
Perturbed History Exploration in Stochastic
Subgaussian Generalized Linear Bandits

by

Shuai Liu

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Shuai Liu, 2023

Abstract

We consider stochastic generalized linear bandit (GLB) problems when the

reward distributions are log-concave and subgaussian. We consider for this

problem the perturbed history exploration (PHE) algorithmIn each round of

its operation, PHE perturbs the observed rewards by adding fresh noise to

them, fits a model to this perturbed data and selects the arm that has the

highest reward according to the fitted model. The appeal of PHE is that it

is e�cient whenever model fitting and best arm selection enjoy e�cient im-

plementations. In this thesis, we present a refinement of the basic perturbed

history exploration (PHE) algorithm, whereas the perturbations are adapted

to the structure of GLBs. Our main result is a novel bound on the regret of the

resulting algorithm. Building on an idea that was worked out for stochastic lo-

gistic bandits, a special case of GLBs, we prove that the negative log-likelihood

function on the observed data is a generalized self-concordant function. This

allows us to obtain regret bounds that extend previous state-of-the-art results

from special GLBs to our setting, achieving a new state-of-the-art. Finally, to

reduce the computation cost, we present a rarely-switching variant of PHE.

The resulting method is shown to su↵er a small constant-factor multiplicative

increase of the regret. To the best of the author’s knowledge, this is the first

result that shows that randomized algorithms can also be sped up by reducing

the frequency with which they update what action should be played.

ii

Preface

A preface is required if you need to describe how parts of your thesis were

published or co-authored, and what your contributions to these sections were.

Also mention if you intend to publish parts of your thesis, or have submitted

them for publication. It is also required if ethics approval was needed for any

part of the thesis.

Otherwise it is optional.

See the FGSR requirements for examples of how this can look.

iii

We must know - we will know!

– David Hilbert.

iv

Acknowledgements

Put any acknowledgements here, such as to your supervisor, and supervisory

committee. Remember to list funding bodies, and external scholarships. The

acknowledgements can’t be more than 2 pages in length.

Acknowledgements are optional, but are recommended by the FGSR.

v

Table of Contents

1 Introduction 1

2 Related Work 4

3 Preliminaries 8
3.1 Notation . 9
3.2 Stochastic Multi-armed Bandits with Finitely Many Arms . . 9

3.2.1 The interaction protocol 9
3.3 Stochastic Linear Bandits . 10

3.3.1 The interaction protocol 11
3.4 The Optimization Objectives 12
3.5 Exploration and Exploitation Trade-o↵ 13
3.6 Problem Setting . 14
3.7 Generalized Linear Models . 16
3.8 Revisiting Generalized Linear Bandits 18

3.8.1 Log-likelihood function 19
3.9 Subgaussian Distributions . 19
3.10 Generalized Self-concordant Functions 22

3.10.1 Properties of the Link Function µ 27
3.10.2 The Curvature of the Log-likelihood Function 29

3.11 Posterior Sampling and Perturbed History Exploration 30
3.11.1 Optimism in Face of Uncertainty 30
3.11.2 Posterior Sampling . 30
3.11.3 Posterior Sampling in Linear Bandits 31
3.11.4 Perturbed History Exploration 31
3.11.5 Perturbed History Exploration in Generalized Linear Ban-

dit . 32
3.12 Optimal Design Problem . 33

4 Perturbed History Exploration for Subgaussian Generalized
Linear Model Bandits 36
4.1 sGLM-PHE . 36
4.2 The analysis of sGLM-PHE 38

4.2.1 A Tail Inequality for Self-Normalized Martingales and
the Confidence Set . 39

4.2.2 The Good Events . 47
4.2.3 Analysis of the Warm-Up Procedure 48
4.2.4 Analysis of the Good Events 49
4.2.5 Analysis of the regret bound of Algorithm 6 60

vi

5 The Rarely Switching Variant of sGLM-PHE: sGLM-PHE-RS 73
5.1 sGLM-PHE-RS . 74
5.2 Analysis of sGLM-PHE-RS . 75

5.2.1 An Auxillary Lemma 75
5.2.2 The Good Events . 77
5.2.3 Analysis of the Good Events 78
5.2.4 Analysis of the regret bound of Algorithm 8 81

6 Conclusion and Future Work 85

References 87

vii

List of Tables

3.1 The self-concordance parameter for some common exponential
family distributions. One can derive ML by dividing the third
central moment by the variance. Note for the distributions
above, ML either behaves like a constant or scales with the
expected value of the distribution. 24

viii

List of Figures

3.1 A plot visualizing subgaussianity in 1-d case. The red curve is
Gaussian distribution with mean 0 and variance 0.5: N (0, 0.5).
The green curve is the “notorious” Cauchy distribution whose
tail cannot be dominated by a Gaussian distribution. The pur-
ple curve is Gaussian distribution with mean 0 and variance 0.4:
N (0, 0.4), which itself is a subgaussian distribution. Note that
one only tells if a distribution is subgaussian by its tail behavior
so purple curve is still subgaussian even if it is higher than the
red curve in the area around the mean. 20

ix

Chapter 1

Introduction

E↵ective exploration is key to the success of algorithms that learn to optimize

long term reward while interacting with their environments [LS18]. Algorithms

based on perturbed history exploration (PHE) follow the optimal policy given

a model fitted to data where the past observed rewards are randomly perturbed

[Kve+19b]. The appeal of PHE is that it promises to reduce exploration to

the widely studied problems of e�cient model fitting and e�cient policy

optimization against a fixed model. To apply PHE, the main question is

whether an appropriate reward perturbation can be designed, which results in

an e�cient and e↵ective exploration method.

PHE is only one of the many possible ways of using randomization to

induce exploration. As such, it has a few alternatives even if we restrict to

methods that use randomization. We claim, however, that it stands out among

these due to its simplicity and universality. The first documented case of

using randomization for inducing exploration is due to Thompson [Tho33], who

suggested a Bayesian approach, where a model is sampled from the posterior

is used for action selection. There are numerous challenges with this approach,

which is often dubbed as Thompson sampling after its inventor, also known

as posterior sampling.

The challenges are the following: (i) exact sampling from the posterior

may be intractable, (ii) approximate sampling can be costly and (iii) can ruin

performance [PAD19], and, finally, (iv) sampling from the posterior can in

fact be insu�cient to achieve good, robust performance, e.g., in linear bandits

1

[HB20]. Another early approach is to directly randomize action selection,

as in ✏-greedy, or Boltzmann exploration. The weaknesses of these approaches

is that it is not obvious how to tune them for robust performance [LS18;

OVW14; Osb+17]. Yet another approach is to randomize parameters of

models that are used to predict rewards, or, more generally, values [OVW14;

Osb+16; Osb+17]. With nonlinear models, the choice of the parameter of the

noise distribution becomes nontrivial [Osb+16].

For generalized linear bandits, Kveton et al. [Kve+19c] proposed a noise

distribution and proved that the resulting algorithm achieves state-of-the-art

regret among randomized methods. However, it remains unclear to what de-

gree this result can generalize to more complicated setting. The challenge

here is that if parameters are transformed in a complicated way by a nonlinear

model, an appropriate noise distribution will be hard to choose.

While PHE is not completely immune to this issue, it may be true that good

reward perturbations are easier to find than good parameter perturbations. In

particular, in this work, we put forward the following conjecture:

Conjecture 1. Good reward perturbations are those that set the standard de-

viation of the noise to be added to the reward associated with a data point to

match the uncertainty level associated with the data point: The more uncertain

the reward prediction would be at a data point, the more noise is to be added

to it.

The main contributions in this thesis are the following: (i) It is proved

that subgaussian generalized linear bandits (sGLBs) satisfy a self-concordance

property, a result that was previously unnoticed and which immediately gives

great improvements over the state-of-the-art for sGLBs; (ii) The approach of

Kveton et al. [Kve+19c] is modified by adding a new initialization method and

by adapting the reward perturbations to match Conjecture 1 stated earlier;

(iii) It is shown that the resulting method achieves regret with dominant term

O(d
3

2

p
n) where d is the number of free parameters and n is the number of

rounds; and (iv) It is shown that one can apply rarely switching to the proposed

randomized method, with almost no loss in performance. This is the first time

2

that rarely switching is shown to work together with a randomized method. In

the case of PHE, this means that model-fitting and policy optimization only

need to be performed O(log n) times for a horizon of length n, which is an

exponential improvement in the runtime. As expected from previous results

on linear bandits, there is a tradeo↵ between the dependence of the regret on

the dimension d and whether the method is applicable for large action sets

where iterating through all actions is not an option, but an e�cient linear

optimization oracle is available.

The contributions of this work is: for chapter 3, the proofs were done with

collaboration with Alex Ayoub, David Janz and Csaba Szepesvári. For chapter

4, the proofs were done by the author.

3

Chapter 2

Related Work

Ensembling is a close relative to parameter perturbation and also to PHE:

Ensembling methods use perturbed data to create a number of alternative

models and make decisions by following in each step a model that is randomly

selected from the so-created ensemble [LR17]. While ensemble sampling has

seen much empirical success, for example, in reinforcement learning [OAC18;

Osb+16; Osb+17], it tends to be costly. For example, the current state of

the art that guarantees robust performance requires a poly(n)-sized ensemble

[Qin+22]. Even if this is brought down to a constant, the method will still be

expensive to run if model training is costly, though the same applies to PHE.

Various bootstrapping based approaches have also been explored. Boot-

strapping alone is insu�cient, as can be easily seen by thinking of Bernoulli

bandits when an optimal arm starts in an unlucky manner and generates only

zero rewards [Kve+19a; OV15]. This realization is what originally led to

the idea of perturbed history exploration (PHE) [Kve+19a; Kve+19b;

Kve+19c; Kve+20]. PHE is known to achieve state-of-the-art results in un-

structured multi-armed, and linear bandits [Kve+19b; Kve+20], but little is

known beyond these cases about PHE. In particular, the only result available

for PHE for generalized linear bandits assumes that the arms are all a multiple

of some basis vector of the standard Euclidean basis [Kve+19c]. Needless to

say, this greatly limits the scope of their result and because of this, up to this

work, it remained unclear whether PHE can also work for generalized linear

bandits. Resolving this open question was one of the main motivations behind

4

this work. Indirect support for the strength of PHE is that PHE can be seen as

follow-the-perturbed-leader, which is known as a robust method in online

learning in adversarial environments [Han57; KV05]. As noted earlier, the ap-

peal of PHE is its simplicity and that it reduces exploration to the well-studied

problems of e�cient model fitting and policy optimization. The compute cost

of PHE can often be further reduced by performing model fitting and policy

optimization in an incremental fashion (e.g., [Kve+19c; Kve+20]).

Besides randomized methods, e↵ective exploration can be induced by op-

timistic algorithms [ACF02; Fau+20; JOA10; LR85; RV13], or by following

the exploration by optimization approach [Fos+21; FGH23; LS20; RV18].

As opposed to PHE, where in the presence of simple perturbation distributions

compute e�ciency mainly depends on whether e�cient model fitting and opti-

mization methods are available, the e�ciency of optimistic and exploration by

optimization approaches depends on whether complex optimization problems

admit e�cient solutions. Finding such e�cient methods is highly nontrivial

and is usually done on a case by case basis, which limits the applicability of

these methods, and can lead to algorithms that are overspecialized, which in-

creases complexity and which is a problem for practicioners who are looking

for simple, and generally applicable solutions.

Besides PHE, there is a rich line of work in GLB as well as its special case:

logistic bandit. In general, algorithms in GLB assume subgaussian reward

while some of the works in GLB assume bounded reward and works in logistic

bandits, which is a special case of GLB, have to assume binary reward. In the

remaining of this section, n is the number of rounds, d is the dimension of the

unknown parameter ✓⇤, which is assumed to lie in a set ⇥ ⇢ Rd, which is in the

`2 ball of radius S > 0. The arm set X ⇢ Rd is assumed to lie in the `2-ball of

radius 1 (Filippi et al. [Fil+10] allows arbitrary radius and pays a logarithmic

price for the radius). We denote the cardinality of the arm set by K, which is

allowed to be infinite. The regret bounds ignore logarithmic factors other than

those that depend on the number of arms. We use ymax to denote the bound on

the reward. We use L � 1 to denote the upper bound on the Lipschitz constant

of the reward function µ, which is 1/4 for logistic bandits,  is the worst-

5

case, inverse sensitivity of the reward function. The GLB framework was first

introduced by Filippi et al. [Fil+10] proposes GLM-UCB algorithm and the

analysis of GLM-UCB which shows that GLM-UCB achieves a performance

of order Õ(ymaxLd
p
n). The reward in Filippi et al. [Fil+10] is assumed

to be bounded. Another algorithm SupCB-GLM achieving a regret of order

Õ(L
p

dn log(K)) was proposed by Li et al. [LLZ17] in which finite number

of arms are assumed, improving upon Filippi et al.[Fil+10] by a factor of
p
d.

GLB-TSL is proposed by Abeille et al. [AL+17] to solve GLB that enjoys

a regret upper bound of order Õ(Ld3/2
p
n). Later Kveton et al. [Kve+19c]

improved the analysis that tightens the regret upper bound of GLM-TSL to the

order of Õ(L3/23/2d
p
n logK+d2) which also assumes finite number of arms.

Apart from the improvement on GLM-TSL, Kveton et al. [Kve+19c] proposes

GLM-FPL which enjoys a regret bound of order Õ(L22d
p
n logK + d2) on

the assumption that the number of non-zero elements in each feature vector is

at most 1. In consideration of the space complexity and time complexity of the

existing GLB algorithms, Kwang et al. [Jun+17] proposes GLOC that enjoys

a constant space and time complexity. GLOC itself achieves a regret bound

of order Õ(L2d
p
n). GLOC-TS, the posterior sampling extention of GLOC,

enjoys a regret bound of order Õ(L2d3/2
p
n) that scales linearly with d3/2,

being far from d of GLOC. Towards closing the gap, QGLOC was proposed,

enjoying a regret bound of order Õ(L2d5/4
p
n).

Logsitic bandit is a special case of GLM that has been extensively investi-

gated on. Faury et al. [Fau+20] improved the guarantee on UCB algorithm,

by proposing LogUCB-2, a variant of GLM-UCB on logistic bandit, that uses

the properties of self-concordant functions and enjoys a regret bound of or-

der Õ(
p
Ld
p
n+ ), pushing  to the second-order term for the first time for

logistic bandits. Russac et al. [Rus+20] proposes SCD-GLUCB that gener-

alizes the approach from Faury et al. [Fau+20] to GLBs, enjoying a regret

bound of order Õ(ymax

p
Ld
p
n) with the bounded reward assumption. Fol-

lowing Faury et al. [Fau+20], Abeille et al. [AFC21] tighten the regret bound

of UCB-type algorithm to minimax optimal by proposing OFULog, another

variant of GLM-UCB as well as proving a lower bound that matches the re-

6

gret upper bound of OFULog. The OFULog algorithm enjoys a regret upper

bound of order Õ(d
p

µ̇(x>
⇤ ✓⇤)+). However, the problem of logistic bandit is

closed by Abeille et al. [AFC21] statistically but not computationally: OFU-

Log is computational intractable. Faury et al. [Fau+22] solves this problem

by designing the OFU-ECOLog algorithm, where an e�cient local learning

procedure is added on top of the OFULog algorithm, reducing the total com-

putational cost of the whole algorithm to O(d2 log(1/")) many operations. A

warm-up procedure is needed in OFU-ECOLog algorithm whose number of

steps required may exceed the total number of rounds n in practice. To tackle

this problem, an adaptive procedure that rejects the collected data on-the-fly

and adapt the optimization constraint based on the rejected data is intro-

duced to make the algorithm practical to use. Adding the e�cient learning

procedure to posterior sampling results in the TS-ECOLog procedure is also

given by Faury et al. [Fau+22], which enjoys a regret upper bound of order

Õ(d3/2
p

µ̇(x>
⇤ ✓⇤) + L).

7

Chapter 3

Preliminaries

In this chapter, we first introduce some notations that will be used through-

out this thesis. Then we review two most renowned sequential decision mak-

ing frameworks: stochastic multi-armed bandits (MABs) with finite arms and

stochastic linear bandits (LBs). These two frameworks will be helpful to under-

standing the setting that this thesis is working on, the stochastic Generalized

Linear Bandits (GLBs) setting, which as the name implies, is a generaliza-

tion of stochastic linear bandits. The exploration and exploitation tradeo↵ in

sequential decision making is then briefly summed up and explained in the

multi-armed bandit framework. With all of these preparations we are ready to

dive into the problem setting of this thesis: stochastic subgaussian generalized

linear bandits. We introduce the problem setting of this thesis, including the

main assumptions, the optimization targets, as well as the notations that will

be used. As one can infer from the title, subgaussianity is one of the most crit-

ical assumptions of this work so we use a section to review its definition as well

as some of its useful properties. The generalized self-concordant functions, one

of the key tools we use to tackle the challenges in GLBs, is introduced right af-

ter the section of subgaussian distributions. Finally two methods to deal with

the exploration and exploitation dilemma as well as their implementations

in stochastic linear bandits framework and the stochastic generalized linear

bandits framework are reviewed: posterior sampling and perturbed history

exploration.

8

3.1 Notation

The following notations are used throughout this thesis: For a positive integer

n, we let [n] denote the set {1, ..., n}. All vectors (unless transposed) are

column vectors. For any positive semi-definite (PSD) matrix M 2 Rd⇥d and

x 2 Rd, we define kxkM =
p

x>Mx. For two d ⇥ d PSD matrices M1 and

M2, we write M1 ⌫ M2 if x>M1x � x>M2x for all x 2 Rd. I{·} is used to

denote the indicator function of an event and Õ is used for big-O notation up

to logarithmic factors. Denote B2(d) as a d-dimensional ball with radius 1,

B2(d) = {x 2 Rd : kxk2  1}. poly(a1, a2, . . .) is used to denote a function

that is polynomial in the scalar inputs a1, a2, For a twice di↵erentiable

function f : R! R, ḟ(·) and f̈(·) denote its first and second order derivative

with respect to their own arguments.

3.2 Stochastic Multi-armed Bandits with
Finitely Many Arms

A stochastic multi-armed bandit with k arms is a sequential decision making

framework where an learner makes decisions in an environment in which there

are k choices from a space A and each of them is associated with a distribution

⌫i with mean µi. Since the number of choices is finite, we can establish a

bijection between A and [k], which allows us to refer to [k] as A in this section.

The distributions {⌫i}ki=1 are not disclosed to the learner. As the analogy

between bandit1 and the decision environment, each choice is called an arm

and A is called the arm space.

3.2.1 The interaction protocol

The learner and the environment interacts sequentially over n rounds. In each

round t 2 [n], the learner makes a decision at 2 [k] from the k arms according

to a policy, which is characterized by a probability kernel ⇡t(·|a1, y1, . . . , at�1, yt�1),

1The name comes from the slot machines in casinos which are also known as one-armed
bandit

9

Algorithm 1 The interaction protocol of a multi-armed bandit with k arms

1: for each round t = 1, 2, . . . , n do
2: The agent chooses an action at 2 [k]
3: The environment samples a reward yt 2 R from the distribution ⌫at
4: The agent potentially updates its decision strategy after receving the

reward
5: end for

and the decision is fed into the environment. After receiving the learner’s de-

cision, the environment samples a reward yt 2 R from the distribution ⌫at ,

yt = µat
+ ⌘t,

where ⌘t is a zero-mean noise. The reward is then revealed to the learner.

Based on the observed reward, the learner may update its policy ⇡t+1. The

interaction protocol is summarized in Algorithm 1. Stochastic MABs are also

known as unstructured bandits which means by pulling an arm a, only infor-

mation about the reward sampled from ⌫a is disclosed to the learner, or the

learner cannot infer anything about arms other than the arm a.

3.3 Stochastic Linear Bandits

Linear bandit is a sequential decision making framework where the learner

interacts with an environment in which there are potentially infinitely many

arms from the arm space A. Each arm a 2 A is associated, by a bijection

� : A ! Rd, to a d-dimensional feature vector x 2 X where X = {�(a)|a 2

A} ⇢ Rd is the set of all feature vectors. The reward mean of pulling arm a

is:

µa = �(a)>✓⇤,

where ✓⇤ 2 Rd is known as the model parameter.

The set of all feature vectors X and the bijection � is accessible to the

learner while ✓⇤ is not. It is common in literature to assume the l2-norm of the

feature vectors for all arms are bounded by 1 and the l2 norm of the model

parameter is bounded:

10

Algorithm 2 The interaction protocol with a linear bandit

1: for each round t = 1, 2, . . . , n do
2: The agent chooses an action xt 2 X

3: The environment samples a reward yt = x>
t
✓⇤ + ⌘t

4: The agent potentially update the decision strategy after receving the
reward

5: end for

Assumption 3.3.1. There exists S > 0 for which k✓⇤k2  S.

Assumption 3.3.2. For all x 2 X , kxk2  1 .

3.3.1 The interaction protocol

Since � is a bijection between A and X , in the context of LBs, we represent

an arm a with its feature vector x = �(a). The learner and the environment

interacts sequentially over n rounds. In each round t 2 [n], the learner makes

a decision xt 2 X according to a policy, characterized by a probability kernel

⇡t(·|x1, y1, . . . , xt�1, yt�1), and the decision is fed into the environment. After

receiving the learner’s decision, the environment samples a reward yt 2 R from

the distribution ⌫at ,

yt = x>
t
✓⇤ + ⌘t,

where ⌘t is a zero-mean noise. Typically we assume the noise is �-subgaussian:

Assumption 3.3.3. For � > 0, for all a 2 A, the noise ⌘t satisfies

E[exp(�⌘t)|x1, y1, ..., xt�1, yt�1]  exp(��2�2/2), 8� 2 R.

The reward is then revealed to the learner. Based on the observed reward,

the learner may update its policy ⇡t+1. The interaction protocol is summa-

rized in Algorithm 2. One of the main di↵erences between MABs and LBs

is that LBs are structured bandits, which is defined to be bandits that are

not unstructured. When pulling an arm x, the learner gets some information

about the model parameter ✓⇤, which can be used to infer the means of other

arms since X is revealed to the learner.

11

3.4 The Optimization Objectives

In this section, we review one of the most frequently used optimization objec-

tives: cumulative (pseudo) regret minimization. One natural thought is that

the learner would like to maximize the pay-o↵, i.e., the sum of the rewards col-

lected, during the sequential interaction with the environment. Maximizing

the cumulative reward collected is equivalent to minimizing the cumulative

regret, which is defined to be the expectation of the di↵erence between the

maximum reward that could have been achieved if the learner knew the best

arm, and the reward of the arms pulled. For MAB, the cumulative regret is

R̄MAB
n

= nµ⇤ � E⌫⇡

"
nX

t=1

yt

#
,

where µ⇤ = maxi2[k] µi and E⌫⇡ is the expectation under the probability mea-

sure P⌫⇡ induced by the interconnection between the learner and the environ-

ment. Note that the randomness of the reward yt in each round t does not

only come from the reward distribution ⌫at , but also comes from the policy ⇡

used by the learner.

For LBs, the cumulative regret is

R̄LB
n

= nx>
⇤ ✓⇤ � E⌫⇡

"
nX

t=1

x>
t
✓⇤

#
,

where x⇤ 2 argmaxx2X x>✓⇤. The definition of the cumulative regret removes

the randomness by taking expectation. Cumulative pseudo regret incorporate

this randomness by removing the expectation in the definition of cumulative

regret, that is, the di↵erence between the maximum reward that could have

been achieved if the learner knew the best arm, and the reward of the arms

pulled. For MAB, the cumulative pseudo regret is

RMAB
n

= nµ⇤ �

nX

t=1

µat
,

and for LBs, we the cumulative pseudo-regret is

RLB
n

= nx>
⇤ ✓⇤ �

nX

t=1

x>
t
✓⇤,

12

If a learner is able to achieve a small cumulative pseudo-regret with probability

at least 1 � � for � 2 (0, 1), it can achieve a small cumulative regret by

carefully setting �. The target of a learner is to incur a sublinear (pseudo)

regret, that is, Rn = o(n) as n ! 1. In that case, asymptotically, the

mean (pseudo) regret will be 0 as the number of interaction rounds n goes to

infinity. Otherwise, if the regret is linear, it indicates that the learner did not

learn enough information about the optimal arm(s) from the interaction, which

causes it making incorrect choices in every round on average. We mainly focus

on the pseudo-regret in this thesis so the term “regret” refers to the cumulative

pseudo-regret for MABs, LBs and the forthcoming GLBs.

3.5 Exploration and Exploitation Trade-o↵

One of the most renowned challenge in multi-armed bandit framework is the

exploration and exploitation tradeo↵ where a learner needs to balance between

exploiting the current knowledge by selecting the best known arm and exploring

arms to improve the current knowledge. It is a challenge in the sense that if one

does not explore enough, chances are that the true optimal (or near-optimal)

arms are not identified, hence they are not pulled much, resulting into sub-

optimal decisions. For example, if a learner stops exploring after learning

only about arms that are at most �-optimal in the first cn rounds, for some

c 2 (0, 1), that is, µ⇤ � maxtcn µat
� � for some � > 0 and exploits its

current knowledge, that is, pulling the arm with the highest mean so far for

the remaining (1�c)n rounds. Then the regret in this case is at least�(1�c)n,

which is at least linear in n.

On the other hand, if one explores too much, or does not exploit enough, re-

sources are wasted by making meaningless exploration decisions, resulting into

sub-optimal decisions as well. For example, if a learner has already learned

about the optimal arm a⇤ and still keeps exploring, meaning it is keeping

pulling suboptimal arms even if with knowledge of the optimal arm, unneces-

sary increment in regret is therefore incurred and it can be harmful to the final

regret. For example, the learner still explores c0n rounds in total after knowing

13

the optimal arm for some c0 2 (0, 1). Let �0 = µ⇤ � maxµi 6=µ⇤,i2[k] µi be the

gap between the arm with highest mean µ⇤ and the arm with second-highest

mean. The regret in this case is at least �0c0n, which is also at least linear in

n.

Judiciously balancing exploration and exploitation is thus key to keep the

regret low.

3.6 Problem Setting

We consider the stochastic generalized linear bandit problem [Fil+10]. At the

beginning of each round t = 1, 2, . . . , the learner chooses an action xt from the

set of arms X ⇢ Rd, which is potentially infinite. Next, a scalar reward yt is

incurred. Conditionally on past observations, ht�1 := (x1, y1, . . . , xt�1, yt�1),

the distribution of the reward yt follows a distribution that is a member of

a single parameter natural exponential family, where the exponential

family parameter ut 2 R at time step t is ut = x>
t
✓⇤, with ✓⇤ 2 ⇥ ⇢ Rd being

an unknown parameter:

yt ⇠ p(y; ut) ⇢(dy),

where p(y; u) = exp(yu � (u)), y, u 2 R and , h : R ! R are suitable nor-

malizing mappings and ⇢ is a reference distribution over the reals, which we

call the base distribution. It is assumed that ut is so that (y; ut) is well-defined.

(Properties of natural exponential family distributions will be explored in Sec-

tion 3.7, where the reader will find details about , h and other quantities.)

After the reward is observed, the process repeats. In particular, in step t+ 1,

the learner can choose xt+1 based on ht.

The goal of the learner is to pick the best possible action, denoted by

x⇤ = argmaxx2X µ(x>✓⇤) so as to maximize the total reward collected over

n steps of interaction. This goal is equivalent to minimizing the cumulative

pseudo regret,

R(n) =
nX

t=1

µ(x>
⇤ ✓⇤)� µ(x>

t
✓⇤) ,

14

where

µ(u) =

Z
p(y; u)⇢(dy)

is the mean of the reward y with parameter u. Similar to MAB and LB,

pseudo-regret is defined to be the di↵erence between the maximum reward

that could have been achieved if the learner knew the best action, and the

expected reward of the arms taken. If a learner achieves sublinear regret (that

is, R(n) = o(n)), or, the regret per time step converges to zero as n gets large,

then learner can be seen as having learned the best possible action.

Let P be the probability measure induced by the interconnection between

the learner and the environment. Denote Pt(·) := P(·|ht�1) and Et(·) :=

P(·|ht�1). We make the following additional assumptions, which are bor-

rowed from the work that introduced the generalized linear bandit framework

[Fil+10]:

Assumption 3.6.1. The noise in the reward, ✏t = yt�µ(x>
t
✓⇤), is condition-

ally subgaussian with a parameter � > 0:

Et[exp{�"t}]  exp{�2�2/2}, for all � 2 R .

Assumption 3.6.2. We have ✓⇤ 2 ⇥ where ⇥ is compact, and a value S is

known such that ⇥ is included in the `2-ball of radius S with center zero: For

any ✓ 2 ⇥, k✓k2  S.

Assumption 3.6.3. For all x 2 X , kxk2  1.

The subgaussian assumption, as the name suggests, expresses that the tails

of the distribution decay at least as fast as that of the normal (or, Gaussian)

distribution. Naturally, this holds for normal distributions, but also holds,

for example, when yt belongs to a bounded interval such as the beta or hy-

pergeometric distribution. We include more details about subgaussianity in

Section 3.9. In the presence of the subgaussian assumption, we refine the

problem that is discussed in this thesis to be subgaussian generalized linear

bandit (sGLB) problem as it is a subset of all generalized linear bandit prob-

lems. As long as the action set is bounded, the assumption that the action

15

set is a subset of the unit ball can be always met by increasing the radius of

the ball containing the parameter set—it serves to simplify the presentation.

Finally using µ̇ to denote the derivative of µ with respect it argument (which

is guaranteed to exist, cf. Section 3.7), we let

L := sup
x2X ,✓2⇥

µ̇(x>✓) and  := sup
x2X ,✓2⇥

1

µ̇(x>✓)

be the largest growth rate of µ and a parameter that characterizes how flat µ

becomes over its e↵ective domain, respectively. Note that knowing the model

allows one to obtain the exact numerical values of  and L, which can thus be

used in the algorithms. We impose that  cannot be unbounded above:

Assumption 3.6.4. The reciprocal of the first order derivative of the mean

function µ(·) has a finite least upper bound on its domain {x>✓|x 2 X , ✓ 2

⇥} ⇢ R:
 = sup

x2X ,✓2⇥

1

µ̇(x>✓)
<1.

As we shall see later, for every round t and for ✓ 2 ⇥, the first order

derivative µ̇(x>
t
✓) equals to the conditional variance of the reward distribution

yt associated to xt, the arm pulled in round t. Therefore, what Assump-

tion 3.6.4 imposes in fact is that the reward distribution does not degenerate

to a Dirac distribution over its domain.

3.7 Generalized Linear Models

We start with the definition of generalized linear models (GLMs) [McC19]. All

unattributed results in this section can be found either in the above reference,

or in [Bro86].

Definition 1 (Natural exponential family). Let ⇢ be a probability distribution

over the reals. The natural exponential family (P✓)✓2D with base ⇢ is a family

of probability distributions over the reals with the following properties:

1. D = {✓ 2 R : S(✓) <1} where we let S(✓) =
R
e✓y⇢(dy).

2. P✓(dy) =
e
✓y

S(✓)⇢(dy) for ✓ 2 D.

16

Proposition 3.1. The set D ⇢ R is a convex subset of the reals.

From Definition 1, if a random variable Y 2 R has a distribution from

exponential family with parameter ✓ 2 R, then its density function (d.f.) with

respect to ⇢ can be written in the form

p✓(y) = exp(y✓ � (✓)) , (3.1)

where

 (✓) = log S(✓) .

Recall that for a random variable Y , its moment generating function is

defined via MY (t) = E✓[exp(tY)] for all values of t 2 R where the expectation

on the right-hand side exist, while for the same values, the cumulant generation

function of Y is KY (t) = logMY (t).

Fix ✓ 2 D and let Y ⇠ P✓. By abusing notation, we let M✓(t) := MY (t)

and K✓(t) := MY (t). Then,

M✓(t) =

Z
exp(y✓ � (✓)) exp(ty)⇢(dy)

=
1

exp((✓))

Z
exp((✓ + t)y)⇢(dy)

= exp((t+ ✓)� (✓)) ,

where the last equality comes from the definition of . It follows that

K✓(t) = (t+ ✓)� (✓). (3.2)

It follows from the standard result of GLMs (page 38, Brown [Bro86]) that

 is an infinitely di↵erentiable function. Therefore, one can safely take the

nth derivative of K(t) for n 2 N:

K(n)(t) = (n)(t+ ✓). (3.3)

From the standard properties of cumulant generating function (CGF) (for ex-

ample, section 5.6.2 in Khuri [Khu03]) that the first, second and third deriva-

tive of CGF evaluated at 0 are the first, second and third centered moments

17

of Y , respectively:

 0(✓) = E✓[Y] , (3.4)

 00(✓) = E✓[(Y � E[Y])2] , (3.5)

 000(✓) = E✓[(Y � E[Y])3] , (3.6)

where 0(✓), 00(✓), 000(✓) are the first order derivative, second order derivate

and third order derivative of evaluated at point ✓. Recalling that we intro-

duced µ(✓) =
R
yP✓(dy), from Eq. (3.4) we have

µ(✓) = 0(✓) , ✓ 2 D .

3.8 Revisiting Generalized Linear Bandits

In generalized linear bandit (GLB), the conditional distribution of the observed

reward yt 2 R associated to the pulled arm xt with parameter ✓ 2 Rd in round

t, is from the natural exponential family with parameter x>
t
✓. For every round

t, as is stated in Eqs. (3.4) to (3.6), it follows that

 0(x>
t
✓) = E✓[yt|xt] = µ(x>

t
✓), (3.7)

 00(x>
t
✓) = E✓[(y � µ(x>

t
✓⇤))

2
|xt] = V ar✓[yt|xt], (3.8)

 000(x>
t
✓) = E✓[(y � µ(x>

t
✓⇤))

3
|xt] , (3.9)

where V ar✓[yt|xt] denotes the conditional variance of the reward distribution

of yt given xt and the parameter of the d.f. of yt is ✓. The mean function µ(u)

is also known as link function, because it links the inner product x>
t
✓ to the

mean of the reward associated to arm xt.

For consistency, in what follows we assume the following, which is required

to make the problem well-defined. As such, this assumption will not be re-

peated in the various results.

The link function µ is defined on R, that is, the do-

main D of the natural exponential family considered (cf.

Definition 1) is R.

18

3.8.1 Log-likelihood function

Let D = {(xs, ys)}ns=1 be a subset of Rd
⇥ R. We define the (unregularized)

log-likelihood of a parameter ✓ as

L (✓;D) =
nX

s=1

log(p(ys; x
>
s
✓))

=
nX

s=1

ysx
>
s
✓ + (x>

s
✓).

We also define the regularized log-likelihood of ✓ with a regularizer � > 0 to

be:

L� (✓;D) =
nX

s=1

log(p(ys; x
>
s
✓))�

�

2
k✓k22,

=
nX

s=1

ysx
>
s
✓ + (x>

s
✓)�

�

2
k✓k22.

3.9 Subgaussian Distributions

Our assumption on the subgaussianity (Assumption 3.6.1) of the noise plays an

important role in both the algorithm design and the analysis. The subgaussian

assumption is commonly used in bandit literature Lattimore & Szepesvári

[LS18]. It is reasonable to assume that rewards are bounded and, as we shall

see later, subgaussianity is a generalization of boundedness. Subgaussianity

essentially assumes that the tail of the noise is no heavier than a Gaussian

distribution, or equivalently, the sample mean of a group of i.i.d. observations

concentrates at least as fast as a Gaussian distribution. Informally, a random

variable X is subgaussian if there is a Gaussian distribution whose tail of

density function can fully “dominate” that of X, as is shown in Fig. 3.1.

Formally, subgaussian random variables are defined to be:

Definition 2 (�-subgaussian random variable). A random variable X with

mean µ is �-subgaussian if for all � 2 R, it holds that E[exp(�(X � µ))] 

exp(�2�2/2).

Example 1 (Exercise 2.4 of Wainwright [Wai19]). If X is a zero-mean random

variable that is supported on an interval [a, b] then X is b�a

2 -subgaussian.

19

Figure 3.1: A plot visualizing subgaussianity in 1-d case. The red curve is
Gaussian distribution with mean 0 and variance 0.5: N (0, 0.5). The green
curve is the “notorious” Cauchy distribution whose tail cannot be dominated
by a Gaussian distribution. The purple curve is Gaussian distribution with
mean 0 and variance 0.4: N (0, 0.4), which itself is a subgaussian distribution.
Note that one only tells if a distribution is subgaussian by its tail behavior so
purple curve is still subgaussian even if it is higher than the red curve in the
area around the mean.

We review a few important properties that will be used in the presented

thesis. For the cited results and more the reader can refer to Vershynin [Ver18],

Wainwright [Wai19] and Lattimore & Szepesvári [LS18].

One of the nice properties of subgaussianity is that it plays well with linear

transformations:

Lemma 3.1. Suppose X is a �-subgaussian. Then X� c is �-subgaussian for

all c 2 R.

Proof. Let µ = E[X]. By definition of �-subgaussian random variable, for all

� 2 R:
E[exp(�(X � µ))]  exp

✓
�2�2

2

◆
.

The left hand side can also be written as

E[exp(�(X � µ))] = E[exp(�(X � c� (µ� c)))],

where

µ� c = E[X]� c = E[X � c].

The proof finishes by noting that the definition of �-subgaussian is satisfied

for the random variable X � c.

20

Lemma 3.2 (cf. Lemma 5.4 in [LS18]). Suppose X, X1 and X2 are �, �1 and

�2 subgaussian respectively. Then

1. cX is |c|�-subgaussian for all c 2 R;

2. X1 +X2 is
p

c21 + c22-subgaussian.

We use Hoe↵ding’s inequality to characterize the tail behavior of both

a single subgaussian random variable and the sample mean of i.i.d random

variable.

Lemma 3.3 (Hoe↵ding’s inequality for subgaussian random variables). Let

X1, ...Xn be independent random variables such that Xi has mean µi 2 R and

subgaussian parameter �i � 0. Then for all t � 0, we have that

P
 �����

nX

i=1

(Xi � µi)

����� � t

!
 2 exp

✓
�

t2

2
P

n

i=1 �
2
i

◆
.

The tail of a subgaussian random variable decays exponentially, which can

be seen by setting n = 1, that is, for a subgaussian random X with mean µ,

P(|X � µ| � t)  2 exp

✓
�

t2

2�2

◆
. (3.10)

Allowing for an error probability of at most � 2 (0, 1], the sample means of

i.i.d. subgaussian random variables deviate from their average mean by at

most �
p

log(1/�)/(2n):

Corollary 1. Let X1, ..., Xn be n � 1 independent �-subgaussian random vari-

ables, µi = E[Xi] for i 2 [n], and � 2 (0, 1]. Then,

P
 �����

1

n

nX

i=1

(Xi � µi)

����� � �

r
log(1/�)

2n

!
 �.

Since the tail decays exponentially, one would expect that its moments are

also bounded because the integral of xk exp(�x) is bounded.

Lemma 3.4. Let X be a zero-mean �-subgaussian random variable, then for

any positive integer k � 1,

E[|X|
k]  (2�2)k/2k�(k/2),

21

where �(t) =
R1
0 xt�1e�xdx, t > 0 is the gamma function. Furthermore,

�(t)  3tt .

Proof. Since for all integers k � 1, the random variable |X|
k is non-negative,

the expectation can be expressed in the following form:

E[|X|
k] =

Z 1

0

P(|X|
k
� u)du

=

Z 1

0

P(|X| � t)ktk�1dt (change of variable u = tk)



Z 1

0

2 exp

✓
�

t2

2�2

◆
ktk�1dt (Eq. (3.10))

 (2�2)k/2k�(k/2). (Definition of gamma function)

3.10 Generalized Self-concordant Functions

Definition 3 (Definition 1 of Sun et al. [ST17]). Let � : R ! R be a three

times continuously di↵erentiable function on the open domain dom(�). Let

⌫ > 0 and M� � 0 be two constants. We say that � is (M�, ⌫)-generalized

self-concordant if |�000(t)| M��00(t)⌫/2 for all t 2 dom(�).

Examples of generalized self concordant functions include the logistic func-

tion, exponential function, and log-barrier functions.

Generalized self-concordant functions have several important properties

that will prove essential in removing the trivial assumptions of Kveton et al.

[Kve+19c] while simultaneously improving upon the results of Fillipi et al.

[Fil+10], Li et al. [LLZ17]. The use of self-concordant analysis for stochastic

bandits is due to Faury et al. [Fau+20]. However their work investigates UCB-

style algorithms with a logistic link function. We notice that the negative (un-

regularized) log-likelihood function in sGLM is automatically self-concordant.

To prove this we need the following result. For a function f , let dom(f) denote

the domain of f .

22

Proposition 3.2 (Proposition 1 of Sun et al. [ST17]). Let fi be (Mfi
, ⌫)-

generalized self-concordant functions satisfying Definition 3, where Mfi
� 0

and ⌫ � 2 for i = 1, 2, ...,m. Then for �i > 0, i = 1, 2, ...,m, the function

f(x) =
P

m

i=1 �ifi(x) is well-defined on dom(f) = \m
i=1dom(fi), and is (Mf , ⌫)-

generalized self-concordant with the same order ⌫ � 2 and the constant

Mf := max{�
1� ⌫

2

i
Mfi

|1  i  m} � 0.

Lemma 3.5. Let D = {(xi, yi)}mi=1 be m observations. Under assumptions

3.6.1 and 3.6.4, for ✓ 2 ⇥ it holds that the negative unregularized log-likelihood

of the reward distribution L(D; ✓) is generalized self-concordant with ML =

O(�3) and ⌫ = 2.

Proof. We first show that for a single (x, y)-pair, �L(y; x>✓) is (ML, 2)-generalized

self-concordant. Let u = x>✓.

Take the derivatives of the negative unregularized log-likelihood function

�L((x, y); ✓) = � log p((x, y); ✓) = yu� (u). Doing so gives @
2

@u2 (�L(y; u)) =

 00(u) and @
3

@u3 (�L(y; u)) = 000(u). By Eq. (3.8) and Eq. (3.9), we have that

 00(u) = V ar✓[y|x] and 000(u) = E✓[(y�µ(x>✓))3|x]. This establishes that ML

depends on the second and third central moments of y given x. Thus in order

to show that �L((x, y); ✓) is (ML, 2)-generalized self-concordant, it su�ces to

show that
���E✓

h�
y � µ

�
x>✓

��3
|x
i���

V ar✓[y|x]
ML

for some finite ML. By Assumption 3.6.4, it holds that V ar✓[y|x] �
1

. Fur-

thermore since y is �-subgaussian, from Lemma 3.4 it holds that

���E✓

h�
y � µ

�
x>✓

��3
|x
i���  C�333/2 ,

where C is a universal constant. By setting ML  C�333/2 we have shown

ML is finite. Now that it was shown for a single (x, y)-pair the negative

log-likelihood is (ML, 2)-generalized self-concordant, it will be shown that the

log-likelihood of a sequence of D = {(xi, yi)}mi=1 remains (ML, 2)-generalized

23

Distribution of Y Variance Third Central Moment ML

Normal(µ, �2) �2 0 0
Exponential(�) 1/�2 2/�3 2E[Y]
Poisson(�) � � 1

Binomial(n, p) np(1� p) np(1� p)(1� 2p) 1
Geometric(k, p) (1� p)/p2 (p� 2)(p� 1)/p3 2E[Y]� 1 for p 6= 1
Gamma(k, ✓) k✓2 2k✓3 2✓

Beta(↵, �) ↵�

(↵+�)2(↵+�+1)
�2↵�(↵��)

(↵+�)3(↵+�+1)(↵+�+2) 1

Inverse Normal(µ,�) µ3/� 3µ5/� 3E[Y]2/�

Table 3.1: The self-concordance parameter for some common exponential
family distributions. One can derive ML by dividing the third central moment
by the variance. Note for the distributions above, ML either behaves like a
constant or scales with the expected value of the distribution.

self-concordant. Recall that

�L(D; ✓) =
mX

i=1

 (x>
i
✓)� yi(x

>
i
✓) =

mX

i=1

�L((xi, yi); ✓).

Since it was shown that for an arbitrary (xi, yi)-pair that �L((xi, yi); ✓) is

(ML, 2)-generalized self-concordant, by Proposition 3.2, it follows that�L(D; ✓)

is also (ML, 2)-generalized self-concordant. The proof is complete.

Note that Lemma 3.5 is an extremely loose bound. Lots of the distributions

that are frequently used in the exponential family do not have a ML that

scales with . For example, in logistic link function case, ML = 1. For

other distributions, Table 3.1 summarizes some of the common exponential

family distributions. We therefore believe there is a bound on ML that is

independent of  and it is left for future work. In addition, with some further

reasonable assumptions, for example, the density function p✓(y) is log-concave

with respect to Lebesgue measure or counting measure on their support, the

dependence on  can be removed.

We first present the formal definition of log-concave function:

Definition 4. A non-negative function f : Rd
! R+ is log-concave if its

domain is a convex set and if it satisfies the inequality

f(✓x+ (1� ✓)y) � f(x)✓f(y)1�✓,

for all ✓ 2 (0, 1) and x, y 2 dom(f).

24

In this thesis, we only consider all log-concave reward distributions that

are either discrete or continuous.

Definition 5 (Log-concave distributions). We call a distribution ⇢ over the

reals log-concave, if either one of the following two conditions is satisfied:

1. ⇢ has an uncountable domain: ⇢(dy) = f(y)�(dy), where f(y) is a log-

concave function and � is Lebesgue measure.

2. ⇢ has a domain subset the integers N: ⇢(dy) = g(y)⌫(dy), where g sat-

isfies that g(i + 1)2 � g(i)g(i + 2) for all i 2 N and ⌫ is the counting

measure over the integers.

In the first case, we say that ⇢ is a continuous, while in the second case we

say that it is a discrete log-concave distribution. We will make the following

assumption:

Assumption 3.10.1. The base measure ⇢(·) of reward distribution associated

to each arm is a continuous log-concave distribution.

We removed discrete distributions from the above assumption for technical

reasons.

Example 2. Normal distribution p(x;µ, �) = 1
�
p
2⇡

exp(� 1
2�2 (x � µ)2) and

exponential distribution p(x;�) = I(x > 0)�e��x are both log-concave densities.

A random variable with log-concave density function is called a log-concave

random variable. We now present another definition and an auxiliary lemma

that is necessary for us to prove the self-concordant property of a log-concave

random variable.

Definition 6 (Definition 1.1 of Schudy et al. [SS12]). A random variable Z

is called moment bounded with parameter L > 0 if for any integer i � 1,

E[|Z|i]  i · L · E[|Z|i�1].

Proposition 3.3 (Lemma 7.3 of Schudy et al. [SS12]). Any log-concave

random variable X satisfying condition 1 of Assumption 3.10.1 is moment-

bounded with parameter L = 1
ln 2E[|X|] ⇡ 1.44E[|X|].

25

Proposition 3.4 (Lemma 7.7 of Schudy et al. [SS12]). For any nonnegative-

valued, log-concave random variable X satisfying condition 2 of Assumption 3.10.1

is moment-bounded with parameter L = 1 + E[|X|].

The technical condition we did not allow discrete log-concave distributions

in Assumption 3.10.1 is because it is not know whether the last proposition

continuous to hold if the condition that X is nonnegative valued is removed.

We are now ready to prove that the unregularized log-likelihood of sGLMs

are self-concordant with parameter independent of  under the assumption

that reward distribution is log-concave in y.

Lemma 3.6. Under assumptions 3.6.1 and 3.10.1, for ✓ 2 Rd, it holds that

the negative unregularized log-likelihood of the reward distribution �L(D; ✓) is

generalized self-concordant with ML = O(�) and ⌫ = 2.

Proof. Translation does not a↵ect the concavity of a function, that is, if a

function x 7! (x) is a concave function on its domain dom(), then x 7!

 (x+ c) for c 2 R is still a concave function on dom()� c where dom()�

c = {x + c|x 2 dom()}. Then if a random variable is log-concave, it is

still log-concave after the random variable is translated. We also know that

subgaussianity is translation-invariant from Lemmas 3.1 and 3.2. We therefore

safely center the random variable y. We first show that for a single (x, y)-pair,

�L(y; x>✓) is (ML, 2)-generalized self-concordant. Let u = x>✓.

Take the derivatives of the unregularized log-likelihood function�L((x, y); ✓) =

� log p((x, y); ✓) = �yu + (u). Doing so gives @
2

@u2 (�L(y; u)) = 00(u) and
@
3

@u3 (�L(y; u)) = 000(u). By Eq. (3.8) and Eq. (3.9), we have that 00(u) =

V ar✓[y|x] and 000(u) = E✓[(y�µ(x>✓))3|x]. This establishes that ML depends

on the second and third central moments of y given x. Thus in order to show

that �L((x, y); ✓) is (ML, 2)-generalized self-concordant, it su�ces to show

that

|E✓ [y3|x]|

V ar✓[y|x]
ML,

for some ML. Note that moment can be upper bounded by the absolute

26

moment:

|Eu[y3]|

V aru[y]


Eu[|y|3]

Eu[y2]

 3 ·max{1.44E[|y|], 1 + E[|y|]} (Propositions 3.3 and 3.4)

 3 · 1.44 · (1 +
p
2 · �(1/2)�). (Lemma 3.4, max{a, b}  a+ b)

By setting ML  C� we have shown ML is finite. Now that it was shown

for a single (x, y)-pair the negative log-likelihood is (ML, 2)-generalized self-

concordant, it will be shown that the negative log-likelihood of a sequence of

D = {(xi, yi)}mi=1 remains (ML, 2)-generalized self-concordant. Recall that

�L(D; ✓) =
mX

i=1

 (x>
i
✓)� yi(x

>
i
✓) =

mX

i=1

�L((xi, yi); ✓).

Since it was shown that for an arbitrary (xi, yi)-pair that �L((xi, yi); ✓) is

(ML, 2)-generalized self-concordant by Proposition 3.2, it follows that�L(D; ✓)

is also (ML, 2)-generalized self-concordant. The proof is complete.

Note that for generalized linear models, µ̇(z) = 00(z) = @
2

@u2 (�L(·; z))

and µ̈(z) = 000(z) = @
3

@u3 (�L(·; z)). Thus, lemma 3.6 implies the following

corollary.

Corollary 2. Under assumptions 3.6.1 and 3.10.1, for all z 2 R, the link

function µ(·) satisfies

|µ̈(z)| Mµµ̇(z)

where Mµ = 3 · 1.44 · (1 +
p
2 · �(1/2)�).

3.10.1 Properties of the Link Function µ

A key idea when analyzing generalized linear bandits is to link reward devia-

tions µ(x>✓1)� µ(x>✓2) to parameter deviations ✓1 � ✓2. Linearizing µ using

a first-order Taylor expansion is the standard technique to accomplish this.

Specifically, for any y, z 2 R define

↵(y, z) =

Z 1

0

µ̇((1� v)y + z))dv =

Z 1

0

µ̇(vy + (1� v)z)dv = ↵(z, y) .

27

From the definition of ↵ it follows that ↵(x, y) = ↵(y, x), i.e., it is a symmetric

function of its arguments. Now, the mean-value theorem gives the following

identity: For any u1, u2 in the domain D of µ,

µ(u1)� µ(u2) = ↵(u1, u2)(u1 � u2). (3.11)

Therefore controlling ↵ is an essential step in deriving tight bounds for gener-

alized linear bandits. In order to accomplish this task, we will make abundant

use of the properties of sGLB (Corollary 2) and the properties self-concordant

functions. Our main tool is the following result, which is cited without a proof.

Lemma 3.7 (Corollary 2 of Sun et.al. [ST17]). Under assumptions 3.6.1 and

3.10.1, for x, y 2 D it holds that:

µ̇(x)
1� exp(�Mµ|x� y|)

Mµ|x� y|
 ↵(x, y)  µ̇(x)

exp(Mµ|x� y|)� 1

Mµ|x� y|
.

Furthermore,

↵(x, y) � µ̇(x)(1 +Mµ|x� y|)�1.

An immediate corollary of this result will help us bound the growth of the

derivative of the link function:

Lemma 3.8. Let � = |x� y| for x, y 2 D. Then it holds that

µ̇(x)  exp(Mµ|�|)µ̇(y).

Proof. Applying Lemma 3.7 twice, one gets that

µ̇(x) =

✓
1� exp(�Mµ|�|)

Mµ|�|

◆�1✓1� exp(�Mµ|�|)

Mµ|�|
µ̇(x)

◆



✓
1� exp(�Mµ|�|)

Mµ|�|

◆�1

↵(x, y) (Lemma 3.7)



✓
1� exp(�Mµ|�|)

Mµ|�|

◆�1 exp(Mµ|�|)� 1

Mµ|�|
µ̇(y) (Lemma 3.7)

=
exp(Mµ|�|)� 1

1� exp(�Mµ|�|)
µ̇(y) = exp(Mµ|�|)µ̇(y).

28

3.10.2 The Curvature of the Log-likelihood Function

Maximum likelihood estimation, where the Fisher information matrix plays

an important role, is primarily used in GLMs (page 38 [McC19]). For D =

{xi, yi}
t�1
i=1 and ✓ 2 Rd, we introduce the observed Fisher information matrix,

that is, a sample-based version of Fisher information matrix that coincides

with the Hessian of the negative log-likelihood:

H̄t(✓) = r
2
✓
(�L(D; ✓)) =

t�1X

s=1

µ̇(x>
s
✓)xsx

>
s
.

We also introduce the Hessian of the negative regularized log-likelihood:

Ht(✓) = r
2
✓
(�L�(D; ✓)) =

t�1X

s=1

µ̇(x>
s
✓)xsx

>
s
+ �I. (3.12)

From Lemma 3.7, one is able to approximate Ht(✓) by replacing µ̇(x>
s
✓) in

each summand by ↵(x>
s
✓, x>

s
✓0) for ✓0 2 Rd, the result of which we define as:

Gt(✓, ✓
0) =

t�1X

s=1

↵(x>
s
✓, x>

s
✓0)xsx

>
s
+ �I.

Lemma 3.9. For any ✓1, ✓2 2 Rd, we have

Gt(✓1, ✓2) ⌫ (1 +MµD)�1Ht(✓1),

Gt(✓1, ✓2) ⌫ (1 +MµD)�1Ht(✓2),

where D = maxs2[t�1]|x>
s
(✓1 � ✓2)|.

Proof. By Lemma 3.7, we have that for all s 2 [t � 1],↵(x>
s
✓1, x>

s
✓2) �

µ̇(x>
s
✓1)(1 + Mµ|x>

s
(✓1 � ✓2)|)�1

� µ̇(x>
s
✓1)(1 + MµD)�1. Thus, it follows

that

Gt(✓1, ✓2) =
t�1X

s=1

↵(x>
s
✓1, x

>
s
✓2)xsx

>
s
+ �I

⌫
1

1 +MµD

t�1X

s=1

µ̇(x>
s
✓1)xsx

>
s
+ �I ⌫

1

1 +MµD
Ht(✓1).

Since the same bounds hold for ↵(x>
s
✓2, x>

s
✓1), which one can get from the

symmetric property of ↵, repeating the same steps but with ✓2 completes the

proof.

29

3.11 Posterior Sampling and Perturbed His-
tory Exploration

There are two popular approaches to deal with the dilemma of exploration and

exploitation: optimism in face of uncertainty (OFU) and posterior sampling.

3.11.1 Optimism in Face of Uncertainty

For OFU, the learner remains optimistic about each arm. A value, also known

as the upper confidence bound (UCB), is assigned to each arm based on the

data observed so far such that with high probability this value is an overesti-

mate of the unknown mean. The chosen arm in each round is the one having

the highest UCB. For each arm, its UCB is computed by adding an explo-

ration bonus to the current estimation of the mean of the reward distribution

associated to the arm. If an arm is only pulled very few times, its exploration

bonus needs to be large in order to ensure UCB is an overestimate of the mean

of its reward distribution with high probability. As more data are collected

about an arm, its exploration bonus shrinks because the confidence level is

higher that the empirical estimation of its reward mean is close to the true

mean. Therefore, one can expect the UCB of a suboptimal arm will eventually

fall under the UCB of an optimal arm.

3.11.2 Posterior Sampling

Posterior sampling, also known as Thompson Sampling, is a heuristic algo-

rithm that was first introduced by Thompson [Tho33] to solve a two-armed

bandit problem. The learner first assumes a prior distribution on all the pos-

sible bandit environments. In each round, it samples an environment from a

posterior distribution, which is updated using the data collected so far with

Bayes rule, and pulls the optimal arm in that environment. Even if the heuris-

tic is based on assuming a prior, it still works when the true parameter is a

fixed parameter instead of a random variable in some cases, for example, the

linear bandit case.

30

3.11.3 Posterior Sampling in Linear Bandits

We briefly introduce posterior sampling in LBs here. The algorithm is pre-

sented as Algorithm 3 (Abeille et al. [AL+17]). In each round t, the algorithm

solves the regularized least squares problem

✓̂t = arg min
✓2Rd

t�1X

s=1

(ys � x>
s
✓)2 + �k✓k22.

There exists a closed form solution to this problem which is detailed in line 5.

The algorithm then samples from the a suitable multivariate distribution that

perturbs ✓̂t, that is, maxx2X x>✓̃t � x>
⇤ ✓⇤ with probability at least p. Finally

the algorithm pulls the arm that maximizes the reward mean if the model

parameter were ✓̃t: xt = argmaxx2X x>✓̃t. The multivariate distribution D
TS

is defined to satisfy the following properties [AL+17]:

Definition 7 (Definition of the multivariate distribution D
TS). The multivari-

ate distribution D
TS is defined such that the following properties are satisfied:

1. It is a multivariate distribution on Rd that is absolutely continuous w.r.t.

the Lebesgue measure.

2. There exists a strictly positive probability p such that for any u 2 Rd with

kuk2 = 1, the probability P⌘⇠DTS(u>⌘ � 1) � p

3. There exists c, c0, positive constants such that for all � 2 (0, 1), the prob-

ability

P⌘⇠DTS(k⌘k2 

r
cd log

c0d

�
) � 1� �

Section 5 of Abeille et al. [AL+17] proves that any distribution satisfy-

ing Definition 7 incurs right amount of randomness to ensure low regret for

Algorithm 3. Theorem 1 of Abeille et al. [AL+17] ensures that Algorithm 3

achieves a near-optimal regret of Õ(d3/2
p
T).

3.11.4 Perturbed History Exploration

One of the downsides of posterior sampling is that exact sampling from the

posterior distribution may be intractable. One way to tackle it is approxi-

mate sampling, which can be costly as well as ruining the performance (Phan

31

Algorithm 3 Linear Thompson Sampling

1: Input: �, n,� > 0,DTS

2: V1 = �I
3: for t = 1, ..., n do
4: Vt =

P
t�1
s=1 xsx>

s
+ �I

5: ✓̂t V �1
t

P
t�1
s=1 xsys

6: Sample ⌘t ⇠ D
TS.

7: Compute parameter ✓̃t = ✓̂t + �t(�)V
�1/2
t ⌘t

8: Choose arm xt 2 argmaxx2X x>✓̃t
9: Observe reward yt
10: end for

et al. [PAD19]), that is, even with small approximation error, the perfor-

mance degenerates to linear regret. Another option is to use perturbed history

exploration or follow the perturbed leader ([Kve+19a; Kve+19b; Kve+19c;

Kve+20]), which is another type of randomized algorithm that randomly per-

turbs the observed reward. To be more specific, in each round, after receiving

the reward given by the environment, the learner injects random noise to the

observed reward and learn about the mean of the reward distribution associ-

ated to the pulled arm from the noisy reward as if it was the true reward.

3.11.5 Perturbed History Exploration in Generalized
Linear Bandit

We introduce GLM-FPL (Kveton et al. [Kve+19c]), perturbed history explo-

ration in GLBs here. The algorithm is presented as Algorithm 4. After the

initial exploration round, the algorithm samples fresh i.i.d. noises zs for each

data point (xs, ys)
t�1
s=1 from a Gaussian distribution with mean 0 and variance

a2. Note that:

1. The noises are resampled in each round, that is, the noises are not reused

across rounds.

2. The variance of the noises are the same across di↵erent arms, that is,

even if two arms in the dataset are di↵erent, the noises injected to them

are the same within the certain round. We will see in Chapter 4 that

injecting arm-dependent noises significantly improves the performance.

32

Algorithm 4 GLM-FPL

1: Input: �, n,� > 0, exploration round ⌧ , a
2: for t = ⌧ + 1, ..., n do
3: Sample zs ⇠ N (0, a2) for each s < t .
4: Compute parameter ✓t = argmax✓2Rd L�

�
✓; {(xs, ys + zs)}

t�1
s=1

�

5: Choose arm xt 2 argmaxx2X x>✓t
6: Observe reward yt
7: end for

After injecting the noises, the algorithm solves a randomly perturbed maxi-

mum likelihood estimation problem with the solution being ✓t and pulls the

arm that maximizes the reward mean if the model parameter were ✓t: xt =

argmaxx2X x>✓t. Algorithm 4 is proved in Theorem 5 of Kveton et al.

[Kve+19c] to enjoy a regret bound of Õ(2d
p
n) with the assumption that the

number of nonzero elements of the feature vector is at most one.

3.12 Optimal Design Problem

Experimental design problem is a subfield of statistics. Let X 2 Rn⇥d and

Y 2 Rn. Each row of X can be viewed a design point which is also known

as an input feature vector and Y is known as labels in machine learning. In

linear experimental design, we deal with a linear model Y = X� + ✏ where

the relationship between the labels and the input feature vectors is character-

ized by a linear map and ✏ 2 Rd is a zero-mean noise vector. The optimal

design problem aims to select a small subset S ⇢ {1, 2, ..., n} with r rows such

that the precision of estimating � is maximized on the selected design points.

We introduce two problems, G-optimal design problem and D-optimal design

problem.

The G-optimal design problem is defined as follows:

Definition 8 (G-optimal Design). Let X = {[Xi1, ..., Xid]>|i 2 [n]} ⇢ Rd

be the set of design points and ⇡ : X ! [0, 1] be a distribution on X where

Xij refers to the entry corresponding to the ith row and the jth column. Let

V (⇡) =
P

x2X ⇡(x)xx
>. The G-optimal design problem is defined as

min
⇡2�X

max
x2X
kxk2

V (⇡)�1 ,

33

where �X is the set of all probability measures on X .

The D-optimal design problem is defined as follows:

Definition 9 (D-optimal Design). Let X = {[Xi1, ..., Xid]>|i 2 [n]} ⇢ Rd

be the set of design points and ⇡ : X ! [0, 1] be a distribution on X where

Xij refers to the entry corresponding to the ith row and the jth column. Let

V (⇡) =
P

x2X ⇡(x)xx
>. The D-optimal design problem is defined as

max
⇡2�X

log(det(V (⇡))),

where �X is the set of all probability measures on X .

The following proposition characterizes the equivalence between G-optimal

and D-optimal design.

Proposition 3.5 (Kiefer-Wolfowitz Theorem). Recall X ⇢ Rd and assume

that span(A) = Rd. For ⇡ 2 �X , let g(⇡) = maxx2X kxk2V (⇡)�1 be the objec-

tive function of G-optimal design and f(⇡) = log(det(V (⇡))) be the objective

function of D-optimal design. The following are equivalent:

1. ⇡⇤ is a minimizer of g.

2. ⇡⇤ is a maximizer of f .

3. g(⇡⇤) = d

Furthermore, there exists a minimizer ⇡⇤ of g such that |supp(⇡⇤)|  d(d+1)/2

where supp(⇡) = {x 2 X : ⇡(x) > 0} denotes the support of ⇡ for ⇡ 2 �X .

The D-optimal design problem is a convex optimization problem [BV04]

and can be solved by many algorithms, for example, Frank-Wolfe algorithm

[Bub+15]. For G-optimal design, the way of solving it is given by Soare et al.

[SLM14]. Given a ⇡⇤ defined in Proposition 3.5, we are able to sample points

from ⇡⇤ approximately using standard rounding procedure: round(⌧, ⇣, "),

detailed in Algorithm 5. Extracted from Fiez et.al [Fie+19], the definition of

a rounding procedure is detailed in Definition 10.

34

Algorithm 5 The rounding procedure given by Chpater 12 of Pukelsheim
et.al[Puk06] and is detailed in Fiez et al.[Fie+19].

1: Input: ⌧, ⇣ 2 �X and "
2: r(") (d(d+ 1)/2 + 1)/"
3: p |supp(⇣)|
4: {xi}

p

i=1 supp(⇣)
5: Ni d(⌧ �

1
2p)⇣ie, for all i  p

6: while
P

p

i=1 Ni 6= ⌧ do
7: if

P
p

i=1 Ni < ⌧ then
8: j argminip(Ni � 1)/⇣i
9: Nj Nj + 1
10: end if
11: if

P
p

i=1 Ni > ⌧ then
12: j argmaxip(Ni � 1)/⇣i
13: Nj Nj � 1
14: end if
15: end while
16: Ni max(Ni, r(")/p)
17: return N1, . . . , Np, for all i  p

Definition 10. A rounding procedure is an algorithm that takes as input a

real " 2 (0, 1), a set of vectors X ⇢ Rd where the dimension of the vector

space spanned by X is d, a probability measure over X with finite support:

� 2 �X , and a number of samples N . Let p be the cardinality of the support

of � and {xi}
p

i=1 ⇢ X be the support of �, that is, �({xi}) > 0. Further,

denote �i = �({xi}). The rounding procedure returns a finite allocation s =

(s1, . . . , sp) 2 Np, where si is a number assigned to xi, satisfying the following

properties:

1.
P

p

i=1 si = N ;

2. There exists a function r(") such that if N > r("), then

max
y2Rd

kyk2(Pp

i=1
sixix

>
i
)�1  (1 + ")max

y2Rd

kyk2(Pp

i=1
�ixix

>
i
)�1/N.

35

Chapter 4

Perturbed History Exploration
for Subgaussian Generalized
Linear Model Bandits

In this chapter, the main algorithm, Subgaussian Generalized Linear Model

Bandits - Perturbed History Exploration (sGLM-PHE), is introduced.

4.1 sGLM-PHE

Our algorithm, presented as Algorithm 6, consists of two stages:

Warm-up sGLM-PHE is initialized by calling a warm-up procedure that

approximates a G-optimal design [Che72]. This is necessary in order to guar-

antee certain good events happen with high probability. The warm-up pro-

cedure detailed in Algorithm 7, which consists of solving a G-optimal design,

follows that of Jun et al. [Jun+21]. A way of solving the G-optimal design

is given by Soare et al. [SLM14]. Here, ⇣ is a probability measure over X ,

denoted by ⇣ 2 �X , set to minimize

max
x2X
kxk2

V (⇣)�1 where V (⇣) =
X

x2X

⇣(x)xx>,

that is the maximum linear model confidence width over the actions. We

then sample points x1, . . . , x⌧ from ⇣ approximately using Algorithm 5. In our

context, the rounding procedure transforms a design ⇣ 2 �X into a discrete

allocation for any fixed number of samples ⌧ . It is clear that we only need to

36

Algorithm 6 sGLM-PHE: Perturbed History Exploration for Generalized
Linear bandits
1: Input: X ,Mµ, L, �, n, � and S
2: Calculate �, ⌧, a according to Section 4.2.5
3: {(xs, ys)}⌧s=1 warm-up(X , ⌧, ✏ = 0.5)
4: for t = ⌧ + 1, ..., n do
5: ✓̂t argmax✓2Rd L�

�
✓; {xs, ys}

t�1
s=1

�

6: Sample zs,t ⇠ N
�
0, a2 µ̇(x>

s
✓̂t)
�
for each s < t

7: ✓t argmax✓2Rd L�

�
✓; {(xs, ys + zs,t)}

t�1
s=1

�

8: Choose arm xt 2 argmaxx2X x>✓t
9: Observe reward yt
10: end for

Algorithm 7 warm-up

1: Input: X ⇢ Rd, ⌧, ✏ 2 (0, 1)
2: Set ⇣ = argmin⇣2�X maxx2Xkxk2V (⇣)�1

3: x1, ..., x⌧ = round(⌧, ⇣, ✏)
4: Observe the associated rewards y1, ..., y⌧
5: Return: {(xs, ys)}⌧s=1

take care of the allocation of the arms in the support of ⇣: {xi}
p

i=1 where p is

the cardinality of the support of ⇣ and Ni is the number of pulls of arm xi.

Main algorithm After the warm-up phase is completed, in each of the sub-

sequent rounds, sGLM-PHE first fits a generalized linear model to its history,

✓̂t then uses this model in order to fit a second generalized linear model to its

perturbed history up to round t,

✓t = argmax
✓2Rd

L�

�
✓; {(xs, ys + zs,t)}

t�1
s=1

�
where zs,t ⇠ N

⇣
0, aµ̇(x>

s
✓̂t)
⌘
.

Unlike Kveton et al. [Kve+19c], our algorithm uses data dependent pseudo-

rewards, zs,t which are freshly sampled in each round. Allowing the pseudo-

rewards to depend on the solution to the unperturbed history, ✓̂t enables the

algorithm to be both instance-adaptive and achieve optimal  dependencies.

sGLM-PHE then pulls the arm with the highest estimated value under the

linear model ✓t. Note that the derivative of µ is the second derivative of ,

which by Eq. (3.8), is the variance of the associated reward hence non-negative.

It is therefore equivalent to pull the arm that maximizes the esimated mean

37

and the arm with the highest estimated value under the linear model ✓t.

sGLM-PHE has two tunable parameters. The perturbation scale a controls

the variance of the pseudo-rewards in the perturbed history for each of the

observed rewards. It controls the amount of exploration and exploitation the

algorithm performs: with higher values of a, the probability of injecting a

relatively large noise is higher, yielding more exploration. The second tunable

parameter is the number of warm-up rounds ⌧ . The number of exploration

rounds ⌧ is correlated with the non-linearity of the problem instance therefore

needs to be scaled with this non-linearity.

4.2 The analysis of sGLM-PHE

In this section we report the mains steps of the regret analysis. We prove the

following result.

Theorem 1 (Informal version). Under assumptions 3.6.1-3.6.3 and assump-

tion 3.10.1, with appropriately chosen parameters, the n-round regret of sGLM-

PHE, R(n), is bounded as

R(n) = Õ

⇣
�2d3/2

p
Sµ̇(x>

⇤ ✓⇤)n+ C
⌘
.

where C = Õ(poly(d, L,)) and the exact dependence is shown in Section 4.2.5.

This is the first regret bound for an algorithm that perturbs its history

that holds for feature vectors with more than one nonzero component, i.e.

non-tabular features, and non-linear function approximation. We enjoy this

improved regret bound by both using properties of self concordant functions

and choosing the perturbations to be adaptive to the current data, by setting

the exploration term to a2 times µ̇(x>
s
✓̂t), a data-dependent perturbation, as

is mentioend in Section 3.11.

Our algorithm’s regret nearly recovers the minimax-optimal regret for lo-

gistic bandits regret presented in Abeille et al. [AFC21], Õ(d
p
nµ̇(x>

⇤ ✓⇤)) up

to a factor of
p
d, which is not reducible for the class of randomized explo-

ration algorithms [HB20]. The regret matches that of the posterior sampling

38

algorithm for logistic bandits introduced in Faury et al. [Fau+22] without the

need to solve a constrained optimization problem and significantly improves

the regret of the posterior sampling algorithm introduced in both Abeille et

al. [AL17] and Kveton et al. [Kve+19c], without the need to sample param-

eters from a posterior. It is also simpler than the UCB algorithm of Faury et

al. [Fau+22] that requires maintaining a set of plausible parameter vectors.

However Faury et al. [Fau+22] does not require solving an optimal design

for their warm-up procedure, whereas our algorithm does rely on solving one.

Investigating the possibility of removing the warm-up phase for our algorithm

is an interesting future research direction.

4.2.1 A Tail Inequality for Self-Normalized Martingales
and the Confidence Set

At the core of our analysis, we use a confidence set that is constructed with a

tail inequality result for self-normalized martingales, which extends the results

of Faury et al. [Fau+20], designed for logistic bandits, to sGLBs. The next

lemma generalizes Lemma 7 of Faury et al.[Fau+20] that states that if ✏ has

zero mean, takes values in [�1, 1] and the variance of ✏ is �2 and its subgaussian

parameter is b, then for any � 2 [�1, 1],

Eexp(�✏)  1 + �2�2 . (4.1)

In the generalization we allow unbounded ✏, though we require that ✏ is the

noise underlying a one-parameter exponential family distribution.

Lemma 4.1. Fix u in the interior of its domain and let y ⇠ p(·; u), ✏ =

y � µ(u), and �2 = E✏2. Then for any |�|  log(2)/Mµ

E[exp(�")]  exp
�
�2�2

�
. (4.2)

Proof. From Chebyshev’s inequality it follows ✏ = 0 with probability one when

�2 = 0. Hence, the statement trivially holds when �2 = 0 and so for the rest

of the proof we will assume that �2 > 0.

39

As it is well known (see, e.g., Equation 6.1 of Rigollet et al. [Rig12]) and

also easy to check, the moment generating function of y ⇠ p(·; u) is given by

E[e�y] = exp ((u+ �)� (u)) .

Recalling that " = y � µ(u) gives

E[e�"] = E[e�(y�µ(u))] = exp ((u+ �)� (u)� �µ(u)) .

Hence, by taking logarithms, Eq. (4.2) is equivalent to that

 (u+ �)  (u) + �µ(u) + �2�2. (4.3)

for |�|  log(2)/Mµ. By Taylor’s theorem, which can be applied, since, as it is

well known, is analytic (c.f. Section 3 of Kakade et al. [Kak+10]), for some

⇠ which is in the interval with endpoints u and u+ �, we have

 (u+ �) = (u) + � ̇(u) +
�2 ̈(⇠)

2
= (u) + �µ(u) +

�2 ̈(⇠)

2
(4.4)

where the last equality used that µ(u) = ̇(u). This combined with Eq. (4.3)

gives that it su�ces to show that

 ̈(⇠)  2�2 .

Using Lemma 3.8, and recalling that �2 = ̈(u), we have

 ̈(⇠)  exp(Mµ|⇠ � u|) ̈(u) = exp(Mµ|⇠ � u|)�2
 exp(Mu|�|)�

2
 2�2 ,

where the last inequality follows from the assumption that |�|  log(2)/Mµ.

Theorem 2 (Theorem 3 of Russac et al. [Rus+20] with sub-gaussian noise

assumption). selfNormalizedMartingales Fix � > 0, � > 0. Let {(ht, xt, ✏t)}1t=0

be a stochastic process such that for each t � 0,

1. xt is �(ht)-measurable and xt takes values in B2(d);

2. E[exp(⌘✏t)|ht]  exp(�2
t
⌘2) holds for all |⌘|  1/m, where �2

t
= E[✏2

t
|ht];

3. E[exp(⌘✏t)|ht]  exp(�2⌘2/2) holds for all ⌘ 2 R.
40

For any t � 1 define

Ht :=
t�1X

s=1

�2
s
xsx

>
s
+ �Id, St :=

t�1X

s=1

"sxs.

Then for any � 2 (0, 1]:

P

9t � 1, kStkH�1

t

� �

 p
�

2m
+

2m
p
�
log

✓
det(Ht)1/2��d/2

�

◆
+

2m
p
�
d log(2)

!!
 �.

Proof. This proof follows almost identically to the original proof. Firstly with-

out loss of generality let that the subgaussian parameter � = 1, since one can

always rescale St such that this is holds as in done in Lemma 9 of Abbasi et

al.[APS11]. As was done in Russac et al.[Rus+20], all one has to do is make

the following modification to the proof of Lemma 5 Faury et al.[Fau+20] we

which make below.

Lemma 4.2 (Lemma 5 of Faury et al.[Fau+20]). Assume the conditions of

Theorem 2 hold. For t � 1 define H̄t =
P

t�1
s=1 �

2
s
xsx>

s
and for ⇠ 2 B2(d), let

M0(⇠) = 1 and for t > 0 let

Mt(⇠)
.
= exp

✓
1

m
⇠>St �

1

m2
k⇠kH̄t

◆
.

Then, {Mt(⇠)}1t=0 is a non-negative super-martingale adapted to the filtration

{�(ht�1)}1t=0, where �(h�1) is the trivial �-algebra.

Proof. For all t � 1 we have that:

E

exp

✓
1

m
⇠>St

◆ ��ht�1

�
= exp

✓
1

m
⇠>St�1

◆
E

exp

✓
⇠>xt�1

m
"t�1

◆ ��ht�1

�
.

Since |⇠>xt�1/m|  k⇠k2kxt�1k2/m  1/m, we can apply Lemma 4.1 to bound

the second term. With this, we get

E

exp

✓
1

m
⇠>St

◆ ��ht�1

�
 exp

1

m
⇠>St�1 +

�
⇠>xt�1

�2

m2
�2
t�1

!
. (4.5)

Then, writing

Mt(⇠) = exp

1

m
⇠>St �

1

m2
⇠>H̄t�1⇠ �

�
⇠>xt�1

�2

m2
�2
t�1

!
,

41

and using the inequality in Eq. (4.5) gives

E[Mt(⇠)|ht�1]  exp

✓
1

m
⇠>St�1 �

1

m2
⇠>H̄t�1⇠

◆
= Mt�1(⇠) a.s.

By definition, Mt(⇠) is nonnegative, hence it is a nonnegative super-martingale

with respect to the filtration stated.

Since {Mt(⇠)}1t=1 is a non-negative super martingale, the rest of the proof

follows identically to the proof of Theorem 1 in Faury et al.[Fau+20].

We now use this result to construct a confidence set that is key to bound

the prediction error:

RPRED
t

= µ(x>
t
✓t)� µ(x>

t
✓⇤).

For t 2 [n] and � 2 (0, 1), the confidence set Ct(�,�) is defined as follows:

Ct(�,�) =

⇢
✓ :

���gt(✓̂t)� gt(✓)
���
H

�1

t
(✓⇤)
 �t(�,�)

�
. (4.6)

where for ✓ 2 Rd, gt(✓) is defined to be the gradient of the negative regularized

log-likelihood of ✓ on Dt = {xs, ys}
t�1
s=1:

gt(✓) = r✓(�L�(✓,D)) =
t�1X

s=1

µ(x>
s
✓)xs + �✓, (4.7)

and

�t(�,�) =
p

�

✓
S +

1

2m
�

◆
+

2m�
p
�

log

2d

�

✓
1 +

Lt

d�

◆d/2
!
. (4.8)

If we choose � = �⇤ as follows:

�⇤ =
2m�

S + 1
2m�

d log

✓
2

�

p
1 + Ln/d

◆
, (4.9)

then �n(�,�) becomes

�n(�) :=

s

8m�d

✓
S +

1

2m
�

◆
log

✓
2

�

p
1 + Ln/d

◆
. (4.10)

By the mean value theorem, for all x, ✓1, ✓2 2 Rd, it immediately follows from

Eq. (3.11) that

µ(x>✓1)� µ(x>✓2) = ↵(x>✓1, x
>✓2)x

>(✓1 � ✓2). (4.11)

The above equality allows us to link ✓1 � ✓2 to gt(✓1)� gt(✓2) which is stated

in the lemma below.

42

Lemma 4.3. For all ✓1, ✓2 2 Rd, the following identity holds:

gt(✓1)� gt(✓2) = Gt(✓1, ✓2)(✓1 � ✓2).

Proof. Note that for all x 2 Rd and ✓1, ✓2 2 Rd, the following equality holds

by Eq. (4.11):

µ(x>✓1 � x>✓2) = ↵(x>✓1, x
>✓2)x

>(✓1 � ✓2).

This result applied to gt(✓1)� gt(✓2) yields,

gt(✓1)� gt(✓2) =
t�1X

s=1

↵(x>
s
✓1, x

>
s
✓2)xsx

>
s
(✓1 � ✓2) + �(✓1 � ✓2)

= Gt(✓1, ✓2)(✓1 � ✓2).

We now show that for all t 2 [n] and � 2 (0, 1), with probability at least

1 � �, the true model parameter lies in the confidence set Ct(�,�). We need

the following auxiliary result:

Lemma 4.4. (Determinant-Trace Inequality, Lemma 10 of Abbasi et al. [APS11])

Let {xs}
1
s=1 be a sequence in Rd such that kxsk2  X for all s 2 N and X � 0.

Let � be a non-negative scalar. For t � 1 define Vt :=
P

t�1
s=1 xsx>

s
+ �I. The

following holds

det(Vt+1)  (�tX2/d)d.

Lemma 4.5. Recall ✓̂t in line 5 of Algorithm 6, gt in Eq. (4.7), Ht(✓) in

Eq. (3.12) and �t(�,�) in Eq. (4.8). For � 2 (0, 1) and for all t � 1, with

probability at least 1� �,
���gt(✓̂t)� gt(✓⇤)

���
H

�1

t
(✓⇤)
 �t(�,�).

Proof. For now fix t � 1. Since ✓̂t is the maximizer of the original regularized

log-likelihood and thus the unique minimizer of the negative log-likelihood

because Ht(✓) � 0 for all ✓ 2 Rd:

�L�(✓;Dt) =
t�1X

s=1

 (x>
s
✓)� ysx

>
s
✓ +

�

2
k✓k22,

43

and therefore r✓L�(✓̂t;Dt) = 0 where the existence of the gradient is guar-

anteed by the standard properties of exponential family that (·) is infinitely

di↵erentiable (page 38, Brown [Bro86]). Plugging in the definition of L�(✓;Dt)

into the equation r✓t
L�(✓̂;Dt) = 0 and taking the gradient, we get

r✓L�(✓̂t;Dt) = 0 (4.12)
t�1X

s=1

 ̇(x>
s
✓)� ysxs + �✓ = 0. (4.13)

Rearranging the equation, and noting that ̇ = µ, we obtain

gt(✓̂t) =
t�1X

s=1

µ(x>
s
✓̂t)xs + �✓̂t =

t�1X

s=1

ysxs. (4.14)

Now, by the definition of "s, ys = µ(x>
s
✓⇤) + "s. Hence,

t�1X

s=1

ysxs =
t�1X

s=1

(µ(x>
s
✓⇤) + "s)xs = gt(✓⇤)� �✓⇤ +

t�1X

s=1

"sxs.

This expression, combined with Eq. (4.14) gives,

gt(✓̂t)� gt(✓⇤) =
t�1X

s=1

"s+1xs � �✓⇤ = St � �✓⇤,

where we let

St :=
t�1X

s=1

"sxs.

Take the k · k
H

�1

t
(✓⇤)

norm of both sides and note that H�1
t (✓⇤) � ��1I,

���gt(✓̂t)� gt(✓⇤)
���
H

�1

t
(✓⇤)
 kStkH�1

t
(✓⇤)

+
p

�S, (4.15)

where we used that by Assumption 3.6.2 k✓⇤k  S. Note that by definition,

{"t}1t=1 is a subgaussian martingale di↵erence sequence adapted to {�(ht)}1t=1.

Also, we have that for all s � 1,

µ̇(x>
s
✓⇤) = E["2

s
|hs�1] := �2

s
.

This gives us Ht(✓⇤) =
P

t�1
s=1 �

2
s
xsx>

s
+ �I. Therefore all the conditions of

Theorem 2 have been satisfied and we have that with probability at least

44

1� �, for all t � 1,

kStkH�1

t
(✓⇤)
 �

 p
�

2m
+

2m
p
�
log

✓
det(Ht(✓⇤))1/2��d/2

�

◆
+

2m
p
�
d log(2)

!
.

(4.16)

Now it remains to bound the determinant det(Ht(✓⇤)). Using Lemma 4.4, it

holds that

det(Ht(✓⇤))  Ld det

t�1X

s=1

xsx
>
s
+
�

L
I

!
 Ld

✓
�

L
+

T

d

◆d



✓
�+

Lt

d

◆d

.

Using the bound we just derived on the determinant of Ht(✓⇤), we can bound

Eq. (4.16) by

kStkH�1

t
(✓⇤)
 �

 p
�

2m
+

2m
p
�
log

 �
�+ Lt

d

�d/2
��d/2

�

!
+

2m
p
�
d log(2)

!

= �t(�,�)�
p

�S.

Finally chaining Eq. (4.15) and Eq. (4.16) with the latter inequality, we get

with probability at least 1� �, for all t � 1,

���gt(✓̂t)� gt(✓⇤)
���
H

�1

t
(✓⇤)
 �t(�,�).

We denote E(�) to be the event that ✓⇤ lies in the confidence set Ct(�,�)

with the choice of � being �⇤ (Eq. (4.9)).

Corollary 3. For � 2 (0, 1] and for all t 2 [n], the event

E(�) =
n
8t � 1, kgt(✓̂t)� gt(✓⇤)kH�1

t
(✓⇤)
 �n(�)

o

holds with probability at least 1� �.

On event E(�) we can derive a few useful results where we need the following

auxiliary lemma:

Lemma 4.6. Let b, c > 0, and x 2 R. Then the following implication holds:

x2
 bx+ c =) x  b+

p
c.

45

Proof. Let f(x) = x2
� bx� c. Then f is a strong convex function with roots

�1 = 1/2(b +
p
b2 + 4c) and �2 = 1/2(b �

p
b2 + 4c). If x2

 �b � c then by

convexity

x  max(�1,�2)  1/2(b+
p
b2 + 4c)  b+

p
c.

Lemma 4.7. On the good event E(�), it follows that

kgt(✓⇤)� gt(✓̂t)kG�1

t
(✓⇤,✓̂t)

 �n(�) +Mµ

�2
n
(�)
p
�

.

Proof. From the definition of Gt(✓⇤, ✓̂t), it follows that

Gt(✓⇤, ✓̂t) =
t�1X

s=1

↵(xs, ✓⇤, ✓̂t)xsx
>
s
+ �I

�

t�1X

s=1

⇣
1 +Mµ|x

>
s
(✓⇤ � ✓̂t)|

⌘�1

µ̇(x>
s
✓⇤)xsx

>
s
+ �I (Lemma 3.7)

�

t�1X

s=1

⇣
1 +MµkxskG�1

t
(✓⇤,✓̂t)

k✓⇤ � ✓̂tkGt(✓⇤,✓̂t)

⌘�1

µ̇(x>
s
✓⇤)xsx

>
s
+ �I

(Cauchy-schwarz)

�

⇣
1 +Mµ�

�1/2
k✓⇤ � ✓̂tkGt(✓⇤,✓̂t)

⌘�1
t�1X

s=1

µ̇(x>
s
✓⇤)xsx

>
s
+ �Id

(kxk2  1 and G�1
t (✓⇤, ✓̂t) � �I)

=
⇣
1 +Mµ�

�1/2
k✓⇤ � ✓̂tkGt(✓⇤,✓̂t)

⌘�1

Ht(✓⇤) (Defn. of Ht(✓⇤))

=
⇣
1 +Mµ�

�1/2
kgt(✓⇤)� gt(✓̂t)kG�1

t
(✓⇤,✓̂t)

⌘�1

Ht(✓⇤). (Lemma 4.3)

Using the above inequality, we obtain:

kgt(✓⇤)� gt(✓̂t)k
2
G

�1

t
(✓⇤,✓̂t)



⇣
1 +Mµ�

�1/2
kgt(✓⇤)� gt(✓̂t)kG�1

t
(✓⇤,✓̂t)

⌘
kgt(✓⇤)� gt(✓̂t)k

2
H

�1

t
(✓⇤)

Mµ�
�1/2�2

n
(�)kgt(✓⇤)� gt(✓̂t)kG�1

t
(✓⇤,✓̂t)

+ �2
n
(�),

where the last inequality follows from the definition on E(�). By Lemma 4.6,

solving the above quadratic inequality gives:

kgt(✓⇤)� gt(✓̂t)kG�1

t
(✓⇤,✓̂t)

 �n(�) +Mµ

�2
n
(�)
p
�

.

46

Lemma 4.8. On event E(�), it holds that:

k✓̂t � ✓⇤k2  2(S +
1

2m
�) + 4Mµ(S +

1

2m
�)2.

Proof. We link ✓̂t � ✓⇤ to gt(✓̂t) � gt(✓⇤) with Lemma 4.3 and upper bound

G�1
t (✓̂t, ✓⇤):

k✓̂t � ✓⇤k2 = kgt(✓̂t)� gt(✓⇤)kGt(✓̂t,✓⇤)�2 (Lemma 4.3)


1
p
�
kgt(✓̂t)� gt(✓⇤)kGt(✓̂t,✓⇤)�1 (Gt(✓̂t, ✓⇤)�1

�
1
�
I)


1
p
�

✓
�n(�) +Mµ

�2
n
(�)
p
�

◆
.

Plugging in the value of �n(�) and � finishes the proof.

4.2.2 The Good Events

In this section, we display “good” events that will allow us to upper bound the

regret. In order to guarantee low regret, we first need to show that the arms

our algorithm is selecting, xt, quickly converges to x⇤ as t ! 1. Since xt is

defined as the maximizer of x>✓t, it su�ces to show that ✓t ! ✓⇤ as t ! 1.

For this, defining for � > 0,

Et(�) =
n
✓ 2 Rd : 8x 2 X , |x>(✓ � ✓̂t)|  �kxk

Ht(✓̂t)
�1

o
,

We will want two good events to hold, E1,t and E2,t, given by

E1,t = {✓⇤ 2 Et(�
0
1,t(�))} and E2,t = {✓t 2 Et(�

0
2,t(�))}, (4.17)

That is, ✓̂t is close to both ✓⇤ and ✓t at a given time-step. The choices of the

parameters �0
1,t(�) and �

0
2,t(�) are detailed here:

�0
1,t(�) = (1 +D⇤

t
Mµ)�n(�), (4.18)

�0
2,t(�) = 8(1 +DtMµ)Cd(�)�n(�). (4.19)

where �n(�) is defined in Eq. (4.10) and Cd(�) =
p

d+ log(n/�). D⇤
t
is defined

to be the maximum gap between the original MLE ✓̂t and the true model

parameter ✓⇤ in directions of xs for s < t, that is,

D⇤
t
= max

s<t

|x>
s
(✓̂t � ✓⇤)|. (4.20)

47

Similarly, Dt is defined to be the maximum gap between the original MLE ✓̂t

and the perturbed MLE ✓t in directions of xs for s < t, that is,

Dt = max
s<t

|x>
s
(✓̂t � ✓t)|. (4.21)

For randomized algorithm to work, an additional event is needed: that the

reward predicted using the optimal arm, x⇤ and the parameter ✓t is frequently

large in comparison to using the true parameter ✓⇤ for the same. That is

E3,t = {x>
⇤ ✓t > x>

⇤ ✓⇤}.

holds with positive probability. We refer to E3,t as the anti-concentration

event.

4.2.3 Analysis of the Warm-Up Procedure

To establish our guarantee on the warm-up procedure, we need µ̇(x>✓̂t) � 1/,

which is showed to hold on event E(�) with appropriately chosen ⇥.

Lemma 4.9. On the event E(�), for all t � 1 it holds that if

diam(⇥)  2(S +
1

2m
�) + 4Mµ(S +

1

2m
�)2 + S,

then ✓⇤, ✓̂t 2 ⇥.

Proof.

k✓̂tk2 = k✓̂t � ✓⇤ + ✓⇤k2  k✓̂t � ✓⇤k2 + k✓⇤k2

 2(S +
1

2m
�) + 4Mµ(S +

1

2m
�)2 + S,

where the last inequality follows from Lemma 4.8 and the definition of S, see

Assumption 3.6.2. Therefore if diam(⇥) satisfies the bound presented in the

statement of the lemma, then on event E(�) it holds that ✓̂t, ✓⇤ 2 ⇥.

Since on event E(�), ✓̂t 2 ⇥, it holds that 1/ = infx2X ,✓2⇥ µ̇(x>✓) 

µ̇(x>✓̂t) for all x 2 X . Ensuring that with ⇥ being large enough, one has ✓⇤

and ✓̂t 2 ⇥ for all t 2 [n], we are able to establish a guarantee for the warm-up

procedure:

48

Lemma 4.10. Let ⇣ be the solution to the G-optimal design problem over

a compact feature set X whose span is Rd. Let ◆ > 0 be a constant and

" = 0.5. By setting the number of warm-up rounds as ⌧ = d1.5◆2de, Algorithm

7 returns a dataset {(xs, ys)}⌧s=1 such that for all t > ⌧ , on event E(�) the

following holds:

max
x

kxk
H

�1

t
(✓̂t)
 1/◆. (4.22)

Proof. For all t > ⌧ , one gets H�1
t (✓̂t) � H�1

⌧
(✓̂t) and it holds that

max
x

kxk2
H

�1

t
(✓̂t)
 max

x

kxk2
H

�1
⌧ (✓̂t)

.

Furthermore define H(⇣, ✓) :=
P

x2X ⇣xµ̇(x
>✓)xx> where ⇣ is a probability

measure over X and with slight abuse of notation, we let ⇣x := ⇣(x). To show

the result holds, it is su�cient to prove that for all t > ⌧ , maxx kxkH�1
⌧ (✓̂t)

 1/◆

holds. We have,

max
x

kxk2
H

�1
⌧ (✓̂t)


1 + ✏

⌧
max

x

kxk2
H

�1
⌧ (⇣,✓̂t)

(Lemma 13 of Jun et al. [Jun+21])


(1 + ✏)

⌧
max

x

kxk2
V �1(⇣) (H(⇣, ✓̂t) ⌫ �1V (⇣) on E(�))

=
d(1 + ✏)

⌧
. (Kiefer-Wolfowitz, Ch 21 [LS18])

The proof is completed by setting ⌧ = ◆2d(1 + ").

The choice of ◆ in the main algorithm is:

◆ > max
⇣
�0
1,n(�)Mµ, �

0
2,n(�)Mµ, �

0
2,n(�)

2LMµ, 2
p

�, L
⌘
. (4.23)

4.2.4 Analysis of the Good Events

To reduce clutter, we define for all t 2 [n], Ht := Ht(✓̂t) and Gt := Gt(✓̂t, ✓t) =

Gt(✓t, ✓̂t) where the last equality is due to the definition of Gt(✓1, ✓2) and the

fact that ↵(u1, u2) = ↵(u2, u1)(Section 3.10).

Event E1,t We now show that the good event E1,t holds with high probabil-

ity, whose formal statement is detailed below.

49

Lemma 4.11. For � 2 (0, 1], recall D⇤
t
in Eq. (4.20) and �0

1,t(�) = (1 +

MµD⇤
t
)�n(�) in Eq. (4.18), on the event E(�), we have E1,t holds for all t  n.

Proof. Combining Lemma 4.3 with Cauchy-Schwarz gives

|x>(✓⇤ � ✓̂t)| = |x>G�1/2
t (✓⇤, ✓̂t)G

1/2
t (✓⇤, ✓̂t)(✓⇤ � ✓̂t)|

 kxk
G

�1

t
(✓⇤,✓̂t)

k✓⇤ � ✓̂tkGt(✓⇤✓̂t)

= kxk
G

�1

t
(✓⇤,✓̂t)

kgt(✓⇤)� gt(✓̂t)kG�1

t
(✓⇤,✓̂t)

,

where for the last inequality the mean value theorem was applied to derive the

following,

kgt(✓⇤)� gt(✓̂t)kG�1

t
(✓⇤,✓̂t)

= kGt(✓⇤, ✓̂t)(✓⇤ � ✓̂t)kG�1

t
(✓⇤,✓̂t)

= k✓⇤ � ✓̂tkGt(✓⇤✓̂t)
.

Then, by lemma 3.9,

kxk
G

�1

t
(✓⇤,✓̂t)

kgt(✓⇤)� gt(✓̂t)kG�1

t
(✓⇤,✓̂t)

 (1 +MµD
⇤
t
)kxk

H
�1

t
(✓̂t)
kgt(✓⇤)� gt(✓̂t)kH�1

t
(✓⇤)

.

Since we are on the good event E(�), it holds that kgt(✓⇤) � gt(✓̂t)kH�1

t
(✓⇤)


�n(�), the statement of the lemma follows.

On event E(�), D⇤
t
can be upper bounded by poly(S, �) for all t � 1.

Lemma 4.12. On event E(�), for all t � 1, it holds that

D⇤
t

�2
n
(�)

�
+
�n(�)
p
�

= 2(S +
1

2m
�) + 4Mµ(S +

1

2m
�)2.

Proof. We first use Cauchy schwarz to upper bound D⇤
t
:

D⇤
t
= max

s<t

|x>
s
(✓⇤ � ✓̂t)|

 max
s<t

kxskG�1

t
(✓⇤,✓̂t)

k✓̂t � ✓⇤kGt(✓⇤,✓̂t)

= max
s<t

kxskG�1

t
(✓⇤,✓̂t)

kgt(✓̂t)� gt(✓⇤)kG�1

t
(✓⇤,✓̂t)

(Lemma 4.3)


1
p
�

✓
�n(�) +Mµ

�2
n
(�)
p
�

◆
. (Lemma 4.7)

The proof is completed by plugging in the values of �n(�) and �.

50

Remark 4.12.1. This upper bound on D⇤
t
only depends on E(�). Therefore

it can be used in upper bounding ◆ (Eq. (4.23)), to be more specific, upper

bounding Mµ�0
1,t(�) (Eq. (4.18)), that is, for all t 2 [n], on event E(�),

�0
1,t(�)Mµ 

✓
1 + 2Mµ(S +

1

2m
�) + 4M2

µ
(S +

1

2m
�)2

◆



✓
1 + 2Mµ(S +

1

2m
�)

◆2

. (4.24)

Event E2,t Now that we have shown event E1,t holds with high probability,

we move on to proving the same result for event E2,t. Before we do so, we first

need the following convenient way of expressing ✓t � ✓̂t.

Lemma 4.13 (Lemma 1 of Kveton et al. [Kve+19c]). , We can write ✓t� ✓̂t =

G�1
t Wt for Wt :=

P
t�1
s=1

q
µ̇(x>

s
✓̂t)azs,txs where (z1,t, . . . , zt�1,t) ⇠ N (0, 1)t�1.

Define Dt := maxs<t |x>
s
(✓t � ✓̂t)| to be the maximum gap between the

original MLE and the perturbed MLE in directions of xs for s < t. We prove

a similar result to Lemma 4.12 that Dt can be upper bounded for all t � 1.

We will need the following auxiliary lemmas.

Lemma 4.14. Let A 2 Rd⇥d be a positive semi-definite matrix and x 2 Rd be

a vector then

kxk2
A2  �max(A)kxk

2
A
.

Proof. For any positive semi-definite matrix

x>A2x = �2max(A)x
>(��2

max(A)A
2)x  �2max(A)x

>(��1
max(A)A)x = �max(A)kxk

2
A
.

They key observation is that all the eigenvalues of ��2
max(A)A

2 are in [0, 1].

Lemma 4.15 (Example 2.28 of Wainwright [Wai19]). For an integer k � 1

and a given sequence {Zj}
k

j=1 of i.i.d standard normal random variables, the

random variable Y :=
P

k

j=1 Z
2
j
follows a �2-distribution with k degrees of

freedom. It holds that for all ⌘ � 0,

P(Y/k � (1 + ⌘)2)  e�k⌘
2
/2.

51

Lemma 4.16. Let A 2 Rd⇥d be positive semi-definite matrices and let B =

A + cI for some non-negative c 2 R. Let x 2 Rd be a vector. Then it follows

that

kBxkA � kAxkA.

Proof. Since B = A + cI, we have that B ⌫ A. By the condition that A is a

p.s.d. matrix and B = A+ cI, by spectral decomposition, we can write

A = V ⇤AV
�1, B = V ⇤BV

�1

where V is a orthonormal matrix, ⇤A and ⇤B are diagonal matrices because

A,B are positive semi-definite matrices. Let ⇤A = diag(a1, ...ad) and ⇤B =

diag(b1, ...bd) where a1 � a2 � ... � ad � 0 and bi = ai + c for all i 2 [d].

Hence, bi � ai � 0. Take the di↵erence kBxkA � kAxkA and this yields

x>BABx� x>A3x = x>V (⇤B⇤A⇤B � ⇤3
A
)V >x

= x>V (diag(a21b1, ..., a
2
d
bd)� diag(a31, ..., a

3
d
))V >x.

Since ai  bi, we have that a3
i
 a2

i
bi for all i 2 [d]. Therefore, the matrix

V (diag(a21b1, ..., a
2
d
bd)� diag(a31, ..., a

3
d
))V >

is a positive semi-definite matrix and kBxkA�kAxkA � 0 follows by definition

of a positive semi-definite matrix.

We bound Dt by upper bounding k✓t � ✓̂tk2.

Lemma 4.17. Define the event

E4,t =

⇢
k✓t � ✓̂tk2 

4a2Mµd(1 + log(n/�))

�

�
.

Conditioned on the history ht, for all t 2 [n] with probability 1 � �, it holds

that Pt(E4,t) � 1� � P-almost surely.

52

Proof. Fix t � 1. By Lemma 4.13 it holds that k✓t � ✓̂tk2 = kG�1
t Wtk2. To

control this norm, notice that

kG�1
t
Wtk2 

kWtkG�1

t
p
�



p
1 +MµDtkWtkH�1

t
p
�

(Lemma 3.9)

=

q
1 +Mµ maxs<t x>

s
(✓t � ✓̂t)kWtkH�1

t
p
�



q
1 +Mµk✓t � ✓̂tkkWtkH�1

t
p
�

(Cauchy-Schwarz and Assumption 3.6.3)

=

q
1 +MµkG

�1
t WtkkWtkH�1

t

p
�

(Cauchy-Schwarz and Lemma 4.13)


kWtkH�1

t
p
�

+

q
MµkG

�1
t WtkkWtkH�1

t

p
�

. (
p
a+ b 

p
a+
p
b)

By Lemma 4.6, x2
 bx + c implies x  b +

p
c. Letting x =

p
kG�1

t Wtk2

gives

kG�1
t
Wtk2 

0

@
s
kWtkH�1

t
p
�

+

p
MµkWtkH�1

t
p
�

1

A
2

.

Using (a+ b)2  2a2 + 2b2, we have

kG�1
t
Wtk2 

2kWtkH�1

t
p
�

+
2MµkWtk

2
H

�1

t

�
.

All that remains is to bound kWtkH�1

t

. Given the history, by definition Wt is

a zero-mean normal random vector. The covariance of Wt is

Et

⇥
WtW

>
t

⇤
= Et

t�1X

s=1

a2µ̇(x>
s
✓̂t)xsx

>
s
Z2

s,t

!
= a2(Ht � �I).

where (z1,t, . . . , zt�1,t) ⇠ N (0, 1) are independent. Define Y = a�1(Ht �

�I)�1/2Wt. This gives

kWtkH�1

t

= ka2(Ht � �I)
1/2Y k

H
�1

t

=
q

a2Y >(Ht � �I)1/2H
�1
t (Ht � �I)1/2Y

 akY k2,

53

where the inequality holds since Ht  LVt and Lemma 4.16. Since Y ⇠

N (0, I), given the history, we have that kY k22 is �
2 with d-degrees of freedom.

Adapting Lemma 4.15 gives that with probability at least 1 � �, given the

history, it holds that kY k2 
p
d(1 + log(n/�)). Combining these bounds

kG�1
t
Wtk2 

2a
p

d(1 + log(n/�))
p
�

+
2a2Mµd(1 + log(n/�))

�


4a2Mµd(1 + log(n/�))

�
,

which completes the proof.

Remark 4.17.1. On event E4,t, by making use of Cauchy-schwarz inequality

and Assumption 3.6.3, we can upper bound Dt in the following way:

Dt  max
s<t

kxsk2k✓t � ✓̂tk2 
4a2Mµd(1 + log(n/�))

.
� (4.25)

This bound only depends on event E4,t. Therefore it can be used to upper bound

◆ (Eq. (4.23)), to be more specific, �0
2,t(�) (Eq. (4.19)), that is, for all t 2 [n],

on event E4,t,

�0
2,t(�)  8

✓
1 +

4a2M2
µ
d(1 + log(n/�))

�

◆
Cd(�)�n(�). (4.26)

With Remarks 4.12.1 and 4.17.1, we can now give the exact value of ◆.

Lemma 4.18. On event E(�) \ E1,t, by setting ◆ to be:

max{
✓
1 + 2Mµ(S +

1

2m
�)

◆2

,

8Mµ

✓
1 +

4a2M2
µ
d(1 + log(n/�))

�

◆
Cd(�)�n(�),

64LM2
µ

✓
1 +

4a2M2
µ
d(1 + log(n/�))

�

◆2

Cd(�)
2�n(�)

2,

2
p

�,

L

},

It follows that for all t > ⌧ ,

sup
x2X
kxk

H
�1

t
(✓̂t)
 min

⇢
1

�0
2,t(�)

2MµL
,

1

Mµ�0
1,t(�)

,
1

Mµ�0
2,t(�)

,
1

L
,

1

2
p
�

�
.

54

Proof. By plugging the upper bounds on Dt and D⇤
t
into the choice of ◆ in

Eq. (4.23) and applying Lemma 4.10, the proof is complete.

We now begin the analysis of event E2,t. By Lemma 4.13, we have that

x>(✓t � ✓̂t) = x>G�1
t Wt. One of the challenges in analyzing this quantity is

that Gt, whose definition includes operations on ✓t, correlates with Wt be-

cause ✓t is the MLE of data perturbed by zs,t. To deal with this issue, we start

by characterizing the random variable x>H�1
t Wt. Relating this random vari-

able to the random variable x>(✓t � ✓̂t) will be at the crux of our subsequent

arguments in this section.

Lemma 4.19. Let a =
p
2�n(�). Fix x 2 Rd. Then conditioned on the history

ht, x>H�1
t Wt is zero-mean Gaussian with variance �2

t
(x). For all t � 1,

�2
t
(x)  4�2

n
(�)kxk2

H
�1

t

,

and for all t > ⌧ , on the events E(�) and E4,t,

�2
t
(x) � �2

n
(�)kxk2

H
�1

t

.

Proof. x>H�1
t Wt is a linear combination of the sum of zero-mean Gaussian

random variables, and thus Gaussian with zero-mean. For the variance, �2
t
(x),

Et

x>H�1

t

t�1X

s=1

xs

q
µ̇(x>

s
✓̂t)azs,t

!2

=
t�1X

s=1

✓q
µ̇(x>

s
✓̂t)ax

>H�1
t

xs

◆2

= x>H�1
t

t�1X

s=1

µ̇(x>
s
✓̂t)a

2xsx
>
s

!
H�1

t
x,

where z1,t, . . . , zt�1,t ⇠ N (0, 1)t�1. Consider the sum in the middle. Expanding

the definition of µ̇(x>
s
✓̂t)a2, this is equal to

M :=
t�1X

s=1

µ̇(x>
s
✓̂t)a

2xsx
>
s
=

t�1X

s=1

✓q
2µ̇(x>

s
✓̂t)�n(�)

◆2

xsx
>
s
.

We have M = 2�2
n
(�)(Ht � �I). Now all that is left is to bound �2

t
(x) from

above and below. First

�2
t
(x) = 2�2

n
(�)x>H�1

t
(Ht � �I)H

�1
t

x  4�2
n
(�)kxk

H
�1

t

.

55

This proves the first half of the lemma statement. Next we have that

�2
t
(x) = 2�2

n
(�)x>H�1

t
(Ht � �I)H

�1
t

x � 2�2
n
(�)kxk

H
�1

t

⇣
1�
p

�kxk
H

�1

t

⌘
.

where Lemma 4.14 was used for the last inequality. Since we are in rounds

t > ⌧ and on the events E(�)\E4,t that ensures a bound on ◆ (Remarks 4.12.1

and 4.17.1), it holds that kxk
H

�1

t

 1/(2
p
�), by choice of ◆ and Lemma 4.10.

Substituting these bounds back into the definition of �2
t
(x) yields the claimed

result.

The proof of the next result relies on a standard covering argument (see,

e.g. Lattimore & Szepesvári [LS18],Vershynin [Ver18]), where we will use

Lemma 4.19 to control maxima on the cover elements.

We define an event E 0
2,t such that E 0

2,t ⇢ E2,t, which is as follows:

Lemma 4.20. Let Cd(�) =
p
d+ log(n/�). Then, for s 2 [t] define

E 0
2,s =

�
kG�1

s
WskHs

 8(1 +MµDs)Cd(�)�n(�)

.

Then Pt(\t

s=1E
0
2,s) � 1� � holds P-almost surely.

Proof. Fix s as is stated in the claim. By Lemma 3.9, kG�1
s
WskHs

 (1 +

MµDs)kWskH�1
s
. We now bound kWskH�1

s
using a covering argument.

Let z1, . . . , zm be an ✏-cover of B2(d); for any z 2 B2(d), write z0 for any

cover element with kz0 � zk2  ✏. Then,

kH
� 1

2

s Wsk2 = max
z2B2(d)

z>H
� 1

2

s Ws

= max
z2B2(d)

(z � z0)>H
� 1

2

s Ws + z0H
� 1

2

s Ws

 ✏kH
� 1

2

s Wsk2 +max
im

z>
i
H

� 1

2

s Ws.

Choosing ✏ = 1
2 , rearranging, and letting xi = z>

i
H1/2

s for each i  m, we have

kWskH�1
s
 2max

im

x>
i
H�1

s
Ws. (4.27)

By Lemma 4.19, given the past, xiH�1
s

Ws is zero-mean Gaussian with variance

�2
s
(xi) satisfying

�2(xi)  4�2
n
(�)kxikH�1

s
 4�2

s
(�)kzik  4�n(�). (4.28)

56

Thus, for any cs,i(�) > 0,

Ps

✓
max
im

x>
i
H�1

s
Ws > cs,i(�)

◆


mX

i=1

Ps

�
x>
i
H�1

s
Ws > cs,i(�)

�



mX

i=1

exp

✓
�c2

s,i
(�)

2�2
s
(xi)

◆
,

where in the last inequality, note that a zero-mean Gaussian random variable

with variance cs,i(�) is also a cs,i(�)-subgaussian random variable, therefore we

apply Eq. (3.10). Choosing cs,i(�) = 8�2
n
(�) log(nm/�) yields

max
im

x>
i
H�1

s
Ws  �n(�)

p
8 log(nm/�),

with probability at least 1 � �. The result follows by noting that m = 6d

su�ces (by, for example, Corollary 4.2.13 in Vershynin [Ver18]) and taking

the union bound over t.

Given the above result, analysing E2,t becomes trivial:

Lemma 4.21. Fix any t 2 [n] and � 2 (0, 1]. Recall in Eq. (4.19),

�0
2,s(�) = 8(1 +MµDs)Cd(�)�n(�),

Then Pt(\t

s=1E2,s) � 1� � holds P-almost surely.

Proof. Using Lemma 4.13 and Cauchy-Schwarz, for all ⌧ < s  t

|x>(✓s � ✓̂s)| = |x>G�1
s
Ws|  kxkH�1

s
kG�1

s
WskHs

.

Lemma 4.20 then gives the result.

Event E3,t Proving anti-concentration, the original di�culty in Kveton et

al. [Kve+19c], turns out to be simple using the self-concordance properties of

sGLBs. We find that after the initial exploration, under certain events that

hold with high probability, the anti-concentration event E3,t holds with at least

constant probability.

Lemma 4.22. Fix t > ⌧ . On event E1,t\E2,t\E4,t\E(�), it holds Pt (E3,t) �

1��(3) P-almost surely where � is the distribution function of standard Gaus-

sian distribution.

57

Proof. Recalling that xt = argmax
x2X x>✓t it follows

Pt (E3,t) = Pt

�
x>
t
✓t > x>

⇤ ✓⇤
�
� Pt

�
x>
⇤ ✓t > x>

⇤ ✓⇤
�

= Pt

⇣
x>
⇤ (✓t � ✓̂t + ✓̂t � ✓⇤) > 0

⌘
.

Since we are on event E1,t it holds that |x>
⇤ (✓⇤ � ✓̂t)|  �0

1,t(�)kx⇤kH�1

t

. This

yields

Pt (E3,t) � Pt

⇣
x>
⇤ (✓t � ✓̂t) � �0

1,t(�)kx⇤kH�1

t

⌘
.

Using Lemma 4.13, x>
⇤ (✓t � ✓̂t) = x>

⇤ G
�1
t Wt. Using a standard identity for

(A+B)�1 and defining Ut = Gt �Ht,

G�1
t

= (Ht + Ut)
�1 = H�1

t
�H�1

t
Ut(Ht + Ut)

�1.

This gives

Pt

⇣
x>
⇤ (✓t � ✓̂t) � �0

1,t(�)kx⇤kH�1

t

⌘

=Pt

⇣
x>
⇤ H

�1
t

Wt � x>
⇤ H

�1
t

Ut(Ht + Ut)
�1Wt � �0

1,t(�)kx⇤kH�1

t

⌘

=Pt

⇣
x>
⇤ H

�1
t

Wt � x>
⇤ H

�1
t

Ut(Ht + Ut)
�1Wt + �0

1,t(�)kx⇤kH�1

t

⌘
.

For the first term on the right hand side,

|x>
⇤ H

�1
t

Ut(Ht + Ut)
�1Wt| = |x⇤H

�1
t

UtG
�1
t
Wt|

 kx⇤kH�1

t

kH�1/2
t UtH

�1/2
t k2kG

�1
t
WtkHt

.

and thus we need to bound the two right hand side norms. To bound kH�1/2
t UtH

�1/2
t k2,

by Lemma 3.7 we have,

max
s2[t]

|↵(x>
s
✓t, x

>
s
✓̂t)� µ̇(x>

s
✓̂t)| 

eMµDt � 1

MµDt

µ̇(x>
s
✓̂t)� µ̇(x>

s
✓̂t)

=

✓
eMµDt � 1

MµDt

� 1

◆

| {z }
:=Qt

µ̇(x>
s
✓̂t).

Now observe that

kAk2 := max
x:kxk1

max{x>Ax, x>(�A)x},

58

and therefore for some x with kxk2  1,kH�1/2
t UtH

�1/2
t k2 is bounded by

x>H�1/2
t

t�1X

s=1

|↵(x>
s
✓t, x

>
s
✓̂t)� µ̇(x>

s
✓̂t)|xsx

>
s

!
H�1/2

t x

 Qtx
>H�1/2

t (Ht � �I)H
�1/2
t x  Qt.

By Lemma 4.20, kG�1
t WtkHt

 �0
2,t(�). Combining the bounds

|x>
⇤ H

�1
t

Ut(Ht + Ut)
�1Wt|  Qt�

0
2,t(�)kx⇤kH�1

t

.

Defining bt(�) = �0
1,t(�) +Qt�0

2,t(�) gives

Pt

⇣
x>
⇤ (✓t � ✓̂t) � �0

1,t(�)kx⇤kH�1

t

⌘
� Pt

⇣
x>
⇤ H

�1
t

Wt � bt(�)kx⇤kH�1

t

⌘
.

Now since we are on events E1,t and E2,t and in round t > ⌧ , we have that

D⇤
t
= max

s<t

|x>
s
(✓̂t � ✓⇤)|

 sup
x2X

|x>(✓̂t � ✓⇤)|

 �0
1,t(�) sup

x2X
kxk

H
�1

t

(E1,t)


�0
1,t(�)

◆
, (Warm-up, Lemma 4.10)

and similarly,

Dt 
�0
2,t(�)

◆
.

We select ◆ as in Lemma 4.18:

1. D⇤
t


�
0
1,t

(�)

◆
 M�1

µ
then as a consequence �0

1,t(�) = (1 +MµD⇤
t
)�n(�) 

2�t(�).

2. Dt 
�
0
2,t

(�)

◆
M�1

µ
then as a consequence Qt MµDt 

�
0
2,t

(�)Mµ

�
0
2,t

(�)2MµL
.

At first sight it seems that we bound D⇤
t
with �0

1,t(�) which in turn contains a

factor of D⇤
t
. Note that there is no looping argument here because Lemma 4.12

and Eq. (4.25) gives an upper bound on D⇤
t
and Dt that holds regardlessly as

long as the event E(�) \E4,t, holds. Upper bound �0
1,t(�) and �

0
2,t(�) allows us

to have a tighter bound on Dt and D⇤
t
by carefully setting ◆. These statements

yield

bt(�)  2�t(�) +
Mµ�0

2,t(�)
2

�0
2,t(�)

2MµL
 2�t(�) + 1,

59

where the last inequality holds by choice of ◆. By Lemma 4.19, given the past,

x>
⇤ H

�1
t Wt is a zero-mean Normal random variable whose variance is lower

bounded by �2
t
(�)kx⇤k

2
H

�1

t

. Dividing by the square root of the variance and

using the bound on bt(�)

Pt

⇣
x>
⇤ H

�1
t

Wt � bt(�)kx⇤kH�1

t

⌘
� Pt (Z > 2 + 1/�t(�)) � Pt (Z > 2 + 1) > 0.0015,

where Z ⇠ N (0, 1) and the second to last inequality used that �t(�) � 1.

This lemma combined with earlier results that show that the events E1,t

and E2,t occur with high probability imply that sGLM-PHE enjoys sublinear

regret.

Remark 4.22.1. While E1,t and E2,t are defined with respect to linear gaps

|x>(✓1 � ✓2)|, the upper bound on these, kxk
H

�1

t
(✓̂t)

, contains curvature in-

formation about the link function µ(·) through the norm induced by H�1
t (✓̂t).

Constructing our events with respect to this curvature information is what al-

lows us to guarantee anti-concentration and obtain better dependencies on 

and µ̇(x>
⇤ ✓⇤) in our regret bounds. In our analysis, we use self-concordance

(via Lemma 4.23) to convert bounds on the linear gaps to those on |µ(x>✓1)�

µ(x>✓2)|, the key quantity for controlling regret.

4.2.5 Analysis of the regret bound of Algorithm 6

In previous sections, we only gave an informal version of the regret bound

of Algorithm 6. In this section, we detail the formal version as well as the

analysis.

Theorem 3. Under assumptions 3.6.1-3.6.3 and assumption 3.10.1. Let m =

Mµ/ log(2), � 2 (0, 1) and �0
n
(�) = �0

1,n(�) + �0
2,n(�). With �n(�) chosen in

Eq. (4.10), � chosen in Eq. (4.9), �0
1,t(�) and �

0
2,t(�) chosen in Eq. (4.18) and

Eq. (4.19), a chosen in Lemma 4.19, ◆ chosen in Lemma 4.18 and ⌧ chosen

60

in Lemma 4.10, which we detail all of them below:

m = Mµ/ log(2),

�n(�) =

s

8m�d

✓
S +

1

2m
�

◆
log

✓
2

�

p
1 + Ln/d

◆
,

� =
2m�

S + 1
2m�

d log

✓
2

�

p
1 + Ln/d

◆
,

a2 = 2�n(�),

Cd(�) =
p

d+ log(n/�),

�0
1,n(�) = (1 +Mµ)�n(�),

�0
2,n(�) = 8(1 +Mµ)Cd(�)�n(�),

�0
n
(�) = �0

1,n(�) + �0
2,n(�),

◆ = 64LM2
µ

✓
1 +

4a2M2
µ
d(1 + log(n/�))

�

◆2

Cd(�)
2�n(�)

2

+

✓
1 + 2Mµ(S +

1

2m
�)

◆2

+ L,

⌧ = ◆2d = Õ(d9L2),

the regret of Algorithm 6 can be upper bounded by

R(n) 
32e3�0

n
(�)2

p23
(2Mµd log(1 + nL/(d�)))

+ 2⌧�max +
8e3/2�0

n
(�)

p3

p
2d log(1 + nL/(d�))

p
µ̇(x>

⇤ ✓⇤)n+

r
8n log

2

�0

!

+ 2�max,

with probability at least 1� 5�.

In big-O notation, it can be written as

R(n)  Õ

⇣
�d3/2

p
Sµ̇(x>

⇤ ✓⇤)n+ ⌧
⌘
.

We now present the proof of the regret bound. In the definitions of E1,t, E2,t

and E3,t, we only characterize the constraints on the linear gaps: |x>(✓̂t� ✓⇤)|

and |x>(✓̂t � ✓t)| for x 2 X . The regret, however, is defined with respect to

the non-linear gap: µ(x>
⇤ ✓⇤) � µ(x>

t
✓⇤). We therefore present a lemma that

allows us to link the non-linear gap to the linear gap:

61

Lemma 4.23. If for all x, ✓1, ✓2 2 Rd and � 2 (0, 1], |x>(✓1�✓2)|  �0(�)kxk
H

�1

t

holds and �0(�)kxk
H

�1

t

M�1
µ

for some �0(�), then it follows that

|(µ(x>✓1)� µ(x>✓2)|  �t(�)kxkH�1

t

,

where

�t(�) = µ̇(x>✓1)�
0(�)

⇣
1 + eMµ�

0(�)kxk
H

�1

t

⌘
.

Proof. By Taylor’s theorem and the property that |µ̈(·)|  Mµµ̇(·), we have

that

|(µ(x>✓1)� µ(x>✓2)| = µ̇(x>✓1)|x
>(✓1 � ✓2)|+ µ̈(⇠)(x>✓1 � x>✓2)

2

 µ̇(x>✓1)|x
>(✓1 � ✓2)|+Mµµ̇(⇠)(x

>✓1 � x>✓2)
2,

where ⇠ 2 R is between x>✓1 and x>✓2. Now assume that |x>(✓1 � ✓2)| 

�0(�)kxk
H

�1

t

. Then we have the following

µ̇(x>✓1)|x
>(✓1 � ✓2)|+Mµµ̇(⇠)(x

>✓1 � x>✓2)
2

µ̇(x>✓1)�
0(�)kxk

H
�1

t

+Mµµ̇(⇠)�
0(�)2kxk2

H
�1

t

.

Further by hypothesis we have |x>(✓1 � ✓2)|  �0(�)kxk
H

�1

t

 1/Mµ. Then

from Lemma 3.8, we can upper bound µ̇(⇠) by

µ̇(⇠)  exp(Mµ|⇠ � x>✓1|)µ̇(x
>✓1)  exp(Mµ|x

>(✓1 � ✓2)|)µ̇(x
>✓1)  eµ̇(x>✓1).

Putting these results together it holds that

|(µ(x>✓1)� µ(x>✓2)|  µ̇(x>✓1)�
0(�)kxk

H
�1

t

+ eµ̇(x>✓1)Mµ�
0(�)2kxk2

H
�1

t

,

= µ̇(x>✓1)�
0(�)

⇣
1 + eMµ�

0(�)kxk
H

�1

t

⌘
kxk

H
�1

t

.

Note we chose ◆ > �0
2,t(�)

2MµL (Lemma 4.18). We also have that

D⇤
t
 �0

1,t(�)kxkH�1

t
(✓̂t)


�0
1,t(�)

�0
2,t(�)

2MµL
on event E1,t \ E4,t (4.29)

Dt  �0
2,t(�)kxkH�1

t
(✓̂t)


�0
2,t(�)

�0
2,t(�)

2MµL
on event E2,t \ E4,t. (4.30)

62

Denote Et = E(�) \ E1,t \ E2,t \ E4,t and �0
t
(�) = �0

1,t(�) + �0
2,t(�). We then

decompose the regret as follows:

R(n) =
nX

t=1

µ(x>
⇤ ✓⇤)� µ(x>

t
✓⇤)  ⌧�max +

nX

t=⌧+1

µ(x>
⇤ ✓⇤)� µ(x>

t
✓⇤) (4.31)

 (⌧ + 1)�max +
nX

t=⌧+1

µ(x>
⇤ ✓⇤)� µ(x>

t
✓t)| {z }

R
PHE

t

+µ(x>
t
✓t)� µ(x>

t
✓⇤)| {z }

R
PRED

t

. (4.32)

We now bound RPHE
t

and RPRED
t

separately.

Bounding RPHE

t
We will need the following auxiliary lemmas from Abeille

et.al [AL17].

Lemma 4.24 (Proposition 3 of Abeille et al. [AL17]). For any set of arm X

satisfying Assumption 3.3.2, J(✓) = sup
x
x>✓ has the following properties:

1. J is a real-valued as the supremum is attained in X ,

2. J is convex on Rd,

3. J is continuous with continuous first derivative except for a zero-measure

set w.r.t the Lebesgue measure

Lemma 4.25 (Lemma 2 of Abeille et al. [AL17]). Under Assumption 3.3.2,

for any ✓ 2 Rd, we have rJ(✓) = argmaxx2X ✓ except for a zero-measure set

w.r.t the Lebesgue measure.

We now start to bound RPHE
t

.

Lemma 4.26. On event Et, for rounds t > ⌧ it holds that

RPHE

t
 4µ̇(x>

t
✓t)�

0
2,t(�)/p3

⇣
kxtkH�1

t

+ E[kxtkH�1

t

|ht]� kxtkH�1

t

⌘
.

Proof. From the definition of RPHE
t

it follows that

RPHE
t

= µ(x>
⇤ ✓⇤)� µ(x>

t
✓t) = ↵(x>

⇤ ✓⇤, x
>
t
✓t)(x

>
⇤ ✓⇤ � x>

t
✓t),

where the second equality follows from an exact first order Taylor’s expan-

sion. Now define J(✓) = maxx2X x>✓. Therefore it holds that RPHE
t

=

63

↵(J(✓⇤), J(✓t))(J(✓⇤) � J(✓t)). By Lemma 4.24 we have that J is a convex

function and from Lemma 4.25 we have that rJ(✓) = argmax
x2X x>✓. By

the convexity of J

(J(✓⇤)� J(✓t))  max{rJ(✓⇤)
>(✓⇤ � ✓t),rJ(✓t)

>(✓⇤ � ✓t)}

 max{x>
⇤ (✓⇤ � ✓t), x

>
t
(✓⇤ � ✓t)},

where the second inequality follows from the definition of rJ(✓). Finally

since t > ⌧ , by choice of ◆, and since we are on the event Et(�), it holds that

x>(✓⇤ � ✓t) = x>(✓⇤ � ✓̂t + ✓̂t � ✓t)  D⇤
t
+ Dt  2M�1

µ
for all x 2 X . It

immediately follows that

↵(x>
⇤ ✓⇤, x

>
t
✓t) =

Z 1

v=0

µ̇ (J(✓⇤) + v(J(✓t)� J(✓⇤))) dv

 µ̇(J(✓⇤))

Z 1

v=0

exp(vMµ|J(✓⇤)� J(✓t)|)dv,

where the inequality is due to Lemma 3.8. Since it was just shown that (J(✓⇤)�

J(✓t))  2M�1
µ

, the above integral can be further bounded by

µ̇(J(✓t))

Z 1

v=0

exp(2v)dv  4µ̇(J(✓)) = 4µ̇(x>
t
✓t).

This gives that

RPHE
t

= ↵(J(✓⇤), J(✓t))(J(✓⇤)� J(✓t))  4µ̇(x>
t
✓t)(J(✓⇤)� J(✓t)).

Now all that is left is to bound J(✓⇤) � J(✓t). On event Et, ✓t belongs to

E2,t := Et(�0
2,t(�)) and therefore it follows that

J(✓⇤)� J(✓t)  J(✓⇤)� inf
✓2E2,t

J(✓).

Now define the set of optimistic parameters ⇥opt = {✓ : J(✓) > J(✓⇤)}. As in

Abeille et al. [AL17], we can bound the above expression by the expectation

of any random choice of ✓̃ in ⇥opt
t = ⇥opt

\ E2,t. This gives

J(✓⇤)� J(✓t)  E

J(✓̃)� inf

✓2E2,t
J(✓)

��ht, ✓̃ 2 ⇥opt
t

�
.

where ✓̃ = argmax✓2Rd L�

�
✓; {(xs, ys + zs,t)}

t�1
s=1

�
and zs,t ⇠ N

⇣
0, a2

t
µ̇(x>

s
✓̂t)
⌘

independently. Since J is convex, using Lemma 4.24, we can directly relate

64

RPHE
t

with the gradient of J as

J(✓⇤)� J(✓t)  E
"
sup
✓2E2,t

rJ(✓̃)>(✓̃ � ✓)
��ht, ✓̃ 2 ⇥opt

t

#

 E
"
krJ(✓̃)k

H
�1

t

sup
✓2E2,t

k✓̃ � ✓kHt

��ht, ✓̃ 2 ⇥opt
t

#

 2�0
2,t(�)E

h
krJ(✓̃)k

H
�1

t

|ht, ✓̃ 2 ⇥opt
t

i

where the second inequality follows from Cauchy-Schwarz and the third in-

equality follows from the fact that we are on the event Et(�). Again following

Abeille et al. [AL17], let f(✓t) be an arbitrary non-negative function of ✓t,

then we can write the full expectation as

E[f(✓t)|ht] � E[f(✓t)|✓t 2 ⇥OPT
t

, ht]Pt(✓t 2 ⇥OPT
t

)

� E[f(✓t)|✓t 2 ⇥OPT
t

, ht] · p3,

where the last inequality holds by Section 4.2.4. Setting f(✓t) = 2�0
2,t(�)kxtkH�1

t

one obtains

J(✓⇤)� J(✓t) 
2�0

2,t(�)

p3
E[kxtkH�1

t

|ht] =
2�0

2,t(�)

p3

⇣
kxtkH�1

t

+ E[kxtkH�1

t

|ht]� kxtkH�1

t

⌘
,

which completes the proof.

To bound the right hand side of Lemma 4.26, we will need the following

frequently used Azuma-Hoe↵ding lemma as well as its corollary:

Lemma 4.27 (Azuma-Hoe↵ding). If a super-martingale (Yt)t�0 corresponding

to a filtration Ft satisfies |Yt � Yt�1| < ct for some constant ct for all t =

1, 2, ..., T , then for any ↵ > 0,

P(YT � Y0 � ↵)  2 exp

�

↵2

2
P

T

t=1 c
2
t

!
.

Corollary 4. If a super-martingale (Yt)t�0 corresponding to a filtration Ft sat-

isfies |Yt� Yt�1| < c for all t = 1, 2, ..., T , then for � 2 (0, 1], ↵ =
q
2c2T log 2

�

P(YT � Y0 � ↵)  �.

65

Proof. Plug in ↵ =
q

2c2T log 2
�
, the probability can be bounded as follows:

P(YT � Y0 � ↵)  2 exp(�
2c2T log 2

�

2c2T
) = �.

Lemma 4.28. There exist some event B with P(B)  � such that on

EA�H := (\n
t=⌧+1Et) \Bc

we have

4

p3

nX

t=⌧+1

µ̇(x>
t
✓t)�

0
2,t(�)

⇣
E[kxtkH�1

t

|ht]� kxtkH�1

t

⌘


4e�0
2,n(�)

p3

r
8n log

2

�
.

(4.33)

Proof. For all x 2 X , by Lemma 3.8, in rounds t > ⌧ ,

µ̇(x>✓̂t)  exp(|x>(✓̂t � ✓⇤)|)µ̇(x
>✓⇤)  eµ̇(x>✓⇤),

where the last step is because we use the event E1,t � Et to ensure that

x>(✓̂t � ✓⇤)  �0
1,t(�)kxkH�1

t

and by choice of ◆ (Eq. (4.23) and Lemma 4.18),

�0
1,t(�) < 1. Use Lemma 3.8, the sum is less than

S :=
4e

p3

nX

t=⌧+1

q
µ̇(x>

t ✓̂t)
q

µ̇(x>
t ✓⇤)�

0
2,t(�)

⇣
E[kxtkH�1

t

|ht]� kxtkH�1

t

⌘
.

Since the warm-up phase guarantees that kxtkH�1

t


1
◆


1
L

(Lemma 4.18)

while obviously kxtkH�1

t

� 0, one gets for every t > ⌧ ,

���E[kxtkH�1

t

|ht]� kxtkH�1

t

��� 
2

L
.

Define

Kt :=
q

µ̇(x>
t ✓⇤)

q
µ̇(x>

t ✓̂t)
⇣
E[kxtkH�1

t

|ht]� kxtkH�1

t

⌘
.

Then, thanks to µ̇(·)  L,

|Kt| 

p

L ·

p

L ·
2

L
 2.

66

Note that {Kt}t>⌧ is a martingale di↵erence sequence itself by construction.

Applying Corollary 4 gives that with probability at least 1� �,

4e�0
2,n(�)

p3

nX

t=⌧+1

Kt 
4e�0

2,n(�)

p3

r
8n log

2

�
.

The result follows by letting Bc be the event when this last inequality holds

and combining this last inequality with the previous bound on S which holds

on \n
t=⌧+1Et.

Bounding RPRED

t

Lemma 4.29. On event Et, for t > ⌧ , it holds that

RPRED

t

p
e(1 + e)�0

t
(�)

q
µ̇(x>

t ✓⇤)
q

µ̇(x>
t ✓̂t)kxtk

2
H

�1

t

.

Proof. By adding then subtracting µ(x>
t
✓̂t) and triangle inequality, we have

that

RPRED
t

= µ(x>
t
✓t)� µ(x>

t
✓⇤)  |µ(x>

t
✓t)� µ(x>

t
✓̂t)|+ |µ(x>

t
✓̂t)� µ(x>

t
✓⇤)|.

On event Et, it follows from Lemma 4.18 that for t > ⌧

|x>(✓⇤ � ✓̂t)|  �0
1,t(�)kxtkH�1

t


�0
1,t(�)

◆
M�1

µ
, 8x 2 X , (4.34)

|x>(✓t � ✓̂t)|  �0
2,t(�)kxtkH�1

t


�0
2,t(�)

◆
M�1

µ
, 8x 2 X . (4.35)

The conditions of Lemma 4.23 are satisfied. Therefore it holds that

|µ(x>
t
✓t)� µ(x>

t
✓̂t)|  µ̇(x>

t
✓̂t)�

0
2,t(�)(1 + eML�

0
2,t(�)kxtkH�1

t

)kxtkH�1

t

 (1 + e)µ̇(x>
t
✓̂t)�

0
2,t(�)kxtkH�1

t

,

where the second inequality holds by choice of ◆. Similarly by applying Lemma 4.23,

it follows that

|µ(x>
t
✓̂t)� µ(x>

t
✓⇤)|  (1 + e)µ̇(x>

t
✓̂t)�

0
1,t(�)kxtkH�1

t

.

Putting these bounds together gives

RPRED
t

 (1 + e)µ̇(x>
t
✓̂t)�

0
2,t(�)kxtkH�1

t

+ (1 + e)µ̇(x>
t
✓̂t)�

0
1,t(�)kxtkH�1

t

= (1 + e)µ̇(x>
t
✓̂t)�

0
t
(�)kxtkH�1

t


p
e(1 + e)�0

t
(�)

q
µ̇(x>

t ✓⇤)
q

µ̇(x>
t ✓̂t)kxtk

2
H

�1

t

,

67

where in the last step we use Lemma 3.8 and the fact that D⇤
t
M�1

µ
for t > ⌧

to bound µ̇(x>
t
✓⇤)  eµ̇(x>

t
✓̂t).

Bounding the regret We will need the following auxiliary lemmas to bound

the regret:

Lemma 4.30 (Lemma 19.4 of Lattimore & Szepesvári [LS18]). Let V0 2 Rd⇥d

be a positive definite and a1, ...an 2 Rd be a sequence of vectors with katk2 

L <1 for all t 2 [n], Vt = V0 +
P

st
asa>s . Then

nX

t=1

min{1, katk
2
Vt�1

}  2 log(
detVn

detV0
)  2d log(

traceV0 + nL2

d det(V0)1/d
).

Lemma 4.31. For � > 1 and sequence {yt}nt=1 2 X such that kytk2  X it

holds that

nX

t=1

kytk
2
V

�1

t

 2d log
d�+X2n

d�
.

where Vt =
P

n

t=1 yty
>
t
+ �Id

Proof. Following the proof of Lemma 11 of Abbasi et al.[APS11], we have

nX

t=0

kytk
2
V

�1

t

 2 log
det(Vn)

det(V0)
.

Using Lemma 19.4 of Lattimore et al.[LS18] it follows that

2 log
det(Vn)

det(V0)
 2d log

trace(V0) + nmaxy2Xkyk22
d det(V0)1/d

 2d log
d�+X2n

d�
,

where the final inequality holds by the assumption that kyk2  X for all

y 2 X . Now we have that

nX

t=⌧

kytk
2
V

�1

t

 2d log
d�+X2n

d�

Lemma 4.32. Let {xt}
n

t=1 ⇢ Rd and ✓⇤ 2 Rd. For µ it holds

nX

t=1

µ̇(x>
t
✓⇤)  nµ̇(x>

⇤ ✓⇤) +Mµ

nX

t=1

µ(x>
⇤ ✓⇤)� µ(x>

t
✓⇤).

68

Proof. By an exact first order Taylor expansion of µ̇, the summation
P

n

t=1 µ̇(x
>
t
✓⇤)

can be written as:

nX

t=1

µ̇(x>
⇤ ✓⇤) +

Z 1

v=0

µ̈
�
x>
⇤ ✓⇤ + v(xt � x⇤)

>✓⇤
�
dv(xt � x⇤)

>✓⇤

=nµ̇(x>
⇤ ✓⇤) +

nX

t=1

Z 1

v=0

µ̈
�
x>
⇤ ✓⇤ + v(xt � x⇤)

>✓⇤
�
dv(xt � x⇤)

>✓⇤

nµ̇(x>
⇤ ✓⇤) +

nX

t=1

����µ̇(x
>
⇤ ✓⇤) +

Z 1

v=0

µ̈
�
x>
⇤ ✓⇤ + v(xt � x⇤)

>✓⇤
�
dv(xt � x⇤)

>✓⇤

����

nµ̇(x>
⇤ ✓⇤) +

nX

t=1

����
Z 1

v=0

µ̈
�
x>
⇤ ✓⇤ + v(xt � x⇤)

>✓⇤
�
dv

���� (x⇤ � xt)
>✓⇤

(Since x>
t
✓⇤  x>

⇤ ✓⇤)

nµ̇(x>
⇤ ✓⇤) +Mµ

nX

t=1

����
Z 1

v=0

µ̇
�
x>
⇤ ✓⇤ + v(xt � x⇤)

>✓⇤
�
dv

���� (x⇤ � xt)
>✓⇤

(Since |µ̈| Mµµ̇)

nµ̇(x>
⇤ ✓⇤) +Mµ

nX

t=1

↵(x>
⇤ ✓⇤, x

>
t
✓⇤)(x⇤ � xt)

>✓⇤ (def. ↵)

nµ̇(x>
⇤ ✓⇤) +Mµ

nX

t=1

µ(x>
⇤ ✓⇤)� µ(x>

t
✓⇤). (Mean Value Theorem)

This completes the proof.

We now bound the regret. For RPHE
t

, on event \n
t=⌧+1Et \ EA�H , using

Lemma 4.26 and Lemma 4.28,

nX

t=⌧+1

RPHE
t


4

p3

nX

t=⌧+1

µ̇(x>
t
✓t)�

0
2,t(�)

⇣
kxtkH�1

t

+ E[kxtkH�1

t

|ht]� kxtkH�1

t

⌘

(Lemma 4.26)


4e�0

2,n(�)

p3

r
8n log

2

�
+

4

p3

nX

t=⌧+1

µ̇(x>
t
✓t)�

0
2,t(�)kxtkH�1

t

.

(Lemma 4.28 and �  �0)

69

Now, we focus our attention on the sum

4

p3

nX

t=⌧+1

µ̇(x>
t
✓t)�

0
2,t(�)kxtkH�1

t

(4.36)


4�0

2,n(�)

p3

nX

t=⌧+1

µ̇(x>
t
✓t)kxtkH�1

t

(4.37)


4e�0

2,n(�)

p3

nX

t=⌧+1

µ̇(x>
t
✓̂t)kxtkH�1

t

(4.38)


4e3/2�0

2,n(�)

p3

nX

t=⌧+1

q
µ̇(x>

t ✓⇤)
q

µ̇(x>
t ✓̂t)kxtkH�1

t

(4.39)

=
4e3/2�0

2,n(�)

p3

nX

t=⌧+1

q
µ̇(x>

t ✓⇤)kx̃tkH�1

t

(4.40)


4e3/2�0

2,n(�)

p3

vuut
nX

t=⌧+1

µ̇(x>
t ✓⇤)

vuut
nX

t=⌧+1

kx̃tk
2
H

�1

t

(4.41)


4e3/2�0

2,n(�)

p3

p
2d log(1 + nL/(d�))

vuut
nX

t=⌧+1

µ̇(x>
t ✓⇤), (4.42)

where the first inequality is because of �0
2,t(�)  �0

2,n(�); the second inequality

is because of Dt  1 and Lemma 3.8; the thrid inequality is because of D⇤
t
 1

and Lemma 3.8; in the fifth inequality we denote x̃t :=
q
µ̇(x>

t ✓̂t)xt and Ht

can be written as Ht =
P

t�1
s=1 x̃sx̃>

s
+ �I; the sixth inequality is because of

Cauchy-schwarz inequality and the final inequality is because of Lemma 4.31.

Thus on the event Et,

nX

t=⌧+1

RPHE
t


4e�0
2,t(�)

p3

0

@
p

2ed log(1 + nL/(d�))

vuut
nX

t=⌧+1

µ̇(x>
t ✓⇤) +

r
8n log

2

�

1

A .

70

For bounding the sum of RPRED
t

on the event Et

nX

t=⌧+1

RPRED
t



nX

t=⌧+1

p
e(1 + e)�0

t
(�)

q
µ̇(x>

t ✓⇤)
q
µ̇(x>

t ✓̂t)kxtk
2
H

�1

t

(4.43)

 2e3/2�0
n
(�)

nX

t=⌧+1

q
µ̇(x>

t ✓⇤)
q
µ̇(x>

t ✓̂t)kxtk
2
H

�1

t

(4.44)

 2e3/2�0
n
(�)

vuut
nX

t=⌧+1

µ̇(x>
t ✓⇤)

vuut
nX

t=⌧+1

µ̇(x>
t ✓̂t)kxtk

2
H

�1

t

(4.45)

 2e3/2�0
n
(�)

vuut
nX

t=⌧+1

µ̇(x>
t ✓⇤)

vuut
nX

t=⌧+1

kx̃tk
2
H

�1

t

(4.46)

 2e3/2�0
n
(�)

p
2d log(1 + nL/(d�))

vuut
nX

t=⌧+1

µ̇(x>
t ✓⇤). (4.47)

where the first inequality is because of Lemma 4.29; the second inequality is

because of �0
t
(�)  �0

n
(�) ; the third inequality is because of Cauchy-schwarz

inequality; in the fourth inequality we denote x̃t :=
q

µ̇(x>
t ✓̂t)xt and Ht can be

written as Ht =
P

t�1
s=1 x̃sx̃>

s
+�I; the last inequality is because of Lemma 4.31.

Now combining the bounds on RPHE
t

and RPRED
t

on the event Et and EA�H .
nX

t=⌧+1

RPHE
t

+RPRED
t


4e3/2�0

n
(�)

p3

0

@
r

2d log(1 +
nL

d�
)

vuut
nX

t=⌧+1

µ̇(x>
t ✓⇤) +

r
8n log

2

�

1

A . (4.48)

Dealing with the remaining sum, Lemma 4.32 gives
vuut

nX

t=⌧+1

µ̇(x>
t ✓⇤) 

q
µ̇(x>

⇤ ✓⇤)n+MµR(n).

Therefore
nX

t=⌧+1

RPHE
t

+RPRED
t


4e3/2�0

n
(�)

p3

 r
2d log(1 +

nL

d�
)
q

µ̇(x>
⇤ ✓⇤)n+MµR(n) +

r
8n log

2

�

!
+ 2�max


4e3/2�0

n
(�)

p3

 r
2d log(1 +

nL

d�
)

✓p
µ̇(x>

⇤ ✓⇤)n+
q

MµR(n)

◆
+

r
8n log

2

�

!

+ 2�max. (
p
a+ b 

p
a+
p
b)

71

Recall R(n)  ⌧�max +
P

n

t=⌧+1 R
PHE
t

+RPRED
t

. Now since x2
 bx+ c implies

x  b+
p
c, which is proved in Lemma 4.6, letting x =

p
R(n) gives

p
R(n) 

4e3/2�0
n
(�)

p3

r
2Mµd log(1 +

nL

d�
)

+

vuut⌧�max +
4e3/2�0

n
(�)

p3

 r
2d log(1 +

nL

d�
)
p
µ̇(x>

⇤ ✓⇤)n+

r
8n log

2

�

!
+ 2�max.

Using (a+ b)2  2a2 + 2b2 finishes bounding the regret on the event E�,

R(n) 
32e3�0

n
(�)2

p23
(2Mµd log(1 + nL/(d�)))

+ 2⌧�max +
8e3/2�0

n
(�)

p3

p
2d log(1 + nL/(d�))

p
µ̇(x>

⇤ ✓⇤)n+

r
8n log

2

�0

!

+ 2�max.

Noting that �0
n
(�) = Õ(d�

p
S) and ⌧ = Õ(d9L2) completes the proof

R(n)  O

⇣
�d3/2

p
Sµ̇(x>

⇤ ✓⇤)n+ d9L2
⌘
.

72

Chapter 5

The Rarely Switching Variant of
sGLM-PHE: sGLM-PHE-RS

Besides the warm-up phase, an expensive step in the algorithm is that we

need to solve two MLE optimization problems in every round. While both

optimization problems are convex (they have the same form, with di↵erent

data), and as such can be solved relatively e�ciently (e.g., using Newton’s

method), they need to solve the optimization problem twice doubling the cost

of running our algorithm.

Note that “pure” optimistic algorithms (i.e., algorithms that rely on opti-

mization to achieve optimism) also need to solve an MLE problem, but some-

times their computational cost can be unchecked. Indeed, optimistic algo-

rithms not only need to solve the MLE problem, but they also need to figure

out an optimistic decision. When the action set is finite, such an optimistic

decision can be computed by considering an upper bound on the reward that

can be incurred for each action and then selecting the action that maximizes

this upper bound. This incurs a cost that scales with the number of actions.

Yet there are no known e�cient ways of implementing optimistic algorithms

when the action set is infinite, e.g., if the action set is the unit ball: The cost

of the naive discretization approach that maintains Õ(
p
n) regret in this case

becomes n⌦(d), which scales poorly with the dimension. In contrast, the PHE

method can be e�ciently implemented as long as linear optimization over the

action set can be e�ciently implemented. Just to given an example, this holds

when the action set is the unit ball [AL17].

73

Yet, the algorithm may still be relatively expensive if the MLE problem is

costly to optimize. A simple idea to save computation is to only resolve the

MLE problem when there is a chance that the solution will be substantially

di↵erent than the previous solution, cf. Algorithm 8. This idea has been

proposed in the context of linear bandits by Abbasi et al. [APS11], but goes

back to econometrics [TC60], in which thresholds were designed in order to

determine when to intervene in an ongoing treatment, or experiment, in order

to determine whether or not the treatment was e↵ective. The motivation being

that switching treatments can be costly. This idea, however, has not been

explored in the context of randomized algorithms, such as posterior sampling,

or PHE. A priori, it may be indeed unclear whether rarely switching works for

randomized algorithms that rely on randomness to produce optimistic choices:

the concern is that the price of using a non-optimistic action for a longer time

may be just too high. As it turns out, this is not the case, whcih we detail in

Section 5.2.

5.1 sGLM-PHE-RS

The warm-up phase is remained the same as Algorithm 7 and the change is

made after that. As is mentioned in the previous section, the MLEs are not

computed until su�cient data are collected to make substantial changes. We

introduce a map ⇢(t) : [n] ! [n] for each t 2 [n] to be the last time step

prior to t that the MLEs are computed. With little abuse of notation, we

denote ⇢t := ⇢(t). The map value ⇢t can be t itself, indicating the MLEs are

computed in round t, otherwise ⇢t = ⇢t�1, implying the data accumulated since

round ⇢t do not make substantial di↵erence that is worth to compute MLEs.

The map value ⇢⌧+1 is initialized to be ⌧ in line 5 and ✓̂⇢⌧+1
is computed in

line 6 as an initialization. The switching criteria, which is the key to the

algorithm, is detailed in line 8, where det(Ht(✓̂⇢t)) is used to measure the

“information” contained in dataset {(xs, ys)}
t�1
s=1. If det(Ht(✓̂⇢t)) is su�cently

di↵erent from det(H⇢t
(✓̂⇢t)), that is, det(Ht(✓̂⇢t)) > (1+C) det(H⇢t

(✓̂⇢t)) where

C is a value specified by the agent, then it is believed that the data collected

74

since round ⇢t makes enough di↵erence. The two MLEs are therefore computed

and the variables maintained by the algorithm: ⇢t, xt, ✓̂t, ✓t are updated as well.

Otherwise every variable maintained by the algorithm remains the same and

⇢t := ⇢t�1. Here for easy display, we initialize a new variable to represent ⇢t

for each t � ⌧ but in practice this can be stored in a single variable. Note

that C is a user specified value where there is a tradeo↵: larger C incurs less

switches, hence computationally cheaper, while a price in the regret needs to

be paid. See Section 5.2 for details.

5.2 Analysis of sGLM-PHE-RS

In this section we detail the analysis of Algorithm 8. The analysis structure

highly resembles that of Section 4.2 and adaptating lemmas in Section 4.2 to

the rarely switching structure is essentially what is done here. The choice of ◆

and ⌧ hence remains the same as Eq. (4.23) and Lemma 4.18.

Theorem 4. With appropriately chosen parameters, the n-round regret of

Algorithm 8, R(n), is bounded as

R(n) = Õ

⇣
�d3/2

p
(1 + C)Sµ̇(x>

⇤ ✓⇤)n+ C
⌘
.

where C = poly(d, L,) and the exact dependence is shown in Section 5.2.4.

5.2.1 An Auxillary Lemma

At the beginning of this section, we present Sherman-Morrison equality, a

well-known result in linear algebra, without proof:

Lemma 5.1. (Sherman-Morrison) Let G a be nonsingular matrices and be E

rank one matrix. Define g = tr(EG�1), then

(E +G)�1 = G�1
�

1

1 + g
G�1EG�1

We need the following lemma that is a modification of Lemma 12 of Abbasi

et al. [APS11] to support our analysis of Algorithm 8. It characterizes the

ratio kxkA�1/kxkB�1 where B is a p.d. matrix and A is resulted from one or

more rank-1 updates on B.

75

Algorithm 8 Rarely Switching sGLM-PHE

1: Input: X ,Mµ, L, �, n, � and S
2: Calculate �, ⌧ according to Section 4.2.5
3: {(xs, ys)}⌧s=1 warm-up(X , ⌧, ✏ = 0.5)
4: ⇢⌧+1 ⌧ {⇢t  t is the last time step prior to t that the MLEs were

updated}
5: ✓̂⇢⌧+1

 argmax✓2Rd L�(✓;D⌧)
6: for t = ⌧ + 1, ..., n do
7: Dt = {(xs, ys)}

t�1
s=1

8: if det(Ht(✓̂⇢t)) > (1 + C) det(H⇢t
(✓̂⇢t)) then

9: ✓̂t argmax✓2Rd L�(✓;Dt)
10: Sample zs,t ⇠ N (0, a2µ̇(x>

t
✓̂t)) for s 2 [t� 1]

11: Set D̃t = {(xs, ys + zs,t)}
t�1
s=1

12: ✓t argmax✓2Rd L�(✓; D̃t)
13: ⇢t t
14: xt = argmaxx2X x>✓t
15: else
16: ⇢t ⇢t�1, xt xt�1

17: end if
18: Observe yt
19: end for

Lemma 5.2 (Modified lemma 12 of Abbasi et al. [APS11]). Let B be a positive

definite matrix, C be a positive semi-definite matrix and A = B + C. Then

we have that

sup
x 6=0

x>B�1x

x>A�1x


det(B�1)

det(A�1)

Proof. We consider first a simple case. Assume C = mm> where m 2 Rd is a

nonzero vector. By lemma 5.1,

A�1 = B�1
�

1

1 + tr(mm>B�1)
B�1mm>B�1

Note that tr(mm>B�1) = tr(m>B�1m) = kmk2
B�1 > 0. Hence, it follows that

1

1 + tr(mm>B�1)
B�1mm>B�1 = m̃m̃>

where

m̃ =
1p

1 + kmk2
B�1

B�1m

Then we have

B�1 = A�1 + m̃m̃>

76

Let x be an arbitrary d-dimensional vector. Using Cauchy-schawrz inequality,

we have

(x>m̃)2  kxk2
A�1km̃k2A

Therefore,

x>(A�1 + m̃m̃>)x  x>A�1x+ kxk2
A�1km̃k2A = (1 + km̃k2

A
)kxk2

A�1 .

Furthermore ,

det(B�1) = det(A�1)(1 + km̃k2
A
)

which yields
x>B�1x

x>A�1x
 1 + km̃k2

A
=

det(B�1)

det(A�1)
.

Finishing the proof of this case. If A = B + m1m>
1 + ... + mt�1m>

t�1, then

by the above argument, B�1 = A�1 + m̃1m̃>
1 + ... + m̃t�1m̃>

t�1. Let Vs =

A�1 + m̃1m̃>
1 + ...+ m̃s�1m̃>

s�1. Then again by the above argument

x>B�1x

x>A�1x
=

x>V1x

x>A�1x

x>V2x

x>V1x
· · ·

x>B�1x

x>Vt�1x


det(V1)

det(A�1)

det(V2)

det(V1)
· · ·

det(B�1)

det(Vt�1)

=
det(B�1)

det(A�1)
.

This completes the proof.

5.2.2 The Good Events

Similar to Section 4.2.2, in this section we present the events that allows us

to upper bound the regret. The analysis still goes through by analyzing the

three events whose definition need to be modified according to ✓̂⇢t as follows.

1. The event ERS
1,t is that the absolute value of the projection of ✓⇤ � ✓̂t on

any x 2 X is small. Throughout this section, we define an ellipsoid-like

confidence set centered at ✓̂t similar to the analysis of the main algorithm.

Specifically, for � > 0, letting

Et,⇢t(�) = {✓ 2 Rd : 8x 2 X , |x>(✓ � ✓̂⇢t)|  �kxk
H

�1

t
(✓̂⇢t)

}

77

we then let

ERS
1,t =

n
✓⇤ 2 Et,⇢t(

p
1 + C�̄1(�))

o

for �̄1(�) = 2�n(�) where �n(�) is defined in Eq. (4.10).

2. The event ERS
2,t is that the absolute value of the projection of ✓⇢t � ✓̂⇢t

onto any x 2 X is small. Specifically,

ERS
2,t =

n
✓⇢t 2 Et,⇢t(

p
1 + C�̄2(�))

o
,

for �̄2(�) = 16Cd(�)�n(�) where �n(�) is defined in Eq. (4.10) and Cd(�)

is defined in Section 4.2.2.

3. The event ERS
3,t is that the perturbed MLE frequently encourages op-

timism, i.e., x>
t
✓⇢t is large in comparison to x⇤✓⇤ holds with constant

probability. Specifically,

ERS
3,t =

�
x>
t
✓⇢t > x>

⇤ ✓⇤

5.2.3 Analysis of the Good Events

Event E1,⇢t We now show that event E1,⇢t holds with high probability by

defining E 00
1,⇢t and showing that E1,⇢t ⇢ E 00

1,⇢t ⇢ ERS
1,t . We now define E 00

1,⇢t :

E 00
1,⇢t := {✓⇤ 2 E⇢t(�̄1(�))}

Lemma 5.3. For �̄1(�) = 2�n(�). For � 2 (0, 1], on event E(�), it follows that

E1,⇢t ⇢ E 00
1,⇢t, hence E 00

1,⇢t holds for all t  n.

Proof. From Lemma 4.17 and the choice of ◆ in Section 4.2.5, one gets D⇤
⇢t


1/Mµ thus �̄1(�) � �0
1,⇢t(�) for all t  n after the warm-up phase, whose

guarantee on D⇤
t
holds on event E(�). Then the ellipsoid-like set E⇢t(�

0
1,⇢t) ⇢

E⇢t(�̄1,⇢t). It thus holds that E1,⇢t ⇢ E 00
1,⇢t . Recall that Lemma 4.11 gives

P(\t2[n]E1,t) � 1��. Noting that \t2[n]E1,t ⇢ \t2[n]E1,⇢t finishes the proof.

The next step is to show that E 00
1,⇢t ⇢ ERS

1,t and hence P(ERS
1,t) � 1 � � for

any t, which is detailed in the next lemma:

78

Lemma 5.4. For � 2 (0, 1], on event E(�), ERS

1,t holds for all t  n.

Proof. By design of Algorithm 8, the determinants satisfy

det(Ht(✓̂⇢t))  (1 + C) det(H⇢t
(✓̂⇢t)).

Then by Lemma 5.2, it follows that for all x 2 X ,

kxk
H

�1
⇢t

(✓̂⇢t)

p
1 + Ckxk

H
�1

t
(✓̂⇢t)

.

because

x>H�1
⇢t

(✓̂⇢t)x 
det(Ht(✓̂⇢t))

det(H⇢t
(✓̂⇢t))

⇣
x>H�1

t
(✓̂⇢t)x

⌘
 (1 + C)x>H�1

t
(✓̂⇢t)x

and note that kxkM =
p

x>Mx for a positive-semidefinite matrix by definition.

Therefore we have that E 00
1,⇢t ⇢ ERS

1,t .

Event ERS

2,t We show that \n
t=⌧+1E

RS
2,t happens with probability at least 1��

given the past by defining E 00
2,⇢t and showing that E2,⇢t ⇢ E 00

2,⇢t ⇢ ERS
2,t . We

now define E 00
2,⇢t :

E 00
2,⇢t := {✓⇢t 2 E⇢t(�̄2(�))}

The next lemma shows that the events E 00
2,t holds with high probability given

the past.

Lemma 5.5. Let It := {⌧ < s  t : ⇢s = s} be the set of indices that the

MLEs are recomputed prior to round t. For �̄2(�) = 16Cd(�)�n(�), on event

\s2ItE4,s, it follows that Pt(\s2ItE
00
2,s) � 1� � holds P-almost surely.

Proof. From Lemma 4.17 and the choice of ◆ Lemma 4.18 and Eq. (4.23), one

gets for all s 2 It, it follows that Ds  1/Mµ on event E4,s. Replacing Ds in

�0
2,s(�) with this upper bound results in �̄2(�). Thus it holds that

E2,s ⇢ E 00
2,s, 8s 2 It. (5.1)

Note that
t\

s=1

E2,s ⇢

\

s2It

E2,s ⇢

\

s2It

E 00
2,s

Finally Lemma 4.21 gives Pt(\ts=⌧+1E2,s) � 1 � � holds P-almost surely for

all t > ⌧ . Then the statement follows by using the monotone property of

probability measure.

79

The next step is to show that E 00
2,⇢t ⇢ ERS

2,t and hence Pt(\ts=⌧+1E
RS
2,s) � 1��

for all t 2 [n], which is detailed in the proof Lemma 5.6:

Lemma 5.6. On event E4,⇢t, for �̄2(�) = 16Cd(�)�n(�), it follows that Pt(\ts=⌧+1E
RS

2,s) �

1� � holds P-almost surely for t > ⌧ and � 2 (0, 1].

Proof. By the design of Algorithm 8, the determinants satisfy

det(Ht(✓̂⇢t))  (1 + C) det(H⇢t
(✓̂⇢t)).

Then by Lemma 5.2, it follows that for all x 2 X ,

kxk
H

�1
⇢t

(✓̂⇢t)

p
1 + Ckxk

H
�1

t
(✓̂⇢t)

.

Therefore we have that

E 00
2,⇢t ⇢ ERS

2,t (5.2)

for all t and note that
\

s2It

E 00
2,s ⇢

t\

s=⌧+1

ERS
2,s ,

therefore it follows that Pt(\ts=⌧+1E
RS
2,s) � 1� �.

Event ERS

3,t We show that ERS
3,t happens with probability at least p3, which

is detailed in the next lemma:

Lemma 5.7. On event ERS

1,⇢t , E
RS

2,⇢t and E4,⇢t, it follows that for any t > ⌧

Pt(ERS

3,t) � p3.

Proof. Note that by design of the algorithm xt = x⇢t
, ✓t = ✓⇢t , therefore it

follows that:

Pt(E
RS
3,t) = Pt(x

>
t
✓t > x⇤✓⇤) = P⇢t

(x>
⇢t
✓⇢t > x⇤✓⇤) = P⇢t

(E3,⇢t)

Note that E1,⇢t and E2,⇢t holds because ERS
1,⇢t and ERS

2,⇢t holds (Eqs. (5.1)

and (5.2)). Therefore, all of the conditions of Lemma 4.22 are satisfied:

Pt(E
RS
3,t) = P⇢t

(E3,⇢t) � p3

where the last inequality is an immediate result of Lemma 4.22.

80

5.2.4 Analysis of the regret bound of Algorithm 8

In previous sections, we only give an informal version of the regret bound

of Algorithm 6. In this section, we detail the formal version as well as the

analysis.

Theorem 5. Under assumptions 3.6.1-3.6.3 and assumption 3.10.1. Let m =

Mµ/ log(2), � 2 (0, 1) and �0
n
(�) = �0

1,n(�) + �0
2,n(�). With �n(�) chosen in

Eq. (4.10), � chosen in Eq. (4.9), �̄1,t(�) and �̄2,t(�) chosen in Section 5.2.2, a

chosen in Lemma 4.19, ◆ chosen in Lemma 4.18 and ⌧ chosen in Lemma 4.10,

which we detail all of them below:

m = Mµ/ log(2),

�n(�) =

s

8m�d

✓
S +

1

2m
�

◆
log

✓
2

�

p
1 + Ln/d

◆
,

� =
2m�

S + 1
2m�

d log

✓
2

�

p
1 + Ln/d

◆
,

a2 = 2�n(�),

Cd(�) =
p

d+ log(n/�),

�̄1,n(�) = 2�n(�),

�̄2,n(�) = 16Cd(�)�n(�),

�̄n(�) = �̄1,n(�) + �̄2,n(�),

◆ = 64LM2
µ

✓
1 +

4a2M2
µ
d(1 + log(n/�))

�

◆2

Cd(�)
2�n(�)

2

+

✓
1 + 2Mµ(S +

1

2m
�)

◆2

+ L,

⌧ = ◆2d = Õ(d9L2),

the regret of Algorithm 6 can be upper bounded by

R(n) 
32e3(1 + C)�̄n(�)2

p23
(2Mµd log(1 + nL/(d�))) + 2⌧�max

+
8e3/2

p
1 + C�̄n(�)

p3

 s

2d log

✓
1 +

nL

d�

◆p
µ̇(x>

⇤ ✓⇤)n+

r
8n log

2

�0

!

+ 2�max,

81

with probability at least 1� 5�.

In big-O notation, it can be written as

R(n)  Õ

⇣
�d3/2

p
(1 + C)Sµ̇(x>

⇤ ✓⇤)n+ d9L2
⌘
.

Denote ERS
t

= E(�)\ERS
1,t \E

RS
2,t \E4,⇢t and �̄(�) = �̄1(�)+ �̄2(�). We then

decompose the regret into:

R(n) =
nX

t=1

µ(x>
⇤ ✓⇤)� µ(x>

t
✓⇤)  ⌧�max +

nX

t=⌧+1

µ(x>
⇤ ✓⇤)� µ(x>

t
✓⇤)

 (⌧ + 1)�max +
nX

t=⌧+1

µ(x>
⇤ ✓⇤)� µ(x>

t
✓⇢t)| {z }

R
PHE,RS

t

+µ(x>
t
✓⇢t)� µ(x>

t
✓⇤)| {z }

R
PRED,RS

t

.

Following exactly the same steps in the proof of Theorem 1, we bound RPHE,RS
t

and RPRED,RS
t separately on event ERS

t
.

Bound RPHE,RS

t

Lemma 5.8. On event ERS

t
, for rounds t > ⌧ it holds that

RPHE,RS

t  4µ̇(x>
t
✓⇢t)
p
1 + C�̄2(�)/p3

⇣
kxtkH�1

t
(✓̂⇢t)

+ E[kxtkH�1

t
(✓̂⇢t)

|ht]� kxtkH�1

t
(✓̂⇢t)

⌘
.

Proof. By replacing RPHE
t

, ✓t �0
2,t(�), Et(�

0
2,t(�)), kxtkH�1

t

with RPHE,RS
t , ✓⇢t ,

p
1 + C�̄2, Et,⇢t(

p
1 + C�̄2(�)), kxtkH�1

t
(⇢̂t)

, the proof finishes by following ex-

actly the same steps in the proof of Lemma 4.26

Lemma 5.9. On event ERS

t
, with probability at least 1� �, it holds that

4

p3

nX

t=⌧+1

µ̇(x>
t
✓⇢t)
p
1 + C�̄2(�)

⇣
E[kxtkH�1

t
(✓̂⇢t)

|ht]� kxtkH�1

t
(✓̂⇢t)

⌘


4e
p
1 + C�̄2(�)

p3

r
8n log

2

�
.

Proof. Note that for t > ⌧ , by the choice of ◆ in Section 5.2.4, it follows that,

kxtkH�1

t
(✓̂⇢t)
 kxtkH�1

⇢t


1

◆


1

L

By replacing ✓̂t, ✓t, �0
2,t, kxtkH�1

t

with ✓̂⇢t ,✓⇢t ,
p
1 + C�̄2, kxtkH�1

t
(⇢̂t)

and fol-

lowing exactly the same steps in the proof of Lemma 4.28, the statement

follows.

Denote the event that Lemma 5.9 holds to be EA�H,RS

82

Bound on RPRED,RS

t

Lemma 5.10. On Event ERS

t
, for any t > ⌧ , it holds that

RPRED,RS

t 
p
e(1 + e)

p
1 + C�̄(�)

q
µ̇(x>

t ✓⇤)
q

µ̇(x>
t ✓̂⇢t)kxtkH�1

t
(✓̂⇢t)

Proof. Note that on event E4,⇢t , D⇤
t
 1/Mµ and Dt  1/Mµ. Replacing

RPRED
t

,kxtkH�1

t

and �0
t
(�) with RPRED,RS

t , kxtkH�1

t
(⇢̂t)

and
p
1 + C�̄(�) gives

the proof by following exact the same steps in the proof of Lemma 4.29.

Bound the regret For RPHE,RS
t , by using Lemma 5.8 and Lemma 5.9, which

are the adapted versions of Lemma 4.26 and Lemma 4.28, on event EA�H,RS

and ERS

t
, it follows that

RPHE,RS
t 

4

p3
µ̇(x>

t
✓⇢t)
p
1 + C�̄(�)

⇣
kxtkH�1

t
(✓̂⇢t)

+ E[kxtkH�1

t
(✓̂⇢t)

|ht]� kxtkH�1

t
(✓̂⇢t)

⌘


4e
p
1 + C�̄(�)

p3

µ̇(x>

t
✓⇢t)kxtkH�1

t
(✓̂⇢t)

+

r
8n log

2

�

!
.

Following Eqs. (4.36) to (4.42) and noting thatD⇤
⇢t
 1, D⇢t

 1,
P

n

t=⌧+1 R
PHE,RS
t

can be bounded on event ERS
t

as

nX

t=⌧+1

RPHE,RS
t 

4e
p
1 + C�̄(�)

p3

0

@
s

2ed log

✓
1 +

nL

d�

◆vuut
nX

t=⌧+1

µ̇(x>
t ✓⇤) +

r
8n log

2

�

1

A

For bounding
P

n

t=⌧+1 R
PRED,RS
t on event ERS

t
, we follow Eqs. (4.43) to (4.47),

where Lemma 4.29 used in the first inequality is replaced with Lemma 5.10,

and the sum can be bounded as:

nX

t=⌧+1

RPRED,RS
t  2e3/2

p
1 + C�̄(�)

p
2d log(1 + nL/(d�))

vuut
nX

t=⌧+1

µ̇(x>
t ✓⇤).

and therefore, on the event ERS
t

, it follows that

nX

t=⌧+1

RPHE,RS
t +RPRED,RS

t 
4e

3

2

p
1 + C�̄(�)

p3
⇥

0

@
s

2d log

✓
1 +

nL

d�

◆vuut
nX

t=⌧+1

µ̇(x>
t ✓⇤) +

r
8n log

2

�

1

A .

83

Using Lemma 4.6 and following the calculations starting from Eq. (4.48) in

the proof of Theorem 1 gives the final regret bound

R(n) 
32e3(1 + C)�̄(�)2

p23
(2Mµd log(1 + nL/(d�))) + 2⌧�max

+
8e3/2

p
1 + C�̄(�)

p3

p

2d log(1 + nL/(d�))
p
µ̇(x>

⇤ ✓⇤)n+

r
8n log

2

�0

!

+ 2�max.

Noting that �̄(�0) = Õ(d�
p
S) and ⌧ = Õ(d5L2) completes the proof

R(n)  O

⇣
�d3/2

p
Sµ̇(x>

⇤ ✓⇤)n+ d9L2
⌘
.

84

Chapter 6

Conclusion and Future Work

In this thesis we extended perturbed history exploration (PHE) to subgaus-

sian generalized linear bandits (sGLBs), pushing both our understanding of

sGLBs and the boundary of the problems that PHE applies to. For the for-

mer, we showed that the mean function in sGLBs automatically enjoys a self-

concordance property, showing that, amongst other things, all sGLBs with

log-concave density function are not too di↵erent from logistic bandits. This

insight allowed us to extend the scope of previous worked that considered only

logistic bandits to sGLBs with log-concave density function, partially answer-

ing the question proposed by Fillipi et al. [Fil+10]. On the front of PHE,

we show that adding perturbations that reflect the uncertainty at each data

point, through the curvature of the likelihood function, gives state-of-the-art

guarantees, at least in logistic bandits. This leads us to conjecture that this

is generally necessary: that in all settings, PHE should add noise to each ob-

servation in relation to the amount of uncertainty. We also showed that the

rarely switchiing prcedure, which is able to significantly increase the compu-

tational e�ciency of an algorithm, has theoretical guarantees on randomized

algorithms such as Posterior Sampling and Perturbed History Exploration,

which previously has only been shown to hold in UCB-type of pure optimistic

algorithms.

An important direction for future work is removing the warm-up phase.

While the warm-up phase is not a problem for parametric bandits—therein

Algorithm 7 is e�cient, that is, poly(d)—it does not scale to reinforcement

85

learning, where we e↵ectively must take sequences of actions, and not a sin-

gle action, within each round. For such more general settings, adding fake

data, as in Russo et al. [Rus19], seems like a promising direction. Another

direction which may be worth exploring is in making the results of Ishfaq

et al. [Ish+21] for model-free RL with bounded eluder dimension rigorous.

Therein, the authors assume that the probability of optimism is constant to

show their result. Removing this assumption and proving that, in their set-

ting, anti-concentration occurs with constant probability using the analysis

and techniques developed in this work would further establish the universality

of perturbed history exploration.

Another crucial direction of future work is to investigate how to remove the

dependency of Mµ on  for the link function of all sGLMs. As is mentioned

in Section 3.10 that the self-concordant parameter of many of frequently used

distributions are independent very small.

86

References

[APS11] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. “Im-
proved algorithms for linear stochastic bandits”. In: Advances in
Neural Information Processing Systems. 2011, pp. 2312–2320.

[AFC21] Marc Abeille, Louis Faury, and Clément Calauzènes. “Instance-
wise minimax-optimal algorithms for logistic bandits”. In: In-
ternational Conference on Artificial Intelligence and Statistics.
PMLR. 2021, pp. 3691–3699.

[AL+17] Marc Abeille, Alessandro Lazaric, et al. “Linear thompson sam-
pling revisited”. In: Electronic Journal of Statistics 11.2 (2017),
pp. 5165–5197.

[AL17] Marc Abeille and Alessandro Lazaric. “Thompson sampling for
linear-quadratic control problems”. In: arXiv preprint arXiv:1703.08972
(2017).

[ACF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time
analysis of the multiarmed bandit problem”. In: Machine learning
47.2-3 (2002), pp. 235–256.

[BV04] Stephen P Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[Bro86] Lawrence D Brown. “Fundamentals of statistical exponential fam-
ilies: with applications in statistical decision theory”. In: Ims.
1986.

[Bub+15] Sébastien Bubeck et al. “Convex optimization: Algorithms and
complexity”. In: Foundations and Trends® in Machine Learning
8.3-4 (2015), pp. 231–357.

[Che72] Herman Cherno↵. Sequential Analysis and Optimal Design. Soci-
ety for Industrial and Applied Mathematics, 1972.

[Fau+20] Louis Faury et al. Improved Optimistic Algorithms for Logistic
Bandits. 2020. arXiv: 2002.07530 [cs.LG].

[Fau+22] Louis Faury et al. “Jointly E�cient and Optimal Algorithms for
Logistic Bandits”. In: AISTATS. 2022.

87

https://arxiv.org/abs/2002.07530

[Fie+19] Tanner Fiez et al. “Sequential Experimental Design for Transduc-
tive Linear Bandits”. In: Advances in Neural Information Process-
ing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates,
Inc., 2019. url: https://proceedings.neurips.cc/paper/
2019/file/8ba6c657b03fc7c8dd4dff8e45defcd2-Paper.pdf.

[Fil+10] Sarah Filippi et al. “Parametric bandits: The generalized linear
case”. In: Advances in Neural Information Processing Systems 23
(2010).

[Fos+21] Dylan J Foster et al. “The statistical complexity of interactive
decision making”. In: arXiv preprint arXiv:2112.13487 (2021).

[FGH23] Dylan J. Foster, Noah Golowich, and Yanjun Han. Tight Guaran-
tees for Interactive Decision Making with the Decision-Estimation
Coe�cient. 2023. arXiv: 2301.08215 [cs.LG].

[HB20] Nima Hamidi and Mohsen Bayati. On Worst-case Regret of Lin-
ear Thompson Sampling. 2020. arXiv: 2006.06790 [cs.LG].

[Han57] James Hannan. “Approximation to Bayes risk in repeated play”.
In: Contributions to the Theory of Games. Vol. 3. Princeton, NJ:
Princeton University Press, 1957, pp. 97–140.

[Ish+21] Haque Ishfaq et al. “Randomized Exploration in Reinforcement
Learning with General Value Function Approximation”. In: Pro-
ceedings of the 38th International Conference on Machine Learn-
ing. Ed. by Marina Meila and Tong Zhang. Vol. 139. Proceedings
of Machine Learning Research. PMLR, 18–24 Jul 2021, pp. 4607–
4616. url: https://proceedings.mlr.press/v139/ishfaq21a.
html.

[JOA10] Thomas Jaksch, Ronald Ortner, and Peter Auer. “Near-optimal
regret bounds for reinforcement learning”. In: Journal of Machine
Learning Research 11.Apr (2010), pp. 1563–1600.

[Jun+17] Kwang-Sung Jun et al. “Scalable Generalized Linear Bandits: On-
line Computation and Hashing”. In: NIPS. 2017.

[Jun+21] Kwang-Sung Jun et al. “Improved Confidence Bounds for the
Linear Logistic Model and Applications to Bandits”. In: ICML.
2021.

[Kak+10] Sham Kakade et al. “Learning Exponential Families in High-
Dimensions: Strong Convexity and Sparsity”. In: Artificial In-
telligence and Statistics. 2010.

[KV05] Adam Kalai and Santosh Vempala. “E�cient algorithms for on-
line decision problems”. In: Journal of Computer and System Sci-
ences 71.3 (2005), pp. 291–307.

[Khu03] André I Khuri. Advanced calculus with applications in statistics.
John Wiley & Sons, 2003.

88

https://proceedings.neurips.cc/paper/2019/file/8ba6c657b03fc7c8dd4dff8e45defcd2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/8ba6c657b03fc7c8dd4dff8e45defcd2-Paper.pdf
https://arxiv.org/abs/2301.08215
https://arxiv.org/abs/2006.06790
https://proceedings.mlr.press/v139/ishfaq21a.html
https://proceedings.mlr.press/v139/ishfaq21a.html

[Kve+19a] Branislav Kveton et al. “Garbage In, Reward Out: Bootstrapping
Exploration in Multi-Armed Bandits”. In: Proceedings of the 36th
International Conference on Machine Learning. 2019, pp. 3601–
3610.

[Kve+19b] Branislav Kveton et al. “Perturbed-History Exploration in Stochas-
tic Multi-Armed Bandits”. In: IJCAI. 2019.

[Kve+19c] Branislav Kveton et al. Randomized Exploration in Generalized
Linear Bandits. 2019. arXiv: 1906.08947 [cs.LG].

[Kve+20] Branislav Kveton et al. “Perturbed-History Exploration in Stochas-
tic Linear Bandits”. In: Proceedings of The 35th Uncertainty in
Artificial Intelligence Conference. Vol. 115. Proceedings of Ma-
chine Learning Research. PMLR, 22–25 Jul 2020, pp. 530–540.

[LR85] T.L Lai and Herbert Robbins. “Asymptotically E�cient Adaptive
Allocation Rules”. In: Adv. Appl. Math. 6.1 (Mar. 1985), pp. 4–
22. issn: 0196-8858. doi: 10.1016/0196- 8858(85)90002- 8.
url: https://doi.org/10.1016/0196-8858(85)90002-8.

[LS18] Tor Lattimore and Csaba Szepesvári. “Bandit algorithms”. In:
preprint (2018), p. 28.

[LS20] Tor Lattimore and Csaba Szepesvári. “Exploration by Optimisa-
tion in Partial Monitoring”. In: COLT. June 2020.

[LLZ17] Lihong Li, Yu Lu, and Dengyong Zhou. “Provably Optimal Algo-
rithms for Generalized Linear Contextual Bandits”. In: Proceed-
ings of the 34th International Conference on Machine Learning.
Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of
Machine Learning Research. PMLR, June 2017, pp. 2071–2080.
url: http://proceedings.mlr.press/v70/li17c.html.

[LR17] Xiuyuan Lu and Benjamin Van Roy. “Ensemble sampling”. In:
Advances in Neural Information Processing Systems. 2017.

[McC19] Peter McCullagh. Generalized linear models. Routledge, 2019.

[OAC18] I. Osband, J. Aslanides, and A. Cassirer. “Randomized prior func-
tions for deep reinforcement learning”. In: Advances in Neural
Information Processing Systems. 2018.

[OV15] Ian Osband and Benjamin Van Roy. “Bootstrapped Thompson
sampling and deep exploration”. In: arXiv preprint arXiv:1507.00300
(2015).

[OVW14] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization
and Exploration via Randomized Value Functions. 2014. doi: 10.
48550/ARXIV.1402.0635. url: https://arxiv.org/abs/1402.
0635.

[Osb+16] Ian Osband et al. “Deep exploration via bootstrapped DQN”. In:
Advances in Neural Information Processing Systems. 2016.

89

https://arxiv.org/abs/1906.08947
https://doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1016/0196-8858(85)90002-8
http://proceedings.mlr.press/v70/li17c.html
https://doi.org/10.48550/ARXIV.1402.0635
https://doi.org/10.48550/ARXIV.1402.0635
https://arxiv.org/abs/1402.0635
https://arxiv.org/abs/1402.0635

[Osb+17] Ian Osband et al. “Deep Exploration via Randomized Value Func-
tions”. In: CoRR abs/1703.07608 (2017). arXiv: 1703 . 07608.
url: http://arxiv.org/abs/1703.07608.

[PAD19] My Phan, Yasin Abbasi-Yadkori, and Justin Domke. “Thompson
Sampling and Approximate Inference”. In: Advances in Neural
Information Processing Systems. Vol. 32. 2019.

[Puk06] Friedrich Pukelsheim. Optimal Design of Experiments (Classics
in Applied Mathematics) (Classics in Applied Mathematics, 50).
USA: Society for Industrial and Applied Mathematics, 2006. isbn:
0898716047.

[Qin+22] Chao Qin et al. “An Analysis of Ensemble Sampling”. In: Ad-
vances in Neural Information Processing Systems. 2022.

[Rig12] Philippe Rigollet. “Kullback–Leibler aggregation and misspeci-
fied generalized linear models”. In: (2012).

[Rus+20] Yoan Russac et al. “Self-Concordant Analysis of Generalized Lin-
ear Bandits with Forgetting”. In: ArXiv abs/2011.00819 (2020).

[Rus19] Daniel Russo. “Worst-case regret bounds for exploration via ran-
domized value functions”. In: Advances in Neural Information
Processing Systems. 2019, pp. 14410–14420.

[RV13] Daniel Russo and Benjamin Van Roy. “Eluder Dimension and
the Sample Complexity of Optimistic Exploration”. In: Advances
in Neural Information Processing Systems. Ed. by C.J. Burges
et al. Vol. 26. Curran Associates, Inc., 2013. url: https : / /
proceedings.neurips.cc/paper/2013/file/41bfd20a38bb1b0bec75acf0845530a7-
Paper.pdf.

[RV18] Daniel Russo and Benjamin Van Roy. “Learning to optimize
via information-directed sampling”. In: Operations Research 66.1
(2018), pp. 230–252.

[SS12] Warren Schudy and Maxim Sviridenko. “Concentration and mo-
ment inequalities for polynomials of independent random vari-
ables”. In: Proceedings of the twenty-third annual ACM-SIAM
symposium on Discrete Algorithms. SIAM. 2012, pp. 437–446.

[SLM14] Marta Soare, Alessandro Lazaric, and Rémi Munos. “Best-Arm
Identification in Linear Bandits”. In:ArXiv abs/1409.6110 (2014).

[ST17] Tianxiao Sun and Quoc Tran-Dinh. “Generalized self-concordant
functions: a recipe for Newton-type methods”. In: Mathematical
Programming (2017), pp. 1–69.

[TC60] Donald L. Thistlewaite and Donald T. Campbell. “Regression-
Discontinuity Analysis: An Alternative to the Ex-Post Facto Ex-
periment”. In: Observational Studies 3 (1960), pp. 119–128.

90

https://arxiv.org/abs/1703.07608
http://arxiv.org/abs/1703.07608
https://proceedings.neurips.cc/paper/2013/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf

[Tho33] William R. Thompson. “On the Likelihood that One Unknown
Probability Exceeds Another in View of the Evidence of Two
Samples”. In: Biometrika 25.3/4 (1933), pp. 285–294. issn: 00063444.
url: http : / / www . jstor . org / stable / 2332286 (visited on
09/30/2022).

[Ver18] Roman Vershynin. High-dimensional probability: An introduction
with applications in data science. Vol. 47. Cambridge university
press, 2018.

[Wai19] Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic
Viewpoint. Cambridge Series in Statistical and Probabilistic Math-
ematics. Cambridge University Press, 2019.

91

http://www.jstor.org/stable/2332286

	Introduction
	Related Work
	Preliminaries
	Notation
	Stochastic Multi-armed Bandits with Finitely Many Arms
	The interaction protocol

	Stochastic Linear Bandits
	The interaction protocol

	The Optimization Objectives
	Exploration and Exploitation Trade-off
	Problem Setting
	Generalized Linear Models
	Revisiting Generalized Linear Bandits
	Log-likelihood function

	Subgaussian Distributions
	Generalized Self-concordant Functions
	Properties of the Link Function
	The Curvature of the Log-likelihood Function

	Posterior Sampling and Perturbed History Exploration
	Optimism in Face of Uncertainty
	Posterior Sampling
	Posterior Sampling in Linear Bandits
	Perturbed History Exploration
	Perturbed History Exploration in Generalized Linear Bandit

	Optimal Design Problem

	Perturbed History Exploration for Subgaussian Generalized Linear Model Bandits
	sGLM-PHE
	The analysis of sGLM-PHE
	A Tail Inequality for Self-Normalized Martingales and the Confidence Set
	The Good Events
	Analysis of the Warm-Up Procedure
	Analysis of the Good Events
	Analysis of the regret bound of Algorithm:GLM-FPL

	The Rarely Switching Variant of sGLM-PHE: sGLM-PHE-RS
	sGLM-PHE-RS
	Analysis of sGLM-PHE-RS
	An Auxillary Lemma
	The Good Events
	Analysis of the Good Events
	Analysis of the regret bound of Algorithm:GLM-FPL-rs

	Conclusion and Future Work
	References

