor

the total pressure of the reactor at time t

number of moles of inerts
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The correction factor B(t) was correlated from

the actual pressure data using polynomials of the form:

2 3

B(t) = by + byt + byt® + bat (D-6)

The maximum amount of correction was about fifteen per
cent and the correction factors are all correct to within
one and a half percent.

All the data used to identify the parameters at
355°C are shown in the tables below starting with Table
D-1. The data used to identify the parameters at 340°C
are shown in the tables begginine with Table D-1l1. The
data used to attempt the identification of the parameters

at 325°C are shown starting with Table D-23.
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TABLE D-2

Hydrogen Chlpride Problem Data Set One at 355°¢

t (min) P, (atm) P (t) (atm)
2
0 0.1501 1.310
1 0.410 | 1.272
4 0.118 1.195
7 0.0958 0.155
10 0.0853 1.122
13 0.0772 1.097
TABLE D-3

Hydrogen Chloride Problem Data Set Two at 355°C

t (min) Poz(atm) P(t) (atm)
0 0.1496 1.304
1 1.1404 1.282
4 0.1150 1.209
7 0.1002 1.170
10 0.0890 1.136
13 0.0795 1.110

21 0.0633 1.055
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TABLE D-4

Hydrogen Chloride Problem Data Set Three at 355°%C

t (min) Po (atm) P(t) (atm)
2
0 0.1495 1.303
1l 0.1380 1.281
4 0.1155 1.206
7 0.0998 1.161
TABLE D-5

Hydrogen Chloride Problem Data Set Four at 355°C

t(min) Poz(atm) P(t) (atm)
0 0.1520 1.335
1 0.1445 1.313
4 0.1147 1.220
7 0.0988 1.177
10 0.0890 1.142

13 0.0808 1.119
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TABLE D-6

Hydrogen Chloride Problem Data Set Five at 335%

t{(min) PO (atm) P(t) (atm)
2

0 0.1560 1.322

1 0.4196 1.298

4 0.1252 1.221

7 0.1115 1.183
10 0.1006 1.152
13 0.0907 1.124

19 0.0785 1.080

TABLE D-7

Hydrbgen Chloride Problem Data Set Six at 355°C

t (min) Poz(atm) P(t) (atm)
0 0.2221 1.330
1 0.2095 1.310
4 0.1831 1.250
7 0.1720 1.226
10 0.1660 1.210

13 c.1622 1.201
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TABLE D-8

Hydrogen Chloride-Problem Data Set Seven At 355°¢C

t(min) ‘.P (atm) P(t) (atm)

0y
0 0.2160 1.311
1 0.2050 1.305
4 0.1809 1.245
TABLE D-9

Hydrogen Chloride Problem Data Set Eight .at 355°%

t (min) Po (atm) P(t) (atm)
2
0 0.0745 1.330
10 0.0491 1.234
TABLE D-10

Hydrogen Chloride Problem Data Set Nine at 3559 -

t (min) Poz(atm) P(t) (atm)
0o 0.1405 1.317
2 0.1225 | 1.270
5 0.1060 1.211
8 0.0949 1.170
11 0.0882 1.140
14 0.0788 1.110

21 0.0654 1.054
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TABLE D-12

Hydrogen Chloride Problem Data Set One at 340°c

& (min) P, (atm) P (t) (atm)
2

0 0.1500 1.307

1 0.1416 1.284

4 0.1260 1.217

7 0.1123 1.182
13 0.0967 1.133

TABLE D-13

Hydrogen Chloride Problem Data Set Two at 340°C .

t (min) Po (atm) P(t) (atm)
2
0 0.1512 1.319
1 0.1418 1.297
4 0.1228 1.234
7 0.1147 1.195
TABLE D-14

Hydrogen Chloride Problem Data Set Three at 340°C

- £ (min) PO (atm) P(t) (atm)
T2
0 0.1530 1.334
1 0.1426 1.321
4 0.1269 1.266
7 0.1126 1.266

13 0.0988 1.102
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TABLE D-15

Hydrogen Chloride Problem Data Set Four at 340°C

t (min) : PO (atm) P(t) (atm)
2
0 0.1535 1.340
1l 0.1475 1.322
4 0.1241 1.253
7 0.1140 1.216
TABLE D-16

Hydrogen Chloride Problem Data Set Five at 340°C

t (min) Po (atm) P/t) (atm)
2
0 0.1548 1.312
1 0.1482 1.291
4 0.1329 1.241
13 0.1078 1.172
22 0.0925 1.122
TABLE D-17
Hydrogen Chloride Problem Data Set Six at 340°C
t (min) Po (atm) P(t) (atm)
2
0 0.1560 1.322
1 0.1450 1.310
4 0.1290 1.245

13 0.1062 1.165
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TABLE D-18

Hydrogen Chloride Problem Data Set Seven at 340°C

t (min) Py (atm)
2
0 0.1770
1 0.1705
4 0.1506
7 0.1365
16 0.1123
TABLE D-19

Hydrogen Chloride Problem Data Set Eight at 340°C

P(t) (atm)

1.301
1.281
1.228
1.192
1.114

t (min) P0 (atm) P(t) (atm)
2
0 0.2210 1.320
1l 0.2155 1.310
7 0.1825 0.232
13 0.1691 1.200
TABLE D-20

Hydrogen Chloride Problem Data Set Nireat 340°

t (min) Poz(atm)
0 0.2205
1 0.2085
7 0.1762

13 0.1662

P(t) (atm)

1.319
1.295
1.215
1.193
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TABLE D-21

Hydrogen Chloride Problem Data Set Ten at 340°C

t (min) PO (atm) P(t) (atm)
2
0 0.0843 1.316
10 0.0694 1.225
TABLE D-22

Hydrogen Chloride Problem Data Set Eleven at 340°C

t (min) PO (atm) P(t) (atm)
2
0 0.1535 1.339
1 0.1475 1.322

4 0.1241 1.253
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TABLE D-24

Hydrogen Chloride Problem Data Set One at 325°¢

t (min) P, (atm) P(t) (atm)
2

0 0.1560 1.333

1 0.1497 . 1.311

4 0.1392 1.255

7 0.1335 1.222
10 0.1271 1.191
13 0.1238 1.167

TABLE D-25

Hvdrogen Chloride Problem Data Set Two at 325°C

t (min) Poz(atm) P(t) (atm)
0 0.1566 1.327
1 0.1503 1.295
4 0.1380 1.252
7 0.1338 1.236
10 0.1277 1.220
13 0.1238 1.210

18 0.1181 1.191
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TABLE D-26

Hydrogen Chloride Problem Data Set Three at 325°%

t (min) Po (atm) P(t) (atm)
2

0 0.2220 1.344

2 0.2020 1.317

5 0.1840 1.263
10 0.1746 1.251
15 0.1674 1.237
20 0.1631 1.227

TABLE D-27

Hydrogen Chloride Problem Data Set Four at 325°%¢

t (min)

Poz(atm) P(t) (atm)
0 0.2180 1.320
5 0.1850 1.250
10 0.1719 1.222
15 0.1654 1.208

20 0.1604 1.195
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TABLE D-28

Hydrogen Chlioride Problem Data Set Five at 325°C

£ (min) Poz(atm) P (t) (atm)
0 0.0748 1.333
1 0.0741 1.327
4 0.0706 1.306
7 0.0710 1.298
10 0.0701 1.293
13 0.0694 1.280
20 0.0648 1.246
TABLE D-29

Hydrogen Chloride Problem Data Set six at 325°C

t (min) Poz(atm) P(t) (atm)
0 0.1417 1.328
2 0.1362 1.298
5 0.1268 1.255
8 0.1193 1.227
11 0.1160 1.197
14 0.1130 1.170

23 0.1005 1.106
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TABLE D-30

Hydrogen Chloride Problem Data Set Seven at 325°%C

t (min) PO (atm) P(t) (atm)
2

0 0.1415 1.320

1l 0.1378 1.297

4 0.1228 1.240

7 0.1165 1.210
10 0.1101 1.189
13 0.1061 1.167
19 0.0989 1.132

TABLE D-31

Hydrogen Chloride Problem Data Set Eight at 325°%

t (min) Poz(atm) P(t) (atm)
0 0.1420 1.326
1 0.1380 1.304
4 0.1243 1.255
7 0.1177 1.228
10 0.1112 1.204
13 0.1056 1.186

19 0.0981 1.150
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TABLE D-32

Hydrogen Chloride Problem Data Set Nine at 325°%

t (min) Poz(atm) P(t) (atm)
0 0.1410 1.319
1 0.1390 1.304
4 0.1235 1.256
7 0.1122 1.235
10 0.1120 1.221
13 0.1064 1.206

~An attempt was made to determine the unknown
parameters in equation (D-1) at each of the three tem-
peratures. The results of each of these attempts is
presented below. At 355°C the solution coverged direct-

ly with quasilinearization as shown in Table D-33.
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TABLE D-33

Solution of Hydrogen Chloride Problem at 355°¢

Iteration
Number a1XIO

~ =)} (6] L) w N [ o
O
L]
[-9
~

[o o]

9.80

3.10
6.91
12.2
12.6
12.8
13.1
13.1
13.2
13.2

25.0
36.1
50.0
47.3
47.0
47.8
47.8
47.9
47.9

ay

230
401
661
704
732
755
759
762
762

Sum of
Errors
Squared

0.00315

0.000747

At 340°C a solution could also be obtained using

guasilinearization directly as shown in Table D-34.
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TABLE D-34

Solution to Hydrogen Chloride Problem at 340°C

s Sum of

ez T Aot s A 8, mrors

0 0.920 0.220 21.0 142 0.00708

1 2.79 0.651 90.3 -65.1

2 5.28 0.732 128.8 ~50.3

3 5.57 0.793 120.6 -34.8

4 5.58 0.793 121.6 -34.9

5 5.57 0.790 121.3 -34.8

6 5.57 0.791 121.3 -34.8 0.00144

At 325°C no solution was found. An attempt to
find the solution directly using quasilinearization failed
because the maximum allowable relative change in the

parameter Cma was exceeded. The initial values of Sma

X X

and Chax Were 0.05 and 50 respectively. The results are
summarized in Table D-35. The SLOPE subroutine used for

this problem is 1listed at the end of this section.
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D=-24

SUBROUTINL SLCPE(RsT,IJACK)
SLOPE SUBROUTINE FOR THE HYDROGEN CLORIDEPROBLEM.

REAL%4 X{10y10)9JX(10,10),JK(10,10)9G(10)sT4C(11+10),X0
1{(3G,10)
INTEGER RoNE oNKeIl o JoNCGoIToNDSe TJACK

CCMMON /8B3/7CyNEyNKyNO/ABS5/JIX9JK9X9G/ABB/ XCy I14NDS
REAL*4 F'KpB]UA A,
1PI(30), KE(50).W(BO).NHCL(BO).NTDT(BOl.NDZ(BO).NCLZ(BO),

1INH20{30)
2NNZ2(30) s SUMA(30) , SUMB(30) ,UPHCL{30),DPCL2(30),DP02(30),
1P0O24PHCI o

3PH20,PCL2,RA,SUMC,FG,GG,DRA,PTGT.NB(BO),DPHZU(BO):NN,XU

1(30,1C)
44 A0(30) 4 A1(30)43A2(3C) 4 A3{30)TT(30)sDHKsDSKsDHBsDSBsDHG

lA,DSbA,DHA,
5CSA4RR
INTEGER I4J

DC 16 I=14NE
IF(ABS(X(RyI)).LE.1C.0Q) GOATO 16
WRITE(G6,117)

16
17

STGP

CONTINUE
EORMAT{'OSTATE VARIABILE BOUNG EXCEEQOED?)

PC2=X(R,y1)
K=C(Ry1)%0.001

GA=C(R3)%*10.0
A=C(R,4)%100.0
GOTO(11,12) 4NC

11

D0 13 lI=14NE
G(I)=0.0
DO 14 J=1l.NE

14

13

JX{I44)=C.0
DO 13 J=1sNK
JK(1+J)=C.0

RR=1.987
NO=2
CO 15 I=1.NDS

READ(531) PLUI)sKE(L)oW(I)sNHCLCL), NUZlIl,NCLZ(I),NHZO(
1I),nNN2¢(T)
1TT(1)

WRITE(691)PICI)sKECI)swlI)sNHCLUI) ¢NO2{I)yNCL2(1) NH2O
11)sNN2(T)
lseITLI)

READ(S5s1) AG(L)AL(I),A2{1)4A3(1)
WRITE(6yL)AO(LI),AL(I)yA2{1),A3(1)
FCRMAT(8F10.5)

NB(I)=NO2(I)+NN2(I)+NHCLCI)+NH20(I)+NCL2(1)
DPH20( 1)=PI(I)*{NH20(I}+2.0%NO2(1))/NB(I)
DPCL2(I)=PI(I1)*(NCL2(I)+2.0%NO2( 1))/ NB(I)




D=25

15 DPHCL{I)=PL(I)*(NHCL{I)=4.0*NO2(I1)J}/NB(1)

12

CFI=AQII)+T (AL (L) £T*{AZ(12)*xA3CII)*T))

PH20=DPH2G(11)-2.,0*P02
PCL2=DPCL2(11)-2.0%P(02
PHCL=DPHCL(I])+4.0*PC2

PH2C=PH2C*CFT
PCL2=PCLL2*¥CFT
PHCL=PHCLACET

SUMC=SQRT(ABS{PC2)})
IF(SUMCsLTeLe0E-6) SUMC=1.0E-6
FG=SUMC*PHCL *%2-PH20*PCL2/KE(IT)

GG=PHCL*%2+B#PHCL**3+GAXPH2U*PHCL**2+A*PH20%PCL2/KE(II}
DFG=0¢5%PHCL¥%2/SUMC+( 8, 0%SUMCH*PHCL+2 . 0*{PCL2+PH20) /KE(
111} )*CET

DGG=(8.0%PHCL+12.0%B¥PHCL*%2+GA%* {84 0%PH20%PHCL-2.0*PHCL
1#%2)
1-2.0%A*(PCL2+PH2O) /KE(TII)XCFT

GI1L)=-K¥PI(II)*W(II)*FG/(NB(II)*GG)
IF({1JACK.LT.0) GOTO 15
JX{121)==K¥P I{II)*WAIII*(CEGXCO-DGGXFGILINBLLLI*GG*%2)

JK(1,1)=6(13/K*0.001
SUMC=K*PI(II)*W{II)*FG/INB(II)*GGX**2)
JK(12)=SUMCXPHCL *%3

15

JK{1y3)=SUMC*PH20*PHCL*%2%10.0
JK(1ls4)=SUMC*PH20*PCL2/KE(IT)*100.0
RETURN

END
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APPENDIX E

Chemcell Problem

Batch reactor data has been accumulated for a
complex kinetic system. Six experiments. were performed
at 100°c, and five at 80°c. Three principal components
Xyr Xoo and x5 can be, and were directly measured. A
fourth is given by a linear relation between Xy, Xq and
one or more intermediates which exist but cannot be measured.
Each of the experiments was performed in a dilute
acidic solution. The concentration of water (W) and of
hydrogen. ion (H+) were constant throughout any one experi-
ment. The initial conditions for each of the components
e xcept x, were all zero. The initial condition for x, was
the constant Cy-

The first model that was proposed could be repre-

sented by the system of eguations given below.

- alﬁil + agx, (E-1)

2  _ _ + _
a Wx, + azXg — agX Xg — aHXgX, (E-2)
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. dxg
IE = s (E-3)
(a Hx W) a, Hx H
. = a;Hx, - a,Wa Hx; - a; x2(co - X x3) (a; + a,w)
5 -+ _ F
(a2W a7Hx2)a6x6 (a6x2 +ay +a,+ a7Hx2)(a5 + a2W)
(E-4)
a ﬁ§ a.x
x, + 11y 2 oy (E-5)
ag + a2W ag + a2W
Xg = Cy = (X + x5 + X, + Xg) (E-6)
All attempts to fit the above model failed to con-
verge.

A second and partially successful attempt was made

to fit the data to the model given below.

_l = - alH.-*-le (E"7)
dt

dx

2 _ _ + + _

E:— = a,X, asH X Xe + alH X (E-8)
dx3

— = agx, (E-9)
dat

a.x H+W + a.x,(c X, - X,)
x, = 11 5720 1 3 (E-10)
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A different solution was obtained for this prob-
lem for each initial guess employed. With the 80°c
data, different solutions were found: for each initial
guess. The first solution was found starting with the

initial guess:

KN 0.10 ]
a2 1.00 _
a3 0.10
a 1.00

L 5 _] _ |

and with the initial maximum step size Smax being 0.01.
With this initial guess the results in Table E-1l were

obtained.



Phase I
Step No.
0
2
3
4
5
6
7
8
9
Phase II
Iteration
No.

0
1
2
3
4

FPirst

ay

0.10

0.0848
0.0715
0.0701
0.0504
0.1421
0.0351
0.0291
0.0161

0.0161
0.00963
0.0106
0.01064
0.01064

- E-4 -

TABLE E-1

Solution for 80°C pata

as
1.00
0.976
0.956
0.940
0.929
0.923
0.920
0.923

0.963

0.903
1.100

1.019 .

1.017

1.017

3 25
0.10 1.00
0.131  0.508
0.157  0.245
0.179  0.0919
0.196  0.00127
0.209 -0.0474
0.217 -0.0626
0.220 -0.0453
0.191  0.335

0.191 0.335
0.154 0.822
0.136 1.249
0.1379 1.302
0.1379 1.301

Sum cf
Errors
Sauared
0.3475
0.3063
0.2660
0.2266
0.1889
0.1528
0.1187
0.08703

0.01584

0.00007009



With the second initial guess

and the same value for Smax the results were as

in Table E-2.

Phase 10
. Step.
No.

0
1
2
.Phase II
Iteration
No.

0

B> W NN =

|

0.04
1.90
0.58
1.58

L

0]

TABLE E-2

a

0.040
0.0329
0.0175

0.0175
0.00908
0.0107
0.0107
0.0106

1.90
1.896
2.007

2.007
2.149
2.244
2,227
2.227

0.580
0.600
0.516

0.516
0.381
0.284
0.302
0.302

Second Solution for 80°C Data

a4

1.580
1.120
0.786

0.786
0.745
1.189
1.298
1.293

(E-12)

presented

Sum of
Errors
Sauared

0.1351
0.1011
0.02112

0.00006993
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With the third initial gquess

|
i

0.1 |
0.1
0.1

0.1

(E-13)

and with the same initial value for Smax the results in

Table E~-3 were obtaihed.

TABLE E-3

Third Solution for 80°C Data

Phase I a
Step No. 1
0 0.1
1 0.0766
2 0.0585
3 0.0448
4 0.0345
5 0.0154
Phase II
Iteration
No.
0 0.0154
1 0.00979
2 0.0106
3 0.0106
4 0.0106

2

0.1
0.102
0.106
0.1106
0.1173
0.01547

0.1547
0.1780
0.1840
0.1835
0.1835

ajs

0.1

0.0996
0.0978
0.0944
0.0891
0.0535

0.0535
0.0305
€C.0245
0.0245
0.0250

a4

0.1
-0.0282
-0.1098
-0.1547
-0.1678

0.1374

0.137
0.561
1.120
1.377
1.374

Sum of
Errors
Squared

0.2553
0.2154
0.1740
0.1332
0.09506
0.01070

0.00007195
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A similar phenomenon was encountered when attempts
were made to determine the parameters characteristic of
the 100°c data. Three attempts were made, all with
different results. For each of the attempts the initial
value of the maximum step size was retained at 0.0l.
For the first, second, and third initial guesses,

the results are given in Tables E-4, E-5, and E-6 respec-

tively.
TABLE E-4
First Solution for 100°¢ pata
Sum of

Step No. a, a, a, a, g;ﬁgizd

0 0.1 1.0 0.1 1.0 0.2470

1 0.0124 1.03 0.0760 17.7 0.2048

2 0.0152 1.04 0.0619 33.6 0.1664

3 0.0185 1.05 0.0582 41.5 1.1318

4 0.0223 1.05 0.0644 38.0 0.1009

5 0.0423 1.00 0.121 13.9 0.03033

6 0.0692 0.975 0.151 7.61 0.001763

7 0.0815 0.979 0.150 7.14 0.0002298



TAELE E-5
Second Solution for 100°C Data

Step N Sum of
ep No. a a a a Errors
: 2 3 4 Sauared
0 0.070 2.00 0.400 5.00 0.002076
1 0.0787 2.06 0.339  6.52 0.0003089
2 0.0815 2.10 0.321 7.11 0.0002301
TABLE E-6
Third Solution for 100°C Data
Sum of
Bt.p No. a a a a Exrxrors
1 2 3 4 Sauared
0 0.1  ..0.1 0.1 0.1 0.02516
1 0.0922 0.126 0.0738 1.30 0.009845
2 0.0854 0.1%4 0.0461 3,52 0.001711
3 0.0818 0.174 0.0270 7.47 0.0002271

The data used to produced the results in the
previous six tables are listed in Tables B=7 through to
E=17. The SLOPE subroutines used are listed immediately
following the data.
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TABLE E-7

Data Set One 80°C

mh) = 1.27 x 1072 g-mole/1
c, =7.91x 10”2 g-mole/1
emin) *1 (g-molzil) xlO'2 | *3

0.0 7.91 0.:00 0.00
5.3 7.61 0.52 0.07
9.8 7.39 0.97 0.07
19.9 6.87 1.93 0.14
29.8 6.40 2.87 0.14
43.7 5.79 4.04 | 0.20
59.6 5.08 5.31 0.34
80.1 4.41 6.59 0.41
100.5 3.78 7.78 0.48
150.3 2.68 9.85 0.62
204.9 1.76 11.46 0.83
14440.0* 0.00 13.07 2.75
28880.0% 0.00 11.81 4.01

*These points were not used to f£ind the parameters
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TABLE E-8

Data Set Two 80°C

(#") = 2.30 x 1072 g-mole/l
c, = 7.95x 1072 g-mole/1
. X
€ min) 1 (g-moleil)xloz *3
0.0 7.95 0.00 0.00
2.57 7.69 0.44 0.07
5.32 7.40 1.03 0.07
10.13 6.92 1.98 0.07
15.20 6.49 2.77 0.14
20.05 6.06 3.60 0.19
29.70 5.26 5.12 0.27
39.82 4.55 6.38 0.41
59.50 3.47 8.41 0.53
80.00 2.64 9.94 0.67
101.47 1.96 11.17 0.80
150.65 0.98 12.91 1.01
200.48 0.50 13.67 1.23
14440.0% 0.00 11.98 3.92
28880. 0* 0.00 10.66 5.23

* These points were not used to find the parameters
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TABLE E-9

Data Set Three at 80°C

(5") = 3.68 x 1072 g-mole/l

c, =8.22 % 1072 g-mole/l
£ min) 1 (g-moled1)x10> *3
0.0 8.22 0.0 0.00
1.75 7.93 0.51 0.07
4.72 7.48 1.41 0.07
10.52 6.55 3.13 0.20
14.87 6.02 4.19 » 0.20
19.78 5.37 5.35 0.34
30.28 4.32 7.34 | 0.47
39.82 3.48 8.87 0.60
61.00 2.20 11.23 0.80
82.12 1.35 12.79 0.96
99.98 0.92 13.50 1.09
149.95 0.32 14.38 1.43
299.40 0.11 14.57 1.64
14440.00% 0.00 11.28 5.15
28880.00* 0.00 10.12 6.32

* These points were not used to find the parameters
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TABLE E-12

Data Set Four at 80°C
+
(H") . 3.45 x 1072 g-mole/l

CN - 8.25 x 10~2 g-mole/l

t (min) Xy (g-moln?i)xloz Xq
0.0 8.25 0.00 0.00
2.42 7.86 0.73 0.07
4,85 7.49 1.38 0.14
9.97 6.71 2.88 0.20

18,03 6.00 4,18 0.33
19.80 5.44 5,28 0.34
29,63 4.44 7.10 0.53
41.43 3.42 8.99 0.68
59,58 2.38 10.988 0.81
83.98 1.41 12,66 1.04

101.30 0.96 13.458 1.14

180.55 0.39 14,23 1.50

202,78 0,14 14,50 1.72

14440.00" 0.0 | 11.31 8.19
28880,00% 0.0 9.51 6.99

* These points ware not usad to determine the parameter
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TABLE E-1ll

Data Set Five at 80°c

(1*) = 6.98 x 1072 g-mole/1

Cc

t (min)

0.00
7.40
9.80
15.2
19.8
24.9
29.9
40.0
50.1
60.2
87.5

104.7
156.7
211.8
14440.0
28880.0

o

= 8.35 x 10°2 g-mole/l

*1 g-molﬁ%l)xlo2
8.35 0.00
7.60 1.35
5.64 5.08
4.45 7.32
3.71 8.69
3.01 4.99
2.41 11.08
1.63 12.49
1.05 13.41
0.67 14.06
0.22 14.71

1 0.10 14.63
0.04 14.36
0.00 13.95
0.00 10.26

0.00 9.73

0.00
0.14
0.34
0.49
0.60
0.70
0.80
0.95
1.18
1.79
1.55
1.86
2.27
2.76
6.44
6.97
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TABLE E-12

Data Set One at 100°C
3

m*) = 6.14 x 107> g-mole/l
c, =8.28x 1072 g-mole/1
t (min) p 4 X2 X
1 (g-mcle/l)xlo2 3
0 8.28 0.00 0.00
5.9 7.08 2.26 0.14
10.6 6.17 3.95 0.27
40.1 2.59 10.49 0.89
59.9 1.44 12.66 1.03
100.2 0.44 14.30 1.37
149.9 0.11 14.68 1.66
206.0 0.03 14.44 2.06
TABLE E-13
Data Set Two at 100°C
@mt) = 9.86 x 10”3 g-mole/l
c, =7.81x 1072 g-mole/l1
t (min) b4 ') X
1 (g-mole/1)x102 3
0.00 7.84 0.00 0.00
5.1 6.28 2.92 0.20
10.2 4.88 5.50 0.42
20.7 2.91 9.16 0.70
39.6 1.16 12.33 1.04
60.1 0.40 13.57 1.30
100.3 0.07 13.88 1.66
150.1 0.00 13.62 2.06

200.0 0.00 13.26 2.43
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TABLE E-14

Data Set Three at 100°c

(8") = 1.25 x 1072 g-mole/l
c, = 7.49 x 1072 g-mole/1
t (min) X, X, ) Xq
(g-mole/1)x10
0.0 7.49 0.00 0.00
5.1 5.80 3.16 0.21
20.2 2.36 4.57 0.69
39.8 0.75 12.38 1.09
60.0 0.21 13.28 1.30
99.8 0.04 13.21 1.73
152.8 0.00 12.80 2.18
201.7 0.00 12.42 2.56
TABLE E-15
Data Set Four at 100°C
(a¥) = 2.41 x 10”3 g-moles1
c, =7.74 x 107 g-mole/1
& min) *1 (g—molz;l)xlo2 *3
0.0 7.74 0.00 0.00
5.9 7.29 0.82 0.07
20.5 6.23 2.82 0.20
40.6 5.05 5.05 0.34
59.7 4.06 6.88 0.48
100.0 2.72 9.35 0.69
150.8 1.60 11.40 0.88

203.9 0.85 12.69 1.09
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TABLE E-16

Data Set Four at 100°C

")

C
o

t (min)

0.0
3.1
6.0
15.5
24.7
41.3
62.3
88.0
108.1
157.3

210.0

= 1.03 x 1072 g-mole/l
= 1.563 x 1072 g-mole/
X1 X2
(g-mole/1)x10
1.563 0.000
1.374 0.353
1.187 0.699
0.748 1.514
0.476 2.014
0.206 0.474
0.077 2.642
0.020 2.670
0.013 2.628
0.003 2.528
0.000 2.431

1

2

0.000
0.026
0.053
0.117
0.1l61
0.241
0.330
0.415
0.468
0.595

0.695



t (min)

0.0
2.4
5.3
9.8
15.1
20.0
30.6
39.6
49.5
60.9
80.5
101.6
160.7
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TABLE E-17

Data Set Six at 100°C

(H) =
C =

7.59
6.84
5.92
4.59
3.47
2.64
1.47
0.90
0.52

0.11
6.00
0.00

2
2

1.20 x 10~
7.59 x 10

X2
(g-mole/1)x10
0.00
1.44
3.12
5.59
7.70
9.22
11.41
12.35
12.98
13.17
13.42
13.35
13.02

g-mole/1
g-mole/1l

2

X3

0.00
0.07
0.22
0.41
0.54
0.68
0.83
1.04
1.17
1.40
1.54
1.83
2.16
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SUBROUTINE SLOPE(R,TyI1JACK)
SLOPE _SUBROUTINE FOR THE SEVEN CONSTANT CHEMCELL

OO

PRCBLEM AT 80 DEGREES.
REAL*4 X{10,10)9JX(10510)9JK{10,10)+G(10)sT.  (11+10),X0
1{(30,1Q)

INTEGER RyNEsNKyNC,y I14NDSsIJACK
COMMON /AB3/CyNEsNKyNO/ABS/JIX2JKsX9G/ABB/ XCy I1sNDS
REAL*4 X19X23X39X49X53X6 K1 K29K39KG9KS2KOsKT2HI(O5) e W(O

15)4CGLC3I
19FF 950G 9562y DX4X1yDX4X29BX4X39DX4K1 DX4K2 9D X4K35DX4K4,DX
14K5,0X4K6,

10X4KT7gLX5X1L g LX5X29DX5X390X5K19DX5K29DX5K3 9 DX5K49DX5K55 0D
1X5K6 9 DX5K7
INTEGER 14J

DO 16 I=1yNE
IF(ABS(X{RsI)).LE.10.0) GOTO 16
WRITE(6,17)

STOP
16 CONTINUE
17 FORMAT('OSTATE VARIABLE BCUND EXCEEDED')

XLl=X{(R41)
X2=X{R12)
X3=X{R,3)

K1=C{R,41)
K2=C(R,2)
K3=C{(Rj3)

K4=C(Ry4)
K5=ClR,5)
Ké6=C(R,6)

K7=C(R,7)
GOTC(11ls12)4N0
11 DO 13 I=1,4NE

G(1)=0.0
DO 14 J=1lsNE
14 dx{I,J1=0.0

DU 13 J=1yNK
13 JK{I,J)=0.0
NO=2

DATA H{1)yW(1),C0(1)/0.0127955.6,0.0791/
DATA H(2),4(2),C0(2)/0.0230455.690.0795/
DATA r(3),W(3),C0(3)/0.0368955.6,0.0822/

DATA H(4)4W(4),C0(4)/0.0345+155.640.0825/
DATA H(5)yw(5),C0(5)/0.0698422.640.0835/
12 FF=(KT¥H(IL) #X2=K2*¥W(I1))*K1*H(TI)*X1-KT*H(II)*X2%(CO(I

1I)-(X1¢X3))
1¥(KS+K2*W(I1))
Go= (K2¥W I )=K7T*H{ L1 )% X2 )*¥KO6*X2={ KO*¥X2+K3+K4+KT*H(I1)*X

12)*(K5+K2%*
IWw(Il))
X5=FF/066.
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Xa=(KL¥H{IL)*X1+K6%X2%X5 )/ {KO+K2*W(I1))
Gll)=—KI*H{II1*X1+KS*X4

G(2)=K2%W (L1 )*X4+K3%X5-KO6*X2%X5-KT*H(11)*X2*(CO(II1)-(X1
1+X3+X4+X5))
G{3)=Ka4*X5

IF{1JACK.LT:Q) GUTO 15
DXSX1=((KT*H{II)®*X2=K2%W(I1) )¥K1I*¥H{TT)+KT7*H{II)*X2*{K5+
Lk2*wW(i1)))/

1GG
DX5X2=({ KT#*K1%*X1xH (I 1) %% 2=KT*H{IT)%{CO{TT)-{XL#X3) }*{K5
L4231 *Wli1))

1#60G- (K6* (K2%W( 11 )=KT*H{ I 1) %X2) =KT*H{I I} *K6*X2~ (K5+K2%W 1
LIT) ) *(KO6+KT
2%H{I1))I*EF)/GG*%2

DX5X3=KT*H{ I 1)*X2%{K5+K2*W(11))/GG
DXSKLI=(K7*H{ I1)=-K2*WLIL[))*H{II)*X1/GG
DX5K2= ({=w(II)*K1¥HCIT)X1-W I *KT*H(1 1% X2*(CO(II)=(X

11+4X3)) ) *66
1= (W(II)*K6%X2=W{ IT)*{KEXX2+K3+K4+KT*H(11)%X2) ) *FF)/GG¥*
12

DXS5K3=FF*(K5+K2*W(I1))/6G**2
DX5K4=DX5K3
DXSK5={=KT7*HIIT)¥X2%¥(COL{II)=(X1+X3))*¥GL+(KO*X2+K3+K4+K7

IX¥H{IT ) *X2) *
1FF)/GG**2
DX5K6=(X2% (KS+K2%W (I 1) )={K2*w( I1)-KT7*H(I11)*X2)*X2)*FE/G

1G¥*2
DXSKT=( ({ X2%XL¥K1%¥H (11 )%%2=H(II)*X2*(CO(T1)~{X1+X3)I*(K5
L+K2%W(II)))

L¥GGH+(H( I I ) *KO6%X2%#24H{ [ 1) %¥X2%(KS5+K2%n( 1)) )*FF)/GG**2
GG=K5+K2*W(1II)
Dx4X1=(K1*H(II)+K6*X2%DX5X1) /GG

DX4X2=K6E¥X5/GG+KO6¥X2%DX5X2/G6
DAK4X3=K6*X2*UX5X3/GG
DX4K1=(HIIT)*X1+K6*X2%DX5K1) /GG

DX4K2= (KO6% X2*DXSK2* (K5 +K2¥ WL II)) =W (II)*(K1*H{I1)*X1+K6*
1X2%X5))/GG*
1*2

DX4K3=Ko6*X2*DA5K3/66
DX4K4=Ko*X2*¥LX5K4/6G
DX4K5= (KO6*XX2*¥DX5K5% (K5 +K2¥W{ T1))—{ K1*¥H( I 1) ¥X1+K6%X2%X5)

L)/766*%2
CX4KE=X2¥{ X54DX5K6) /66
DX4KT=KO6EXX2*DX5KT/GG

JX{1s1)==K1*R{II)+K5*DX4X1
JX{192)=K5%DX4X2
JX{1,43)=K5%DX4X3

JK{1lsl)=-H{IT)*X1+K5*DX4K1
JK{192)=K5%DX4K2
JK{1,93)=K5%DX4K3
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A4= (RLFR (I L) *XL+KO%X2% XD )/ {KD+K2*W(I1))

CGl1)=-K1¥n(II)*A1+K5*X4

GlZ)=K2%a (1] )AX4+K3%XD-KO¥X2%X5=KT*H(11)*X2*(Culll)—-(X1
1+X3+X4+X5))
GI3)=K4% X5

A2 (L1))/

LF{LUACK.LTSC) GuUTU 15
UXSX1= COKTHRHLTIT)%AX2-K2%w( 1 1) VeKIRH{TT) #RkTHH{TT)*X2%(K5+

166
UASKZ=(EKTHKI#X1RH(T 1) #%2=KT*RL L 1) *(COLIT)-{X1+X3) )* (K5
L+K2)*w(l1))

1%06- (Ko {K2%w( 11 )=KTHH{ T 1) #X2) =K T*H{ I ) ¥Ko*X2= (K5+K2*W{
LIT) ) *(KO+KT

C2¥H(IL))IFER)/LLEFZ

UADXI=RTRH( L1 ) %X2¥ (K5+K2*W(11) 1766
UXSKLI=(KT#H{ 11)=-K2*W(I D) I*HITI*X1/7G6
CASKZ=(d=nlII)*KLI¥H(TI)RX1-WATT)*KT*H(1 L3 Xx2*(CO(LT1)=-(X

i

114X31) %06
1~(W(II)#KO6%X2=Wl 1T )*(KEXX2+KI3+K4+KTxH{ 111 *X2) ) *FF)/GG**

CXER3=FF*(KS4K2%W (11D ) /GCx%2
LCX5K4=DX5K3
UX5K5= (=K T#H LI )¥X2*¥(COL L1 = (X1+X3) ) *¥Gu+ (KO¥X2+K3+K4+K 7

TLGHR2

I*h(I11)*X2)*
1FF)/GG*%2

LX5Kb=(X2% (K5 +K2%w (11) )=(K2%w( [ 1) =KT*H(11)*X2) *X2) *FF/G

DXSKT=A L X2HXL#KLRA (I 1 ) %% 2=H {11 )% X2%(COCILI={X1+X3) )% (K>
LekZ2%wllI)))

l*Lu+(HlIl)*Ké*xz»*2+H(ll)*X44(K5+K2*w(II)))*FF)/ub**Z
GU=KH+K2*W(I1)

DA4XL=(KI#H(11)+KO*X2¥DX541) /66

LXGXZERO¥ KD/ GGHROFA2FUXOX2/ GG
LA4X3=Ko*X2¥LXDX3/66
UX4K1=(HUII)#X1+Ko*X2*UXOK11} /GG

L*e |

URGEZ2=(Ro% A2 % DRSKZ2¥AKS+K2¥WL LI ) )= (T L) *(K1*H(I 1) *X1+K6*
lLAZ®X2))/uu*

UX4K 3= ho*xz*bADKj/ub
UXGKa4=Re*xX2¥LA5K4/ 606
bA4K)—(Ko*xz«UXSKb*(&:+Kc*N(II))—(Kl*H(II)*X1+K6¥XZ*XS)

 DA4RKT=KO¥XZXLXOKT/GG

Ly/70G*%2
LXGKE=Xe*{ X5+uX5K6) /66

TOX{lal)=-K1¥F(L1L)+no%UX4X1
IX{192)=KERUXAX2
JX(1,43)=KH*LX4X3

JK{Llyl)==n (1 1) #XL+KE*UX4K]
JK{192)=K5%D X4K2

LNRGL g 3)=KOXUXAR3




JK{ly4)=k5%DXaK4
JR{L1s5)=K5%DX4K5+ X4

JK (L1 46)=K5%DX4K6
JREL s T )=K5%DX4KT
JA(2 91 )=K2¥W (LI )HDX4XL+(K3-KO*X2)FOXOX]I+KTX¥H(IT)*X2%*(].

10+UX4X1+
LDX5X1)
JAAZ292)1=K2%a (1L IRLX4X2+(K3-KO%X2 ) ¥OXOX2-KO6¥X5=KT*H{] L)%

L(LGUIL) -
LOXL+X3+4Xa4+X5) ) +KTHH(T1)*X2%{DX4X2+0X5X2)
JX(293)=K2*RA LTI ) #UX4AXF3+(K3-KO%*X2) ¥DXSX3+KT*H(11) *X2*{1l.

1U+UX4K3+CX5
1x3)

14K1+40X5K1)
JK(292)=n (11 )%X4+K2% Wl [ 1) %UX4K2+ (K3-KO6*X2) ¥DX5K2+KT*H( 1
1I1)*X2*(UX4K

12+UX3K2)
SR (293)=X5+K2%W{ [T )*UXAaK3+(K3-K6*X2) ¥UXSK3+KT*H(II)*X2*
1{CX4K3+DX5K

13)
JK(294)=K2%¥W L I] ) *UX4K4+{K3=K6* X2 ) ¥DXSK4+KT*H{ I 1) *X2%{DX
14K4+0X5K4)

JK (295 )=K2%W {11 )%¥DX4KO5+(K3-KO6%X2) ¥ UXSK5+KT*H{TI)*X2* (DX
14K5+DX5K5)
JKL200)=Xx2%X0+K 2%l [T ) *DX4KO+ (K3=KOE*¥X2) ¥LXS5Ko+KT*H(I1)*

LX2%(LX4KE+U
1X5ke!
JKUZ 3 7)=H{I T 1%Xe*{CO(I1)=(X1+X3+X4+X5) }+K2¥W(I1)*DX4KT+

L{K3=-K6%X2)*
LOXSKTH#KT*HL T 1) *X2* (DX4KT+UX5KT)
JX(3491)=K4*DX5X1

JX(342)=K4%DX5X2
JX{333)=K4%0X5X3
JKL3y1)=K4*DX5K1

JR{342)=K4%0X5K2
JKE3,3)=K4*%UX5K3
JRE324)=X5+K4*UX5K4

JK{345)=K4%DX5K5
JK{3,6)=Ka4*0x5K6
JK{3,7)=Ka*DA5KT

15

ReTURN
END
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SUBROUTINE SLCPE(RTyIJACK)
SLOPE_SUBROUTINE Fur _THE FOUR_CONSTANI. _CHEMCELL

[aR .

PRCUBLEM AT 80 UEGREES.

REAL*8 X{10,05)9JX(05405),JKL05905)46(05)9T4C(11,05),X0

1(30,05)

INTEGER RyNEJNKyNOIToNDS,IJACK
COMMUN ZAB3/7CyNEyNKyNOZABS/JIXyJdK 9 XeG/ABB/ X0y I 19 NDS

REAL*S X1eX2eX39X41 X599 X0 sl K2 9K3 9KGs K5 s KO KToHIO5) s WIO

15),C0{C5)

LsFFy0GG9GG29DX4AL UXGX2 yDX4X3 sUX4K1 9yDX4KZ 9DX4K3 9 DX4K4,0X

14K5

INTEGER 144
DO 16 I=1l4Nt
IFADABSIX{Ry 1)) el E,1C.0Q) GUIO 16

WRITE(E,17)
ST4°P
CUNTINUE

le
17

FORMAT{*OSTATE VARILABLE bOUND EXCEEDED')
X1=X{R,y1)
L X2=X{R 2]

X3=X(Ry3)
KL=C(Ry1)
K2=C{R42)

K3=C(Ry3)
K5=C(Ry4)
GUTCA(Lllsl2) N0

11

DG 13 1=1,Nt
G(i)=0.0
DG 14 J=1,NE

14

13

JX{(1,J42=C.0
DO 13 J=1lynNK
J_’S...(.,l.l\.\“) = O ) O

NC=2
K4=C.0
DATA H(l)4dll),C0(1)/0.0127+55.690.0791/

DATA H{2)3W(2),C00(2)/0.02509554690.0795/
LUATA HU3) 9w (3)4C0{3)/0.0368955.69040822/
UATA H(4)snl4)s00(4)/0.03454955.620.0825/

12

DATA H{5)yW(5),C0(5)/0.0698955.69C.0835/
X5=Cc{I1)=X1-X3
FE=RO%H(I L) % X2*XO+K1¥H(TT)*W (1 1) *X1

GG=K2+K3+K4*X2+K5%H( 11)*X2
X4=FF /66
X6=X3=X4

GlL)==KLl*F (I L)Wl TI)RX1I+KaXxX2%X4
GU2)=K2¥X4+K 1¥H (LTI )*W (11 )2 XL-K4%¥X2%X4~KO*H (I T} *X2%*X6
GI3)=K3*%X4

IF (1JALK.LT.C) GUTO 15
662=G6 %%

 DX4Xi=(K1FHCII )W (11 )-KS*H(I 1) *X2) /66
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UXaX2= (KA (T1)*X5%Go=(Ka+KS*H{IT))I*FF)1/5662
UX4X3==K5*%H{11)*X2/GG

DX4R1=H{11)*a(I1)*X1/GG
DX4K2=-1.C/6G2
Cr4K3=0XaK2

UX4Ka=x2%DX4K2
DA4Ko=(H(IT)*X2%XS*GG-H{T1)*X2*FF) /662
JALL1)=-KI*XE(LI)#EWLT1)+KGFXZ2XDX4X]

JX(192)=Ka®X4tK4*X2%DX4X2
JX{L193)=K4xX2%DX4X3
JE(L1o1d==H{ll)*W{lIl)*X]+K4*XI¥DX4K]

JRILs2i=KakX2%DX4K2
JR{L 93)=Ka*X2%DX4K 3
JRLly4)=KaEX2%DX4KD

FR=K2=-K4%*A2+KS%H{I 1) *X2
JX{2y L1=K1*H(1L) *WLIT)+KORH( L1 ) %X2+FF*DXaX1
JXE292)==KaxXa=KEXH(T1 )% X6 +FFX0UX4X2

JX(213)=FF*DX4X3+K5%H11)*X2
JK{Zs1)=FFXDX4K1+H(I1)*W(II)*X1
JR{242)=FF*DX4K2+X4

JK(293)=FF*DX4K3
JKI294)=FF*DX4aK5-HIT 1) *X2%X6
JX({3,]1)=K3I*PX4X]

JX(3,2)=K3*%DX4x2
JX{3,3)=K3%DXaXx3
JE(3,1)=K3xDXaK]

JK(3,2)=K3%DX4K2
JK{333)=K3%DX4K3+X4
JK(3,4)=K3*DX4K5

15

RETURN
END
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SUBROUTINE SLUPE(R,TyIJACK)

C SLOPE. SUBRUUTINE FOR THE FOUR CONSTANT CHEMCELL

C PRUBLEM AT 100 LCEGREES.
REAL%*8 X(105035)9JX{05,05),JK(05,05),6{C5)sT4C(11,05),X0
1{30,05)

INTEGER R,NEyNKyNUrIIlN051IJACK
COMMUN /AB3/C,NE,NK,NU/AB5/JXQJK’XpG/AbB/XCyI[yNDS
REAL*8 Xl:K21X51X49X51X6gKlnKZ:K3:K41K5:K6!K7QH(06)yW(O

1€),C0(06)
lpFF166,GGZ,UXQKI,UX4XZ,UX4K5.DX4K1,UX4K210X4K3,DX4K4,DX
14K5

INTEGER 14J
CG 16 L=14NE
LF(UABSIX(R 1)) LELL10,Q) GOTU 16

WRITE(CG,17)
STGP
lo CONTINUE

17 FURMAT('OSTATE VARLABLE BOUNLC EXCEEUED*)
X1=X1{K,y1)
X2=A{R+2)

X3=X{Ry3)
K1=C(R,1)
K2=C(Rs2)

K3=C(Rq+3}
K5=C(Ke&)
GOTC(Lllsl2) ohNO

11 DG 13 I=1l4NE
G(I1)=0.0
DU 14 J=1,NE

14 dXx{19d1=0.90
DU 13 J=1¢NK
13 JKk{l9J)=C.0

Nd=2
K4=0,0
CATA H(1),ull),C0(1)/0.012+55.648.0759/

UATA HIUZ2) yn(2)4CCLZ2)/0.00241455.690.0774/
DATA H(3),yW(3),C0(3)/0.00614,55.0,0,0828/
GATA H{4) ywi(4),00(4)/0.009864955.690.0784/

DATA H(5) W (5),C0(5)/0.0125955.6+0.0749/
CATA H(6),wl6),CU(06)/0.0103455.6,C.01563/
12 x9=CC(il)=-X1=-X3

FR=KO%H{ T L)% x2%X5+K1*¥H(I 1) *W (T 1) *X1
GO=K2+R3I+K4*X2+K5*H( 11 )%*X2
X4=FF /GG

""""" XO=X5= K4
GUL)==KLI%xR(LI)*W(1I)%*X1+Ra%xX2%X4
(2 )=K2%XG+K L¥H{IT ) *n (LI ) %X 1-K4%¥X2%¥X4—~K5*H (1] )*X2%X6

G(2)=K3%X4
IF(IJALK.LT.0) GUTO 15
GL2=GGH*2 -
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CXGXL=(K1*H( 1) *w(IL)-KS*H(I1)*X2)/GG
DXR4X2=AKOXHAL LI )¥X5¥66=(K4+KD*H(I1) V¥FF) /662

DX4X5==K5%H(11)*X2/GG
DXaK1l=FH{11)*WwllI)*X1/GG
DX4K2==1,0/6G2

DX4K3=DX4K2
DX4ra4=X2*¥LX4K2
DAGKO=AHLT L) XA2EXS%606=HI T L) *X2*FE) /GL2

JX{La1)==k1%H(LI)*W (Il )+Ka%¥X2%DXaX1
JXU 132 )1=K4%xX4+KG*¥X2*DX4XZ
JX{1 g 3)=K4®X2¥UX4XI

JKULoyL)==HOI D) *WCI T ) *X1+R4*X2*UX4K1
JK{142)=Ka*xX2%DXaK2
JK{L ¢3)=Ka*X2%DX4K3

JK(1y4)=K4XX2%DX4KD
FF=K2=-K4%x2+K5%H{I1)*X2
JX(Z291)=K1I#H(I L) *¥W(TT)+KSFH(TI)*X2+FF*DX4X1

JX{2y2)==Ka¥X4~K5%H{ 11 )¥X6+FF*0X4X2
JXL233)=FF*0X4X3+K5*H{I1)*X2
JK( 2 )=FF*DX4KI+H(IT)*W(1i)*X1

JK(242)=FF*DX4k2+X4
JR{2,3)=FF*UXx4K3
JE{244)=FF*OX4K5-H(I1)*X2*X6

JX(3,1)=K3%DX4axl

CJdX1342)1=K3%DX4X2

JX{3,3)=K3%0X4x3

JK{3,1)=K3%DX4Kl1
JK{3,2)=K3%Dxak?2
JK(3,3)=K3%DX4K3+X4

15

JR (3,4 1=K3%Dx4K5
RETURN
END
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APPENDIX F

Tracer Problem

In order to correlated the behavior of the flow
of a tracer through a packed bed, the following mathe-

matical model was used.

dxl _

— = xz

dt

dx,

— = - a;%X, - a X, - £(t - ) (F-1)
" 1¥p = 3y [y 7 £t - )]

The state variable Xq is the outlet concentration of the
tracer. The inlet concentration at a time t is given by
f(t). The time delay thy is not known but must be assumed
in order to use the proposed method. The optimum time
delay was determined by search.

To solve for the parameters a, and a, was not diffi-
cult once a time delay was specified.

X

Setting the maximum step size Sma to 0.1 and the

initial guess to

1.0
a = (F-2)
1.0
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the solution converged rapidly, as shown in Table F-1,
which gives the results for the optimum time delay

(tD = 0.187).

TABLE F-1

Tracer Problem tD = 0.187

Sum of

Phase I al a2 Errors
Step No. Sguared

0 1.0 1.0 0.116

1 5.47 5.24 0.032
Phase II
Iteration

0 5.47 5.24

1 9.42 11.43

2 6.34 10.31

3 6.54 10.62 0.00035

For the other values of the time delay consider-
ed, rapid convergence was also obtained.
The SLOPE subroutine required for this problem

is listed on the following pages.
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SUBROUTINE SLCGPE(R,T,1JACK)
SLOPE SUBROUTINE. FUR THE TRACER. PRUBLEMe . ... ..
RtAL A(10410)9yJdX{10,10)5JdK(10, 10)76(10)1T1C(1l910)1X0(3
10,10)
INTEGER RyNE oNKeNGe Il 1 oeNDSeIJACK

COMPFON /AB3/CyNEJNKyNU/ABS5/JX 9 JK9XyG/AB8/ X0 I1,NDS
REAL X1 4XZ23K13K291K3 K4 9X3 4 X4

AN EGER Lo e s e e e

DG 16 I=1,NE

IF(ABS(X(RyI))LE«L1O0.0) GGTU 1€
WRITE(E,17)

leo

LT

STCP

CUNTINUE

FORMAT('OSTATE VARIABLE BOUND. eXCEEDED ) . . ... . ...
X1=X(R,1}

X2=X(R,2)

Ki=C{Ky1)

11

14

K2=C{R,2)

GUTCGL11,12)9N0

DG .13 1=1sNE ... .. R
G(1)=0.0

LU L4 J=1l4NE

JX(144)=C.0

13

1e

DG 13 J=1yNK
JK{1,J1=C.0

CNC= 2 e S

A=0.180
S11=51(T=A,11)
G(ly=X2

G(2)=-K1l*X2-K2%(X1-S11)
IF(IJACKLTS0) RETURN

XL s 2 )= L e e e

JX(241)==-K2
JX{24y2)==K1
Jh{2,}1)==-X2

JK{2,2)==-X1+3511
RETURN
ENG.




REAL FUNCTION S1(T,1)

| SR INPUT _EUNCTLION. REQUIRED. BY. .IHE .SLOPE_SUBROUTINE _EOR
C THE TRACER PRCBLEM
S1=0.75

[E(T .1 T.0.0) -(GTAO 10

GOTC(11412913414),41
11 S1=S1+Ce25*SIN(10.0%*T)
SRRSO ¢1 6 § S B N & SR

12 S1=51+Ce25%SIN(1.0%T)
GUTO 10
15 S1=51+C,25%SIN(O,1*T)

GUTC 10
14 S1=S1+Ce25%SIN(5.0%T)
v e el O RETURNL
END




