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Chapter 1

Introduction and M otivation

1.1 Introduction of Subdivision Schemes

1.1.1 A Short Survey o f Subdivision Surfaces

Subdivision is a method for generating smooth surfaces, which first appeared 

as an extension of splines to control nets with arbitrary topology. It has 

been studied for more than 20 years for representing complex surfaces, since 

two well-known schemes were given by Catmull and Clark [4] (Catmull-Clark) 

and Doo and Sabin [7] (Doo-Sabin) in 1978. During the period from 1978 

to 1995, some new interesting subdivision schemes, such as Loop, Butterfly, 

Modified Butterfly, Kobbelt and Midedge schemes, were proposed. Recently, 

in order to have a better smoothness, many people are starting investigating 

subdivision schemes such as ternary and quincunx schemes, with the hope that 

the smoothness of the corresponding basis functions with other refinements 

instead of the traditional dyadic refinement can achieve C 2 continuity.

Actually, the basic ideas behind subdivision are very old, and it can be 

traced back as far as the late 40’s and early 50’s when G. de Rham used “corner

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cutting” to describe smooth curves. In recent years, subdivision schemes have 

found their way into many applications in computer graphics and computer 

aided geometric design (CAGD). One milestone has occurred when subdivi

sion hit the big screen in Pixar’s short “Geri’s Game.” At Siggraph ’98, Pixar 

unveiled a short animated film: Christened Geri’s Game, it was, to quote its 

academy award press release, the “endearing tale of an aging codger who likes 

to play chess in the park against himself.” Not only was it artistically stun

ning, but it was also a technological powerhouse. In the last few years these 

techniques have received more interest in the computer graphics literature be

cause of many potential benefits of subdivision. Subdivision scheme deserves 

further research, since it has a good prospect in many applications.

Subdivision surfaces are an efficient way of describing a surface using a 

polygonal model. Like the polygonal model, the surface can be of any shape 

and any size, that is of arbitrary topology. Unlike that polygonal model, the 

surface itself is perfectly smooth. From the point of view of implementation, 

starting with a base mesh U0, subdivision [22] is the process of obtaining a 

smooth surface F a s  a limit of a sequence of successive refinement operation 

S a,M ,  where a is the mask and M  is the dilation matrix. Subdivision schemes 

are similar to spline-based schemes [11] but are more general than spline- 

based schemes because subdivision schemes can be defined for functions with 

arbitrary topology. The iterative transform SajM is used to obtain a finer 

level mesh representation Uj+1 of the surface from a coarse level mesh Uj 

and is expressed as Uj+\ = (£■(?)• Subdivision schemes allow one to take

the original polygonal model and produce an approximation of the surface 

by adding new vertices and faces by subdividing the existing polygons. The 

subdivision mesh can be as coarse or as detailed as your needs allow because 

of the property of arbitrary topology.

2
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1.1.2 Some N otations

M esh T ype For an arbitrary initial mesh, if we keep applying subdivision 

schemes on it, we will get the refined subdivision surfaces. However, the faces 

of the mesh can be formed in different ways. For a regular mesh, in order to 

have a symmetric property, it is natural to  use faces that are identical. If, 

in addition, we assume that the faces are regular polygons, it turns out that 

there are only three ways to choose the face polygons: squares, equilateral 

triangles and regular hexagons. In applications of computer graphics and 

CAGD, hexagonal meshes are seldom used, because it is difficult to implement; 

meanwhile triangular meshes and quadrilateral meshes are the most convenient 

and widely used ones for practical purposes.

Regular and Extraordinary Each triangular mesh is made up of a 

sequence of faces. There are altogether 3 vertices and 3 edges per face. An 

edge has two vertices, but a vertex may have various valences. In terms of 

the number of valences, there are two types of vertices: regular vertices and 

extraordinary vertices. For triangular meshes, a vertex is a regular one if it has 

6 valences, otherwise it is an extraordinary vertex; for quadrilateral meshes, a 

vertex with 4 valences is a regular one. Here we have to determine whether a 

vertex is a regular one or an extraordinary one, because we can apply regular 

subdivision schemes on regular meshes, but we shall employ special subdivision 

rules for extraordinary vertices, which will be discussed in detail in Chapter 4.

V ertex Insertion and Corner C utting In CAGD there are two main 

approaches that are used to generate a refined mesh: one is vertex insertion and 

another is corner cutting. The schemes using the first method are often called 

primal, and the schemes using the second method are called dual. Considering 

the dyadic subdivision schemes, in the first case, each edge of a triangular or 

quadrilateral mesh is split into two. Old vertices of the mesh are retained, and 

new vertices inserted on edges are connected. For quadrilaterals, an additional 

vertex is inserted for each face. In the second case of dual schemes, for each

3
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old face, a new similar face is created inside of it and the newly created faces 

are connected. As a result, we get four new vertices for each old edge, and 

a new face for each edge and each vertex. The old vertices are discarded. 

Geometrically, one can think about this process as first cutting off the vertices, 

and then cutting off the edges of a polyhedron. For quadrilateral meshes, this 

can be done in such a way that the refined tihng has only quadrilateral faces. 

For triangles, we can get only a hexagonal tihng. Thus, a regular corner- 

cutting algorithm for triangles would have to alternate between triangular 

and hexagonal meshes.

Odd an d  Even For vertex insertion (primal) schemes, the vertices of the 

coarser mesh are also vertices of the refined mesh. For any subdivision level, 

we call all new vertices that are created at that level, odd vertices. This term 

comes from the one-dimensional case, while vertices of the control polygons 

can be enumerated sequentially and on any level the newly inserted vertices 

are assigned odd numbers. The vertices inherited from the previous level are 

called even.

Interpolating and Approxim ating Any subdivision scheme can be 

classified as interpolating subdivision or approximating subdivision. In ap

proximating subdivision, the vertices at the current level are updated after 

the new vertices are added at each new level, whereas in interpolating subdi

vision, the existing vertices do not change as we introduce new vertices at each 

new level. The new vertices introduced at each step are usually referred to as 

the odd vertices and the old vertices are usually referred to as the even ver

tices. The Loop subdivision scheme [26] and the butterfly subdivision scheme 

[28] are two classical examples of approximating and interpolating subdivision 

schemes, respectively. The modified butterfly subdivision scheme [31] is an 

improvement over the original butterfly scheme.

Intuitively, the refined polygon meshes are obtained by adding new vertices 

to the mesh and connecting them with old vertices, but the rules of connectivity

4
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Figure 1.1: Refinement of the subdivision surface.

are different for different schemes. The positions of new vertices are computed 

as functions of positions of the old vertices; the positions of old vertices in the 

refined mesh can be modified or fixed. Figure 1.1 shows a very simple example 

of a subdivision surface for a triangular mesh, where the linear interpolating 

subdivision scheme is used on a simple 2-dimensional mesh.

More complex subdivision schemes (rules) are often used to obtain a 

smoother surface, for example, a subdivision surface with C 2 continuity. These 

rules are based on more complicated principles such as compact support, effi

cient algorithms and affine invariance. We shall discuss them in details in the 

following chapters.

1.1.3 Properties of Subdivision Surfaces

Before delving into the details of how a subdivision scheme works, let’s have a 

look at its properties by comparing it with other possible modelling approaches 

for smooth surfaces: traditional splines, implicit surfaces, and variational sur

faces [lj.

Efficiency: In applications, computational cost is an important aspect of 

a modelling method. Subdivision is easy to implement and is computationally

5
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efficient, since only a small number of neighboring old points (i.e. those with a 

short support size) are used in the computation of the new points. On the other 

hand, implicit surfaces, for example, are much more costly. An algorithm such 

as marching cubes is required to generate the polygonal approximation needed 

for rendering. Variational surfaces can be even worse: a global optimization 

problem has to be solved each time the surface is changed.

A rbitrary topology: It is desirable to build surfaces of arbitrary topol

ogy. Here, “arbitrary topology” means the topological genus of the mesh and 

the associated surface can be arbitrary, and the structure of the graph formed 

by the edges and vertices of the mesh can be arbitrary too. Specifically, each 

vertex may be of an arbitrary degree. Classic spline approaches have great 

difficulty with control meshes of arbitrary topology. When rectangular spline 

patches are used in arbitrary control meshes, enforcing higher order continuity 

at extraordinary vertices becomes difficult and considerably increases the com

plexity of the representation. Although implicit surfaces can be of arbitrary 

topological genus, the genus, precise location, and connectivity of a surface are 

typically difficult to control. Variational surfaces can handle arbitrary topol

ogy better than any other representation, but the computational cost can be 

high. Subdivision on the other hand can handle arbitrary topology quite well 

without losing efficiency; this is one of its key advantages over other modelling 

approaches. Historically subdivision was brought forth when researchers were 

looking for ways to address the arbitrary topology modelling challenge for 

splines.

Surface features: Often it is desirable to control the shape and size of 

features such as creases, grooves, or sharp edges. Variational surfaces provide 

the most flexibility and exact control for creating features. Implicit surfaces, 

on the other hand, are very difficult to control, since all modelling is performed 

indirectly and there is much potential for undesirable interaction between dif

ferent parts of the surface. Spline surfaces allow very precise control, but it is 

computationally expensive and awkward to incorporate features, in particular

6
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if one wants to do so in arbitrary locations. Subdivision allows more flexi

ble control than is possible with splines. In addition to choosing locations of 

control points, one can manipulate the coefficients of subdivision to achieve 

effects such as sharp creases or control the behavior of the boundary curves.

Com plex geom etry: For interactive applications, efficiency is of pri

mary importance. Because subdivision is based on repeated refinement it is 

quite straightforward to incorporate ideas such as level-of-detail rendering and 

compression for the Internet. During interactive editing locally adaptive sub

division can generate just enough refinement based on geometric criteria, for 

example. For applications that only require the visualization of fixed geom

etry, other representations, such as progressive meshes, are likely to be more 

suitable.

1.2 Examples of Classical Subdivision Schemes

In order to well understand the basic ideas of subdivision schemes, we shall 

briefly review some classical schemes in this section.

1.2.1 Classification of Subdivision Schemes

Based on three criteria, we can classify most of the regular subdivision schemes 

as follows:

• The type of refinement rule (vertex insertion or corner-cutting);

• The type of generated mesh (triangular or quadrilateral);

•  Whether the scheme is approximating or interpolating.

Two well-known corner-cutting schemes are: Doo-Sabin and Midedge.

7
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The following table shows refined classification of vertex insertion schemes:

- Triangular Meshes Quadrilateral Meshes

Approximating Loop Catmull-Clark

Interpolating Modified Butterfly, ternary Kobbelt, ternary

The above classification and examples of subdivision schemes are only 

suitable for regular vertices. Additional special rules have to be specified for 

extraordinary vertices.

1.2.2 Some Known Subdivision Schemes

Loop Scheme The Loop scheme is a simple approximating vertex insertion 

scheme for triangular meshes proposed by Charles Loop [26]. The scheme is 

based on the three-directional box spline, which produces C'2-continuous sur

faces on the regular meshes. The Loop scheme produces surfaces that are 

C'2-continuous everywhere except at extraordinary vertices. Hoppe, DeRose, 

Duchamp et al. [22] tried a piecewise CT-continuous extension of the Loop 

scheme, with special rules defined for edges. Therefore the scheme can be ap

plied to arbitrary polygonal meshes, after the mesh is converted to a triangular 

mesh, for example, by triangulating each polygonal face.

M odified B utterfly  Schem e The Butterfly scheme was proposed by 

Dyn, Gregory and Levin in [10]. However, although the original Butterfly 

scheme is defined on arbitrary triangular meshes, the limit surface is not C 1- 

continuous at extraordinary points of valence k = 3 and k > 7 [33]. It is C 1 

on regular meshes.

Unlike approximating schemes based on splines, this scheme does not pro

duce piecewise polynomial surfaces in the limiting case. In [35] a modification 

of the Butterfly scheme was proposed, which guarantees that the scheme pro

duces C 1-continuous surfaces for arbitrary meshes (for a proof see [33]). The

8
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scheme is known to be C l but not C 2 on regular meshes.

Catmull-Clark Schem e The Cat mull-Clark scheme was described in [4]. 

It is based on the tensor product bicubic spline. The scheme produces surfaces 

that are C 2 everywhere except at extraordinary vertices, where they are C 1. 

The tangent plane continuity of the scheme was analyzed by Ball and Storry 

[2], and C'1-continuity by Peters and Reif [31].

The rules of Catmull-Clark scheme are defined for meshes with quadrilat

eral faces. Arbitrary polygonal meshes can be reduced to quadrilateral meshes 

using a more general form of Catmull-Clark rules [4],

K obbelt Schem e This is an interpolating scheme and was described by 

Kobbelt in [11]. For regular meshes, it reduces to the tensor product of the 

four point scheme. CT-continuity of this scheme for interior vertices for all 

valences is proven in [34]. Crucial for the construction of this scheme is the 

observation (valid for any tensor-product scheme) that the face control points 

can be computed in two steps: first, all edge control points are computed. 

Next, face vertices are computed using the “edge rule” applied to a sequence 

of edge control points at the same level.

1.3 M otivation

For evaluating a subdivision scheme, one criterion is to see whether or not the 

refined surfaces have good smoothness, which is determined by the continuity 

of the surfaces. In general, the basis functions of subdivision schemes are 

required to be at least C 2, otherwise the curvature of the generated subdivision 

surfaces which are refined from the initial mesh would be discontinuous.

It is well known that in order to have a smoother subdivision surface, it is 

necessary for a basis function in a subdivision scheme to enlarge the support 

of its associated mask. This is almost equivalent to saying that lager support

9
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size of the mask implies a smoother surface. On the other hand, once the sten

cil contains one or more extraordinary vertices the subdivision scheme will be 

totally different, since the topology is different. Therefore, from the point of 

view of implementation and computation (especially the computational cost), 

we have to reduce the probability of using special subdivision rules for extraor

dinary vertices. Thus in the application of CAGD, it is strongly suggested that 

the associated subdivision stencils should be restricted within no more than 

two-ring neighboring vertices, which is almost equivalent to saying that its 

mask should have a very short support. Consequently we can say that high 

smoothness of a basis function in a subdivision scheme and the shortness of the 

support size of its mask are two mutually conflicting requirements. For exam

ple, it was proved in [12] that there is no C2 interpolatory dyadic subdivision 

scheme whose mask can be supported on [—3, 3]s (that is, it has two-ring sten

cils). As a consequence, the butterfly scheme [10], which is an interpolatory 

dyadic subdivision scheme with two-ring stencils, cannot be a C 2 scheme.

Since the support size of the mask is suggested to be no more than two 

rings, it is worthwhile to analyze some properties of subdivision schemes in 

order to achieve continuity of the curvature in a subdivision surface. Hence, 

in recent years, quite a few researchers have been actively tackling issues in 

the area of interpolatory ternary subdivision surfaces, and several works have 

been done on these corresponding subdivision schemes due to the expected 

at least C2 continuity. For example, in the one-dimensional case, C 2 inter

polatory ternary subdivision scheme with two-ring stencils have been studied 

and obtained in [21]. Some examples of two-dimensional interpolatory ternary 

subdivision schemes have been proposed in [19, 6, 17]. In particular, several ex

amples of two-dimensional C 2 interpolatory ternary subdivision schemes have 

been obtained in [19]. The goal of this thesis is to generalize the results in [19] 

on ternary interpolatory subdivision schemes, and to investigate the smoothest 

optimal interpolatory dilation 4 subdivision schemes with two-ring stencils in 

one and two dimensions for both triangular meshes and quadrilateral meshes.

10
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Although the smoothness of the basis function of our new interpolatory 

subdivision scheme can achieve log4 24 («  2.29248, which is better than 2), the 

scheme is only for regular meshes. In order to apply these schemes to an initial 

mesh with an arbitrary topology, we shall attem pt to find reasonable special 

rules for extraordinary vertices to have a C 1 continuity around extraordinary 

vertices, otherwise they will lead to a coarse visual quality on the local sur

face around extraordinary vertices. By analyzing the subdivision matrix and 

its eigenvalues, we can figure out suitable subdivision stencils for extraordi

nary vertices. Therefore we have at least ^ -con tinu ity  around extraordinary 

vertices.

1.4 Analysis of Subdivision Triplets

In this section, we shall discuss the idea of subdivision triplets which can com

pletely determine a subdivision scheme in any dimension. We shall also discuss 

two important quantities which will be used in estimating the smoothness of 

the basis function of a subdivision triplet.

1.4.1 Definition of Subdivision Triplets

The notion of subdivision triplets has been introduced in [17]. In this section, 

let us recall the definition of subdivision triplets here. We say that G is a 

symmetry group on I f  if each element E  € G is an isomorphism on Xs (i.e. 

E  is an integer matrix with |detl?| =  1 ) and G forms a group under matrix 

multiplication.

D efinition 1.1. 0 is a refinable function if 0 satisfies the following refinement 

equation

(1 .1 ) 0 =  ^  a (a ) 0 ( M - - a ) ,
aezs

11
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where {ct(a)}a€z* is a finitely supported sequence on I f  such that ]Caezs a(a ) = 

\detM\. Such a sequence a is called a mask for the refinable function </>.

Any subdivision scheme can be completely determined by a unique triplet 

(a, M, G), where a is a mask giving all the subdivision stencils, M  is a dilation 

matrix determining the refinement of the mesh, and G is a symmetry group on 

I f  distinguishing the mesh type (see [17]). The two commonly used meshes: 

quadrilateral meshes and triangular meshes are invariant under the symmetry 

groups Z?4 and D (), respectively, which are defined to be

r ' l  O’ l_i O
J

*0 1 ' ’  0  1 "

1)4 : =  I ±

1 O h-1
i '©

1 h
-1

1 . 1  °. 1
1 J—1 0 »

and

D :=  t ±
1 0 0 - 1 - 1  1 0 1 1 - 1 - 1  0

> ± >± , ± 5 ±
0 1 1 - 1 - 1  0 - 1  0 0 - 1 - 1  1

A \/2  subdivision scheme is given by a triplet (a, D4), a x/3 sub

division scheme is given by (a, M ^ ,  Dq), a ternary subdivision scheme is ei

ther (a, 3 /2, Da) or (a, 8 / 2 , A-;), and a dilation-4 subdivision scheme is either 

(a, 4 / 2 , D4) or (a, 4 /2, £>6 ) for the quadrilateral mesh and the triangular mesh, 

respectively, where a is a mask and

'1  1 ' ’1 —2 ’l

0

II II

1 -1_ 2 - 1 0 1

In this thesis, for simplicity, we only consider the dilation matrices M  =  

m ls case, where m  is an integer such tha t m  > 1. In the setting of CAGD, 

this kind of subdivision schemes are also called m-adic subdivision schemes.

It is difficult to have a global coordinate system on a general mesh because 

there are corresponding connectivities between certain vertices, which are also 

called edges. Clearly, different edge has different direction, therefore it is much

12
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complicated to identify the directions in M3 in implementation. In order to 

overcome such difficulty, we require that the stencils satisfy a symmetric prop

erty in a subdivision scheme. This is equivalent to saying that a subdivision 

scheme is a subdivision triplet (a, M, G) (see [17]) that satisfies the following 

two conditions:

1. The mask a is G-symmetric.

(1.2) a(Ep) = a(/3) V /? e Z s and E  E  G;

2. G is a symmetry group with respect to the dilation matrix M  (see [14]); 

that is, G is a symmetry group on I f  such that

(1.3) M E M - 1 E  G for all E e G .

When M  =  m ls, the condition in (1.3) is automatically satisfied. The 

basis function <fi of a subdivision triplet (a, m l s, G) is a unique solution to the 

refinement equation:

(1.4) 4> =  ^ 2  o,{!3)4>(m ■ —(3) with </>(0) =  1,
p&s

where the Fourier transform is defined to be /(£ ) := f Ms f(x )e~ ix  ̂dx, £ E Rh 

Since (a ,m Is,G ) is a subdivision triplet, it is easy to see that 4>{E-) =  <f) for 

all E e G.  In fact, 0 is given by </>(£) =  where a is the

Fourier series of the sequence a and is defined to be

(1.5) a(£) := 5 ]  a ( /3 )e -^ , £ E  Rs.
pez*

By l0(Zs) we denote the space of all finitely supported sequences on I f . 

For a subdivision triplet (a, m l s, G), the subdivision operator Sa>mis : io{lf)  >-* 

£ a ( T f )  is defined to be

(1.6) [S flim/. w ] ( a )  : =  ^ 2  a (a  ~  m l3)u { P ) ,  a  E l f ,  u E  t § ( 2 f ) .

13
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Since (a ,m Is,G ) is a subdivision triplet, it is easy to check that if u £ 

£o{%s) is G-symmetric, then Sa;mjsu is also G-symmetric. The subdivision 

operator SajTnis plays an important role in CAGD. Let 11*, denote the space 

of all polynomials of total degree at most k. In general, one requires that a 

subdivision scheme can reproduce some polynomial space 1 1*, for some integer 

k ; in other words, the mask a satisfies the sum rules of order k + 1 ([24]) with

respect to the lattice mZs, that is,

(L7) Y  a(a + P)p(® + P) = Y  V « G  Zs,p e  n fc.
/3€mZs

We say that (a, m ls, G) is an interpolatory subdivision triplet if (a, m ls, G) 

is a subdivision triplet and a is an interpolatory mask with respect to the lattice 

mZs, that is,

(1.8) a(0) =  1 and a{m0) =  0 V /? £ Zs\{0}.

It is easy to see that if (a, m ls, G) is an interpolatory subdivision triplet, 

then [SairnIsu](m/3) =  u(f3) for all (3 £ Zs and u £ ^o(Zs).

Now we see that in order to compute the value of / 1 at the point m _17 , 

the stencil is given by (a( 7  — m/3))iaeZs; that is, the stencil is given by (a*(/? — 

where a*(/?) =  a(—m(3),(3 £ m “ 1Zs.

1.4.2 Convergence and Sm oothness Properties

In this subsection, we shall discuss convergence and smoothness properties 

of subdivision triplets, in particular, of interpolatory subdivision triplets. In 

order to do so, let us first introduce some notation and recall some results from 

the literature, in particular, from Han and Jia [18].

We denote by £P(ZS) the linear space of all sequences u on V  such that 

IM k(zq := ( Y  M k > r)  /v < 0 0 .
/3<=ZS

14
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For any a  G Zs, we denote by Sa the sequence on Zs such th a t Sa (a) =  1 

and <5Q(/?) =  0 for all (3 G Zs\{a:}. In particular, 5 := <50- The convolution of 

two sequences is defined to be

[u * v\(a) := ^  u((3)v(a — (3), u, v G £0 (ZS).
I3ezs

Clearly, fTTt; =  ftu. For a finitely supported sequence a on Zs, we define 

the following quantity:

(1.9) p(a ,m ls,p,u) := \ v ^ \ \ u * [ S ^ m i M \ X m ’ 1 ^  p ^  oo,u e  £0(ZS).

For a  G Zs and f e  I s, we define

(1 .1 0 ) Vau := u - u ( - - o O ,  V J  : = / - / ( • - * ) ,  t ;G f 0 (Zs) , / e L p( r ) .

Denote N0 := M U {0}. For /x =  (fii , . . . , /xs) G Mg, |//| =  |/xx| H h \ps\

and VM := V^ 1 • • • V^s, where e,- is the j th  coordinate unit vector in Rs.

Note that

W v  = [V**5] * v,

and

V " / =  [V"i] » /  =  £[V "<5](/3)/(. -  0).
p e z s

The partial derivative of a differentiable function /  with respect to the j th  

coordinate is denoted by d j f . For p, =  (yUi, . . . ,  p s), we denote := df1 • • • d£‘ .

If a mask a satisfies the sum rules of order k but not k + 1, then for 

1 < p ^  oo, we define (see [14, 16]) the following quantity:

vp(a, m l s) := s /p  -  logm max{p(a, m ls,p, VMS) : \p\ =  k}.

The following result has been established in [19]:

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T h e o rem  1 .1 . ([19, Theorem 2.1]) Let (a, m l s, G) be a subdivision triplet 

and let 0 denote its basis function. Then for any nonnegative integer k, the 

following statements are equivalent:

1. Voo{a,mls) > k;

2. For every compactly supported function f  G Ck(Rs) such that

(1.11) /(0 ) =  1 and d^f(27c(3) = 0 V |/ i |<  k,P  G Zs\{0},

the cascade sequence Q ^miaf  a Cauchy sequence in Ck(R s) (in fact, 

limn—+ 0 0 /  — 0 ||c fc(Ks) =  0), where the cascade operator Qa,mis '■ 
C (R8) h-+ C(RS) is defined to be

(1 .1 2 ) Qa;mIJ  := a(P )f(m  ■ -(d), f  G C(RS);

3. The basis function 0 G (^ (R 8) and

(1.13) lim „ , / ] ( • )  -  [S'VKm-"-)||,„(z.) = 0  V M  =  *;
n—*oo

4- For every sequence u G £oo(Zs); there exists a function g G Cfe(Rs) such 

that

(1.14) lim ||m”M[V'‘SJ,mJ, u](.) -  [ ^ s ] (m -“.) ||,„ (z.) =  0V |A| ^  k.n—>oo

For any 0 < u ^  1 and a function /  G TP(RS), we say that /  belongs to 

the Lipschitz space Lip(z/, Lp(Rs)) if there exists a positive constant C  such 

that

1 1 / - / ( •  - <)lii,(R-) <  C\\t\\" V i e K*.

The Lp smoothness of a function /  G TP(RS) is measured by its Lp critical 

smoothness exponent vp(f)  which is defined by

up{f)  := sup{n +  v : d ^ f  G Lip(z/, LP(R8)) V \/i\ =  n}.

16
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For the basis function 0 of any subdivision triplet (a, m l s, G), one always 

has vp(<p) ^  up(a ,m ls). A function /  is an interpolatory function if /  is a 

continuous function such that f(f3) =  5(0) for all (3 G Zs.

The following result is known in the literature (e.g., see [14, 16, 18]).

T h eo rem  1 .2 . Theorem 3.1]) Let (a, m /s, G) 6 e an interpolatory sub

division triplet and 0 denote its basis function. Then 0 is an interpolatory 

function i f  and only i f  u ^ a ^ m l f )  >  0. Moreover, i f  u ^ a ^ m ls )  > 0, then 

vp{(f>) =  vp{a, m ls) for all 1 ^  p  ^  oo.

The £p-norm joint spectral radius has been introduced in Jia [23]. The 

quantity p(a, m ls,p, u) in (1.9) can be rewritten using the £p-norm joint spec

tral radius. Let T be a finite collection of linear operators acting on a finite

dimensional normed vector space V. For a positive integer n, we denote 

T" =  {(Xi,. . . ,  Tn) : T i , . . . ,  Tn G T} and we define

i n i p =  £  \ \ r - - T nf ,  i < p < c o
(Ti,...,Tn)eTre

and

II^Hoo := max{||Ti ■ • -Tn || : (Tl t . . . ,  Tn) G T 1}, 

where || ■ j| denotes some operator norm.

For 1 ^  p ^  oo, the l p-norm joint spectral radius of T (see [18, 23]) is 

defined to be

(1.15) pr (7) := lim ||T“ | |T  =  inf ! |T " ||^ .
n —> oo 1

Let r  := [0, m  — l]s fl Zs. To relate the quantity p(a, m l s,p, u) to the 

£p-norm joint spectral radius, we introduce 7  G F on 0>(ZS) by

(1.16) Tanv(a) := ^ 2  o,{ma. — P + v G a  G ZL
/3ezs

17
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It was proved in [18, Lemma 2.3] that if a is finitely supported, then 

for any finitely supported sequence u on Zs, there exists a finite dimensional 

subspace V(u)  of f?o(Zs) such that V(u) contains u and V(u)  is the smallest 

subspace of which is invariant under the operators Ta>7, 7  E F. We call

such V (u) the minimal {Ta>1 : 7  E F} invariant subspace generated by u.

Let 7  := {Tari\V{u) '■ 7  G T}, where V{u) is the minimal {T0 ;7  : 7  E F} 

invariant subspace generated by u. Then it is known ([18]) that

(1.17) p (a ,m l„ p ,u ) =  lim \\u * =  PP(U  =  inf \ \T f J " .TV ÔO

The following result is useful in calculating the quantity p(a, m l s,p, u) in

(1.9) and is given in [19].

T h eo rem  1.3. ([19, Theorem 2.3]) Let a be a finitely supported mask on Zs.

I f

(1.18) a(£) =  . b(£) for finitely supported sequences b and c on Zs,
c (?)

such that c(ra£)/c(£) is a 2ir-periodic trigonometric polynomial, then for any 

1 ^  p <  0 0  and u E Iq{7Ls),

p(a, m l s,p, u * c ) : =  lim ||u * c * [S£
(1.19) n^°°

=  11“ * lSb,misS}\\]%s) =■ p(b, m l a,p, u ).

Since the support of the sequence b is smaller than that of the sequence a, it 

is relatively simpler to compute the quantity p(b, m ls, 0 0 , 5) than the quantity 

p (a ,m ls,p,5). The following result provides a reasonable and convenient way 

for estimating the quantity p(b, m l s, 0 0 , 6):

Theorem  1.4. ([19, Theorem 2.4]) Let b be a finitely supported sequence on 

Zs. Then

(1 .20 )

p(b, mlg, 00 , 8) := Jim  =  S  ( S  ^  \Sb,miJ(^+rnn/3)\^ '  .
a j3&Zs

18
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Chapter 2

One-dimensional Interpolatory  

Subdivision Schemes w ith  

D ilation Factor 4

In this chapter, we shall investigate optimal one-dimensional interpolatory 

subdivision triplets (a, 4, {—1,1}) with two-ring stencils. Then we discuss the 

smoothness property of the basis function associated with the mask a and 

figure out the corresponding parameters which yield the smoothest subdivi

sion scheme. Then we shall discuss the projection method for the optimal 

multidimensional interpolatory subdivision schemes with two-ring stencils.

2.1 Optimal One-dimensional Interpolatory Sub

division Schemes

For the sake of convenience, in the following sections, by 4-adic subdivision 

schemes we denote the schemes with dilation factor 4. This new 4-adic subdi

vision scheme is a primal interpolatory subdivision scheme which adds three

19
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new vertices on each edge, and reconnects them sequentially, that is to split 

one edge into four edges and make the curve smoother.

2.1.1 The Optimal Subdivision Scheme

For one-dimensional interpolatory 4-adic subdivision schemes with two-ring 

stencils, we have the following result.

Theorem  2.1. Let (a, 4, {—1,1}) be a one-dimensional interpolatory 4-adic 

subdivision triplet such that the mask a is supported on [—7,7] (that is, all 

its subdivision stencils have two-ring neighboring vertices). Then ux {a, 4) ^  

log4 24. Moreover, (a, 4) =  log4 24 i f  and only if  a must be the unique mask 

abest which is given by

(-5 e 2̂  +  3e* +  8  +  8e~^ +  3e~2̂  -  5e

or equivalently, the mask abest is supported on [—7, 7] and is given by

5 1 13 15 9 55 55 9 15 13 1 5
192’ ~  16’ _  192’ ’ 64’ 16’ 64’ ’ 64’ 16’ 64’ ’ ~~192’ ~  16’ _ 192

Proof. Since the mask a is an interpolatory mask with support [—7, 7], by (1.8) 

we have,

a(0) =  1 and a(—4) =  a(4) =  0.

Since the mask a is {—1, l}-symmetric, it must take the following form: 

[Co, C5, C4, 0 , C3, C2, C1} 1 , C1} C2, C3, 0 , C4, C5, C6].

Note that subdivision stencils come from the mask a. So we must have

/ n C1 p C 3 + C4 p C o  = 1,
(2 .2)

2C2 -f- 2C3 — 1 .

20
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Moreover, suppose that ^oo(a,4) > log4 24 «  2.29248. Then the mask a 

must satisfy the sum rules of order at least 3 with respect to the lattice 4Z 

(see [24]). By the definition of the sum rules given by (1.7) with k = 2, we 

have the following equations, for all a  G Z,

(2.3) ^  a (a  + /?) =  a(/?) =  i,
/9e4Z /3e 4Z

(2.4) y ] a { a  + 0)(a  + p ) = y ] a ( p ) { 3 ,
I3e 4Z /?S4Z

(2.5) °(a  +  ^ )(a  +  /^ ) 2 =  5 ^  a (/3)/^2-

By calculation, we see that (2.3) becomes (2.2). And (2.4) is equivalent 

to the following equation:

(2.6) C . - C 3  + 5C4 -  7C6 =  0,

and (2.5) is equivalent to

C*2 +  9 C5 =  0 ,
(2.7)

C\ +  9C3 -f 2 5 C4 -f- 496*6 — 0.

Then by solving the system of linear equations in (2.2), (2.6) and (2.7), we 

can figure out 5 parameters by leaving just one free parameter there. For ex

ample, we can choose C6 as our free parameter to express all other parameters. 

Let C*6 =  t, we have:

Cx =  3t +  — , C2 = — , C3 = -3£  +  — , C4 — —t — —, 6 5  =  -  — .
16’ 16’ 32’ 32’ 16

Consequently, we have

4({) = (3i +  +  <Ti{) +  ^ ( e 2« +  e ^ )  -  (31 -  +  e~z*)

~ (* +  J ;) ( e K< +  «“5i4) -  4 ( e“ E +  e_6iS) +  ^  + e~"E) +  1 -oA  I D

2 1
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In order to facilitate our analysis later, we rewrite a(£) in the following 

form:

(2 .8 ) a ( 0  =  e5̂ ( l  +  e“* +  +  e ~ ^ ) 3b( 0

with

(2.9)
HO ’-—t ~  (3i +  — )e^ +  (2 1 +  — ) +  (2 1 + — )e ^

~ (3 f  +  ^ ) e - 2* +  te - 3̂ .

Since the mask a satisfies the sum rules of order 3, in order to compute 

the quantity ^ ( o ,  4), we have to compute p(a, 4, oo, V 3S). By Theorem 1.3 

we have

p(a, 4, oo, V 3fi) =  p(b, 4, oo, 5).

Consequently, in order to compute the quantity I'm (a, 4), we have to com

pute p(b, 4, oo, (5). In the following, we shall use 4^-norm joint spectral radius 

to find a lower bound for p(b, 4, oo, S) and use Theorem 1.4 to find an upper 

bound for p(b, 4, oo, 5).

Let Tb; 7 , 7  =  —1,0,1,2 be the linear operators defined in (1.16) with 

m  =  4. Since the mask a is supported on [—7, 7], it is easy to check that 

the linear space £([—1 , 1 ]) is {Tbn  : 7  =  — 1 , 0 , 1 , 2 }-invariant, for example, 

take 7  =  0 , we have

6(-4),

6( 0 ),

K 4 ) ,

if a = —1 , 

if a  =  0 , 

if a  =  1 .

So

Similarly, we have

TbtoSo — b(—4)5_i +  &(0)5o +  b(A)5\.

TbflS^i — b(—3)5_i +  &(l)^o +  b(5)Si,

22
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and

Tb,oSi — 6(—5)5—i +  £>(—1)<5q +  b(3)Si.

All Tbtl5p, (3 =  —1,0,1 are linear combinations of {<5_i, <50, cq}. So ^([—1,1]) 

is an invariant subspace under all operators Tb>1; 7  =  —1, 0, 1, 2.

Their matrix representations under the standard basis (h_i, 50, d }  of 

£ ([-1 ,1]), are iJ7  =  (b(Ak-j+ ,y))-i^j,k^i for 7  =  -1 ,0 ,1 ,2 . So, p(b,A,oo,8) = 

Poo({H-i, H0, H i,H 2}), where

(2 .10)

0 2t +  3/32 0 0 2t +  3/32 0

T_i = 0 - 3 4 - 1 /1 6 t Ho = 0 21 +  3/32 0

0 t —31 -  1/16 0 - 3 * -  1/16 t

t - 3 4 -  1/16 0 " - 3 1 -  1/16 t 0

Hi = 0 24 +  3/32 0 h 2 — t —3* — 1/16 0

0 21 +  3/32 0 0 2t +  3/32 0

It is easy to see that {0, — 2 t — 1/16, —At — 1/16}, {0, t, 21 + 3/32}, 

{0, t, 2t +  3/32} and {0, —21 — 1/16, —At — 1/16} are eigenvalues of i?_x, 

H0, Hi and H2, respectively.

Consequently, we have the following inequality 

p(b, 4, 0 0 , S) =  PoD({#_!, Ho, H u H2}) > max { p (H ^ ) ,  p(H0),p(Hi), p{H2)}.

In order to find out the maximum value, we sketch the graphs of |t|, |21 +  

3/32|, \2t +  1/16| and |4£ +  1 /16), as shown in Figure 2.1.

It is easy to check that the maximum value is determined by intersection 

points of the line \2t +  3/32J and the line \At +  1/16|. The enlarged figure is 

shown in Figure 2.2. Thus

p(b, A, 0 0 , S) ^  max{|2t +  2/32|, \At +  1/16|} >  1/24,
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•0.3

-0.25

|4t+l/16|

0.15

■0.1

0.05|2t+3/32|

- 0.1 -0.08 -0.06 - 0.02

Figure 2.1: Find out the optimal parameter of “t ” .

where the equal sign in the last inequality holds if and only if t = -  

By Theorem 1.3, we have

p(a, 4, oo, V g /)  =  p(b, 4, oo, S) ^  1/24.

Therefore, we conclude that 

Uoo(a, 4) =  -  log4 p(a, 4, oo, Vgx<5) =  -  log4 p(b, 4, oo, S) <  log424.

On the other hand, by (2.10), we have

p ( b , 4 , o o , 5 )  ^  m a x { | | t f _ i | | w , | | t f 0 ||w , l l # i l l w >

^  max{|2f +  3/32|, |31 +  1/16| +  \t\}.

where || • 1 is a matrix norm which is defined to be

24

5/192.
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|4t+l/16| o.2

/ X "  |2t+3/32|

\ \

-0.1 -0.08 -0.06' -0.04 -0.02 >tJ 0.02 0.04 0.06 0.08 0.1

Figure 2.2: The calculation of free parameter “t ” .

Or, by Theorem 1.4, we have

p(b, 4, oo, 5) ^  maxY'"' \b(a +  4/3) | ^  max{|2t +  3/32|, |3f +  1/161 +  Itl}.
q £Z  ^P&Z

Therefore, we have

max{|2t +  3/32|, |4t +  1 / 16|} s/ p(b, 4, oo, S)

When t  =  —5/192, the above inequalities yield that p(b, 4, oo, S) =  1/24. 

Therefore, we conclude that 4) =  — log4 p(b, 4, oo, 5) =  log4 24. □

Therefore, for our one dimensional 4-adic interpolatory subdivision schemes, 

we have shown that the quantity u ^ a ,  4) have a bigger upper bound than 

that of other dyadic and ternary schemes. That is almost equivalent to saying 

that 4-adic may generate smoother curves. Moreover, we figured out the best

(2 .11)
dj max{|2t +  3/32|, |3t +  1/16| +  |f|}.
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mask a such that the quantity (a, 4) can achieve its upper bound. That is 

reason why we call the mask a the best mask.

2.1.2 Sm oothness of 4-adic Interpolatory Subdivision  

Schemes

More precisely, we have the following result on subdivision triplet (a, 4, {—1 , 1 }) 

with two-ring stencils.

T h eo rem  2.2. Let (a, 4, {—1,1}) be an interpolatory subdivision triplet such 

that the mask a is supported on [—7, 7] and satisfies the sum rules of order 3. 

Then the mask a must be given by

a(£) =  e5̂ ( l  +  e"* +  +  e"3* )3̂ )

with

&(£) =t e2* -  (31 +  l/16)e*  +  (2i +  3/32) +  (2t +  3/32)e"*

-  (3£ +  l/16)e~2*5 +  £e~3̂ .

Moreover, we have

^ ( 0 ,4 )  =  <

- lo g 4 ( - 4 £ -  1/16), 

~~ l°g4(2£ +  3/32), 

- lo g 4 (4£ +  1/16),

i f t  <  -5 /192 , 

i f -  5/192 < t  <  1/64, 

i f tT z  1/64.

In particular, the subdivision triplet is C2 i f  and only i f  —1/32 < t < 

-1/16.

Proof. By the proof of Theorem 2.1, we see that (2.11) holds. By a simple

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-0.25

■0.2

0.15

|2t+3/32|

-0.05

-0.08 -0.06 -0.04 -0.02

Figure 2.3: Graph of |21 +  3/32|, |4t +  1/16| and |3f +  1/16| +  |f|. 

calculation, we observe that

max{|2f +  3/32|, |41 +  1/16|} =  max{|2f +  3/32|, |3f +  1/16| +  |f|}

—4f — 1/16, i f f  < -5 /1 9 2 ,

2f +  3/32, i f -5 /1 9 2  < f < 1/64,

4f +  1/16, if f ^  1/64.

See Figure 2.3 for more details about the above identities. 

Therefore, the claim follows directly from (2.11) and 

Z2oo(a,4 ) =  - lo g 4 p(6,4, oo,5).

We are done. □
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Q-
0

 ------------------A -—  - .....

1
stencil for "inherited" point

■©

0

-13/192 55/64

stencil for "1/4 " point

15/64 -5 /192

-1 /1 6 9/16
stencil for "1/2" point

9/16 -1 /1 6

-5/192 15/64 55/64 -13 /192

stencil for "3/4" point

Figure 2.4: Associated subdivision stencils for the best interpolatory 4-adic 

subdivision scheme. By the symbol “A ” we denote the new inserted vertex, 

and the symbol “o” denotes vertices at the previous level.

2.1.3 Associated Subdivision Stencils

Once we find the optimal mask of the 4-adic interpolatory subdivision scheme, 

we can start to generate subdivision curves. But the mask cannot be employed 

directly, we must figure out the stencils from the mask. For one-dimensional 

case, it is relatively easy to get it. Let /? G Z/m Z, ( 0 (7 ) : 7  =  /3 + mot, a  G Z} 

is a stencil for a certain (3, where m  is the dilation factor. Thus for (3 = 

0 , . . . ,  m — 1 , we have m  different stencils.

In our interpolatory 4-adic subdivision scheme case in Section 1, we need 

insert three new vertices on each edge, we call them “1/4” vertex, “1/2” vertex 

and “3/4” vertex, respectively. Intuitively, we should figure out three stencils 

for these three new vertices, and one stencil for the “inherited” vertices. Since 

this scheme belongs to interpolatory schemes, those “inherited” vertices will 

definitely remain unchanged. Naturally, the stencil for “inherited” vertices 

must be [0,1, Oj.
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In terms of the symmetric property, we found that, for “1/4 vertex” and 

“3/4 vertex” , the stencils are almost the same, the only difference is the order. 

Therefore we can treat the stencil for “3/4 vertex” as a flip of that of “1/4 

vertex” . Thus we actually only need to figure out two subdivision stencils. All 

the details of the associated subdivision stencils are given in Figure 2.3. It is 

quite interesting to note that the subdivision stencil for the “1 / 2  vertex” is 

the same subdivision stencil derived from the well-known 4-point interpolatory 

scheme.

2.2 Projection M ethod for M ulti-dimensional 

Subdivision Triplets

For a sequence a on Zs, we define a new sequence Pa  via the projection 

operator P  : £o(Zs) £o(Z) as follows:

(2 .1 2 ) [Pa](j):= j  G Z.
pez*-1

Now we have the following result on optimal multidimensional interpola

tory 4-adic subdivision triplets with two-ring stencils.

T heorem  2.3. Let (a, 4 /s, {Is, —Is}) be an interpolatory subdivision triplet 

such that the mask a is supported on [—7, 7]s. Then Voo{a, 4) ^  log4 24. More

over, i f  u00(a,4Is) =  log424, then the projected mask 41~sPa must be the 

unique mask abest defined in (2 .1 ).

Proof. Suppose that v ^ a ,  41 s) > log4 24. Then a must satisfy the sum rules 

of order at least 3. Let Pa  be the one-dimensional sequence defined in (2.12). 

Then by [13, 15], Pa  must satisfy the sum rules of order at least 3.

For the convenience of the reader, we provide a proof here for the fact that 

41-sP a  is an interpolatory mask and satisfies the sum rules of order 3.
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Since a is an interpolatory mask and satisfies the sum rules of order at 

least 3, we must have

(2.13) a(0) =  1 and a(4/3) =  0 V /? e Z s\{0},

and

(2.14) J 2  a(a  +  4/?)(a +  4 P Y  =  a(4 /?)(40f V a e Z s, |/r| <  2.
/3ezs /?ezs

Obviously, by (2.13), we must have

^  a(4 /?)(4 /^  =  S(fi) V/z G Nq-
(3&ZS

Therefore, (2.14) becomes

^  «(« +  4:f3)(a +  AfiY =  5(/a) V a  G Z8, |/i| <  2.
/3eZ3

That is,

E E a { a 1 +  4/?i, 0-2 +  4/?2)(Qi +  4/Ji)^1 (q!2 + 4/?2)^2
(2.15) f te z fte z - i

=  S(fj,i)8(fj,2) V a i  € Z, «2 £ 1) Ab £ No, Ab £ Nq 1.

On the other hand, by the definition of the projected mask Pa, we have 

5 3 ip a \(a i + 4/5i)(ou+ 4/^i) ^ 1 =  53 53 a(ai +  4/?i, /?2 )(o,i +  4/3i)/'tl
/3iez Piezfoez*-1

= E E E a (a i + 4/?i, a2 + 4 ^ )  (oi + 4/?1)Ml
ftez a2e{o,i,2,3}s- 1 p2eZ‘- 1

= E E E a(cti + 4/3i, 0 :2 + 4̂ ) (ĉi + 4/?i)w
0 2 6 ( 0 ,1 ,2 ,3}s_1 Piez foez8- 1 

Now by (2.13), it follows from the above identity that 

^  [Po](ai +4/?i) (ai +  4/Ji)^1 =  5 3  5(/b) =  4s x<5(a*i), Mi =  0,1, 2.
Aez 0 2 6 (0 ,1,2 ,3}s_1
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(2.16) [ A ^ P a ] ^  +  4/?1)(a 1 +  4A )W =  6 fa 1) V m  = 0,1,2.
Piez

Therefore, 41 sPa  satisfies the sum rules of order 3 with respect to the 

lattice 4Z.

Note that the mask a is supported on [—7, 7]s. Therefore the mask 4x~sP a  

must be supported on [—7, 7]. Taking cq — 0 in (2.16), we conclude that

l
] T  [41- sPa](4A )(4/?i)w =  5(/xi) V ^  =  0 ,1 ,2.

A =-i

Putting the above equations into a matrix form, we have

1 1 1 "[41_sPa](—4)" Y

- 4  0 4 [41_SPa] (0) = 0

16 0 16 _ [41-*Pa](4) _ 0

By solving the above system of linear equations, we must have the follow

ing unique solution:

l ^ P a K - A )  = [A'-'PaK*) =  0 and Y ^ K O )  =  1.

Therefore, 41-sPa must be an interpolatory mask with respect to the lat

tice 4Z.

Now by [13, Theorem 2.5] and Theorem 2.1, we must have ^ ( a ,  41 s) ^  

v00(41~sPa, 4) ^  log4 24. When uo0(a, 41 s) =  log4 24, we must have u00(4l~sPa, 4) 

log4 24. Therefore, by the uniqueness of the mask abest in (2.1), we conclude 

that 41~sPa  =  abest. □
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Chapter 3

Two-dim ensional Interpolatory  

Four-adic Subdivision Schemes 

w ith Two-ring Stencils

In this chapter we shall present some examples of two-dimensional interpola

tory subdivision triplets (a, 4 /2, G) with two-ring stencils for both the regular 

triangular mesh (G =  Dq) and the regular quadrilateral mesh (G — D4). 

Moreover, for these subdivision triplets, we shall investigate the smoothest 

subdivision triplets such that the quantity i/0O(a ,4 i2) can achieve its upper 

bound log4 24(?« 2.29248), which provides us a better smoothness than C 2 

and is the best possible smoothness.

3.1 Subdivision Schemes for the Regular Tri

angular Mesh

Let us first consider subdivision triplets (a, 4 / 2 , D$) for the regular triangular 

mesh. Since we only discuss the schemes with two-ring stencils, the interpola-
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tory mask a must be supported on [—7, 7]2. The following subsections describe 

a way how we figure out the optimal subdivision triplets such that the quantity 

iSoo(a, 412) can achieve its upper bound.

3.1.1 Computing the b Sequence

For subdivision triplets (a, 4I 2, Dq) with two-ring stencils, since the support of 

the mask a is [—7, 7]2, it is relatively difficult to compute the important quan

tity p(a, 4 /2, 0 0 , V^<5), where p  =  (3,0), (2,1), (1,2), (0, 3). By Theorem 1.3, 

we are expecting to figure out another sequence b and compute the quantity 

of p(b, 4 /2, 0 0 , 5) instead of p(a, 4I2, 0 0 , V^5), where the support of b is much 

shorter than that of a. In order to facilitate our analysis, we require that the 

mask a should take the following form:

«(£i>6) =(1 +  +  e~2lCl +  e +  e
X (1 -p gfifi+fz) 1 „2i(fi+f2) 1 „3i(

(3.1)
-3<6)(1 +  e~*2 +  e~2ii2 +  e~3i&]

Since the product of the first three terms on the right-hand side of (3.1) 

is supported on [—3, 3]2, it is easy to see that the support of sequence b is 

[—4, 4]2. The sequence b must be A r  symmetric, and therefore the sequence b 

takes the following form:

(3.2)

0 0 0 0 C7 Cs C9 c8 C7
0 0 0 c8 c5 C6 c6 C5 C8
0 0 C9 C6 C3 c4 C3 c6 c9
0 cs a> C4 C2 c2 c4 c6 c8
c7 c5 c3 c2 Cl c2 C3 C5 c7
C8 Ce c4 c2 C2 c4 c6 C8 0
a, c6 c3 c4 c3 Ce C9 0 0
c8 c5 c6 c6 C5 c8 0 0 0
c7 c8 a C8 c7 0 0 0 0
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For the subdivision triplet (a, 4J2, D6), the interpolatory mask a is required 

to satisfy the following requirements:

(i) The mask a is an interpolatory mask with respect to the lattice 4Z2:

a(0) =  1 and a (4/3) =  0 V (3 G Z 2 \{0}.

(ii) The mask a satisfies the sum rules of order 3 with respect to the lattice 

4Z2:

(3.3) £  Q,(ct +  /?) — £  «(/». “  e z2,

(3.4) £  a (a  +  /3)(a+  / ? ) " = £  a(/J)/3", /» =  (1,0), (0,1), or e  Z2,
/3G4Z2 /3e4Z2

and

a ( a +  /?)(« + /3)M =  a(/?)/?p,
(3 .5 ) 4e4Z2 /3e4Z2

^  ~  (2, 0), (1,1), (0, 2), a  £ Z2.

(iii) The projected mask 4_1P a  must be equal to the unique best mask abest 
given in (2 .1 ), that is:

5 ___1_ _ J £  -  5

192’ 16’ 192’ ’ 64’ 16’ 64’ ’ 64’ 16’ 64’ ’ ~192’ ~ 16’ ~192

Since a has the following factor

( 1  +  e^ 1 +  e“2i€l +  e“3̂ ) ( l  +  e^ 2 +  e“2iCs +  e~3̂ 2),

the mask a automatically satisfies sum rule of order 1  in (3.3). Consequently, 

the mask a satisfies the sum rules of order 2 in (3.4) because of the symmetric 

property of the mask a.

Since J2/3ez2 a 0^) — 16, we must have )C/36 z2 KP) =  Ci +  6C2 +  6 C3 +  
6 C4 +  6 C5 +  12C6 +  6 C7 +  12C8 +  6 C9 =  1 /4.
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For the equations of (3.5), by a simple calculation, we have the following 

linear independent equations:

3 C\ +  2C% +  2 C3 — 6 C4 -f- 2C5 — 1 2 C6 +  I 8 C7 +  4Cg -t- 2Cg — 0;

Ci +  2C2 — 2 C3 — 2 C4 2C5 — 4C6 H- 6 C7 +  4Cg — 2Cg = 0;

Ci — 2C2 6 C3 — 2 C3 — 2C4 — 2 C5 — 4C§ -+■ 6 C7 — 4CS +  6 C9 =  0.

where Cg := —5/192 — 2CV — 2 C% by the condition of projection.

Once we have set up a system of these linear equations, by solving these 

equations via Maple, we see that there remain only 4 free parameters in the 

sequence b. Here, for instant, let’s choose C 4 , C5, C7 and C8 to be free

projection (ii), we can set up a system of linear equations. By solving them, 

we have:

By now we have not completed the procedure of finding the best mask 

a, since there are still 4 free parameters. By finding out the corresponding 

subdivision stencils and forcing the weights of those vertices which are furthest 

away from the new inserted vertex to be zero, we may figure out some examples 

with the best mask a.

3.1 .2  C om p u tin g  th e  Q u an tity  ^ ( a ,  4 / 2)

Now we have the following result on interpolatory subdivision triplets (a, 4/ 2, D§) 

with two-ring stencils for the regular triangular meshes.

parameters. In addition to the conditions induced by interpolating in (i)and

C9 =  TbbC- 1 -  2*3 -  2U).
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T h eo rem  3.1. Let (a, 4 / 2 , Dq) be an interpolatory subdivision triplet, where 

the mask a is given by (3.1) and the sequence b is given in (3.2). Then

fa ,  4J2) =  -  log4 max{l/24, p(b, 412, 0 0 ,5)}.

In particular, u ^ a ,  4 /2) =  log4 24 i f  and only i f  p{b, 4 /2, 0 0 , S) ^  1/24. 

For example, in (3.6), i f  ti =  10/3, f2 =  0, £3 =  —5/3 and £4 =  0, then 

p{b, 4 /2, oo, <5) ^  1/24 and ^ ( a ,  4 /2) =  log4 24; therefore, the subdivision 

triplet is the smoothest two-dimensional interpolatory 4 -adic subdivision scheme 

with two-ring stencils for the regular triangular mesh.

Proof. Our proof here follows the line developed in [19]. Since the mask a 

satisfies the sum rules of order 3, in order to calculate Poo(a, 4If), we have to 

calculate

(3.7) p(a, Ah, oo, V"*) := lim H V 'i * K V l ! | t„ (»),
n—* 00 ’

where p — (3,0), (2,1), (1,2), (0, 3). Since the mask a is F 6-symmetric, the 

sequence S™4l25 is also F>6-symmetric and it is easy to see that

p(a, 4 / 2, 0 0 , Vg2<5) =  p(a, 4 / 2, 0 0 , V^fi),

and

p(a, 4 / 2 , 0 0 , V ei Vg2fi) =  p(a, 412, 00 , V ^ V e2S). 

where e4 := (1 , 0 )T and e2 := (0 , 1 )T are unit vectors in two dimension.

So it suffices to calculate p(a, 412, 0 0 , V^fi) and p(a, 4J2, 0 0 , V e2S). Note

that

V eiS = 6 - 6 ei = [<5_ca -  Sei] +  [<J -  <Le2]
(3.o)

— [^e1+e2 ,5](’ +  6 2 ) ~  [Ve2fi](- +  e2).

For any (3 E I f , it is easy to see that u(-—{3)*[5” 4/2<5] =  (u*[5”4/2£])(•—/?). 

Therefore,

p(o, 4 /2, p, u(- -  /?)) =  p(a, 4 / 2 , p ,«), V (3 E Zs.
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Consequently, by the definition of p(a, AI2, oo, V^S)  in (3.7), it follows 

straightforward from (3.8) that

p(a, 4 /2, oo,Vg 5)
(3.9)

^  max{p(a, 4J2, oo, Vei+e3<5), p{a, 4 /2, OO, V ^V e^)}.

Let E  :=
1 - 1

0  - 1
G J96. It is easy to check that

[V2eiVe2S\(E-) = V l- leiVE-ieJ  = V_ei_e25.

Since [S'”^ ^ ] ^ - )  =  S'”4l2S by E  6  D6, we must have

[(Vgj Ve2 5) * (S”4J/) ] ( iL )  =  K  V_ei_e25) * (S:AhS).

Therefore, it follows that 

p(a, 4 /2, 0 0 , Vg1V e2<5) =  p(a, 4 /2, 0 0 , V_ei- Ca<5) =  p(a, 4/ 2j 0 0 , V ^V ^+ e^).

Since V*'2,1̂  =  V e2 d, in order to calculate p(a, 4 /2, 0 0 , VM5) in (3.7), 

by (3.9) and the above identity, we see that it suffices to calculate the quantity 

p(a, 4 /2, 0 0 , V 2X V ei+e2<5). Note that

V ^ V ^ e2<S(4£i,4g2) =  1 -  1 -
VCl' V ^ Ca5(ei, 6 ) 1 -  e" * 1 1 -  e“i(*1+&)

=  ( 1  +  e“ *6  +  e~ 2i?1 +  e-3* 1) ^  +  e~i(6+6) +  e“2i(Cl+6) +  e-3i(a+6)).

By Theorem 1.3, it follows from V ei+e25 =  [Veid] * [VeiV ei+e25] that

(3.10) p(a, 4J2j 0 0 , Vei+e2^) =  P(^, 4 / 2 , 0 0 , V ei<5),

where the sequence h is defined by

(3.11) h(£ 1 , 6 ) := (e- * 2 +  1 +  e^ 2 +  e2^ ) 6 (6 , £2 ).
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It is easy to check that h satisfies the sum rules of order 1. Define F := 

[— 1, 2 ] 2 f lZ 2. Then F is a complete set of representatives of the distinct cosets 

of the quotient group Z 2 /4Z 2. Denote

(3.12) K : = { ( j , k ) e  Z 2 : \j\ ^  1, \k\ ^  2}

and define the linear space U by

(3.13) [ / : = { « ?  £0(Z2) : u(p) =  0 V p  G Z S\ K  and u(P) = o}.

Then it is easy to check that [(supp/i — F +  K)/4]  D Z 2 C K. Since h 

satisfies the sum rules of order 1, we see that Th,yU C U for all 7  G T. Set

^  A  := {(5(o,o) -  <5(-i,o)) <5(i,o) -  5 (0 ,0)},

® :== {%fc+i) ~  5(j,fc) : j  =  “ I, 0 , 1 ; k =  - 2 , - 1 , 0 , 1 , 2 }.

Since h(£i, £2) =  (e~*^2 +  1 +  e*?2 +  e2^ 2 )6 (£i, £2 ), we see that W  := spanlB 

is invariant under all the operators T/,i7, 7  G T. Therefore, by [25], we have

Pco({Tkj 7 |(7 : 7  G F})

— m axjpoodT ^lw  : 7  G F}), Poo{{Tha\u /w  '■ 7  € F})}.

Since all the elements in IB take the form [Ve2 5](- — P) for some P G Z2, 

by Theorem 1.3, we have

(3.15) pooiiTh^w  : 7  € T}) =  p0 0 (h, 4 /2, 0 0 , Vea(5) =  p(6 ,4J2, 0 0 , <5).

For any u G 17, we denote [u] its equivalence class in U /W .  The represen

tation matrices of Th^\u/w, denoted by H1, under the basis {[«] : u G A }  =
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{[£(1,0) -  £(0 ,0)], [£(0,0) -  £(-1,0)]}, are given by

# ( - 1,2) -  # (-i,i) -  # ( - 1,0) — # ( - 1,- 1) 192
- 5  3 

0 8

(3.16)

# ( 0,2) =  # ( 0 ,1) =  # ( 0 ,0) =  # ( 0 , - 1)

# ( 1,2) — # ( 1,1) — # ( 1,0) — # ( 1, - 1)

# ( 2 ,2) — # ( 2,1) — # ( 2,0) — # ( 2 , - 1)

1

192

1

192

1

192

3 - 5

- 5  3

'8  O ’ 

- 3  - 5

8 O'

8  0

By a simple calculation, we have

^  Poo{{Tha \u/w ■ 7 G r} ) =  Poo( { # 7  : 7 € T})

<  m ax{ ||#7| |^ oo : 7  G T} =  1/24,

where || ■ || l̂ oo is a matrix norm which is defined to be

j
l i f e ) lKi,oo maxl<i<7ax "V"' 1t.ol-

1 = 1

Since Vei<5 G U, by (3.15), we conclude that:

max{p(a, 4 /2, 0 0 , V^£) : |p| =  3} ^  p(h, 4 /2, 0 0 , V ei£)

^  Poo({T)i,7 |r/ : 7  ^  T })

<  m ax{l/24, p(6 , 4 /2, 0 0 , <5)}.

On the other hand, by (3.8), we have V ei+e2£ =  V e2£ +  [Vei£](- — e2) and 

it is not difficult to see that

p(b, 4 / 2 , 0 0 , S) -  p(a, 4 /2, 0 0 , Vei Ve2V ei+e25)

^  max{p(a, 4J2, 0 0 , V* V C25), p(a, 4 /2, 0 0 , Vei Vj! 5)}.
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By Theorem 2.1, we conclude that 

(3.18) max{p(a, 4 / 2 , 0 0 , V ^ )  : |/i| =  3} =  m ax{l/24, p(b, 4 / 2 , 0 0 , d)}.

In the following, we estimate p(b, 4J2, 0 0 ,5). By Theorem 1.4, we have

It is easy to verify that, when i4 =  10/3, t2 = 0, f3 =  —5/3 and f4 =  0, it 

follows from the above inequality that p(b, 4I2, 0 0 , <5) ^  1/24. Therefore, the

Thus, we have figured out the smoothest 4-adic subdivision triplets such 

that the quantity (a, 4I2) is equal to its upper bound log4 24. Consequently, 

with this best 4-adic subdivision triplets, we can generate the smoothest sub

division surfaces.

3.1.3 Interpolatory Subdivision Stencils for the Trian

gular M eshes

In this subsection, we shall give out our interpolatory 4-adic subdivision sten

cils, which have two-ring neighbourhoods, for the example given in Theo

rem 3.1. All the stencils shall be used in our C + +  programs to generate the 

refined subdivision surfaces.

For 4-adic subdivision schemes on triangular meshes, we shall insert three 

new vertices on each edge, thus an edge will consequently be split into four

—!— max{|3ti -  6t 2 -  6f3 -  6£4 -  12| +  6|t4|,

1^21 +  2 |f3| +  | 8  — t\ + 12\,

118 — ti +  2t2 +  6 f3 +  4t4 j +  110 +  4 +  4f4 

|ti| +  |2 +  2t 2 +  2t3|}.

claim in this theorem follows directly from (3.18). □
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Figure 3.1: The interpolatory Tadic subdivision scheme for the triangular 

mesh. By adding 3 new vertices on an edge and 3 new vertices for each face, 

one edge is split into 4 new edges and one face is split into 16 new faces, “o” 

denotes the old vertices and “o” denotes the new inserted vertices.

new edges. Here, we denote “1/4 vertex” , “1/2 vertex” and “3/4 vertex” the 

three new inserted vertices, respectively. Naturally, we need three subdivision 

stencils for these three new inserted vertices. However, by the property of 

symmetry, the stencil for “3/4 vertex” is a flip of that of “1/4 vertex”. There

fore, we actually need only two stencils, one is for “1/4 vertex” , another is for 

“1/2 vertex”.

Similarly, we shall insert three new interior vertices inside a face, which can 

be regarded as the intersections of the connections between the corresponding 

new inserted vertices on three edges of a face. Consequently, a face will be 

split into 16 new faces. Although there are three new vertices, we need only 

one stencil in implementation because of the symmetry property.

The stencils of the subdivision triplets in Theorem 3.1 are given in Fig

ure 3.2. The weights U\ , . . . ,  u7 in Figure 3.2 are given by

- JL _  h .  _  h .
Ul ~  12 96 96’ 192 192 192’

1 3̂ 4̂
~~96 +  192 +  192’(3.19)

_L _  h .  _  h .
16 96 96’
1

Ua 32

192 192 192
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Figure 3.2: Associated subdivision stencils for the best two-dimensional inter

polatory 4-adic subdivision scheme for the interior new inserted vertex. By the 

symbol “A ” we denote the new inserted vertex, and the symbol “O ” denotes 

vertex of the previous level, the numbers inside the circles, which are named 

u l, m2, . . . ,  n7, are the weights of the corresponding vertices.

Moreover, if taking t x — 10/3, t2 =  0, t:i =  —5/3 and i 4 =  0, we have

m i =  173/288, m 2 =  167/576, u 3 =  -13/288, 

m 4 =  -11/576, u7 =  -10/576.

Figure 3.3: The interpolatory subdivision stencil for new inserted interior 

vertex inside a face, with t x =  10/3, t 2 =  0, t5 = —5/3 and t4 =  0. All the 

numbers in the above stencil should be divided by 576.

The corresponding stencil for the special case t x =  10/3, t 2 — 0, t3 =
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—5/3 and £4 — 0 is shown in Figure 3.3.

Figure 3.4: Associated subdivision stencils for “1/4 vertex” on an edge.

The followings are the weights of the associated interpolatory subdivi

sion stencils for the new inserted “1/4 vertex” on an edge, which is shown in 

Figure 3.4:

Ui =  5/6 — £4 / 6 4 ,

v2 =  35/192 +  fi/384 -  £2/192 -  £3/192 -  £4/192, 

u3 — 5/64 — fi/384 T £2 /192 T £3/192 T  £4 /96,

(3.20) Vi =  -5 /9 6  +  £i/384 -  £2/192 -  £3/192 -  £4/192,

v5 = -1 /6 4  -  £i/384 +  £2/192 +  £3/192 +  £4/192, 

v6 =  -5 /1 9 2  -  £3 / 1 9 2 , 

v7 =  £4 /192.

Moreover, if £1 =  10/3, £ 2 =  0, £3 =  —5/3 and £4 =  0, we have

vj =  5/6, v2 =  105/576, v3 = 35/576, vA = -5 /144 , 

v5 -  -19/576, vq = -5 /288 , v7 = 0.

The corresponding stencil for above special case is shown in Figure 3.5.

Similarly, the following are the weights of the associated interpolatory 

subdivision stencils for the new inserted “1 / 2  vertex” on an edge, as shown in
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Figure 3.5: The interpolatory subdivision stencil for “1/4 vertex” on an edge, 

with t\ =  10/3, £2 =  0, t3 =  —5/3 and £4 =  0. All the numbers in the above 

stencil should be divided by 576.

Figure 3.6

(3.21)

Wi

w3

W4

w5

1 £2 £3 4̂
2 ~  192 “  96 ~~ 96’ 
f h  H U
8  96 48 48’
 1____ £2 £3 £4

_  16 ~~ 192 ~  96 ~  96’ 
h £3 £4

192 +  96 +  96'

Figure 3.6: Associated subdivision stencil for “1 / 2  vertex” on an edge.

Moreover, if t\ =  10/3, £2 =  0, £3 =  —5/3 and £ 4  — 0, we have 
149 13 13 5

wl = 7 ^ ,  w3 = T77) w4 =  —, w5288’ a 144’ 4 288’ 0 288’
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Figure 3.7: The interpolatory subdivision stencil for “1/2 vertex” on an edge, 

with ti = 10/3, t2 =  0, t3 =  —5/3 and t4 =  0. All the numbers in the above 

stencil should be divided by 288.

and the corresponding stencil is shown in Figure 3.7.

See Figure 3.8 for the graph of the basis function in the subdivision triplets 

in Theorem 3.1. Note that the support of the basis function is contained in 

[—7/3, 7/3 ] 2 while the basis function of the butterfly scheme is supported on 

[ 3 ,3]2.

1

0.8 

0.8  

0.4 

0.2 

0

Figure 3.8: The graph of the basis function 0 for the subdivision triplet in the 

Theorem 3.1 with t\ = 10/3, t2 — 0, t3 = —5/3 and t4 =  0.

We have implemented the stencils on the regular triangular mesh on com-
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1.5

-2 -1.5 -1 -0.5 0 0.5 1.51 2

Figure 3.9: The graph of the contour value of the basis function <fi for the 

subdivision triplet in the Theorem 3.1 with t\ =  10/3, £2 =  0, £3 =  —5/3 and

£4 — 0 .

puter by C + +  programs. The following figures are the initial mesh and refined 

meshes after one and two subdivision steps, respectively.

i \

i t

►

Figure 3.10: An example of subdivision surfaces by applying interpolatory 4- 

adic subdivision scheme on the regular triangular mesh. They are the initial 

mesh, the first step subdivision surface and the second step subdivision surface, 

respectively.
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3*2 Subdivision Schemes for the Regular 

Quadrilateral M esh

In this section, we shall investigate interpolatory 4-adic subdivision schemes 

with two-ring stencils for the regular quadrilateral mesh. By computing the 

quantity of (a, 4 / 2 ) and finding out its upper bound, we shall figure out the 

best mask among all the possible subdivision schemes.

3.2.1 Masks of the Two-dim ensional Interpolatory Four- 

adic Subdivision Schemes for the Quadrilateral 

M eshes

For quadrilateral meshes, we can use the tensor product of the one-dimensional 

interpolatory subdivision triplet (abest, 4, {—1,1}) to get an optimal two-dimensional 

interpolatory 4-adic subdivision scheme. In the following, let us present some 

other examples of subdivision triplets (a, 4 /2, D4) with better time localization 

of their basis functions for the quadrilateral meshes.

In order to facilitate our analysis, we require that the mask a should take 

the following form:

«(6 , 6 ) = ( 1  +  +  e- 2^ 1 +  e" 3^ 1 ) 2

x (1 +  e- ^ 2 +  e-2^ 2 +  e~3i6)2e3i6e3i66(£l56)-

It is easy to check that the support of the product of first four terms on 

the right-hand side is [—3, 3]2, thus the sequence b should be supported on 

[—4, 4]2, and must be ^-sym m etric.

Since we are discussing a two-dimensional interpolatory four-adic subdi

vision schemes with two-ring stencils, the corresponding mask a must satisfy 

the same three conditions (i), (ii), (in) as for the symmetry group D6, where
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we discussed the analysis on the regular triangular mesh. In the same way, 

we can set up a system of linear equations. By solving these equations,we see 

that the sequence b, which is supported on [—4,4 ] 2 and is ^ -sym m etric  as 

well, must take the following form:

tl5 t u tl3 tl2 t i l tig tl3 t u tib

t u tio tg t& t7 ts tg tio t u

t n tg h t$ u t§ t& tg tl3

tl2 t% t$ t3 tg H t?> ts tig

t u h t 4 tg ti tg U h t u

tl2 ts tz, tz tg ts t§ ts t\g

tl3 tg t& t$ t 4 t$ h tg tl3

t u tio tg ts t i ts tg tio t u

tl5 t u tl3 tl2 t u tig tl3 t u tlb

Since Ylpez2 «(/?) =  16, we must have J2 /3ez2 Kfl) =  +  413 +  4t4 +

8^ 5  +  4fg +  4fy +  8tg 4~ 8 tg +  4fio +  4f n  +  8 f42 +  8 f43 +  8 £i4 +  4tis =  1/16.

Since o(£) has the following factors:

( 1  +  e- * 1 +  e~ 2*6  +  e~ 3 i$ 1 ) 2 x ( 1  +  e +  e~2i& +  e“ 3̂ 2)2,

the mask a automatically satisfies the sum rule of order 2. By the condition 

of the sum rules of order 3, we have:

6 ti +  4̂ 2 — 4̂ 3 +  4£4 — 8^ 5 — At§ +  4^7 — 8  tg

— 8tg — 4tio +  1 2 tn  +  8 fx2  +■ 8 ti 3 +  8 fi4  +  1 2 £i5 =  0 ,

and

4^2 +  2 t i  +  8 t i2  4" 8 f i 4 +  8 t i5  — 8t§ — 8^6 4- 4iy  — 8^9 +  8 £ n  =  0.
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By solving the above equations, we see that t i ,  t 2 , t 3 , t 4 , t7, t u  are given by

(3.24)

t \  : =  —4  — 8̂ 5 — 1 2 tg  — 1 6 t 8 — 4 0 tg  -  3 2 t i o  —■ 2 4 t i2  — 5 6 t i 3  — 8 8 t i4  — 6O tis ,

t 2 1 0  +  6t s  +  8 t §  +  1 0 tg  +  2 4 tg  +  1 8 t io  +  14^x2 ~t~ 3 2 t i 3  -f- 4 8 t i4  +  3 2 tx s ,

t 3 : =  — 4̂ 5 — 4 tg  — 6 t g  —  1 2 t g  — 9 t 10 — 8 t 42  — 1 6 £ i3  — 2 4 t u  — 1 6 t i s ,

t 4 : =  6  — 2 t 5 — 2 16 — 2 t g  — 2t i 3,

t 7 — 2  — 2 ts — 2 tg — 2 txo — 2 i 14)

tn  :== “ 5 — 2 ti 2 — 2 t 13 — 2ti4 — 2 t i 5 , 

where ts, t e , t8, t g ,  tio, t i2, t i 3 , t i4 , tis are chosen as free parameters.

3.2 .2  C om p u tin g  th e  S m o o th n ess  ^ ( a ,  4 / 2)

Now we have the following result on interpolatory subdivision triplets (a, 4 /2, D4) 

with two-ring stencils for the regular quadrilateral meshes.

T h eo rem  3.2. Let (a, 4/ 2, D4) be an interpolatory subdivision triplet, where 

the mask a is given by (3.22) and the sequence b is given in (3.23). Then

Voo(a, 4 / 2 ) =  -  log4 m ax{l/24, p(b, 4 /2, 0 0 , 5)}.

In particular, ^ ( a ,  4 / 2 ) =  log4 24 if  and only i f  p(b, 4 /2, 0 0 , h) ^  1/24. 

For example, i f  — 2 < t5 <  2 and t6 =  t8 =  t9 =  t i0 =  ti2 =  t13 =  t 14 =  t i5 =  0, 

then p(b,4I2,oo,5) ^  1/24 and =  log4 24; therefore, the subdivi

sion triplet is the smoothest two-dimensional interpolatory ternary subdivision 

scheme with two-ring stencils for the regular quadrilateral mesh.

Proof. By symmetry on the mask a, it suffices to compute p(a, 4 /2, 0 0 , V^h)  

and p(a, 4/2, 0 0 , Vg V e2 h). Note that

_  ( l - « - - 6 ) 2 _  fl . e-«, . e-*fc .
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By Theorem 1.3, we see that

p(a, 4 /2, 0 0 , V 3eiS) = p(h, 4 / 2 , 0 0 , VeiS)

and

p(a, 4 / 2 , 0 0 , V ^ V e2S) =  p(h , 4 / 2 , 0 0 , V e2S),

where

(3.25) h(6 , 6 ) := e~3iH l + ^  +  e~ 2^ 2 +  e ^ f b ^  6 ).

It is easy to verify that h satisfies the sum rules of order 1 . Denote 

r  := [—1 , 2] 2 fl Z2. Let K  and U be defined in (3.12) and (3.13), respectively. 

Since h satisfies the sum rules of order 1, we have T ^ U  C U for all 7  G T. Set

21 :=: {^ (0 ,0 ) ~  ^(-i,o)>  5(1,0) — <5(o,o)}5

(3.26) 23 := {5(-i,i) — <5(_lj0), 5(o,i) — 5(0>o), 5(i,i) — 5(i,o)}>

e ■— }̂(y,fc+2) 25(j,fc-f-i) -F ̂ (j,k) ■ j = 1, 0,1, k = 2 , 1, 0}.

Define W  := span(23 U C) and V  := spanC. Since h(£i, £2 ) =  (1 +  e~ 1̂ 2 +  
g—2j( 2 _p 7 - _p e2 ^ 2  _p e3^ 2 )6 (£i, £2)> we see that T ^ I T  C W  and

t Ki v  c  y  for ail 7  e  r .

For any u G 17, we denote [«] its equivalence class in U /W .  The represen

tation matrices of Thtl\u/w, denoted by i27, under the basis {[«] : u G A},  

are given in (3.16). Therefore, by what has been proved, (3.17) holds.

For any u G W, we denote [w] its equivalence class in W /V .  The represen

tation matrices of Th!7 \w/v, denoted by 272,7, under the basis {[u] : u G 23}, 

are given by

H z ,  ( - 1,2) — 2 f2,( - 1,1) — 2 7 2 ,(-1,0) — 222, ( - 1, - 1) 76032

-495  2178 -495  

0 1386 -198

0 594 594
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-198 1386 0
1

# 2 ,(0 ,2) -  # 2 ,(0 ,1) -  # 2,(0 ,0) -  # 2 ,(0 ,- 1) - -495 2178 -495

0 1386 -198

and

H2,(1,2) -  # 2,(1,1) -  # 2 ,(1,0) -  # 2,(1,- 1)
1

76032

594 594 0

-198 1386 0

-495 2178 -495

(3.27)

Therefore, we have

PooiiT'h^lw/v • 7 £ F) =  Poo({F2 ,7  : y G T } )

^  max{||i72 ) 7 | | £li00 : 7  G T} =  1/24.

Note that every element in C takes the form Vg2h(- — f3) for some (3 G Z2, 

by Theorem 1.3, we have

(3.28) PooCfT/Je : 7 € T}) =  p(h, 4J2, 0 0 , V * /)  =  p(b,4/2, oo, 5).

Now by Theorem 1.4, we have 

p(b, 4J2, 0 0 , <5) T max |6 (a  +  4/5)1

7  max{|4 +  8 * 5  +  12*6 T  16*8 T  40*g +  32*io +  24*i2 +  56*13 +  8 8 * 4 4  +  60iis I 
*68

+  4|5 +  2 t i 2  +  2 * 1 3  +  2 * 1 4  +  2 *1 5 ! +  4|*i5|,

110 +  6 * 5  -f- 8 * 6  +  10*8 T  24*9 T  18*io T  14*i2 +  32*13 +  48*14 +  32*ig | 

+  2 | 1  +  * 8  +  * 9  +  * 1 0  +  *m| +  2 |*i2| +  2  |*H |,

14*5 +  4*6 +  6*8 +  12*9 T  9*io ~  8*12 T  16*13 T  24*14 +  16*15] 

+  2|*81 +  |*io|}>

where t j , j  =  6 , 8 , 9, 10, 12, 13, 14, 15 are defined in (3.23). When 

*6 =  *8 =  *9 = *10 =  *12 =  *13 =  *14 =  * 1 5  =  0, the above inequality becomes

p(b, 4 /2 , 0 0 ,5) ^  —— max{20 +  4|1 +  2 * 5 1, 2 +  110 +  6 *g|, 4|*sI}■
(0 8
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It follows easily from the above inequality that if —2 < t$ < 2, then 

p(b, 4 /2 , 0 0 , 5) ^  1/24. Moreover, if t5 =  —1/384 we have p(b,4I2,oo,5) — 

1/24. Since the elements in A  take the form Vei<5(- — 0) and the elements in 

23 take the form Ve2h(- — /?), by (3.17) and (3.28), we see that

max{p(a, 4 /2 , 0 0 , V^h), p(a, 4 /2 , 0 0 , Ve2 <5)}

=  max{p(h, 4 /2 , 0 0 , V eiS),p{h, 4J2 , 0 0 , V e2h)}

=  P o o ( { 2 / 1 ,7 | n  : 7  €  r } )

=  m ax{l/24, p(6 ,4 /2, 0 0 , 5)},

which completes the proof. □

Therefore, for the quadrilateral meshes, we can also figure out the optimal 

subdivision triplets (a,4I2, D4) such that the quantity u ^ a ,  412) achieves its 

upper bound log4 24.

3.2.3 Subdivision Stencils for the Quadrilateral M eshes

Figure 3.11: The interpolatory 4-adic subdivision scheme for the quadrilateral 

mesh. By adding 3 new vertices on an edge and 4 new vertices for each face, 

one edge is split into 4 new edges and one face is split into 16 new faces, “o” 

denotes the old vertices and “o” denotes the new inserted vertices.
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[u2

Figure 3.12: Associated subdivision stencils for new inserted vertices on an 

edge. Up triangle denote the “1/4 vertex” and down triangle denotes the “1 / 2  

vertex” .

For 4-adic subdivision schemes on the quadrilateral meshes, we shall in

sert three new vertices on each edge, thus an edge will be split into four new 

edges. According to the property of symmetry, we need only two stencils in 

programming implementation, one is for “1/4 vertex” , another is for “1/2 ver

tex” . The stencil for “3/4 vertex” is the flip of that of “1/4 vertex” . Similarly, 

although we shall insert nine new interior vertices inside a face, we need only 

three stencils because of the symmetric property. Consequently, a face will be 

split into 16 new faces. The stencils of the subdivision triplets for all new in

serted vertices in Theorem 3.2 are shown in Figure 3.12 and Figure 3.13. Here 

we use the general parameters u q , . . .  , u 7 ; and Vq, . . . ,  in Figure 3.12 and 

Figure 3.13, because for different new inserted vertex, the value of u 0 , . . . ,  u 7; 

and v 0 , . . .  , v u  in the stencils are different, we shall discuss them in details in 

the following.

For the new inserted “1/4 vertex” , the parameters u 0 , . . .  , u 7 in Figure 3.12
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Figure 3.13: Associated subdivision stencils for new inserted interior vertices 

inside a face. The upper triangle symbol denotes the “(1/4, 1/4) vertex” , 

down triangle symbol denotes the “(1/2, 1/4) vertex” and small circle symbol 

denotes the “(1 / 2 , 1 / 2 ) vertex”.

are given by

(3.29)

Uo 55/64 +  4 * 5  +  8 * 6  4- 8 ts +  28*9 -F 24*io T 10*i2 4~ 36*13 +  62*14 +  40*1 5 ,

U\ 15/64 — 2tg — 4tg — 4*g — 14fg — 12*iq — 2*12 — 12*13 — 22*14 — 8 *1 5 ,

U2 :=  —2*5 — 4*g — 4*8 — 14*g — 12* 10 — 5*12 — 18*13 — 31*14 — 20*15,

zt3  := —13/192 — 2*5 — 4*6 — 4*8 — 14*g — 12*io — 6 * 1 2  — 20*13 — 34*14 — 24*15,

U4 := *5 +  2*6 +  2*8 +  7*g +  6 * 1 0  4- 3*12 d- 1 0 *i3 4” 17*14 +  12*15,

u 5 ;= *5 4- 2*6 +  2*8 4- 7*g +  6 *io 4- *12 4- 6 * 1 3  +  11*14 4- 4*15,

uq := —5/192 — 2 * 1 2  — 4*13 — 6 * 1 4  — 8 *1 5 ,

M7 =  — *12 4- 2 * 1 3  4- 3*14 4- 4*15,

and for the new inserted “1 /2  vertex” , the parameters u0, . . .  ,u 7 in Figure 3.12
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are given by

Uq  : =  9/16  +  2*8 +  4*g +  6* io  +  4*12 +  8*13 +  20*14 4~ 16*15 • =  u 4 , 

l l 2  : =  — t s  — 2 t g  — 3*iq -  2*12 — 4*13 ~  10*14 — 8*15 : =  U5,
(3.30)

U s  —1/16 — 2 * 8  — 4 * 9  — 6 *io — 4 * 1 2  — 8 * 1 3  — 20*14 — 16*is :=  U g,

U4 : =  * 8  +  2*9 3 * io  +  2*12 +  4*13 +  10*14 ~t~ 8 * 1 5  ;== U 7 .

For the new inserted interior “(1/2, 1/2) vertex” , the parameters vq, . . .  ,v 4s 

in Figure 3.13 are given by

Vo := Vi := V2 := v3 := 5/16 +  * 10 +  4*14 +  4 *1 5 ,

v4 := v5 := v6 v8 := v9 := vw

V\2 ■— V\z —1/32 — *io — 4*14 — 4*is,

V7 '■= vn  Vu V15 := tio +  4*14 +  4*is.

(3.31)

For the new inserted interior “(1/4, 1/4) vertex” , the parameters v0, . . .  ,v 14 

in Figure 3.13 are given by

vq  ' .=  93/192 -j- 4*6 -f-1 6 * 9  4~ 16*io +  20 * 1 3  -t- 40*14 +  25*15,

Vi := v2 := 13/64 -  2*6 -  8 * 9  -  Stw -  7*i3  -  14*i4 -  5*i5, 

v 8 ■ =  7/128 +  * 6  +  4 * 9  +  4*io +  2 * 1 3  +  4*14 +  *1 5 , 

v4 := Vs '.== —13/256 — 2 * 6  — 8 * 9  — 8 * 1 0  — H *i3  — 2 2 * 1 4  — 15*15, 

(3.32) :=  v 8 : =  —13/768 +  t g  +  4*g +  4*io +  4 * 1 3  +  8 * 1 4  +  3 *1 5 ,

V 7 :=  * 6  +  4*9 +  4*io +  6 * 1 3  +  12*14 +  9* 1 5 ,

Vq :=  V 1 2  :=  - 5 /2 5 6  -  2113 -  4114 -  5*i5, 

hio ^ 1 3  ;— —5 /768  +  *13 +  2*14 +  *i5i

V \4 :=  V \ \  : =  *13 +  2 * 1 4  +  3 * i s ,  V \s  * 1 5 .

For the new inserted interior “(1/2, 1/4) vertex” , the parameters v0, . . .  ,v i5
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in Figure 3.13 are given by

vq Vi := 61/128 +  2tg +  4*iq +  4*13 +  13*14 +  1 0 *i5 , 

v 2 := ^3 :== 17/128 — tg — 2tio — 2 t i 3 — 5ti4 ~  2 i i 5 ,

V4 := v8 := —13/384 — tg — 2ti0 — 2* i3  — 7* i 4  — 6 *1 5 ,

(3.33) U5 := Vg := —3/64 — 2tg — 4*io — 4*i3 — 13*14 — 1 Oix55 

v6 := vio —1/64 +  tg +  2t\o +  2*i3 +  5 t i4 +  2*15,

^7 : =  ^11 :=  *9 +  2*10 +  2*13 +  7*14 +  6*15,

V\2 Fl3 : : =  —5/384 — *14 — 2*15, Vu Vl5 *14 +  *15-

When *6 =  *8 =  *9 =  *10 =  *12 =  *13 =  *14 — *15 =  0 and *5 =  —1/384, 

the parameters of all the stencils should be pretty simple, we shall show the 

details as follows.

The parameters in (3.29) become (all divided by 384), as shown in Fig

ure 3.14.

u0 =  326, u-i =  92, u2 =  2, m3 =  —24,
(3.34)

1/4 =  —1 , u5 — —1 , w6 =  —1 0 , u7 — 0 .

Figure 3.14: Associated subdivision stencils for new inserted vertices on an 

edge at the “1/4 vertex” . All the numbers in the above stencil should be 

divided by 384.
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The parameters in (3.30) become

(3.35) uq = Ui = 9/16, u3 — ue — —1/16, u 2 — U4 — u$ =  U7 =  0.

We can find that the corresponding stencil (shown in Figure 3.15) is the same 

as the well-known “4-point” subdivision scheme.

- 1/16 9/16 9/16 - 1/16

Figure 3.15: Associated subdivision stencils for new inserted vertices on an 

edge at the “1/2 vertex” . This coincides with the stencil of the univariate 

4-point interpolatory scheme.

The parameters in (3.31) become

^ 0  ~  Vi := v2 := v3 := 5/16,

(3.36) n4 := v5 := v6 := v8 := v9 := v10 := vx2 := v13 := -1 /3 2 ,

v7 ■= Vll ;= Vu :== Vl5 := 0 .

The corresponding stencil is shown in Figure 3.16.

0 0

0-

0- 0-

0

0-

- 0

-0

Figure 3.16: Associated subdivision stencils for new inserted vertices interior 

of a face at the “(1 / 2 , 1 / 2 ) vertex” . All the numbers in the above stencils 

should be divided by 32.
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0 - -0

0" 0- -0 - 0

-0 0-

 0

Figure 3.17: Associated subdivision stencils for new inserted vertices interior 

of a face at the “(1/4, 1/4) vertex” and at “(1/2, 1/4) vertex” . All the weights 

are divided by 768.

The parameters in (3.32) become

vq — 93/192, V\ — V2 =  13/64, 

v3 =  7/128, v4 =  v5 =  —13/256, 

v6 = vg = -13 /768, v7 =  vn  = vi3 = v l4 =  0,

Vg =  hi2 =  -5 /256 , vm = Vi3 =  -5 /768.

(3.37)

The corresponding stencil is shown in Figure 3.17.

The parameters in (3.33) become

v0 = Vi — 61/128, u2 =  vs =  17/128, v4 =  v8 =  —13/384,

(3.38) V5 = Vq = - 3 /6 4 ,  v6 =  vw =  -1 /6 4 ,

v7 =  =  Vu =  W l4 =  0, u12 =  U13 =  -5 /384 .

The corresponding stencil is shown in Figure 3.17.

See Figure 3.18 for the graph of the basis function in the subdivision 

triplets in Theorem 3.2 with t 6 =  tg = tg =  t w  =  t 12 =  £13 =  t u  =  £15 =  0, 

Figure 3.19 for the contour of the basis function (f> for the subdivision triplet 

in Theorem 3.2, when £6 =  £g =  tg = £10 =  £12 =  £13 =  £14 =  £15 =  0.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1

0.8

0.6

0.4-

0.

Figure 3.18: The graph of the basis function 0 for the subdivision triplet in 

Theorem 3.2, when f6 =  f8 =  tg =  îo =  t i2  =  ti 3 = h i  = hs  =  0 and 

t5 =  -1 /384 .

Figure 3.19: The graph of the contour of the basis function cj> for the subdivi

sion triplet in Theorem 3.2, when f6 =  t8 = t9 =  tio =  t i 2 =  h 3 =  h 4 =  tis =  0 

and ts =  —1/384.
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Chapter 4

Sm oothness Analysis at 

Extraordinary Vertices

In this chapter, we shall first review the background techniques discussed and 

developed in [30, 32, 34], Then we shall apply the analysis to design special 

subdivision rules at extraordinary vertices for the ternary subdivision schemes 

given in [19]. Similar analysis and design can be applied to our 4-adic subdi

vision schemes in Chapter 3. For simplicity, in this chapter, we shall mainly 

discuss the special ternary subdivision rules for k — 3 and k  =  4, and spe

cial 4-adic subdivision rules for k =  3. We shall leave other cases as a future 

problem.

4.1 Subdivision M atrix and Characteristic Map

So far as we know in CAGD for one dimensional case, once a subdivision 

triplet is given, all the stencils of the subdivision rules that are needed to 

generate a curve are completely determined. The structure of the control 

polygon for curves is always very simple: the vertices are arranged into a
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chain, and any two pieces of the chain of the same length always have identical 

structure. However, the situation is radically different and much more complex 

for surfaces, since for two-dimensional meshes, the local structure of the mesh 

may vary. For example, the number of edges emanating from a vertex may 

be different from vertex to vertex. As a result the rules derived from the a 

subdivision scheme for a regular mesh may be applied only to parts of the 

mesh that are locally regular. For regular vertices, we have set up a theory to 

analyze the smoothness of subdivision surfaces, but we cannot apply the same 

analysis on extraordinary vertices. The main methods we use are subdivision 

matrix and its eigenvalues and the associated characteristic map, as developed 

in [30, 32, 34] and explained in [1].

It is evident that for any arbitrary initial mesh, the number of extraor

dinary vertices remain the same at every subdivision step. Moreover, for a 

scheme with 2 -ring subdivision stencils, extraordinary vertices will be isolated 

after the first subdivision step. Here “isolated” means that there is at most 

one extraordinary vertex within its 2 -ring neighbors. Additional special subdi

vision rules are needed for extraordinary vertices with some desired properties, 

such as good smoothness and small stencils. Note that these special rules can 

only influence local behavior of the surface near extraordinary vertices.

4.1.1 Param eterization of Subdivision Surfaces

Definition 4.1. When computing a new inserted vertex, all the neighbouring 

vertices associated with mask a are called control points pi, (i — 0 , . . . ,  km (m +  

l ) / 2 ) at subdivision level j ,  where k is the valence of the extraordinary vertex, 

and m  is the dilation factor of subdivision scheme.

The subdivision processing produces a sequence of meshes with increasing 

numbers of faces and vertices. In this thesis we study the relatively simple 

case: suppose the initial mesh is a simple polyhedron, i.e., it does not have self-
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Figure 4.1: Parameterization of the subdivision surface (see [1]).

intersections. Intuitively, the subdivision surface is the limit of this sequence. 

For the purpose of analysis, it is convenient to represent subdivision surfaces 

as functions defined on some parametric domain with values in R3. Thus 

we can treat subdivision surfaces as functions from the planar plane R 2 to 

the R3 space /  : Uj , where denotes the planar plane domain and

W i  denotes the R 3 domain. W  is also called topology of the corresponding 

subdivision surface parts, the points with topology are called control points. 

We define this procedure the parameterization of subdivision surfaces.

Suppose each time we apply the subdivision scheme to surfaces to compute 

the finer control mesh, we also apply the same subdivision scheme to the 

topology of the polyhedron. Intuitively, the control points, edges and faces on 

W  have one to one correspondence to vertices, edges and faces on .

D efinition 4.2. A surface /  : W  t—► is tangent plane continuous at x  6  W  

if and only if surface normals are defined in a neighborhood around x  and there 

exists a limit of normals at x, where G R 2 and W j € R3.

This is a useful definition, since it is easier to show the tangent plane 

continuity (all that is required is to show the existence of a limit). Additionally 

the definition is very intuitive since it captures the notion tha t a surface is
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smooth if there exists a tangent plane. Tangent plane continuity, however, is 

actually weaker than C1-continuity [1 ].

4.1.2 Subdivision M atrix and Eigenvalue Analysis

Consider an extraordinary vertex B, after sufficient number of subdivision 

steps, we will get a 1-neighborhood Uj  of B, such that all control points defining 

f ( W )  are regular, except B itself. For example, we need only one subdivision 

step for ternary or higher dilation subdivision schemes. This demonstrates that 

it is sufficient to determine if the scheme generates Ch-continuous surfaces for 

a very specific type of domains K: triangulations of the plane which have a 

single extraordinary vertex in their center, surrounded by regular vertices. We 

can assume all triangles of these triangulations to be identical and call such 

triangulations k-regular.

Let p-? be the vector at subdivision level j  of the control points p^,i =  

1 , . . . ,  km (m  +  l)/2 , corresponding to an extraordinary vertex B. Note that 

W  and Uj+1 are similar: thus we can establish a one-to-one correspondence 

between the vertices simply by shrinking W  by a factor of m  (for ternary 

subdivision schemes m  — 3). Enumerate the vertices in the rings; there is 

total of km (m  + l ) / 2  vertices, plus the extraordinary vertex in the center.

By definition of the control set, we can compute all values in the set 

Pi + 1  from the values p[ in the set pb  Since we only consider subdivision which 

computes finer levels by linear combination of points from the coarser level, 

we see that the subdivision matrix S  is given by:

■ r f “ ' '  P i '

p{+l
= s

p{

Pn - i

Pn \
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where N  = km(m+  l ) /2 + l  is the number of control points, S  is the subdivision 

matrix and is a N  x N  matrix. Each component p\ of p 7 is a point in the three- 

dimensional space. Since we consider only stationary schemes, the subdivision 

matrix S  will be the same at all levels.

We can now rewrite each of the coordinate vectors in terms of the eigen

vectors of the matrix S. Thus,

p °  =  c tiXi  

i
and

P3 =  (*S?P° = J 2 aiXiXi
i

where the Xi are the eigenvectors of S, and the A, are the corresponding eigen

values, arranged in non-increasing order in modulus. By a simple argument, 

A0 has to be 1 for all subdivision schemes, in order to guarantee invariance 

with respect to translations and rotations. Furthermore, all stable, converging 

subdivision schemes will have all the remaining Aj less than 1 in modulus.

Subdom inant eigenvalues and eigenvectors It is clear that as we 

subdivide, the behavior of Pj , which determines the behavior of the surface 

in the immediate vicinity of our point of interest, will depend only on the 

eigenvectors corresponding to the largest eigenvalues of S.

To proceed with the derivation, we will assume for simplicity that A0 =  1 

and A =  Ai =  A2 > A3 > • ■ ■. We will call Ai and A2 subdominant eigenvalues. 

Furthermore, we let a0 = 0; this corresponds to choosing the origin of our 

coordinate system in the limit position of the vertex of interest. Then we can 

write
p3' 1 1 1— =  atxt  +  a2x 2 +  (— ) x 3 H ,

where the higher-order terms disappear in the limit as j  —> 00 .

This formula is very important, and deserves careful consideration. Recall 

that p 7 is a vector of km (m  + l ) /2  +  1 3D points, while x, are vectors of
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km (m  +  l ) /2  +  1 numbers. Hence the coefficients a* in the decomposition 

above have to be 3D points.

This means that, up to a scaling by Xj , the control set for f ( W )  ap

proaches a fixed configuration. This configuration is determined by the two 

eigenvectors X\ and X2, which depend only on the subdivision scheme, and on 

ai and a2 which depend on the initial control mesh.

Each vertex in p 7 for sufficiently large j  is a linear combination of a\ 

and a,2, up to a vanishing term. This indicates that oi and a2 span the 

tangent plane. Also note that if we apply an affine transform A, taking a\ 

and a2 to coordinate vectors e\ and e2 in the plane, then, up to a vanish

ing term, the scaled configuration will be independent of the initial control 

mesh. The transformed configuration consists of 2D points with coordinates 

x 2,i), i — 0 , . . . ,  km (m  +  l ) / 2 , which depend on the subdivision matrix.

4.1.3 Characteristic Map

In order to have a further detailed analysis, we shall employ the characteristic 

map which has been introduced by Reif, in [32] and further developed by 

Prautzsch [30] and Zorin [34] and many other people. Informally speaking, 

any subdivision surface generated by a scheme looks near an extraordinary 

vertex of valence k like the characteristic map of that scheme for valence k.

Note that when we described subdivision as a function from the plane to 

R3, we may use control vertices not from R 3, but from M2; clearly, subdivision 

rules can be applied in the plane rather than in space. Then in the limit we 

obtain a map from the plane to the plane. The characteristic map is a map of 

this type.

As we have seen, the configuration of control points near an extraordinary 

vertex approaches a\x i + a2x 2, up to a scaling transformation. This means
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that the part of the surface defined on the k-gon W  as j  —» oo, and scaled by 

the factor 1/AJ , approaches the surface defined by the vector of control points 

aiXi +  a2x 2- Let / [ p] : U h->• R 3 be the limit surface generated by subdivision 

on U from the control set p.

D efinition 4.3. The characteristic map of a subdivision scheme for a valence k 

is the map : U R 2 generated by the vector of 2D control points eiXi+e2X2 : 

$  =  f[e\X\ +  e2X2], where e\ and e2 are the unit coordinate vectors, and Xi 

and x 2 are the subdominant eigenvectors of the subdominant eigenvalues Ai 

and A2.

Regularity of the characteristic map inside each sector of the k-gon U, 

is C 1: since we can identify each sector with a sector in a regular mesh and 

we assumed that our subdivision scheme for a regular mesh in at least C 1. 

Figure 4.2 shows this process. Moreover, the map has one-sided derivatives 

on the boundaries of the triangles, except at the extraordinary vertex, so we 

can define one-sided Jacobians on the boundaries of triangles too. We will say 

that the characteristic map is regular if its Jacobian is not zero anywhere on 

U excluding the extraordinary vertex but including the boundaries between 

triangles.

The regularity of the characteristic map has a geometric meaning: any 

subdivision surface can be written, up to a scale factor AJ, as the following 

form:

/ [ p * ] «  =  T$(t) +  W ) 0 ( ( y  n  t e w ,

where v(t) is a bounded function v : Uj h-> R 3, and T  is a linear transformation 

taking the unit coordinate vectors in the plane to cp and o2. Differentiating 

along the two coordinate directions ti  and t2 in the parametric domain W , 

and taking a cross product, after some calculations, we get the expression for 

the normal of the surface:
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Figure 4.2: The fc-gon without origin extraordinary vertex can be decomposed 

into similar rings. Taking dyadic subdivision schemes into account, each two 

times smaller than the previous ring. The size of the ring is chosen in such a 

way that the control set of any ring does not contain the extraordinary vertex. 

In this figure the control set is assumed to consist of the vertices of the triangles 

of the ring itself, and of a single layer of vertices outside the ring.

where J[$(i)] is the Jacobian, and v(t) is some bounded vector function on 

UK So the normalized normal is given by

n (f\ =  Ql X Q2 JM t)}
U |jo-r x a2|| |J[$(t)]|'

The fact that the Jacobian does not vanish for $  means that the normal

ized normal is guaranteed to converge to therefore, the surface is

tangent plane continuous.

Now we need to take only one more step. If, in addition to regularity, we 

assume that $  is injective, we can invert it and parameterize any surface as 

/(<&_1 (s)), where s £ $ ([/). Intuitively, it is clear that up to a vanishing term 

this map is just an affine map, and is differentiable. See the work [32, 34] for 

more detail.

We arrive at the following condition, which is the basis of smoothness 

analysis of all subdivision schemes considered in the work.
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R eif’s sufficient condition for sm oothness. Suppose the eigenvectors 

of a subdivision matrix form a basis, the largest three eigenvalues are real and 

satisfy

A0 =  1 >  Ax =  A2 > | A3 1 > • •• ,

if the characteristic map is regular, then almost all surfaces generated by subdi

vision are tangent plane continuous; if the characteristic map is also injective, 

then almost all surfaces generated by subdivision are C'1-continuous.

4.1.4 Diagonalizing the Subdivision M atrix

The subdivision matrix will have a convenient block form if we arrange the 

vertices “by symmetry class” . W ith this ordering of vertices, the subdivision 

matrix has the form (see [34]):

(4.1) S  =

a0Q

Co

bo b £ _ i

A,0 0 A,O N - l

Cn - 1  A j v - 1 0  ■ • • A a t - I V - 1 ^

where A ^ are k x k  matrices with entries and b j denotes the vector [ b j , , bj]T 

of size k with equal entries. For interpolatory subdivision schemes, bj 

Similarly, cj is the vector [bj, . . . ,  bj]T of size k  with equal entri

0.

res.

For the convenience of analysis, each matrix block A^ can be reduced to 

a diagonal form by using the DFT (Discrete Fourier Transform). Let D = 

diag{ 1, \D k, . . . ,  \ D k), where D k is the DFT matrix of size k. The number 

of DFT blocks in D is N.  Applying the transform to the subdivision matrix 

S , we obtain

b L A

(4.2) T>ST)~l =

Ctoo
\ D kc0

b  TQDk 

jDkAooDk

r-DfcC/v-! \ D kAjsr-iQDk

l D kAoN~iDk

\ D kA N^ iN- iD k
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The matrices | D kA D k are diagonal with entries on the diagonal.

Finally, the subdivision matrix can be reduced to block diagonal form 

by applying a permutation. Let P  be the permutation th a t rearranges the 

entries of a vector of length k N  + 1 as follows: [0,1, 2, 3 , . . . ,  N k ] i—> [0,1, k + 

1 , . . . ,  ( N —l)k + l ,  k + 2 , . . . ,  ( N —l)k + 2 , . . . ,  Nk]. Applying this permutation, 

we have

(4.3) P 'D S V -1P ~1 =  diag(Z, B  ( e & ) , . . . ,  B (e“ )).

where Z  is a. k x k  block and B (u)  is an N  x  N  block, u> =  e2m/lk, . . . ,  e2 (fc- 1)7r*/fc_ 

See the work of Zorin [34] for more detail.

4.2 Special Subdivision Rules for Ternary Sub

division Schemes

4.2 .1  S ten cils  o f  T ernary S u b d iv ision  S ch em e for R eg

ular M esh es

A C 2 interpolatory ternary subdivision scheme with 2 -ring stencils has been 

proposed in Han and Jia [19] for the regular triangular meshes. The associated 

stencils are given in Figure 4.3. In order to apply the interpolatory ternary 

subdivision schemes in computer graphics, one has to design special subdivi

sion rules at extraordinary vertices, we shall discuss this issue for special cases 

in this section.
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Figure 4.3: The stencils of the ternary subdivision schemes for regular meshes. 

The numbers at left shall be divided by 99; the numbers at right shall be 

divided by 891 [19].

In the following two subsections, we shall give two examples of interpo

latory ternary subdivision schemes for triangular meshes to demonstrate the 

analysis a t the extraordinary vertex.

4 .2 .2  S u b d iv is io n  R u le  for k =  3  case

The stencils are given in Figure 4.5, and 4.6.

li

12 1 81 7 10

Figure 4.4: Numbering of the fc-gon for the order as in the subdivision matrix.
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Figure 4.5: The stencil at left is for a new inserted “1/3 vertex” , and at 

right is for a new inserted “2/3 vertex” on an edge associated with a k — 3 

extraordinary vertex.

Figure 4.6: The stencil for a new inserted interior vertex inside a face which 

contains an extraordinary vertex with the valence k =  3.

In order to facilitate the analysis, we consider the following stencils. Here 

N  — 3. Since the valence of extraordinary vertex is equal to 3, the corre

sponding subdivision matrix with 2 -ring invariant vertices has the following
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form:

(4.4) S  =

1 0 0 0 0 0 0 0 0 0

x 5 £ 3 2 4 2 4 0 0 Xi 0 Xi

2 5 2 4 2 3 2 4 2 2 0 0 2 ; X\ 0

2 5 2 4 2 4 2 3 0 2 2 0 0 Xi

2/5 2/4 2/3 2/4 2/2 0 0 2/1 2/i 0

2/5 2/4 2/4 2/3 0 2/2 0 0 2/i 2/i

2/5 2/3 2/4 2/4 0 0 2/2 2/i 0 2/i

26 25 25 2 l 23 0 23 24 22 22

^6 21 25 25 23 23 0 22 24 22

26 25 21 25 0 2 3 23 22 22 24

By a simple calculation, the DFT matrix of size 3 is as follows:

1/3 1/3 1/3

1/3 - l / 6  +  n /3 /6  - l / 6 - z \ / 3 / 6  

1/3 —1/6 — z-s/3/6 - l / 6  +  *>/3/6

Applying the permutation on subdivision matrix S, by (4.3) we have:

Z  0 0

0 B (e 2̂ 3) 0

0  0  £?(e47ri/3)

where

Z  =

1 0  0 0

x 5 x 3 +  2X4 %2 2 x i

2/5 2/3 +  2V4 y2 2 y x

Zq ZZ\ +  2^5 2^3 Z4 +  2z2
and

B(u)
(jj{u — 1)

u j ( u  — l ) ( x 3 — X 4 ) (cu +  2 ) x 2 ( u 2 +  2 ) x i

(uj2 +  2 )(y4 — y3) ( jj{b j- l )y 2 ~{uj + 2)yl 

(u; +  2)x(z1 -  z 5) (u>2 +  2)z3 uj(ui — 1) ( z 4 -  z 2)
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where cu =  e2n1/3, e4m̂ 3.

Recall from linear algebra that an eigenvector x  of the matrix 5  is a 

nonzero vector such that 5 x  =  Ax. Let

Xi : = 0, x2 := 0, x 3 := 1/4, x4 := —1/12, x 5 := 11/12;

Vi : =  0, y2 := 0, y3 := 72/12, y4  := -1 /1 2 , y5 := 7/12;

: =  -1 /6 , 2:2 := 0, 2:3 :=  0, 2:4 := 0, 2:5 := 1/, z6 := 5/6.

then we have

(4.5)

(4.6)

Z

0 0 0 1

O1

0 0 0 0 0 0 h-i ...
 

1

0 0 1 0 0 0 0 0 0 0 1 0

0 1 5 2 0 0 1 / 1 2 0 0 1 5 2

1 1 1 1 0 0 0 1 1 1 1 1

( - l  +  n /3 )/4 0 o’ ’1 / 3 0 0 "
B (e2ni/3) 1 0 1 = 0 0 0

_ (l + iV3)/4 1 0 0 0 0

'(—l +  n /3 ) /4  0 o’ 
1 0 1 

(l +  n /3 ) /4  1 0

and

1 0 0 ' 1 / 3 0 o’ 1 0 0*
(4.7) B (e4ni/3) - l  + iy/3 1 0 = 0 0 0 - l  + iy/3 1 0

m( l+ iy /3 ) /2 0 1 0 0 0 _(1 +  iv/3)/2 0 1

That is, Z, R (e27n//3) and R (e47ri/3) have eigenvalues {0,0,1/12,1}, {1/3,0,0}, 

{1/3,0,0}.

Theoretically, the size of subdivision matrix is bigger than the one we used 

in our previous analysis. By § we denote the real subdivision matrix with 3- 

ring invariant vertices (see Figure 4.4), which is (6A; +  1) x (6k +  1) and given 

by
5  0"

S =
* S'
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where S' is a (3k + 1) x (3k + 1) matrix block given in (4.4) and really useful in 

eigen-analysis; The block S ' is a 3k x 3k block, and the eigenvalues of S' are 

all constants and determined by the regular subdivision stencils. Figure 4.4 

shows all the vertices contained in our subdivision matrix (19 x 19).

9 7

Figure 4.7: Identify a section around extraordinary vertex with a sector in the 

regular triangular mesh. All the vertices inside this bold area can be computed 

by the vertices within two rings outside this bold area.

In the following, let us shortly describe how to comput ethe Jacobian of 

the characteristic map using a method in [34].

Inside the area bounded by bold lines (see Figure 4.7), all the new in

serted vertices are independent from the extraordinary vertex in the center of 

the topology. Moreover, these new vertices will be computed within two-ring 

around this bold area. By characteristic map, for each vertex, with which there 

is a vector (u, v) attached to it, we can map it into a corresponding vertex in a 

sector of two regular triangular meshes. One can attach the first component u 

to one of the regular meshes and attach the second component v to the other 

of the regular meshes. Let <p be the basis function of the subdivision scheme 

in the regular mesh. Now up to an affine transform the characteristic map
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Figure 4.8: Applying the special interpolatory ternary subdivision scheme 

on an example mesh with an unique extraordinary vertex (k = 3). From 

left to right are the initial, first level and second level subdivision surfaces, 

respectively.

$  =  (ipi, ip2 ) restricted on one section of a ring can be obtained as a linear 

combination of the functions <p(- — k), k € Z2. In particular

^1 =  5 ^  - k )

and

To check the Jacobian of the associated characteristic map, we have

J ($ )  =  det

with

dipt dipi 
dx dy

dip2 dip 2 dx dy

dx dy dy k),

dtp 2 
dx

fcez2
dy

k).

Since and can be numerically computed using the cascade algo

rithm or the refinement equation, we can now numerically estimate the sign 

of </($) on one section of a ring, which is the area bounded by the bold
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lines in Figure 4.7. By symmetry of the characteristic map and the relation 

«/[$](£/3) =  9AiA2[$] (t), if the sign of J ($ )  inside this section of a ring is 

the same, then the sign of J ($ )  inside U\, which is defined as the interior 

triangular region given by the vertices of “1, 2, 3” in Figure 4.7, excluding the 

extraordinary vertex is the same as the sign of J ($ )  on this particular section 

of a ring.

4.2.3 Subdivision Rule for k  =  4 case

The stencils for the case k = 4 are shown as Figure 4.9, and 4.10.

[x2

Figure 4.9: The stencils for the new inserted “1/3 vertex” and “2/3 vertex” 

on an edge associated with a k =  4 extraordinary vertex.

Figure 4.10: The stencil for a new inserted interior vertex inside a face which 

contains a k =  4 extraordinary vertex.
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Similarly, we can figure out some stencils for k — 4. The subdivision 

matrix with 2 -ring invariant vertices should be:

1 0 0 0 0 0 0 0 0 0 0 0 0

x 6 x 3 X4 x 5 X4 0 0 0 x 2 Xi 0 0 Xl

x 6 X4 ^3 X4 X5 x 2 0 0 0 X\ Xi 0 0

x 6 x 5 X4 x 3 X4 0 x 2 0 0 0 Xi X\ 0

x & X4 x 5 X4 X3 0 0 x 2 0 0 0 Xl Xl

2/6 2/4 2/3 2/4 2/5 2/2 0 0 0 2/i Vi 0 0

2/6 2/5 2/4 2/3 2/4 0 2/2 0 0 0 yi 2/i 0

2/6 2/4 2/5 2/4 ys 0 0 2/2 0 0 0 2/i Vi

2/6 2/3 2/4 2/5 Vi 0 0 0 2/2 2/i 0 0 2/i

Z& 2 5 2 5 2 1 Zi 23 0 0 z 3 24 £ 2 0 Z2

Z& Zi Z5 2 5 Zi 23 z 3 0 0 z% z4 Z2 0

Zq Zi Zi Z5 Z5 0 z3 z 3 0 0 Z2 Z4 Z2

Zq Z5 Zi Zi Z5 0 0 z 3 z 3 ^2 0 Z2 Z4

By a simple calculation, the DFT matrix of size 4 is as follows:

1/4 1/4 1/4 1/4

1/4 i/4  - 1 /4  - i / 4

1/4 - 1 /4  1/4 - 1 /4

1/4 - i / 4  - 1 / 4  i/4

Applying the permutation on subdivision matrix S, by (4.3) we have:

Z  0  0  0

0 B (e2™/4) 0 0

0  0  B (e4ni/4) 0

0 0 0 £ ( e 6™/4)
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where

Z

1 0  0 0

xe x 3 + 2x 4 +  £ 5  X2 2xi

Ve V3 +  2  y4 + y5 y2 2y1

ze 2 Z \  - | -  2 ^ 5  2 z 3 2 z 2 ~f~ Z4

B (e 2iri/k)
x 3 -  x 5 ix2 ( 1  +  i)x  1

*(2/5 ~  2/a) V2 (1 -  i)y  1
(z5 -  Z!) + i(z5 -  z l)  ( 1  +  i)z3 2 4

B (e4ni/k)
x 3 -  2x 4 +  x5

2?/4  -  2/3 -  2/5 

0

- x 2 0

2/2 0

0 Z4 — 2 z2

and

B (e 67ri/k) =
x 3 — x 5 —ix  2 (1  — i)x 1

*(2/3- y s )  2/2 ( I + O 2/1

(2 5  -  zi) + i(z5 -  ^i) (1 - i ) z 3 Z4

Let

Xi

x 6

2/1

2/6

6̂

0, x2 := 0, := 1/3 +  x 5, x 4 := 0, x 5 := —1/12,

1 — 2 xx — x 2 — s 3 — 2 s 4 — S5 ,

0, 2/2 := 0, J/3 := 2/3 +  s/5, 2/4 :=  0, y5 := -1 /1 2 ,

1 -  22/1 -  2/2 -  2/3 ~  22/4 -  2/5 ,

— 1/12, ^ 2  =  0, 2 3 — 0, 2 4  =  0 , £ 5  := 1/3 +  2 4 ,

1 — 2 2 4  — 2 2 2 — 2 z3 — 2 4  — 2 2 5 ,

we have

( 4 . 9) Z

0
1

0 0 H
-1

I

1 0 0 1

3 1 0 1

CM
 

.......1 0 1 1

1/6  0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

O 0 0

1---------
r—

I

1 0 0 1

3 1 0 1

[
to 0 1 1

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 0 0 1/3 0 0

(4.10) B  (e27™/4) —2 i 1 0 = 0 0 0

1 - i  0 1 0 0 0

1 0 0 1/6 0 0 1 0 0
(4.11) B (eAm/A) - 3  1 0 = 0 0 0 - 3  1 0

0 0 1 0 0 0 0 0 1

and

1 0 0 1/3 0 0 1 0 0
(4.12) B (e67ri/A) 2 i 1 0 = 0 0 0 2 i 1 0

1 + i 0 1 0 0 0 1 + i 0 1

That is, Z , B (e 2m̂ 4) , B (e 4mtA) and I?(e67rj//4) have eigenvalues {1/6, 0, 0,1}, 

{1/3,0, 0},{l/6, 0, 0} and {1/3, 0,0}, respectively.

Similarly, the real subdivision matrix S with 3-ring invariant vertices has 

a 25 x 25 size and is given by

where S  is the above 13 x 13 matrix block given in (4.13); and block S' is a 

12x12 block, which has constant eigenvalues determined by regular subdivision 

stencils.

Using the technique as discussing before, we can numerically verify that 

the associated characteristic map indeed has nonzero Jacobian, and therefore 

the subdivision surface must be tangent plane continuous.
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Figure 4.11: Applying the special interpolatory ternary subdivision scheme 

on an example mesh with an unique extraordinary vertex (k = 4). From 

left to right are the initial, first level and second level subdivision surfaces, 

respectively.

4.3 Four-adic Subdivision Rule for k  —  3 case

The stencils for the case k — 3 are shown as Figure 4.11 and 4.12.

20

21 28 29 30 19

Figure 4.12: Numbering of the fc-gon for the order as subdivision matrix .

By the property of symmetry, the stencil for the new inserted “(1/4, 1/2)” 

is a flip of the stencil of “(1/2, 1/4)” vertex. Thus we need only two stencils 

for the new inserted interior vertices inside a face. Similarly, we can figure out 

some stencils for k =  4. The subdivision matrix with 2-ring invariant vertices
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Figure 4.13: The stencil for a new inserted “1/4 vertex” and “1/2 vertex” on 

an edge associated with a k =  4 extraordinary vertex.

Figure 4.14: The stencil for a new inserted “3/4 vertex” on an edge associated 

with a k  =  3 extraordinary vertex.

should be:

1 0 0 0 0 0 0 0 0 0

X2 Xq Xl Xl 0 0 X3 X4 0 x4

X2 X\ Xq Xl x 3 0 0 X4 X4 0

X2 Xl Xi Xq 0 x 3 0 0 x 4 x4

2/2 yi Vo 2/i 2/3 0 0 2/4 2/4 0

2/2 2/i 2/i 2/o 0 2/3 0 0 2/4 2/4

2/2 2/o 2/i 2/i 0 0 2/3 2/4 0 2/4

«2 U q u 0 U i U  4 0 « 4 u 5 «3 «3

U2 Ui U q u0 1i4 « 4 0 u 5 U3

u2 U q U i U q 0 «4 « 4 «3 «3 «5
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Figure 4.15: The stencil at left is for a new inserted interior “(1/4,1/4)” vertex, 

and at right is for a new inserted interior “(1/2, 1 /4 )” vertex inside a face which 

contains a k =  3 extraordinary vertex.

By a simple calculation, the DFT matrix of size 3 is as follows:

1/3 1/3 1/3

1/3 - l / 6  +  z\/3 /6  —1/6 — *V3/6 

1/3 —1/6 — za/3 /6  - 1 /6  +  zV 3 /6

Applying the permutation on subdivision matrix S, by (4.3) we have:

where

and

B ( lo) =

z

z 0 0
0 g2 7Ti/3) 0
0 0 B(t347ri/3^

1 0 0 0

x 2 Xo + 2x \ x 3 2 x 4

V2 yo + 2 r /i V3 2^4

Z2 Ul +  2u0 2ui « 5  + 2

td(u> — 1)

where oj =  e2™/3, e4™/3.

oj(io — 1 ) ( 1  —  3 a : i  —  x 2 — x3 —  2 x 4 )  ( w 3  +  w +  1 ) 2:3  ( w 3  +  oj2 4 - 1 ) 2:4

( u /3 + w2 + l ) ( 3 y i  +  y% +  y3 +  V\ -  1 )  w ( w  -  l ) y 3  - ( < v 3  +  u ;  +  l ) y 4

( w 3  +  W  +  l ) x ( u i  —  Z q )  ( w 3  +  w 2 +  1 ) « 4  w ( w  —  1 ) ( U 5  —  U 3 )
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Let

x 0 :

Xi :

Vo :

V i  :

:

z i  '■

u0 : 

ui :

50 : =  I  -  Si

51 : =  1/4, s;

then we have

1 —  2 x i  —  X 2  —  X 3  —  2 x 4 ,

—9/128, x 2 := 3/4 — 3xi, x 3 := 0, x 4 := 0, x 5 0, x 6 := 0, 

l - 2y1 - y 2 - y 3 -  2y4,

-1 /8 , y2 := 6/8, 2/3 := 0, yA := 0, y5 := 0, y6 := 0,

1 -  2 z 4 -  z 2 -  23 -  22:4,

-1 /1 6 , z2 := 0, z3 := 0, 2 4  :=  0, z5 := 0, z6 0, 

( I - U 1 - U 2 -  2u 3 -  2n4 -  m5)/2 ,

—1/6, « 2  =  3/4, « 3 := 0, u4 := 0, ^ 5  := 0,

(4.14)

(4.15)

Z

S2 -  s 3 -- s4 - S5 - ■Se -  S7 --  s8,
* r r r - 1/ 6 , s 3 =  3 / 8 , s 4 •=  0 , s 5 :=  0, s6 := 0 , S7 :=  0 ,

1 0 0 0 1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0 1 0 0 1

1 1 0 32/5 0 0 0 0 1 1 0 32/5

1 0 1 32/5 0 0 0 5/128 1 0 1 32/5

( l + i > /3 ) / 3 0 0 1/4 0 0 (l +  i\/3 )/3  0 0
5 ( e 2n/3) (5 -  i V 3)/6 0 1 = 0 0 0

0|C
O

)

-1LL 1 5

1 1 0 0 0 0 1 1 0

and

(4.16)
1 0 0 ' 1 / 4 0 0 1 0 0

B ( e 47ri/Z) ( - 1 +  z\/3)5/4 1 0 = 0 0 0 ( -1  +  *V3)5/4 1 0

(1 +  iV 3)3/4 0 1 0 0 0 (1 +  i>/3)3/4 0 1

That is, Z, and B (e4™/3) have eigenvalues {1, 0, 0, 5/128}, {1/4, 0, 0}

and {1/4, 0,0}, respectively.
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Theoretically, the size of subdivision matrix is bigger than the one we used 

in our previous analysis. By S we denote the real subdivision matrix with 3- 

ring invariant vertices (see Figure 4.11), which is (10k +  1) x (10k +  1) and 

given by

where S’ is a (3k +  1) x (3k +  1) matrix block given in (4.13) and really useful 

in eigen-analysis; The block S ' is a 3k x 3k block, and the eigenvalues of S ' are 

all constants and determined by the regular subdivision stencils. Figure 4.11 

shows all the vertices contained in our subdivision matrix (31 x 31).

By the same technique as we discussed before, we can numerically ver

ify that the associated characteristic map indeed has nonzero Jacobian, and 

therefore the subdivision surface must be tangent plane continuous.

r

Figure 4.16: Applying the special interpolatory 4-adic subdivision scheme on 

an example mesh with an unique extraordinary vertex (k = 3). From left to 

right are the initial, first level and second level subdivision surfaces, respec

tively.
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