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Abstract

Histological examination and derived ancillary testing remain the gold standard for

breast cancer diagnosis, prognosis assessment and treatment guidance. Currently, a

commercial molecular signature test OncotypeDX®, based on RNA quantitation

and providing a recurrence score (RS) ranging from 0 to 100, is routinely utilized

for luminal breast cancers (the largest sub-type group of breast cancers) to predict

the probabilities of response to chemotherapy and disease recurrence. We attempt

to predict RS using digital pathology and Weakly Supervised (WS) attention-based

models. In tissue samples, the malignant component is haphazardly admixed with

the non-malignant component in variable proportions. This represents a challenge

for WS attention-based models to identify high-valued diagnostic/prognostic areas

within whole slide images (WSIs). To address this, we propose an interactive, su-

pervised approach with a human in the middle by creating a user-friendly Graphical

User Interface (GUI) that allows an expert pathologist to annotate heatmaps gen-

erated by any WS attention-based model. We aim to enhance the model’s learning

capabilities and performance by incorporating the feedback from the GUI as ex-

pected scores in the successive training process. We train WS attention-based models

like CLAM (Clustering-constrained Attention Multiple Instance Learning) [1] and

TransMIL (Transformer based Correlated Multiple Instance Learning) [2] on our

in-house dataset before and after the expert feedback. We observe an improvement

in RS prediction after retraining both models with the pathologist’s annotation- a 5%

rise in validation-test AUC and 4% in validation-test accuracy for CLAM and a 4.5%

increase in validation-test AUC and 3% in validation-test accuracy for TransMIL. We
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analyze the generated heatmaps and observe how additional supervision from a do-

main expert enhances the learning capacity of the models. We notice an improvement

in cosine similarity between the pathologist’s GUI-based attention scores and trained

models’ attention maps after feedback - 5% and 10% increase for CLAM and Trans-

MIL, respectively. The implementation of the proposed approach and the dataset

is available for download1. Our adaptive, interactive system harmonizes attention

scores with expert intuition and instills higher confidence in the system’s predictions.

This study establishes a potent synergy between AI and expert collaboration, ad-

dressing the constraints of WS by enhancing the discrimination of diagnostic features

and making an effort to generate predictions according to clinical diagnostic norms.

1https://github.com/nam1410/RS prediction.git
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Preface

This thesis draws its foundation from the contribution for presentation at The IEEE

International Conference on Bioinformatics & Biomedicine (IEEE BIBM 2023), where

it awaits review by peers in the field.
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Misery grows, I’m close to giving up hope .....

.....Holding on to my life, afraid to let it go;

Where toxic thoughts in my head would unify .....

..... Surviving the madness, the world’s an asylum;

Where I could crumble under pressure or turn to a diamond .....

..... Every day I was sunk in despair;

Only wheezing as I breathe through the pungent air;

Carried the weight on my shoulders, hence the hunch that I bear;

..... I guess pain is a fraction of what trouble evokes;

Success tastes sweetest for those who struggle the most .....

- BrodhaV (All Divine)
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Chapter 1

Introduction

1.1 The WHERE problem in Whole Slide Images

(WSI)

Breast cancer (BC) is a pressing global concern, given its estimated fatality count

of 43,700 projected for 2023 in the USA. Hematoxylin and eosin (H&E) histological

examination of needle core biopsy remains the routinely performed gold standard

method for BC diagnosis. Pathologists have excelled in precise cancer diagnosis for

many years, but prognosis prediction presents a different challenge. Breast cancer

comprises four subtypes (as shown in Fig. 1.1): Luminal A (including normal-like),

associated with a good prognosis, and Luminal B, HER-2 enriched and Triple nega-

tive, associated with bad prognoses, necessitating aggressive chemotherapy. Patholo-

gists can readily identify HER-2 and Triple Negative subtypes using in-house ancillary

tests like H&E and Immunohistochemistry (IHC). However, distinguishing Luminal

A from Luminal B, representing 65% of all BC cases, remains elusive. This the-

sis focuses on the distinction between Luminal A and Luminal B. Pathologists have

attempted to classify them into grades where Grade 1 corresponds to Luminal A

(good prognosis), Grade 3 to Luminal B (a bad prognosis), and Grade 2 remains

uncertain (as shown in Fig. 1.1). However, this grading system suffers from poor

inter-observer reproducibility, making it unreliable for treatment decisions. Nowa-

days, a costly commercial test called OncotypeDX® provides a Recurrence Score
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Figure 1.3: Digitization of tissue slides - Whole Slide Imaging (WSI)

(RS) to aid in prognosis prediction. We aim to predict the OncotypeDX® score

by leveraging the prognostic information within BC morphology. RS, rang-

ing from 0 to 100, is based on expression levels of 16 genes normalized to 5 reference

genes. An RS value of 25 and lower defines the risk of recurrence to be low, whereas

an RS value of higher than 25 defines a high risk and decides to add chemotherapy

to the treatment plan [3].

Traditionally, pathologists manually examine tissue sections stained with H&E and

other biomarkers through microscopes. The engineering of reliable and fast scanners

has facilitated the digitization of entire tissue slides, resulting in large images known as

Whole Slide Images (WSIs). However, analyzingWSIs presents a formidable challenge

(as shown in Fig. 1.3). These images are gigapixels in size, about 50,000 times larger

than images in datasets like ImageNet with an average size of 469-by-387 pixels. While

identifying objects like a bald eagle by Deep Learning models (as shown in Fig. 1.4)

is often less complicated, it becomes difficult to pinpoint tumorous and non-tumorous

components in WSIs. It indicates that the crucial diagnostic information is scattered

and sparsely distributed, comprising a variable proportion of the total image area. It

is called the WHERE problem, a situation arising from disproportional distribution

and varying sizes of tumour regions.

The crux of the WHERE problem lies where these diagnostically significant tumour
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Class: haliaeetus leucocephalus a.k.a bald eagle

WHERE is the bald eagle?

Class: low

WHERE is the tumorous component?

Figure 1.4: The WHERE problem

areas often occupy an undetermined fraction of the WSI, along with an undetermined

fraction of non-tumoural areas (surrounding normal epithelial structures, normal stro-

mal components - fat, vessels, muscle, etc) and also inflammatory areas triggered or

not by the tumoural process. This dynamic poses a distinct challenge: discerning the

relevant malignant content from the surrounding non-malignant content is in some

cases akin to searching for a needle in a haystack. Addressing the WHERE chal-

lenge requires an understanding of the spatial distribution of tumour features in the

WSI. Along with this, the developing algorithms should be capable of discriminating

between subtle variations in tissue patterns across the entire WSI.

Obtaining precise delineations from pathologists takes time, thus leading to Weak

Supervision (WS), where weak labels are assigned manually or based on empirical

results. Multiple Instance Learning (MIL) partitions a WSI into patches, allowing

confident labelling of the entire bag of patches (instances) when individual instance

labelling in a bag is uncertain or expensive (as shown in Fig. 1.5). An aggrega-

tion mechanism synthesizes information from these patches. To identify the patches

with high diagnostic significance, an attention mechanism becomes crucial for

highlighting the relevance of objects relevant to predictive tasks. In natural language

processing and image analysis, the attention mechanism has demonstrated its effec-
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Figure 1.5: Multiple Instance Learning (MIL)

tiveness in singling out critical elements that impact decision-making. For instance,

the Self-Attention Class Activation Map (SACAM) [4] (as shown in Fig. 1.6) iden-

tifies objects like animals within images. The success of such mechanisms in datasets

like ImageNet has enticed researchers to explore their applicability in diverse domains,

including medical imaging. Consequently, the question emerges: Can self-attention

enhance the prediction of cancer recurrence likelihood?

Weakly supervised models like CLAM (Clustering-constrained Attention Multi-

ple Instance Learning) [1] and TransMIL (Transformer based Correlated Multiple

Instance Learning) [2] exhibit strong performance (AUC > 0.95) in primary predic-

tions involving metastatic tissues, especially in benchmark datasets like TCGA (The

Cancer Genome Atlas Program). Notably, the WSI size within this dataset typically

averages around 40k-by-40k pixels, in contrast to recurrence score datasets with slides

around 100k-by-100k pixels. Metastasis evaluation primarily focuses on assessing the

spread of cancer to different regions within the body, while recurrence score predic-
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(a) SACAM

Attends to non-tumoural 
component

Ignores tumoural 
component

(b) The visual depiction illustrates the disparity in at-
tention heatmap coherence within a sub-typing con-
text (left: H&E image; right: corresponding attention
heatmap); The heatmap portrayal of a WSI depicts an
attention pattern discordant with the diagnostic expec-
tations, where the prominent red nodule denoting the
non-malignant component is attended to by the model
(negative picture of the attention)

Figure 1.6: Attention based mechanism

tion pertains to the likelihood of cancer re-emergence. Accurately predicting progno-

sis and treatment response remains an ongoing challenge, particularly for subtyping

tasks that involve distinguishing between high and low-risk cases. Predicting recur-

rence introduces a higher degree of complexity and is less straightforward, rendering

it a more formidable task. For instance, when we apply CLAM and TransMIL to

our recurrence score dataset, they frequently and unpredictably favour non-malignant

components while overlooking essential discriminative features linked to the malig-

nant regions. The generated heatmap deviates from the expected clinical diagnostic

results, leading to erroneous false-positive and false-negative outcomes (as shown in

Fig. 1.6) called the negative picture of attention. This seemingly counterintu-
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itive behaviour of WS attention models like CLAM and TransMIL underscores the

critical need for domain experts to provide guidance. This guidance often

involves offering feedback to indicate where the model’s predictions align with the

ground truth and where it deviates.

In medical imaging, human supervision has been in practice, necessitating the

integration of manually labelled data into the model training process. For instance, [5]

and citele2019pancreatic, collect annotations through crowdsourcing or manual mark-

ings. However, these fixed annotations would not align optimally with the model’s

evolving learning goals, potentially impeding its capacity to detect intricate patterns.

1.2 Objectives

In light of the negative picture of attention and the essential role of human

guidance, we endeavour to address one of the most challenging tasks: predicting

recurrence score. In this context, we leverage the expertise of domain specialists

to solely guide the WS model in achieving a more refined differentiation between

malignant and non-malignant components. Our research inquiries are as follows:

• Can we devise an interactive feedback collection system for annotating a WS

attention-based model’s heatmaps? Can we minimize the time and effort re-

quired for such annotations?

To address this, we develop a Graphical User Interface (GUI) by integrating

Openseadragon1 with Openslide2. This enables a pathologist to delineate free-

bounding boxes of any size on any attention-model’s heatmap of a WSI.

• How can we effectively incorporate the pathologist’s feedback from the GUI

into the attention model’s re-training process and simultaneously enhance its

learning of relevant features and performance?

1https://openseadragon.github.io/
2https://openslide.org/
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Original WSI

Pathologist feedback from GUI Heatmap generated by attention model (after feedback)
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A.

C. D.

Heatmap generated by attention model (before feedback)B.

Incorporating the pathologist’s 
feedback in re-training the attention 

model

Figure 1.7: Pathologist provides feedback using the GUI.
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To address this, we capture the patch attention scores from the initial heatmaps

(before annotation), then perform a spline interpolation with the pathologist’s

feedback information. In other words, this approach modifies the attention

scores at every region on a WSI based on the reason (to increase, decrease or

maintain attention scores) for drawing the bounding box at that region, calling

them the expected scores. We run the attention model by incorporating a Mean

Squared Error (MSE) loss to penalize the difference between expected scores

and the new attention scores generated by the model in the ongoing training

cycle (current attention scores). We also observe the resulting changes in the

heatmaps before and after the feedback from the expert and calculate their

cosine similarity for every WSI.

To summarize, we align the model’s attention scores to generate heatmaps more

consistent with what an expert would anticipate, thus instilling greater confidence in

its predictions.

Our study is grounded in vital supervision through expert annotations. By doing

so, we rectify the limitations of WS attention-based models by fostering their collab-

oration with the pathologists to improve model prediction according to the clinical

diagnostic standards.

1.3 Outline

The subsequent sections of this thesis are structured as follows. The initial portion of

Chapter 2 delves into the foundational aspects of Whole Slide Imaging, encompass-

ing the associated challenges and prospects. The subsequent segment of Chapter 2

sheds light on the pertinent literature and highlights the existing gaps in the field.

Moving forward, Chapter 3 of the thesis explains the extraction of attention

scores from convolution and transformer-based architectures to generate heatmaps

that serve as the basis for annotation.
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Chapter 4 explores our GUI, which enables pathologists to annotate the gener-

ated heatmaps and effectively process their annotations. Additionally, this chapter

elucidates the methodologies applied to incorporate such annotations in the model’s

re-training process.

Chapter 5 offers an in-depth account of the experimental setup, detailing the

specifics of our approach and presenting the obtained results.

Finally, Chapter 6 serves as the concluding segment of the thesis, summarizing the

key insights and contributions derived from our work and encapsulating unexplored

directions for future research.
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Chapter 2

Background

We elaborate on the concepts essential for understanding the Whole Slide Image

(WSI) analysis. We segue into an in-depth exploration of the pertinent literature to

shed light on WSI diagnosis.

2.1 A note on recurrence score

Predicting cancer recurrence and response to therapy holds paramount significance in

the diagnostic follow-up process. While achieving accurate cancer diagnosis is nowa-

days properly managed by expert pathologists, predicting accurate prognosis and re-

sponse to therapy remains an ongoing challenge within the healthcare domain. Since

2005, as we had seen in Section 1.1 the routinely performed biological biomarkers

(ER, PR, HER2/neu) have sub-typed Breast Cancer (BC) as Luminal, Triple Neg-

ative and HER2/neu, permitting significant therapeutic standardization. However

further sub-classification of the Luminal BC sub-group has been, until recently, a

challenge. Indeed, Luminal BC patients form the largest subset of BC for whom the

decision of adding chemotherapy in their treatment has been historically a difficult

clinical decision. There are two Luminal BC subsets: Luminal A which does require

chemotherapy and Luminal B which does not. Since 5 years, this prediction is fa-

cilitated by the utilization of the Recurrence Score (RS) that guides oncologists.

This test employs RT-qPCR to gauge the activity of a cluster of 21 genes (16 breast
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cancer-related normalized to 5 reference housekeeping genes). The 16 genes are rep-

resented as follows: a proliferation group (Ki-67, STK15, Survivin, Cyclin B1 and

MYBL2), an Estrogen group (ER, PGR, Bcl2 and SCUBE2), a HER2 group (GRB7

and HER2), an invasion group (Stromelysin 3 and Cathepsin L2) and the individual

genes CD68, BAG1 and GSTM1. The RS is computed using the following linear

equation:

RS = 0.47× HER2 group score− 0.34× Estrogen group score+

1.04× Proliferation group score + 0.10× Invasion group score+

0.05× CD68− 0.08×GSTM1− 0.07× BAG1

Nowadays all BC patients who have high HER2 expression (typically BC with

demonstrated HER2 gene amplification) are not tested withOncotypeDX®. There-

fore the RS is mostly determined by the proliferation and the Estrogen groups.

Of interest, RS is based on biological data which can be derived from 4 in-house

immuno-histochemistry (IHC) assays (ER, PR, HER2/neu and KI-67) routinely per-

formed in Canadian laboratories. The success of thisOncotypeDX® RS is explained

by the poor inter-laboratory reproducibility of these 4 IHCs. RS spans from 0 to 100 -

an RS value of 25 or lower denotes a low risk of recurrence; an RS value of higher than

25 signifies an elevated risk, potentially warranting chemotherapy incorporation into

the treatment strategy. Several retrospective and prospective studies validate this

test and its clinical utility. [6] demonstrates a correlation between RS and disease-

free survival among patients with estrogen receptor (ER)-positive, HER2-negative,

node-negative breast cancer, specifically within the NSABP B-14 trial. Notably,

TailorX trial [3] recently confirms that for HR-positive, HER2-negative early-stage

breast cancer patients aged over 50 years and those aged below 50 with an RS ≤

15, chemotherapy may be omitted. This testament of the OncotypeDX® test is

grounded in Level 1A evidence and garnered endorsement within prominent interna-

tional clinical guideline recommendations, including those set forth by the American
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Society of Clinical Oncology (ASCO). While OncotypeDX® RS is considered the

gold standard, this test costs 100 times the cost of the 4 IHCs which economically

impacts Canadian laboratories. It is suggested that AI can palliate the problem of

reproducibility introduced by human readouts [7].

2.2 First principles: Whole Slide Imaging

In conjunction with the above genomic tests, pathologists engage in microscopic eval-

uations of tissue sections stained with hematoxylin and eosin (H&E), as well as utilize

diverse biomarkers in specialized IHC and Immunofluorescence (IF) examinations as

part of their diagnostic protocols. These practices facilitate the visual identification of

regions, a process underpinned by the pathologist’s extensive medical expertise. The

evolution of computer processing power, data transfer speeds and storage solutions

has transferred the act of scrutinizing glass microscope slides to computer monitors

through dedicated scanners with software tools. This transformative process of con-

verting histology slides into a digital format yields huge digital images termed Whole

Slide Images (WSIs). These WSIs, often attaining gigapixel dimensions (around

100K-by-100K pixels), adhere rigorously to stringent diagnostic quality benchmarks.

Upon accessing the digital file, pathologists navigate, zoom, and observe spatially on

a computer screen, mimicking the conventional light microscope’s functionality. This

approach allows them to inspect regions of interest, identifying pertinent features or

patterns like traditional microscopy techniques.

2.2.1 Scanners

Digital slide scanners exhibit variability in their features and capabilities, encompass-

ing factors like scanning capacity (ranging between 100 and 200 slides in a single

batch), availability of objectives (20x or 40x magnification), and image resolution

(typically falling within the range of 0.25 to 0.5µm per pixel) [8]. Most histopatho-

logical scanned images are acquired using bright field light microscopy with the 40x
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objective, which is widely accepted as the standard level of magnification for digital

slides and well-suited for a wide array of analyses. For example, consider a WSI

scanned at 40x magnification, featuring an image resolution of approximately 0.25µm

per pixel and a 24-bit colour depth. In such a case, the volume of data representing

a 1mm2 slide area amounts to a staggering 384 million bits, resulting in a file size of

around 48 MB without implementing additional strategies to optimize data manage-

ment. This data size increases further when accounting for the entire slide area or

the inclusion of multiple z-planes (only considered for cytological samples), thereby

potentially placing demands on bandwidth and storage resources [9, 10].

2.2.2 Tiled pyramid

The utilization of memory-friendly compression techniques like JPEG, JPEG 2000,

or LZW leads to substantial loss of digital data during the conversion process, often

resulting in irretrievable information loss. Given that a WSI frequently surpasses

1 GB in size, loading such files into memory for display and navigation becomes

impractical. In such scenarios, a reciprocal connection emerges between the image’s

scale and field of view. For a larger field of view, resolution becomes constrained by

the monitor, necessitating the loading at the highest resolution. Conversely, for a

smaller field of view, the entire image need not be loaded when examining the tissue

at a relatively high magnification. Hence, WSIs are stored at multiple resolutions,

establishing a streamlined approach for image loading and enabling more efficient

image delivery. For instance, an Aperio Scanscope scanner might acquire a sample

WSI at 40x magnification, accompanied by downsampled versions at 10x, 2.5x, and a

thumbnail representation encapsulating the entire tissue within a 1-megapixel frame.

This stratified, multi-resolution depiction is known as the tiled pyramid (as depicted

in Fig. 2.1), offering improved data throughput by precomputing lower-resolution

renditions of WSIs. Most WSI files are of the Tagged Image File (TIF) or Aperio

ScanScope Virtual Slide (SVS) format [11].
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Figure 2.1: WSI pyramid - Each level in the pyramid represents a different pre-
calculated zoom level. The base level represents the full-resolution image. Moving
up the pyramid, each subsequent layer is digitally sub-sampled to create a lower
magnification view, ending at the lowest magnification image at the apex of the
pyramid. Each level is further divided into small tiles of a fixed size (not shown to
scale). Since the tiles are of a fixed size, the base level is composed of the largest
number of tiles, with each subsequent level being composed of fewer and fewer tiles.
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2.2.3 Annotation and labels

Advanced slide scanners have integrated capabilities for tissue identification and auto-

focusing. Moreover, WSI is exceptionally well-suited for applying algorithms to aid

in the analysis of digital tissue images for pathologists. Diagnostic tools featuring

algorithms extract pertinent parameters from WSI scans by comparing tissue sec-

tions or even individual pixel colours against predefined diagnostic standards [12].

For such tools, pathologists play a critical role in evaluating structural, textural, and

morphological markers to identify tumour regions for a specific clinical task or issue.

Depending on the task’s requirements, implementations may be variable, encom-

passing point annotations (identifying the centroid of the pathology marker), shape

annotations (defining a predefined shape around the pathology marker), or intricate

outline annotations (precision segmenting of the pathology marker).

In contrast to the above annotation which assigns labels to distinct morphological

attributes, categorization enables assigning an entire WSI to a diagnostic category

(for instance, high-risk or low -risk in terms of RS). Noteworthy examples of some

diagnostic labels encompass disease subtype, grade, administered medications, and

survival rates. These labels are derived from patient records or established by domain

experts who review the clinical data.

2.3 Opportunities

Fundamental aspects like diagnosis and histological grading are pivotal in disease as-

sessment and treatment strategy. It entails identifying tissue patterns and cellular

attributes linked to diverse pathologies. Traditionally, pathologists rely on recogniz-

ing tissue patterns based on cellular morphology, cell distribution, and architectural

configurations to achieve diagnoses. Once a cancer diagnostic is established, the

pathologist attempts to predict the associated prognosis by gauging the extent of ab-

normality, the degree of cellular differentiation, and other histological traits to assign
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a histological grade to the disease, based on an ordinal scale of measurements. This

assessment is performed on the malignant tissue which is found in specific areas of a

the WSI. A human expert can find the region of interest quickly but it remains an

algorithmic challenge given the huge size and potential random informative content

of a WSI.

The subsequent section delves into the literature on the necessity for advanced

algorithms to facilitate the identification of diagnostic regions within WSIs. Start-

ing with a discussion on traditional machine learning algorithms, we explore weak

and strong supervision strategies and elucidate the rationale behind the demand for

interactive feedback from pathologists.

2.4 Literature Review

Traditional Diagnostic Tools

Feature extraction holds prominence, as the efficacy of algorithms directly corresponds

to the quality of features derived from input images. Traditional techniques for feature

extraction, such as Local Binary Pattern (LBP) [13] and Local Phase Quantization

[14], are assessed in conjunction with diverse classifiers, including 1 Nearest Neighbor

(1-NN) [15], Quadratic Linear Analysis (QDA) [16], Support Vector Machine (SVM)

[17], and Random Forest (RF) [18]. The investigation indicates that SVM exhibited

commendable performance on low-resolution images when employing fractal dimen-

sion as a feature descriptor [19]. Further, following the extraction of features from the

histopathological images, the approach in [20] classifies them into IDC- and IDC+

categories. However, the results exhibit some inconsistencies due to the wholesome

reliance of these techniques on the quality of features obtained through various feature

descriptors [21].

Interactive diagnostic tools like Cellprofiler [22, 23] require partial manual de-

lineations for extracting features at the pixel level (Kirsch, Haralick features, HoG,

LBP), object level (nuclei spatial dependency - Voronoi, Minimum Spanning Tree, De-
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launay triangulation), and semantic level (graph embeddings) which go into classical

classifiers such as Logistic Regression, Support Vector Machine (SVM), and Decision

Trees as inputs. Although these software-based analytical approaches acquire quan-

titative, reproducible, and objective data, the nature of tissue sections affects the

efficacy of such software. It is due to their incapability to identify irrelevant regions

that may be overlooked by the human eye, such as edge effects in staining, tissue fold-

ing, and variations in section thickness, all of which can lead to erroneous results [24].

The limitations of these traditional approaches prompt the exploration of alternative

methodologies that can better accommodate the complexity and nuances inherent in

Whole Slide Images (WSIs) within the field of pathology.

2.4.1 Weak Supervision (WS)

The adoption of Weak Supervision in WSI analysis harnesses the potential of Deep

Learning to navigate the challenges presented by the intricate nature of WSIs. The

emergence of Deep Learning algorithms, renowned for their exceptional performance

on platforms like ImageNet [25], opens a novel avenue for WSI analysis. In tackling

the immense scale of WSIs, the Multiple Instance Learning (MIL) strategy entails

partitioning the multi-gigapixel slide (bag) into smaller patches (instances) that the

machine can handle and subsequently employs an aggregation mechanism to consoli-

date all the information from these patches into a final prediction. Since it leverages

only slide-level labels during the learning process, this approach is called Weakly

Supervised (WS) learning.

WS models enable comprehensive exploration of the entire tissue slide with its con-

stituent patches. The method proposed by [26] assigns weights or scores to instances

that wield influence over the final prediction through an aggregation mechanism to

find the key instances of high diagnostic value. However, this attention-based tech-

nique exhibits overfitting issues due to a restricted number of slides and a bias towards

benign samples [27] in a binary classification between malignant and benign tissue
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slides. It also lacks explicit patch relation modelling because it uses a multi-layer

perceptron to predict attention scores for each patch. Another approach, [28], im-

plements RNN-based aggregation for patient-level prediction, involving patch-level

training and top-k instance selection. The inherent limitation of representing patch

features as a 1-dimensional sequence hinders its ability to capture the 2-dimensional

spatial positions within WSIs.

The above WS methods do not directly apply to multiclass tissue subtyping prob-

lems (high-grade and low-grade cancer types, i.e., high vs. low RS), especially in cases

where benign tissue slides are unavailable. As a response, the attention-based textbf-

CLAM (Clustering-constrained Attention Multiple Instance Learning) [1]framework

concentrates on identifying regions relevant for predictive determinations by instance-

level clustering to generate interpretable heatmaps for multiclass classification tasks.

The widely adopted assumption of instances being independent and identically dis-

tributed (i.i.d.) does not suitably apply in pathology, where contextual information

and the relationship between different tissue regions are essential for making diag-

nostic judgments. In a parallel advancement, [29] introduces the Vision Transformer

(ViT), which directly applies to different image patches arranged sequentially for

classification tasks. As a response, and TransMIL (Transformer based Correlated

Multiple Instance Learning) [2] leverages the self-attention mechanism to encode the

mutual correlations between instances with interpatch dependencies and quantifies

the attention scores of each instance contributing to the bag classification.

2.4.2 Strong Supervision by Pathologist’s input

The need for an extensive training dataset becomes noteworthy when WS methods

do not grasp the features in an effective way. The intricate variations within distinct

tissue types, the diversity of histopathological patterns, and the subtle differentiations

between malignant and non-malignant regions emphasize the necessity of a human-

guided training-error learning strategy.

19



Such a strategy has success in other domains, such as radiology for Magnetic Res-

onance Imaging (MRI) and Computed Tomography (CT) images. Related to pathol-

ogy, for example, in [30], human-provided scribbles are transformed into pseudo-label

maps (associated with confidence values) by a probability-modulated geodesic trans-

form. Confidence values are allocated to pixels demonstrating large geodesic distances

from the scribbles or displaying low network output probabilities, thus making it an

iterative learning process. Approaches like [31, 32] employ eye tracking to observe

the complexity of pathologists’ diagnostic decision-making while observing WSIs. The

attention patterns exhibited by pathologists are captured using a web-based digital

microscope and subjected to distinctive diagnostic search patterns with scanning and

focused examination. Given the large size and high resolution of WSIs, annotators

sometimes resort to generating coarse annotations, as seen in [33]. This technique in-

volves annotators outlining the approximate boundaries of cancerous regions at lower

to intermediate magnifications. In contrast, the approach introduced by [5] requires

annotators to place a limited number of points on each WSI at lower magnifications,

thereby being cost-effective compared to intrinsic annotation methods. It incorpo-

rates a robust architecture distinguishing between various classes and subclasses of

tissues under diagnosis. Similarly, bounding boxes are user-friendly supervision, re-

quiring only a fraction of the annotation time compared to full pixel-wise annotations

[34].

2.5 Gap in existing literature

WS models (in Section 2.4.1) are trained exclusively using slide-level labels but they

often struggle to identify vital diagnostic features while inadvertently emphasizing

irrelevant ones (negative picture of attention). Similar observations in seminal studies

such as [5] and [35] suggest that the compromise in precision and reliability questions

their clinical applicability.

Conversely, the Strong Supervision approach (in Section 2.4.2) involves upfront
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annotations acquired through crowdsourcing. This static approach fails because tradi-

tional annotation methodologies confine the model within initial annotations, restrict-

ing adaptation to emerging insights. Bridging this gap necessitates accommodating

the dynamic nature of WSIs and diagnostic models.

The subsequent chapters emphasize the integration of interactive expert feedback

(Human supervision) to reduce the attention to non-malignant components (negative

picture of attention) by the WS attention-based models.
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Chapter 3

Attention scores

3.1 WS drawbacks - Counter-intuitive behaviour

associated with tumoural regions

As mentioned in Chapters 1 and 2, in recent years, weakly supervised (WS) learn-

ing has garnered significant attention from researchers and has found application in

pathology. We have seen before that the malignant component may only occupy a

small portion of the slide, with most of the WSI potentially comprising non-malignant

constituents. Moreover, the spatial arrangement of the malignancy within the WSI

exhibit substantial variation from case to case. Attention-based pipelines like WS

attention-based models like CLAM (Clustering-constrained Attention Multiple In-

stance Learning) [1] andTransMIL (Transformer based Correlated Multiple Instance

Learning) [2] exhibit a counter-intuitive behaviour by emphasizing non-malignant

components while neglecting the essential malignant ones and eventually misinter-

pretation. It means that some patterns within non-tumoural areas receive attention

but overlook patterns within tumoural regions for the MIL-based method in subtyping

due to the complex nature of WSIs.

The visual representation in Fig. 3.1 illustrates issues with attention weights

encountered in our initial attempt to classify high vs. low RS. In Fig. 3.1A, the

heatmap for a WSI incorrectly classified as belonging to class high (actually low)

displays a negative picture of attention (paying attention to non-tumoural com-
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A
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Figure 3.1: Visual representation of heatmap inconsistencies in a sub-typing problem
(left: H&E image; right: corresponding attention heatmap)
A- Heatmap of a misclassified WSI (high class incorrectly labeled as low) displaying a
negative picture of attention where the blue nodule representing the tumour is almost
totally ignored by the model; B- Heatmap of a correctly classified WSI displaying
another negative picture of attention. The heatmap appears fuzzy as the tumour
itself is poorly defined in the corresponding H&E image
NOTE: The arrows represent the discrepancies in the heatmaps with respect to the
attention paid by the model (targeting tumoural vs. non-tumoural components).
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ponent), assuming that it is arising due to its incorrect classification. Conversely,

Fig. 3.1B demonstrates the scenario where, although the WSI is correctly classified,

the heatmap generated is another negative picture of attention. Irrespective of the

classification results, WS attention models signal the persistence of non-malignant

features originating from non-tumoural areas or artifacts. These artifacts encompass,

for instance, air bubbles, tissue folding, and ink markers, which interfere with the

proper representation of tumoural regions. Some might argue that this counterintu-

itive behaviour may be due to a limited number of WSIs. While expanding pathology

datasets remains a potential solution, it is crucial to acknowledge the considerable

time and memory required for curating thousands of WSIs, each corresponding to an

individual patient. Currently, we focus solely on the available limited WSIs scenario.

The initial heatmaps generated through WS attention-based models [1, 2] for our

recurrence score dataset serve as a poignant reminder of the challenges of develop-

ing a one-size-fits-all solution [36]. Visualizations such as gradCAM [37], colormaps

[38], and attention maps serve as informative tools, unveiling not only the model’s

class judgement but also the extent of fluctuations in the class judgment scores. In

digital pathology, this insight is of paramount importance. However, even when we

manage to acquire annotations with our GUI-based feedback collection system, un-

certainties can persist. It’s worth noting that despite the best efforts, mislabeling can

have a detrimental impact on accuracy. Establishing precise biological delineations

becomes particularly challenging in subtle cases where even experts encounter diffi-

culties distinguishing between subtypes, such as high-risk vs. low -risk. We employ

interpolation and smoothing techniques, such as thin spline interpolation, to mitigate

such uncertainties. We construct an approximating function that captures crucial

patterns within the data while minimizing noise. The standard diagnostic reference

often originates from a single expert pathologist in our study, encompassing subjective

interpretations. Consequently, it becomes more advantageous to incorporate a loss

function that assigns weights to annotation uncertainty during the model re-training
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process. We add a Mean Squared Error (MSE) loss term to the existing set of loss

terms of the attention-based models during their re-training.

In this chapter, we explain the fundamental concept of Multiple Instance Learning

(MIL), with particular emphasis on acquiring attention scores from WS attention-

based models - both convolution and transformer architectures.

3.2 Extracting Attention scores

Standard benchmark natural image datasets such as ImageNet [25] encompass thou-

sands of images with an average resolution of 469-by-387 pixels, commonly subjected

to pre-processing by downsampling to 256-by-256 pixels to serve as inputs to Deep

Learning architectures. Current advancements in hardware and software facilitate the

parallelization of computations and efficient training of various WS attention-based

models using such image dimensions. However, pathology presents a distinct chal-

lenge where the available training WSIs are limited (ranging from 101 to 103) and

where each WSI comprises billions of pixels (approximately 100k-by-100k pixels).

Furthermore, it is frequently the case that each WSI has a single label.

Given the training data, in contrast to typical scenarios for ImageNet [25], where

one label corresponds to an individual image of an average resolution of 469x387

pixels, we now confront a situation with a single class label for a huge WSI (referred

to as a bag) of multiple tiles or patches (instances). This notion called Multiple

Instance Learning, was initially introduced by [39] as a solution to predict the

activity of molecules in drug-related tasks.

Within WS networks, the task involves propagating the information represented

by the bag label through the entirety of the network [40]. In conventional scenarios,

one tries to find a mapping from an instance x ∈ RD to a label y ∈ 0, 1, whereas in

MIL, the objective shifts to find a mapping from a bag of instances X = x1, ..., xN

to a label Y ∈ 0, 1. [26] highlights one possible assumption of MIL comprising the

encoding and the aggregation stages as follows:
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Y =

{︄
0, iff

∑︁N
k=1 yk = 0,

1, if any yk = 1
(3.1)

Using Bernoulli distribution to model the probability of Y given the bag of instances

X:

p(Y |X) = S(X)Y (1− S(X))(1−Y ) (3.2)

where, S(X) = p(Y = 1|X) is a scoring function of a bag X that is considered

permutation invariant (a.k.a. a symmetric function) iff :

S(x1, ..., xN) = S(xσ(1), ..., xσ(N)) (3.3)

for any permutation σ.

For a set of instances X, S(X) ∈ R is a symmetric function iff it can be decom-

posed in the following form:

S(X) = g

(︄∑︂
x∈X

f(x)

)︄
(3.4)

where f and g are suitable transformations.

For any ϵ > 0, a Hausdorff continuous symmetric function S(X) ∈ R can be

arbitrarily approximated by a function in the form g(maxx∈Xf(x)), where max is the

element-wise vector maximum pooling function and f and g are continuous functions,

that is,

|S(X)− g(maxx∈Xf(x))| < ϵ (3.5)

Thus, given any S(X), the procedure involves embedding all instances into a

lower-dimensional space through f and combining these embedded instances using

a permutation-invariant function such as the summation or maximum in eq3.4, eq3.5.

Mapping these embedded instances to a single scalar value, called score, uses g.

The collection of embeddings is denoted as H = h1, ..., hN , where each hk ∈ R.

Typically, pooling layers in a network are employed to reduce the dimensions of the

latent space after each layer of neurons. In the context of the MIL problem, these
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pooling layers serve the additional purpose of pooling instance representations to de-

rive bag representations, achieved either through combining instance scores (using

the instance-based approach) or instance embeddings (via the embedded-based ap-

proach). Consequently, we will now look into the predominant MIL pooling functions:

• Max - for a vector h ∈ Rk:

hslide = max
k=1,...,N

{hk}

• Mean - calculates an average embedding:

hslide =
1

N

N∑︂
k=1

hk

Using such pooling functions, for instance, max pooling within MIL scenarios en-

tails the selection of an instance with the highest predicted score for the positive class

for the ultimate slide-level prediction by a model. However, it relies solely on the

gradient signal from that individual instance within each WSI to adjust the learn-

ing parameters of the model. Hence, [26] proposed attention-based MIL pooling,

characterized by a weighted sum operation as follows:

hslide =
N∑︂
1

akhk

ak =
exp

{︁
w⊤ tanh (V)h⊤

k

}︁∑︁N
j=1 exp

{︁
w⊤ tanh (V)h⊤

j

}︁ (3.6)

where, w ∈ RL×1 and V ∈ RL×D are learnable parameters with hidden dimension

L.

The attention-based MIL pooling layer employs an auxiliary network comprising

two fully connected layers. In the initial hidden layer, the output of hyperbolic tangent

activation function tanh()̇ is symmetric, unlike sigmoid or ReLU. The subsequent layer

utilizes the softmax nonlinearity to ensure that the attention weights sum to 1. This

design renders the MIL pooling fully trainable and flexible, with a straightforward

interpretation of the attention weights.
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3.2.1 Extracting attention scores from Convolution Archi-
tecture

In a general multi-class classification task, each instance (patch) has an unknown

label yi ∈ C (instance-level) and an available y ∈ C (slide-level) for a bag (WSI).

Unlike the above binary pooling [26], [1] involves predicting distinct attention scores

corresponding to the different categories. The attention-based pooling function aggre-

gates slide-level representations from the patch-level representations for each category.

One possible shortcoming of the attention-based MIL pooling layer is the tanh(·) non-

linearity. The expressiveness of tanh(·) is limited since it is approximately linear for

x ∈ [-1, 1] [26]. Hence, in Gated Attention (GA) in [1], patch-level feature H, atten-

tion score of the kth patch for the mth class, denoted ak,m, is given by

ak,m =
exp

{︁
Wa,m

(︁
tanh

(︁
Vah

⊤
k

)︁
⊙ sigm

(︁
Uah

⊤
k

)︁)︁}︁∑︁N
j=1 exp

{︁
Wa,m

(︁
tanh

(︁
Vah⊤

j

)︁
⊙ sigm

(︁
Uah⊤

j

)︁)︁}︁
hslide,m =

N∑︂
k=1

ak,mhk

(3.7)

and WSI-level representation for the mth class is

Wa,1, ...,Wa,k ∈ RL×1 (3.8)

where, V ∈ RL×D and U ∈ RL×D are learnable parameters with hidden dimension

L.

3.2.2 Extracting attention scores from Transformer Archi-
tecture

It becomes essential to consider the dependencies between instances, which convolu-

tions fail to address adequately. To overcome this i.i.d limitation, transformers, cap-

turing long-range dependencies, prove promising [29, 41]. Within their self-attention
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Figure 3.2: Visualization of heatmap based on the attention scores generated by the
model before and after the feedback mechanism

block, an input sequence of k tokens with dimensions D corresponding to the in-

stance features space H, project and extract feature representations: WQ ∈ Rd×dq ,

WK ∈ Rd×dk and WV ∈ Rd×dv . Q, K and V are as query, key and value, where

Q = XWQ, K = XWK and V = XWV . The approximated self-attention form in [2]

is as follows:

Ŝ = softmax

(︃
QK̃

T

√
dq

)︃(︃
softmax

(︃
Q̃K̃

T

√
dq

)︃)︃+

softmax

(︃
Q̃KT√

dq

)︃
(3.9)

where Q̃ and K̃ is the selected landmarks from the original sequence of Q and K,

and A± is a Moore-Penrose pseudoinverse of A [2]. By doing this, the module with

approximation processing can satisfy our case where the bag contains thousands of

WSI patches.
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3.2.3 Generating Heatmaps for WSIs

We capture the relevant attention information of each WSI from both model types

for multiclass classification. In the convolution, we extract the patch attention scores

from the multiple attention branches of the network and choose the one that corre-

sponds with the ground truth label of the WSI. On the other hand, in the transformer

architecture, we compute the average attention score over all the heads in a Multi-

Head Self-Attention network for a patch.

To interpret the importance of different regions in a WSI, we normalize the above-

extracted attention scores and scale them between 0 and 1.0, with 0.0 representing

the lowest attention and 1.0 denoting the highest. We store the patch scores with

their top-left coordinate information to visualize and interpret regions of malignancy

(features characteristic of the class) and non-malignance (irrelevant features) using a

diverging colormap ranging from red (1.0) to blue (0.0). An example of the heatmap

visualization is shown in Fig. 3.2.

3.3 Judiciously engaging Pathologist’s expertise

We develop a Graphical User Interface (GUI) for pathologists to facilitate the feedback

collection for the above heatmaps based on their expertise and domain knowledge.

By incorporating these annotations into the model’s subsequent re-training process,

the pathologist’s insights and interpretations become an intrinsic component of the

model’s learning trajectory. This integration aims to harmonize the model’s atten-

tion scores with the pathologist’s intuitive grasp of malignant features in the WS

and capture crucial diagnostic patterns aligning closely with established clinical stan-

dards. In the subsequent chapter, we explain the GUI’s design and the processing of

pathologist’s annotations.
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Chapter 4

User-friendly feedback collection
system: The Graphical User
Interface (GUI)

4.1 Design Principles

This chapter introduces an interactive and user-centric feedback acquisition system

tailored for annotating heatmaps produced by attention-based models. Our approach

encompasses the development of a customized Graphical User Interface (GUI), which

integrates Openseadragon and Openslide technologies. This GUI provides patholo-

gists with a powerful capability to directly delineate free-form bounding boxes on the

heatmaps of the WSI, effectively eliminating the need for time-consuming manual

annotations. The schematic representation of our feedback collection system in Fig.

4.1 streamlines the process of incorporating expert insights into the model’s learning

process to enhance its overall performance.

4.1.1 GUI foundational requirements

When devising the GUI, we consider the fundamental prerequisites that this tool

should satisfy:

• Handle large high-resolution images - As elucidated in Section 2.2, digital

slides pan across gigapixel resolution supported with a tiled pyramid format
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Figure 4.1: A- the original WSI; B- initial heatmap generated by the attention-based
model; C- interactive GUI for providing the feedback; D- heatmap of the WSI after
incorporating the feedback
In C, notice that the GUI user has opted to reverse the heatmap using Flip button
for annotation. This deliberate adjustment of altering the attention scores results in
a heatmap in D that meets the desired criteria in C.
NOTE: The bounding boxes in C are drawn by the author, who is not a clinical
expert. Different coloured boxes are for illustrative purposes only.
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when displayed on a monitor screen. Hence, the GUI can zoom, pane, and

navigate, closely mirroring how pathologists utilize a microscope to scrutinize

different regions in the slide.

• Overlays - Beyond the original slide, a crucial requirement is to display heatmaps

and annotations from the pathologist with coherence. When superimposed upon

the original image, the heatmaps and annotations should remain accessible to

the pathologist, enabling them to explore the tissue beneath. Additionally, it

should offer the flexibility to adjust the opacity of overlaid heatmaps.

• Annotation support - The viewer should allow pathologists to generate annota-

tions over regions of their choosing, facilitated by appropriate event handlers.

• Interactiveness - Pathologists who frequently use the tool must comprehend its

functionalities and be content with its performance. For example, the speed of

zooming and panning is vital, as noticeable delays can disrupt their workflow.

Openseadragon [42] is pivotal for rendering high-resolution images, thereby pre-

serving the intrinsic visual quality inherent in WSIs. Complementing this function-

ality, Openslide [43] facilitates access to the content of WSIs, ensuring the smooth

operation of the GUI even in the presence of these intricate and high-dimensional

images.

4.1.2 Design Specifications

OpenSeadragon [42] is an open-source web viewer constructed using JavaScript, de-

signed to accommodate high-resolution images with zooming capabilities. This viewer

exhibits compatibility with various server protocols, allowing integration with zoomable

image formats, including DZI, TMS, Zoomify, and IIF. Its primary role is to enable

web-based visualization, ensuring smooth navigation through exceedingly large files

without discernible latency. It complements zooming and panning with optional
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controls like toolbars, rotation features, overlays, and multi-image support. Addi-

tionally, it supports plugins, which can extend its capabilities further, encompassing

annotations, magnification, navigation aids, and even the capture of screenshots.

OpenSeadragon, by default, works with DZI images and relatively simple formats

like PNG and JPEG. It accommodates various image-serving protocols, including

Openslide’s DeepZoom, which facilitates zooming for tiled pyramids.

Deep Zoom [43] serves images in a multi-resolution manner, allowing loading and

panning operations. During the initial load, a low-resolution version of the image

is presented, progressively transitioning to higher resolutions as they become avail-

able. This mechanism underpins the gradual shift from a blurry-to-sharp experience.

OpenSlide Python [43] extends its capabilities to generate individual Deep Zoom tiles

from slide objects. This feature is valuable for exhibiting WSIs within a web browser,

all without necessitating the complete conversion of the entire slide into the Deep

Zoom format.

The integration of Flask [44], a lightweight web framework, in combination with

Openseadragon and Openslide, serves as a backbone for constructing the web GUI,

optimizing the workflow of annotating heatmaps generated by attention models. This

integration establishes a dynamic and responsive context that facilitates interaction

between pathologists and GUI.

4.2 GUI Functionality

In addition to the above inherent features from its constituents - Openseadragon and

Openslide, our GUI offers the following tailored features for interactive feedback from

pathologists.

1. The Flip button - Given the considerable contradiction observed in the heatmaps

(in Chapters 1, 2, 3) due to the negative picture of attention, it would be labo-

rious for pathologists to draw bounding boxes for every region of contradiction
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Figure 4.2: The Flip button

in a WSI (here, drawing bounding boxes on every blue zone to increase it’s

attention score). To address this, we introduce a Flip button in our GUI to

streamline the process. It switches between two versions of the heatmap - the

original attention scores generated by the model and their corresponding re-

verse values(Fig. 4.1C; zoomed in: Fig. 4.2- greyed out indicates the user

has chosen the reverted heatmap).

For instance, if the attention for a patch is 12%, its reverse value would be

88%. This feature empowers pathologists to quickly switch between the model’s

prediction (Original button) and its opposite, saving them from the exhaustive

task of manually annotating the entire WSI when a complete disagreement

arises.

2. Dual Heatmap Opacity - We provide an opacity bar to adjust the trans-

parency of both versions of the heatmap overlaid on the WSI.

3. Annotating Options - We provide distinct modes or options, each featuring

specific functionalities related to the bounding boxes. These bounding boxes

can vary in size, each serving a particular function:

(a) Increasing Attention Scores - To enable pathologists to enhance attention
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Figure 4.3: Annotating options
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scores where necessary, we present two dedicated buttons - Disagree +1

and Disagree +2.

Pathologists can incrementally raise the attention scores assigned to par-

ticular regions. The +1 button corresponds to a minor increment, while

the +2 button signifies a more substantial enhancement. In the visual-

ization depicted in Fig. 4.1C (zoomed in: Fig. 4.3), bounding boxes

coloured in green and blue correspond to the Disagree +1 and Disagree

+2 buttons, respectively.

(b) Decreasing Attention Scores : To allow pathologists to reduce attention

scores for specific regions, we provide corresponding buttons - Disagree -1

and Disagree -2.

Pathologists can systematically lower the attention scores assigned to par-

ticular regions. The -1 button denotes a slight decrement, while the -2

button represents a more pronounced reduction. In Fig. 4.1C (zoomed

in: Fig. 4.3), bounding boxes in pink and red align with the Disagree -1

and Disagree -2 buttons, respectively.

(c) Maintaining Correct Scores : Acknowledging instances where the model’s

attention scores are accurate, we introduce the Neutral 0 button. Pathol-

ogists indicate they agree with the model’s predictions to maintain the

existing attention scores for the designated regions using this functionality

(transparent bounding box in Fig. 4.1C (zoomed in: Fig. 4.3)).

4. Export to CSV - Pathologists can export their annotations into a Comma-

Separated Values (CSV) file. This feature empowers pathologists to maintain

a tangible record of their annotations. Moreover, the GUI facilitates viewing

or hiding these annotations through dedicated buttons such as Load Existing

Overlays and Clear All Overlays in Fig. 4.1C.

In scenarios where errors or inaccuracies may arise during an ongoing session,
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the Remove Sessions Overlay button becomes a valuable tool. Pathologists can

swiftly eliminate all annotations associated with the current session. This reset

mechanism empowers pathologists to rectify any discrepancies and start afresh,

ensuring the provision of precise and reliable annotations.

5. Stopwatch - Pathologists can track the time invested in annotating a WSI.

Should interruptions or distractions occur during the annotation process, pathol-

ogists can conveniently pause the stopwatch and resume the process without

compromising workflow continuity. This feature is valuable in accommodating

the dynamic nature of pathologists’ work environments (in Fig. 4.1C).

The stopwatch also caters to scenarios where pathologists might prefer to export

the ongoing session’s CSV file, pause the annotation process, and resume anno-

tations from the same point. This fluidity is facilitated through the GUI’s Load

Existing Overlays button to retrieve the timestamp of the last saved bounding

box. This feature ensures a seamless annotation process and the elapsed time

accurately reflects the cumulative effort invested in the task.

Our GUI enriches the interaction between pathologists and the heatmaps generated

by attention-based models by providing tools to streamline annotation management,

time tracking, and error rectification. Through export alternatives, overlay controls,

and stopwatch functionalities, our GUI ensures a holistic and user-oriented mechanism

for collecting feedback.

4.3 Processing pathologist’s annotation

4.3.1 Patch Co-ordinates mapping

After the feedback collection process, we extract information from the CSV files.

These CSV files constitute structured tabular datasets characterized by rows and

columns. Pertinent columns relevant to processing the pathologist’s annotations in-

clude:

38



1. Flip - This column denotes the status of the flip button, with 0 representing

Original and 1 representing Flip. Pathologists can toggle between viewing and

assessing the Original or Reverse heatmap versions and fine-tune the heatmap

based on their annotation preferences to increase, decrease, or maintain the

existing scores.

2. Mode - The mode column signifies the bounding box type based on the pathol-

ogist’s choice and records its corresponding numerical value from the set -2, -1,

0, 1, 2.

3. Top-left Coordinates - This pivotal data component enables the precise lo-

calization of the annotated region. The (x, y) coordinates of the top-left corner

of the bounding box with the height and width of the bounding box pinpoints

the patches that fall within the designated bounding box area.

4. Time - The cumulative time taken by the pathologist to draw each bounding

box on the WSI encompasses the entirety of the process, irrespective of pauses

or multiple annotation sessions. The time logged for a particular WSI is the

cumulative duration from the first bounding box.

Some WS attention-based models for WSIs face resource limitations during train-

ing, which prevent them from performing on-the-fly feature extraction. To address

this challenge, these models partition the WSI into smaller patches X = x1, ..., xN ,

such as 256-by-256 pixels (typical MIL). They then record the top-left coordinates of

these patches and conduct feature extraction on each patch, storing the resulting fea-

tures locally. In our approach, we leverage this stored patch information to identify

the top-left coordinates and perform exhaustive mapping to search for the nearest

patch coordinate to each corner of the bounding box. For instance, if we consider

extracting coordinates under the green bounding box as depicted in Fig. 4.4, the

patches ’X’ will be excluded and the patches ’+’ will correspond to the ones with the
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Figure 4.4: Mapping patch coordinates

nearest coordinates in the vicinity. This process hinges on identifying the shortest

linear distance between the top-left coordinate of the patch and the desired bounding

box corner. Through this, we associate the corresponding annotations provided by

pathologists, where applicable. It’s important to note that patches without feedback

are retained and not discarded.

4.3.2 Thin spline interpolation: Expected scores

Following the identification of specific patches within individual bounding boxes,

along with the extraction of essential data like the top-left patch coordinate details

and the assigned box mode, we incorporate the concept of thin spline interpolation

(as shown in Fig. 4.5). It constitutes a vital phase to refine and approximate the

relationship between bounding box modes and normalized attention scores. We select

this interpolation because of its proficiency in generating a continuous and coherent

curve that adeptly navigates through the provided data points.

The continuous curve represents the underlying trends that reside within the data.

In contrast to linear interpolation, which merely constructs straight lines connecting
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Figure 4.5: Thin Spline Interpolation

individual data points, the adoption of thin spline interpolation results in a curved

trajectory. It mitigates the potential distortion introduced by noisy or outlier data

that might otherwise not conform perfectly to the attention scores.

z = f(x, y);

x = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5],

y = [0,−1,−2, 1, 2, 0, 1, 2,−1,−2, 0,−1,−2, 1, 2],

z = [0, 0, 0, 0.4, 1, 1, 1, 1, 0.6, 0, 0.5, 0.35, 0, 0.65, 1];

where, x = Normalized attention scores, y = bounding box modes and z = inter-

polated scores.

The interpolation is clipped between the values 0 and 1 to ensure coherence. Fol-

lowing this process, we store the patch coordinates, the newly generated attention

scores, now called the expected scores, and their associated metadata in a CSV file.

The interpolation bridges the annotations and attention scores, translating expert in-

sights into a refined representation, the expected scores that guide the model’s learning

process.
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4.4 Additional Loss term: Sum of Squared Errors

(MSE)

We incorporate the pathologist’s feedback for every WSI into the model’s learning

process through a least squares error correction (MSE loss) to penalize the difference

between the expected scores and the model’s generated attention scores during the

learning process, now called as the current scores. While alternative loss functions

could be employed, the simplicity of the MSE loss is suitable for continuous and

real-valued attention scores. It provides a well-understood and interpretable metric

for quantifying the alignment between current scores and the pathologist’s refined

expectations. The objective function is as follows:

Lfeedback = MSE(input = xnew, target = z)

Ltotal = Lmodel + λLfeedback (4.1)

where,

• Lmodel represents existing loss function(s) in any attention-based model;

• Lfeedback represents the MSE loss for feedback;

• λ represents the coefficient of the MSE term;

• Ltotal represents the cumulative or gross loss for the attention-based model.

The coefficient λ, acting as a weighting factor, regulates the influence of the MSE

loss within the overall loss function. Its role is pivotal in determining the balance

between the model’s original loss function(s) Lmodel and the extra MSE loss Lfeedback.

Through λ, we can modulate the emphasis placed on correcting the attention scores

based on pathologist feedback and controlling the extent to which the model adapts

to the feedback, ensuring that the incorporation of pathologist insights balances with

the model’s inherent learning objectives. Hence, the choice of MSE, the coefficient
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λ, and the incorporation into the cumulative loss Ltotal create a dynamic and bal-

anced learning framework that fuses automated predictive capabilities and human

expert insights for more accurate and clinically meaningful attention-based model

predictions.
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Chapter 5

Experiments and Results

We conduct a series of trials to assess the efficacy of attention-based models within

the context of our research inquiries. Firstly, we present an overview of our in-house

dataset and elucidate the parameter settings for training attention-based networks.

Then, we outline the evaluation metrics employed to gauge the predictive ability of

the models.

Through these experiments, our primary objective is to shed light on the impact of

incorporating human feedback in the model training process and demonstrate its ben-

efits in enhancing the performance of attention-based models and generating better

representative heatmaps.

5.1 Experimental setup

5.1.1 Dataset

Our study utilizes an in-house dataset comprising 727 Whole Slide Images (WSIs)

from Health Centres in Alberta (approved by the Health Research Ethics Board of

Alberta (HREBA.CC-19-0347)) and the Department of Pathology and Laboratory

Medicine, Dalhousie University, Halifax, Canada. These WSIs underwent H&E stain-

ing and are digitized via the GT450 Aperio scanner, capturing high-resolution images

at a 40x objective magnification.

Within this dataset, each WSI is accompanied by pertinent clinical metadata and
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results of routinely performed pathological assessments for BC, including Estrogen

Receptor (ER), Progesterone Receptor (PR), in addition to the ground truth predic-

tion RS, offering a comprehensive contextual framework.

To facilitate dataset organization and classification, we partition the samples into

two categories based on their RS scores (OncotypeDX®), spanning from 0 to 100.

WSIs with RS values ≤ 25 are classified as low, while those exceeding 25 are la-

belled as high, adhering to the classification established by the TAILORx study as

mentioned in Section 2.1. To ensure the statistical robustness of our evaluation, we

adopt a 10-fold Monte Carlo cross-validation strategy from [1]. This approach involves

the division of the dataset into training, validation, and test subsets, maintaining a

proportion of 70:15:15 for the 10-fold cross-validation, respectively.

To effectively manage the storage and organization of the digitized slide raw files,

we employ a 10TB hard drive. This choice of storage medium reflects a careful consid-

eration of the substantial data volume generated by the high-resolution digitization

process. By utilizing this storage solution, we ensure the accessibility and integrity

of the dataset, enabling seamless retrieval and manipulation for subsequent analysis

and experimentation.

5.1.2 Training details

We select two attention-based models for our study: the convolution-based CLAM

(Clustering-constrained Attention Multiple Instance Learning) [1] and TransMIL

(Transformer based Correlated Multiple Instance Learning) [2]. We begin by load-

ing WSIs into the system’s memory. The authors of TransMIL have stated that

they have incorporated the pre-processing steps of CLAM. Hence, we follow the Py-

torch implementation of CLAM for creating patches and extracting features for both

CLAM and TransMIL models. We convert the images to the HSV colour space

and generate binary masks for tissue regions by thresholding the saturation channel.

Subsequently, we extract patches measuring 256 × 256 pixels from the delineated
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foreground contours and record their corresponding top-left coordinates. We employ

the ImageNet [25] pre-trained ResNet50 model for converting each extracted patch

into a 1024-dimensional feature vector representation. This transformation enhances

the capacity of the patches processed during the training of CLAM and TransMIL

models.

Our experimentation is conducted on a workstation equipped with an NVIDIA

GeForce 3090 GPU, offering the computational power required for efficient execution.

By adhering to these steps and leveraging the computational resources at hand, we

explore the performance of both CLAM and TransMIL in our study.

5.2 Standard reference: The Universal

model-independent representation

We initially generate heatmaps using the vanilla versions of CLAM [1] and TransMIL

[2], focusing on the optimal fold within the 10-fold Monte Carlo cross-validation

setup. Our feedback process centers around the heatmaps generated solely by CLAM.

After the expert meticulously corrects a WSI heatmap, this representation works as

a diagnostic attention map according to the clinician’s standards.

In other words, the heatmap derived from any vanilla attention model, coupled with

the subsequent expert corrections, forms the standard reference of that WSI. This

reference portrays a universal model-independent representation of WSI’s diagnostic

expectations. It means that the corrected heatmap pinpoints regions of pronounced

diagnostic importance within the WSI (as depicted in Fig. 5.1D).

Throughout the feedback process, we uphold the anonymity of the WSI, including

classification probabilities, patient identification, and RS of the slide. This anonymity

for the pathologist mitigates any upfront bias for a tumour grade or RS. The attention-

based models receive WSIs without molecular information except for weak labels,

and the pathologist is blind to such details, similar to the models. On average, our

pathologist took approximately 34 to 52 seconds to annotate a single WSI. We employ
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Figure 5.1: The Universal model-independent representation
NOTE: The bounding boxes are drawn by the author, who is not a clinical expert.
Different coloured boxes are for illustrative purposes only.
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thin spline interpolation, as mentioned in Chapter 4, on each WSI’s annotations to

facilitate the incorporation of the expert annotations.

5.3 Performance of our Approach

5.3.1 Hyperparameter optimization
using Optuna framework

After successfully establishing a standard reference for the WSIs through expert anno-

tations, our focus shifts to re-training the CLAM [1] and TransMIL [2] models. This

process integrates the difference between expected scores and current scores for WSIs

as MSE loss term as described in Chapter 4. This aggregated loss, a combination of

the existing loss function(s) and the MSE loss is then weighted and minimized during

the training phase.

Ltotal = Lmodel + λLfeedback (5.1)

where

• Lmodel represents existing loss function(s) in any attention-based model;

• Lfeedback represents the MSE loss for feedback;

• λ represents the coefficient of the MSE term;

• Ltotal represents the cumulative or gross loss for the attention-based model.

For the optimization of hyperparameters aimed at minimizing aggregate loss and

maximizing model performance on the validation dataset, we leverage the Optuna

framework [45]. Hyperparameter optimization determines the optimal parameters

that govern the learning algorithm’s performance. In our case, this involves param-

eters - learning rates and coefficient λ. Optuna provides a systematic search space

exploration, leading to the identification of the best-performing hyperparameter com-

bination. Specifically, we define the search space for CLAM, including learning
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rates (2e-3, 2e-4, 2e-5, 2e-6) and the coefficient λ (0.5, 5, 50, 500). For Trans-

MIL, the search space incorporates learning rates (2e-4, 2e-5, 2e-6, 2e-7) and λ

(5, 10, 20, 50, 100).

The Optuna search process took 20 GPU days for CLAM and 27 GPU days for

TransMIL to explore all combinations within the defined search space. Optuna’s

outcomes provide the optimal hyperparameter combinations for each dataset combi-

nation in the 10-fold cross-validation. In particular, for CLAM, the optimal learning

rate of 2e-4 and the λ of 50 proved the most effective. For TransMIL, the best

learning rate was 2e-5, and all λ values performed well.

5.3.2 Results analysis and comparison

After conducting hyperparameter optimization, it becomes evident that each fold dis-

plays a peak performance when subjected to a specific hyperparameter configuration.

[1] and [2] assess the performance of the models through classification metrics - Ac-

curacy and Area Under the Curve (AUC) 1. For instance, in the case of CLAM, the

sixth fold performs well when utilizing a learning rate of 2e-4 and coefficient λ of 50,

whereas, for the first fold, a learning rate of 2e-4 and coefficient λ of 5 is the best.

Mirroring the practice observed in [1], instead of relying on a single, top-performing

fold, we gauge the efficacy of our approach by considering the average performance

and the standard deviation across all ten folds for both CLAM [1] and TransMIL [2]

depicted as CLAM After and TransMIL After, respectively in Table 5.1.

Fig. 5.2 and Fig. 5.3 shows the ROC AUC curves for both CLAM and TransMIL

models following the incorporation of expert feedback. Each curve represents the

trade-off between the True Positive Rate (sensitivity) and the False Positive Rate

(1-specificity) at various classification thresholds using sklearn library. It’s important

to note that the ROC curves showcase the models’ performance across a range of

1NOTE: The extra MSE loss magnitude is on the order of 1e-2
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Table 5.1: Prediction metrics for CLAM and TransMIL before and after the pathol-
ogist’s feedback

Model Feedback Test AUC Val AUC Test Acc Val Acc Cosine Similarity

CLAM
After 0.781±0.055 0.819±0.050 0.824±0.046 0.839±0.031 0.861

Before 0.731±0.064 0.756±0.058 0.786±0.056 0.8012±0.039 0.810

TransMIL
After 0.813±0.066 0.8344±0.049 0.8463±0.032 0.8554±0.015 0.866

Before 0.778±0.055 0.8191±0.053 0.7718± 0.029 0.8243±0.036 0.769

(a) Validation AUC for CLAM (b) Test AUC for CLAM

Figure 5.2: Validation and test AUC for CLAM

threshold values, providing a view of their discriminative abilities. Specifically, we

examine the models’ sensitivity and specificity across a range of threshold values

to assess their robustness and effectiveness in distinguishing between high and low

for the slides, with higher AUC scores indicating better discriminative performance.

We observe a significant 5% increase in validation-test AUC and a 4% increase in

validation-test accuracy on average for CLAM. For TransMIL, there is an average

increase of 4.5% in validation-test AUC and a 3% increase in validation-test accuracy.

In our study, we utilize cosine similarity to quantify the degree of similarity or

agreement between the attention scores generated by CLAM / TransMIL and the

expected scores. Cosine similarity is a mathematical measure used to determine the
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(a) Validation AUC for TransMIL (b) Test AUC for TransMIL

Figure 5.3: Validation and test AUC for TransMIL

cosine of the angle between two vectors in a multi-dimensional space.

Cosine Similarity =
A ·B

∥A∥∥B∥

A cosine similarity score of 1 indicates that the vectors are perfectly aligned, meaning

that the attention scores by CLAM / TransMIL and the pathologist’s GUI-based ex-

pected scores are in complete agreement. On the other hand, a score of 0 implies that

the vectors are orthogonal or unrelated, signifying no agreement between the atten-

tion scores. A score of -1 indicates complete misalignment or dissimilarity between

the scores. We notice an improvement in cosine similarity between the pathologist’s

GUI-based attention scores and trained models’ attention maps after feedback - 5%

and 10% increase for CLAM and TransMIL, respectively.

To determine whether there are statistically significant differences in the cosine

similarity results between attention scores generated by CLAM / TransMIL and the

expected score, we perform the Wilcoxon Signed-Rank Test. Specifically, we are

interested in comparing the similarity between attention scores generated by these

models before and after feedback interventions. In Fig. 5.4, we notice a low p-value

(p < 0.001) indicating strong evidence of a significant difference in the observations.

We reject the null hypothesis because there is a statistically meaningful difference
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Figure 5.4: Box plot illustrating the distributions of cosine similarities between at-
tention scores generated by CLAM / TransMIL and the expected scores, both before
and after expert feedback.
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between the cosine similarity before and after the feedback.

It’s worth noting that the pathologist’s decision to employ the Flip operation for

most WSIs, around 84.509% (as shown in Table 5.2), underscores the counter-

intuitive of giving prominence to non-malignant components instead of malignant

components. Upon flipping the heatmaps, the pathologist fine-tunes an average area

of 16.708% of a flipped WSI by drawing multiple bounding boxes based on the pref-

erence to increase, decrease, or maintain the existing scores. The pathologist retains

the initial heatmap orientations for the remaining 15.4910% (as shown in Table 5.3)

of the WSI and engages in a similar annotation process, covering an average area of

14.436% of a WSI.

Table 5.2: Average area finetuned by the pathologist for WSIs that required Flip
operation

Criteria Value

Number of WSIs that required the Flip operation 84.509%

Average number of patches in such WSIs 33412

Annotation percentage 16.708%

Average area occupied by Disagree-2 box on such a WSI 11.824%

Average area occupied by Disagree-1 box on such a WSI 0.441%

Average area occupied by Neurtral 0 box on such a WSI 0.729%

Average area occupied by Disagree+1 box on such a WSI 2.766%

Average area occupied by Disagree+2 box on such a WSI 0.946%

Our findings are coherent with the current literature where our approach demon-

strates comparable performance to that reported in [5] that achieves an average AUC

of 0.85 on TCGA-BR2 subtyping. Our RS dataset encompasses approximately 700

images, slightly smaller than TCGA-BR, which includes approximately 1100 images

with breast cancer lobular and ductal carcinomas. This similar performance suggests

2https://www.cancer.gov/ccg/research/genome-sequencing/tcga/studied-cancers
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Table 5.3: Average area annotated by the pathologist for WSIs that did not require
Flip operation

Criteria Value

Number of WSIs that did not require the Flip operation 15.4910%

Average number of patches in such WSIs 35446

Annotation percentage 14.436%

Average area occupied by Disagree-2 box on such a WSI 9.312%

Average area occupied by Disagree-1 box on such a WSI 0.370%

Average area occupied by Neurtral 0 box on such a WSI 0.517%

Average area occupied by Disagree+1 box on such a WSI 3.279%

Average area occupied by Disagree+2 box on such a WSI 0.958%

that our approach is consistent with the state-of-the-art methods described in the

literature.

In addition, the marginally diminished performance of CLAM [1] and TransMIL

[2] without expert feedback could partly result from using the off-the-shelf Image-Net

[25] pre-trained ResNet50 network for feature extraction, not optimally tailored for

the histopathological recurrence score tasks.

5.4 Heatmaps Analysis on Training samples

In the final phase of our study, we examine the heatmaps generated by the attention-

based models before and after the integration of expert feedback. This analysis aims to

provide a deeper understanding of the enhancements brought about by our proposed

approach.

We focus on four cases, each offering distinct insights into the efficacy of the feed-

back process on both CLAM [1] and TransMIL [2] performance. These cases serve

as pivotal examples that help elucidate the impact of our approach on any attention

model’s behaviour and heatmap generation. A detailed exploration of specific cases

allows us to highlight the significance and relevance of our approach.
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5.4.1 Case 1- Correcting classification errors

A B C D

Figure 5.5: Case 1- CLAM
A: Original WSI; B: Heatmap generated by vanilla CLAM; C: universal model-
independent representation of A; D: Heatmap generated by CLAM after retrained
with the expected scores from C
NOTE: In C, we have omitted the procedure of patch coordinate mapping and thin spline interpolation and only
displayed the GUI annotations as universal model-independent representation (as opposed to Fig. 5.1) for the sake
of visual understanding and space constraints.

CLAM

In this scenario (Fig. 5.5), The initial heatmap generated before receiving feedback

is contrary to the pathologist’s expectations and coincidentally is misclassified. The

attention-based model seems to be focused on irrelevant areas while neglecting crucial

tumour content (similar to the negative picture of attention). Uninformed about the

classification outcome, the pathologist, guided by visual evidence, promptly uses our

user-friendly Flip button, mirroring the heatmap to access its reversed version.

The expert further refines the heatmap using various bounding box modes. After

retraining the CLAM model with the acquired feedback, we observe that the model

correctly classifies the WSI, now accurately recognizing essential features. The case

initially misclassified as high risk with a prediction probability of 0.93, is rectified as

low risk with a prediction probability of 0.70.

TransMIL

Similarly (Fig. 5.6), the vanilla model erroneously categorizes the WSI as high with

a class probability of 0.68. However, subsequent retraining of the model using the
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A B C D

Figure 5.6: Case 1- TransMIL
A: Original WSI; B: Heatmap generated by vanilla TransMIL; C: universal model-
independent representation of A; D: Heatmap generated by TransMIL after retrained
with the expected scores from C
NOTE: In C, we have omitted the process of patch coordinate mapping and thin spline interpolation and only
displayed the GUI annotations as universal model-independent representation (as opposed to Fig. 5.1) for the sake
of visual understanding and space constraints.

expected scores derived from the standard reference rectifies this, resulting in the

correct classification of the WSI as low with an increased probability of 0.80. This

case showcases the pivotal role of expert feedback and our proposed approach in

rectifying classification errors made by attention-based models.

5.4.2 Case 2- Correct classification and finetuning attention
map

A B C D

Figure 5.7: Case 2- CLAM
A: Original WSI; B: Heatmap generated by vanilla CLAM; C: universal model-
independent representation of A; D: Heatmap generated by CLAM after retrained
with the expected scores from C
NOTE: In C, we have omitted the process of patch coordinate mapping and thin spline interpolation and only dis-
played the GUI annotations as universal model-independent representation (as opposed to Fig. 5.1) for the sake of
visual understanding and space constraints.
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CLAM

Here (Fig. 5.7), the heatmap generated initially is subpar, yet the model’s classifi-

cation is accurate. It predominately attends to the WSI’s borders and outer edges,

neglecting significant features.

During the feedback session, the pathologist engages in minor fine-tuning, providing

valuable insights for the model. Subsequent retraining redirects the model’s attention

to the relevant crucial features, resulting in an improved heatmap. Notably, in this

low class case, the class prediction probability increases from 0.59 to 0.82.

A B C D

Figure 5.8: Case 2- TransMIL
A: Original WSI; B: Heatmap generated by vanilla TransMIL; C: universal model-
independent representation of A; D: Heatmap generated by TransMIL after retrained
with the expected scores from C
NOTE: In C, we have omitted the process of patch coordinate mapping and thin spline interpolation and only
displayed the GUI annotations as universal model-independent representation (as opposed to Fig. 5.1) for the sake
of visual understanding and space constraints.

TransMIL

The vanilla model (Fig. 5.8) correctly classifies the WSI as low -risk with a prob-

ability of 0.59. However, the subsequent retraining process, fueled by the expected

scores derived from the standardized representation, further polishes the model’s per-

formance. As a result of this optimization, the prediction probability increases to

0.78 with an improvement in the corresponding heatmap.

These observations emphasize the dual benefits of our feedback-based approach - it

corrects classification errors and improves the attention map’s alignment with expert
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expectations.

5.4.3 Case 3- Incorrect classification but improving the cor-
rect class prediction probability

A B C D

Figure 5.9: Case 3- CLAM
A: Original WSI; B: Heatmap generated by vanilla CLAM; C: universal model-
independent representation of A; D: Heatmap generated by CLAM after retrained
with the expected scores from C
NOTE: In C, we have omitted the process of patch coordinate mapping and thin spline interpolation and only dis-
played the GUI annotations as universal model-independent representation (as opposed to Fig. 5.1) for the sake of
visual understanding and space constraints.

CLAM

In a manner analogous to Case 2, this scenario (Fig. 5.9) features a subpar heatmap

with an incorrect classification (high-risk classified as low -risk). Following minor

annotations by the pathologist and subsequent model retraining, the heatmap quality

improves as it pays less head to artifacts like contours and void spots. Despite this

improvement, the case’s classification remains erroneous.

However, we notice that the prediction probability of high increases from 0.04

to 0.30, indicating that the model now understands some additional representative

features of the class by a spike in the class prediction probability.

TransMIL

In parallel, the TransMIL model (Fig. 5.10) initially misclassifies the WSI as low -

risk with a class probability of 0.21 for the high-risk class. Even after retraining
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A B C D

Figure 5.10: Case 3- TransMIL
A: Original WSI; B: Heatmap generated by vanilla TransMIL; C: universal model-
independent representation of A; D: Heatmap generated by TransMIL after retrained
with the expected scores from C
NOTE: In C, we have omitted the process of patch coordinate mapping and thin spline interpolation and only
displayed the GUI annotations as universal model-independent representation (as opposed to Fig. 5.1) for the sake
of visual understanding and space constraints.

the model using the attention scores from the GUI feedback, the WSI’s classification

persists as low, albeit with an increased prediction probability for the high class, now

standing at 0.40.

Despite the classification not changing, the increased prediction probability indi-

cates the model’s improved capacity to recognize high-risk features, signifying the

positive impact of our feedback-driven approach.

5.4.4 Case 4- Correct classification by improving correct class
prediction probability for borderline cases

We regard WSIs with classification outcomes of prediction probabilities ranging from

0.45 to 0.55 as cases situated in the borderline region.

CLAM

Within this context (Fig. 5.11), we notice that the initial and the post-feedback

heatmaps are similar. It means that there are some refinements through fine-tuning

by our pathologist. While analyzing the classification results, we notice that the case

was misclassified as low initially.

The post-feedback heatmap displays slight improvements due to a minor elevation
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A B C D

Figure 5.11: Case 4- CLAM
A: Original WSI; B: Heatmap generated by vanilla CLAM; C: universal model-
independent representation of A; D: Heatmap generated by CLAM after retrained
with the expected scores from C
NOTE: In C, we have omitted the process of patch coordinate mapping and thin spline interpolation and only dis-
played the GUI annotations as universal model-independent representation (as opposed to Fig. 5.1) for the sake of
visual understanding and space constraints.

in the class probability from 0.40 to 0.54. This improvement leads to the accurate

reclassification of the case as high-risk.

A B C D

Figure 5.12: Case 4- TransMIL
A: Original WSI; B: Heatmap generated by vanilla TransMIL; C: universal model-
independent representation of A; D: Heatmap generated by TransMIL after retrained
with the expected scores from C
NOTE: In C, we have omitted the process of patch coordinate mapping and thin spline interpolation and only
displayed the GUI annotations as universal model-independent representation (as opposed to Fig. 5.1) for the sake
of visual understanding and space constraints.

TransMIL

The initial classification (Fig. 5.12) of the WSI as high with a prediction probability

of 0.54 changes after re-training the model using the standard reference. Subsequently,

the case is correctly classified as low with a prediction probability of 0.81.
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A B C D

Figure 5.13: Example I - Before feedback - classified as high (wrong) with its prob.
of 0.63
After feedback - classified as low (correct) with its prob. of 0.80
A: Test WSI; B: Heatmap generated by vanilla CLAM; C: Heatmap generated by
CLAM after trained with expert feedback; D: universal model-independent represen-
tation of A which was not shown to CLAM during testing
NOTE: In D, we have omitted the process of patch coordinate mapping and thin spline interpolation and only dis-
played the GUI annotations as universal model-independent representation (as opposed to Fig. 5.1) for the sake of
visual understanding and space constraints.

This shift in classification underscores the efficacy of our feedback-driven approach,

particularly in cases where initial probabilities lie within the borderline region.

5.4.5 Heatmap Analysis on Test samples

Despite retraining the models with feedback, it is evident that some regions of relevant

significance continue to be delicately overlooked by the attention-based models (as

depicted in Example I - Fig. 5.13, Example II - Fig. 5.14). This observation

is anticipated due to the diverse appearances of artifacts in areas with and without

cancer, making their discrimination challenging.

Nevertheless, our method showcases promising potential in enhancing the efficacy

of learning models with just a single round of feedback in the form of bounding boxes.

The improved performance for most of the cases further suggests the significance of

the additional MSE loss term. This term, which penalizes discrepancies between

expected and current scores, aids the model in focusing on pertinent information,

thereby leading to a better grasp of features and overall predictive performance.
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A B C D

Figure 5.14: Example II - Before feedback - classified as low (wrong) with high
prob. of 0.25
After feedback - classified as low (still wrong) with an increase in high prob. of 0.43
A: Test WSI; B: Heatmap generated by vanilla CLAM; C: Heatmap generated by
CLAM after trained with expert feedback; D: universal model-independent represen-
tation of A which was not shown to CLAM during testing
NOTE: In D, we have omitted the process of patch coordinate mapping and thin spline interpolation and only dis-
played the GUI annotations as universal model-independent representation (as opposed to Fig. 5.1) for the sake of
visual understanding and space constraints.
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Chapter 6

Conclusion

6.1 Recapitulation of Findings

Our focus lies in addressing the distinction between Luminal A and Luminal B BC

types, presenting a formidable challenge to AI in predicting OncotypeDX® results

based on BC morphology. WSI analysis confronts the WHERE problem, aiming to

identify regions of significant diagnostic value within slides characterized by an ad-

mixture of malignant and non-malignant components randomly dispersed. While the

weakly supervised attention mechanism alleviates the WHERE problem for metas-

tasis datasets, we observe that for predicting the Recurrence Score of a dataset, the

attention mechanism manifests a negative picture of attention. In essence, the exist-

ing attention has not proven entirely sufficient. To overcome these hurdles, we sought

the guidance of a clinical expert to rectify the initial attention heatmaps generated

by CLAM and TransMIL. Even after training the model with expert feedback, we

still note instances where tumour components evade the model’s attention due to the

diverse appearances of artifacts in areas with and without cancer. It’s worth noting

that we’ve performed this feedback process only for a single iteration.

On a positive note, we’ve observed significant improvements in heatmap quality and

quantitative results. We note an enhancement in Recurrence Score (RS) prediction

performance after retraining both models with input from the pathologist’s annota-

tions. Specifically, there is a significant 5% increase in the validation-test Area Under
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the Curve (AUC) and a 4% rise in validation-test accuracy for the CLAM model.

Similarly, for the TransMIL model, the validation-test AUC improves by 4.5%, ac-

companied by a 3% boost in validation-test accuracy. We also observe an increase

in cosine similarity between the pathologist’s GUI-based attention scores and the at-

tention maps produced by the trained models. Specifically, we notice a 5% increase

for the CLAM model and an impressive 10% rise for the TransMIL model, clearly

indicating the effectiveness of expert feedback in enhancing the alignment between

human annotations and machine-generated attention patterns.

6.2 Unexplored Avenues

In a model’s learning process, regularization techniques like L1 or L2 usually prevent

overfitting and improve performance and generalization. Our finding indicates that

the improvement in the performance of CLAM [1] and TransMIL [2] from adding the

extra MSE loss term cannot be attributed solely to such conventional regularization

strategies. Instead, we suspect that this performance improvement arises from the

substantial contributions of the attention sub-module. Latent representations refer

to hidden and abstract features a model learns to extract from the data. These repre-

sentations are often critical for understanding complex patterns and making accurate

predictions. It would be worthwhile to experiment if this sub-module significantly fa-

cilitates more effective latent space representation learning in our experiments, conse-

quently fostering performance enhancement. This exploration could provide valuable

insights into the mechanics of attention-based models like CLAM and TransMIL and

help us better understand the mechanisms driving their success.

Our focus primarily revolves around investigating the integration of expert feed-

back into attention-based models to achieve enhanced performance on our in-house

dataset. While our study has adopted a human-supervised approach, we acknowledge

the potential merits of strategies such as transfer learning from publicly available

datasets and unsupervised domain adaptation. Although we do not delve into their
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potential benefits in our study, these strategies hold promise in refining and expanding

the capabilities of our dynamic and adaptive approach with a pathologist’s supervi-

sion. These strategies have the potential to offer fresh perspectives and meaningful

contributions to the evolving field.

6.3 Takeaways

Our research findings strongly accentuate the impact of expert feedback integra-

tion through an intuitive GUI on the performance of attention-based models. The

discernible boosts in validation-test AUC and accuracy metrics provide compelling

evidence of the human-in-the-loop interaction in refining AI models purpose-built for

medical image analysis.

This study serves the potent synergy through the collaboration between AI and

domain experts by harmonizing learning algorithms with the nuanced insights of

clinicians. This collaborative paradigm holds immense promise for surmounting the

challenges inherent in medical image analysis, propelling the field toward new hori-

zons of research and innovation with better prediction metrics values that can be

incorporated into the clinical workflows.
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