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Abstract

Motion analysis is an important concept and it has extensive applications

from surveillance, education, smart rooms, entertainment and so on. Different

type of sensors can be used to capture the required motion information from

different body parts. One can use eye-gaze system to capture and analyse eye

motion or using Kinect or Leap Motion to capture 3d trajectories of important

body keypoints. Even one can use a conventional digital camera for motion

detection and action recognition purposes. Generally speaking motion data is

dynamic data where the spatial features of the data change over time. These

features can be the coordinates of significant points, such as fixation points

of eyes, skeletal joints and so on, or the location of user defined features such

as Histogram of Oriented Gradient (HOG), centre of Hough circles, centre of

mass and so on. One can also analyse motion data in 1D, 2D or 3D space,

depending on acquisition devices. In this thesis we studied three different

applications of motion data and key-point trajectory analysis based on the

different factors mentioned above.

The first application is analysing eye motion to better understand team

cognition between members, specifically surgeons who formed a laparoscopic

surgery team. Although team cognition is believed to be the foundation for

team performance, there is no direct and objective way to measure it, es-

pecially in healthcare settings. In fact, the deficiency in tools for objective

team assessment has been a major barrier in promoting surgical team train-

ing. Previous studies have shown that spatial features such as overlap analysis
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of eye-gaze data can be a measure of team cognition. However, due to the

dynamic nature of eye-gaze signals, gaze overlap calculated from spatial fea-

tures is not sufficient; as team members might look at the same surgical spot

at different times. Therefore, temporal feature analysis is essential . Here we

studied eye-gaze signals of two surgeons throughout a simulated laparoscopic

surgery task and distinguished expert teams from novice teams by the level

of gaze overlap, the lag and the Recurrence Rate (RR) between two surgeons

based on dual eye-tracking evidences. The results obtained in this study sup-

port the hypothesis that the top performing teams are better synchronized,

show higher eye-gaze overlap and RR, and therefore demonstrate better team

cognition.

The second application of motion data analysis is human fall detection us-

ing a 2D video sequence. Automatic, real time fall detection techniques can

improve the life quality for seniors and people with special needs, as falling

down can be life threatening for these groups. Computer vision based fall

detection systems require less infrastructure and is cheaper and more comfort-

able for users compared to smart floors or systems based on wearable devices.

However, vision based systems can be less accurate and not fast enough if the

set of features and detection algorithms are not selected properly or the size

and generality of the training dataset does not cover different specifications.

Acquiring a general training dataset that covers all the possible conditions is

very challenging, especially for unknown surveillance regions, such as in smart

houses. We proposed a robust and real time, vision based fall detection tech-

nique using only a single RGB camera. The proposed method can be applied

at frame level and only uses two significant points, head and center of person.

Experiment were performed on le2i fall detection dataset which is publicly

available. The proposed technique can distinguish falling from everyday ac-

tions, such as sitting down and sleeping. The proposed method can also work
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in different indoor environments with different lighting conditions.

The last application is extracting the animation skeleton directly from hu-

man model regardless of its initial position and orientation. This can be used

to automatically animate any arbitrary 3D character, which has many applica-

tions in simulation and entertainment. Defining trajectory key-points for 3D

characters without manual intervention remains a challenging problem that

makes complete automation difficult. To animate an articulated 3D character,

a rigging process is needed, during which an animation skeleton needs to be ex-

tracted from or be embedded into a 3D model. This tedious process is mainly

done manually by expert animators. Most of the automatic rigging techniques

proposed in the literature are not fully automatic nor pose invariant, i.e., a

front facing model in neutral T-pose is required at the start in order to an-

imate successfully. We propose incorporating robust skeleton based feature

detection, combined with identification of various anatomical characteristics,

to extract the desired key-points along with constraint parameters needed for

automatic rigging.
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Preface

The majority of this thesis has been published or are under review in peer

reviewed journals and conferences. Chapter 2 presents the first work in spatio-

temporal eye-gaze analysis to understand team cognition during a laparoscopic

surgery. The work has been published in IEEE Engineering in Medicine and

Biology Conference, International Conference on Smart Multimedia and ACM

Symposium on Eye Tracking Research & Applications. Chapter 3 discusses

the details of robust and real time vision based fall detection system. It shows

good improvement based on time performance, accuracy, precision and recall

and is under review in IEEE Transactions on Pattern Analysis and Machine

Intelligence. Chapter 4 provides details and results of our anatomically based

mesh segmentation method. The results have been published in IEEE Sys-

tems Man and Cybernetics Conference. Finally, Chapter 5 is the first effort

in literature to automatically extract animation skeleton from a 3D model re-

gardless of its position and orientation. The work has been published in IEEE

International Symposium on Multimedia and European Association for Com-

puter Graphics (Eurographics). I choose to use first-person plural throughout

this thesis to honour the contributions of my advisers and collaborators on my

various works.
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Chapter 1

Introduction

Motion is defined as the action or process of moving or being moved. In

physics any changes in the position of a human, animal or object over time

is motion. Usually motion is described in terms of displacement, distance,

velocity, acceleration, time, and speed.

There are different technologies to detect a moving object or human in

the scene. This is a vital part of any security, surveillance or smart room

applications. Passive infrared (PIR) sensors works based on human body heat

and in the presence of a living being in the covered area they activated. The

Microwave sensors emit microwave pulses frequently and measure the reflection

of a moving object. The use of low cost digital 2D or 3D camera is also very

common for these applications. Although, one should use customized software

to detect motion from the recorded video or recognize different gestures. Some

technologies combine different sensors to eliminate error and noise in the scene

due to lighting, coverage area or other external factor. An example of such

technology is Microsoft Kinect where an infrared sensor and a digital camera

is combined to detect and recognize motion.

In computer science, motion analysis can refer to studying a few consecutive

2D images, from a captured video, to detect moving objects or recognize the

actions in the video. In a 3D context it can also refer to capturing and studying
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the displacement of 3D humans, animals or object key-points. This process is

called Motion Capture or MoCap. However, one can also use non-visual sensors

to capture motion of different body parts, such as eyes, or other features related

to motion, such as acceleration.

Analyzing and studying the trajectory or other motion related features

of different key-points can reveal important information for different appli-

cations. For example, surveillance applications heavily depend on 2D video

motion analysis and action recognition. Entertainment, games and healthcare

applications can benefit from 3D gait and MoCap analysis. Even for psycho-

logical applications, such as studying individual cognition and team cognition,

one can use eye motion data. It is even possible to combine all of these small

applications together to create a smart simulation room, which can be used

for education and training purposes. An example can be an smart simula-

tion room in healthcare settings where different sensors such as eye-tracker,

Kinect, leap motion sensors and regular or depth RGB cameras is used to cap-

ture key point trajectories of expert professionals. It is then possible to use

this data to compare the deviation of trajectories between experts and novices

and therefore correct their actions accordingly.

1.1 Thesis Scope

This thesis focused on three different motion analysis applications. The first

application is analysing 1D eye motion to better understand team cognition

between two surgeons. Section 1.1.1 talks about the motivation behind this

study. The second application is fall detection in 2D videos. Section 1.1.2

explains the importance of fall detection. The last application is automatically

detecting the 3D trajectory key-points of an arbitrary 3D model. Section 1.1.3

discusses more details for this application.
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Figure 1.1: Dual overlay of eye-gaze data on a laparascopic surgery site.

1.1.1 1D Application: Eye Motion Analysis

The first application is 1D eye-gaze analysis of two team members during a

laparoscopic surgery to understand team cognition.

The extensive benefits of minimally invasive surgery, such as shorter hos-

pital stay and faster recovery time has led to an increasing demand in la-

paroscopic surgery for many abdominal procedures [10], [70], [102], [104]. For

instance from 2013 to 2014, 28595 patients got their gall bladder removed,

according to the data from the Canadian Institute of Health Information

(CIHI) [91], and laparoscopic cholecystectomy has been rapidly becoming the

routine choice for this procedure.

Laparoscopic surgeries are mostly performed by teams of two or more sur-

geons [19]. Salas and other authors defined a team as “a distinguishable set

of two or more people who interact dynamically, interdependently, and adap-

tively toward a common and valued goal/object/mission, who have each been

assigned specific roles or functions to perform, and who have a limited life span

of membership” (p. 4) [82]. In a laparoscopic surgery team, for example, an as-

sistant usually controls the primary surgeon’s vision by manipulating a laparo-

scope through the surgery site. As several studies suggest, having a relatively

untrained assistant in the team may affect the primary surgeon’s course of ac-

tion and decision making due to non-optimal display of the surgical site [34],
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[39], [125]. These factors, further imposed upon the surgeon, who is already

carrying considerable ergonomic difficulties related to laparoscopy, may even-

tually lead to overt surgical errors that compromise patient safety [16], [34].

Therefore, teamwork in laparoscopic surgery is crucial and needs to be ex-

plored. It has been shown that a trained laparoscopic team can achieve better

results in terms of operation time, patient care and overall cost [56]. However,

the available training programs mainly focus on individuals and surgeons are

evaluated on an individual basis [30], [31], [80], [124]. Although team cogni-

tion is believed to be the foundation for team performance, there is no direct

and objective way to measure it, especially in the healthcare setting. In fact,

the lack of objective assessment tools has been a major barrier in promoting

surgical team training [41], [94], [111].

In this thesis, we study the spatial feature of surgeons’ gaze from elite

and poor performance teams through overlap analysis. We also analyse the

temporal features of dual eye tracking signals recorded simultaneously from

two human operators using cross correlation and CRA algorithms. Considering

both features enables us to reveal more reliable evidence for shared cognition

of surgeons in laparoscopic surgery.

1.1.2 2D Application: Video Motion Analysis to Detect
Fall

The second application is human fall detection by analyzing person movements

based on two significant points, head and center of person, using a 2D video

sequence.

The life expectancy of seniors has been increased due to advancements in

health care services. As World Health Organization (WHO) [119] and Carone

and Costello [18] suggest, the world population over 60 years old will double by

2050, which will be a total number of 2 billions. It is obvious that all countries
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will face the impacts of this huge growth and should change their health and

social systems accordingly. The main need for senior population is living safely

and independently either in their homes or in assisted care facilities. The major

incident with severe physical and emotional impact on an elderly is accidental

fall [45]. It can even be life threatening if the person cannot seek help on time.

Therefore designing and implementing fast and reliable fall detection methods

are getting more attention during the past decade.

Computer vision based fall detection systems require less infrastructure and

is cheaper and more comfortable for the users compared to the systems using

smart floors or wearable devices. Usually a set of features are extracted and

processed for each video sequence to detect fall. However, the vision based

systems can be less accurate and not as fast as wearable devices if the set

of features and detection algorithms are not selected properly. Also, for any

learning based applications the size and generality of the training data plays

an important role. If the training dataset is not comprehensive enough, and

does not cover different viewing direction or illumination condition, the fall

detection model will not work for real scenarios.

Acquiring a general training dataset that covers all the different conditions

is very challenging, especially if the surveillance area is not known beforehand.

In this thesis we propose a robust and real-time, vision based fall detection

technique using a single RGB camera only.

1.1.3 3D Application: Automatic Detection of 3D Tra-
jectory Key-points

With the advances in animation technology and demands of graphics appli-

cations, 3D models as well as MoCap data are being created at a rapid rate

both in number and variety. By associating a 3D model with different MoCap

data, a variety of appealing animations can be generated. Most applications
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Figure 1.2: (a) Manual rigging with the help of commercial software is tedious,
and it is not easy to link the skeleton with the desired MoCap data and deliver
good animation. (b) Restricting the rigging on a T- or A-pose model is not
practical because majority of the animations start from other poses.

in entertainment, training and simulation require 3D human (biped) models in

the form of a 3D mesh. The main challenge for application developers is to effi-

ciently and accurately link the desired MoCap data to a 3D skeleton, generated

from the mesh, in order to produce a realistic animation. To satisfy consumer

demand, built-in tools are available in commercial software, e.g., AutoDesk

3DsMax and Maya, to support such a process (Fig. 1.2(a)) so that novices

without graphics programming skills can participate in animation production.

Despite the support of these expensive commercial softwares, using these tools

still involves tedious manual effort (i.e., setting constraints, kinematics, bone

hierarchy and so on) with no guarantee of delivering satisfactory animation

result. To address this issue, many state-of-the-art rigging techniques have

been introduced in recent years.

Before linking the MoCap data to a 3D skeleton, the skeleton itself has

to be created [13]. Two approaches are commonly used for skeleton creation:

(1) extracting a unique skeleton for each 3D model, or (2) starting from a

generic skeleton, adjusting and rigging it to fit into individual 3D models. The

advantage of the latter approach is that a single template skeleton is sufficient

for multiple models. However, the limitation is that for arbitrary models that

are not upright, front facing and in a neutral position, the animation can be

funny and unrealistic as shown later in this paper. While the former approach
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requires a skeleton generation step, it deals with a model specific skeleton

and thus has the advantage of choosing more appropriate key-points to match

different MoCap data. Also, the generated skeleton provides information on

model orientation.

An important step for skeleton-based animation is rigging, which means

embedding a skeleton inside the 3D character and associating the mesh ver-

tices to the skeleton bones. Motion retargeting is the next step, which means

adapting the animated motion from one articulated character to another. The

final step is skinning, where the mesh vertices are attached to the skeleton

bones controlled by the assigned weights.

Despite recent advances in rigging algorithms, they are mostly not fully

automatic and have limitations, e.g., a technique may require a front-facing, A-

or T-pose 3D humanoid model as the starting position. Adjusting individual

characters is labour intensive and is not feasible for real-time applications.

To address these limitations, we present two new techniques to automat-

ically extract an animation skeleton for an arbitrary 3D model, regardless of

its position and orientation.
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Chapter 2

1D Eye Movement Analysis to
Understand Team Cognition

Motion analysis, as mentioned before, has a broad range of applications. There

are different technologies to capture the motion of different body parts such

as eyes. Eye-gaze devices are used for such purposes. Eye motion is an strong

indication of cognitive function as described by [40].

Studying and understanding team performance is very important for sports,

games, health and applications that involve a team of users. Team performance

is affected by team behaviour or cognition. Usually a team with a good shared

cognition can perform better and achieve the set goal faster.

Having a good team with a good shared behaviour is even more crucial in

health care environments, especially in surgery. Surgery is a team effort and

shared cognition between surgeons in a team is pertinent for operation qual-

ity and patient safety. Analyzing team cognition during minimally-invasive

surgery is a new area of research.

In this chapter, we analyze the 1D eye motion data to understand the

team cognition between two surgeons, who perform a simulated laparoscopic

task. The eye motions of two surgeons were recorded during a simulated

surgical operation. We then performed spatio-tempral analysis such as Cross

Recurrence Plot (CRP), Cross Recurrence Analysis (CRA), lag analysis and
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overlap analysis to find spatio-temporal features that can be used to distinguish

between a good and a bad performing team.

Dual eye tracking data for twenty two dyad teams were recorded during

the simulation and then the teams were divided into good performer and poor

performer teams based on the time to finish the task. We then analyse the

signals to find common features for good performer teams. The results of this

research indicates that the good performer teams show a smaller delay as well

as have a higher overlap in the eye-gaze signals compared to poor performer

teams.

2.1 Background and Related Work

Teamwork is critical in many work environments such as sports and health-

care. However, current assessment tools for teamwork are based on subjective

assessments. Minimally invasive surgery is one application of teamwork, which

is getting more popular. It has extensive benefits over conventional surgery

such as shorter hospital stay and faster recovery time. Laparoscopic surgeries

are mostly performed by teams of two or more surgeons [19]. In a laparo-

scopic surgery team, an assistant usually controls the primary surgeon’s vision

by manipulating a laparoscope through the surgery site. As several studies

suggest, having a relatively untrained assistant in the team may affect the

primary surgeon’s course of action and decision making due to non-optimal

display of the surgical site [34], [39], [125]. These factors, further imposed

upon the surgeon, who is already carrying considerable ergonomic difficulties

related to laparoscopy, may eventually lead to overt surgical errors that com-

promise patient safety [16], [34]. Therefore, teamwork in laparoscopic surgery

is crucial and needs to be explored. It has been shown that a trained laparo-

scopic team can achieve better results in terms of operation time, patient care

and overall cost [56]. However, the available training programs are mainly
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focused on individuals, and surgeons are evaluated on an individual basis [30],

[31], [124]. Although team cognition is believed to be the foundation for team

performance, there is no direct and objective way to measure it, especially in

the healthcare setting. In fact, the lack of objective assessment tools has been

a major barrier in promoting surgical team training [41], [94], [111].

One method to assess team collaboration is video analysis. [127] analysed

a simulation of an endoscopic cutting task performed by two operators. This

study showed that team performance is highly correlated with team collab-

oration. In recent years people used eye tracking systems to study different

features of health care providers. A procedural and objective method to assess

a surgeon’s skill is through eye gaze analysis and reporting the level of gaze

overlap. However, team members may look at the same location at different

time points. To understand team cognition better, one needs to consider both

spatial and temporal features of eye gaze data. Therefore, in this chapter,

we study the spatial features of surgeons’ gaze from elite and poor performer

teams through overlap analysis. We also adopt CRP algorithms and lag anal-

ysis to analyse the temporal features of dual eye tracking signals recorded

simultaneously for two human operators. Using both features, one can re-

veal more reliable evidence for shared cognition of surgeons in laparoscopic

surgery. We hypothesize that there is a relationship between task comple-

tion time, recurrence rate, time delay and overlap between eye gaze signals

for good performance team and bad performance team during the simulated

surgery task. This is helpful in developing a novel method for assessment of

the level of team cognition.

In this section we discuss the related work in the area of eye tracking and

team cognition as well as CRP and team cognition.
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2.1.1 Eye Tracking and Team Cognition

Eye tracking technique, as an objective assessment of surgical skills has been

well documented in the literature [6]. Gaze patterns have been shown to

differentiate poor and elite surgeons in several studies [33], [57], [108]. Also, eye

tracking can be used to examine the workload and vigilance of surgeons [109],

[128]. Video analysis of an endoscopic cutting task performed by one vs.

two operators indicates that good team collaboration results in superior team

performance [127], and higher frequency of anticipatory movement was noticed

in dyad teams [126]. Later on, Khan and Zheng [57] used dual eye-tracking to

examine the spatial similarity in eye-tracking between two surgeons. Reporting

level of gaze overlap is an innovative step in the study of shared cognition

between two surgeons in a laparoscopic team. One problem is phase difference

and delay between team members, which can be solved by lag analysis or CRP

and CRA analysis.

2.1.2 CRP and Team Cognition

Cross Recurrence Quantification (CRQ) is a useful statistical tool for dynamic

systems and useful to find relation or interrelation between two time series. It

can quantify the similarity between two time series unfolded over time. One

value of such quantification is recurrence percentage, which describes how

often two series go through similar system states. CRQ is a reliable tool for

dynamic, short and complex data series. It is a very useful tool to study human

interaction over time. Linear data analysis is not suitable to analyse the short,

non-stationary and complex data series. An appropriate method to analyse

this type of data is Recurrence Plots (RP). It has been proven that recurrence

is a fundamental property of dynamic systems, which means that after some

time the system will reach the state that is arbitrarily close to the former

states and pass through a similar evolution. RP can visualize the recurrence

11



behaviour of dynamic systems. Also, one can perform the Recurrence Analysis

(RA) based on the RP and calculate the Recurrence Rate (RR). Eq. 2.1 shows

RR as it is explained in [73].

RR =
1

N2

N∑
i,j=1

Ri,j (2.1)

where N is the number of points on the phase space trajectory, i and j belong

to the two different data series that we are studying and eventually Ri,j is the

RP as defined by Eq. 2.2.

Ri,j = Θ(εi − ‖−→xi −−→xj‖) (2.2)

where −→xi and −→xj are the phase space trajectories of time series i and

time series j respectively. Θ is the Heaviside function and ε is the thresh-

old. The states of a natural or engineering dynamic system usually change

over time. The state of a system x can be described by its d state variables,

x1(t), x2(t), ..., xd(t). The vector~(x(t)) in a d-dimensional space is called phase

space. The system’s evolving state over time traces a path, which is called the

phase space trajectory of the system.

In 2005, Richardson and Dale first used CRP to analyze gaze similarity

recorded from two different persons [90]. They studied the relationship be-

tween a speaker and a listener based on their eye movements, and found that

the coupling between a speaker’s and a listener’s eye movements indicate if

the listener is engaged to the speaker or not. While the gaze movement of

the speaker was recorded, he watched a television show and at the same time

talked about it. Later, the listener watched the same show as he was listening

to the previously recorded monologues and his gaze movements was recorded

too. Finally, CRA was used to detect the matching behavior between speaker

and listener‘s gaze movements. Marwan et al. presented a comprehensive re-
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(a) (b)

Figure 2.1: (a) The zoom in of the box setup(b) The experimental setup.

view on different CRP and CRA approaches [73]. One can find an excellent

MATLAB toolbox or an R package [25] to perform CRP analysis.

In this application we used both RR and cross correlation to study the

delay between two eye-gaze signals.

2.2 Experimental Setup

This section explains the experimental setup and data collection procedure.

The study was performed in the Surgical Simulation Research Lab at the

University of Alberta. Methods used in this experiment were reviewed and

approved by the Health Research Ethics Board of the University of Alberta.

Consent was obtained from each participant before entering the study.

2.2.1 Participants

Participants included 17 university students, office staff, and visiting scholars,

of which none have received special training on laparoscopic surgery. They

were asked to form 22 paired teams to perform a simple object transportation

task under the simulated surgical environment using the laparoscopic tech-

nique.

13



2.2.2 Apparatus

The experimental set up includes four main components. The first one is a

laparoscopic training box measuring 30 x 30 x 20cm (Fig. 2.1(a)). Inside the

box, the distance of home plate to different pins is labeled (Fig. 2.1a), the

setup of the simulation model is based on the Legacy Inanimate System for

Endoscopic Team Training (LISETT) [80]. The training box has ports of entry

for a 0-degree laparoscope and two laparoscopic grasper. The second compo-

nent is two 17” video monitors (Tobii 1750 LCD Monitor, Tobii Technology,

Stockholm, Sweden), which displays the image captured by a laparoscope and

a webcam. We also used a standard laparoscopic imaging system, includ-

ing laparoscope, camera, light source and video monitor (Stryker Endoscopy,

San Jose, California, USA). Finally, two high-resolution remote eye-trackers

(Tobii 1750 and X50, Tobii Technology, Stockholm, Sweden) were set in an or-

thogonal arrangement (Fig. 2.1(b)). Each eye-tracker can remotely track one

operators’ eye motions unobtrusively within a comfortable viewing distance.

Gazes of two operators in a dyad team were recorded separately by the two

eye-trackers and the data fed into the Labview software to synchronize the

gazes in time on top of the surgical video streams.

2.2.3 1D Signal formation

Before further processing of the captured data, we should clean the data and

make it usable. This preprocessing step involves filtering the data to remove

the noise and interpolate to fill out any discontinuity. It is obvious that the

data we gathered from eye trackers is 2D, which are the x and y coordinates of

the eyes fixation point. However, for the sake of simplicity and better under-

standing of the problem, and in order to use the CRP package we projected

the 2D data into a 1D space. Here we tried two different distance metrics,

Euclidean and Manhattan distance to perform the projection. Note that the
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(a) (b)

Figure 2.2: (a) Distribution of Euclidean distance on a circle(d) Distribution
of Manhattan distance on a diamond.

x and y coordinates of the eye’s fixation point are not necessarily correlated

and therefore applying Principal Component Analysis (PCA) to reduce di-

mensionality is not a very good idea. Also, any sort of projection to reduce

dimensionality will introduce some error into the system.

The distance metrics calculate the distance between eye’s fixation point

and the origin and is represented by d. For the Euclidean metric d equals√
x2 + y2, while for the Manhattan metric or L-1 norm d equals |x| + |y|.

This implies that for Euclidean distance all the points that lie on a circle will

have the same distance (the radius of the circle) from the origin; while for

Manhattan distance all the points that lie on a diamond with four equal sides

have the same distance from the origin. Fig. 2.2 shows these conditions for

both metrics.

2.2.4 Procedure and Tasks

Each dyad team was asked to perform a laparoscopic procedure, which con-

sisted of a set of tasks. The camera holder was required to navigate a 0-degree

laparoscope to locate different coloured pins for the primary performer. The
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(a) (b)

Figure 2.3: (a)Procedure and task description; (d) Completion time for the
whole task of the orange pin for 22 teams.

performer then executed the task of grasping and transporting a plastic cylin-

der (2 cm long, 1.5 cm wide) among the pins. Fig. 2.3(a) explains the steps

required during each task. The pins, which were 2 cm in length and protrud-

ing out of the center, were mounted on two interior side-walls of the wooden

box (Fig. 2.1(a)). In total, there were five different coloured pins (blue, red,

orange, pink, and yellow). The experimenter randomly assigned the sequence

of selecting the coloured pins. The camera holder needed to manipulate the

laparoscope forward and backward to locate pins, the object and the home po-

sition. (S)he was also required to rotate the light cord clockwise and counter-

clockwise to keep the object and the instrument at the center of the view, and

adjust the focus of the camera to provide a clearer image.

2.3 Measurement and Data Analysis

We analyzed the elite and poor teams based on the spatial feature, which is

gaze overlap percentage, as well as the delay between two team members using

cross-correlation and CRP analysis. We also reported the recurrence rate and

cross-correlation between two team members gaze signals.

To get a distinctive category of elite and poor performer teams, we chose the

16



(a) (b)

Figure 2.4: (a) The overlay on dual eye tracking data on one frame of the
video; (b) The eye-gaze overlap analysis.

top and bottom 25% of the teams based on the completion time of the orange

pin’s task, which is shown as two selected regions in Fig. 2.3(b). For overlap

and delay analysis, we mainly focused on the tool transportation period. We

specifically considered the period in which the tool transports from the orange

pin to home and from home to the orange pin. The orange pin is chosen

because of its greater distance to home plate; therefore, providing sufficient

space to observe collaborative behaviours. Note that both the orange and pink

pins have the greatest distance from the home plate. However, we chose the

orange pin because the separation between good performer and poor performer

teams is more visible for this pin. The following subsections describe the

spatial, temporal and delay analysis in more detail.

2.3.1 Spatial Data Analysis (Gaze Overlap)

We calculated the pixel overlap of the camera driver and the performer to

study the spatial features. [57] have shown the level of gaze overlap is highly

correlated with the level of expertise. Previous studies [57], [108] suggested

that a visual angle of at least 3◦ is required to mark eye gaze data as mismatch.

Therefore, we set the threshold to 50 pixels, which indicates a gaze separation

of almost 5◦ visual angle for our setup and resolution. In other words if
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(a) (b)

Figure 2.5: (a) Distribution of phase delay between good performers and poor
performers; (b) The delay distribution for good performers and poor perform-
ers.

the Euclidean distance between the location of two gaze signals is smaller

than 50 pixels then both members are almost looking at the same location.

The white circle in Fig. 2.4(a) demonstrates that the overlapping area in the

simulation environment and the red horizontal line in Fig. 2.4(b) shows a 50

pixel separation threshold on the difference between two gaze signals (blue

curve).

2.3.2 Cross-correlation and Delay Analysis

We used cross correlation to calculate the delay between team members. Cross-

correlation of two signals X = (Xt) and Y = (Yt) is the function that gives the

correlation of the two signals at different time points. It shifts one signal and

keep the other signal fixed. Note that cross-correlation of two signals is similar

to convolution of two functions. It is used as a measure of similarity between

two signals. Also, it can detect if two signals have a lag relative to each other

for the time delay analysis. Eq. 2.3 shows how to calculate cross-correlation.

(X ? Y )(τ) =

∫ ∞
−∞

X∗(t) Y (t+ τ) dt, (2.3)

Where X∗ is the conjugate of signal X. The maximum cross-correlation

between the two signals is the point in time where two signals are best aligned.

This represents the delay between the two signals. Fig. 2.5(a) shows the dis-
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tribution of the phase delay for good performer and poor performer teams as

well as the energy level. As the dotted lines show the average delay for good

performer teams are much lower compared to the poor performer teams.

Another factor we can compare between two groups is the maximum energy

for cross-correlation plots. On the average, the energy of good performer teams

is higher compared to the poor performer teams. The energy is the magnitude

of the peak of the cross-correlation curve. Note that it is a normalised cross-

correlation with values between [−1, 1]. The vertical axis of Fig. 2.5(a) shows

the percentage of this energy value. The average energy for good performer

teams is 74% while the average energy for poor performer teams is 65%.

Fig. 2.5(b) shows the delay distribution. Note that a negative delay means

that the camera holder is ahead of time, which is a characteristic of a good

performer team and is an indication that they are expert surgeons. However,

in the poor performer teams the positive average delay means the performer

gaze signal is ahead of time. In other words, the camera holder is a novice.

2.3.3 Recurrence Rate and Delay Analysis

Another way to calculate the lag between two team members is through RR

as explained in Eq.2.1 and used by [90]. We calculated RR for different time

delays between the two signals and the gap that generated the highest RR

is selected as the delay between the two team members. The orange dots

in Fig. 2.6(a) shows the corresponding delay for good performer and poor

performer teams based on RR. As it is expected, good performing teams show

smaller delay compared to poor performing teams. Note that here the total

completion time for all the pins is presented. Also, the selection of good

and poor performing teams based on the orange pin completion and total

completion times are closely related.

Fig. 2.6(b) shows the main diagonal line for the recurrence patches in CRP
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(a) (b)

Figure 2.6: (a) The overall task completion time in blue and delay distribution
in orange for top 25% and low 25% teams (based on the completion time of
the orange pin); (b) An example of RR in CRP shown in black.

plots, which represents the recurrence rate.

2.3.4 CRP, CRA and Team Cognition

The first column of Fig. 2.7 and Fig 2.8 shows CRP for elite teams and the

second column belongs to poor performer teams for the overall procedure and

tool transportation period for the orange pin, respectively. The diagonal area

corresponds to the recurrence rate. As these figures demonstrate, the plots

for elite teams reveal more recurrence area and also appear to be denser and

more clustered, while the plots for the poor performer teams are more random

and do not show the overlap patches very well. We also used CRA to get the

numerical value for recurrence rate for both elite and poor performer teams.

The results are presented in Fig. 2.9(a). The overall recurrence rate for elite

teams is higher compared to the poor performer teams.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.7: The cross recurrence plots for elite (first column) and poor per-
former (second column) teams during tool transportation period for the orange
pin.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2.8: (a,c,e,g,i) Overall Cross Recurrence Plot for good performer teams;
(b,d,f,h,j) Overall Cross Recurrence Plot for poor performer teams.

22



(a)

(b)

(c)

Figure2.9:(a)Therecurrencerateanddelaydistributionforpoorperformer
andeliteteams.(b)Thegazeoverlap(orangecross)anddelaydistribution
(bluestar)forgoodperformerandpoorperformerteams.(c)Thedelayversus
overlapanditstrendline.

23



2.4 Results

In this subsection we present the results of both spatial and temporal data

analysis.

2.4.1 Spatial Analysis

Table 2.1 shows the gaze overlap percentage for elite and poor performer teams

during the whole procedure and orange-pin tool transportation periods. The

average total gaze overlap between two team members in the elite team is

higher than the poor performer team (Elite: 35.87 ± 4.84%; Poor: 28.74 ±

6.34%; P = 0.018), while the average transportation overlap for elite teams

is 50.97± 9.22%, significantly higher than the poor performer teams (29.56±

18.15%;P = 0.023).

2.4.2 Temporal Analysis

The average delay for elite and poor performer teams is presented in Table 2.1.

CRA reveals a higher recurrence rate between two team members for elite

teams (78.06 ± 25.93%) than poor teams (34.41 ± 34.42%;P = 0.0412).

Further analysis show that two team members in poor teams displayed a 2.25±

2.54 sec gaze delay; whereas the delay dropped to 0.26 ± 0.11 sec for elite

teams; P = 0.032. Also the camera holder leads the performer in the elite

teams while in the poor performer teams the performer leads the camera holder

on average.

2.4.3 Conclusion and Future Work

Understanding team cognition in a healthcare environment by analyzing a

surgeon’s eye-gaze data is a new area of research. Although team cognition

is believed to be the foundation for team performance, there is no direct and

objective way to measure it, especially in the healthcare setting. In fact, the
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deficiency in tools for objective team assessment has been a major barrier in

promoting surgical team training.

Previous studies showed that spatial features of eye gaze signals, such as

overlap analysis, can be a measure of team cognition. However, due to the

dynamic nature of the eye-gaze signals, gaze overlap calculated from spatial

features is not sufficient, and temporal features of gaze signals should be an-

alyzed too. The intuition is that team members might scan over the same

surgical spot at different time steps. The CRP and CRA allows us to capture

this temporal feature. Therefore, we believe they provide a more powerful tool

for spatio-temporal analysis and refer better to shared cognition than the gaze

overlap. The results presented in this thesis support our hypothesis that the

top performance team, which is an indication of better team cognition, dis-

played higher recurrence rate (Fig. 2.7, Fig. 2.8, Fig. 2.9(a)). Specifically, two

members in good performer teams scanned over the same surgical spot almost

simultaneously, whereas members in the poor performance teams failed to scan

over the same surgical spot at the same time. One of them, often the cam-

era holder is behind the operator. Generally, the delay would be higher and

recurrence rate and overlap would be lower for teams with longer completion

time.

This study analysed the teams based on completion time. However, the

design of the study should include expert surgeons in the elite teams, and

compare their performance to teams comprised of novice surgeons. We plan

to perform a new study by including surgeons with different level of surgical

expertise. Based on the results of our study, dual eye-tracking and CRP/CRA

is demonstrated to be a powerful tool for revealing temporal dependencies

between team members which can be an indication of team cognition.

26



Chapter 3

2D Human Motion Analysis to
Detect Fall

Motion analysis is an important part of any surveillance or action recognition

application such as fall detection. Falling down is a dangerous and life threat-

ening for seniors or patients with severe medical conditions such as Parkinson,

especially if the person is alone and cannot seek immediate assistance. There-

fore, automatic, real time fall detection techniques can improve the life quality

for these groups and help them maintain their independence.

Computer vision based fall detection systems require less infrastructure

and is cheaper and more comfortable for users compared to systems using

smart floors or wearable devices. Usually a set of features are extracted and

processed for each video sequence to detect fall. However, the vision based

systems can be less accurate and not as fast as wearable devices if the set

of features and detection algorithms are not selected properly. Also, for any

learning based applications the size and generality of the training data plays

an important role. If the training dataset is not comprehensive enough, and

does not cover different viewing direction or illumination condition, the fall

detection model will not work for real scenarios.

Acquiring a general training dataset that covers all the different conditions

is very challenging, especially if the surveillance area is not known before hand.
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In this chapter we propose a robust and real time, vision based fall detection

technique using only one RGB camera. The proposed method works at the

frame level and only use two significant points for classification, which makes

it quite robust and real time. Experiments are performed on le2i fall detection

dataset which is publicly available. It shows that the proposed technique can

distinguish falling from everyday action such as sitting down and sleeping. The

proposed method can also work in different indoor environments with different

lighting conditions.

3.1 Background and Related Work

The life expectancy of seniors has been increased due to advancements in

health care services. As World Health Organization (WHO) [119] and Carone

and Costello [18] suggests, the world population over 60 years old will double

by 2050, which will be a total number of 2 billions. It is obvious that all

countries will face the impacts of this huge growth and need to change their

health and social systems accordingly. The main need for seniors is living

safely and independently either in their homes or in assisted care facilities.

The major incident with severe physical and emotional impact on an elderly

is accidental fall [45]. It can even be life threatening if the person cannot seek

help on time. Therefore, designing and implementing fast and reliable fall

detection methods are getting more attention during the past decade.

Fall detection approaches can be classified into three main groups, based on

the underlying infrastructure [81]. The first group of techniques use wearable

devices [21], [86]. Sensors such as accelerometers and gyroscopes are either

embedded in the clothes or some specific devices such as smart watches. As

the sensors are in close contact with the person they can produce very accurate

results. However, they can be ineffective if the user forgets to put them on or

if for some reason, such as a dead battery, the device stops working. Thus, it
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is not always a proper solution for elderly people.

The second group of fall detection techniques use ambient devices, such as

pressure sensors on the floor [58], [129]. It is quite costly to modify and add the

sensors to the surveilance area. Also, it can easilly generate false positives [81].

The last group of techniques use computer vision based approaches. These

techniques can use a single RGB camera, multiple cameras or depth cameras

such as Kinect and extract a set of different features to detect fall [81]. More

details on vision based techniques are presented in Section 3.2. The vision

based approaches have several advantages over the previous two technologies.

The hardware required is quite inexpensive and easy to set up. It is mainly

a camera or a set of cameras for the whole monitoring region. Also users do

not need to wear any extra clothes or devices. However, most people do not

like the idea of closed circuits camera and human surveillance in their living

environment because of privacy issues. A solution to this problem is automatic

online fall detection techniques, without visual identification e.g. via, image

or video, disclosed to unauthorized personnel. In such systems the alarm will

activate if fall is detected automatically and the person in danger can receive

the required help on time.

This chapter presents a vision-based fall detection technique using a single

RGB camera. The proposed method extract significant motion features for

each frame and classifies the frames into fall and no-fall action. The tech-

nique is suitable to monitor rooms in a senior residence. The outline of this

Chapter is as follow: Related work on vision-based fall detection techniques

are presented in Section 3.2. Details of the proposed method are explained in

Section 3.3. Section 3.5 discusses the experiment setup and shows results for

the proposed method. The last section concludes the chapter.
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3.2 Literature Review

Person detection and tracking, pose estimation and action recognition is an

established research area in the field of computer vision. Some of the famous

methods are person detection based on HOG features (Histogram of Orienta-

tion Gradient) [27] and Pictorial Structure [4]. Almost all of the previously

proposed person detection techniques detects people in an upright position.

This is why detecting fall is quite challenging using these approaches and peo-

ple proposed different techniques specifically for fall detection.

Vision-based fall detection techniques can be classified into two different

groups. Some techniques used a single RGB camera to capture the surveillance

area. While the second group of techniques used a depth camera or multiple

cameras to capture the surveillance area. Almost any vision based techniques

analyze the bounding box of the moving person, extract some features accord-

ingly and then classify the action based on the extracted features.

Rougier et. al. [93] analysed human shape deformation through a video

sequence by studying the person’s silhouette throughout the motion. They

used a shape matching approach to track the silhouette of the person. The idea

behind their approach is that during a fall the changes in human silhouette

will occur rapidly. However, those fast changes can happen for other fast

actions, such as exaggerated jumping. They later classified the action into

normal and abnormal activities using a Gaussian Mixture Model (GMM).

They mentioned in their paper that this approach could run at 5 frame/sec,

which is not adequate for a real time surveillance application.

The fall detection method proposed by [123] is also based on a single cam-

era. They analysed the silhouette of the person by subtracting the background

using a code book model. This implies the need of a sufficiently large dataset

for the training phase in order to detect foreground accurately. For surveil-
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lance applications, specially for smart home applications, this is not feasible

due to different combinations of different objects. They described the posture

of the person in a 2D environment using fitted ellipse and shape structure.

They used One Class SVM (OCSVM) to identify outliers, which is fall, from

normal actions. Based on their extracted features, it is very challenging to

distinguish falling down from sleeping. However, OCSVM is an unsupervised

technique and is a good choice for outlier detection.

Another single camera approach is proposed by [77]. They incorporated

the velocity feature as well as the posture features, so that the detection can

be more robust. They used shadow changes as a sign of velocity. However,

the extracted velocity can be very noisy. For instance if shadow of the person

is not visible due to the lighting setup, or if the small changes in environment

(such as illumination changes) is detected as shadows.

Method proposed by [97] needed a clear model with minimal occlusion

of the background to perform background subtraction. They used features

that describe the position and velocity. Head detection is an important part

of their feature selection. They estimated the head based on the position

and orientation of the moving bounding box. This can be very noisy if the

person is carrying an object, such as a chair, where the width and height of

the bounding box can change.

Unlike previous methods that directly studied the silhouette and bounding

box of the moving object, [24] identified three important points for each person

and then based on the position and orientation of the points, they detected

fall. However, to get these points they need to detect the foreground accurately

with no noise. The other problem with this approach is the lack of velocity.

People mainly used Kinect as a depth camera [3], [17], [35], [61], [76], [122]

to get the 3d position of human body parts or joints. Several challenges are

involved with Kinect cameras, such as extreme sensitivity to lighting condition,
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capture range and the noisy skeleton generated.

Bian et al. [17] used the joints detected from a Kinect camera to define

features and detect fall. They used SVM to classify the actions into fall and

non-fall.

Yao et al. [122] also used Kinect camera, but they focused on extracting

the torso vector. They detected fall based on torso angle. This approach still

suffers from not considering velocity of the action.

Merrouche et al. [76] suggested that tracking head only is adequate for

fall detection applications. Therefore, they detected head and ground and

calculated the distance between head and ground at each frame to detect fall.

However, if the ground is bumpy, such as stairs and obstacles, then detecting

the floor plane is not straight forward and can be challenging.

Some reserachers, such as [35], fuse different forms of data (such as video

and sound) together to get more accurate detection.

A new trend that is getting more attention in recent years is the use of

Convolutional Neural Network (CNN) and deep learning to detect fall. Some

researchers [32], [36], [64], [65] used different networks such as RNN, faster

R-CNN and so on to detect fall. However, the problem with all these ap-

proaches is the training dataset. If the training set is not representative or

not sufficiently large, then these techniques fail. An example is the illumina-

tion condition and viewing direction of the camera. If they are significantly

different between training and testing data, then theses techniques fail.

3.3 Proposed Method

Most of the vision based fall detection techniques that have been proposed

in the literature works on action level [32], [36], [64], [65], [76], [77]. Which

means breaking the captured video into smaller action and detecting fall in

short clips. There are few disadvantages with this approach. What is the
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Figure 3.1: General outline of the proposed fall detection system.

strategy to divide the clip into smaller actions? How should one deal with the

border in activities? What would happen if the video is broken in the middle

of the action? These ambiguity suggests that detecting fall in the frame level

can be more desirable. The fall detection system we propose in this Chapter

is real time and works at the frame level. It contains different stages as shown

in Fig. 3.1.

The first step is extracting a region of interest. Unlike other single cam-

era fall detection techniques [77], [93], [97], [123] and [35], where they used

background subtraction only, we introduce a robust background subtraction

technique so that the person can be detected and extracted more robustly and

accurately.

The second step is detecting two significant points which are needed later

to extract the set of features and detect fall accordingly. As [92] and [76]

suggested, and our experiments show, fall can be detected by having the head,

h, and center of person, c, positions. We chose these points as they are visible

and less occluded comparing to other points in legs or arms. The vector formed

by these points is called ch.

The third step is extracting features based on two detected points and

extracted ROI. We used four features in this chapter including:

• The size of ch, which will be shown by ||ch|| in this chapter.

• Angle of ch with respect to horizontal line, and is represented by ĉh.
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• Average angular velocity of ch, shown by vch.

• The ratio of bounding box, (r1, r2), around the region of interest.

Since we have a combination of different features that explains the posture

of the person and velocity of movement, our proposed approach is more robust

to false positive as demonstrated by our analytical results.

The last step is detecting fall. We used unsupervised classification based

on threshold to detect abnormal activities. The abnormal action is falling in

this Chapter.

3.3.1 ROI Detection and Extraction

Background Subtraction

Background subtraction or foreground segmentation is an important step for

different computer vision applications, such as surveillance. Different tech-

niques have been proposed in the literature. [51] compared some of these tech-

niques. Based on this paper and our experiments, we chose the Gaussian

Mixture Model (GMM) method proposed by [103]. This model is quite suit-

able for a dynamic background, since a mixture of K Gaussian distribution

is used to model the temporal histogram of each pixel throughout the video.

This technique requires a training phase in order to estimate the background.

Note that since it is a pixel based background detection, it is quite fast and

suitable for real time applications.

The differences in intensity value of each pixel location (i, j), in each frame

k can be due to a moving object or random changes or noise present in the

scene. For example, changes in illumination due to shadow or highlights or

small movements of random object in the scene due to external forces, like

wind, can change the intensity value of each pixel. A set of different Gaussian

functions are used to model the intensity value of each pixel. After the training
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(a) RGB space (b) Background subtraction

(c) Chrominance component (d) Background subtraction

Figure 3.2: Comparison between background subtraction on RGB space and
chrominance component of the same frame. The same GMM-based back-
ground subtraction is applied on both images.

phase, the intensity value of each pixel is compared with the Gaussian mixtures

and based on their probability the algorithm decides if that pixel belongs to a

moving object or not.

Removal of Illumination Changes

Although GMM-based background subtraction is suitable for dynamic scenes,

it fails if the unwanted changes in the scene are relatively large. For instance

the shadow of a moving person is still detected as a part of the foreground.

This can be problematic for fall detection applications, where we are only

interested in movement of the person.

To address this problem we seperated the color space into luminance and
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(a) Door movement (b) Foreground detection (c) Detected ROI

(d) Chair movement (e) Foreground detection (f) Detected ROI

Figure 3.3: (a,d) Original frame of two different actions involving movement
of person and other objects. (b,e) Detected moving objects using GMM fore-
ground detection only. Note that door and chair are also detected. (c,f)
Extraction of the person only as the ROI. Note the removal of door and chair
from the bounding boxes.

chrominance components as suggested in [48]. Some color space like HSV

or Y CbCr give a better estimate of chromaticity and luminance. Background

subtraction in chromaticity eliminates the detection of movements due to illu-

mination changes. Fig. 3.2(b) shows the result of applying GMM background

subtraction on the original RGB frame. The yellow region is the shadow of

the person on the wall and the green area is noise created by changes in illu-

mination conditions due to shadow. Fig. 3.2(d) shows that by applying GMM

background subtraction on chromaticity component only, we can eliminate

these unwanted regions and noise due to illumination changes.

Unwanted Objects Removal

Another problem is the movement of random objects, which can be smaller or

bigger than the person in the scene. Fig. 3.3(a) shows the movement of the
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person and the door in the room, and Fig. 3.3(d) shows the person carrying

a chair with himself. We would like to get rid of these random motions as

well and only focus on the person. In other words we are interested in detec-

tion and extraction the Region of Interest only, rather than foreground. [97]

proposed removing unwanted regions by keeping the region with the biggest

area. However, this technique will fail if some bigger objects are moving in

the room such as, the door in Fig. 3.3(a) or a piece of big furniture like a sofa.

Therefore, we proposed a new ROI detection technique based on the area of

region and penalty function. The proposed method fuses background subtrac-

tion and person detection together and removes errors and noise based on a

penalty function. Note that person detection and tracking techniques, such as

those proposed in [27], [28], mainly work on people with upright postures and

fail if the person is sitting or lying down. Hence, it is not a suitable approach

for fall detection by itself.

Eq. 3.1 summarizes our novel ROI detection technique, where PD is the

region detected by the person detector and FD is the region detected by the

foreground detector. w1 and w2 are their corresponding weight respectively,

where 0 < w1 < 1, 0 < w2 < 1 and w1 + w2 = 1. We call w1PD, effective

person and w2FD effective foreground.

ROI = (w1PD + w2FD)− ε (3.1)

Eqs. 3.2 and 3.3 explain how to calculate the weights. However, note that

if the algorithm detects no movement in the scene and only detects a person

then w2 will set to zero and w1 will be one. The same will happen if it only

detects movement and no person. In this case w1 will set to zero and w2 will

be one.
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w1 =
Area(PD)

Area(FD) + Area(PD)
(3.2)

w2 =
Area(FD)

Area(FD) + Area(PD)
(3.3)

In Eq. 3.1, ε denotes the penalty function which is explained in Eq. 3.4.

The penalty function removes any small regions that are detected due to noise

or unwanted movements of small objects. It mainly suggests that in each

frame, k, any detected regions with areas smaller than half of the ROI area

detected in the previous frame should be removed. R is any closed area that

was detected by the proposed technique.

ε = (
∑
i∈R

i <
areak−1

2
) (3.4)

We used HOG features to extract PD. This detects people in the upright

position as proposed in [27] and the formulation is given in Eq. 3.5, . In other

words gradients in x and y directions is calculated for each pixel in each cell c.

This is called gx and gy. Then based on orientation of gradient, θ = atan( gy
gx

),

a histogram with 9 bins is formed for each cell. The magnitude of gradients

for each pixel is then located in the corresponding bin.

HOG =
9∑
i=1

(
√

(gx)2 + (gy)2)i (3.5)

In order to extract FD, we used a GMM-based foreground detector. This

technique is proposed in [103]. Each pixel in the image is presented by a

mixture of k Gaussian distribution as shown in Eq. 3.6. The most probable

Gaussian distributions belong to the background and the least probable ones

represent the foreground.

P (Xt) =
k∑
i=1

αiη(Xtµi, σi) (3.6)
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(a) Feret diameter (b) Optimization

Figure 3.4: Feret diameter intuition and ambiguity in head detection. Green
cross is the center of person and the red crosses are potential locations for
head.

Here αi is the weight and µi and σi are the mean and standard deviation

of the ith Gaussian distribution.

Fig. 3.3(c,f) shows the bounding box around an extracted ROI. One can see

that the ROI detection only chooses the person as ROI and not the door or the

chair. This would not be possible if we only applied the foreground detection

technique as Fig. 3.3(b,e) shows that door and chair are also detected by

foreground detection.

3.3.2 Significant point detection

In order to detect fall we need to extract a number of significant features.

People either used the posture features extracted from the bounding regions,

such as [77], [93], [123], or they analyzed the trajectories of some important

points or vectors like in [24], [76], [92], [97] . In this chapter we used bounding

box information as well as trajectory and velocity information of the significant

vector. To form this vector we used head h and center of person c position
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as two significant points. The reason for having different sets of features is

to be more robust in detecting fall. For example, having the bounding box

information can help in detecting falls which occur along the viewing direction

of the camera. By using the velocity information we can distinguish falling

down from sitting down or lying down. Note that tracking one keypoint only,

like in [92], will create error in 2D space as we loose one degree of freedom.

Center of person detection

The key point c represents pelvis joint which is the intersection of maximum

and minimum feret diameter of the extracted ROI and is given by Eq. 3.7,

where each pixel in the extracted ROI has the coordinate of (i, j). Also,

Fig. 3.4(a) shows the intuition behind feret diameter and center of person

calculation. The small circles correspond to the maximum and minimum i

and j location of the detected ROI in the xy coordinate system and the green

cross shows the calculated center of person which roughly represents the pelvis

joint. Note that based on position and orientation of the detected ROI, the

location of the maximum and minimum point and the detected center of person

will change.

c = (
max(i)−min(i)

2
,
max(j)−min(j)

2
) (3.7)

Fig. 3.5 shows the detected center of person for different people with differ-

ent actions. Observe that the position is quite accurate even when the person

is carrying another object like a broom as Fig. 3.5(b) shows. However, if the

person is falling along the viewing direction of the camera, z axis, then c does

not exactly represent the pelvis. Fig. 3.5(f) shows this situation. Later we will

show that it does not affect the accuracy of our fall detection technique and

we can still detect fall in these cases, using the ratio of the bounding box and

the velocity of the action.
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(a) Jogging (b) Carrying object

(c) Perpendicular fall (d) Sit

(e) Standing (f) Z-fall

Figure 3.5: The extracted center of person is shown by the red cross
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Head detection

The second key point is head position. Detecting head is a crucial step for

surveillance applications as [92] suggested. Researchers have used different

techniques to estimate the head position. [71] proposed a head detection ap-

proach which can work on sideview and backview of the head as well. However,

this approach is very time consuming and not suitable for a real time applica-

tion. Some reserachers suggested that the human head can be approximated

by circle or ellipse [66], [91], and they used different feature extractor to detect

imperfect circles or ellipse. Here we used circular hough transformation on the

detected ROI to find circular curves and potential head positions. As [29]

proposed, hough transformation works based on a voting system and therefore

it can detect several imperfect circles with the specific radius. The center of

these circles can be the potential positions for the head. Fig. 3.6(a) shows an

example of the potential head positions marked by red crosses. In order to

find the actual head position, first we need to clean the set of centres found

and remove the points which are: 1) outside the ROI, or 2) inside the ROI,

but more than half of the area of the circle formed is outside the ROI. Now, we

have a set of candidate points which we call h′. We used an iterative two step

optimization to find the best head position. The optimization only keeps cen-

tres with largest Euclidean distance from c, if its reflection point with respect

to c is inside the ROI. An example of potential head position and final head

position is shown in Fig. 3.6(a) and Fig. 3.6(b) respectively. Eqs. 3.8 and 3.9

summarize the optimization process. The intuition behind the second step of

optimization is shown in Fig. 3.4(b). The two red crosses are two candidate

head points h′1 and h′2 and the green cross is the center of person c. It can

be seen that the Euclidean distance between h′2 and c is greater than that of

h′1 and c. However, the reflection of h′2 with respect to c will be out of ROI;
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(a) Candidate head positions (b) Final head position

Figure 3.6: The steps and result of the head detection approach.

while this is not the case for h′1.

h = max
h′

(
√

(j′h − jc)2 + (i′h − ic)2) (3.8)

((2ic − ih), (2jc − jh)) ∈ ROI (3.9)

Fig. 3.7 shows more examples of the head detection step applied on different

people with different postures. This figure shows that the proposed head

detection algorithm is quite accurate and robust and can be useful for different

surveillance applications. It is very fast and it can work on any position

and direction of the head even for a low resolution video. We have tested

our algorithm on two different video resolutions. On the average it takes

0.017sec/frame for a lower resolution video of 320 × 240 pixels to find the

head position. However for a higher resolution video of 850 × 480 pixels, it

takes 0.048sec/frame, which is still real time. Note that in order to optimize

the time performance without affecting the accuracy, the video can be reduced

to a lower resolution.

3.3.3 Feature extraction

The next step is defining some distinct features that can capture the charac-

teristics of falling down. As [83] showed, falling down is a fast action, and
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(a) Back view (b) Front view

(c) Sitting (d) Z-fall

(e) Regular fall (f) Regular fall

Figure 3.7: The result of the proposed head detection approach for different
postures and people.
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its critical phase is between 300 to 500 milliseconds. Note that even for cases

when a person is gradually falling down, like from a bending/sitting position

or when holding onto something and then falling, there still exist a fast and

critical phase. Otherwise, it is impossible to distinguish falling down from

lying down for instance. In this chapter we combined posture and velocity

information to detect fall. We used four different features. The first feature is

the ratio of bounding box around ROI, which is given in Eq. 3.10. Where r2

is the height and r1 is the width of the bounding box.

f1 =
r2
r1

and f1 ∈ [0, 8] (3.10)

Almost all the previous vision based fall detectors use bounding box infor-

mation, such as area or ratio, as a posture feature. It is due to the fact that

the bounding box information is simple, fast and reliable.

The ratio of the height and width of the bounding box is a real number

between 0 and 8. Ratios greater than 1 mostly represent an upright posture.

An exception can be falling down in the viewing direction of the camera (z-fall)

where f1 can be greater than or equal to 1, as can be seen in Fig. 3.5(f) and

Fig. 3.7(d).

To address this issue we use ||ch|| which is the vector formed by center of

person, c and head, h as explained in Section 3.3.2. The intuition is that due to

perspective projection the length of the person would not change in standing

and perpendicular lying position, assuming the distance of the person to the

camera does not change. However, for all the other lying position with the

same distance to the camera, the length of the person would be shorter. Later

we will explain how to handle different distances to the camera. An example

of perpendicular fall is given in Fig. 3.5(c). However, we should normalize this

feature so that it can work for people with different heights. Eq. 3.11 is used to

get the second feature, where h/2 is half of the bounding box generated by the
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person detector technique, explained in Section 3.3.1. Since h/2 is updated

whenever the person detector detects an upright person, we do not need to

worry about the distance of the person to the camera.

f2 =
||ch||
h/2

and ∈ [0, 1] (3.11)

These two features are not sufficient to capture posture information for

different actions, such as bending or sitting down; therefore, we use the angle

of significant vector, ch, w.r.t the horizontal line. Since the direction of the

action is not important for us, this angle is between [0, π
2
]. This feature is

presented in Eq. 3.12, where (xc, yc) and (xh, yh) show the x and y coordinates

of the center of person and head respectively.

f3 = atan(
|yc − yh|
|xc − xh|

) and f3 ∈ [0,
π

2
] (3.12)

The last feature captures the velocity of the action. The velocity is crucial

to distinguish between intentional lying and falling. We used the average

angular velocity of ch between each five frames.This corresponds to 200 ms

for a 24 frames per second video. This feature is shown in Eq. 3.13.

f4 = |f3k − f3k+5
| and f4 ∈ [0,

π

400
] (3.13)

3.3.4 Fall detection

The last step of the proposed method is detecting fall based on the extracted

features. It would be quite challenging to use supervised learning at the frame

level detection techniques because of the ambiguity in the border of different

action. More specifically one can ask what is the starting point of the fall. In

this chapter we label each frame as non-fall or potential fall by thresholding on

the features. To find the best threshold for each feature we used grid search.
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If a frame is classified as potential fall for five consecutive frames, which is

equivalent for 200 ms, then a fall is detected. The reason for choosing five

frames is to detect falls that happen slower, by holding onto something for

instance, as well as detecting faster falls. Fig. 3.8 shows different scenarios for

a fall event with their corresponding feature values. Note that there can be

different orientations of the body with the same feature value, like head down

in regular fall, which we did not show here. The big rectangle or square box

represents the bounding box around the ROI. The ROI is shown by the big

circle in Fig. 3.8(a) and big ellipse in Fig. 3.8(c,d). The green cross represents

center of person and the red cross represents the head position. The summa-

rized conditions for fall is shown in Eq. 3.14. Note that angular velocity is an

important feature to distinguish fall from other actions.

fall = (f1 < 1.8) and ((f2 < 0.8) or (f3 <
π

3
)) and (f4 > 15) (3.14)

3.4 Details on the Dataset

We chose Le2i [20] to test our algorithm. The reason is the vast selection of

actions actors combinations. The dataset contains 191 video sequences where

143 videos show falling action and 48 videos does not have fall. Only one

actor is presented in each video, and there are nine different actors in total

with different body features and different outfits. Different everyday activity,

such as walking, bending, sleeping, sitting down, standing up, putting on

clothes, talking over the phone and so on are included in each video. The

actions happen at four different indoor environments including lecture room,

coffee room, home and office, where the viewing directions of the camera and

the lighting conditions of the rooms are different. The videos are captured at

25 frames per second and the resolution is down sampled to 320× 240.
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(a) Z fall, f1 < 1.3 and f2 ≈ 0
and f3 ≈ π

2

(b) Regular fall, f1 < 1.8 and
f2 < 0.8 and f3 < π

3

(c) Perpendicular fall, f1 < 1 and
f2 ≈ 1 and f3 ≈ 0

Figure 3.8: Different scenarios for fall and their corresponding features. The
black circle or elipse is the ROI, the blue circle is head, the green cross is c
and the red cross is h.

3.5 Experiments and Results

We have calculated accuracy, recall and specificity of the proposed method

which are given below.

Accuracy =
TP + TN

TP + FN + TN + FP
(3.15)

Recall =
TP

TP + FN
(3.16)

Specificity =
TN

TN + FP
(3.17)

TP and TN coressponds to True Positive and True Negative respectively

and is the number of frames correctly classified as fall or not-fall. FP and FN

are False Positive and False Negative and is the number of frames that are

labeled incorrectly as fall or not-fall. Note that the classification happens at

the frame level, and fall duration is only 14 frames for most of the cases [20].
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Table 3.1: Acurracy, specificity and recall of the proposed fall detection system.

Room Accuracy Recall Specificity
Lecture room 99.45% 100% 99.12%
Coffee room 98.9% 89.8% 99.75%

Home 99.42% 95.27% 99.83%
Office 99.7% 90.58% 99.96%

Thus, reporting accuracy only is not sufficient to evaluate any fall detection

technique. However, most of the papers in the literature only reported accu-

racy which is not a fair indication of how effective a fall detection technique

is. Table 3.1 shows Accuracy, Recall and Specificity of our proposed method,

for each indoor location that was available in the dataset. In order to have a

fair comparison, we reported for each room separately. The lower recall values

for Coffee room and Office is because there is a significant amount of Z-fall for

these location.

Fig. 3.9 shows the result of the proposed method for different fall scenarios

and some of the failed cases. Fig. 3.10 shows the result of the proposed method

on other types of action. As Fig. 3.9(d,i,k) shows, there might be cases where

the detected head position is wrong. It can happen for various reasons like the

head being not completely visible. However, in such cases we can still detect

fall or no fall action accurately due to our robust set of features. Also, when

the person is in lying position the enclosed bounding box might be bigger than

expected, such as in Fig. 3.9(a,b). This happens because the mat is not fixed to

the ground and it moves when the person fall but again our robust features can

detect fall accurately. Note that despite our attempt to detect Z-fall, there are

situations that our algorithm cannot detect. In fact, all cases of False Negative

belongs to Z-fall. We can detect Perpendicular-fall and Regular-fall with 100%

recall. The proposed method can correctly label not-fall action for almost all

activities including even bending and squatting.

Table 3.2 compare the results of the proposed method with two other tech-
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Table 3.2: Comparison of the proposed fall detection system with other tech-
niques.

Proposed Method Method proposed by [20] Method proposed by [97]
Accuracy 99.36% 99.54% 99.61%

Recall 93.91% 84.84% NA
Specificity 99.67% 90.32% NA

niques that applied on the same dataset. It is important to note that there

have not been many works that reported percision and recall. Also they did

not test their proposed method on different room setups. Table 3.2 shows the

average accuracy, recall and percision for the proposed method.

3.6 Conclusion and Future Work

In this chapter, we proposed a real-time automatic fall detection system based

on motion deformation and velocity of the action. We found that fall detection

at the frame level is more desirable than action level due to ambiguity in the

starting point of the action and how to break a long video into smaller actions.

The proposed method detects the region of interest which is the person through

a novel and robust ROI detection technique. The method also detects two

significant points, head and center of person. We then use the angle and size

of the vector between head and center of person as well as its angular velocity

to detect fall based on a set of thresholds which is obtained by grid search.

The results show that the proposed system is quite accurate and very robust

with over 99% accuracy, and over 93% recall and over 99% specificity on the

average. The most frequent false negative happens for Z-fall.

In future we would like to use depth camera to address the issues in Z-fall.

Also, we would like to use an outlier detection approach, such as One Class

SVM (OCSVM) to detect fall as an outlier action.
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(a) Perpendicular-fall (b) Regular-fall (c) Perpendicular-fall

(d) Regular-fall (e) Regular-fall (f) Perpendicular-fall

(g) Perpendicular-fall (h) Perpendicular-fall (i) Z-fall, false negative

(j) Perpendicular-fall (k) Perpendicular-fall

Figure 3.9: The result of proposed detection system on fall actions.
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(a) Sitting posture (b) Wearing clothes (c) Walking

(d) Scouting (e) Walking down the stairs (f) Getting up from fall

(g) Bending, false positive (h) Bending (i) Sitting down

Figure 3.10: The result of proposed detection system on other actions.
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Chapter 4

Evaluation of 3D model
segmentation techniques based
on animal anatomy

One of the most challenging and important problems in computer graphics,

which has recently attracted many researchers’ attention, is 3D model decom-

position or mesh segmentation. The problem is segmenting a mesh or volume

into components based on some geometric or semantic criteria. Mesh seg-

mentation has several applications in modeling, texture mapping, animation,

compression, simplification and so on.

There are two different approaches to 3D mesh segmentation [8]. It can

be done either geometrically or semantically. In geometric mesh segmentation

the mesh is segmented into a number of visually and anatomically meaningless

patches based on some surface properties, such as curvature, distance to a

fitting plane or surface normal. However, in a semantic approach, the mesh is

segmented into visually meaningful parts that are related to relevant features

of the shape. For instance one can segment the 3D model of a horse into head,

body, legs and tail. The semantic approach attracts more attention because of

its strength in different applications, such as animation, classification, shape

retrieval and skeleton extraction. The main challenge with this approach is

the lack of a consistent evaluation criteria to compare different techniques,
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since each technique has been developed for a specific application. Therefore,

the comparison of different segmentation techniques should be based on the

application. Another problem is the definition of meaningful patches for 3D

models. For example, one can divide an animal body, such as a horse, into

coarse segments, head, body, legs and tail. While others may segment it based

on more detailed animal anatomy; thus, the quantitative comparison can be

challenging.

Semantically oriented segmentation of quadrupeds is highly relevant for ob-

ject retrieval and animation. However, because of the abovementioned reasons

there is no obvious metric to evaluate the accuracy and quality of segmenta-

tion results. Several previous works have been proposed for segmentation

evaluation [15], [22]. They rely on databases of human segmentation of 3D

models. However, we argue that arbitrary human observers do not necessarily

provide a correct semantic ground-truth to evaluate the segmentation. In this

chapter the similarity between segmentation results and an animal anatomy

is considered as the evaluation metric.

In this work we also extend an anatomy preserving segmentation technique.

The underlying idea is using the skeleton of a 3D model to guide the decompo-

sition. The skeleton of a 3D model is a compact graph-like abstraction derived

from the centerlines of the original model [100]. The next step is mapping

surface points onto skeleton branches. Finally, each set of surface points that

map onto the same skeleton branch is considered as one patch. This approach

uses both global shape and local features, helping enhance perceptual quality,

which is required in animation and game type applications. In prior work,

[100] used only one anatomy model (a horse) as the ground truth and evalu-

ated the segmentation results only for the horse model. This is not adequate

for a general finding. In this chapter, we segment other 3D animal models and

compare the results with animal anatomy to evaluate various algorithms.
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As mentioned above, ground truth for evaluation of segmentation results

has been typically obtained solely through human input [15], [22], [72] in the

computer graphics and vision communities. However, this approach is purely

subjective and could vary significantly from one user group to another. The

importance of accurate and consistent segmentation has been pointed out by

researchers in various application communities. For example, why defining

ground truth for tables [121] is difficult has been discussed in [44]. Defining

ground truth for various fields in medicine has been extensively researched,

e.g., [89]. Validation of the segmentation and expert definitions of ground

truth has also been carefully measured [118]. By contrast, the expectations

of the quality of ground truth in vision and graphics research do not seem

to be that high. For example, as [72] showed, closed objects may grouped

together and identified as one object or separate objects. Despite issues like

this, the different segmentations are considered to be “highly consistent.” It

appears that application domains, and what level of accuracy and consistency

are necessary in them, have been largely ignored in vision and graphics re-

search. Thus, we propose using biologically defined anatomical models as a

more reliable approach to ground truth definition and subsequent evaluation

for a class of objects in 3D segmentation.

The remainder of this chapter is organized as follows: Section 4.1 discusses

some of the semantic segmentation techniques. Section 4.2 explains our skele-

ton based segmentation approach. In Section 4.3 the evaluation criteria and

the proposed anatomical ground-truth are presented. Section 4.4 compares

the results of skeleton based segmentation with the most efficient state of the

art methods. Concluding remarks are given in Section 4.5.
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4.1 Related work

Semantically oriented segmentation techniques try to generate the segmenta-

tion patches such that a cost function is minimized based on a given criterion.

The main difference among various algorithms in this category is the cost

function and the criterion used. In this section we will explain some of these

techniques in greater detail.

The authors in [53] proposed a hierarchical decomposition technique us-

ing fuzzy clustering. This algorithm is based on a hierarchical tree. Each

node in the tree is associated with the mesh of a particular patch and the

root is associated with the whole input object. The higher level nodes corre-

spond to coarser patches while leaves and lower level nodes correspond to finer

patches. The algorithm determines a suitable number (k) of patches at each

node, and then computes a k-way segmentation of this node. First, the al-

gorithm finds the meaningful components along with the boundaries between

the components that are considered to be fuzzy. The next step is finding the

exact boundaries in the fuzzy areas which preserve the features of the object.

However, the approach relaxes the condition that every face should belong to

exactly one patch and allows fuzzy membership, which means that each face

has probabilities associated to belonging to different patches. This probabil-

ity is based on geodesic and angular distances between all pairs of the faces.

Another hierarchical method has been proposed in [52]. This algorithm is also

based on a hierarchical tree and proceeds from coarse to fine scale. The main

advantage of this technique is that it is insensitive to pose and proportions.

The approach first transforms the mesh vertices into a pose invariant space,

then robustly extracts the feature points, and finally extracts the core compo-

nent of the mesh. [7] proposed an algorithm based on the fitting primitives.

Initially, each triangle of a triangular mesh corresponds to a single cluster. All
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the pairs of adjacent clusters are considered and compared at every iteration,

and the one that can be best approximated by one of the primitives forms a

new single cluster. The primitives are planes, spheres and cylinders; and, an

L2 metric is used to compare each combination of the cluster with one of these

primitives.

The Shape Diameter Function (SDF) is another 3D segmentation approach

which has been proposed in [99]. The SDF is defined as the diameter of the

object in the neighborhood of each point on its surface. Given a point on the

surface mesh a set of rays is sent inside a cone centered around its inward-

normal direction (the opposite direction of its normal) to the other side of

the mesh. The value of the SDF at the point is defined as the weighted

average of all the lengths of rays that fall within one standard deviation from

the median of all lengths. [2] presented a segmentation technique based on

random cuts. The idea is to generate a random set of mesh segmentations,

and then measure how often each edge of the mesh lies on a segmentation

boundary in the randomized set. An interactive approach based on random

walk has been proposed in [62]. The user chooses some faces as seeds, then a

probability is assigned to each of the three edges of non-seed faces. This value

determines whether or not a random walker moves across a particular edge to

the corresponding face. A face belonging to the region is grouped with the

seed X if a random walker starting at that face has a higher probability of

reaching the seed X than any other seeds.

4.2 Segmentation based on Skeletonization

Since the human eyes are very sensitive to changes along the boundary of

an object it is logical to use the structural shape for simplification and seg-

mentation purposes. Since the projected 2D contour of a 3D model can vary

significantly depending on a change of view, it is more effective to use the
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model skeleton in order to guide segmentation. The skeleton of a 3D model is

a compact graph-like abstraction derived from the centerlines of the original

model [100].

It is very important to extract the skeleton as accurately as possible. For

segmentation purposes a unit width skeleton, such as the Valance Normalized

Spatial Median (VNSM) [116] is needed. However, these skeletons are very

prone to local and global noise and may contain some unwanted branches.

The Scale Space and Gaussian filters can be used to remove the noise and

smooth the skeleton. The unwanted branches should be removed considering

the length and topological position of a branch [100].

After extracting the smooth and noise-free skeleton, the next step is to

decompose the model into different segments according to the following steps.

• Decompose the skeleton at junction points. Junction points are the

points that are connected to more than one skeleton branch.

• Map surface nodes to skeleton branches. This is based on the L2 distance

between surface nodes and skeleton vertices. In other words, to map a

point on the surface to a skeleton branch node, it should be close to the

skeleton branch nodes, with skeleton-to-surface normal vector pointing

in a direction similar to the surface normal vectors. Also, the neighboring

nodes should have the same label if the curvature is close. These dis-

tances are computed for each surface point or a subset of surface points

against all skeleton vertices.

• The last step is labelling the neighbourhood nodes. The previous step

just labeled some selected sample points. The watershed method is used

to flood the labels from samples.

58



4.3 Evaluation

The main challenge for semantically oriented segmentation is defining the eval-

uation criteria, which is related to the application. However, for animation

purposes and generating natural movements of a model, a more meaningful

segmentation for animals is based on anatomy. Shi et al. [100] used a metric

function distance for evaluation purposes. The error is then the Euclidean

distance between registered pair of cuts plus the length of non-paired cuts.

However, they just used one anatomy model, that of a horse, as the ground

truth and evaluated the segmentation results only for the horse model. This

limited evaluation is not adequate.

For evaluation purposes we used the same method as Shi et al. [100].

First, we registered different cuts to the corresponding ground truth ones;

then calculated the Euclidean distance for each cut plus the length of non-

paired cuts. Smaller errors imply better automatic segmentation compared

to the ground truth. Since the ground truth is generated manually based

on animal anatomies, different experts may specify slightly different ground

truths. However, this does not affect the comparison results very much, since

the ground truth is not solely based on human perception but anatomical

information is also considered in the process.

We use sheep [75], cow [75], dog [74] and giraffe [1] anatomies. There are

several free 3D models of these animals available on public databases [22],

[101]. These anatomy models are very detailed and in order to use them as

the ground truth, we manually segment them at a coarse level. However, it is

possible to ask the user what level of details he/she prefers. Figure 4.1 shows

the anatomy models for these animals. Figure 4.2 shows the corresponding

ground-truth segmentations. Figure 4.3 presents the ground-truth of giraffe

at a finer level of detail.
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(a) (b)

(c) (d)

Figure 4.1: The anatomy model of (a) cow [75], (b) sheep [75] , (c) dog [74]
and (d) giraffe .
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(a) (b)

(c) (d)

Figure 4.2: The manual segmentation for (a) cow, (b) sheep, (c) dog and (d)
giraffe based on their anatomy.

Figure 4.3: Detailed segmentation for the giraffe.
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Table 4.1: Metric distance between different segmentation methods and
groundtruth.

RW RC SDF Skeleton
Cow 0.77 0.71 0.65 0.57
Horse 1.00 0.84 0.79 0.45
Dog 0.8 0.75 0.25 0.65
Giraffe 0.64 0.43 0.57 Too noisy
Detailed giraffe 0.48 0.58 0.28 0.79

4.4 Results

Using the method proposed in [100], we extracted the skeletons and performed

3D segmentation for cow, sheep, dog and giraffe. Figure 4.4 shows the ex-

tracted skeletons. Figure 4.5 compares the segmentation results with random

walk (RW) [62], random cuts (RC) [2], shape diameter (SDF) [99] and the

ground truth. Note that the extracted skeletons may still contain some noise

or unwanted branches which can lead to poor segmentation quality. One tech-

nique that can be used to eliminate the noise and improve the generated skele-

tons is scale space filtering. In future work we will use this method and other

techniques to improve the results. Table 4.1 shows the metric distance between

the segmented models and the corresponding animal anatomies. It is based

on manual registration of the animal anatomy and generated segments and

calculating the Euclidean distance for each segment, plus any extra segments

that the methods generated. Our method as well as SDF [99] produce the best

results. It is interesting to notice that with our anatomically defined ground

truth, SDF [99] is better than random cuts [2]; this contradicts the evaluation

based on the Princeton segmentation benchmark [22], which is entirely human

defined. This confirms that human segmentations may not necessarily be a

good means of defining ground truth for some applications.
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(a) (b)

(c) (d)

Figure 4.4: Extracted skeletons for (a) cow, (b) sheep, (c) dog and (d) giraffe.
Different colors are used for different segments of the skeleton.

4.5 Conclusion

We described an approach to obtaining ground truth for animal model seg-

mentation based on expert knowledge, and used this information to compare

various approaches. In future work, we will extend our study using a larger

collection of animals. We will consider extracting the ground truth at differ-

ent levels of detail. Furthermore, we will study how current algorithms can be

extended to segment at varying levels of detail. One modification that can be

done in the future is to let the user define the level of detail, or at least let

the program know if the user needs a more detailed or a coarse segmentation.

Then, a program can generate the skeleton and segmentation according to the

user requirements.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 4.5: Comparison of the proposed method with random walk, random
cut, shape diameter and ground truth. The first column is our skeleton-based
method, the second column corresponds to random walk, the third column
corresponds to random cuts, the forth column corresponds to shape diameter
and the last column is the ground truth. Top row shows segmentation for the
cow, middle for the dog, and bottom for the giraffe.
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Chapter 5

Automatic Animation Skeleton
Extraction and Model Transfer

Automatic 3D skeletonization is an important and challenging problem in com-

puter graphics. It can be used in several applications; such as animation, mesh

decomposition and 3D segmentation. To animate an articulated 3D character

an animation skeleton needs to be extracted from or be embedded into a 3D

model so that the model can be automatically deformed during animation.

In conventional animation software, this process is mostly done manually by

expert animators, which makes it a very tedious and time consuming step.

Recently, some automatic rigging approaches have been proposed in the liter-

ature. However, most of these techniques are not fully automatic and require

a front facing model with neutral T-pose to accurately extract or embed the

animation skeleton. In this chapter we propose a fully automatic skeleton ex-

traction approach based on optimization of constraints on human shape that

can generate the animation skeleton, regardless of the model’s orientation and

position. Given an arbitrary 3D model and a template skeleton, the algorithm

first extracts the 3D curve skeleton and then optimizes a penalty function

to find the best match for the positions of the model’s joints. Experimental

results demonstrate the effectiveness of our approach.
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5.1 Background and Related Work

Improvements in 3D capture technologies have led to many 3D models being

widely accessible to the general public. Now, people would like to bring these

articulated 3D models to life easily and quickly, by animating them automat-

ically. There are two main techniques used in the literature to automatically

animate a 3D character. The first one is skeleton-based animation [13] which

is mostly used in conventional animation software, and the second one is mesh

deformation [113]. The most important step for skeleton-based animation is

rigging, which means embeding a skeleton inside the 3D character and as-

sociating the mesh vertices to the skeleton bones. Now-a-days conventional

animation softwares require extensive manual effort to rig the model. This

process is very tedious and time consuming, even for expert animators. Mo-

tion retargetting is the next step in animating the 3D model, which implies

adapting the animated motion from one articulated figure to another. One of

the first work in this area was by [37]. They assumed that two figures have the

same topological structure but different physical dimensions. There are also

several studies on motion synthesis. For this problem researchers try to create

new motion based on similar motions in a motion database. Several constraints

have to be met so that the final results look realistic [43]. The final step is

skin attachment where the mesh vertices are attached to the skeleton bones

based on their weights. Several linear skinning techniques have been proposed

in the literature [46]. Jacobson et al. [47] proposed a non-linear method that

performs the automatic skinning very fast and efficiently. Another challanging

problem in the area of skinning is managing the clothes and animating them

naturally. One of the first works in this area was proposed by [114]. For this

chapter we just used the plain 3D models without any textures and clothing.

In future work we can add automatic animation of the clothes as well.
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Despite recent interest and studies in automatic rigging, this process needs

to be done mostly manually to obtain satisfactory results. The techniques

proposed in the literature require a front-facing, T-pose 3D model to extract or

embed an animation skeleton. Because of this restrictions, existing techniques

are not fully automatic. To address this limitation, we present a new method

to automatically extract an animation skeleton for an arbitrary 3D model,

regardless of its position and orientation. First, we extract a curve skeleton.

Then, we label a set of skeleton points as key points or joint candidates.

Finally, we minimize a penalty function to refine the set of key points. The

penalty function uses template skeleton information and contraints on human

shape based on anatomical and 3D mesh information to accurately find the

final set of joints which form the animation skeleton.

The remainder of this chapter is organized as follows: Section 5.2 talks

about different steps required in animation pipeline and the related research

for each step. Sections 5.3 explains the proposed method and the optimization

framework which is used to automatically extract an animation skeleton from

an aribtrary human model. Section 5.5 discuss how to transfer a non T-pose

model to a T pose model. Section 5.6 describes the experimental setup, shows

some results and compares the proposed method with the state of the art

techniques [13] proposed in the literature. Finally, the last section concludes

the chapter.

5.2 Animation Pipeline

In this section we talk about the background of animation skeleton, motion

targeting and motion generation and skin deformation.
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5.2.1 Automatic Creation of the Animation Skeleton

Since the skeleton joints are the control mechanism in animation, we start by

reviewing two skeleton-based animation approaches commonly used in the lit-

erature. The first is skeleton embedding, and the second is skeleton extraction.

The former relies on repositioning and resizing a template animation skeleton

to fit inside a 3D character. The latter aims at extracting a model specific

curve skeleton from the 3D character, using a 3D skeletonization algorithm.

The extracted curve skeleton is then converted into an animation skeleton, ei-

ther by using anatomical information or matching a template animation skele-

ton. However, all current skeleton embedding and extraction techniques that

have been proposed in the literature are not fully automatic and often require

the 3D character to be front-facing and in a neutral, T-position. Otherwise,

manual adjustment of skeleton joints is necessary.

Skeleton Embeding

An early work that automatically embedded a template animation skeleton

into a 3D character was proposed by Baran et al. [13]. The authors formu-

lated the joint positioning problem as an optimization problem and computed

the joint positions inside the character by minimizing a penalty function. How-

ever, they assumed that the 3D model is appropriately proportioned and in

the same position and orientation as the template skeleton. Therefore, if for

instance the character is in a sitting position or upside down, their algorithm

will not produce desirable results because the template skeleton used is posed

differently.

Another skeleton embedding technique was proposed by Poirier et al. [88],

where the extracted curve skeleton information was used to guide embedding

the template animation skeleton inside the 3D model. The head node was

first selected manually on the curve skeleton. The program then matched the
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segments of the curve skeleton, which were fitted into the template skeleton

using the symmetry information and geodesic distance from the head to every

other node. This approach is semi-automatic and as the authors pointed out if

the pose deformation is not isometric, the algorithm cannot ensure the correct

harmonic graph.

Skeleton Extraction

3D skeletonization has been extensively studied in the literature. Cornea et

al. [26] presented a survey covering different skeleton extraction techniques.

Developers usually use clean and thin curve skeletons for animation. In this

section, some previous papers on automatic animation based on skeleton ex-

traction are reviewed.

One paper in this area was proposed by Teichmann et al. [107]. The au-

thors extracted a skeleton hierarchy from a 3D polygonal mesh for animation.

They first extracted the medial axis of the object using a Voronoi skeleton,

then some of the skeleton key-points were selected by the user. The selected

points correspond to the end points of the animation skeleton. This method

is not fully automatic and relies on precise selection of some joints. In another

method a voxelized skeleton was extracted, and the skeleton branches were

then approximated with straight segments [115]. The shared points between

two segments are labelled as key-points (skeletal joints). Although this ap-

proach is quite fast and simple, the resulting skeleton may miss critical joints

and cannot be matched accurately with the animation skeleton. For instance,

in a human model with straight arms, elbow joints will be missed by their

algorithm.

The repulsive force field approach was used by Liu et al. [67] to extract the

animation skeleton. The algorithm shoots rays from points inside the model

to calculate the repulsive force field magnitudes. The candidate points are
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labelled by finding the local minimal magnitude of the points. The extracted

skeleton is then refined and undergoes thinning to generate the animation

skeleton. Their method does not guarantee that the extracted skeleton will be

compatible with the animation skeleton.

Some researchers used anatomical information to extract the animation

skeleton, e.g., [11] and [84]. MoCap data often define joints, e.g., three joints

along the spine, which may not have an anatomical meaning, but they are

used for animation. In this case, the extracted skeleton may miss the joints

that do not have anatomical correspondence. Also, in the method proposed

by Aujay et al. [11] the user needs to select the root point manually, and in

the method proposed by Pan et al. [84] the initial model needs to be in the

resting position. Schaefer and Yuksel [96] extracted the animation skeleton

from a set of example poses from the same 3D model. This is not a feasible

approach if only one arbitrary 3D model is given for animation. Pantuwong

and Sugimoto [85] presented an automatic rigging technique based on skeleton

extraction and template matching. They first extracted the curve skeleton

from the 3D model using a skeletonization algorithm. Then, they performed

further processing to clean the skeleton and make sure the symmetric segments,

such as both arms and both legs, are connected to the central axis or spine at

the same location, and have approximately the same length and topology. In

their junction point analysis step, they classified the extracted skeleton into

different categories, e.g. bipeds, snakes and birds, in a database of animation

skeletons. After retrieving the suitable template skeleton, they located the

skeleton joints on the curve skeleton using anatomical information, but with

the assumption that the topology and pose of the 3D model should be the

same as the template skeleton.
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5.2.2 Motion Retargeting and Motion Generation

The quality of the animation depends on the realistic motion, and generating

such motion is quite expensive and challanging. People usually record the

natural human movement of a live character through a motion capture system

such as Vicon motion capture [112]. The captured motion will be transferred to

new articulated characters (Motion Retargeting), or several captured motion

can be combined together to generate new movements (Motion Generation).

Motion Retargeting

One of the first work in the area of motion retargetting was proposed by [37].

In this study they used the motion of an articulated model for another model

with the same topology but different bone lengths. The same topology implies

that the two models have the same number of the joints, the same connectivity

of the bones and the same degree of freedom. Even with the same topology,

two models cannot directly share the motion and some adaption or modifica-

tion is required. Some features of the motion are quite important and should

be maintained during the animation. For instance during a walking motion

the feet should touch the floor regardless of model’s size. In this study they

identified the important properties of the motion and set them as constraints

that should be maintained all the time. They later modify the motion during

retargetting to make sure that the constraints are always valid. They used a

space time optimization solver and consider the entire motion simultaneously,

not the individual frames as used in inverse kinematics. The problem with

adjusting the motion in each frame, to meet the constraints, is introducing the

high frequency components to the original motion. The existance of high fre-

quency components or lack of them in the motion should always be preserved

in order to retarget the motion successfully. This method has no information

about the motion and it highly relies on the constraints and if the solver is
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not provided with a comprehensive set of constraints the resulting animation

may be unrealistic. On the other hand, [95] proposed a motion aware retarget-

ting approach. They analyze and classify the motion to determine the motion

strtucture and identify its constraints. This eliminate the step of manually

defining the constraints. The methods discussed thus far retarget the mo-

tion, using an spacetime optimization approach; ie, consider the whole motion

for retargetting. [106] proposed a motion editing method based on per-frame

Kalman filter approach.

[68], [79] proposed a method to solve the motion retargetting problem

for geometrically and hierarchically different models by using an intermediate

skeleton. The intermediate skeleton has the same number of joints as the

target skeleton, but it has the same orientation and position as the source

skeleton. They used inverse kinematics to adjust the motion and manually

set the corespondece between the two hierarchies. Another approach that

retargets the motion between different topological models has been proposed

by [12]. However they can only retarget the motion if the two models have

different hierarchical structures and segments’ length, and not between any

two arbitrary models. [42] proposed a new system which records the motion in

a generalized form and later the user can specialize it into different characters.

This approach enables the user to retarget a morphology independent motion

to models with completely different topologies.

One can also retarget the motion in the mesh level as proposed by [105].

This approach can transfer the motion between different meshes with different

number of triangles and different connectivity. Here the user manually builds

the correspondence map between the source and the target by selecting a

small set of vertex markers. This paper does not retarget the motion in the

skeleton level but rather directly deform the target mesh. Another research

used physical properties such as segment mass, center of mass, velocity and so
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on to minimize the differences between source and target motion [110].

Motion Generation

The editting and retargetting of mocap data can be useful to adapt the avail-

able motion to different characters and models. However, motion editting

won’t be helpful if the required motion is different than the one already cap-

tured. In this case one should capture more motion which is a very expensive

and time consuming step, which indicates the need for motion generation and

motion synthesis. [59] used motion graph, which is a structure that enables

the captured data to be reassembled in different ways. This graph contains

both pieces of original motion captured and automatically generated motion.

New motions can then be generated by building walks on the graph. An-

other approach that is used to generate new motion is motion cut and paste

as discussed in [5]. Motion database is quite important to build a rich set of

generated motions and behaviour [63]. In order to generate new movements,

one can use a collection of similar movements. [60] used Principal Component

Analysis (PCA) to extract the set of basis elements from existing human mo-

tion data and then used Hidden Markov Models (HMM) to find the optimal

linear combination of basis elements to describe a natural generated movement.

5.2.3 Skin Deformation

Skin deformation based on an underlying skeleton is a common method to

animate believable organic models. The most widely used skeletal animation

algorithm, linear blend skinning, is also known as skeleton subspace deforma-

tion, vertex blending, or enveloping. It runs in real-time even on a low-end

hardware but it is also notorious for its failures, such as collapsing and candy

wrapper joints. To remedy these problems, one needs to formulate the non-

linear relationship between the skeleton and the skin shape of a character
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properly, which however proves mathematically very challenging. Placing ad-

ditional joints where the skin bends increases the sampling rate and is an

ad-hoc way of approximating this non-linear relationship.

Kavan and Zara [55] presented an algorithm which removes these short-

comings while maintaining almost the same time and memory complexity as

the linear blend skinning. Unlike other approaches, this method works with

exactly the same input data as the popular linear version. This minimizes

the cost of upgrade from linear to spherical blend skinning in many existing

applications: the data structures and models need no change at all.

Yang et. al. [120] proposed a method that is able to accommodate the

inherent non-linear relationships between the movement of the skeleton and

the skin shape. They used the curve skeletons along with the joint-based

skeletons to animate the skin shape. Since the deformation follows the tangent

of the curve skeleton and also due to higher sampling rates received from the

curve points, collapsing skin and other undesirable skin deformation problems

are avoided. The curve skeleton retains the advantages of the current skeleton

driven skinning. It is easy to use and allows full control over the animation

process.

Different alternatives have been proposed in literature to overcome the ar-

tifacts of LBS. All of them successfully combat some of the artifacts, but none

challenge the simplicity and efficiency of linear blend skinning. As a result, lin-

ear blend skinning is still the number one choice for the majority of developers.

Kavan et. al. [54] presented a novel GPU-friendly skinning algorithm based

on dual quaternions. They showed that this approach solves the artefacts of

linear blend skinning at minimal additional cost. Upgrading an existing ani-

mation system (e.g., in a video game) from linear to dual quaternion skinning

is very easy and has negligible impact on run-time performance.
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5.3 Robust Human Animation Skeleton Ex-

traction Using Compatibility and Correct-

ness Constraints

The algorithms discussed thus far require the 3D models to be in the front

facing T position, or they are not fully automatic. However, our method can

work for an arbitrary 3D model with any initial position and orientation, and

can automatically generate the animation skeleton. In this section a simple

view of the proposed method is presented. Fig. 5.1 shows the steps in hierarchy.

The novelty of our work lies in the optimization framework. We define a

penalty function which considers two different cost function ϕCompatibility and

ϕCorrectness.

ϕCompatibility measures which joints would be the closest match to the tem-

plate skeleton, based on the anatomical information of a human model. ϕCorrectness

checks that the bones formed by the joints are inside the 3D mesh and does

not intersect the mesh. Eq.( 5.1) demonstrates the penalty function.

ϕ(n) = (1− λ) ϕCompatibility(n) + (λ) ϕCorrectness(n) (5.1)

where n is a skeleton point and 0 ≤ λ ≤ 1 is the weight for the cost compo-

nents. The details of the two terms ϕCompatibility and ϕCorrectness and λ will be

explained in Section 5.3.4. Fig. 5.2(a) shows the situation where the selected

key point in red circle is in the wrong position inside the mesh. The bones

connected to that keypoint intersect the mesh which is an indication of the

wrong position. Fig. 5.2(b) shows the correct position of the same point and

there is no intersection between the bones and the mesh.

There are four step in the overall process: (i) Computing a Template Skele-

ton from the Motion Capture (MoCap) file; (ii) Extracting a Curve Skeleton

of a given 3D model that needs to be animated; (iii) Generating an Animation
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Figure 5.1: The general view of the proposed method.

Skeleton, which is the Curve Skeleton Adapted to make it compatible with

the Template Skeleton, and suitable for animation; and (iv) Computing the

optimized animation skeleton so that it reduces artefacts during animation.

5.3.1 Extracting the Template Skeleton

The first step is getting the template skeleton. Usually MoCap files contain two

parts. The first part is the skeleton hierarchy which gives information about

the number of joints, the location of the joints relative to their parents, the

length of the bones, the position and orientation of the bones and so on. For a

biped model there are usually 28 joints in a MoCap file. Some of these joints

do not have any anatomical correspondence. The second part in a MoCap file

contains the motion information of joints in each frame. Usually the motion is

represented through rotations in the x, y and z axes. For a human like model

the root is the pelvis joint. Fig. 5.2 (c) shows a sample of a template skeleton
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(a) (b)

(c) (d)

Figure 5.2: ((a) The key point is wrongly positioned inside the mesh and the
bones connected to that point intersect the mesh; (b) The key point is in the
right position and there is no intersection between the bones and the mesh;
(c) A human template animation skeleton extracted from a MoCap file; and
(d) The tree structure.
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extracted from a MoCap file. The tree structure of the template skeleton is

shown in Fig. 5.2 (d). Note that there are three types of joints in each skeleton

and correspondingly in each tree. The end points (eT ) of the skeleton, with

the degree of one (deg(eT ) = 1), form the leaves of the tree which are shown

in gray. For instance in Fig. 5.2(c) the nodes head,rhand, lhand, rfoot and

lfoot are the end points. The nodes that have three or more connections are

shown with cross and correspond to the junction points (jT ) of the skeleton.

The junction points have deg(jT ) ≥ 3. The nodes root and throax in Fig. 5.2

are the junction points. The rest of the nodes are regular skeleton joint points

(nT ), with deg(nT ) = 2. Each of these points has a value d(nT ) which is

the normalized bone length. Eq. ( 5.2) describes the normalized bone length,

where d(nT , eT ) is the Euclidean distance between the joint nT and its adjacent

end point eT in the hierarchy and d(jT , eT ) is the Euclidean distance between

the same end point and its adjacent junction point jT in the hierarchy. In

other words the normalized bone length is the proportional length of a bone

segment to the entire limb. For instance the proportional length of the forearm

to arm.

d(nT ) =
d(nT , eT )

d(jT , eT )
(5.2)

5.3.2 Extracting the Curve Skeleton

In the second step a curve skeleton is extracted from the 3D model. In the-

ory any 3D skeletonization algorithm can be used to get the curve skeleton.

3D skeletonization techniques have been widely studied in the literature. A

survey of different skeletonization approaches is given in [26]. Curve skeleton

extraction techniques can be broadly classified into two groups [9]: geometric

(if the algorithm is based on a surface) or volumetric. However, for generating

an animation skeleton, we would like a unit-width curve skeleton where all
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Figure 5.3: (Left) A 3D triangular mesh. (Middle) Extracted unit-width skele-
ton using VNSM technique. (Right) Symmetric, smooth and clean curve skele-
ton.

the components are connected. Therefore, we adapt the Valance Normalized

Spatial Median (VNSM) approach proposed by [117]. Although the extracted

curve skeleton is a connected unit-width skeleton, it is very sensitive to noise

and may contain unwanted branches. Fig. 5.3(a,b) shows an example of a

3D triangular mesh from [23] and the extracted skeleton using the approach

proposed in [117]. Undesirable branches are shown inside the circle. Also, the

left and right arms may be connected to the spine in several different positions

which contradicts the symmetry property of human models. To remove the

unwanted branches we use the branch length information (l(bSi)), and remove

any branch shorter than a threshold. Eq. (5.3) defines the constraint for re-

moving the unwanted branches, where q is the number of branches. We do not

consider finger and toe branches, since the MoCap file does not have details

at this level.

threshold =

q∑
i=1

l(bSi)

3× q
(5.3)
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Table 5.1: The threshold values for joint positioning.

joint th1 th2 th3
hipjoint 0.1 0.15 0.13
femur 0.47 0.53 0.5
tibia 0.87 0.93 0.9

clavicle 0.26 0.32 0.29
elbow 0.59 0.65 0.62
wrist 0.84 0.90 0.87

5.3.3 Automatic Selection of candidate Points

In order to speedup the process of optimization and finding the final set of

joints, we first automatically select a set of candidate joints or key points (kp)

from the curve skeleton based on three different factors, and later optimize

these points:

kp = {nS|jS or eS or th1 ≤ d(nS) ≤ th2} (5.4)

where nS is the curve skeleton point, d(nS) is the normalized bone length,

and th1 and th2 are the upper and lower limits for the position of a regular

joint. The skeleton end points (eS), the skeleton junction points (jS) and

the points within the threshold limits are selected as key points. Fig. 5.4

shows an example of the selected candidate points. The values for th1 and

th2 are shown in Table 5.1. These values have been obtained by analysing

144 different subjects presented in the CMU MoCap databse. The minimum

normalized bone length for each joint forms th1, the maximum normalized

bone length forms th2 and the average forms th3. Note that from anatomical

point of view there is always a relationship between the proportional bone

length for limbs as described in [87]. For instance the length ratio of femur to

tibia and humerus to ulna has been reported to be 1.21 and 1.22 respectively

with a standard deviation of 7%. This study was conducted among 24 men

and 14 women with different origins and age groups.
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Figure 5.4: The set of selected candidate points.

To compare the curve skeleton with the template skeleton, we use a tree

structure for both curve and template skeleton. The template skeleton is

already presented in the tree form. To generate the tree for the curve skeleton,

we first need to find the root. For a human-like model, the pelvis is selected

as the root. The pelvis is the curve skeleton junction point (jS) with degree

equal to three, while the other junction point, throax, has a degree of four.

Curve skeleton end points (eS) are the leaves of the tree and the rest of the

key points are tree nodes. The tree is generated based on the connectivity

between points. We compare the two trees branch by branch and based on

their leaves. Therefore, labelling the end points of the curve skeleton, which

forms the leaves of the tree, is a crucial step. To label these end points we use

the following equation. This equation works for human-like skeletons without

loops:

label(eS) =


feet if deg(jS) = 3

head if deg(jS) = 4

and length = min(branch.length)

hand otherwise

(5.5)
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Figure 5.5: Geometric illustration of the variables.

5.3.4 Optimization Framework

Once we have the hierarchy for the candidate points, the last step is to match

them with the template skeleton and refine them based on the mesh informa-

tion to get an accurate set of final joints. We would like to find the best match,

therefore an optimization approach is used to minimize a penalty function as

shown in Eq.(5.1). The penalty function (ϕ) is based on two important cost

functions. First is ϕCompatibility, which means the final set of joints should have

accurate proportions and be compatible to the template skeleton. For better

understanding of the algorithm and without losing generality, suppose we have

M different tree nodes or joint positions in both template skeleton and curve

skeleton and M ′ different candidate points, kp, for each joint position in the

curve skeleton as shown in Fig. 5.4. Analysing each branch separately, we

calculate the penalty values for each candidate points i in the joint position

m, which is (kpmi
). The Compatibility cost function is explained in Eq.(5.6).

ϕCompatibility(kpmi
) = |d(nTm)− d(kpmi

)| (5.6)

Note that we would like to find the best match of a candidate point, kpmi
,

to a specific template skeleton joint, nTm . Therefore, we fix joint m of the

template skeleton and search for the best candidate point in the same joint

position m in the curve skeleton kpmi
. The second factor is ϕCorrectness, which

means the two bones that are connected to the selected candidate points should
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not intersect the 3D mesh. Otherwise, the selected candidate point is not in

the correct position, as can be seen in Fig 5.2 (a). The Correctness cost

function is demonstrated in Eq.(5.7).

ϕCorrectness(kpmi
) = f(kpmi

, kp(m−1)i′ ) + f(kpi, kp(m+1)i′′
) (5.7)

where function f(a, b) checks if the bone ab intersects the mesh, what is the

distance between the intersected point, P , and the edges of the faces it inter-

sects . Each candidate point kpmi
can be connected to the candidate points

in two consecutive joint positions, kp(m−1)i′ and kp(m+1)i′′
. We have to check

if any of the two bones intersect the mesh or not. Function f is defined in

Eq.(5.8)

f(kpmi
, kp(m−1)i′ ) =

∑
P

|{vh, vk} × chk|
|{|vh, vk}|

+
|{vh, vr} × chr|
|{|vh, vr}|

+
|{vk, vr} × ckr|
|{|vk, vr}|

(5.8)

In the 3D mesh vh, vk and vr form a triangle face, and {vh, vk} is the edge

between triangle points vh and vk. If the bone that is formed by two candidate

points in two consecutive joint positions kpmi
and kpm+1i′

, intersects the mesh,

then we call this intersection point P . This is a Ray-triangle intersection

problem which has been described in [78]. We just need to check that P is

within the bone segment. The vector between P and {vh, vk} is denoted by

chk. Fig. 5.5 describes the variables visually.

Note that each candidate point i has M ′2 penalty values considering the

different combination of the consecutive joints. Starting from the leaf of each

branch (eS) in the curve skeleton, we iteratively select a candidate point, in

joint position m, with minimum penalty value and then choose the consecutive

joints accordingly. Lets say the minimum penalty value for joint position m

is for the candidate point i, kpmi
. The selection of i leads us to the candidate
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points i′ and i′′ in the joint positionsm−1 andm+1 respectively. Since they are

the other joints of the bone that created the minimum penalty function. This

goes forward until we traverse one branch completely. Finally, we calculate

the penalty path for all the different combinations and choose the path with

minumum penalty as the optimal path. The candidate points that form the

optimal path are the final optimized joints. Eq. (5.9) explains the optimization

process and how to select an optimum key point op.

opm = min(min
i

(ϕ(kpmi
)) +

m−1∑
o=1

ϕ(kpoi′|i) +
M∑

u=m+1

ϕ(kpui′′|i)) (5.9)

Note that in Eq. (5.9) we first choose the minimum penalty value for the

candidate point kpmi
, and then we choose the path with the minimum total

penalty to find the final set of optimized joints.

In Eq.(5.1) each cost function has a weight λ and 1− λ, where the weight

has a value between [0, 1]. We performed some user studies to find the best

value for λ. We changed the values of λ in step of 0.1 and showed the users the

generated animation skeleton superimposed inside the mesh. We then asked

the user to select a model with the skeleton best fitted inside the mesh and the

joints are correctly positioned . The result of the user study indicates that the

best value for λ is 0.8, which means that ϕCorrectness has a weight of 0.8 and

ϕCmpatibility has a weight of 0.2. This implies that the most important factor is

ϕCorrectness. In other words a key point is wrongly positioned if it intersects the

mesh, so we would like to avoid it happening by giving the term Correctness

a higher weight. However, there still can be human models that do not follow

the anatomical rule precisely, therefore we give the Compatibility term a lower

weight. Fig. 5.6 shows the final result of the selected joints and the generated

animation skeleton.
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Figure 5.6: (Left) The set of final joint points. (Right) The final animation
skeleton.

5.4 Automatic Anatomical Aware 3d Skele-

tonization

Mesh segmentation and 3d skeletonization of a biological model, such as bipeds

and quadrupeds, can be considered as related problems, specially if both ap-

plications use the anatomical features of the underlying model.

Previous studies [38], [50], [69] showed that one can use a segmented mesh

to extract curve skeleton or segment the mesh based on extracted skeleton

respectively. Even after creating the skeleton based on mesh segmentation,

the location of the joints can still be vague.

In this thesis we first segment the mesh based on anatomical information

as proposed by [50], then find the borders of the segmented regions and finally

locate the joints.

5.4.1 Mesh Segmentation

Mesh segmentation is decomposing a polygonal mesh or 3d volume into dif-

ferent segments based on geometrical or semantical features. Geometrical
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(a) (b)

(c) (d)

Figure 5.7: Mesh segmentation for two human models and two animal models,
different colors shows different labels.
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features include curvature, surface normal and distance to a plane, while se-

mantical features can be anatomical properties of biological models for in-

stance. [98] presents a comprehensive study on mesh segmentation and differ-

ent geometrical and semantical techniques. As [49], [50] discussed, a reliable

way to segment a mesh semantically is through learning segments based on

some training dataset.

In this thesis we used the Conditional Random Field (CRF) model for

mesh segmentation as described by [50]. Each face fi of the mesh has a unique

feature vector vi which includes geometrical properties such as face curvature,

shape diameter and average distance from medial axis. Also adjacent faces

i and j have a binary feature vector ui,j . This includes derivative of face

curvature, difference between shape diameter and difference between distance

from medial axis. The binary feature vector implies if two adjacent faces

should belong to the same segment or they belong to different segments. In

order to label each face, the model should minimize Equation 5.10.

E(l, θ) =
∑
i

aiE1(li;vi, θ1) +
∑
i,j

|ei,j|E2(li, lj;ui,j , θ2) (5.10)

where ai is the area of each face i and |ei,j| is the length of edge between

two adjacent faces i and j. θ is the parameter of the model and li is the

label of face i from a set of predefined labels L. E1 is the corresponding

energy function for unique feature as explained in Equation 5.11. E2 is the

corresponding energy function for binary feature which penalize neighbouring

faces that being assigned different labels.

E1(l;v, θ1) = −logP (l|v, θ1) (5.11)

E(l, θ) =
∑
i

aiE1(li;vi, θ1) +
∑
i,j

|ei,j|E2(li, lj;ui,j , θ2) (5.12)

87



(a) (b)

(c) (d)

Figure 5.8: Detected borders for two biped and two quadruped models.

To find the best parameter we took the same approach as [50]. Figure 5.7

shows the result of mesh segmentation on a biped and a quadruped model.

Note that based on training data one can achieve different level of details for

mesh segmentation.

5.4.2 Border Detection

After segmenting the meshes based on anatomical cue, we should detect the

border faces between two adjacent segments. Note that during mesh segmen-

tation each face has been labelled. Thus, to find the border faces we should

check what segments its vertices belong to. In other word face f is a border

face if at least one of its vertices is shared between two segments. Equation 5.13

summarizes this condition.

{f ∈ B|(fk ∈ si and fk ∈ sj)} (5.13)
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(a) (b)

Figure 5.9: (a) concave borders of a pig model. (b) close up of the concave
ear border.

where B is the set of border faces, si and sj are two neighbour segments and

fk is the k’th vertex of face f .

Figure 5.8 shows some examples of the detected borders. Note that animals

are segmented in a higher level of details and therefore the borders for upper

limbs and lower limbs are not detected.

5.4.3 Joint Location

Joints are usually located on the borders of the segmented mesh, since each

segments belong to different parts of human or animal body based on anatom-

ical features. Since we can have a different level of details during mesh seg-

mentation not all anatomical joints might be detected for a coarse segmented

mesh for example. However we don’t always need all this fine level of details

skeleton. The mesh itself is not always high resolution and we usually don’t

have the details of hand of a human model. Besides finding all the anatomical

joints of palm is not always necessary for animation or entertainment purpose

for example.

The exact location of the joints inside the border region can be more chal-

lenging. The criteria is that the joints should be inside the model and as close

as possible to the central line. One possible solution can be the centroid loca-

tion. It is obvious that centroid of any convex shape is inside the shape and

the best approximation for the centre of mass (COM) of the shape as other
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researchers used [14], [50]. Although the triangular faces are always convex,

there is no guarantee that the border region is a convex shape as Figure 5.9

shows. Equation 5.14 shows how to calculate the COM based on the centroid

of faces belong to the border.

c =

∑
f∈B

pf

n
(5.14)

where n is the number of faces belonging to the border and pf is the centroid

of each triangular face.

Figure 5.10 shows the position of final joints for different biped and quadruped

models. Note that level of details is different for human models comparing to

animal models.

5.5 Transferring and Animating a non T-pose

Model to a T-pose Model

Non T-pose animation is a technique that aims to generate natural transfor-

mations between any non T-pose skeletons to the neutral T-pose skeleton.

It is not always easy to extract or embed a T-pose animation skeleton into

a 3D human model due to its initial position. This is more problematic for

the human models obtained by 3D scanning, especially models of babies and

kids. In addition, transforming a non T-pose to a T-pose requires a large

amount of calculations. Hence, many commercially available software do not

provide efficient methods to standardize non T-pose skeletons. Here, we focus

on developing a simplified transformation method, which enables skeletons in

arbitrary poses to be standardized and used in other media conveniently.

Improvements in 3D capture technologies have led to many 3D models

being widely accessible to the general public. Now, people would like to bring

these articulated 3D models to life easily and quickly, by animating them
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Final joints for biped and quadruped models.
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automatically. However, the quality of the animation created depends largely

on the the realistic motion, and generating such motion is quite expensive

and challenging. To get the best results, people usually record natural human

movement of a live character through a motion capture system such as Vicon

motion capture [112]. The captured motion is transferred to new articulated

characters (Motion Retargetting), or several captured motion are combined

together to generate new movements (Motion Generation). To get a realistic

animation the source and target models should have the same initial position

which is not always possible. This problem is more severe if the target model is

for a baby or kid obtained through 3D scanning as they cannot always maintain

the neutral T-pose. One of the first work in the area of motion retargetting was

proposed by [37]. In this study they used the motion of an articulated model

for another model with the same topology but different bone lengths. Even

with the same topology, two models cannot directly share the motion and some

adaption or modification is required. Some features of the motion are quite

important and should be maintained during the animation. They set some

constraints manually and modified the motion during retargetting to make

sure that the constraints are always valid. This method has no information

about the motion and relies on the constraints. Thus, if the solver is not

provided with a comprehensive set of constraints the resulting animation may

be unrealistic. On the other hand, [95] proposed a motion aware retargetting

approach. They analyze and classify the motion to determine the motion

structure and identify its constraints. This eliminates the step of manually

defining the constraints. The editing and retargetting of MoCap data can

be useful to adapt the available motion to different characters and models.

However, motion editing does not help if the required motion is different than

the one already captured. In this case one should capture more motion which is

a very expensive and time consuming step. This motivates the need for motion
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generation and motion synthesis. [59] used motion graph, which is a structure

that enables the captured data to be reassembled in different ways. This graph

contains both pieces of original motion captured and automatically generated

motions. New motions can then be generated by building random walks on

the graph. Another approach that is used to generate new motion is motion

cut and paste as discussed in [5]. Motion database is quite important to build

a rich set of generated motions and behaviour [63]. In order to generate new

movements, one can use a collection of similar movements. [60] used Principal

Component Analysis (PCA) to extract the set of basis elements from existing

human motion data and then used Hidden Markov Models (HMM) to find the

optimal linear combination of basis elements to describe a natural generated

movement.

5.5.1 Proposed Method and Details

To animate a 3D human model one needs to have an animation or an IK

skeleton, as shown in Fig. 5.2(c), which can be in different formats. Regardless

of its format, the IK skeleton always contains information about the number

of the joints, the location of the joints relative to their parents, the length

of the bones and the position and orientation of the bones. We propose a

two step framework to automatically animate a non T-pose human model into

a neutral pose. First, we calculate the final position of the skeleton joints in

order to form a T-pose skeleton. Suppose the relative initial length and normal

direction of joint j to its parent is given by l and d = [u1 v1 w1] and the actual

direction of the same joint to its parents for a normalized T-pose skeleton is

given by dt = [uT vT wT ]. The final position of joint j relative to its parent

for a normalized T-pose skeleton is then given by Eq. 5.15.

pT = l × dT (5.15)
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Note that the bone directions for a T-pose skeleton is fixed for human

models and once obtained they can be used for different skeletons and models.

Also, the length and direction of each joint are relative to their parents.

After we get the initial frame, which is the initial position of the model,

and the final frame, which is the model transferred into a T-pose, we can

interpolate them to create some intermediate frames. For this research we

used linear interpolation to get the joints positions of the intermediate frames.

However, one can use other interpolation approaches to get more robust results.

Suppose we would like to have an animation clip with n frames. The position

of joint j in frame k is given in Eq. 5.16, where p0 is the position of joint j in

the first frame, with initial position.

pk =
k × (p0 + pT )

n− 1
(5.16)

We should also maintain the physical property of human body movements,

for example the maximum and minimum angles that each joint can have

through rotation. For each frame we check these properties to make sure

that they are on the natural range and the limits are the Degree of Freedom

(DOF) for each joint which can be obtained from a MoCap file. Suppose each

joint j can rotate along the three axis with the values of rj. Then to maintain

the physical property of human movement we will have Eq. 5.17, where minj

and maxj corresponds the minimum and maximum of the DOF respectively.

minj ≤ rj ≤maxj (5.17)

The goal of this research is to transfer a non T-pose 3D model into a T-pose

automatically and smoothly. To do so we proposed a two step framework where

we initially compute the final rotation of the skeleton joints to form a T-pose

skeleton and then generate some intermediate frames by linear interpolation
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(a) (b) (c)

Figure 5.11: (a) The initial frame with sitting position; (b) Frame twenty
shows the intermediate step (c) Final frame shows the neutral position

between the joints initial position and their final rotations. Fig. 5.11 shows

the initial, one intermediate and the final frame, generated by the proposed

algorithm to transfer a sitting model into a neutral pose. We created the

animation through a forty step interpolation, which resulted in a forty-frame

clip. The video of the generated motion is provided as supplementary material.

5.6 Experimental Results and Comparisons

The fully automatic methods that have been proposed in the literature thus

far require that the models be in a front facing T position to allow embedding

or extracting the animation skeleton. Other methods require input from the

user, for instance selecting the head or the pelvis of the model. Our method

can automatically extract the animation skeleton for an arbitrary model, in

any position and orientation.

We tested our algorithm on 20 human models in different poses and ges-

tures. The models are available in [23]. Our approach can successfully extract

the animation skeleton under the assumption that the extracted curve skele-
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ton does not contain any loop. For better visualization all of the skeletons are

superimposed inside the 3D meshes. Fig. 5.12 shows how some of the joints

have been relocated so that the final bones are inside the 3D model. The joints

inside the circle have been relocated so that the Correctness property remains

valid.

Fig. 5.13 shows the improvements in automated animation resulting from

the optimized skeletons detected by our algorithm. Without optimization the

right arm appears warped and twisted (top row); while our skeleton optimiza-

tion results in a much more natural looking animated right arm. The videos of

these animations are in the supplementary material, where we show that our

implementation can handle models in non-T position. Animation produced

by automatic skeleton embedding is also shown for comparison. Details of our

implementation are not included because of limited space.

Fig. 5.14 shows some walking animation frames using the proposed method

on three different models with arbitrary initial position and orientation. The

proposed method extracted the animation skeleton dirctly from the model

reagrdless of its initial position and orientation, therefore the rigged model

can first transfer from arbitrary initial position to a neutral position and then

start the motion. However, as you can see in the Fig. 5.16 the method proposed

in [13] assumes that the models are in standard T-pose and front facing to the

camera and animates the models based on this assumptions which creates

unrealistic results. For more animation sequences on more models please refer

to the supplemental material uploaded..

Fig. 5.15 compare the optimized an non-optimized extracted skeleton with [13].

It shows that [13] has a huge assumption about initial position to embed the

skeleton.

Finally, Fig. 5.17 shows more examples of the proposed method on 3D mod-

els with different initial positions. We showed the models in the front facing
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Figure 5.12: First column is the animation skeleton based on ϕCompatibility
property only and second column is the animation skeleton with optimization
incorporating the ϕCorrectness property. All the skeletons are superimposed
inside the meshes for better visualization.
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Figure 5.13: Top row: frames from animation using skeleton without opti-
mization. Bottom row: corresponding frames using skeleton optimized by our
algorithm. Note that the right arm does not look warped in the bottom row.

Figure 5.14: First column: initial position. Second column: transition to a
neutral pose. Third and Fourth column: different frames of a walking sequence.
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(a) (b) (c) (d)

Figure 5.15: (a) The initial extracted curve skeleton(b) The animation skele-
ton based on ϕCompatibility property only; (b) The animation skeleton with op-
timization incorporating the ϕCorrectness property; (d) The embedded skeleton
based on Pinnocchio technique [13].

Figure 5.16: Different frames of the Pinocchio proposed by [13], on two models
with arbitrary initial position and orientation.
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position so that the reader can better visualize them, however the models were

not originally in the front facing positions and the proposed method could suc-

cessfully extract the animation skeleton. Also, note that the proposed method

optimizes the curve skeleton points to find the best position for the joints.

However, if the curve skeleton itself is not in the best position, the position

of some joints might not look realistic; e.g., right shoulder in Fig. 5.17(i). To

solve this problem one might consider optimizing the points inside a sphere

around each candidate point.

5.7 Conclusion

We proposed a fully automatic approach to extract the animation skeleton

directly from a 3D model. Our approach does not require the model to be

in a neutral resting pose and it can accurately detect the skeleton joints as

long as the extracted curve skeleton does not contain any loop. Experimental

results demonstrate that our optimized animation skeleton reduces artefacts

during automated animations. In future work we will study the effect of better

skeletons on the quality of animation generated after MoCap compression and

transmission.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.17: First column is the curve skeleton, second column is the ani-
mation skeleton based on Compatibility property only and third column is
the animation skeleton with optimization. All the skeletons are superimposed
inside the meshes. 101



Chapter 6

Conclusion and Future
Direction

In this thesis we studied three different motion analysis applications in three

different domains. The first application is analysing 1D eye motion to better

understand team cognition between two surgeons.The second application is

fall detection in 2D videos. Finally the last application is detecting the 3D

trajectory key-points of arbitrary 3D human models automatically.

1. Understanding team cognition in healthcare environments by analysing

surgeons’ eye-gaze data is a new area of research. Although team cog-

nition is believed to be the foundation for team performance, there is

no direct and objective way to measure it, especially in the healthcare

settings. In fact, the deficiency in tools for objective team assessment

has been a major barrier in promoting surgical team training. In this

thesis we analysed both spatial and temporal features of the eye-gaze

data. The results showed that the top performance team, which is an

indication of better team cognition, displayed a higher recurrence rate,

lower delay, higher correlation values and higher overlap. Based on the

results of our study, dual eye-tracking and CRP/CRA is demonstrated

to be a powerful tool for revealing team cognition, and can help improve

the training quality of a surgical team.
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This study sorted the teams based on completion time. However, the

design of the study should form teams based on their expertise and

include expert surgeons in elite teams and inexperienced surgeons into

novice teams and compare these two groups based on different factors.

One could perform a new study by including surgeons with different level

of surgical expertise.

2. Falling down is a dangerous incident and life threatening for seniors, es-

pecially if the person is alone and cannot seek immediate help. Therefore,

automatic, real-time fall detection techniques can improve the quality of

life for seniors along their independence. We proposed a real-time au-

tomatic fall detection system based on motion deformation and velocity

of the action. We found that fall detection at the frame level is more

desirable than fall detection at the action level. Finding starting point

of an action or breaking a long video into smaller action is an ambiguous

task. The proposed method detects the region of interest, which is the

person, through a novel and robust ROI detection technique. It also

detects two significant points, head and center of the person. The angle,

size and velocity of the vector, generated by two significant points, are

used to detect falling. The results show that the proposed system is

quite accurate and very robust.

In future, one could use depth cameras to address the issues of falling

alongside the viewing direction of the camera. Also, it is possible to

use an outlier detection approach such as One Class SVM (OCSVM) to

detect the fall as an outlier action.

3. To animate an articulated 3D character an animation skeleton needs to

be extracted from or be embedded into a 3D model so that the model

can be automatically deformed during animation. In conventional ani-
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mation software, this process is mostly done manually by expert anima-

tors, which makes it a very tedious and time-consuming step. Recently,

some automatic rigging approaches have been proposed in the literature.

However, most of these techniques are not fully automatic and require a

front facing model in a neutral T-pose to accurately extract or embed the

animation skeleton. We proposed a fully automatic approach to extract

the animation skeleton directly from a 3D model. Our approach does not

require the model to be in a neutral resting pose and it can accurately

detect the skeleton joints as long as the extracted curve skeleton does

not contain any closed loops. Experimental results demonstrate that

our optimized animation skeleton reduces artefacts during automated

animations.

In future, we will introduce a new system that can extract animation

skeleton for any arbitrary 3D model.

Finally this three applications can be combined together to solve many

healthcare and surveillance related problems.

104



References

[1] http://www.animalcorner.co.uk/wildlife/giraffes/giraffe_

anatomy.html. 59

[2] A. A. Golovinskiy and T. Funkhouser, “Randomized cuts for 3d mesh
analysis,” ACM Trans. Graph., vol. 27, no. 5, 145:1–145:12, Dec. 2008. 57, 62

[3] M. S. Alzahrani, S. K. Jarraya, M. A. Salamah, and H. Ben-Abdallah,
“Fallfree: Multiple fall scenario dataset of cane users for monitoring
applications using kinect,” in 2017 13th International Conference on
Signal-Image Technology Internet-Based Systems (SITIS), Dec. 2017,
pp. 327–333. 31

[4] M. Andriluka, S. Roth, and B. Schiele, “Pictorial structures revis-
ited: People detection and articulated pose estimation,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition, Jun. 2009,
pp. 1014–1021. 30

[5] O. Arikan and D. A. Forsyth, “Interactive motion generation from
examples,” in ACM Transactions on Graphics (TOG), vol. 21, 2002,
pp. 483–490. 73, 93

[6] M. S. Atkins, G. Tien, R. S. Khan, A. Meneghetti, and B. Zheng,
“What do surgeons see capturing and synchronizing eye gaze for surgery
applications,” Surgical innovation, vol. 20, no. 3, pp. 241–248, 2013. 11

[7] M. Attene, B. Falcidieno, and M. Spagnuolo, “Hierarchical mesh seg-
mentation based on fitting primitives,” Vis. Comput., vol. 22, no. 3,
pp. 181–193, Mar. 2006. 56

[8] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal,
“Mesh segmentation - a comparative study,” in IEEE International
Conference on Shape Modeling and Applications, ser. SMI ’06, IEEE
Computer Society, 2006, pp. 7–. 53

[9] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee, “Skele-
ton extraction by mesh contraction,” ACM Trans. Graph., vol. 27, no. 3,
44:1–44:10, Aug. 2008. 78

[10] K. M. Augestad, R.-O. Lindsetmo, H. Reynolds, J. Stulberg, A. Senagore,
B. Champagne, A. G. Heriot, F. Leblanc, and C. P. Delaney, “Inter-
national trends in surgical treatment of rectal cancer,” The American
Journal of Surgery, vol. 201, no. 3, pp. 353–358, 2011. 3

105

http://www.animalcorner.co.uk/wildlife/giraffes/giraffe_anatomy.html
http://www.animalcorner.co.uk/wildlife/giraffes/giraffe_anatomy.html


[11] G. Aujay, F. Hétroy, F. Lazarus, and C. Depraz, “Harmonic skele-
ton for realistic character animation,” in Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation, 2007,
pp. 151–160. 70

[12] G. Baciu and B. K. Iu, “Motion retargeting in the presence of topo-
logical variations,” Computer Animation and Virtual Worlds, vol. 17,
no. 1, pp. 41–57, 2006. 72
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[55] L. Kavan and J. Žára, “Spherical blend skinning: A real-time deforma-
tion of articulated models,” in Proceedings of the 2005 Symposium on
Interactive 3D Graphics and Games, 2005, pp. 9–16. 74

[56] T. A. Kenyon, M. P. Lenker, T. Bax, and L. Swanstrom, “Cost and
benefit of the trained laparoscopic team,” Surgical endoscopy, vol. 11,
no. 8, pp. 812–814, 1997. 4, 9

[57] R. S. Khan, G. Tien, M. S. Atkins, B. Zheng, O. N. Panton, and A. T.
Meneghetti, “Analysis of eye gaze: Do novice surgeons look at the same
location as expert surgeons during a laparoscopic operation?” Surgical
endoscopy, vol. 26, no. 12, pp. 3536–3540, 2012. 11, 17
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