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The Spraw l’s geodesics were ligh ten ing  in to  predawn grey as Case 
le ft the b u ild in g . . .  V ib ra tions  beneath his feet as a tra in  hissed past. 
Sirens dopplered in  the distance.

— W illia m  Gibson, Neuromancer
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A b str a c t

The rap id  ro ta tio n  o f recycled neutron stars in  accretion-powered m illisecond-period X -ray  

pulsars has im p o rta n t consequences fo r models o f th e ir pulsed emission, and by extension, the 

analysis o f observations o f these objects. We begin by considering the prob lem  o f ca lcu la ting  

the tim e-vary ing  bo lom etric  flu x  aris ing due to  emission from  a b rig h t spot on the surface 

o f a ra p id ly  ro ta tin g  neutron star, w ith  ro ta tio n a l period on the order o f a m illisecond. We 

res tric t to  the case o f iso trop ic emission from  an in fin ites im a l emission zone, b u t ca rry  out 

the  calculations w ith  sufficient generality to  incorpora te  a precisely solved spacetime m etric  

and ste llar s tructu re . The geodesic equation is in tegrated numerically.

Using the com puter code developed for th is  work, we investigate the effect th a t com m only- 

used s im p lify ing  approxim ations have on the shape o f the pulse pro file  compared to  the fu ll 

ca lculation. In  pa rticu la r, we consider the effect o f neglecting the phase-dependent trave l tim e  

o f photons, approx im ating  the exte rio r m e tric  as e ither Schwarzschild or K e rr, and neglecting 

the ro ta tion-induced oblateness o f the neutron star.

We also consider the consequences th a t result when approxim ate pulse profiles are used 

to  ob ta in  neu tron  star parameters such as mass, radius, emission inc lina tion , and observer 

inc lina tion  v ia  least squares fit t in g . Specifically, we look a t f it t in g  lig h t curves calculated using 

the Schwarzschild m etric  and a spherical s ta r to  a lig h t curve calculated using a precisely- 

solved m etric  and s te lla r structu re . We are able to  conclude th a t, in  an idealised case where 

there is no random  noise component and a ll lig h t curves are fo r bo lom etric  fluxes from  iso trop ic 

emission, neglecting photon tim es-o f-fligh t or s te lla r oblateness in  model lig h t curves used for 

f it t in g  can in troduce errors a t the  level o f several tens o f percent on' the  de te rm ina tion  o f mass 

and radius ind iv idua lly . However, these errors w ill often offset each o ther such th a t the  fitte d  

parameters w il l  y ie ld  be tte r determ inations o f the compactness.

To fac ilita te  the inclusion o f oblateness effects in  o ther codes, we give a single po lynom ia l 

which describes the oblate shape o f stars fo r a range o f masses and ro ta tio n  periods fo r three 

separate equations o f state.
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1

C hapter 1

In troduction

The rap id  ro ta tio n  o f neutron stars in  m illisecond-period X -ray  pulsars has im p o r

ta n t consequences fo r models o f the  pulsed emission, and by extension, the  analysis 

o f observations o f these objects. M o tiva ted  by the “ classical”  s low ly -ro ta ting  X -ray  

pulsars, models o f pulsed X -ra y  emission from  near the surfaces o f neu tron  stars 

have been pursued since the 1980s. The earliest trea tm ent o f th is  problem  d id  not 

account for the  effect o f g ra v ity  on the path  followed by the  em itted  lig h t (W ang and 

W elter, 1981), b u t a fo rm alism  set ou t by Pechenick et al. (1983), w hich included 

g rav ita tiona l effects, established the basic fram ew ork used in  m ost trea tm ents  o f 

th is  problem  even today. Such models yielded a to o l w ith  w hich to  analyse X -ray  

pulsars, since by com paring calculations o f m odel lig h t curves to  observations, i t  

became possible to  draw  conclusions about the properties o f the underly ing  neu

tro n  star and the emission mechanisms. These models were o rig in a lly  developed 

to  describe s itua tions where the ro ta tiona l period o f the  sta r was on the order o f 

several seconds, w hich for typ ica l neutron star ra d ii ~  10 km  im p ly  non -re la tiv is tic  

velocities a t the surface o f the  star, neglig ib le light-crossing tim es compared to  the 

ro ta tio n a l period, and ins ign ifican t ro ta tiona l effects on the ste llar s tructu re . In  

th is  s itua tion , a num ber o f s im plifica tions result. For example, the  “ lig h t bending” 

caused by the neutron star can be included by assuming th a t the  sta r is spheri

ca lly  sym m etric, and th a t the  ex te rio r spacetime is Schwarzschild. A dd itio n a lly , 

the D oppler boosting o f photon energies, and the phase-dependent tim es-o f-fligh t 

o f photons can also be neglected. W ith  the recent discovery o f m illisecond-period 

X -ray  pulsars, o f w hich the 2.5 ms pulsar S A X  J1808.4-3658 was the firs t example 

(W ijnands and van der K lis , 1998), a na tu ra l question arises: to  w hat exten t can 

the m ethods developed for longer-period X -ra y  pulsars be applied to  th is  new class 

o f objects? Th is  d isserta tion seizes upon answering th is  question from  tw o po in ts
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1 .1  N e u t r o n  s t a r s 2

o f view: from  the m odelling perspective, and from  the data  analysis perspective. 

A lthough  a precise trea tm ent o f m illisecond X -ra y  pulsars is more com plicated than  

for the  classical X -ra y  pulsars, th is  w ork argues the necessity o f inco rpo ra ting  new 

effects in  models o f m illisecond X -ra y  pulsars, and concludes w ith  a suggestion o f a 

practica l way forw ard. In  th is  chapter, the  m illisecond-period X -ra y  pulsars which 

m otiva ted th is  w ork are described and placed in  a broader context. The chapter 

concludes w ith  an ou tline  o f the rem ainder o f the dissertation.

1.1 N eu tro n  stars

Neutrons were discovered by C hadw ick (1932), who was awarded the 1935 Nobel 

Prize in  Physics fo r the  discovery. The poss ib ility  o f neutron stars as the  rem nant 

o f a massive sta r which had exhausted its  nuclear fuel and exploded as a supernova 

was firs t proposed by Baade and Zw icky (1934) (also see Oppenheimer and V o lko ff 

(1939) fo r early theore tica l w ork). N eutron  stars represent a m idd le  ground between 

the endpo int o f massive stars w ith  in it ia l masses o f >  25 M © , w hich w ill collapse 

to  fo rm  black holes a t the  end o f th e ir lives, and ligh te r stars w ith  in it ia l masses 

<  8  M q , which end th e ir lives as w h ite  dwarfs (Tauris and van den Heuvel, 2006). 

The firs t observational evidences o f these objects, firs t as members in  some X -ray  

binaries, and sh o rtly  thereafte r as pulsars, were no t discovered u n t il more than 

three decades la ter.

A n  in teresting  counterpo in t to  th is  s to ry  is the  case o f w h ite  dw arf stars (for 

example, S irius B, a w h ite  dw arf in  a b ina ry ) which were known by observation 

to  have masses ~  M ©, and lum inosities ~  A © /300, b u t ra d ii rv ft®  ~  10 2 ft© . 

E dd ing ton  (1924) po in ted ou t th a t Sirius B was incred ib ly  dense, b u t paradoxica lly 

“ much too  fa in t fo r its  mass,” and i t  was unclear how such a star could support itse lf 

against gravity . I t  wasn’t  u n t il the  development o f Ferm i-D irac sta tis tics  (D irac, 

1926), th a t the  eventual reso lution o f th is  problem  by Fowler (1926) was possible. 

W h ite  dwarfs are now known to  be supported by electron degeneracy pressure.

The name “neutron star” is appropria te ly  given to  the  remnants o f massive stars 

formed du ring  the collapse o f th e ir  iron  cores, b u t which are too lig h t to  collapse 

to  black holes, since the m a tte r passes th rough  a phase where i t  becomes dense 

enough th a t the  inverse beta decay reaction

e~ +  p  —> n  +  v  (1-1)

converts much o f the m a tte r to  neutrons, rough ly  in  the  ra tio  n e : np : n n — 1 : 1 : 8
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1 .1  N e u t r o n  s t a r s 3

(Shapiro and Teukolsky, 1983). T h is  is not the complete story, however, as the core 

continues to  collapse reaching densities ranging from  several to  tens o f tim es th a t o f 

o rd ina ry  nuclear m a tte r (pnuc ~  1014g /c m 3), a t which po in t degeneracy pressure 

acts to  arrest the  core collapse. The fina l state o f m a tte r com prising the core o f a 

neutron sta r is poo rly  understood, since a t the  im p lied  distance scale the strong nu

clear force becomes im po rtan t. As a result, neutron degeneracy pressure alone does 

not determ ine the  state o f m a tte r, and a fu ll trea tm ent w ould require a be tte r un

derstanding o f m u ltib o d y  processes in  quantum  chromodynamics (Q C D ). I t  is clear 

th a t the detailed equation o f state o f th is  m atte r, specified by p(p), determ ines the 

mass-radius re la tion  obeyed by neutron stars. Shapiro and Teukolsky (1983) and 

G lendenning (2000) are texts which include a thorough discussion o f neutron star 

equations o f state. M odern candidate equations o f state, inc lud ing  some strange 

quark m a tte r (SQM ) models, are discussed by L a ttim e r and Prakash (2001), while  

older candidate equations o f state were catalogued by A rn e tt and Bowers (1977). 

L a ttim e r and Prakash (2004) provide a short overview on neutron star s tructu re  

and equations o f state. One po ten tia l app lica tion  o f neutron sta r observations is 

the em pirica l constra in t o f the  state o f m a tte r at these densities. There are now 

also te rres tria l experim ents th a t can probe these densities, fo r example the Rela- 

t iv is tic  Heavy Ion C o llider (R H IC ) at Brookhaven N ationa l Labo ra to ry  (B N L ) in  

New York, USA (Lud lam  and M cLerran, 2003). Experim ents at R H IC  m ay also 

help to  constra in the  state o f m a tte r a t these densities. However, i t  should be noted 

th a t these experim ents p r im a r ily  probe the physics o f ho t (~  1012 K ) dense m atte r, 

and in  p a rticu la r the  state o f hot quark-g luon plasma and the phase tra n s itio n  to  

hadronic m a tte r as the plasma cools (Schiffer et al., 1999). In  o ld  neutron stars, 

the  tem peratures are much lower (~  105~106 K ) than  the tem peratures probed by 

R H IC  (L a ttim e r and Prakash, 2004). For neutron star equations o f state, the  tem 

perature dependence is usually le ft ou t since the flu id  is assumed to  be in  the rm a l 

equ ilib rium , and a t these tem peratures the neutrons have energies below the Ferm i 

energy.

T yp ica l models o f neutron stars w ill have masses on the order o f 1 .4 M 0 and 

ra d ii on the  order o f 10 km , or a few tim es the Schwarzschild radius, so th a t th e ir 

g rav ita tiona l fie ld requires a general re la tiv is tic  description. In  the sections th a t 

follow, we discuss the tw o m ain  astrophysical m anifestations o f neutron stars: a 

class o f X -ra y  binaries, and rad io  pulsars. Then we consider a category o f neutron 

stars which no t on ly  have re la tiv is tic  g rav ita tiona l fields, b u t are also ro ta tin g  

at re la tiv is tic  speeds; these are the m ain class o f neutron stars w hich are under
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1 .2  X -RA Y BINARIES 4

consideration in  th is  d issertation.

1.2 X -ray  b inaries

The observation o f X -rays from  cosmic sources m ust be carried ou t above the  a t

mosphere. Some o f the  earliest experim ents took  place using captured V -2 rockets 

fit te d  w ith  p ropo rtiona l counters launched in  W h ite  Sands, New M exico, USA, 

in  1949. The firs t extra-so lar cosmic X -ray  source, Sco X - l ,  was discovered by 

R iccardo G iacconi in  1961 du ring  an a ttem p t to  observe solar X -rays reflected 

by the moon (G iacconi et a l,  1971). Today, the  fie ld o f X -ra y  astronom y repre

sents a s ign ificant frac tion  o f the to ta l endeavour in  physics by hum ankind. Con

sider th a t in  2002, G iacconi was awarded 1 /2  o f the Nobel P rize fo r Physics “ fo r 

pioneering con tribu tions  to  astrophysics, which have led to  the discovery o f cos

m ic X -ra y  sources.” In  the same year, some 20% o f the papers published in  

The Astrophysica l Journal, M o n th ly  Notices o f the  Royal A stronom ica l Society, 

and A stronom y and Astrophysics contained the word “X -ra y ”  in  th e ir  abstract 

(Barcons and Negueruela, 2003). Using space-based instrum ents, a varie ty  o f as

trophysica l phenomena are v is ib le  in  the X -ra y  sky, among them  active galactic 

nuclei (AG Ns) and clusters o f galaxies, and w ith in  our G alaxy (and, increasingly, 

elsewhere in  the local group) X -ra y  binaries and supernova remnants. The b r ig h t

est class o f these objects, o f which Sco X - l  is an example, are the  X -ra y  binaries, 

which consist o f a neutron sta r or black hole accreting m a tte r from  a com panion star 

(W h ite  et a l,  1995). A  s im ila r s itua tion  can occur fo r accretion onto w h ite  dwarfs, 

bu t these objects are generally weaker X -ra y  sources, and are usua lly  referred to  as 

cataclysm ic variables.

I f  we denote the radius o f the  compact ob ject as R  =  r R s, where the g rav ita 

tiona l radius R s =  2 G M /c 2, then the g rav ita tiona l po ten tia l energy libera ted  by 

an in fa llin g  nucleon o f mass m p r-Zj 940 M e V /c 2 is

A  E  =  ^ z (c 2m p), (1.2)

in  the non -re la tiv is tic  l im it  1 / f  <C 1. For an order-of-m agnitude ca lcu la tion , the 

typ ica l ra d ii o f the  neutron stars and black holes have 1 <  f  <  5, so th a t a single 

in fa llin g  nucleon m ust libera te  on the  order o f several tim es 10“ 1 G eV on its  jou rney 

in to  the compact o b je c t’s g rav ita tiona l well. T h is  is about ten  tim es more energy 

per nucleon than  can be achieved by nuclear fusion: the  b ind ing  energy per nucleon 

for stable nuclei is a t most about 9 M e V  (fo r a 56Fe nucleus). The typ ica l lu m i
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1 .2  X -R A Y  BINARIES 5

nosities o f X -ra y  binaries are w ith in  an order o f m agnitude o f 1037ergs-1 (W h ite  

et al., 1995), or around one thousand tim es the lum inos ity  o f the  Sun. C learly  ac

cre tion  onto  compact objects is a po ten t source o f astrophysical energy, a fact firs t 

realised by Salpeter (1964), Ze l’dovich (1964), and Zel’dovich and N ovikov (1964) 

w ith  app lica tion  to  quasars and AG N s (accreting supermassive black holes), and 

by Zel’dovich and Guseynov (1966), N ovikov and Zel’dovich (1966), and Shklovskii 

(1967) in  the context o f X -ra y  binaries (Tauris and van den Heuvel, 2006).

C on tinu ing  th is  order-of-m agnitude energetics calculation, the  typ ica l lum inos

ity  o f X -ra y  binaries is powered by accretion rates M  w ith in  an order o f

M  ~  (L /1 0 37 ergs-1 ) x  (1037erg /s) x  (6.24 x  105 M eV /e rg ) x  (3.16 x  107 s/a ) 

x ((2 r /9 4 0 )  accreted nucleons/M eV) x  (8.35 x  10-58 M © /nucleon)

»  (3.5 x  1 0 - ' ° M e /a )  ( - - Ye( g s _ 1) r .  (1.3)

T h is  is approx im ate ly  an order o f m agnitude smaller than the E dd ing ton  rate. 

The E dd ing ton  ra te  is defined as the po in t at w hich the  rad ia tion  pressure o f the 

accretion-powered lum inos ity  d isrupts the in fa llin g  m a tte r stream  (Shapiro and 

Teukolsky, 1983). To calculate it ,  one balances the force generated by rad ia tion  

pressure on electrons w ith  the g rav ita tiona l force on the in fa llin g  protons, which 

gives the  E dd ing ton  lum inos ity

L Edd =  ^ § ^ ( m pc) =  (1.8 x  1038 e rg /s) ( y ^ )  , (1-4)

where a x  =  0.66 x  10-24 cm2 is the Thom son cross section for the  scattering o f 

photons by electrons. The E dd ing ton  accretion ra te  M Edd is the  accretion rate 

which w ould  y ie ld  th is  lum inos ity ; app ly ing  E quation  1.3 yields

M m i  =  (1.5 x 10- 8 M 0 / a) • (1.5)

In  practise, X -ra y  b inaries are classified according to  the mass o f the  compan

ion star: high-mass X -ra y  binaries (H M X B s) have a companion star w ith  mass 

M c >  10M © ; low-mass X -ra y  binaries (LM X B s) have a companion s ta r w ith  mass 

M c <  1 M q (Verbunt and van den Heuvel, 1995). D e term in ing  which class a given 

X -ra y  b in a ry  fa lls  in to  usua lly  relies on one o r more o f the fo llow ing (W h ite  et a l., 

1995; Lew in  et a l ,  1995; Verbunt and van den Heuvel, 1995):

Identification  o f com panion In  LM X B s, the  donor star is typ ica lly  op tica lly
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fa in t ( i f  i t  is observable a t a ll), w hile  in  H M X B s the op tica l lum inos ity  o f the 

companion star dom inates the to ta l emission from  the system. The donor star 

in  an H M X B  is ty p ica lly  tw o orders o f m agnitude b righ te r than  the  donor in  

an L M X B , and can often be identified .

Lum inosities The ra tio  o f X -ra y  to  op tica l lum inosities in  L M X B s  ranges from  

102 to  ~  104; fo r H M X B s the ra tio  ranges from  ~  10“ 3 to  ~  101.

X-ray spectra  The X -ra y  spectra o f L M X B s  are ty p ica lly  softer than  those of 

H M X B s.

B ursting  behaviour LM X B s  m igh t e xh ib it X -ra y  bursts, which are sudden rises 

in  the X -ray  a c tiv ity  which fades away over several m inutes.

O rbital period L M X B s  w ill typ ica lly  have o rb ita l periods ranging from  m inutes 

to  several days, w h ile  H M X B s ty p ica lly  do not have o rb ita l periods less than  

12 hours.

In  LM X B s, the accretion ty p ica lly  occurs v ia  Roche lobe overflow, where m a tte r 

from  the donor star is driven th rough the inner Lagrange po in t, and enters an 

accretion disk around the accreting ob ject. In  H M X B s, the o rb it is usua lly  w ide 

and the donor star does not overflow its  Roche lobe. Instead, m a tte r is captured 

from  the  donor s ta r’s s te lla r w ind. The typ ica l life tim e  o f an H M X B  is on the  order 

o f 105-1 0 7 a, which is determ ined by the lifespan o f the  high-mass donor. L M X B s  

have life tim es about tw o orders o f m agnitude larger, 107 109 a, which is determ ined 

by the mass-transfer process (Psaltis, 2006).

1.3 P u lsars and accretion -p ow ered  recyclin g

1 .3 .1  In tr o d u c tio n  an d  o b serv a tio n a l h is to r y

R o ta ting  neutron stars w ith  re la tive ly  strong m agnetic fields reveal themselves as 

pulsars, the ha llm ark  o f w hich is the extrem ely regular pu lsa tion  o f e lectrom agnetic 

rad ia tion , especially in  the rad io  pa rt o f the  spectrum . The firs t pulsar was discov

ered by Hewish et al. (1968), and A n thony  Hewish was awarded h a lf o f the  1974 

Nobel Prize in  Physics “ fo r his decisive role in  the  discovery o f pulsars.”  In it ia l ly  

i t  was not clear w hat mechanism was producing  the pulsed rad ia tion , and several 

proposals were made th a t i t  was the signature o f rad ia l pulsations o f a degener

ate star. One such model was advanced by Israel (1968), w ho posited th a t the 

pulsed rad ia tion  was the signature o f a neutron star on the b r in k  o f collapsing to
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a black hole. In  th is  model, a th in  hydrogen-rich envelope collected on the surface 

o f such a neutron star, which forced the neutron star to  begin collapsing. In  so 

doing, the accreted envelope w ould heat up— perhaps by nuclear bu rn ing— enough 

to  blow  o ff enough o f the  accreted m a tte r to  stop the collapse. Then the neutron 

sta r core w ould snap back, p rope lling  the rem ain ing m a tte r away from  the star at 

re la tiv is tic  velocities, causing synchrotron rad ia tion . In  th is  model, the  period o f 

the  pulsations was related to  the tim e  in te rva l required for the envelope to  re-settle 

on the neu tron  star, beginn ing the whole process again. Gold (1968) was the firs t 

to  suggest the  cu rren tly  accepted model, where the ro ta tio n  o f a magnetised neu

tro n  sta r powers synchrotron emission from  a sparse plasma located near the s ta r’s 

lig h t cy linder (i.e., the rad ius at which co-ro ta tion  w ith  the sta r requires trave l at 

the speed o f lig h t). The pulsed rad io  emission is in terpre ted as a d irected beam o f 

rad ia tion  p o in tin g  in  the d irection  o f the  s ta r’s m agnetic field, which is not aligned 

w ith  its  spin axis. As a result, the  rad ia tion  beam period ica lly  cuts across the line- 

of-sight as the sta r rotates. There are now approxim ate ly  1700 known radio  pulsars 

(Lorim er, 2005). G old (1968) hypothesised th a t there should be a measurable pe

riod  deriva tive  resu lting  from  the conversion o f ro ta tiona l energy to  electrom agnetic 

rad ia tion  due to  m agnetic dipole rad ia tion , and an analysis o f th is  suggestion was 

firs t carried th rough  by Pacin i (1968). T h is  led d ire c tly  to  the standard model o f 

d ipo le b rak ing  by pulsars (G unn and O striker, 1969, 1970): as new ly-born  isolated 

pulsars age, the  period o f the  pulsations g radua lly  lengthens. Measurements o f the 

period deriva tive  P  can be used to  in fe r the  m agnetic fie ld strength  o f the  neutron 

star by a ttr ib u tin g  the lost ro ta tio n a l energy o f the neutron star to  dipole rad ia tion . 

One can ob ta in  the surface m agnetic fie ld strength B  cx \J P P  and a characteristic 

age r c =  P /(2 P ) .  The derived m agnetic fie ld fo r typ ica l radio pulsars is ~  1012 G, 

w ith  characteristic age ~  107 a (Lorim er, 2005).

I t  was the  discovery o f the  1.6 ms rad io  pulsar PSR 1937+21 in  1982 (Backer 

et al., 1982) w h ich po in ted to  the existence o f a new class o f much older pulsars 

w ith  weak m agnetic fields. In  a review o f m illisecond pulsars, B hattacharya  (1995) 

po in ts ou t th a t these new objects were im m edia te ly  though t to  be o ld  neutron 

stars which had been “ spun up ” by accreting mass and angular m om entum  from  

a companion s ta r (A lp a r et al., 1982). T h is  was no t a new idea, as the Hulse- 

Tay lo r b ina ry  pulsar PSR 1913+16 (Hulse and Taylor, 1975) had been discovered 

some eight years p rio r, and i t  was conjectured to  be a h ighly-evolved b ina ry  system 

(F lannery and van den Heuvel, 1975; Sm arr and B landford , 1976). However, the 

firs t m illisecond pulsar was the firs t evidence th a t such neutron stars could be
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spun up to  large fractions o f th e ir  theore tica l m axim um  frequency. One problem  

w ith  th is  p ic tu re  was th a t there was no evidence fo r a companion star in  th is  new 

system and so i f  i t  had evolved from  a b inary, i t  m ust have lost its  companion in  

some way. Soon a fte r th is  discovery, the 6 ms binary  rad io  pulsar PSR 1953+29 was 

discovered (B o riako ff et al., 1983) which so lid ified the case fo r the  “ recycling” o f old 

neutron stars by cap tu ring  angular m om entum  in  b ina ry  systems (Savonije (1983); 

Paczyhski (1983); and more recently, Tauris and Savonije (1999)). I t  is possible 

th a t these recycled pulsars eventua lly destroy th e ir  companions by electrom agnetic 

rad ia tion . The “evaporation” o f the  companion by electrom agnetic rad ia tion  has 

been observed in  the famous 1.6 ms “ B lack W idow ” pulsar, PSR 1957+20 (Fruchter 

et al., 1988). To date, the  fastest known rad io pulsar has P  =  1.4 ms, w hich was 

discovered by a rad io  survey o f the  g lobu la r cluster Terzan 5 (Hessels et al., 2006). 

Today there are approx im ate ly  160 known recycled radio pulsars; o f these, the 

typ ica l derived fields and ages are B  108 G and r c ~  109 a (Lorim er, 2005).

U pon the discovery o f the  firs t m illisecond ra d io . pulsar, there were perhaps 

20 or so known X -ra y  pulsars in  X -ra y  binaries. These are systems th a t exh ib it 

pulsations in  the X -ra y  flu x  corresponding to  the ro ta tion  ra te  o f the underly ing 

neutron star. The firs t X -ra y  pulsar to  be discovered was Cen X-3, a 4.8 s pulsar 

in  a 2.1 d o rb ita l period H M X B  (G iacconi et a l,  1971). M ost known X -ray  pulsars 

tended to  occur in  H M X B s, a lthough no t exclusively so. For example, the 1.24 s 

X -ray  pulsar Her X - l  was discovered in  1972 (Tananbaum  et a l,  1972) and is one o f 

approx im ate ly  five examples o f X -ra y  pulsars in  low  (or in term ediate) mass X -ray  

binaries (Psaltis, 2006). I f  i t  was true  th a t recycled rad io pulsars were form ed by 

the  evo lu tion  o f neutron stars in  LM X B s, then i t  was a puzzle w hy there were no 

known m illisecond-period X -ra y  pulsars, a s itua tion  which continued fo r some tim e  

in  spite o f several efforts made to  search fo r them  (among them  Leahy et al. (1983), 

M ereghetti and G rind lay  (1987), W ood et al. (1991), and Vaughan et al. (1994), as 

is po inted ou t by W ijnands  and van der K lis  (1998)).

The discovery in  1996 (S trohm ayer et a l,  1996) o f coherent m illisecond-period 

brightness oscilla tions du ring  Type  I  X -ra y  bursts resolved the  long-stand ing prob

lem o f the  absence o f evidence fo r accretion-induced spin-up o f neutron stars in  

L M X B s  (S trohm ayer and Lee, 1996). Type I  X -ray  bursts are therm onuclear flashes 

occurring  on the  surface o f weakly-m agnetic accreting neutron stars in  L M X B s, and 

the frequency o f the  brightness oscilla tions is understood as aris ing from  ro ta tiona l 

m odu la tion  o f a ho t spot on the  surface o f the neutron star. Bursts are discussed 

in  more de ta il in  Section 1.3.4. The discovery and s tudy o f these burst oscillations
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was made possible a fte r the  launch o f the  Rossi X -ra y  T im in g  E xp lo re r (R X T E ) 

sate llite  in  December 1995 which had unprecedented sensitiv ity, t im in g  resolution, 

and po in tin g  f le x ib ility  (B ra d t et al. (1993); also see Jahoda et al. (1996) which 

discusses the on-board p ropo rtion a l counting a rray (P C A )).

I t  wasn’t  u n til 1998 th a t the  firs t persistent m illisecond-period X -ra y  pulsar, 

SA X  J 1808.4-3658, was discovered (W ijnands and van der K lis , 1998) in  a 2.01 h 

o rb ita l pe riod  L M X B  (C hakrabarty  and M organ, 1998). T h is  provided fu rth e r ev

idence o f the  evo lu tionary l in k  to  the  old m illisecond radio pulsars. W h ile  R X T E  

observations revealed the pu lsar nature  o f S AX  J1808.4-3658, its  in it ia l id e n tif i

cation was made fo llow ing an observation in  September 1996 by  the W ide  F ie ld 

Cameras on board BeppoSAX, w hich observed tw o type I  X -ra y  bursts. Th is  

source was classified as an L M X B  at a distance o f approx im ate ly  4 kpc ( i n ’t  Zand 

et al., 1998). There are now seven known m illisecond X -ray  pulsars, w hich are 

listed in  Table 1.1 w ith  th e ir  ro ta tio n a l and o rb ita l periods. I t  is d iff ic u lt to  find  

m illisecond-period X -ra y  pulsars and i t  is s t il l a puzzle how these seven examples 

d iffer from  other L M X B s  w hich do no t exh ib it persistent X -ra y  pulsations. The 

review by Psaltis (2006) (also see C hakrabarty  (2005)) discusses the two m ain sug

gestions th a t have been made to  resolve th is  problem , bu t these proposals have 

significant shortcom ings. F irs t, upon the discovery o f SA X  J1808.4-3658 i t  was 

suggested th a t perhaps the  detection o f pulsations was made possible by v iew ing 

SA X  J1808.4-3658 at sm all inc lina tions  to  the  plane o f the b inary, preventing the 

X -ray  pulses from  being blocked by the accretion flow  (Psaltis and C hakrabarty, 

1999). T h is  seems less like ly  now w ith  the discovery o f more m illisecond X -ra y  p u l

sars, and w ith  the  detection o f an a rriva l tim e  m odu la tion  in  a ll o f these systems. 

Second, i t  was suggested th a t since these pulsars a ll have re la tive ly  low  accretion 

rates, th a t perhaps in  the  non-puls ing L M X B s  the accretion rates are h igh enough 

to  make the m agnetic fie ld  dynam ica lly  u n im p o rta n t (C um m ing et a l,  2001); see 

Equation  1.9 and the re lated discussion below fo r an illu s tra tio n  o f the im portance 

o f the accretion rate. I f  th is  was the  case, the  accreted m a tte r w ould no t be fun 

nelled to  po la r caps on the surface, and persistent pulsed X -rays w ou ld  no t be 

detected. However, the  s im ila r ity  between these pulsars and non-pulsing L M X B s  

in  terms o f th e ir  spectra and aperiodic v a r ia b ility  makes i t  hard  to  accept th is  

suggestion as the reso lution o f th is  puzzle (Psaltis, 2006).

In  the sections th a t fo llow , i t  is shown in  more de ta il how L M X B s  provide the 

correct conditions fo r recycling o f neutron stars. Then some rem arks about the 

popu la tion  o f L M X B s  are in  order, as the evo lu tionary  h is to ry  o f these systems has
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Name T Orbital Selected references to  observations
(Hz) (ms) period (hr)

SAX J 1808.4-3658 400 2.5 2.01 Wijnands and van der Klis (1998), 
Chakrabarty and Morgan (1998), 
Papitto  et al. (2005)

XTE J1751-305 435 2.3 0.7 Markwardt et al. (2002)
XTE J0929-314 185 5.4 0.73 Galloway et al. (2002)
XTE J 1807-294 191 5.2 0.67 Markwardt et al. (2003b), 

Markwardt et al. (2003a)
XTE J1814-338 314 3.2 4.28 Markwardt and Swank (2003) 

Markwardt et al. (2003c)
IGR J00291+5934 599 1.67 2.46 Markwardt et al. (2004), 

Galloway et al. (2005)
HETE J 1900.1-2455 377.3 2.65 1.39 K aaret et al. (2006)

Table 1.1: The seven known accretion-powered m illisecond-period X -ra y  pulsars 
w ith  th e ir spin and o rb ita l periods in  the  order o f th e ir discovery.

no t been firm ly  established.

1 .3 .2  L M X B s an d  a c c r e tio n -in d u c e d  recy c lin g

In  neutron sta r LM X B s, a neutron star accretes m a tte r from  a low  mass companion 

which is overflow ing its  Roche lobe. The in fa llin g  m a tte r forms an accretion disk 

where the  m a tte r o rb its  a t the  local Kep le rian  speed w ith  a re la tive ly  sm all inw ard 

d r if t  ve locity. A ngu la r m om entum  and approx im ate ly  h a lf o f the  available accretion 

energy is dissipated in  the disk th rough  stresses aris ing from  tu rb u le n t flow. The 

basic p ic tu re  o f th in  accretion disks was pioneered by Shakura and Sunyaev (1973) 

and Lynden-B e ll and P ring le  (1974). The  centra l dynam ica l issue in  accretion disk 

flows is the tra n sp o rt o f angular m om entum , bu t the  th in  disk models do no t specify 

the  mechanism for th is— its  effect is inserted in  an ad hoc manner. M ore recently, 

a prom ising candidate fo r the  angular m om entum  transpo rt mechanism, known as 

the weak-field m agnetoro ta tiona l in s ta b ility  (M R I), was proposed by Balbus and 

Hawley (1991). Th is  mechanism is d riven by a m agnetic fie ld  which is too  weak 

to  affect the o rb ita l dynam ics o f the  m a tte r, b u t the disk shear w inds up the fie ld 

and transports  angular m om entum  outwards. Reconnection lim its  the fie ld  grow th  

and results in  d issipation (K ing , 2006). C urren tly , there are efforts to  use 3-D 

m agnetohydrodynam ics codes to  model the  tu rb u le n t flow in  accretion disks (e.g., 

M ille r  and Stone (2000), Haw ley and K ro lik  (2001), K ro lik  and Hawley (2002), and 

Hirose et al. (2006)). A  pedagogical trea tm ent o f accretion physics is F rank et al. 

(2002); reviews o f accretion d isk physics include K in g  (1995), Balbus and Hawley
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(1998), and K in g  (2006).

The accreting m a tte r eventua lly reaches the inner edge o f the  d isk where the 

flow  is d isrupted by the m agnetic fie ld o f the star, and the in fa llin g  m a tte r follows 

the m agnetic fie ld lines down to  the neutron s ta r ’s surface. The difference between 

the K ep lerian  o rb ita l frequency at the  inner edge o f the  disk and the s ta r ’s spin 

frequency determ ines the fate o f the accreting m a tte r: i f  the o rb it a t the  inner 

edge o f the  disk is faster than  the star, the  m a tte r binds to  the fie ld lines and 

a m agnetic torque acts to  spin up the  s ta r (Ghosh and Lam b, 1978). On the 

other hand, i f  the o rb it a t the  inner edge o f the  disk is slower than  the  star, a 

to rque acts to  spin down the star. In  th is  s itua tion  the  in fa llin g  m a tte r m ay be 

flung  away from  the star since i t  cannot penetrate the  centrifugal barrie r. T h is  is 

called the “ propeller mechanism”  afte r Illa r io n o v  and Sunyaev (1975). Over tim e, 

one expects the frequency o f the  inner edge o f the disk and the neutron sta r to  

equalise. To calculate th is  e q u ilib rium  frequency, one firs t requires an estim ate o f 

where the m agnetic fie ld d isrupts the d isk; th is  is known as the  A lfven  rad ius R a - 

A lthough  we are considering d isk accretion, estimates o f R a  are usua lly  obta ined 

by considering spherical accretion onto the star, and ob ta in ing  the p o in t at which 

the ram  pressure o f the flu id  flow  is equalised by the m agnetic pressure on the 

in fa lling  m a tte r (Davidson and O strike r (1973), b u t we have referred to  a te x tb o o k  

rep lica tion  o f th is  argum ent in  §6.3 o f F rank et al. (2002)). The ram  pressure is 

pv2, where p is the  mass density o f the  flu id , and at the inner edge o f the  disk the 

ve loc ity  v k , =  ( 2 G M /r ) 1/ 2, the  free-fa ll velocity. For spherical accretion, we 

have
M  , ,

e ° =  4 ^ 3 .  T 6 >

so th a t the  ram  pressure a t rad ius r  is

_ ( 2
47t r 5/ 2

2 {2 G M )V * M  
P r a m  — P V  —  • (1.7)

Assum ing a d ipo le  field, the m agnetic fie ld density B  a t radius r  is rough ly  p / r 3, 

where p  is the m agnetic d ipo le  mom ent o f the  star. I t  is related to  the surface field 

density and ste llar radius by p  =  B +R 3. The m agnetic pressure exerted on the 

in fa lling  plasma is
[4 ^1  B 2 f  47rd p 2

P m a g  =  —  =  —  W — 6 -  ( 1 - 8 )
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The pressures equalise a t R a , g iv ing

o  m 6  „ \ (  M Y 2/7 f  M  V 1 /?  ( B* ^4/7 ( R* V0/?
A ( ' X Cm)\^Eddj Vl-4Me j  ( i 09g J Vl06cmj ’

(1.9)

where we have used Equation  1.5 to  establish the scale o f M  in  term s o f the  Edd ing

ton  ra te  MecM- To get the  steady state o f the  s ta r’s ro ta tio n  period, we com pute the 

o rb ita l period o f the in fa llin g  m a tte r a t the  A lfven  radius; no angular m om entum  

transfer occurs when the m a tte r a t the  A lfven  radius is co -ro ta ting  w ith  the  star. 

The period P  and radius R  o f a c ircu la r o rb it about a mass M  are re lated by

p2 = m R3- <uo>
P u ttin g  R  =  R a , we ob ta in  the equ ilib rium  spin period o f the sta r (th is  is Equation

5.3 o f B hattacharya  (1995) except a typo  is corrected):

-3 /7

Th is  trea tm ent is a considerable idealisation, b u t i t  shows the basic dependence on 

the e q u ilib rium  period w ith  the four basic quantities describing the s itua tion . I t  

shows, fo r example, th a t in  order to  spin up to  m illisecond periods, the m agnetic 

fie ld strength  a t the  surface o f the  neutron star m ust be re la tive ly  weak: closer 

to  109 G than  1012G. T h is  agrees w ith  the m agnetic fie ld strengths inferred from  

the spin-down o f recycled rad io  pulsars. I t  is also consistent w ith  the bu rs ting  

behaviour in  m any LM X B s, as h igher m agnetic fie ld strengths have been shown 

to  suppress the therm onuclear in s ta b ility  (Joss and L i, 1980). Furtherm ore, i t  is 

a reason w hy m illisecond-period X -ra y  pulsations are d ifficu lt to  detect, as weaker 

m agnetic fields lead to  larger po la r caps as well as weaker b ind ing  o f the  in fa llin g  

m a tte r to  the m agnetic fie ld lines. W h ile  i t  is apparent from  E quation  1.11 th a t 

re la tive ly  weak m agnetic fields are necessary fo r accretion-powered recycling to  

m illisecond periods, i t  is not well-established how these neutron stars come to  have 

m agnetic fields so weak compared to  the larger popu la tion  o f conventional pulsars. 

Models o f the  o rig in  and evo lu tion  o f neutron sta r m agnetic fields are reviewed 

by B hattacharya  and Srinivasan (1995) and Bhattacharya  (2002). Some m odern 

models o f m agnetic fie ld evo lu tion  in  neutron stars suggest th a t long-te rm  accretion 

leads to  the decay o f the m agnetic fie ld s trength  o f the neutron star, a poss ib ility
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firs t suggested by B isnovatyi-Kogan and Kom berg (1974). U rp in  et al. (1998) 

have developed a model o f neutron star evo lu tion  inc lud ing  accretion effects on the 

m agnetic fie ld (and period) evo lu tion  o f an accreting neutron sta r in  an L M X B . In  

th e ir  calculations i t  is no t ju s t the am ount o f accreted mass th a t determ ines the 

fina l m agnetic field, b u t the  accretion rate and the  length o f the  accretion phase 

(also see U rp in  and G eppert (1995)). The lower the  accretion rate, the  weaker the 

m agnetic fie ld fo r a given A M .

C om ple ting  the  order-of-m agnitude estimates, we can also make an estim ate o f 

the am ount o f m a tte r th a t needs to  be accreted to  spin up to  the steady state. The 

specific angular m om entum  o f the  m a tte r at the  A lfven  radius is 2 ir R \ /P .  Using 

Equation  1.10, the  ra te  o f angular m om entum  accretion is therefore

j  =  M ^ G M R a . (1.12)

The m om ent o f in e rtia  o f the  star is / *  ~  M*R%. and J* ~  1*U*- The tim e  scale 

fo r spin-up to  _Peq is:

Tspm-up =  - J  =  ~  1-4 X  107 a, (1.13)

where we have assumed Peq =  1.9 ms, R,\ =  2 .6x lO 6 cm, M  =  M b66 =  1.5 x  10” 8 M e /  

i?* =  106 cm, and M  =  1 .4M © . Over th is  length o f tim e, the neutron star w ill 

accrete about 0.1 M © . Such long-term  accretion can on ly  take place in  LM X B s. In  

an H M X B , the  separation o f the  system is e ither such th a t the  neutron sta r on ly  

accretes v ia  a w ind  (a less efficient means o f trans fe rring  angular m om entum  and 

mass), or else the donor star is overflow ing its  Roche lobe, w hich fo r H M X B s  is 

unstable and does no t persist fo r longer than  about 103-1 0 4 a, a t the  end o f which 

tides b ring  the system in to  close enough contact th a t a common envelope forms 

(Bhattacharya, 1995; Tauris and van den Heuvel, 2006).

I t  is theore tica lly  possible fo r the spin periods o f neutron stars to  be in  the sub

m illisecond range since the breakup speed o f neutron stars can exceed 1000 Hz (see 

Table 4.1 fo r the breakup speeds o f 1.4 AL© neutron star models com puted using 

two different equations o f state, also Cook et al. (1994a) and Cook et al. (1994c)). 

However, no observation o f any ob ject which has been recycled by accretion flow  

(X -ray  and rad io  m illisecond pulsars, and type  I  bursters) has yet ru led ou t even 

the largest rea lis tic  models o f neutron stars, corresponding to  the lowest breakup 

speeds and stiffest equation o f state candidates. T h is  m ight be explained by ty p i-
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cal L M X B  properties being such th a t the  steady-state spin period o f E qua tion  1.11 

never reaches the  bound imposed by the breakup speed o f neutron stars. On the 

other hand, an exc iting  poss ib ility  is th a t g rav ita tiona l rad ia tion  provides an angu

la r m om entum  sink beyond about 700 Hz (B ildsten, 1998). Tw o possib ilities th a t 

would provide the necessary tim e-dependent mass quadrupole fo r g ra v ita tio n a l ra

d ia tion  are anisotropies in  the tem peratures in  the surface layers o f the  neutron 

star, resu lting  in  anisotropies in  the  m a tte r (B ildsten , 1998), or the  exc ita tion  o f 

non-radia l s te lla r oscillations (Andersson, 1998; Friedm an and M ors ink, 1998; A n - 

dersson et a l., 1999). Heyl (2002) suggested th a t the  g rav ita tiona l rad ia tion  from  

such oscilla tions m ay be detectable w ith  L IG O .

1 .3 .3  E v o lu tio n  o f  X -ra y  b in aries

The to ta l num ber o f X -ra y  binaries in  the  G alaxy is though t to  be on the order 

o f several hundred (Psaltis, 2006), and there are about 160 known recycled m il

lisecond rad io  pulsars (Lorim er, 2005). The re la tive ly  small to ta l num ber o f these 

objects im plies th a t they are the byproduct o f rare evo lu tionary scenarios, and th e ir  

concentration in  o ld  ste llar popula tions towards the galactic centre and in  g lobu la r 

clusters im plies th a t the  processes leading to  th e ir fo rm ation  take very long to  con

clude. Models o f X -ra y  b ina ry  fo rm ation  and evo lu tion  are reviewed by Verbunt 

(1993), V erbunt and van den Heuvel (1995) and Tauris  and van den Heuvel (2006); 

on ly  a very b rie f overview o f the  m ain fo rm ative  processes though t to  be involved 

in  the evo lu tion  o f L M X B s  is given here.

F irs t, i t  is re la tive ly  s tra igh tfo rw ard  to  see w hy one needs to  appeal to  exotic 

fo rm ation  processes, especially in  the  case o f L M X B s . The standard p ic tu re  o f 

b ina ry  evo lu tion  involves tw o stars in  a b ina ry  o f masses and M 2 , separated 

in  a c ircu la r o rb it o f d iam eter a. Suppose th a t M i  >  M 2 , so th a t M \  evolves 

faster and and is massive enough to  leave behind a neutron star or black hole o f 

mass M r a fte r the  supernova at the  end o f its  life . For the system to  be in it ia lly  

g ra v ita tio n a lly  bound, the  energy Et =  K E  +  P E  <  0. The in it ia l energy in  term s 

o f the masses is

Since the stars o rb it about th e ir  m u tua l centre o f mass, we know  th a t M i|u i |  =  

M 2 11/2 1. Then

The v ir ia l theorem  o f C lausius (see Clausius (1870); G oldste in (1950) includes a

Ei =  ^M iv l  +  ^M 2u| G M i M 2
(1.14)

a

M 2\  G M xM 2 
~M\)  a

(1.15)
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p roo f as does a short online a rtic le  by Baez (2000) and o ther mechanics texts; 

o ther applications to  astrophysics are discussed in  Saslaw (1985), and B inney and 

Tremaine (1987)) says th a t th is  g ra v ita tio n a lly  bound system satisfies

E t =  ^P E ; (1.16)

therefore,

2 a 1 +  M 2 / M i  V ’

For the purpose o f th is  argum ent, we make the unrea lis tic  assum ption th a t the  core 

collapse and resu lting  explosion is spherica lly sym m etric, and th a t M 2 is ne ither 

s ign ifican tly  ablated nor propelled by the explosion. Then the fina l energy E f  is

l w  .2  , 1 „ „ . . 2  GMrM2E f  =  x M r u2 +  - M 2v j  -

=  <L18>
where we have made use o f Equation  1.17. For the  system to  rem ain bound a fter 

the supernova, E f  <  0. Then E quation  1.18 im plies th a t fo r the  b ina ry  to  survive 

the explosion

M r  >  M i -  * /w  . (1.19)
2  +  M 2 / M 1 v ’

Consider th a t the fo rm a tion  o f a neutron sta r by an isolated s ta r is the  endpo in t 

o f m ain sequence stars w ith  in it ia l masses 8 M 0  <  M \  <  25 M © , w hich du ring  

th e ir evo lu tion  ob ta in  He cores w ith  masses between 2 .1 -8 M 0  (Tauris and van den 

Heuvel, 2006). In  an L M X B , M 2 <  1 M 0 . In  the cases we are interested in, the  mass 

o f the rem nant m ust be more than  about M \ /2  in  order fo r the  b in a ry  to  rem ain 

bound. B u t surely, th is  cond ition  is never satisfied since the  canonical neutron 

star mass is M r  ~  1 .4M q , much less than  h a lf the  in it ia l mass M i .  Therefore, as 

po inted ou t by Tauris and van den Heuvel (2006), a necessary ingred ien t to  exp la in  

the existence o f L M X B s  m ust be one o r more o f the  factors we have neglected: the  

poss ib ility  o f large scale mass transfer p r io r to  the supernova (discussed below), 

ab lation o f the  com panion by the supernova, or the  poss ib ility  o f asym m etric core 

collapse w hich im parts  a “k ick” to  the resu lting  neutron star. The im portance o f 

supernova kicks fo r the  fo rm ation  o f short-period L M X B s  is discussed by Kalogera 

and W ebbink (1998), and th e ir dynam ica l consequences have been analysed by H ills  

(1983), and Tauris and Takens (1998) (Tauris and van den Heuvel, 2006). M odern 

models o f b ina ry  evo lu tion  m ust include some consideration o f a ll o f these effects
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in  order to  a llow  for a non-zero b ir th ra te  o f LM X B s.

L M X B s  m igh t be form ed by several d ifferent processes. The standard p ic tu re  

is as the p roduct o f common envelope (CE) evo lu tion  o f an extrem e mass ra tio  

m ain sequence binary, b u t several o ther scenarios m igh t also fo rm  L M X B s  which 

are mentioned at the  end o f the  section. The C E  evo lu tion  scenario was firs t 

proposed by Paczynski (1976) and O strike r (1976), and is discussed in  de ta il in  

the aforementioned reviews and th e ir  accompanying references. A  typ ica l p ic tu re  

o f CE evo lu tion  (Tauris and van den Heuvel, 2006) o f a b ina ry  w ith  an L M X B  as 

the endpo int involves tw o m ain sequence stars, one w ith  mass M \  >  10 M © , the 

other w ith  mass M 2 ~  1M © . The  more massive star evolves faster, and i f  the 

b ina ry  is close enough M i  w ill f i l l  its  Roche lobe when i t  enters the  red g iant phase 

o f its  evo lu tion  and begin trans fe rring  mass to  M 2 . The transfer o f mass drives 

the insp ira l o f the  b inary. T h is  is easy to  see in  the fram ework o f a conservative 

system (Verbunt and van den Heuvel, 1995): i f  the  to ta l mass M \  +  M 2 is always 

conserved, then

The to ta l angular m om entum  J  o f the  system is also conserved, w ith  value

This leads to  the fo llow ing  expressions fo r the  change in  the separation a and period 

P  o f the  b ina ry  in  term s o f the  in it ia l masses and the  size o f the mass transfe r A M  

(K ep le r’s th ird  law  is invoked for the result invo lv ing  P ):

So i t  is clear th a t mass transfer in  a b ina ry  leads to  insp ira l o f the  stars. In  the 

case we are considering, the  insp ira l w il l eventua lly b ring  the lower mass sta r inside 

the Roche lobe o f the  g iant, and the CE evo lu tion  phase begins. In  C E  evo lu tion  

(Tauris and van den Heuvel, 2006), the insp ira l accelerates due to  the drag on the 

lower mass star. A t  the  same tim e, the  deposition o f the  o rb ita l energy w ith in  the

M i /  =  M u  -  (A M )  

M 2/ =  M 2i +  (A M ) .

(1.20)

(1.21)

J  =  M iM 2 (1.22)

M u - M 2i ( A M ) 2
M \iM 2 i  M i jM 2j

M u - M 2i , ( A M ) 2

M u M 2i

(1.23)

(1.24)
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envelope leads to  re la tive ly  rap id  d issipation o f the envelope o f the g ia n t’s He core. 

A t  the  end o f th is  phase o f evolu tion , a naked He sta r is in  a sm all o rb it w ith  a 

m ain sequence star. E ven tua lly  the  He star evolves resu lting  in  a supernova and 

fo rm ation  o f a neutron star. A t  th is  stage o f evo lution , the b ina ry  w ill have evolved 

for on the order o f several tim es 107 a, set by the nuclear timescale o f the  in it ia lly  

more massive star, r nuc ~  10 G a (M /M q ) -2 -5.

I f  the  b ina ry  remains bound a fte r the  supernova, then under certa in  conditions 

a subsequent phase o f insp ira l las ting  on the order o f several tim es 109 a (Tauris and 

van den Heuvel, 2006) m ay take place w hich brings the b ina ry  back in to  contact for 

another period o f mass transfer, resu lting  in  the fo rm ation  o f an L M X B . Detailed 

models o f C E  evo lu tion  solve the prob lem  o f b ring ing  the progenitors o f the  L M X B  

in to  a close enough o rb it th a t the  second phase o f mass transfer begins w ith in  the 

Hubble tim e .1 The evo lu tion  o f the  bound post-supernova b ina ry  is determ ined 

large ly by detailed models o f the  mechanisms w hich can dissipate o rb ita l angular 

m om entum . These mechanisms can include m agnetic b raking o f the  b inary, the 

possible exchange o f angular m om entum  between the sta r spin and the o rb it by ex

pansion o r contraction  o f the  non-degenerate star, mass loss, and g rav ita tiona l wave 

rad ia tion  (Tauris and van den Heuvel, 2006). G rav ita tiona l wave rad ia tion  is on ly 

im p o rta n t in  close binaries, and w ould no t necessarily be the dom inant mechanism 

in it ia lly  d riv in g  the insp ira l a fte r the  supernova o f the  more massive star. D u ring  

th is  second insp ira l phase, the stars m ay again be b rought in to  contact and the 

rem ain ing m ain  sequence star begins mass transfer th rough  its  Roche lobe to  the 

neutron star (in  the opposite d irec tion  o f the  in it ia l mass transfer!), and the system 

manifests its e lf as an L M X B . W hen the system is in  contact, the  mass transfer is 

driven by the  continued loss o f angular m om entum  v ia  m agnetic b rak ing  (discussed 

in  §16.4.1 o f Tauris and van den Heuvel (2006)), o r g rav ita tiona l wave rad ia tion , 

the  im portance o f w hich was recognised by Faulkner (1971) who considered the 

s im ila r scenario o f w h ite  d w a rf stars accreting m a tte r by Roche lobe overflow o f a 

red m ain sequence companion.

O the r processes leading to  the fo rm a tion  o f L M X B s  have been suggested as well 

(Verbunt and van den Heuvel, 1995). In  one scenario, suggested by W helan and 

Iben (1973), Canal and Schatzman (1976), and Canal et al. (1990), one begins again 

w ith  a high-mass b ina ry  o f extrem e mass ra tio  b u t th is  tim e  the massive star evolves 

to  a re la tive ly  massive w h ite  d w a rf instead o f a neutron star. The insp ira l phase

1A  ro u g h  e s tim a te  o f  th e  age o f  th e  un ive rse  is g ive n  b y  th e  inverse o f  th e  H u b b le  c o n s ta n t, 
H 0 =  1 0 0 /iM p c -1  k m s W  T h e  th re e  yea r W M A P  re su lts  have h  =  0.73 ±  0.03 (S perge l et a l., 
2006); th e  c o rre sp o n d in g  ro u g h  e s tim a te  o f  th e  u n ive rse ’s age is 1.3 x  1010 a.
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after the  fo rm ation  o f the  w h ite  dw arf leads to  mass transfer from  the rem ain ing 

m ain sequence star, which pushes the w h ite  dw arf over the Chandrasekhar lim it,  

resu lting  in  the fo rm ation  o f a neutron star b inary. T h is  process is called “ accretion- 

induced collapse.” One advantage o f th is  scenario is th a t the resu lting  supernova 

may be less d isrup tive  to  the system than  the d irect fo rm ation  o f a neu tron  star 

by the evo lu tion  o f a massive He core.

In  g lobu la r clusters, capture scenarios m ay con tribu te  to  the fo rm ation  o f L M X B s  

(Verbunt and van den Heuvel (1995) po in t ou t C la rk  (1975), Fabian et al. (1975), 

Sutantyo (1975), and Verbunt (1988); V erbunt and Lew in (2006) review  the  g lobu

la r c luster X -ray  sources). X -ra y  binaries are over-represented in  g lobu la r clusters 

compared to  the G alaxy: consider th a t some 10% o f known X -ra y  binaries are in  

globular clusters which conta in  on the order o f 10~ 4  as m any stars as the G alaxy 

(Verbunt and van den Heuvel, 1995), so i t  seems reasonable to  suggest add itiona l 

evo lu tionary scenarios th a t enhance the b ir th  o f L M X B s  in  g lobu la r clusters. The 

reviews by V erbunt and van den Heuvel (1995) and V erbunt and Lew in (2006) dis

cuss these scenarios in  deta il: F irs t, i t  has been suggested th a t single neutron stars 

can pass a b ina ry  in  g lobu la r clusters, fo rm ing  a tr ip le . Trip les are unstable, and 

typ ica lly  the  lowest mass member is ejected, which m ay leave behind a neutron star 

binary. The  o ther scenario th a t has been suggested is the t id a l capture o f a m ain 

sequence or g iant star by a neutron star, or possibly d irect collisions between g iant 

stars and neutron stars. These scenarios may be prob lem atic  ow ing to  the  possible 

destruction  o f the  companion by tides (M cM illa n  et a l ,  1987; Ray et a l ,  1987).

1 .3 .4  X -ra y  p u lsa tio n  m ech a n ism s

The rem ain ing chapters are p r im a rily  concerned w ith  the in te rp re ta tio n  o f m illisecond- 

period pulsed X -ra y  lig h t from  a region on (or close to ) the surface o f neutron stars.

In  the context o f L M X B s  conta in ing a ra p id ly -ro ta tin g  neutron star, the  broad cate

gory o f “X -ra y  v a r ia b ility ” encompasses the seven m illisecond-period X -ra y  pulsars, 

the  aforementioned type  I  X -ra y  bu rs t oscillations, and there is also a category o f 

oscillations known as (k ilohertz ) quasi-periodic oscilla tions (QPOs). The w ork in  

th is  thesis was p r im a r ily  m otiva ted  by the prospect o f analysing the pulse profiles 

o f the m illisecond X -ra y  pulsars. T h is  is a very young fie ld o f endeavour, as the 

on ly published phase-resolved spectra o f such systems w ith  persistent pulsations 

are fo r the firs t m illisecond X -ra y  pulsar, S A X  J1808.4-3658 (see C u i et al. (1998), 

G ie rlirisk i et al. (2002) and P a p itto  et al. (2005)). L ike  rad io  pulsars, the pulse 

profile  o f X -ra y  pulsars can be determ ined by su ffic ien tly  long observation, so for
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the  sort o f analysis we envision i t  is im p o rta n t to  consider m a in ly  sources w ith  per

sistent pulsations and stable frequencies. There is also d irect a p p lica b ility  o f th is  

work to  the analysis o f type  I  X -ray  burs t lig h t curves, since th is  phenomenon also 

arises from  the ro ta tio n a l m odu la tion  o f a b rig h t spot on the  surface o f a neutron 

star. In  comparison w ith  the persistent m illisecond X -ray  pulsars, pulse profiles 

o f X -ra y  bu rs t oscilla tions are somewhat more read ily  available, b u t present o ther 

analysis challenges aris ing in  p a rt from  th e ir necessarily short observation tim e. 

A n  add itiona l com plica tion  is th a t these sources do no t have stable (brightness) os

c illa tio n  frequencies, a lthough they  are approxim ate ly  so, and the  phenomenology 

o f the frequency evo lu tion  is m ostly  well-described (S trohm ayer and M arkw a rd t, 

1999). The QPO phenomenon is though t to  be a com plete ly separate issue and the 

chapters th a t fo llow  have no obvious a p p lica b ility  to  th is  category o f va riab ility . In  

th is  section we give a very b rie f overview o f these separate categories.

X-ray pulsars

A fte r the  discovery o f the firs t long-period X -ray  pulsar in  an H M X B  (G iacconi 

et al., 1971), i t  was qu ick ly  understood th a t these pulsars came about by accretion 

o f m a tte r d irected onto the m agnetic poles o f a ro ta tin g  neutron star. In  th is  

s itua tion , the heating o f the  neutron star surface caused by the funne lling  o f ho t 

plasma to  the m agnetic poles produced a b rig h t spot which rotates th rough  the 

line-of-sight o f the  observer, which is observed as pulsed X -ray  ligh t.

A  varie ty  o f models o f accretion geometries near the surface o f the  neutron 

star have been developed to  provide a theore tica l basis fo r the  in te rp re ta tio n  o f 

the phase-resolved spectroscopy o f X -ra y  pulsar observations. For example, Nagel 

(1981) used rad ia tive  transfer calculations to  investigate the em itted  spectrum  and 

anisotropy in  tw o different accretion geometries: a slab perpend icu lar to  the mag

netic fie ld, and a cy lind rica l accretion colum n w ith  its  axis para lle l to  the m agnetic 

field. The slab geom etry is most applicable in  low  lum inos ity  sources when the 

accreting m a tte r is decelerated close to  the star; in  th is  case rad ia tion  was pref

eren tia lly  em itted  along the m agnetic axis (a “ pencil beam” ). In  the accretion 

colum n case, a rad ia tive  shock forms fa r from  the sta r beneath w hich the accreting 

m atte r settles onto the star v ia  a stagnant flow, and rad ia tion  escaped from  the 

sides o f the  resu lting  colum n (a “ fan beam” em itted  p re fe ren tia lly  away from  the 

rad ia l d irec tion ). M ore com plicated accretion geometries can be envisaged. For 

example, K raus et al. (2003) investigated the pulse profile  produced by  a d ipo le

shaped accretion funnel w ith  a b lackbody “ halo” around the base o f the funnel on
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the  surface o f the  neutron star, and others have proposed th a t the  accretion flow 

form s a “m ound” shape under the shock.

In  add ition  to  the accretion geometry, the  spectrum  o f the em itted  lig h t is also 

im p o rta n t. A  rea lis tic  descrip tion o f the spectrum  o f accreting X -ra y  pulsars de

pends on the energies being considered. A  b lackbody component o f the  spectrum  

describes soft X-rays, w hich m ay be X -rays em itted  from  the surface o f the  neu

tro n  star which is heated by the accretion flow (see, e.g., Zavlin  et al. (1995) fo r a 

deta iled trea tm ent o f th is  po in t, and Kraus et al. (2003)). The spectrum  o f hard 

X -rays is described by a power law w ith  an exponentia l cu to ff at h igh energies; th is  

rad ia tion  is understood as o rig ina ting  in  the accreted m a tte r and “ Com ptonized” 

by ho t electrons before leaving the  accreting system. T h is  is understood by consid

ering rad ia tion  passing th rough  an op tica lly  th ick  cloud o f hot, com plete ly ionized 

plasma, where the photons and plasma in te rac t on ly  by Com pton scattering. M u l

t ip le  scatterings o f X -ra y  photons on the rm a l electrons result in  the  d is to rtion , or 

C om pton ization , o f the  in p u t spectrum , since in  each scattering the frequency o f 

the photon changes due to  the  D oppler and recoil effects (Sunyaev and T ita rch u k  

(1980); also see R yb ick i and L igh tm an (1979)).

A d d itio n a lly , there m ay be discrete spectral features in  the phase-averaged spec

tru m  such as cyc lo tron  resonance scattering features, or spectral lines. Ib ra h im  

et al. (2 0 0 2 ) discuss observational evidence o f a cyc lo tron resonance feature in  SGR 

1806-20, and H e ind l et al. (2004) review th is  phenomenon in  the context o f clas

sical X -ra y  pulsars. Considering the spectral lines, C ottam  et al. (2002) observed 

a g rav ita tiona lly -redsh ifted  absorption line from  a neutron star, and Chang et al. 

(2006) is a recent theore tica l trea tm ent o f the effects o f ro ta tio n  on such spectral 

lines. These discrete spectral features in  neutron sta r spectra m ay p e rm it a d irect 

measurement o f the  to ta l redsh ift (and therefore the  compactness), and in  the case 

o f the cyc lo tron  lines, the  m agnetic field.

W ith  a model o f the  emission region and a model o f the em itted  spectrum , gen

eral re la t iv ity  can be used to  calculate the pa th  taken by photons from  the emission 

region to  the observer, and an observed pulse pro file  calculated, w h ich generally de

pends on the observed energy band. The sim plest case o f such a ca lcu la tion  which 

included re la tiv is tic  lig h t deflection was carried ou t by Pechenick et al. (1983) for 

emission from  po la r caps, w ith  app lica tion  to  the slow X -ray  pulsars. Using th is  

basic m ethod to  com pute model lig h t curves, perhaps w ith  d ifferent accretion ge

ometries and model spectra, fits  to  observations o f the  slow X -ra y  pulsars have 

yielded constra ints on the  compactness o f the  neutron star and the nature  o f the
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em itted  rad ia tion ; th is  is discussed in  more de ta il in  the  in tro d u c tio n  to  C hapter 4. 

The firs t, and so fa r only, app lica tion  o f th is  k ind  o f analysis fo r persistent m illisec

ond X -ra y  pulsars was carried th rough  by  Poutanen and G ie rlirisk i (2003), which 

yielded a loose constra in t on the mass and radius o f the  neutron star and the in 

c lina tion  o f the  system. Th is  p a rticu la r analysis used phase-resolved spectroscopy 

o f the pulsar in  the soft and hard bands together w ith  a tw o component spectral 

model o f the beamed emission. However, i t  is s tra igh tfo rw ard  to  see how the mass 

and radius o f the neutron sta r can be encoded in  a s im p lified  version o f the  s itua

tion , where the  pulsed lig h t arises from  iso trop ic  emission, and one observes on ly  

the bo lom etric  lig h t curve. In  th is  s itua tion , the (re la tiv is tic ) ve loc ity  o f the emis

sion region (which scales w ith  R ) determ ines the  asym m etry o f the lig h t curve due 

to  Doppler boosting, w h ile  the compactness M /R  determ ines the degree to  which 

ligh t can “ bend” around the  star. B y  f it t in g  model lig h t curves w ith  observations, 

a set o f parameters consistent w ith  the da ta  can be obtained. In  a standard ap

p lica tion  o f the  fram ework provided by Pechenick et al. (1983), the s ta r ’s surface 

and the ex te rio r spacetime is assumed to  be spherica lly-sym m etric, and the varia

tio n  o f the  tim e -o f-fligh t o f photons w ith  phase is neglected. The overarching goal 

o f th is  d isserta tion is to  show th a t such com putational approxim ations which are 

useful fo r  slower pulsars, such as using an approximate spacetime, neglecting some 

tim e delay effects, o r neglecting s te lla r oblateness, can lead to s ign ificant fa ilu res in  

in te rp re ting  the pulse profiles o f m illisecond pulsars.

T ype I X -ray bursts: “nuclear-pow ered” pulsars

The discovery o f coherent X -ra y  pulsations in  the  cooling ta ils  o f type  I  X -ray  

bursts provided the firs t evidence th a t neu tron  stars in  L M X B s  could be spun 

up  by accretion to  m illisecond periods. The  bu rs ting  behaviour o f L M X B s  was 

no t a new phenomenon, having firs t been observed in  1976 (G rind lay  et a l,  1976; 

Belian et al., 1976), and the physics w hich gives rise to  the bursts is re la tive ly  well 

understood. A  recent review  o f type  I  X -ra y  bursts is given by Strohm ayer and 

B ilds ten  (2006); also see Lew in  et al. (1995).

These flashes are a m anifesta tion  o f the  “ th in  shell”  in s ta b ility  o f Schwarzschild 

and H arm  (1965), which was o rig in a lly  discovered as an in s ta b ility  in  the  th in  

he lium  shell resid ing above the carbon/oxygen core du ring  the asym pto tic  g iant 

branch o f s te lla r evo lu tion  (S trohm ayer and B ildsten, 2006). In  th is  s itua tion , 

the  ra te  o f therm onuclear bu rn ing  is more tem pera ture  sensitive than  the ra te  o f 

rad ia tive  cooling. Hansen and van H orn  (1975) showed th a t the same in s ta b ility
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can app ly to  the  accreted hydrogen and he lium  on the surface o f a neutron star. 

X -ray  bursts aris ing from  the unstable bu rn ing  o f accreted m a tte r are known as 

“ type I ”  bursts. The physics o f the  bu rn ing  o f the  accreted m ate ria l depends not 

on ly on the  com position o f the  m a tte r being accreted, bu t also on the accretion 

rate. For low  accretion rates, unstable hydrogen burn ing  ignites a hydrogen /he lium  

m ix tu re . A t  h igher rates, the  accreted hydrogen burns s tab ly v ia  the  C N O  cycle 

(a lthough a t the highest accretion rates, i t  m ay no t bu rn  com plete ly o ff) and the 

burs t is fuelled by the unstable ig n itio n  o f helium . Strohm ayer and B ilds ten  (2006) 

po in t out some relevant papers discussing the accretion-rate dependence o f nuclear 

bu rn ing  by F u jim o to  et al. (1981), Fushiki and Lam b (1987), and C um m ing and 

B ildsten  (2000). Bursts are not observed from  classical h igh m agnetic fie ld X -ra y  

pulsars, because the accreted m a tte r is s trong ly  channelled to  the m agnetic poles 

resu lting  in  a h igh local accretion ra te  which leads to  stable bu rn ing  (Joss and L i, 

1980).

There is also a recently-discovered class o f re lated bursts called “superbursts” 

(the  firs t such bu rst was discovered by Cornelisse et al. (2000) (S trohm ayer and 

B ildsten, 2006)) which are much rarer, w ith  recurrence in te rva l o f years, versus 

days or m onths fo r type  I  bursts. These bursts are though t possib ly to  be the result 

o f unstable bu rn ing  o f carbon deeper down in  the surface layers o f the neutron star. 

“Type I I ”  bursts are an unrelated, and poo rly  understood, phenomenon though t 

to  be related to  an accretion in s ta b ility  which leads to  a ra p id ly  va ry ing  ra te  o f 

mass deposition on the neutron star. In  2003 there were on ly  tw o known examples 

o f type I I  bursters. We w ill always mean the nuclear-powered bursts when we refer 

to  X -ray  bursts.

In  2003 there were about 160 known LM X B s, 70 o f w hich were burs ting  sources, 

and approxim ate ly  eleven o f these had been observed to  exh ib it coherent bu rs t os

c illa tions w ith  frequencies ranging between 270-620 Hz (Strohm ayer and B ildsten, 

2006). M uno (2002) undertook a system atic analysis o f a ll type  I  X -ra y  bursts from  

eight L M X B s  in  pub lic  R X T E  da ta  as o f September 2001, and identified  6 8  oscil

la tion  tra ins  detected in  a search o f 159 separate bursts. The  m ain results o f th is  

work were published as M uno et al. (2000), M uno  et al. (2002a), and M uno  et al. 

(2002b). A  common feature o f bu rs t oscilla tions is an observed increase in  frequency 

by several Hz du ring  the bu rs t, b u t the  mechanism producing th is  effect is no t well- 

established. The phenomenology o f the  frequency evo lu tion  is o ften well-described 

as an exponentia l “ ch irp ,” w ith  the asym pto tic  frequency in  the  cooling ta il being a 

stable characteristic o f the  bu rs ting  source and is taken to  be the ro ta tio n  frequency
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o f the neutron star. Strohm ayer et al. (1997) suggested th a t th is  phenomenon m igh t 

be understood as the combined effect o f angular m om entum  conservation and ex

pansion o f the  bu rn ing  m a tte r. In  th is  m odel, a “shell”  o f accreted m a tte r expands 

(e.g., hyd ros ta tica lly ) as energy is released by the burn ing. The expanded shell o f 

the bu rn ing  m a tte r in it ia lly  rotates w ith  a longer ro ta tiona l period than  th a t o f the  

underly ing star, ow ing to  the larger radius o f ro ta tio n  and conservation o f angular 

m om entum . The subsequent cooling and con traction  o f the shell, s t i l l  governed 

by the conservation o f angular m om entum , produces the observed increase in  the 

frequency o f the  oscillations in  the ta il o f the  burs t. A  theore tica l analysis o f th is  

process was carried ou t by C um m ing et al. (2002), where i t  was shown th a t th is  

basic model cannot account fo r the  size o f the  observed frequency shifts. O ther 

w ork (e.g., Spitkovsky et al. (2 0 0 2 )) on understanding the frequency evo lu tion  o f 

X -ray  bu rs t oscillations has concentrated on m odelling the  evo lu tion  o f the bu rn ing  

fron t on the surface o f the  ro ta tin g  neutron star, by considering the C orio lis  force 

and nuclear physics effects on the propagation o f the  “ therm onuclear flam e.” H eyl 

(2004) has considered the poss ib ility  th a t the  burst oscillations arise from  modes 

o f the neutron star atmosphere excited by the therm onuclear detonation.

As applications, X -ra y  bursts m ay have the po ten tia l to  constra in the radius 

o f neutron stars loosely. The basic technique is to  f i t  the  observed spectrum  w ith  

a b lackbody and assume iso trop ic emission to  ob ta in  the surface area o f the  star. 

The m ain  problem  w ith  th is  is th a t the  rad ia tion  is no t iso trop ic and perhaps 

on ly a frac tion  o f the  surface is e m ittin g  (van Paradijs, 1979). X -ra y  bursts th a t 

exh ib it radius expansion, also revealed th rough  spectral fits  taken over d ifferent 

times, m ay also give an approxim ate standard candle fo r distance measurements, 

as radius expansion is expected to  occur when the lum inos ity  o f the  burs t exceeds 

the E dd ing ton  l im it  (van Paradijs, 1978). The theoretica l E dd ing ton  lum inos ity  

is known given at least the mass o f the  accreting neutron sta r by Equation  1.4, 

which applies to  the non-re la tiv is tic  l im it  1 / f  «  1  and spherical accretion o f hy

drogen plasma. In  practice, more com plex treatm ents are used which account fo r 

re la tiv is tic  effects, the  com position o f the  accreted m ateria l, and an isotropy o f the 

accretion (e.g., van Paradijs and Lew in (1987)). Therefore, i f  reasonable values o f 

the parameters which determ ine the  E dd ing ton  lum inos ity  are known, the  observed 

flu x  can be used to  ob ta in  the im p lied  distance to  the  source, van Paradijs (1979) 

recognised th a t th is  simple in te rp re ta tio n  could also be prob lem atic  in  practice. 

For example, a recent exam ination  by K uu lkers et al. (2003) o f X -ra y  burst oscil

la tions showed th a t these bursts are no t perfect standard candles since the  peak
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lum inosities o f E dd ing to n -lim ited  X -ra y  bursts are no t exactly  constant, b u t can 

vary by about 15%.

The basic physical process envisioned in  th is  d isserta tion concerns the ro ta 

tiona l m odu la tion  o f X -ra y  lig h t em itted  from  a region on the surface o f a neutron 

star, w hich is how X -ra y  burs t oscilla tions come about. W h ile  phase-resolved spec

troscopy o f X -ra y  burs t oscilla tions is made more d ifficu lt by th e ir  in te rm itte n t 

nature, there has been some w ork on using form alism s s im ila r to  Pechenick et al. 

(1983) to  com pute model pulse profiles fo r X -ra y  burs t oscilla tions which have been 

used to  constra in  neutron star parameters (see W einberg et al. (2001), N a th  et al. 

(2002), M uno (2002), and B ha ttacharyya  et al. (2005)). As a resu lt, the  w ork car

ried ou t in  th is  d isserta tion is also relevant to  s im ila r analyses o f bu rs t oscilla tion  

pulse profiles.

K ilohertz Q uasi-periodic oscillations (Q PO s)

A nother phenomenon associated w ith  m illisecond v a ria b ility  o f X -ra y  lig h t from  

LM X B s  are k ilohertz  QPOs; th is  and o ther phenomena associated w ith  X -ra y  va ri

a b ility  are reviewed by van der K lis  (1995) and van der K lis  (2006). QPOs are 

generally defined as broad peaks revealed in  the  Fourier power spectra o f X -ray  

tim in g  observations. For the kHz QPOs in  LM X B s, the Fourier spectra often 

ind ica te  s ign ificant power a t frequencies ty p ica lly  between 200-1200 Hz, b u t the 

broadness o f the  peaks in  the power spectrum  ind ica te  th a t the  oscilla tions are 

not coherent as in  the  case o f the  X -ra y  bu rs t oscilla tions and X -ra y  pulsars. A  

lo t o f a tten tion  has been paid to  the  fact th a t o ften there are tw o peaks in  the 

power spectrum  in  LM X B s, an upper Q PO  centred on u\,\ and a lower QPO at v\0. 

Mendez et al. (2001) and the references they  c ite  give a concise descrip tion  o f k ilo 

hertz Q PO  phenomenology: in  a given binary, du ring  observations over timescales 

o f a day or less, a Q PO  frequency versus in tens ity  d iagram  tends to  d isplay a set o f 

almost para lle l tracks, i.e., tracks separated by nearly  constant A u  =  //],; — v\0. On 

th is  timescale, QPO frequency and X -ra y  count are pos itive ly  correlated, w ith  the 

peak locations changing by ty p ic a lly  a few hundred H ertz, b u t th e ir  separation A u  

changing by on ly  tens o f H ertz. However, in  observations separated by a few days 

the source occupies d iffe rent tracks in  such a diagram , and Q PO  frequency and 

X -ray  count ra te  are now known to  be uncorre lated over the  long te rm  (Mendez 

et al., 2001). The  early  rea lisation th a t A u  appeared to  be nearly  constant led 

to  suggestions th a t the  upper Q PO  is associated w ith  the o rb ita l m o tion  a t the 

inner edge o f the  accretion disk, w ith  the  lower Q PO  a beat between the upper
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Q PO  and the neutron star ro ta tio n  frequency (M ille r et al. (1998), b u t see M ors ink

(2000) fo r a popu la r descrip tion o f the Q PO  beat frequency model). W h ile  the phe

nomenology o f these QPOs is in teresting  (fo r example, i t  has been suggested th a t 

they may contain an observational signature o f the innerm ost stable c ircu la r o rb it 

(ISCO) predicted by general re la t iv ity  by B arre t et a l  (2006)), i t  seems like ly  th a t 

a complete understanding w ill involve detailed m odelling  o f the  s tar-d isk in terac

tion . Recent progress has been made on m odelling the m agnetohydrodynam ics o f 

the accretion flow  w ith  app lica tion  to  k ilohertz  QPOs by Romanova et a l  (2006). 

We m ention the k ilohertz  QPOs on ly  to  d istinguish them  from  the phenomena th a t 

th is  w ork d ire c tly  applies to.

1.4 O rgan isation  o f  th e  d isserta tio n

Th is  w ork is carried out in  tw o phases. The firs t phase is constructive, where a 

means by which to  com pute a pulse pro file  is established w ith in  the fram ework o f 

a precisely solved spacetime m etric  and ste lla r s tructure , w ith  a ll photon tim e-of- 

flig h t effects included. We also need to  be able to  carry  out approxim ate versions 

o f th is  ca lcu la tion  which have d irect analogies in  the lite ra tu re  in  order to  make 

statements about the  degree by which the fu ll ca lcu la tion differs from  its  approx

im ations. The ana ly tica l fram ew ork fo r th is  is set ou t in  C hapter 2  which begins 

w ith  a discussion o f the  general s ta tiona ry  axisym m etric  spacetime m etric  and its  

special cases, th rough  to  the in teg ra tion  o f n u ll geodesics in  using th is  m etric , and 

a careful discussion o f the  effects in troduced by rap id  m otion  o f the emission re

gion. The chapter concludes w ith  an ana ly tica l comparison o f the  proposed “ fu ll” 

calculation, w ith  an extant adapta tion  o f the  m ethod described by Pechenick et a l  

(1983) designed for m illisecond period X -ra y  pulsars. The constructive phase con

cludes in  C hapter 3, where the com puter code th a t was developed fo r th is  w ork is 

described and verified.

The next phase o f the  work, C hapter 4, is inductive . We make substantia l 

use o f the developed com puter code in  a varie ty  o f cases to  determ ine the level 

a t which commonly-used s im p lify ing  approxim ations change the calculated pulse 

profiles, and the im pact th is  w ill have on conclusions arrived a t by f i t t in g  model 

pulse profiles to  X -ray  observations. In  the  firs t p a rt o f th is  work, we consider a 

simple model where lig h t is em itted  and observed in  the  equatoria l plane, and the 

phase-dependent tim e-o f-fiigh t o f photons from  the emission region to  the observer 

is discarded in  the approxim ate ca lcu la tion . In  the next pa rt o f the  work, we allow
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the inc lina tions  o f the  observer and emission regions to  be general, and we consider 

the effects o f approx im ating  the spacetime and discarding the ro ta tion-induced 

deform ation o f the  s ta r’s surface. The result o f th is  w ork provides com pelling 

evidence th a t the  techniques w hich have been developed for slower pulsars (which 

use approxim ate spacetimes, neglect some tim e  delay effects, and neglect ste llar 

oblateness) cannot be d ire c tly  applied to  the in te rp re ta tio n  o f the pulse profiles o f 

accretion-powered m illisecond X -ra y  pulsars.

F ina lly , we set the stage for fu tu re  w ork at the end o f C hapter 4 by g iv ing  

a simple model o f ro ta tion-induced oblateness w hich does no t require the  user to  

perform  a fu ll ste llar s truc tu re  calculation , and we make a dem onstra tion  th a t 

th is  oblateness m odel can be used to  substan tia lly  im prove ex tan t codes w hich are 

optim ised for f it t in g  qu ickly-com puted pulse profiles to  data.

1 .4 .1  N o te s  o n  th e  t e x t

The m a jo r conclusions o f th is  research have been published or accepted fo r pub

lica tion  as Cadeau et al. (2005) and Cadeau et al. (2006). Some figures and te x t 

from  these papers are reproduced here; m ateria l appearing in  Cadeau et al. (2005) 

is “ ©2005. The Am erican A stronom ica l Society. A l l  righ ts reserved.” , and m a

te ria l appearing in  Cadeau et al. (2006) is “ ©2007. The Am erican A stronom ica l 

Society. A l l  r igh ts  reserved.” The  Society grants a standard non-exclusive license 

to  authors to  republish th e ir  m a te ria l i f  appropria te  cred it is given to  the Journa l 

and the copyright notice is reproduced.

The oblateness model and suggested adapta tion  o f sim pler pulse p ro file  codes 

which is given a t the  end o f C hapter 4 on ly  appears here and is the  subject o f 

ongoing work. The constructive  p a rt o f th is  w ork was carried ou t independently. 

For the inductive  pa rt, I calculated the “ non-approxim ate”  versions o f the  pulse 

profiles using the code I developed, w hile  D. A . Leahy calculated the  fitte d  sets o f 

parameters using a com puter code which employed an “ approxim ate”  ca lcu la tion  

fo r the  forw ard ca lcu lation o f the  pulse profile. I was also fo rtuna te  to  be able 

to  b o th  con tribu te  to , and benefit from , co llabora tion  w ith  D. A . Leahy in  the 

ve rifica tion  phases o f our respective codes.
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C hapter 2

C alculating th e  light curve

2.1 In tro d u ctio n

In  th is  chapter we devise a means to  calculate the  lig h t curve, or pulse profile , o f a 

ra p id ly -ro ta tin g  neutron star w hich em its lig h t from  a sm all patch on its  surface. 

To begin w ith , consider a two-dim ensional area o f a non-ro ta ting  star which em its 

lig h t w ith  frequency z/e, w ith  specific in tens ity  I Ve. A n  observer fa r from  the star 

sees th a t the area o f the e m ittin g  region subtends a solid angle d f ! 0  on the sky, and 

the received photons have an observed frequency ua. W ith o u t re la tiv is tic  effects, 

the received lig h t w il l  have the  same frequency as the em itted  lig h t, and the received 

specific in tens ity  is independent o f the distance to  the source (Shu, 1991). W hen 

re la tiv is tic  effects such as D oppler boosting or g ra v ity  act to  change the  frequency 

o f the observed lig h t, one defines the redsh ift z th rough  the re la tion  1  +  z — ue/u 0. 

In  th is  case, m aking use o f conservation o f photon num ber density in  phase space, 

the  in te n s ity  reaching the observer can be shown to  transform  as I Vo = 1 ^ / ( 1  +  z ) 3 

(M isner et a l,  1973; Shapiro and Teukolsky, 1983). The element o f observed specific 

flu x  is

The to ta l f lu x  registered by a detector is given by the frequency in tegra l over the 

detector’s sens itiv ity  band. I f  the  detector is sensitive to  a ll frequencies, then the  

integrated flu x  is called the bolometric flux . The in tegra l is

(2.1)
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/
( 1  +z)Uoh.

1
4

d veI Ve 1 +  z
d f 20. (2 .2)

( l + z ) l / o lo

In  general, the rad ia tion  m ay be beamed, and the in tens ity  I Ve w il l depend on the 

in it ia l d irec tion  rays take to  reach the observer. I f  a e is the  angle the observed 

rays fo rm  w ith  the norm al to  the surface o f the  star, then the shape o f the beam 

is given by specifying I Ue(a e). In  th is  w ork we w ill show how our ca lcu la tion  can 

be easily extended for beamed emission, b u t our m ain results w ill be presented in  

the context o f iso trop ic  emission and bo lom etric  flux . We w ish to  s tudy funda

m ental issues concerning pulse pro file  calculations and th e ir applications fo r the 

m illisecond-period X -ray  pulsars. Considering the uncerta in ty  in  the correct m od

els fo r the  energy and d irection  dependence o f I ,  our calculations have been lim ite d  

to  bo lom etric , iso trop ic flu x  fo r the  results presented in  th is  dissertation.

A t  th is  stage we have no t yet in troduced the ro ta tio n  o f the star, b u t a few 

th ings are already in tu it iv e ly  obvious: in  order to  calculate the received flu x  by an 

observer fa r from  the star, we w ill need to  know about the  p a rticu la r lig h t rays 

which reach the observer. For example, as the emission region rotates around the 

star, we know th a t:

1. The redsh ift z m ay depend on phase i f  the speeds at the  s ta r’s surface are 

re la tiv is tic , since in  th is  case the photon energies w ill be D oppler boosted.

2. As the emission region moves around the star, its  o rien ta tion  along the ob

server’s line-of-sight, and therefore its  p ro jec tion  on the observer’s sky, w ill 

be changing. Thus d 0 o is phase-dependent.

3. T he  tim es-o f-fligh t fo r photons to  reach the observer w il l  generally be phase 

dependent, and in  the case o f the  fastest m illisecond-period X -ra y  pulsars, 

th is  va ria tion  becomes an appreciable frac tion  o f the ro ta tio n  period. Thus 

the  tim e-o f-a rriva l o f flu x  a t the observer is phase-dependent.

In  order to  qu a n tify  these effects, we need to  be able to  calculate a descrip tion o f the 

lig h t rays connecting the emission region on the star and the observer. T h is  is the 

basic idea behind the pulse shape codes developed for s low ly-ro ta ting  neutron stars 

by Pechenick et al. (1983), where the  m ain  effect being investigated is the  effect o f 

g rav ita tiona l “ bending” o f lig h t around neutron stars on the observed pulse profile. 

In  contrast to  th is  trea tm ent, fo r ra p id ly -ro ta tin g  neutron stars the spacetime is 

no longer spherica lly sym m etric, nor a n a ly tica lly  specified, w hich complicates the 

problem .
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In  re la tiv ity , lig h t rays fo llow  (nu ll) geodesic paths. Solving fo r the n u ll geodesics 

o f precisely-solved neutron star spacetimes, discussed below, is no t a new problem .

N o lle rt et al. (1989) presented com puter graphic images o f neutron stars w hich 

included the effect o f lig h t bending in  accurate spacetimes. B ha ttacharyya  et al.

(2 0 0 1 ) used a code w hich im plem ented ray-trac ing  in  accurate neutron star space

tim es to  calculate the spectra o f accretion disks. Cam pbell (2003) developed a 

code to  calculate nu ll geodesics and studied the effect o f neutron sta r mass, radius, 

and spin frequency on the therm a l emission from  neutron stars. In  the  context 

o f pulsed emission from  neutron stars, B hattacharyya  et al. (2005) acknowledge 

th a t i t  is desireable to  ca rry  ou t pulse profile  com putations in  the fram ew ork o f a 

precisely solved spacetime.

In  th is  chapter, we begin by se tting  out the  description o f the  spacetime m etric  

Section 2.2. In  Section 2.3 we w rite  out the  equations describing the general nu ll 

geodesics, and give the equations fo r the  redsh ift o f photons and the emission 

d irection. The use o f the  calculated nu ll geodesics to  obta in  the  pulse pro file  is 

discussed in  Section 2.4. To assist w ith  code verifica tion , in  Section 2.5 we obta in  

independent form ulas for the  pulse pro file  in  the case o f a spherical s ta r and the 

Schwarzschild spacetime, and discuss an ex tan t m ethod which employs a s im ila r 

m ethod in  the context o f accurate spacetimes.

2.2 S ta tio n a ry  ax isy m m etr ic  sp a cetim es in gen era l re la tiv ity

The m etric  fo r the  general s ta tiona ry  axisym m etric  spacetime is described by the 

line element

ds 2  =  —e7 +pd f2  +  e7 ~pf 2  sin 2  -  u d t f  +  e2 a (d f 2  +  r 2 d 6>2). (2.3)

In  s ta tiona ry  axisym m etry, there are tw o symmetries o f the spacetime given by  the 

K illin g  vectors t a and 7 tt. The potentia ls  a, 7 , p, and u  w ill generally depend on f  

and 6 . I t  should be noted th a t th is  m etric  is specified in  quasi-isotrop ic coordinates, 

and circles centred on the axis o f sym m etry  have proper length 27re^7_p^ 2rs in # , 

and so f  should no t be in te rpre ted  like the usual Schwarzschild areal r  coordinate.

In  Section 2.2.1 we w il l  give the expressions for the m etric  potentia ls  fo r the  K e rr 

and Schwarzschild spacetimes.

A  precise com puta tion  o f the  m etric  potentia ls  fo r a ra p id ly  ro ta tin g  neutron 

star m ust be carried ou t num erically. Stergioulas (2003) describes the various 

num erical techniques th a t have been used. In  th is  work, we have made use o f
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a pub lic-dom ain  com puter code called RNS to  accomplish th is  (Stergioulas and 

Friedman, 1995). The code assumes th a t the  star is a r ig id ly -ro ta tin g  perfect 

flu id , w ith  fou r-ve loc ity  u a oc ( ta +  The angular ve loc ity  o f the  sta r as

measured at in f in ity  is the constant f l* .  The E inste in  fie ld equations fo r the  m etric  

potentia ls are given by B u tte rw o rth  and Ipser (1976), and are a set o f three e llip tic  

PDEs fo r the  potentia ls  7 , p, and u .  The po ten tia l a  is determ ined by solving 

a firs t-o rder O D E  invo lv ing  the  o ther three potentia ls. The basic m ethod used 

to  solve these equations in  RNS was o rig in a lly  devised by K om atsu et al. (1989). 

The m ethod was subsequently im proved upon by Cook et al. (1992) w ho applied 

th e ir code to  calculations o f ra p id ly -ro ta tin g  stars w ith  p o ly tro p ic  equations o f 

state (also see Cook et al. (1994b)). Cook et al. (1994a) extended th is  code to  

use tabu la ted  rea lis tic  equations o f state, where the function  p(e) describ ing the 

com pressib ility  o f neutron star m a tte r is determ ined by in te rpo la tio n  o f datapo in ts 

corresponding to  rea lis tic  equation o f state candidates. RNS is an independent 

im plem enta tion  o f a m ethod s im ila r to  the one used by Cook et al. (1994a), w ith  

add itiona l improvements.

The basic ta c tic  proposed by K om atsu et al. (1989) is to  convert the  e llip tic  

fie ld equations in to  in tegra l equations using appropria te  Green’s functions. The user 

specifies parameters describ ing the desired neutron s ta r model, w hich in  the case o f 

standard RNS are the ra tio  o f the  po la r to  equatoria l radius o f the  sta r r p/ f e, and 

the centra l energy density, which are held fixed. The code computes an in it ia l guess 

for the  m etric  potentia ls  by so lv ing the Tolm an-O ppenheim er-Volkoff equations for 

hydrosta tic  equ ilib rium  o f a non -ro ta ting  star, and successive im provem ents to  the 

com puted m etric  po ten tia ls  are obta ined by ite ra tin g  on the in tegra l equations 

for the new set o f potentia ls. T h is  procedure eventua lly converges, resu lting  in  

the potentia ls describing the desired m odel. In  add ition  to  the m e tric  potentia ls, 

in tegra l equations can s im ila rly  be added to  RNS to  accurately com pute the  firs t 

p a rtia l derivatives, and the  second m ixed p a rtia l derivative o f the  m e tric  potentia ls  

(M orsink, 2005a). T h is  assists w ith  accurate in te rpo la tio n  o f the  m e tric  values 

between gridpo in ts, using b icub ic spline in te rpo la tio n  (Press et al., 1988). We 

have made independent m odifica tions to  RNS so th a t i t  au tom a tica lly  converges 

on models o f a specified mass and angular velocity. A d d itio n a lly , the  loca tion  o f 

the surface a t a ll la titudes is com puted by loca ting  the  zero o f enthalpy, w h ich is 

the  boundary cond ition  fo r the  s ta r’s surface (Haensel and Potekhin, 2004). A l l  

useful quantities are o u tp u t to  com puter files w hich are read by the com puter code 

developed fo r th is  work, w hich is described in  C hapter 3.
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2 .2 .1  S p ec ia l cases: S ch w arzsch ild  & K err m etr ics

The coordinates used to  express the line  element in  E quation 2.3 are known as 

“ quasi-isotrop ic”  coordinates. W hen the Schwarzschild m etric  is expressed in  these 

coordinates, the  m etric  is

which has the p rope rty  th a t surfaces o f constant t  are conform ally  Euclidean. These 

coordinates are known as “ iso trop ic  coordinates.” The quasi-isotrop ic coordinates 

o f the  general m e tric  in  E quation  2.3 are a generalisation o f the  usual Schwarzschild 

iso trop ic coordinates.

In  the lim it  o f zero ro ta tion , the  fo llow ing com binations o f m e tric  functions are:

T he K e rr m e tric  fo r a black hole w ith o u t an electrom agnetic fie ld in  Boyer- 

L indqu is t coordinates is (Boyer and L indqu is t, 1967):

specific angular m om entum , and is the  ra tio  o f the  to ta l angular m om entum  to  

mass, a =  J /M .  O u r goal in  th is  section is to  express th is  m etric  in  the  fo rm  o f 

Equation  2.3.

The a =  0 case is the  Schwarzschild m etric , b u t no t in  iso trop ic  coordinates, 

so the firs t step is to  find  the  appropria te  trans fo rm ation  r  =  f / ( f )  to  express 

th is  m etric  in  quasi-isotrop ic coordinates. Look ing  a t the  (r, 9) plane, and p u ttin g

1N o te  th a t  th e  u n b a rre d  r  a p p e a r in g  on  th e  r ig h t-h a n d  side o f  E q u a tio n s  2 .5 -2 .7  re fe r to  th e  
a rea l S chw arzsch ild  r  co o rd in a te , w h e re  c irc les  cen tred  on  th e  ax is  o f  s y m m e try  have p ro p e r le n g th  
l it rs v c iQ  =  2 ire l'1~ p') ̂ 2f  s in # .

ds 2  =  ——— ^ ^ V\ d t2 +  (1 +  M / 2 r ) 4  (d r 2  +  r 2 d92 +  r 2  s in 2  9d(f>2) , (2.4)
(1 +  M /2 r )  V y

lim (2.5)

(2.6)

(2.7)

where f t *  is the  s ta r ’s angular velocity, as measured by an observer a t in f in ity . 1

w ith  E =  r 2 +  a2  cos2 9 and A  =  r 2  — 2M r  +  a2. The param eter a is called the
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d r  =  ( /  +  r / ' ) d r ,  we have:

d a 2  =  E +  d92

( r / ) 2  +  a 2  cos2  0
( f / ) 2  -  2 M r f  +  a2  

( f / ) 2  +  a2  cos2  8  r 2( f  +  f / ' ) 2

(2.9)

( /  +  r / ' ) 2 d f 2  +  [ ( r / ) 2  +  a2  cos2  0 ] df?2  (2 .1 0 )

rd r 2  +  r 2 dd2
( r / ) 2  — 2 M r /  +  a2  

Th is  is o f the required fo rm  der2  =  e2 " ( d f 2 +  f 2 d92) i f  / ( f )  satisfies

r 2( f  +  r / ' ) 2  =  (a / ) 2  -  2 M f /  +  a2,

(2.11)

(2.12)

or

( r /T  + (2r/)/' = 2 M /  a 2

Z 1“ Zn

A  so lu tion to  th is  equation is

r  =  r f ( r )  =  (M  +  r )  +
M 2  -  a 2

4 r

r  1  +
M  +  a 

2  f
M - a

1 +

(2.13)

(2.14)

(2.15)

w ith  constant rescalings o f f  p rov id ing  the o ther solutions in  general. In  the  a =  0 

case, th is  reduces to  the well-known trans fo rm ation  for p u ttin g  the Schwarzschild 

m etric  in  iso trop ic form , r  =  f ( l  +  M / 2 f ) 2.

A fte r  a coordinate change o f the K e rr m etric  in  Equation  2.8, we can read o ff 

the form  o f the  a  po ten tia l d irectly . The rem ain ing potentia ls are solved fo r by 

equating the g tt, gt<f>, and g ^ , m e tric  components o f the  transform ed K e rr m etric  

and the general m etric  in  E quation  2.3. T hey are:

a

7

=  Trln 1 +
M  +  a 

2  f
1 +

M  — a \  2  a2

=  In 1  -

M 2 -  a2 1  

4 f 2

=  In

2  f

2 U 2 \1/ 2

+  ^  cos

U)

E r r  (1 -  2M f r  +  a2 / r 2) 

r 4  +  a 2  (£  +  r 2  cos2  9 +  2 M r  sin 2  0 ) 

2 M a r

r 4  +  a2  (E  +  r 2  cos2  0 +  2 M r  s in 2  0)

(2.16)

(2.17)

(2.18) 

(2.19)
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Take note th a t in  the  above expressions for p and u , bo th  r  and f  appear, which 

are related by E quation  2.15.

We also need the f  and 9 derivatives o f the  m etric  potentia ls. These are:

w ith

and

a ,r

P,r

+ (1 + (1 + M=z) ( f  + ^ 3 ^ )
( 1  +  ^ ) 2  ( 1  +  +  £  cos2  9

1 I" M 2 -  a2 

2 f 3  1 — ( M 2  — a2 ) / ( 4 r 2)

( r , r  \  (  M_ _  g9_
2 r r  f  T f  1 \  r  )  \  r  r 2

+ — + -  +

u i f  =  —2 M a r r

^  r  r  l  — 

r f  (4r 3  +  2 a2  ( r ( l  +  cos2  0 ) +  M sin 2  0 ) )  

r 4  +  a2  (E  +  r 2  cos2  0 +  2 M r  sin 2 #)

[3 r 4  +  a 2  ( r 2  +  ( r 2  — a2) cos2  0 )]

r  f  — 1  —

[ r 4  +  a2  (E  +  r 2  cos2  0 +  2M r  s in 2  0 ) ] 2 

M  +  a \  ( M  — o '
2  f 2 r

a2  sin(26*)

2  f 2  

7 , 0  =  0

p:e =  —a2  s in (2 $)

( 1  +  ^ )  ( 1  +  < W  +

r  +  a — 2 M r

=  2 M a  r s in ( 2 $)

E r 4  +  a 2  (E  +  r 2  cos2  0 +  2M r  sin 2  0) 

r 2  +  a2  — 2 M r

[ r 4  +  a2  (E  +  r 2  cos2  9 +  2M r  sin 2  0 ) ] 2

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

2.3 N u ll g eod esics o f  th e  s ta tio n a ry  ax isy m m etr ic  sp ace

tim e

2 .3 .1  E q u a tio n s  o f  m o tio n

In  th is  section, we discuss how to  ob ta in  the descrip tion o f the  lig h t rays fro m  the 

s ta r’s surface to  the observer. F irs t we consider the ca lcu la tion o f the  n u ll geodesics 

o f the general s ta tiona ry  ax isym m etric  spacetime o f Section 2.2. For a given ray, 

we wish to  ob ta in  the curve x a( \ )  describ ing its  pa th  th rough  the spacetime. In
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re la tiv ity , such curves are geodesics, i.e., they  para lle l transpo rt th e ir  own tangent 

vectors £a =  d x a/dA , w hich means th a t fo r an a rb itra ry  param eter A

£aV a£b oc £b. (2.29)

Such curves can always be reparameterised so th a t the constant o f p ro p o rtio n a lity  

in  E quation  2.29 is 0,

£aV J b =  0. (2.30)

Equation  2.30 is known as the geodesic equation.

Recalling the line  element o f Equation  2.3,

ds 2  =  —e7 +pd f 2  +  e7 “ pr 2  s in 2  0 (d<j> — codt) 2 +  e2 “ (d r 2  +  f 2 dd2),

we know th a t since the m e tric  components are independent o f the  coordinates t  

and <f> th a t the corresponding four-m om enta are conserved, £t =  —E  and £§ =  L .

T h is  yields the firs t tw o equations describ ing the curves:

t  =  gta£a =  - e-(l+P )£ t -  we- ( 7+p^  (2.31)
p - l + p

v £4 . (2.32)g ^ ta  =  +
r 2  s in 2  1

-  o;2 e_7+p

D efin ing the “ im pact param eter”  b =  L / E , and setting  E  — 1 w ith o u t loss o f 

generality, Equations 2.31 and 2.32 can be w ritte n

&  =  e- ( 7+p) ( l  - u b )  (2.33)
d A

_  _ - (7 + P )
dA

u )(l -  ub) +  —  ~ o _ 2 . 2  
e  z P r A sin

(2.34)

The rem ain ing equations are obta ined by w r it in g  Equation  2.30 in  a coordinate 

basis using the C hris to ffe l symbols Yf)C\

„h d 2x b h dxm d xn 
a =  dA^ +  mn^A ~  d T  ’ ( 35)

and the C hris to ffe l symbols T^c are

=  I j p  { d m b ic  E g m c ib  ~ 9 b c im  ) • (2.36)

The C hris to ffe l symbols fo r the  m etric  we are considering, E quation  2.3, are dis-
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played in  Table 2.1. M ak ing  use o f Equations 2.33 and 2.34, we ob ta in  the fo llow ing 

two equations from  E qua tion  2.35:

“ ■» -  A  -  2 (<V  + 1 )  H  (2.37)

—a , f  ( r 2  — f 2 92 ĵ — 2a,g fQ +  fO2 +  ^e ~ 2aB ,f , (2.38)

where 9 =  (d# /dA ), and s im ila r ly  fo r r ,  and we have defined

B (r ,  9) =  e - f r + ^ l  -  cob) 2 -  (2.39)
r z sm 9

W ith  appropria te  in it ia l conditions, in teg ra tion  o f the Equations 2.33, 2.34, 2.37 

and 2.38 yields the po in ts  along the curve defin ing the pa th  o f a lig h t ray  th rough 

the spacetime. These equations are overspecified since we have no t yet invoked th a t 

the  curves m ust be nu ll, so up to  th is  po in t these equations are also applicable to  

bo th  tim e like  and spacelike geodesics. The question o f appropria te  in it ia l conditions 

is addressed in  Section 2.3.2.

2 .3 .2  In it ia l c o n d it io n s  for n u ll g eo d e s ic s

We can now specialise to  the  case o f n u ll geodesics by p ick ing appropria te  in it ia l 

conditions. We w ish to  consider rays which are in it ia lly  null, th a t is, t ai a =  0. Th is 

constra in t leads to  the equation

f 2  +  f 2 92 =  e~2aB { f ,  9) =  A ( f ,  9). (2.40)

W hen in it ia l conditions fo r the  geodesic are set to  obey th is  m om entum  constraint, 

the  geodesic is in it ia l ly  n u ll and therefore w ill be n u ll at every po in t along its  p a th . 2

In  practice, we w il l  have in  hand a description r s(9) o f the location  o f the 

s ta r’s surface as a func tion  o f the  co la titude  9. W ith  in it ia l values o f 9 — 9i and 

r  =  f i  =  r s(9 i) in  hand, the  p o s it iv ity  o f the  righ t-hand  side o f E quation  2.40 yields

2D if fe re n t ia t in g  £b£b a lo n g  th e  geodesic, we a p p ly  th e  L e ib n itz  ru le  to  o b ta in

£aVa{eb£b) =  £aVa£b+ £aVa£b
=  f V / + f V a M C)

=  { t v  a£b) + gbc{tva£c) +  £c{ t v agbc),

w here  th e  f ir s t  tw o  te rm s  in  paren theses are  0 b y  a p p lic a tio n  o f  th e  geodesic e q u a tio n , and  th e  la s t 
is zero b y  c o m p a t ib i l i ty  o f  th e  m e tr ic  w i th  V a-

d 29 

dA2

d 2f
dA2
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F 4 —t r ^  { h f  + p ,f  - u > u , r  e 2pr 2 s in 2  0 )

II“fc-
P-« -cu,r  e~2pf 2 s in 2  9 

2  ’

IIu

e~2pf 2 s in 2  9

r r  —1 t t  — I e7 + p - 2«  ( f f  _  u j2 e ~ 2P f  sin 2  0) +  p,f  ( l  +  uj2e 2pr  s in 2  0 )

r r1 ty

T - -r r  

1 rO

-p r

p f
1 <5

r

—2 cje 2 pr 2 sin2

2 u>
^  ( 7 ) f  ~ P r r  > +  w ) f  H— ~  r

I e7 - p - 2 a - 2  in 2 |

2

7- p - 2a f 2s i n 2^  £
2  \  r

= -r(l + ra,f)
t r

p0 _
110 —

p^ _
fcp

p0 _
L e<t> ~

1  t t  —

-  ^cu,f  (1 +  w2e 2 /V 2  s in 2  0)

uj (p ,0  — cot 9) — ( l  +  uj2 e~2pr 2 sin 2  0 ) 

i  |w w ,f  e~2pf 2 s in 2  0  +  Y,f  —p,f  

i  (ww , 9  e~2pf 2 s in 2  9 +  7 , 0  —p,g + 2  cot 9)

2 ~2 e ' ' IJ [7 ^  ( l  — w2e 2 p ?~2  s in 2  0 )+/?,£> ( l  +  w2e 2 pr 2 sin 2 0 )„ 7 +p^ 2 a

'-1 II Ip 7 -P ~  2 a 
2

r p —
a,e

x  r r
f 2

1 fO  —
1
— +  a , f  
r

•"
I

■e
- II i e7“ P~2a

2

p #  _
1  ee — a , e

—2ue 2pr 2 s in 2  9 (cj,g  +uo cot 0)] 

iin2  9 [u  (7 , 0  —p,# ) +  2a; cot 9 +  uj,g}

sin 2  9 (—7 , 0  +p,g —2 cot 9)

Table 2.1: C hris to ffe l symbols fo r the s ta tiona ry  axisym m etric  spacetime.
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a constra in t on the  allowed values o f b, b -  <  b <  b+ , w ith

=  ±  e~pfi sin A.
1  ±  we sin 0 j

where the m etric  potentia ls  are to  be evaluated a t the  in it ia l coordinate. W ith  an 

in it ia l po in t and a value o f b in  hand, we can ca rry  on to  calculate the  allowed 

values o f 0j. R ew riting  the le ft-hand side o f E quation  2.40, we have th a t

d r  \  2  _ 2
—  +  r 2
d e

=  A { f , 0 ) ,  (2.42)

where f / 9  — d f/dO . To discover the allowed values o f 9 requires find ing  the  ex

tremes o f the  te rm  in  parentheses on the  le ft-hand side o f Equation  2.42; typ ica lly  

one expects r  >  0  fo r outgoing rays, b u t since we are considering stars th a t are 

(perhaps very s ligh tly ) oblate, there are certa in  “g lancing”  rays w ith  f i  <  0. F ig 

ure 2 . 1  shows the s itua tion  fo r po in ts above and below the equatoria l plane in  four 

separate regions where rays can be defined. Using the q u a n tity  *4(r, 9) defined in  

E quation 2.40, choosing the  sign o f ±  in  w ha t follows to  m atch the sign o f cos 9t . 

and evaluating a ll quantities a t the  in it ia l po in t, we have the  fo llow ing situa tions 

in  F igure 2.1:

R egion I. Rays w ith  T{ < 0 and ±#j <  0. In  th is  region we have

A  < « i <  4 -  <2-43)f 2  +  (d fs/d 9 ) 2 ~  1 ~  f 2 '

T h is  region contains the  rays th a t would be p roh ib ited  i f  the surface o f the 

s ta r was “spherical”  w ith  coordinate radius f s =  const.

R egion II. Rays w ith  h  >  0 and ± 9 i <  0. In  th is  region,

0 < 9 f <  (2.44)

R egion III. Rays w ith  f  j >  0 and >  0. In  th is  region,

0 < 9 f  < ----------— ---------------------------------------- (2.45)
r 2  +  (d rs/d 9 )
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spin axis

df/dO = 0

= ix/2 (equator)

II

F igure 2.1: In it ia l conditions fo r n u ll geodesics o rig ina ting  from  an oblate star: Th is  
figure is o f the  (r , 9) plane, where the  shaded region represents the volum e occupied 
by an oblate star. The rad ia l coordinate is r ,  and the dashed line represents a 
surface o f constant f .  As discussed in  the  te x t, de term in ing the allowed values o f 
6 i and f ,  requires know ing which region, I, I I ,  or I I I ,  the  p a rticu la r ray  resides in . 
Region IV  describes the in it ia l conditions corresponding to  rays which cannot reach 
the observer since they are in it ia l ly  d irected in to  the  star. T h is  figure appears as 
F igure 1 o f Cadeau et al. (2006).

R e g io n  I V .  Rays w ith  ¥ j >  0 and ± 0 , >  0 are not received by the observer when

A  A  ,
<  %  <  (2.46)

f 2  +  (d rs/d # )2 ' _  1 -  f 2 '

T h is  is the  region between a constant r  surface and the oblate surface o f the  

star where rays would be in it ia l ly  d irected in to  the  star and do no t reach the 

observer. The values o f 9i in  th is  region are excluded from  the  ca lcu la tion  o f 

rays reaching the  observer.

W ith  a value o f 9i in  hand, the  corresponding value o f r j  is fixed by  E quation  2.40. 

I f  necessary, the  sign o f r,; is disam biguated according to  which region in  F igure  2.1 

one is considering.

In teg ra tion  o f a single n u ll ray proceeds by  se tting  the in it ia l coordinates r, and

6 i , selecting an allowed value o f b. selecting an allowed value 9i according to  the
♦ 2 —

above prescrip tion  o f the  geom etric constraints, and fix ing  r i and the sign o f r,; by 

the m om entum  and geometric constraints. T he  d iffe ren tia l equations 2.33, 2.34, 

2.37, and 2.38 are then in tegra ted num erically. In  princ ip le  i t  would be possible 

to  reduce the num ber o f equations to  be in tegrated by com puting r  from  9 v ia

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 . 3  N u l l  g e o d e s i c s  o f  t h e  s t a t i o n a r y  a x i s y m m e t r i c  s p a c e t i m e 39

the  m om entum  constra in t. However, i t  is a useful diagnostic to  keep track  o f the 

m om entum  constra in t as a check on the  in teg ra tion  code.

2 .3 .3  R e d sh ift

The redsh ift, z , o f photons is defined as

l  +  z =  (2.47)
^obs

where the energies o f em itted  and received photons are hvcm\t and h v(,\)S respectively. 

Suppose th a t a photon is em itted  a t coordinates 9 =  9̂  and r  =  r s(9,) in  a frame 

w ith  fou r-ve loc ity  ua, and received a t coordinates 0  =  6 j ,  r  =  f  f  in  a frame w ith  

four-ve loc ity  w a. Then i f  pa is the four-m om entum  o f the  photon, hvem;t =  —uapa, 

w ith  the inner p roduct evaluated a t the  emission po in t. S im ilarly, hv0bs =  —w apa, 

w ith  the inner p roduct evaluated a t the  observation po in t. In  practice we are 

concerned w ith  photons em itted  from  a frame w ith  u a oc ( t a +  f i * 0 a), where f l *  is 

the  angular ve loc ity  o f the  star as measured at in fin ity . I f  ua =  (t a -(- f i * 0 a) /H ,  

then using the  norm alisa tion  u au a =  — 1  we have

V 2 =  e^+p [ l  -  ( f i*  -  u f  e - 2pf 2 s in 2  e\ . (2.48)

S im ilarly, the  observation fram e has w a =  t a/W ,  w ith

W 2 =  e 1+p [1 -  io2 e~2pf 2 s in 2  0] . (2.49)

Eva lua ting  the inner products, we have th a t along a n u ll ray w ith  im pac t param eter 

b th a t the  redsh ift is

V 2
eky+piobs h  _  uj2 e~2pf 2  s in 2  9 \ , I

1 +  2 =  (1 -  M l*) I --------------==---- L ---------------------------------------\ . (2.50)
1  — ( f 1* — lo) 2 e~2Pr2 sin 2

em it

A  zero angular m om entum  observer (Z A M O ) w ill measure the ve loc ity  o f the  

flu id  a t the  s ta r ’s surface to  have speed

vz  =  (H * — uS)e~pf  sin 9, (2.51)

and in  the case o f a d is tan t observer, the  num erator o f Equation  2.50 goes to  1. So
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fo r a d is tan t observer, the  redshift can be w ritte n

l  +  *  =  e-(7 + p) L J ^ =

\ A  -  vz

(2.52)

2 .3 .4  Z en ith  an g le

In  general the in tens ity  I Ue w il l depend on the zenith angle o f the  em itted  photons, 

a e; th is  is the  angle the em itted  ray form s w ith  the norm al n a to  the  s ta r ’s surface 

in  the emission frame. In  the case where we have solved fo r the  ste lla r s truc tu re  

and m etric  potentia ls  exactly, n a is para lle l to  the four-acceleration o f a flu id  ele

ment a t the  surface . 3  However, we w ill also be considering cases where we invoke 

approxim ate solutions for the  m etric  and ste llar s tructure, and in  these cases we 

w ill want to  consider n a as aris ing solely from  where we are pos iting  the loca tion  

o f the p  =  0 surface w ith o u t re ly ing  on E u le r’s equation being satisfied; we w ill call 

th is  the geometric norm a l to  the  s ta r’s surface. In  the fo llow ing sections we w ill 

develop these tw o different notions o f the  norm al vector a t the surface, establish 

how they differ, and set out the  de fin ition  o f the  zenith  angle.

Four-acceleration o f fluid elem ents

The four-acceleration ab =  i icV cub can be calculated by using the  fact th a t the 

four-velocities o f the  flu id  elements ua are p ropo rtiona l to  the K ill in g  vector fie ld 

£a =  (t a +  f2*0a), w ith  u a — j V  and V  defined by V 2  =  — £a£a, w hich is w r itte n  

in  term s o f the  m etric  components and f l *  in  E quation  2.48. The K ill in g  vector £a 

satisfies K il l in g ’s Equation:

3T h is  is a  consequence o f  E u le r ’s e q u a tio n  fo r  p e rfe c t f lu id s , ~ ( p  +  p )u aV au b =  V bp  +
(u “  V Qp ) u b. T h e  le ft-h a n d  side  concerns th e  fo u r-a c c e le ra tio n  u “ V ai i 4. In  an  e q u ilib r iu m  c o n fig u ra 
t io n , th e  p ressure does n o t change a long  a flo w  lin e , so u aV ap  =  0. T h e re fo re  th e  fo u r-a c c e le ra tio n  
is p ro p o r t io n a l to  th e  g ra d ie n t o f  p ressure , w h ic h  is th e  sam e as say ing  th a t  th e  fo u r-a cce le ra tio n  
is p a ra lle l to  th e  n o rm a l n a .

Vatib + Vbtia =  0 . 

S ta rting  w ith  the de fin ition  o f ab, we have:

(2.53)

ab

(ua is para lle l to  £“ )

(Le ibn itz  ru le  fo r V )
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(C hain ru le) -  ( ~ ± V aV^J +  ^ QV a £ 6

= - ± z bevav + ± z avazb. (2.54)

Le t us consider the term s in  E quation  2.54 separately. F irs t, we know th a t the 

te rm  conta in ing

e v av  =  0, (2.55)

since £“  generates isometries o f the  spacetime, and V  involves on ly  m e tric  com

ponents and quantities th a t don’t  change in  the  d irection  o f £a (i.e., V  does not 

depend on e ither t  or </>). N ext we w ork ou t the  second te rm  in  E quation  2.54:

=  ^ e v a { g ^ c)

(Le ibn itz  and co m p a tib ility  o f g and V )  =  - ^ ^ agbcV a^c

(A p p ly in g  K il l in g ’s E quation ) =  - r ^ £ ; agbcV c$,a

=  ~ ^ aV bi a. (2.56)

From here in, ra the r than  saying “Le ibn itz  and co m p a tib ility  o f gab and V , ” notice

th a t these rules amount to  a statem ent o f co m m u ta tiv ity  o f gaf, w ith  V . Consider

the te rm  £aV b£a:

+ ^ aVbCa

(Inserting  Kronecker) =  7 :£aV b£a +  ^<7°c£cV 6£a
2  w  T

(Expanding Kronecker) =  ^ ° V 6 f a +  \ < f d(. l d c ^ ĥ a.

(gab and V  com m ute) =  (g ad£a')

(R elabelling) =  +  ^ aV 6£°

(Le ibn itz  ru le) =  — V b (£“ £a)

(D e fin ition  o f V 2) =  - ^ V 6  (V 2)

(C hain ru le) =  - V V bV. (2.57)
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Inserting  Equation  2.57 in to  Equation  2.56, we obta in :

=

(C hain ru le) =  V b ( \ n V ) . (2.58)

Inserting  Equations 2.55 and 2.58 in to  Equation  2.54, one obtains

ab =  V b (In V ) . (2.59)

Th is  is the  four-acceleration o f a f lu id  element (or co -ro ta ting  observer), w ith  V  

defined in  Equation  2.48. For the  general s ta tiona ry  ax isym m etric  m etric , Equa

tio n  2.3, the  components o f the four-acceleration are:

T V

~r" -  9  iV r ( V 2)
2 V 2

=  \ e~2a (7 , r + p , f  )

+  y ^ e 1+p 2“  [( f t*  -  w)e 2prs m 2 0  ( ra , r- + ( f t *  -  u ) ( r p , f - 1 )) ] (2.60) 

nee
=  § y ^ e ( V > )

x  [(0 *  — uj) s in#  (lu ,0  s in#  +  ( f t*  — tu)(cos 9 — p,# sin 0 )) ].  (2.61) 

D irection  o f norm al as defined by surface

We define the geom etric norm al to  the surface by s ta rting  w ith  the  coordinate 

position  o f the  surface r s(0). A  tangent to  th is  surface is the  vector sa w ith  non

zero components

/  -  t  <2-62>
s° =  1. (2.63)

The geometric norm al to  th is  surface is defined v ia  san a =  0; non-zero components

o f the norm al vector are therefore

. r f  ■ =  1 (2.64)
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<265>
W ith  tw o m ethods available to  determ ine the d irec tion  o f the norm al a t the  sur

face o f the  star, we ob ta in  a check on subsequent num erical calculations by ensuring 

th a t these directions do coincide in  the exact case, since they  come from  quantities 

th a t w il l  be independently specified. In  some o f the  approxim ate trea tm ents we 

w ill investigate, we w ill break the so lu tion  o f E u le r’s equation and one needs to  

be careful about which d irec tion  is meant by the norm al, i.e., w hether i t  should 

be defined by the d irection  o f force a t the s ta r’s surface, or w hether i t  should be 

defined by the shape o f the  embedded surface.

A ngle betw een  null geodesic and th e norm al n a in the co-rotating  frame 
(Zenith angle)

Once a specification for the  d irec tion  o f the  norm al n a is chosen, we w ish to  know 

the angle a e formed between the ray £a and the norm al in  the  emission fram e so 

th a t anisotropic em iss itiv ities can, in  princ ip le , be included in  the ca lcu la tion . The 

measurement o f angles is an observer dependent procedure. In  th is  case, we wish 

to  know the  angle measured by an observer w ith  u a — (t a +  i.e., one

co-ro ta ting  w ith  the star. The angle a e between these is given by the  usual “ cos 

angle” re la tion  where

cosae =  -x—-A— (2 .6 6 )
|£°||ha|

and the tildes ind ica te  th a t the  vectors have been projected in to  the  space or

thogonal to  u a by con tracting  w ith  the p ro jec tion  opera tor hai  ~  v,aUb +  9 ab- A  

more compact way o f w r it in g  th is  is by  no tic ing  th a t />,„(, is ju s t the m e tric  on the 

three-surface orthogonal to  u a, so we can w rite

habian b ,0 ^
cos a e =  , „ , .— 7- ,  (2.67)

\ ta \h\na \h K J

where the  subscripted h in  the  denom ina tor serves to  rem ind th a t we want the 

lengths o f the  pro jected vectors. Th is  s im plifies to

r 'i i f  -4-
cos OLe — V e a --------------------- :---------------------—7~, (2.68)

( 1  — 0 * 6 ) ( (n r ) 2  +  f 2 (n 9)2) '

where everyth ing is evaluated a t the  emission p o in t and the do tted  quantities  refer 

to  the in it ia l conditions fo r the  nu ll geodesic as discussed in  Section 2.3.2, and the
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components o f n a are obta ined by one o f the tw o methods given above.

A ngle betw een  null geodesic and th e norm al n a in th e  observer’s fram e

In  a s im ila r fashion to  w ha t was done for the  zenith  angle as measured in  the 

emission frame, another ca lcu la tion  can be carried ou t for an observer w ith  four-

2.4  C alcu la tion  o f  ligh t curve

To complete our trea tm ent o f the  lig h t curve calculation , we devise a means by 

which to  determ ine the solid angle dO subtended by an emission region in  a d is tan t 

observer’s sky fo r a non-m oving e m itte r (Section 2.4.1), and the m anner in  which 

Equation  2.1 should be adjusted to  account fo r the  m otion  o f an e m ittin g  region 

around the sta r (Section 2.4.2). The section concludes w ith  a lis tin g  o f the  steps 

we w ill fo llow  to  com pute the  lig h t curve.

2 .4 .1  S o lid  a n g le

Consider a d is tan t observer who sees an in fin ites im a l rectangular emission region 

as describled in  F igure 2.2 and the  accompanying caption. We take each side o f 

the  emission region to  appear as a line  segment in  the observer’s sky; the  length 

o f the line  segment d I =  D  dc, where D  is the  radius o f the  observer’s sky and 

dc is the  angle form ed between the tw o corresponding rays as measured by the 

d is tan t observer. Since we can calculate the length  o f each side, i t  is possible to  

calculate the apparent area dA  o f the  emission region; the  solid angle subtended 

by the emission region d l l  =  d A / D 2.

To begin w ith  we need to  establish the angle between two nu ll rays £a and m a as 

measured by a d is tan t observer w ith  fou r-ve loc ity  ua =  t a/W ,  where IV  is defined 

by W 2 =  —g tt■ Say th a t •£</>/(—i t )  =  b, and m ^ / ( —m t)  =  c. S ta rting  w ith  the same 

re la tion  as w ith  the  zen ith  angle ca lcu la tion , we have th a t

ve loc ity  w a — t a/W  a t the  surface, where W 2 is defined in  E quation  2.49. One 

obtains

(2.69)

cos dc
hab£am b

\£a\h\ma\h

1  +  (~ g tt)  9 tt ~  (b +  c)gt<k +  b e g ^  +  gf f
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Figure 2.2: To calculate the solid angle subtended by the emission region in  the 
observer’s sky, we consider a sm all rectangle o f angular size dO x  dcf>. I f  we know 
which rays reach from  the corners o f the rectangle to  the observer, i t  is possible 
to  calculate the area o f the  rectangle as seen by the observer. Labels i  — 1, i ,  and 
i  +  1  ind ica te  neighbouring regions w ith  the same angular size in  an tic ipa tion  o f 
the  eventual d iscretisation o f the calculation.
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+ 9 9 9
- i t

m

-m t
(2.70)

Now le t c =  b+db, m r / (—m t)  =  (£r / ( —£t))+d£r , and mP/ (—m t ) =  (£®/ ( —£t )) +  d£®. 

C ontinu ing  on from  Equation  2.70, we have

cos de =  l  +  ( - g tt ) gt t - 2 b g ^  -  d b g ^ W g M  +  bdbg**+ gf f

+d£r
e

rJ 9 f f + \ - £ t
+  d t (2.71)

The underlined term s in  th is  equation are essentially £a£a, so they vanish. Equa

tio n  2.71 is exact; we haven’t  done anyth ing  th a t is on ly  firs t-o rde r in  db, d£r , or 

d£®. To s im p lify  the  rem ain ing term s square brackets, we s ta rt w ith  m am a =  0, 

which a fter using £a£a =  0  again, becomes

0 2 d bgt4> +  26d&g** +  (d b f g ^  +  g?? 2 d£r  ( —  ) +  ( d r )r r \  2

+ 9 9 9 2 d t —  ) +  (d£°+ (2.72)

We expect dc to  be sm all fo r a d is tan t observer, so i t  is appropria te  to  use the 

approx im ation  cosde =  1 — de2/2  +  0 ( de4). Together, Equations 2.71 and 2.72 

yie ld

d£ 2  +  C?(de4) =  ( - g t t )  [ g ^ ( d b f  +  9 r r ( d f ) 2  +  gee(d£ef \  . (2.73)

F ina lly , we can use the m om entum  constra in t m am a ~  0 to  e lim inate  one o f the 

quantities db, d £ r  or d £ ° . Since fa r from  the sta r m ost o f the m o tion  w il l  be rad ia l, i t  

is best to  w rite  d r  in  term s o f the  o the r quantities. To firs t order in  the  d ifferentia ls, 

the re la tion  between these quantities is

1

( * 7 ( - 4 ) )
f 2

(■e pr s in # ) 5
db

(2.7 A)

Considering F igure 2.2, E qua tion  2.73 allows us to  calculate six lengths (four 

sides, and tw o diagonals) in  the  observed image o f the  emission region by ca lcu la ting  

the angles form ed by pairs o f n u ll rays as measured by the observer. The  observed 

area o f the  emission region can be calculated by choosing a diagonal o f the  emission 

region and ca lcu la ting  the areas o f the  tw o triangles w hich comprise the  image using, 

e.g., F leron ’s fo rm u la  fo r the  area o f a triang le , which says th a t a triang le  w ith  side
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lengths u, v, w  and sem i-perim eter s =  (u  +  v +  w ) / 2  is

A  =  y /  s(s — u)(s  — v )(s  — w). (2.75)

Equiva lently, the  solid angle subtended by the triang le  can be calculated using th is  

fo rm u la  where u, v, and w  are angles com puted v ia  Equation  2.73.

2 .4 .2  C a lcu la tio n  o f  lig h t cu rv e  in c lu d in g  arrival t im e  e ffects

For a precise ca lcu la tion  o f the  lig h t curve, one m ust account fo r the fact th a t the 

tim e-o f-fligh t o f photons from  the sta r to  a d is tan t observer is no t constant over 

the v is ib le  surface o f the  star. T h is  is p a rtic u la r ly  im p o rta n t fo r the case o f the 

m illisecond-period pulsars, as the light-crossing tim e  o f the neutron sta r reaches a 

sign ificant frac tion  o f the  ro ta tio n a l period— up to  about 5% fo r a pulsar w ith  the 

shortest known ro ta tiona l period, and the m axim um  like ly  size o f neutron stars. A  

second effect th a t needs to  be considered results from  the m o tion  o f the  e m ittin g  

area, as one needs to  account fo r the difference between em itted  and observed 

tim e  intervals. The firs t problem  is easy to  deal w ith  since the tim es-o f-fligh t 

are calculable from  the equations o f m otion. The second problem  is more subtle, 

and im pacts the  m anner in  which the observed flu x  should be calculated. I t  was 

s im ila r considerations th a t led Penrose (1959) and T erre ll (1959) to  observe nearly 

50 years a fte r the  pub lica tio n  o f the  theo ry  o f special re la tiv ity  th a t ra p id ly  m oving 

extended objects in  fla t space are no t observed contracted, b u t ro ta ted , con tra ry  to  

the expectations o f E inste in  and Lorentz. T h is  result can be arrived a t by care fu lly  

considering w hich photons from  the ob ject are a rr iv in g  at an observer a t a given 

instan t. In  th is  section we discuss the effect o f the  m otion  o f the  e m ittin g  region 

on the  observed lig h t curve.

To calculate the flu x  a rr iv in g  a t the  observer a t tim e  t Q, we need to  integrate 

the flu x  a rr iv in g  from  the v is ib le  p a rt o f the  emission region a t the ins tan t the 

observation is made; th a t is,

where the in tegra l is taken over those coordinates on the sta r labelled by <fi which 

are v is ib le  to  the observer a t the  ins tan t o f observer proper tim e  t 0.

To determ ine w hich regions o f the  sta r are v is ib le  to  the observer a t a given 

instan t, we consider an emission region com oving w ith  the  star which has constant 

angular w id th  A <p'e in  the  s ta r ’s rest frame, located a t some constant la titu d e  0 .

(2.76)
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In  the  observer’s frame, the emission region is seen to  be m oving w ith  angular 

ve loc ity  f t *  as measured a t in fin ity . In  the observer’s frame at the surface, the 

emission region is Lorentz contracted and an observer at the  surface w ill in fe r th a t 

the emission region has w id th  A<pe =  (A(j>'e) /F ,  where the boost facto r T  and the 

observed speed v  o f the  sta r a t the  emission region are

T =  ( l - u 2) _1/2,and  (2.77)

ft*e ~ pf  s in#

1  +  cu(f2* — io)e 2Pr2 sin2  0
(2.78)

As depicted in  F igure 2.3, in  the  observer’s frame a t the surface o f the star, such

an emission region has the p rope rty  th a t po in ts located a t the coordinate (p are

illum ina ted  between coordinate tim es t ei <  t  <  t e2, w ith

t ei =  f t * 1^  -  (A</>e/ 2 )), and (2.79)

t e2 =  f l *  1(0  +  (A<f>e/2 ) ) .  (2.80)

D enoting  by T(<f>) the lapse o f coordinate tim e  required fo r a photon to  trave l 

between the emission po in t a t (f> and the observer, we have th a t the  lig h t e m it

ted from  cp is observed between coordinate tim es (and so, observer proper tim es) 

t 0l <  t 02, w ith  t 0l — t ei +  T(<p) and s im ila rly  fo r t Q2. To determ ine w ha t po rtio n  

o f the emission region is v is ib le  to  an observer a t tim e  t 0, we need to  determ ine the 

set o f po in ts labelled by <p th a t satisfy the inequalities

T{(j>) +  -  (Acp/2)) < t Q<  T{4>) +  +  (A 0 /2 ) ,  (2.81)

i.e., those po in ts which are e m ittin g  lig h t over an in te rva l w h ich w ill be received in  

an in te rva l conta in ing t  — t„ .  To solve fo r these points, firs t consider th a t T ( f  ) can 

be approxim ated by

T ( 0 ) « T ( ^ o) + ^ ( 0  -  <t>o), (2.82)

where <p0 is defined as the so lu tion  to

t 0 =  n f 1<p0  +  T(cp0 y, (2.83)

4>o corresponds to  the 4> coordinate th a t continues to  be observable at tim e  in
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A<|>e

t < t el

t = t el

t = t e2

t > t e2

F igure  2.3: A n  emission region o f w id th  &<f)e as seen in  the  observer’s frame at 
the  surface o f the  star can be realised by considering th a t the  po in ts located at 
coordinate <fi (represented by the bo ld  line), are illum ina ted  between coordinate 
times t ei =  £ l~ 1 (cj> — (A(f>e/ 2 ))  and t e2 =  +  (A<j>e/ 2 )).
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the  lim it  o f ever sm aller emission regions. The  inequa lities in  E quation  2.81 have 

the so lution

(A 0 e/2 )  ( A & /2 )
1 +  O*dT/d0|0=0o 1 +  O*dT/d<(>|0=0o

These are the v is ib le  coordinates at an ins tan t o f observer tim e, given an emission 

region o f fixed angular size A <j>e in  the  observer’s frame at the surface. The vis ib le  

region is centred on the coordinate </>0, w hich is defined v ia  Equation  2.83. Th is  

result says th a t i f  the  tim es o f flig h t are grow ing (respectively, shrink ing) as the 

emission region moves th a t th is  has the effect o f narrow ing (w idening) the  v is ib le  

size o f the emission region as determ ined by an instantaneous observation by the 

d is tan t observer.

To evaluate the in tegra l fo r flu x  in  E quation  2.76, we make the assum ption th a t 

the  in tegrand is approx im ate ly  constant (i.e., th a t A<p'e is sm all), and so

t-, / \  a / dO
F v 0 ( t o )  =  A cf>0 -j-^-

Ive {4>0

0=0„ (1 +  ^ (0 o ))3

Atfjv d o
1  +  J2 *dT/d(?!)|0 = 0 o d<fi

o)
(1 +  z (^o ))3 ’

(2.85)

(2.86)

where the last line  makes use o f the  resu lt in  E qua tion  2.84. In  th is  form , the lig h t 

curve o f an in fin ites im a l emission region is calculable by chosing a coordinate cf>0, 

and fo llow ing these steps:

1. Calcu la te t a v ia  E quation  2.83.

2. Calculate the te rm  1 +  O*dT/d(/>|0 = 0 o. In  practice th is  was done num erica lly  

by centred fin ite  differences to  calculate the derivative o f T  using neighbouring 

rays. However, we show below th a t th is  te rm  has a general sim ple expression 

in  term s o f b and O*, w hich obviates the need to  calculate the deriva tive  

num erically.

3. Calculate dO/d</>|0 = 0 o by  approx im ating  i t  as the  quotien t A O /A </>,,, where 

A O  is the solid angle subtended in  the observer’s sky by photons em itted  at 

the  same tim e  from  a rectangula r emission region o f w id th  A<pe and height 

A 9. The emission region is centred on d> =  <p0~ as depicted in  F igure  2.2. 

The  q u a n tity  A O  can be calculated by fo llow ing  the m ethod prescribed in  

Section 2.4.1, w h ich is to  calculate the apparent size o f the  rectangle observed 

by a d is tan t observer. A  second m ethod, set ou t in  Section 2.5 is available fo r
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the  Schwarzschild spacetime where spherical sym m etry allows us to  describe 

areas on the d is tan t observer’s sky in  sim pler terms.

4. Calculate the redsh ift z o f the  rays em itted  from  (p =  (j>0 v ia  E quation  2.50. 

T h is  also is required to  determ ine u0 from  uf,, i f  spectral effects are to  be 

included.

5. I f  the  emission is anisotropic, I(<j>0) should be calculated according to  the 

prescrip tion  o f anisotropy using the zen ith  angle o f the rays em itted  from  <p0, 

w hich is set ou t Section 2.3.4.

A l l  elements o f th is  ca lcu la tion  require know ing the actual rays jo in in g  po in ts  on 

the star w ith  the observer. Solving fo r these rays is dealt w ith  num erically, using 

the m ethod described in  C hapter 3.

I t  is possible to  understand the facto r 1 +  Q+dT/dcpl^—fo appearing in  Equa

tio n  2.86 in  term s o f com paring intervals o f em itted  and received proper times: A n  

observer co ro ta ting  w ith  the emission region a t the surface o f the star measures 

intervals o f proper tim e  according to

d re2 =  V 2 d t2, (2.87)

where V 2 is evaluated a t the  po in t o f emission according to  E quation  2.48. For an 

observer being held a t the  same spatia l coordinates, the  proper tim e  in te rva l is

d r 2 =  W 2 d t2, (2.88)

where W2 is evaluated a t the  observer’s coordinates according to  E quation  2.49. 

A t  large r ,  W2 fa 1 and r 0 fa t 0. However our calculations are concerned w ith  

com paring the em itted  and observed intervals o f proper tim e  jo ined by photons

emitted f ro m  a moving surface, so i t  is also necessary to  in troduce a th ird  quantity ,

r r : the  proper tim e  a t which a photon em itted  a t r e is received, as measured on 

the d is tan t observer’s clock. Using t a =  t e +  T  from  the discussion above, we have 

Tr  =  Te/ V  +  T ( r e). So we have th a t the te rm  1 +  fL d T V d ^ L —,a aDDearine in  

Equation  2.86 can be w r itte n  as

1 +  H*dT/d<?!>|^= 0o =

/ i I ' f ' -----' f 'O  -*• A v—<

d t n
t  <2-89>
d  Tr / W

i r f j v  <2-90>
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=  P P ,  (2.91)dT0/d re

where between Equations 2.90 and 2.91 we made use o f Equations 2.87 and 2.88. 

Th is  result says th a t the  te rm  correcting the v is ib le  size o f the  extended emission

region is: the  ra te  at which the  receiving tim es r r  measured by the d is tan t observer

change per u n it o f proper tim e  in  the emission frame, d iv ided by a fac to r which is 

the rate the observer’s clock runs at per u n it o f proper tim e  in  the  emission frame, 

d r0/dT e.

We w ill show at the  end o f Section 2.5 th a t the  overall facto r o f r ( l + f i * d T / d 4>^=lf)o 

is s im ila r to  the “D opp ler facto r” o f special re la tiv ity , defined as

l/<S =  r ( l - v c o s O ,  (2-92)

where £ is the  angle form ed by photons reaching the observer w ith  the extended 

o b je c t’s ve loc ity  vector in  the observer’s fram e (G hise llin i, 1999; Leahy, 2003b). 

Accord ing to  special re la tiv ity , an e m ittin g  area dS" m oving w ith  respect to  a 

d is tan t observer is observed to  have area d.S' =  M S " in  a “snapshot” where one 

captures the photons reaching the observer a t the  same ins tan t in  tim e  (Terre ll, 

1959). The above argum ent shows the sense in  w hich our observer w ill observe the 

same effect fo r a m oving emission region when g ra v ity  is involved.

A nalytical form o f 1 +  Q+dT/d<j)

M ors ink (2005b) observed th a t the  derivative dT/d</>, where <ft is the  azim utha l 

deflection o f a lig h t ray, has a su rpris ing ly  sim ple fo rm  in  general. T h is  leads

to  a s im p lifica tion  o f the  te rm  1 +  f l* d T /dcf>. To see th is , we can begin w ith

the m om entum  constra in t, E quation  2.40, and define new quantities s and h(b) 

according to

s2 =  r 2 +  f 2 02 =  e - ^ - p~ 2ah(b), w ith  (2.93)

h(b) =  (1 — tab) 2 — J f .  (2.94)
e 2Pr2 sin 0

The derivatives o f h(b) satisfy

d h 
db

^  -  _ 0  
db2

' , btu ( l — tab) + g-2pr 2 gjn2 Q

2 1-ua2 +
e 2Pr2 sin2 6

(2.95)

(2.96)
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h~\~^  =  ( i - ^ )  (2 -97)

d h  , d2h n .

d b ~  d t f  =  ( }

Reparam eterising the equations o f m o tion  fo r the t  and d> coordinates (Equa

tions 2.33 and 2.34) by s, which is the coordinate length o f the  geodesic pro jected

in to  the  ( f ,  9) coord inate plane, we ob ta in

*  =  (2.99)

d  d t ea (t+p )/2 ^

db ds h3/ 2 e- 2 pr 2  sjn
dtp 1 e«-(7+p)/2 dh

ds -  ~ 2  W 1 d& ’ 
d  d <p e « - ( 7 + p ) / 2  i

2

db ds h3/ 2 e- 2 pr 2  gj n 2  q

and (2.100)

(2.101) 

(2.102)

So,

9 < “ = 4 £ -  (2.103)db ds db ds 

Regarding T  and A<p as functions o f s, we have

T  =  [  f  d s ^  (2.104)
Jo d s

A  4> =  [ ' d s ^ .  (2.105)
Jo ds

Equations 2.104 and 2.105 are o f the  form  o f exact line integrals. Thus, i f  the 

im pact param eter b is held fixed, the  values o f these tw o integrals depends on ly  on 

the endpoints ( f j ,0 j)  and ( f f , 9 f ) .  I f  the  endpoints o f the geodesic are kept fixed, 

then we can ob ta in  new in tegra l expressions fo r the  derivative o f the  a rriva l tim e  

and az im utha l deflection w ith  respect to  b, by interchanging the  o rder o f in teg ra tion  

and d iffe ren tia tion  as follows:

d r  OT/db =  -§-b / 0S/ d s (d t/d s )

d (f>e - d(A<f>)/db A  J * f  ds(d</>/ds)

I o f  d s ^ ( d t / d s )

/ o / d s i ( d<̂ / ds) 

&/oS /d s^ ( d<̂ / ds)

(2.106)

C / h  a  <a m , a  \  (2 ' 107)
Jo  / d s 3 s ( < W d s )

- b .  (2.108)
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Therefore, according to  th is  argument, the  factor which accounts fo r the  m otion  o f 

the  e m ittin g  region satisfies (however, see below for a caveat)

1 +  tt±dT/d4> =  1 -  Q*b. (2.109)

In  th is  ca lcu lation , i t  is claimed th a t the order o f d iffe ren tia tion  w ith  respect to  

b and the  pa th  in tegra l in  the ( f ,  0 ) plane can be interchanged because we were 

ho ld ing  the endpoints o f the  curve fixed, and the integrals were o f the  fo rm  o f exact 

line integrals. One possible ob jection  to  th is  argum ent is th a t we have neglected 

term s in  the derivative re lated to  how the pa th  length changes w ith  sm all changes 

in  b. T h is  is a technical p o in t th a t we wish to  s tudy fu rthe r. However, note th a t 

in  Section 3.5.4 we show the result o f a num erical experim ent which shows th a t 

Equation  2.109 holds to  reasonable accuracy (typ ica lly  w ith in  a few parts  in  103) 

in  our code when the le ft-hand side is calculated by fin ite  differencing the  a rriva l 

times. So i f  add itiona l term s are required to  make E quation 2.109 fo rm a lly  correct, 

our experim ents have ind ica ted th a t any such add itiona l term s would be small, i.e., 

th a t E quation  2.109 seems to  hold in  the neutron star spacetimes we considered. 

As discussed in  C hapter 3, our pulse profile  calculations calculated the le ft-hand 

side o f Equation  2.109 num erica lly  using the in tegrated a rriva l times. M ak ing  use 

o f th is  fo rm u la  was le ft to  fu tu re  work.

2.5 C a lcu la tin g  th e  ligh t curve in th e  Schw arzschild  

m etric

In  th is  section we develop a m ethod fo r ca lcu la ting  the  ligh t curve when the exte rio r 

spacetime is taken to  be Schwarzschild, and the sta r is taken to  be spherical. The 

add itiona l sym m etry  allows us to  ob ta in  a fo rm u la  fo r the lig h t curve which is 

easily com puted and doesn’t  re ly  on the  m ethodology envisaged for ca lcu la ting  the 

lig h t curves in  the  more general case. Thus, i t ’s a m ethod to  check independently 

the im plem enta tion  o f the  more general m ethod th a t we have la id  the  foundations 

fo r in  th is  chapter. T h is  check is carried ou t in  Section 3.5.2. The form alism  

fo r ca lcu la ting  the lig h t curves fo r emission from  the b righ t spots on the surface o f 

s low ly-ro ta ting  neutron stars was developed by Pechenick et al. (1983), and employs 

the Schwarzschild m etric  to  describe g rav ita tiona l effects. The development o f th is  

section draws on Leahy (2003b) and Poutanen and G ierlinsk i (2003), b u t add itiona l 

deta ils are filled  in  and the effect due to  the m otion  o f the  e m ittin g  region is treated 

differently.
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(ray to observer)

Figure 2.4: G eom etry fo r ca lcu la ting  p ro jec tion  o f e m ittin g  region onto observer’s 
sky in  Schwarzschild m etric

We are considering the flu x  from  a sta r o f radius R  and mass M ,  and the 

geometry o f the  s itua tion  is depicted in  F igure  2.4. A  useful way to  describe the 

geom etry is to  define a three-vector k  w hich po in ts from  the o rig in  towards the 

observer inc lined a t an angle 90  to  the  spin axis o f the  star, and a second three- 

vector m  which po in ts at the  e m ittin g  region inclined a t an angle 9e to  the  spin 

axis, and located a t az im utha l angle (i.e., ro ta tio n a l phase) 0  =  Q *fe- In  a r ig h t- 

handed system o f rec tilinear coordinates where the  x-axis is located a t — 0 in  the

equatoria l plane o f  the star , and the z-axis po in ts  along the spin axis o f the  star,

the  rec tilinear components o f these vectors can be taken to  be

k  =  (sin 9o,0, cos 6 0), and, (2.110)

m  =  (c o s ^ s in 0 e,sin<^sinf?e,cos#e)- ( 2 .1 1 1 )

In  the coord inate plane conta in ing the orig in , emission region, and observer, ob

served photons are deflected th rough  an angle ?/;. w ith

cos ip =  k  • m  =  cos 0o cos 9e +  sin 90  sin 9e cos cf>. (2.112)
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The Schwarzschild spacetime is spherically sym m etric, and the m etric  is given

by

ds2 =  - ( 1  -  2 M / r ) d t 2 + (2.113)

The spherical sym m etry allows us to  consider a ll photon o rb its  as o rb its  in  a co

ord inate equatoria l plane ( 8  =  tc /2 ) which in  general does no t coincide w ith  the 

s ta r’s equatoria l plane. The o rb its  o f photons in  th is  plane are described by the 

equations o f m otion

dt

dA
dtp
dA

d r
dA

1

1 -  2M / r  
b

72

1 -  ( 1 - 2 M / r ) -
1/2

(2.114)

(2.115)

(2.116)

where the im pact param eter b is a constant o f the  m otion, w ith  |6| <  R / (  1 — 

2M / R ) 1/ 2 fo r outgo ing rays. The angular deflection ip(b) between the s ta r’s sur

face a t r  =  R  and a d is tan t observer a t r  ~  r j  can be calculated by d iv id in g  

Equation  2.115 by Equation  2.116 and in tegra ting :

r s
ip(b) =  /  d r

J r r r [ r 2/6 2 - ( l - 2 M / r ) ] ^ 2
(2.117)

The lapse o f coordinate tim e  between tw o rad ia l coordinates jo ined  by a photon 

o rb it can be found in  a s im ila r way, b u t because th is  q u a n tity  w ill diverge in  the 

lim it  r f  —> oo, i t  is more convenient to  calculate the  difference between th is  tim e  

and the tim e  a rad ia l (b =  0) ray would take:

r s
T(b)  =  /  d r -  

J r  1

1
2 M / r (1 -  ( 1 - 2 M / r ) 6 2/ r 2) 1/2

-  1 (2.118)

Measured in  the  observer’s frame, the angle a  formed by the in it ia l d irection  

o f the outgo ing ray w ith  the (rad ia l) norm al to  the  s ta r ’s surface can be calculated 

using the “ cos angle”  re la tion  (see Equation  2.67) where the observer in  th is  s itua

tio n  has ua =  t a/ ( —g tt) 1̂ 2- I f  is the  four-m om entum  o f the  em itted  photon, one 

obtains th a t

cosa =  ^r , (2.119)
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which, using Equation  2.116, is

la  =  (1 -  2M / R ) l f 2 b /R .  (2.120)sim

We also would like to  calculate the  angle £ form ed by the  lig h t ray and the ve loc ity  

vector at the  surface o f the  star. One way to  do th is  is by e x p lic itly  se tting  ou t a 

ro ta tio n  m apping (9, cp) “s ta r”  coordinates to  the  (0, ip) “ p ropagation” coordinates, 

however th is  is no t the most s tra igh tfo rw ard  approach.4 Instead, i t  is more con

venient to  make use o f an o rthonorm a l basis fo r the  photon propagation plane to  

complete the ca lcu la tion . Take m and kj_ to  be the basis vectors, w ith

_ k — (m • k)m k-cost/un /oioi\
K_L =   „ i in ~   :----- 1---------• ( Z . L Z 1 )[1 -  (m-k)2]1/2 smV’

I f  l j  is a u n it vector po in tin g  in  the in it ia l d irec tion  o f the  photon propagation, then 

in  term s o f the  given basis vectors, i t  has components

1 i =  (k  • m )m  +  ( lj • kj_)k_L_ 
1

sin2 ip
=  cos a m  H—  2 [cos(^ — a ) — cos ip cos a] (k  — cos ipm )

sin ( i p  — a )  sin a ,  .  _.= — . , ;m+---- -k. (2.122)
sin i p  sin i p

Considering the  rec tlilinea r components o f k and m  in  Equations 2.110 and 2.111,

and th a t a u n it vector p o in tin g  in  the  d irec tion  the s ta r’s m o tion  has components

in  th is  system given by

v =  (— sin (p, cos cp, 0), (2.123)

then we have th a t £ is re la ted to  a, 0 o, <p, and i p  by:

sin a  sin 9„ sin d>
cos£ =  lj • v  = -:— j- (2.124)

s m  i p

To calculate the p ro jec tion  o f the  emission region on the  observer’s sky, also 

depicted in  F igure 2.4, consider th a t rays reaching the observer w ill land on the 

image plane a t rad ia l coord inate b and az im utha l angle cpa, w hich is given by

„  ̂ n̂, =o • (k x m)
00800 =  ^ - —---------- :------ , (2.125)|k x m|

4T h e  e x p lic it  ro ta t io n  is considered  b r ie f ly  in  S ec tion  4 .5 .1, w here  in  th a t  se c tio n  we re q u ire  
th e  d e s c rip tio n  o f  th e  ra y  in  b o th  system s o f coo rd in a te s .
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where n 0 o=o is an a rb ita ry  u n it vector perpend icu lar to  k which defines the d irec tion  

on the image plane corresponding to  4>0 =  0. I f  we take n ^o=o =  (0 ,1 ,0 ), then

cos 0 o sin 0 e cos d> — sin 0 O cos 6 P n .
cos 4>0 = ---------------- -------- ^ ^ ----------- 2 --------«------------  . (2.126)

[sin2  de sin <p +  (cos 0o sin 6 e cos 4> — sin 90 cos 9e)2]

The element o f flu x  received by the  observer is

d F  =  I 0 dS0 / D 2, (2.127)

where I 0 is the in tens ity  o f the  observed rad ia tion , D  the distance separating the

source and observer, and the element o f area dS 0  on the image plane, w hich is

dS0 =  bdbd(j)0. (2.128)

U ltim a te ly  we w ant to  be able to  express the in tegra l fo r flu x  in  term s o f the 

coordinates 9e, d> on the s ta r ’s surface, w hich w ill require the Jacobian

_  db 8 <p0  db 8 <p0
tJ —

89e d(f> d<f> 89e
=  ________1  f  8 { cos ip) (9 (cos <p0) cl (cos ip) 8  (cos <p0) \

d^/d6 s in^sin )̂0 \  89e dtp 8(f) 89e ) '

B y  d iffe ren tia tion  o f E quation  2.112 fo r cosip and Equation  2.126 fo r cos<p0, the 

Jacobian in  Equation  2.129 is seen (a fte r a very tedious exercise) to  be

J  =  <2 1 3 0 >

so the in tegra l fo r the  observed flu x  from  a stationary  e m ittin g  region on the  surface 

o f the star is

To b ring  in  the effect o f ro ta tio n  on the observed lig h t curve, we know th a t fo r 

a b righ t spot o f w id th  A<p'e in  the  emission frame, on ly  a region o f w id th

A <Pe/F
1 +  Q *d T /d 0

is v is ib le  to  the observer a t the  ins tan t t  =  t Q =  11*c/i +  T(b).  The  denom ina tor o f 

th is  te rm  is
1 | n  d T  _  i  | n  1 d T  (2 132)
1 +  n *dcp- 1 +  i h d<f>diP/dbdbJ [ 6 )
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where

d ip sin i  sin Oe sin (
sin ip

(2.133)

dip n

ib  =  L  Ar

b ( 1  — 2M / r )

r 2 [1 — (1 — 2M / r ) b 2 / r 2 } 1^ 2 r 4 [1 — (1 — 2M / r ) b 2 / r 2 } 3 ^ 2

l'rs 1
=  /  d r --------------------------------------- ^  (2.134)

J r  r 2 [1 — (1 — 2M / r ) b 2 / r 2\ '
d T  rs ____________ b________________ d ^

db JR T r 2 [ l - { l - 2 M / r ) b 2 / r 2 f / 2  d 6 '

So fo r a sm all emission region o f size A <p'e x  A 0e, the  q u a n tity  to  be evaluated

is

F  ( t \  =  1 J„e h f s m e e ( A ^ ) /r
D ^l + zr <W<»Si n T  A  + (■ )

_  1 „ 1 s m ^ ^ J A ^ / T  (2137)
D 2 ( l  +  z ) 3 d ip/db  sin ip e \  +  fE & g f '

The evaluation is accomplished in  the  fo llow ing  manner:

1. P ick  a ro ta tio n  phase cp — 0 * t e. Calcu la te the  bending angle ip v ia  Equa

tio n  2.112.

2. Solve fo r the  im pact param eter b w hich yie lds ip v ia  the in tegra l given in  

E quation  2.117. T h is  can be done e ither num erica lly  or v ia  a po lynom ia l 

approx im ation  to  the in teg ra l such as the one given by Beloborodov (2002).

3. C a lcu la te the a rriva l tim e  t Q — t e +  T(b)  by evaluating the  in tegra l fo r T  in  

E quation  2.118.

4. Calcu la te the derivatives appearing in  E quation  2.137 by using the Equa

tio n  2.133 for dip/d(p, and E quation  2.134 fo r d ^ /d 6 .

5. Calcu la te T =  (1 — v 2) 1/ 2, using v =  f? n *s in # e/ ( l  — 2M / R ) 1/ 2 a t the  s ta r’s 

surface.

6. Calcu la te the  redsh ift (1 +  z) =  (1 — 2 M / R ) ~ 1/ 2 /5 ,  where <5 is defined in  

E quation  2.92, and c o s i s  given in  E qua tion  2.124.
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2 .5 .1  T h e  D o p p ler  fa cto r  an d  tim es-o f-f lig h t in  P o u ta n e n  an d  G ier lin sk i 
(2003 )

Poutanen and G ierlinsk i (2003) derive the in tegra l to  be evaluated fo r the  ligh t 

curve in  a s lig h tly  d ifferent manner. They s ta rt o ff w ith  an element o f area d S' 

in  the emission frame, and an element d,S' in  the observer’s frame. Observing 

th a t the zenith  angle o f em itted  rays between the emission and observation frames 

transform s as cos a ' =  <5 cos a , and th a t Terre ll (1959) says th a t observed and 

em itted  areas transfo rm  as 5dS’ — dS, they  see th a t the  projected area dS" cos a ' =  

dS  cos a  is an invarian t, and they  proceed.

I t ’s d iffic u lt to  see w hether the result JdS" =  d S  holds fo r our s itua tion , as th is  

is a result inspired by special re la tiv ity . B y  comparison w ith  the  above calculations, 

b u t re labe lling  b from  Section 2.5 as f / , i t  amounts to  a cla im  th a t

S = ------1 / r  , (2.138)
l  +  S V - l f

which is the same as saying

1 — ucos£ =  1 +  (2.139)
d cp

To assess the sense in  which E quation  2.139 holds, le t us again consider the s itua tion  

w ith  the general m etric . F irs t, the  b' on the righ t-hand  side is related to  the 

conserved angular m om entum  in  the propagation plane. From  E quations 2.132 

and 2.135, we know th a t the righ t-hand  side satisfies

1 +  f 2 * 6 '^  =  1 +  (2.140)
a<p d (p

In  term s o f the  axisym m etric  coordinates fo r the  general case, b is defined v ia  the 

angular m om entum  G;,, and by com paring E quation  2.140 w ith  E quation  2.109, we 

conclude th a t

1 +  n *b'^ r i  =  1 -  (2 -141)dip

and the cla im  in  Equation  2.139 is now

1 — ucos£ =  1 — f 2*6. (2.142)

To see the conditions under which Equation  2.142 is true, we now express the 

le ft-hand side in  term s o f quantities in  the general ax isym m etric  m etric . Note
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th a t we are doing these calculations fo r the  observer ua =  t a j W  and no t the zero

the em itted  ray in  the  observer’s fram e can be calculated v ia  the form ula

W hen the exte rio r spacetime is taken to  be Schwarzschild, the  m etric  com ponent 

9 t(j> — 0 (i.e., there is no fram e dragging), and so E quation  2.142 holds exactly. In  

the general case, however, gt(p ^  0 and the  D oppler facto r is no t equivalent (and 

ought not to  be used in  place o f) the  facto r 1 — QJ) — 1 +  D *dT /dr/;, which is 

brought in  to  account fo r the m otion  o f the e m ittin g  region.

The ca lcu la tion  by  Poutanen and G ie rlinsk i (2003) is correct in  the  sense th a t 

they are ca lcu la ting  an in teg ra l which is exactly  correct in  the case they  consider 

(i.e., when the  exte rio r spacetime is Schwarzschild and the  star is taken to  be 

spherical), b u t they o m it the  step o f ca lcu la ting  the a rriva l tim e  t a — t e +  T(b )  by 

evaluating the in tegra l fo r T  in  E qua tion  2.118 a t each step. Instead they  adopt 

the approxim ation th a t t Q — t e +  const fo r the  construction  o f th e ir  lig h t curves, 

which results in  a d is to rtio n  o f the  curves they  obta ined fo r rap id  ro ta tio n . P u t 

another way, they  account fo r the  fact th a t the  a rriva l tim es are changing (because 

the emission region is m oving) fo r the  purpose o f ca lcu la ting  the flux , b u t don’t  

account fo r th is  in  assigning the  in tegra ted flu x  to  some observed tim e. T h is  d is to rts  

the  pulse shape, and has im p lica tions  fo r da ta  analysis. T h is  is discussed fu rth e r 

in  Section 4.3.

angular m om entum  observer. The angle £ form ed between the flu id  ve loc ity  and

{W/V){ 1 -  QJ) + (gtt + n*gt4>)/(WV)
[ - l  +  ((5« +  Q *5 # ) / ( W ) ) 2p /2  ’

(2.143)

and the ve loc ity  measured a t the  surface in  the observer’s fram e is

W 2 V 2
(2.144)

Then in  the general spacetime, the le ft-hand side can be expressed as

I gtt + I
W2

(2.145)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

C hapter 3

N um erical procedure

3.1 In tro d u ctio n

The m ain ob jective o f th is  w ork is, firs t, to  set ou t a general m ethod by which the 

observed flu x  from  a b rig h t spot on the surface o f a ra p id ly -ro ta tin g  neutron star can 

be calculated w ith o u t invoking a special choice o f the  exte rio r m etric , and inc lud ing  

the effects o f the  vary ing  tim es-o f-fligh t o f photons and the m otion  o f the  e m ittin g  

region. The ana ly tica l p a rt o f th is  was set ou t in  C hapter 2, b u t the m ethod th a t 

is envisioned requires num erical m ethods to  evaluate the integrals th a t resu lt— at 

least because, in  general, the  m etric  components are on ly  known num erically. A  

second ob jective is to  determ ine the degree to  which an accurate ca lcu la tion  w ith  a 

precise m etric , s te lla r oblateness, tim e -o f-fligh t, and m otion  effects included, differs 

from  calculations th a t make approxim ations to  one or more o f these elements which 

our m ethod is designed to  include. In  order to  accomplish th is , i t  was necessary 

to  im plem ent a code th a t was flex ib le  enough th a t i t  would be possible to  ca rry  

th rough  the  precise ca lcu la tion , b u t also several varia tions on it .  In  th is  chapter, 

we touch on the  various techniques we have used in  th is  im p lem enta tion  o f th is  

com puter code, and provide a look a t some o f the  code ve rifica tion  w hich was 

performed.

The com puter code fo r th is  p ro jec t was im plem ented in  the C + +  program m ing 

language (S troustrup  (1997); also see Eckel (2000) fo r an excellent guide to  the 

language). In  its  curren t form , approx im ate ly  13.1 x  103 lines o f source code were 

developed for th is  w o rk  inc lud ing  declarations, comments, and a sm all am ount o f 

superceded code, b u t no t inc lud ing  b lank lines. We also make use o f an external 

lib ra ry  (Gam m el, 2005) fo r in te rpo la tio n  m ethods, and have customised a version 

o f the RNS code (Stergioulas and Friedm an, 1995) to  produce files conta in ing the
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m etric  components, th e ir derivatives, ste llar oblateness, and o ther s te lla r parame

ters fo r a ste lla r model specified by a choice o f equation o f state (EOS), mass, and 

spin frequency. D eta ils about RNS and the m odifica tions are given in  Section 2.2.

Developing the code in  C + +  was a na tu ra l choice, because i t  allows the soft

ware to  be w ritte n  in  a fashion where logical concepts (e.g., a m etric , o f basic 

type Metric) are decoupled from  the im plem enta tion  details (e.g., the  code to  deal 

w ith  a num erically-specified m etric  from  RNS o u tp u t in  the class RNSMetric, or 

perhaps an a n a ly tica lly  specified m etric, as in  the class KerrMetric). In  th is  ex

ample, RNSMetric is called a subclass o f the class Metric. The exact specification 

o f m etric  type can be made a t run tim e  using com m and-line arguments, b u t aside 

from  the in it ia l creation o f the  m etric  da ta  structure, the rem ainder o f the  code 

need on ly  ever be w ritte n  to  deal w ith  the generic base type  Metric, ra the r than  

dealing w ith  a ll possible subclasses o f Metric th a t m igh t be encountered. In  o ther 

words, one does no t need to  w rite  complicated branching routines, or m u ltip le  ver

sions o f functions adapted fo r every conceivable subclass o f the  base class Metric, 

and instead one ju s t deals w ith  a common interface th a t a ll such subclasses im 

plement. The correct m apping, or “b ind ing ” , between a func tion  ca ll somewhere 

in  the code to  a m ethod th a t a ll instances o f classes deriv ing  from  Metric m ust 

im plem ent (e.g., a ll such instances m ust provide an im plem enta tion  o f the  function  

Metric: :rho(r ,theta)), to  the  required im plem enta tion  o f th a t func tion  (e.g., a 

call to  the  code fo r RNSMetric: :rho(r , theta)), is determ ined a u tom a tica lly  at 

run tim e  w ith  no add itiona l e ffort by the program m er. Th is  is one o f the  basic fea

tures o f ob ject-orien ted program m ing languages. Th is  feature o f C + + , and others 

which are no t present in  procedura l languages like C and F O R T R A N , are used to  

solve several problems in  the design o f the  code.

3 .1 .1  D e ta ils  o f  m etr ic  a n d  ste lla r  su rface  d escr ip tio n s

In  pa rticu la r, given an EOS, mass M ,  and frequency Q*, we investigate the fo llow ing 

five s ituations, which each represent a subclass o f Metric:

E xact Using the  exact m etric , and surface loca tion  f s(0) as o u tp u t by the cus

tom ised RNS code.

O blate Kerr (OK ) Using the K e rr m e tric  as given in  Section 2.2.1 w ith  a =  

J / M ,  where J  is obta ined from  the RNS calculation, and the ste lla r surface 

located a t the  same f s(0) as in  the  E xact case.
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“Spherical” Kerr (SK ) As above, b u t the ste lla r surface is located a t constant 

f  =  f s(7r/2) at a ll 9.

O blate Schwarzschild (OS) As fo r O K , b u t se tting  a =  0.

Spherical Schwarzschild (SS) W here the Exact case is used to  calculate the 

areal (Schwarzschild) radius on the equator, I? =  exp [ ( 7  — p ) /2 ] fs(7r/2), and 

the surface is located a t coordinate f  such th a t the areal radius has value R  

(using the Schwarzschild m etric ) a t a ll angles.

I t  should be noted th a t w ith  th is  de fin ition , the  OS and SS cases do no t agree on the 

value o f f  or R  on the  equator due to  the s ligh t difference in  th e ir de fin ition . W h ile  i t  

is possible to  redefine the OS or SS approx im ation  so th a t they are consistent in  th is  

fashion, the defin itions above represent perhaps the  most s tra igh tfo rw ard  means 

by w hich a person w ith  access to  a s truc tu re  code such as RNS and a ray trac ing  

code for the  Schwarzschild or K e rr spacetimes m igh t a tte m p t to  approxim ate the 

s itua tion .

3.2 In tegration  o f  rays

In teg ra tion  o f a single n u ll ray proceeds by setting  the in it ia l coordinates f j  and 

0 i ,  selecting an allowed value o f b according to  the constra in t a t E quation  2.41, 

and in it ia l values o f 9{ and f j  w hich are constrained by the geom etry o f the ste llar 

surface. W ith  the in it ia l conditions in  hand, the  o rd in a ry  d iffe rentia l equations 2.33, 

2.34, 2.37, and 2.38 for the  pa th  followed by the  ray  can be in tegrated num erically. 

Since Equations 2.37 and 2.38 are second order equations, we add tw o equations 

to  the fa m ily  to  reduce the set o f ODEs to  a set o f six firs t order equations for 

(f(A ), 0 (A ), 0(A), 9(X), r (A ),F (A )} .

To accomplish th is  in tegra tion , we use a customised version o f a standard adap

tive  4 th -5 th  order R unge-K u tta  rou tine  (Press et a l ,  1988). The p a rticu la r cus- 

tom isations were to  a llow  fo r more flexib le  error controls than  the rou tine  given 

in  Press et al. (1988), as well as an adapta tion  to  accomodate the pecu lia rities o f 

the coordinate system we are using. For example, in  the (</>, 9) angular coordinates 

th a t we use, i t  is possible fo r a num erical in teg ra to r to  get in to  d iff ic u lty  by step

p ing to  9 <  0; add itiona l care m ust be taken so th a t such steps are corrected for 

appropria te ly  by changing the sign o f 9 and ta k in g  0  to  0  +  tt w ith o u t causing 

problems w ith  the adaptive step contro l. A dd itio n a lly , care m ust be taken th a t a ll 

in tegrations end a t the  same value o f f  =  f f .
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For some applications, a ll th a t we require is an accurate de te rm ina tion  o f Of 

and A</> given a set o f in it ia l conditions. In  th is  s itua tion , we are able to  run  the 

in teg ra tion  in  a faster mode since i t  is possible to  extrapo la te  the fina l values o f Of 

and A cf> accurately a fter most o f the in teg ra tion  has run, w ith o u t doing the tim e- 

consuming in teg ra tion  o f the  fina l values o f 0 and f  a t f  =  f f .  Th is  ex trapo la tion  is 

accomplished using the p o l i n t  rou tine  in  Press et al. (1988). The fu ll in teg ra tion  

to  f  =  f f  runs approxim ate ly  8 tim es slower than  th is  fast version, b u t the  cost 

o f using the fast in teg ra to r is th a t the  fina l values o f 9 and f  are no t useable; the 

integrals obta ined in  th is  m anner are useful fo r m aking the in te rpo la tio n  rou tine  

described in  Section 3.3 reasonably fast since i t  contains an ite ra tio n  w hich requires 

the repeated in teg ra tion  o f geodesics.

3 .2 .1  C a lcu la tin g  th e  t im e-o f-flig h t

A nother m od ifica tion  o f the  num erical O D E in teg ra to r allows us to  get accurate 

tim es-o f-fligh t o f the rays. As in  the case o f the Schwarzschild fo rm u la tion  o f the 

problem  in  Section 2.5, i t  is more convenient to  calculate the tim e -o f-fligh t o f a 

photon re la tive  to  some o ther ray, since the re la tive  tim e-o f-fligh t is much smaller 

than  the values o f t f  o u tp u t by the s tra igh tfo rw ard  in tegra tion . To accomplish th is  

calculation , we use the  R unge-K u tta  in teg ra to r to  integrate a set o f 13 ODEs: 6 

o f which are fo r the  ray being integrated, 6 o f w hich are for the  in tegra l o f the  ray 

chosen as having zero (re la tive) tim e-o f-fligh t, and a fina l equation to  accumulate 

the re la tive  tim e-o f-fligh t

d T
=  W ( A) ~  W o (A ). (3.1)

O f course care m ust be taken to  account fo r the  d ifferent param eter lengths o f 

the “zero” ray and the ray being integrated. Since we envision fin ite -d iffe rencing 

the tim e-o f-fligh t arrived at in  th is  way to  get a derivative, the  e rro r in  th is  quan

t i t y  m ust be small re la tive  to  the change in  the tim e-o f-fligh t over the size o f the 

ro ta tiona l phase bins.

T h is  in teg ra tion  can run  rough ly  20 tim es slower than  the standard in tegra tion  

described above, and 160 tim es slower than  the fast version described above. For 

efficiency, th is  m ethod is on ly  used to  ob ta in  the  tim e-o f-fligh t o f p a rticu la r rays; 

the fastest m ethod is used to  examine the va ria tion  o f A cf> and Of over the  space o f 

allowed in it ia l conditions.
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3.3  In terp o la tio n  o f  rays

The stra ightfow ard in teg ra tion  o f geodesics takes in it ia l conditions 0,, f (() t ), b, 

9i, and s g n (fj) , and yields the az im utha l deflection A cf> and fina l value Of a t the 

endpo int o f the  in tegra tion . However, dete rm in ing  the  rays extending from  a given 

position  on the  sta r to  the observer requires solving a s ligh tly  d ifferent problem : 

we need a m ethod by which to  determ ine b, Oi, and sg n (fj)  i f  we know Oi, f ( 0 i ) , 

Acf and Of. To accomplish th is , we fix  Oi and f,L. and integrate a num ber o f rays 

over the entire  range o f the rem aining in it ia l conditions b, Oi, s g n (fj) . F ina lly , we 

use in te rpo la tio n  to  construct the  functions b ( A f ,  Of), 0i(A<f>, Of), and f i (A c f ,  Of) in  

order to  determ ine estimates o f the  in it ia l conditions which w ill y ie ld  the p a rticu la r 

rays we seek. Once an estim ate o f the required in it ia l conditions is obta ined in  

th is  m anner, the  forw ard in tegra tion  o f the in te rpo la ted  in it ia l conditions can be 

carried ou t as described above, and the precision o f the  in te rpo la tio n  checked. I f  

necessary, subsequent in te rpo la tions can be carried ou t so th a t u ltim a te ly  we arrive  

a t a set o f values b, Oi, and sg n (fj)  which, a fte r in tegra tion , y ie ld  Acf) and Of to  

a required accuracy. Once a fina l set o f in it ia l conditions is arrived at, the  ray  is 

re-integrated using the tim e-o f-ffigh t m ethod described above.

The choice o f m ethods by which the in te rpo la tin g  functions can be constructed 

is lim ite d  by the fact th a t the  “ da ta ” to  be used fo r the  in te rpo la tions do no t fa ll on 

a regularly-spaced g rid  in  A cf and Of. T h is  rules ou t the use o f standard methods 

such as b icub ic spline in te rpo la tio n  (Press et al.. 1988). A n  obvious choice fo r the  

in te rpo la tio n  m ethod is a b ilinear approach: th is  would proceed rough ly  by tak ing  

the three closest po in ts close to  the  desired A <f,9f, and regarding the quantities to  

be in terpo la ted, denoted / {A c f ,  Of), as being described by the  unique plane w hich 

passes th rough  the three data. In  practise, th is  m ethod required too  large a col

lection o f in te rpo la tin g  da ta  for the  ite ra tio n  described above to  converge re liab ly : 

i f  the ray corresponding to  the in te rpo la ted  in it ia l conditions is no t closer to  the 

desired p o in t than  the three vertices used to  construct the in te rp o la tin g  function , 

then th is  m ethod cannot be used as an ite ra tio n  fo r successively im proved rays. 

I t  was found th a t Shepard’s m ethod (Shepard, 1968) fo r in te rpo la tio n  perform ed 

acceptably well in  th a t i t  d id  not require too  much da ta  fo r the  envisaged in te r

po la tion  to  converge qu ick ly ; we make use o f a pub lic ly-availab le  im plem enta tion  

o f a m odified Shepard’s m ethod which is d is trib u te d  w ith  the  M atpack C + +  N u

merics and G raphics L ib ra ry  (Gammel, 2005; Renka, 1988). The deta ils o f th is  

in te rpo la tio n  a lgo rithm  are set ou t below in  Section 3.3.1.
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3 .3 .1  S h ep a rd ’s In te r p o la t io n  o f  S c a tte r e d  D a ta 1

Shepard’s m ethod uses a system o f weighted averages to  produce a once contin-

data; the m ethod also a ttem pts to  account fo r “screening” o f fa r away data  by 

closer da ta  in  the same d irection , and to  produce an in te rpo la tin g  function  w ith  

reasonable p a rtia l derivatives. Follow ing Shepard (1968), we w ill describe how the 

m ethod can accomplish these objectives, a lthough the specific im p lem enta tion  by

Zi fo r po in ts D i  =  (X i ,y i ), we w ish to  in te rpo la te  the value o f a function  f ( x , y ) 

described by the da ta  a t the  po in t P  =  (x ,y ) .  I f  d ( P ,D i ) =  di is the Euclidean 

distance between P  and D i,  then  the basic idea o f weighted average in te rpo la tion  

is to  com pute the approx im ation

The requirem ent th a t the  in te rpo la tin g  func tion  /  is differentiab le requires u  >  1. 

T h is  p a rticu la r p rescrip tion  has the p rope rty  th a t the  x  and y  p a rtia l derivatives 

o f the in te rpo la tio n  func tion  approach 0  a t the  data, and i t  is desireable to  find

p a rtia l derivatives are obtained. E m p irica lly , Shepard (1968) found th a t u >  2 

leads to  s itua tions where the  in te rpo la tin g  func tion  is qu ite  fla t near the  da ta  and 

has steep tra n s itio n  zones between data, whereas u =  2  tended to  w ork be tte r fo r 

general purposes.

To make the ca lcu la tion  more efficient, i t  is reasonable to  com pute the  above 

approx im ation  by sum m ing over on ly  those po in ts in  some r-ne ighbourhood o f 

P , C p  =  {Dj\d,j <  r } ,  w ith  r  chosen so th a t a sufficient num ber o f da ta  are 

included, b u t sm all enough fo r the  com puta tion  to  be efficient. Futherm ore, one 

can reasonably generalise the weights 1  /d i  to  be weaker fo r the  most d is tan t points.

xT h e  d e ve lo pm e n t o f  th is  se c tio n  fo llo w s  a lm o s t id e n tic a lly  th e  e x p o s itio n  o r ig in a lly  g iven  b y  
S hepard  (1968); th e  d e ve lo pm e n t is repea ted  here  s ince i t ’s n o t a d if f ic u lt  a lg o r ith m , and  s ig n if ic a n t 
use is m ade  o f  i t .  F u r th e rm o re , i t  is  n o t  d iscussed in  s ta n d a rd  n u m e ric a l m e th o d s  te x ts  lik e  Press 
et al. (1988).

uously d iffe rentiab le  in te rp o la tin g  function  which passes though the in te rpo la tin g

Renka (1988) has been im proved in  certa in  respects. S ta rting  w ith  N  da ta  values

i f  di 7  ̂ 0  fo r every i  

i f  d, =  0  fo r some i .
(3.2)

a m ethod by w hich takes in to  account the  “slope” o f the da ta  so th a t reasonable
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Shepard (1968) proposes the weights Sj =  s (d j) given by

i f  0 <  d <  r / 3

s (d) =  {  I ( " - l Y  i f  i < d < r  (3.3)
i f  r  <  d.

These weights have the required co n tin u ity  at d =  r /3 ,  and have the p rope rty  th a t 

po in ts outside o f C p  are not included in  the  weighted average. The in te rpo la tin g  

function  is taken to  be

h (X, y ) = {  i f f  (3.4)
\  — Zi i f  di =  0 fo r some i.

To incorpora te  the effect o f “screening” o f more d is tant da ta  by closer da ta  in  

the same d irection, the  weights are fu rth e r m odified  by inco rpora ting  a d irectiona l 

term ,
4 _  E 3 S j( l “  c o s (D iP D j) )  ^

E  j  S3

where
( x  — X i ) ( x  — X j )  +  ( y  — V i ) ( y  — V j )  

cos ( D iP D j )  =  ± ^ ^ —  • (3 ‘6)
(X j (Xj

The facto r i j  tends to  be close to  0 when D i  lies generally in  the  same d irection

as the o the r da ta  away from  P,  and close to  2 when D-i lies opposite the other

data from  P .  Shepard (1968) defines new w eighting  functions wl =  (s j)2( l  +  )

which has the effect o f increasing the influence o f unscreened da ta  and decreasing 

the influence o f screened data. The in te rpo la tin g  function  is given by

f  i f  di ^  0 fo r every i  .
h ( x , y )  =  \  Z m  7 (3.7)

^ =  Zi if  di =  0 fo r some i .

The rem ain ing issue th a t Shepard (1968) deals w ith  is an ad justm ent to  account

for the  “slope” o f the data, as the  preceding in te rpo la tin g  functions a ll have the

p rope rty  th a t at every D i,  d f / d x  =  d f / d y  — 0. T h is  is accomplished by se tting  

out a weighted average corresponding to  an approx im ation  o f the  p a rtia l derivatives 

o f the data; sum m ing over the data  in  C p  =  C p \  D i,

Ai =  (3.8)
E n . e c i  w j
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B t  =  d ( D t ,D 3 Yz ( 3 9 )

zZ d j & C }, w i

C learly  A i  and B, are respectively estimates o f the  x  and y  p a rtia l derivatives o f 

the da ta  at D i.  To see th is , consider the general s itua tion  o f a func tion  F ( x ,  y ) and 

a second function  G (A) w hich is once continuously differentiab le, w ith

A2 =  (x  -  X i f  +  (y -  y i ) 2, (3.10)

G  satisfy ing G (0) =  F ( x i , y i ) =  Z i  and G ( d ( D i ,D j ) )  =  F ( x j , y j )  =  Z j .  Then i f  

( IF  =  dG , we have

OF  n 1 dG  r , , , , , . /0
~dx +  ~dy V =  A dA _  Xi'  +  ~  Vi>dy \

A pprox im a tion  o f d F / d x  a t D.t is obtained by approx im ating  d G /d A  «  A G /A , 

where A G  =  G ( d ( D i , D j ) )  — G (0) and A =  d (D i,  D j ), so th a t

d F  ^ ( A G ) { x j - x i )

dx  ~  d ( D i , D j ) 2 ' 1 j

The q u a n tity  A  is ju s t the  weighted average o f these approxim ations over pairs o f 

data. S im ilarly, the y  p a rtia l derivative is approxim ated by B .

These slope term s should be in troduced in  such a m anner th a t th e y  affect the 

in te rpo la ted  values close to  the  data, b u t have l i t t le  effect fa r from  data. Shepard 

(1968) accomplishes th is  by defin ing a distance param eter

v =  f3(msoc(zi) — m in ( 2 : j) ) /(m a x (A f +  B j ) ) 1/ 2, (3.13)

where j3 is a small num ber ( 6  — 0.1 in  Shepard (1968)). Then, given P ,  increments 

A  Zi are com puted fo r each D i  according to

A  Zi =  (A i ( x  -  Xi) +  B i ( y  -  y i ) ) — "  (3.14)
^  r

O bviously a t every D i,  the x  and y  p a rtia l derivatives o f the increm ent A z , are A,  

and B i  respectively. The size o f the  increments are bounded by

|A z j| <  /3(m&x(zi) — m in (^ j) ) , (3.15)
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and approach 0 as di —>■ oo. The fina l in te rpo la tin g  function  is

f <"fe+A»‘) i f  d i j t o  fo r e v e ry ! 
h ( x , y )  =  {  . (3.16)

( =  Zi i f  cLi =  0 to r some i \

T h is  in te rpo la tin g  func tion  has the  add itiona l p rope rty  th a t the  p a rtia l derivatives 

evaluated at the  da ta  po in ts have reasonable values. T h is  is the  fina l in te rp o la tin g  

func tion  the Shepard (1968) proposed; im provem ent in  th is  m ethod is achieved by 

Renka (1988) by m aking d ifferent choices o f weights, Wi, and the “nodal functions,” 

in  th is  case (z^ +  A  Zi).

3.4  C a lcu la tin g  th e  ligh t curve

Several separate programs are run  in  order to  produce the lig h t curves. E xcept

ing  the SS calculations which can o p tiona lly  use m anually  specified parameters, 

the m etric  and ste lla r s truc tu re  com puta tion  m ust be carried ou t fo r the  desired 

com bination o f EOS, mass, and spin frequency. T h is  takes place by runn ing  an 

instance o f a program  based on RNS (Stergioulas and Friedman, 1995), described 

in  Section 2.2. The o u tp u t o f th is  program  is a b ina ry  file con ta in ing  the m etric  

potentia ls and derivatives, the loca tion  o f the s ta r ’s surface as a func tion  o f la t i

tude, the  centra l energy density o f the  model, and the angular m om entum  o f the  

star. Th is  o u tp u t is designed to  be loaded by the  o ther programs we use. The  file  

fo r a single model is approx im ate ly  9 megabytes in  size, corresponding to  a com

pu ta tion a l g rid  o f 201 x  401 divis ions (angular x  spa tia l g rid  po in ts ), and a single 

execution takes on the order o f m inutes, since the m odified program  is designed 

to  ite ra te  over several models to  find  a desired mass and frequency. The standard 

RNS a lgo rithm  computes models given the centra l energy density and ra tio  o f po la r 

to  equatoria l axes, f p/ f e.

The next stage o f the  ca lcu la tion  is to  generate the tables used fo r ray  in te rpo 

la tion . These are files conta in ing da ta  describ ing n u ll geodesics fo r a fixed in it ia l 

la titu d e  9l and radius r s(9i), ranging over a ll allowed in it ia l conditions. T h is  p ro 

gram  uses the  fastest version o f the  R unge-K u tta  in tegra to r, described above, since 

a t th is  stage a ll we require is the  m apping between in it ia l cond itions b, 9i, and 

s g n (fj) , to  the angular deflections o f the  photon tra jecto ries Act) and 9f. The tables 

w ill depend on the approx im ation  scheme being considered (Exact, O K , OS, SK, 

SS), since the allowed in it ia l conditions and fina l integrals depend on the  choice 

o f m etric  and descrip tion o f the  ste lla r surface. Each la titu d e  o f the  ste lla r model
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requires a separate table, and for a given pulse profile , at least tw o tables are re

quired fo r the  northe rn  and southern boundaries o f the  e m ittin g  region. In  practice 

we have ty p ica lly  generated a ll o f the  tables fo r a given ste llar model and approxi

m ation  mode a t a tim e, fo r typ ica l angular separations o f 2°. In  the  configura tion  

used for the b u lk  o f our results, a single tab le  a t a given la titu d e  would contain 

approxim ate ly  104 separate integrals o f the  geodesic equations, and the results are 

stored in  a file  approx im ate ly  500 k ilobytes in  size. In  the current configura tion  a 

single tab le  w ould take approx im ate ly  1-3 C P U  hours to  com pute on com m odity  

Pentium  IV  class hardware. To com pute 45 tables covering the whole o f the  upper 

hemisphere o f a neutron s ta r model takes on the order o f 2 C PU  days. Each invo

cation o f th is  program  is fo r a fixed Oi, and so the task o f ca lcu la ting  a ll tables fo r a 

given ste lla r model can be easily sp lit up between d iffe rent computers, fo r example 

in  a cluster environm ent.

The next stage o f the  ca lcu la tion  requires the neutron star model and tw o o f 

the tables com puted in  the  previous step, corresponding to  the upper and lower 

boundary o f the  emission region. The loca tion  o f the  observer Of fo r the desired 

pulse pro file  is also specified. W ith  th is  in fo rm a tion , we use Shepard’s in te rpo la 

tio n  to  com pute the in it ia l conditions 6, Oi, and sg n (f7;) corresponding to  photons 

o rig ina ting  a t in it ia l angular coordinates (fa  =  n(2ir/N),0i) ,  and land ing a t co

ordinates (0 ,0f).  N  =  180 is the  typ ica l num ber o f az im utha l subdivisions th a t 

we used, and n  is an index runn ing  from  0 to  N  — 1. For each value n, an ite r

a tion  takes place where Shepard’s in te rpo la tio n  is used to  ob ta in  a guess fo r the  

desired in it ia l conditions. The  fast version o f the  R unge-K u tta  in teg ra to r is used 

to  check the guess. I f  the  obta ined angular deflections are no t w ith in  a required 

tolerance, the  resu lt o f the  in teg ra tion  is added to  the  tab le  and another guess is 

made. W hen th is  procedure converges on the required in it ia l conditions, the  slow 

version o f the R unge -K u tta  in teg ra to r is s tarted  to  compute the tim e -o f-fligh t and 

fina l d irections o f the lig h t ray, and the resu lt is saved. Obviously, th is  ite ra tion  

w ill fa il i f  the  desired ray fa lls outside o f the  bounds o f the scattered data, and 

in  th is  case the loca tion  is marked as inv is ib le  to  the  observer. The  collection o f 

fina l in tegra ted rays are w r itte n  to  a file. For 180 azim utha l d ivisions the files fo r a 

single in it ia l la titu d e  0i are several tens o f kilobytes. In  the current configuration, 

a single la titu d e  m ay take anywhere from  m inutes to  1-2 C P U  hours to  calculate, 

depending on the v iew ing geom etry and the m etric  being employed. T h is  task is 

also well-su ited to  c luster com puting, since the s ta rtin g  and stopp ing value o f the 

index n can be selected at run tim e  and the  results o f the calculations merged to 
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gether when a ll values o f n  have been computed. Tw o executions o f th is  ca lcu lation 

are required fo r a single pulse shape, corresponding to  the top  and bo tto m  o f the 

emission region.

The fina l stage o f the  ca lcu la tion  s im p ly  reads in  the “n o rth ” and “south” ray 

solutions from  the previous step, and uses the steps enumerated in  Section 2.4.2 

to  com pute the pulse profile. In  th is  thesis we have restric ted ourselves to  the 

bo lom etric  flu x  from  a small, iso trop ica lly  e m ittin g  region on the surface o f the 

star. For each loca tion  4>e o f the rectangular e m ittin g  region, the solid angle (10 

subtended by the  patch on the observer’s sky is calculated, using Equations 2.73, 

2.74, and 2.75. The average value o f (1 +  z) is calculated using E quation  2.50, 

and the a rriva l tim e  o f the  flu x  t Q =  0e/ f l *  +  T(cf>e) is calculated, where T(cf>e) 

is the average tim e-o f-fligh t o f photons to  reach the observer from  the e m ittin g  

patch. Also, the  facto r ( 1  +  0,+dT /  is calculated by fin ite  d ifferencing the

tim e-o f-fligh t on neighbouring bins. The bo lom etric  flu x  is then taken to  be

F { t o )  “  (1 +  ^)4(1 +  JI*(dT/d</))) ’ (3 '17)

A  fina l step rescales the m axim um  flu x  to  value 1.0, and interpolates the calculated 

fluxes onto evenly-spaced a rriva l times. T h is  in te rpo la tion  step is necessary to  

a id w ith  subsequent analysis, since the emission patches are spaced u n ifo rm ly  by 

azim utha l angle, and not by un ifo rm  increments o f a rriva l tim e. In  th is  step i t  is 

also possible to  o p tiona lly  disregard the tim e -o f-fligh t T(<f>e) when com puting t 0, 

since we w ish to  investigate the effect th is  approxim ation w ill have on the  shape o f 

the  lig h t curve. Th is  program  takes a few seconds to  run  and ou tpu ts  short te x t 

files conta in ing the results o f the calculation.

We have also w r itte n  a code im plem enting the m ethod for a spherical s ta r and 

Schwarzschild m etric , fo llow ing the independent m ethod derived in  Section 2.5. 

T h is  is used p a rtia lly  as verifica tion , to  see th a t when the general m ethod employs 

the SS approx im ation  to  com pute a pulse profile , th a t i t  recovers w ha t w ould be 

calculated by a code th a t is specialised fo r th is  purpose.

3.5 V erify ing  th e  im p lem en ta tion

We have im plem ented a new m ethod o f ca lcu la ting  the observed lig h t curve for sur

face emission from  ro ta tin g  neutron stars, which makes use o f the  exact spacetime 

m etric , and accounts fo r the  tim e-o f-fligh t o f photons and the m otion  o f the  em it

tin g  region. I t  is not possible to  check the fu ll version o f th is  ca lcu la tion  because
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bo th  the m ethod used and the q u a n tity  calculated are new. However, i t  is possible 

to  check th a t im p o rta n t quantities in  the code are self-consistent, and th a t when 

the code is run  w ith  approxim ations to  the ex te rio r m etric  and ste lla r s tructu re , 

th a t the o u tp u t matches (or can be sensibly compared to ) w ha t can be obtained 

using more s tra igh tfo rw ard  methods.

3 .5 .1  C h eck in g  f s{9)

We m odified a th ird -p a rty  com puter code, RNS (Stergioulas and Friedm an, 1995), 

to  calculate the loca tion  o f the ste llar surface, and to  ou tp u t th is  in  a file  in  add ition  

to  the spacetime m etric  potentia ls  and th e ir  derivatives, and several o ther physical 

values which describe the ste llar model corresponding to  a supplied EOS, mass, 

and frequency.

To check th a t the obta ined location  o f the  ste llar surface, f s(6 ), is correct, we can 

calculate the angle form ed between the norm al to  the s ta r’s surface as defined by the 

four-acceleration o f the  flu id  elements a t the surface, described in  Section 2.3.4, and 

the geometric norm al defined by the coordinate position  o f the  surface, described 

in  Section 2.3.4. The form er q u a n tity  depends on the m etric  potentia ls  and th e ir 

derivatives, w h ile  the la tte r depends on a derivative o f f s(0). In  an equ ilib rium  

configuration, these defin itions should coincide and the angle form ed between these 

vectors should be 0 .

We found th a t fo r the  exact m etrics th is  angle was on the order o f 10 4  degrees 

or smaller, and fo r the  oblate approxim ations O K  and OS, th a t th is  angle was on 

the order o f 10_ 1  degrees. For the spherical approxim ations SK and SS, where th is  

check ought to  fa il, th is  angle was as large as order 1 0  degrees fo r the  models th a t 

were the m ost oblate.

These checks suggest th a t values o f f s(9) calculated in  our customised version 

o f RNS are consistent w ith  the values o f the  m e tric  components.

3 .5 .2  C o m p a r iso n  w ith  S ch w arzsch ild  lig h t cu rves  

Spherical m odels

In  Section 2.5, a m ethod to  calculate the lig h t curve using the approx im ation  

o f a spherical star and Schwarzschild exte rio r spacetime was presented. Using 

a com plete ly separate com puter code, we can evaluate the flu x  according to  Equa

tio n  2.136 fo r a set o f parameters, and compare the result to  the  o u tp u t o f the 

general code we developed. I f  the  results are the same, then we have confirm a
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tio n  th a t, a t least fo r th is  set o f assumptions, the  programs calculate equivalent 

quantities and the general m ethod we are proposing is correct.

In  pa rticu la r, the  ve rifica tion  code relies on ly  on the num erical in te rg ra tion  

o f ip(b) and T (b ) (Equations 2.117 and 2.118, respectively) and a ro o t-find ing  

a lgo rithm  to  determ ine b(ip); we used R idde r’s m ethod (Press et al., 1988) on a 

precom puted array o f ip{b) values to  accomplish th is . The general code is w hat we 

w ill eventua lly use w ith  the RNS num erical spacetimes and an accurate ca lcu la tion 

o f the  s te lla r oblateness, except fo r ve rifica tion  purposes we are runn ing  i t  fo r the 

SS approx im ation  described above. T h is  m ethod depends on the general so lu tion 

o f the geodesics chosen in  the less convenient coordinate system where 9 =  i t / 2 

corresponds to  the  s ta r’s equatoria l plane (i.e., the  plane norm al to  the spin axis), 

and on the de term ina tion  o f the  solid angle p ro jec tion  according to  the m ethod 

described in  Section 2.4.1, which involves inner products o f pairs o f rays a rr iv in g  at 

the  observer w hich can be traced back to  a patch o f fixed angular size on the star.

In  F igure  3.1, we show the observed bo lom etric  flu x  calculated from  a small 

e m ittin g  region fo r a va rie ty  o f geometries and M / R  values, and the equivalence o f 

these tw o methods in  these cases is apparent.

O blate m odel com pared to  spherical m odel

A  fu rth e r check is to  compare the  OS approx im ation  to  an appropria te ly  chosen 

SS ca lcu lation . We do th is  as follows: given 9e fo r the  emission region, we can 

calculate the radius R (9e) in the  OS approxim ation , and run  the SS ca lcu la tion  for 

the  same set o f parameters. In  w ha t follows i t  is useful to  consider a model where 

the effect o f oblateness is no t sm all; we w il l  use the SS and OS approxim ations 

to  the model calculated w ith  EOS L  fo r =  600 Hz, and M / M q  — 1.4. T h is  

p a rticu la r model is spinn ing a t a ra te  close to  its  breakup speed o f 742 Hz, which 

results in  d is to rtio n  o f the s ta r’s surface. A n  ind ica tion  o f the degree o f oblateness 

is given by  the axes ra tio  fo r th is  model w hich is r s( 0 ) / r s(n /2 )  «  0.83. We wish 

to  examine the effect aris ing from  the d ifferent o rientations o f surface elements in  

the SS and OS calculations, and so we m ust p ick 9e away from  the spin axis and 

the equator, so th a t d f s(9 ) /d9  ^  0. For th is  section, a ll comparisons are made 

using 9e =  41°, 90  =  20°. For th is  s itua tion , we use R  =  14.7538 km  fo r the 

corresponding SS model. Also, w ith  these p a rticu la r values the code w ill in tegra te  

to  f f  =  696.32 km  fo r the  OS model, and fy  =  617.41 km  fo r the  SS model.

F irs t we check th a t the redshifts and d tr / d t e are the same for bo th  the  OS and 

SS calculations, w hich are depicted in  Figures 3.2 and 3.3 respectively. B o th  figures
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Figure 3.1: C om paring d irect Schwarzschild ca lcu la tion  o f bo lom etric  flu x  to  SS 
approx im ation  in  the general code: These figures show the calculated bo lom et
ric  flu x  as a func tion  o f the observed tim e. A l l  three calculations have ro ta tio n  
ra te  f l *  =  600 Hz, and mass M / M & =  1.4. The top  panel is fo r a star w ith  
G M / ( c 2 R ) =  0.211, and Schwarzschild radius R  =  9.78 km, corresponding to  val
ues at the  equator fo r a model com puted w ith  EOS A ; the emission is from  9e =  41°, 
and observation from  90 =  100°. The m idd le  panel and bo ttom  panels are fo r a star 
w ith  G M / ( c 2 R ) =  0.126, R  =  16.38 km , corresponding to  values at the equator fo r 
a model com puted w ith  EOS L. The m idd le  panel was calculated for 9e — 41°, 
90  =  20°. The b o tto m  panel has 9e =  85°, 0O =  100°.
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Figure 3.2: Comparison o f (1 +  z) in  spherical and oblate codes, when M / R  and 
R  is matched: T h is  is a p lo t o f the ra tio  o f (1 +  z) values calculated in  the OS and 
SS calculations as a function  o f ro ta tio n a l phase, when a ll quantities are otherw ise 
the same (to  fin ite  precision).

are p lo ts o f the  ra tios o f the  relevant values between the OS and SS calculations 

as a func tion  o f ro ta tio n  phase ( not  observed phase). Idea lly  these graphs should 

show a constant value o f 1  a t a ll times; in  practice there is a l im it  to  the precision. 

We see th a t the  redsh ift ra tio  in  F igure  3.2 has very weak ro ta tio n a l m odu la tion  

around a value o f 0.99953; w hich tends to  ind ica te  th a t the ca lcu la tion  o f 2  is the 

same in  e ither the SS or OS case as intended. The slight sh ift away from  1  and 

weak m odu la tion  is no t unreasonable because fo r the  purpose o f th is  ca lcu la tion  the 

SS parameters were m anua lly  set a t run tim e, and the parameters M ,  R,  12* were 

no t in p u t to  be tte r than  the ind ica ted accuracy. S im ilarly, the  graph o f d tr / d t e 

In  F igure 3.3 shows a very m ild  ro ta tiona lly -m odu la ted  error about 1. So we have 

dem onstrated th a t in  these respects the  SS and OS calculations agree, w hich they 

must fo r a co rrec tly  im plem ented code.

These calculations m ust d iffer, however, on the pro jected solid angle df2. How

ever, i t  is also possible to  see th a t they  d iffe r in  a predictab le  way: one na ive ly 

expects th a t the difference in  the pro jected solid angle between the SS and OS
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F igure 3.3: Com parison o f d tr / d t (, in  spherical and ob late codes, when M / R  and R  
is matched: As w ith  F igure 3.2, th is  is another check th a t quantities th a t ought to  
match between the spherical (SS) and oblate (OS) calculations m atch to  reasonable 
precision.
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calculations should be governed by

(3.18)

where a  is the zenith  angle as measured by an observer at the  surface o f the star, 

and A; is a constant chosen to  account fo r the  d ifferent rad ia l loca tion  o f the  observer 

in  the OS and SS cases w hich results because o f a coordinate choice th a t is made 

in  the com puter code. In  term s o f the above re lations, we expect th a t

k  «  D sS/ D qS, (3.19)

where D  represents the radius o f the  observer’s sky, and so D  «  f f  fo r the  geodesic 

integrations. In  F igure 3.4, we show the ra tio  fcd fiss /c lflos  agrees w ith  the ra tio  

cos a s s /c o s a o s  when k — 0.7988. In  th is  case k  was chosen by inspection, bu t 

( f / ) s s / (T /)o s  =  0.7862 in  th is  case, ind ica ting  th a t k  is accounted fo r to  w ith in  2% 

by the d ifferent fina l values o f f f  used in  these tw o calculations. T h a t th is  re la tion  

isn ’t  exact isn ’t  surprising, because we have made a num ber o f idealisations; for 

example, about the  “ rad ius” D  o f the  observer’s sky, and th a t we are com paring 

e m ittin g  regions o f fixed angular size and no t fixed area. A no the r way o f presenting 

the same m ateria l is th a t the  above amounts to  a cla im  th a t f j -d f i /  cos a  is a 

constant func tion  o f ro ta tio n a l phase, and th a t th is  constant ought to  be the same 

for bo th  the SS and OS calculations. In  F igure  3.5 we check th is , and see th a t th is  

does approx im ate ly  ho ld  to  about the  same level.

The fact th a t the  difference in  the solid angle p ro jec tion  between the  SS and 

OS modes o f ca lcu la tion  can generally be understood so well in  basic term s serves 

as a check th a t the  m ethod created fo r ca lcu la ting  the  solid angle p ro jec tion  v ia  

inner products in  the  general code is a correct one. I t  is also suggestive o f a 

means by w hich exis ting  com puter codes based on the Schwarzschild fo rm alism  o f 

Section 2.5, s im ila r to  the  independent code we used earlier in  th is  section, m igh t 

be adapted for rap id  ro ta tio n  to  some effect by p roperly  accounting fo r oblateness 

which becomes a facto r in  these models. To make th is  adapta tion  w ould require 

a specification R s(0) fo r the  loca tion  o f the  surface o f the star, which in  p rinc ip le  

could be used to  ob ta in  a correction fac to r like cos aQbi. /  cos asph. fo r the  calculated 

flux. M ak ing  th is  adapta tion  w ould also require care w ith  the v is ib ility  cond ition  

cos a  >  0 as in  certa in  circumstances lig h t is blocked in  the oblate case th a t would 

otherwise be visib le, and vice versa. In  Section 4.5 a model o f R s(6 ) is given in  

term s o f polynom ia ls and sim ple parameters, and the correction facto r im p lied  by

d flp s  _  j  d flss  
cos aos cos a s s '
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Figure 3.4: C om paring M O g s /d ^ o s  w ith  cos agg /cos a o s : T h is  is a check th a t 
the  solid angle pro jections calculated in  the SS and OS methods scale in  a manner 
determ ined by the shape o f the  surface.
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Figure 3.5: Checking constantness o f f y d f i /c o s a :  T h is  check is re la ted to  F ig 
ure 3.4; i t  is another way o f seeing th a t the solid angle p ro jec tion  is determ ined by 
the o rien ta tion  o f the  e m ittin g  region.
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these observations is given exp lic itly .

3 .5 .3  C h eck in g  C a r ter ’s c o n sta n t

Comparisons to  cases calculated using the  Schwarzschild m etric  are on ly  useful 

up to  a po in t. A n  add itiona l check on our general code can be made by runn ing  

calculations in  e ither the  O K  or SK configura tion , where the  ex te rio r m etric  is ap

proxim ated as K e rr w ith  a — J / M : J  is obta ined v ia  the RNS s truc tu re  ca lcu la tion . 

In  the K e rr spacetime, there is an add itiona l sym m etry beyond s ta tio n a rity  and 

axisym m etry  which results in  the  qu a n tity

K  =  ( f e 2a{ f  j E ) f  +  b2 /  s in2(0) +  a2 sin 2 (0) (3.20)

being conserved along the pho ton ’s w orld  line. K  is C a rte r’s constant (C arter, 

1968). B y  looking at the in it ia l and fina l values o f C a rte r’s constant, we found th a t 

the change was ty p ica lly  on the order o f a few parts in  105 when the ex te rio r space

tim e  was K e rr, w hich suggests th a t the  com puter code for the  geodesic in tegra tion  

functions correctly. W hen the general code is run  w ith  the exact ex te rio r m etric , 

the re la tive  change in  C a rte r’s constant increases to  up to  a few parts in  102; we 

don’t  expect C a rte r’s constant to  be conserved when using the exact ex te rio r m etric  

since the conservation o f K  is a result th a t is special to  K e rr spacetimes.

3 .5 .4  C h eck in g  tim e-o f-f lig h t & fu tu r e  im p ro v em en ts

In  its  current configuration, the  facto r 1 +  QkdT/<\<j> appearing in  the  flu x  in tegra l 

is calculated by d irect fin ite -d iffe rencing the  tim es-o f-fligh t T  over equally-spaced 

divisions in  <fie. Considering Equation  2.109, i t  would be be tte r to  m od ify  the  code 

so th a t i t  calculates th is  facto r on ly  in  term s o f b and 11*; th is  is an o p p o rtu n ity  

fo r fu tu re  im provem ent o f the  code. As i t  is, the  slow in teg ra tion  w hich obta ins 

the tim e-o f-fligh t a fte r an appropria te  com bination o f in it ia l conditions is found 

m ust be run  a t a high-enough precision th a t the  derivative o f T  can be accurately 

calculated num erically; the  precision o f th is  in tegra l can be relaxed somewhat (and 

made faster) i f  we use the ana ly tica l expression for th is  facto r instead. T h is  is a 

t r iv ia l change to  make; the more tim e-consum ing p a rt is re -tun ing  the accuracy 

controls fo r the slow in tegra l so th a t the  required precision in  Of is retained.

The current configura tion  a t least allows us to  check th a t the  tim es-o f-fligh t are 

being calculated correctly, by com paring 1 +  H *d T /d 0  w ith  1 — fl*fr. In  F igure  3.6, 

the quotien t o f these quantities is p lo tted , ind ica ting  agreement a t the  level o f
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F igure 3.6: V erifica tion  o f tim e -o f-fligh t v ia  its  num erical derivative: E quation  2.109 
says th a t 1 +  fl*dT/d<?!> =  1 — QJj. Using the  fin ite-differenced deriva tive  o f T  
to  evaluate the le ft-hand side, and the in te rpo la ted  value o f b fo r the  righ t-hand  
side, we check th a t the  correct correspondence exists between T  and b by  p lo ttin g  
(1 +  Cl*dT/ d<f))/ (1  — In  th is  case, we used an EOS L  ste lla r m odel w ith
O* =  600Hz, M  =  1AM ® , R  =  16.38km , G M / c 2R  =  0.126 (EOS L ), 0e =  41°, 
90 — 100°. The agreement o f these quantities is w ith in  0.15%.

0.15%. We can be confident th a t the  tim es-o f-fligh t are calculated correctly, and 

th a t the  e rro r resu lting  from  using the fin ite-d ifferenced deriva tive  is acceptably 

small.
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C hapter 4

R esu lts

4.1 In tro d u ctio n

Observations o f pulsed lig h t em itted  from  the surface o f a neutron star have the 

po ten tia l to  constra in the s ta r ’s mass and radius, and so the equation o f state o f 

the m a tte r com prising the neutron star (L a ttim e r and Prakash, 2001). One can 

see th a t th is  in fo rm ation  is encoded in  the lig h t curve rough ly v ia  the ve loc ity  o f 

the emission region (which scales w ith  R), and the s ta r ’s compactness (i.e., M / R ). 

The ve loc ity  controls the  D oppler boosting o f photon energies and the special rel- 

a tiv is tic  Terre ll (Terre ll, 1959) effect, which la rge ly determines the  asym m etry o f 

the  ligh tcurve. The compactness controls the degree to  which lig h t can “bend” 

around the star, which determ ines the length o f any eclipse w hich may be present 

in  the data. In  cases where the associated velocities are not re la tiv is tic , i t  m ay be 

th a t on ly  M / R  can be obta ined from  the lig h t curve since the ro ta tio n a l va ria tion  

o f redsh ift becomes un im po rtan t (a lte rnative ly, some add itiona l mechanism affect

ing the model lig h t curve w hich relies on R  w ou ld  need to  be in troduced). Since 

bo th  o f these effects require lig h t to  be em itted  from  the  surface o f the  star to  be 

significant, lig h t curves obta ined from  observations o f rad io pulsars are un like ly  to  

be useful in  the sense o f constra in ing these neutron sta r properties, since fo r these 

objects lig h t is p robab ly  em itted  close to  the  lig h t cylinder. On the o ther hand, 

most X -ra y  pulsars em it lig h t libera ted by accreting m a tte r which is decelerated 

close to  the surface o f the  neutron star, or else lig h t em itted by therm onuclear bu rn 

ing o f accreted m a tte r on the surface. There are efforts being made to  use X -ray  

t im in g  observations from  accreting X -ra y  binaries to  provide a de te rm ina tion  o f 

the  g lobal properties o f neutron stars. In  practice, in fo rm a tion  is extracted from  

the lig h t curve by ad justing  the parameters o f a calculable model so as to  find  the
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parameters th a t are most consistent w ith  the observations. R ealistic model lig h t 

curves generally incorpora te  parameters describing one or more spectral compo

nents w hich m ay have d ifferent associated anisotropies, as well as the shape and 

size o f the  e m ittin g  region.

The firs t a ttem pts to  model observed X -ra y  pulsar lig h t curves d id  not include 

g rav ita tiona l effects and used po lar cap models o f the  e m ittin g  region (W ang and 

W elter, 1981; Leahy, 1990, 1991). The la tte r  o f these models were m otiva ted by 

rad ia tive  transfer calculations o f the em iss iv ity  by caps and columns o f Meszaros 

and Nagel (1985). Pechenick et al. (1983) set ou t a form alism  to  account fo r 

g rav ity  in  such models fo r slow ro ta tion , by trac ing  ou t the paths o f photons in  the 

Schwarzschild spacetime. T h is  form alism  was used to  calculate the  pulse pro file  pro

duced by rad ia tion  from  hot spots and accretion columns by R iffe rt and Meszaros 

(1988), which in  a fo llow -up paper was extended to  incorporate a spectra l model 

(Meszaros and R iffe rt, 1988). Leahy and L i (1995) accounted for g ra v ity  in  fits  o f 

cap models to  observed pulse profiles. O ther accretion colum n models w ith  lig h t- 

bending were com puted by K raus (2001), Leahy (2003a) and K raus et al. (2003). In  

an analysis o f the occu lta tion  sequence o f the X -ra y  pulsar Her X - l  by  Scott et al. 

(2000), i t  was determ ined th a t the  pulse pro file  corresponded to  a pencil beam from  

the near pole and a gravita tiona lly-focused fan beam from  the far pole. T h is  led 

to  a quan tita tive  model fo r the  pulse shape o f Her X - l  by Leahy (2004a), w hich in  

tu rn  resulted in  a constra in t on M / R  fo r the  neutron star (Leahy, 2004b).

C learly, the  app lica tion  o f models based on Pechenick et al. (1983) to  the anal

ysis o f conventional X -ra y  pulsars is adequate because the periods o f these pulsars 

are so long (the fastest is 69 ms, m ost are >  1 s) th a t the  g rav ita tiona l fie ld  is 

w e ll-approxim ated as Schwarzschild, and accounting for the m otion  o f the  emission 

region, to  the extent th a t i t ’s necessary, is t r iv ia l ly  accomplished by inserting  the 

appropria te  factors to  account fo r the  ro ta tion-induced blue-/ redsh ift and the  Ter

re ll, or “snapshot,”  effect. The  firs t m illisecond period X -ray  pulsar in  a low-mass 

X -ray  b inary, S A X  J1808.4-3658, was recently discovered by W ijnands and van der 

K lis  (1998) and spins a t a frequency o f 400 Hz (C hakrabarty  and M organ, 1998). 

Th is  is fast enough th a t the  ro ta tio n a l speeds at the  equator m ust be re la tiv is tic . 

A n  app lica tion  o f th is  category o f model w ith  corrections for re la tiv is tic  m otion  

to  the pulse pro file  S A X  J1808.4-3658 was undertaken by Poutanen and G ie rlihsk i 

(2003), to  ob ta in  a constra in t on M / R .  However, i t  should be noted th a t th e ir 

model d id  no t include tim e-o f-fligh t effects, which at these speeds m igh t reach a 

few percent o f the  ro ta tio n  period. T h is  is a fa ilin g  th a t m any o f the  models in
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th is  category (b u t no t a ll) share. Extensions to  th is  Schwarzschild-based m ethod 

o f m odelling the pulsed emission has been undertaken by K apoor and D a tta  (1986) 

using the s low ly-ro ta ting  neutron star m etric , and by K apoor (1991) using a weak 

form  o f the  K e rr black hole m etric  (d iscarding term s o f order a ? /R 2 and higher). 

Chen and Shaham (1989) developed a model using the fu ll K e rr m etric . B ra je  et al. 

(2000) made use o f a M onte Carlo m ethod to  produce lig h t curves using the fu ll 

K e rr m etric , and they  made the im p o rta n t p o in t th a t accounting fo r the  vary ing 

photon trave l tim es is necessary fo r the  m illisecond pulsars. T h is  w ork was followed 

up in  B ra je  and Rom ani (2001), where the authors pointed ou t th a t the  differences 

in troduced in  th e ir lig h t curve ca lcu la tion  by using the  K e rr m etric  instead o f 

the  Schwarzschild m etric  fo r the photon propagation in troduced changes th a t were 

probab ly  too  sm all to  measure, and th a t these changes were less im p o rta n t than  

the effects th a t ro ta tion-induced oblateness would in troduce for ra p id ly -ro ta tin g  

models. A  separate model using the K e rr m etric  fo r photon propagation was devel

oped by B ha ttacharyya  et al. (2005), and n o ta b ly  they used th e ir model to  ob ta in  a 

constra in t on neutron star parameters by f it t in g  to  the burst oscilla tion  lig h t curves 

o f the accreting 3.2 ms pulsar X T E  J1814-338.

One app lica tion  o f these models is to  understand the observed phase lag o f the 

low-energy lig h t curve (e.g., in  the  soft X -ra y  band) compared to  the high-energy 

lig h t curve (in  hard X -rays) fo r the  same source, which may have its  genesis in  the 

re la tiv is tic  m o tion  o f the emission region. A  m odel o f th is  was developed by Ford

(1999) by  accounting fo r special re la tiv is tic  D oppler effects b u t neglecting gravity. 

Th is  model was im proved by inco rpo ra ting  g ra v ity  using the Schwarzschild m etric  

and applied to  the observed energy-dependent delays in  S A X  J1808.4-3658 by Ford

(2000). S im ila r models were developed to  model the  oscilla tion  am plitudes and 

energy phase lags du ring  X -ra y  bu rs t on ra p id ly -ro ta tin g  neutron stars by M ille r  

and L amb (1998) and W einberg et al. (2001). These models were fu rth e r im proved 

by M uno et al. (2002b) by inco rpora ting  the tim e-o f-fligh t effects.

I t  is s t il l early in  the  h is to ry  o f analysis o f m illisecond X -ray  pulsar lig h t curves, 

p a rtly  due to  the  pauc ity  o f su itab ly  reduced da ta  fo r analysis. In  the lite ra tu re  

th a t does exist, m any o f the  techniques and tools used are borrowed, o r at least in 

spired by, the  profusion o f models developed fo r s low ly-ro ta ting  X -ra y  pulsars. One 

is forced to  wonder to  w hat extent these m ethods can be s tra igh tfo rw ard ly  adapted 

to  carry th rough  analyses o f observations o f m illisecond pulsars by inc lud ing  the 

relevant specia l-re la tiv is tic  con tribu tions. To w hat extent does the approxim ation 

o f the spacetime as Schwarzschild m atter?  Does the inclusion o f trave l-tim e  effects
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m atter?  Do the effects o f ro ta tio n  on ste lla r s truc tu re  m atter?  The answer to  

these questions in  the  case o f slow X -ra y  pulsars is u n ifo rm ly  “ no,” b u t l i t t le  p rio r 

analysis has been undertaken to  answer these questions in  the case o f m illisecond 

pulsars, and fu rtherm ore  i t  seems reasonable to  assume th a t a t least under certa in  

circumstances these effects can have significant im plica tions. The m ain  com plica

tio n  in  assessing the a p p lica b ility  o f these approxim ations has been the absence o f a 

ca lcu la tion w hich can account fo r these effects to  whatever extent they m a tte r. We 

have described and im plem ented a model which accounts fo r a ll o f these effects in  

earlier chapters, which is the m ain  to o l by which we a ttem p t to  answer these ques

tions. We res tric t our considerations th is  way to  observed bo lom etric  flu x  which 

is iso trop ica lly  em itted  by an in fin ites im a l emission region on the surface o f the  

neutron star, because problems iden tified  in  th is  simple case w ill persist in  some 

form  when com plications such as emission spectra and e m ittin g  region shape are 

included.

T h is  chapter is organised as follows: F irs t, in  Section 4.2 we discuss the models 

we have selected w hich are used in  the  w ork th a t follows. In  Section 4.3, we 

consider a s im plified s itua tion  in  w hich one wishes to  use lig h t curves which are 

calculated w ith o u t accounting for the  d ifferent in tegra ted tim es-o f-fligh t o f photons 

to  draw conclusions about hypo the tica l data  where the effect o f the  tim es-o f-fligh t 

are present. Section 4.4 considers the effect o f approxim ations to  the spacetime 

m etric  and the effect o f ste llar oblateness, in  the  sense o f com paring the forw ard 

calculations w ith  various approxim ations fo r the  same set o f parameters, and also 

in  the sense o f u tilis in g  an approxim ate m ethod for ob ta in ing  fits  to  hypothe tica l 

data. I t  becomes apparent th a t adequately inc lud ing  the effect o f oblateness is 

im p o rta n t fo r rap id  ro ta tion , so in  Section 4.5 a model is developed w hich specifies 

the surface value o f the  Schwarzschild R  coordinate as a func tion  o f po la r angle, 

given a single dimensionless q u a n tity  invo lv ing  M ,  R  at the  equator, and f l* .  A n  

in it ia l a tte m p t is made to  incorpora te  th is  model in to  a sim pler com puter code 

w ith  some success. A lthough  th is  program m e was no t carried th rough  completely, 

enough has been completed to  ind ica te  th a t i t  should be fru it fu l to  m od ify  other 

extant codes to  incorpora te  a reasonable estim ate o f the  effect o f s te lla r oblateness 

using the model we have devised.
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4.2  C h oice o f n eu tron  star m odels

In  the sections th a t fo llow , we w ill refer to  the ste llar models we used by equa

tio n  o f state (EOS) and the frequency f t *  o f ro ta tion . A l l  o f our models have 

M  =  1.4 M 0 , which is a conventional choice for the  fiducia l mass o f a neutron 

star. T h is  choice is experim enta lly  ju s tifie d  by the recent mass measurement o f 

the neutron  sta r in  the  recycled b ina ry  rad io  pulsar PSR J1909-3744 which has a 

mass (1.44 ±  0.02) M 0  (Jacoby et al., 2005). O ther experim enta l ju s tifica tions  for 

th is  figure come from  double neutron star systems contain ing slower rad io  pulsars, 

which w ith  tw o exceptions have experim enta lly  determ ined masses fa llin g  inside the 

range (1.35 ±  0.04) M ©  (T horse tt and C hakrabarty, 1999). There is some evidence 

th a t neutron stars can be heavier than  th is  canonical value: an extreme example 

is a recent measurement by Nice et al. (2005) who used precision measurements 

o f the m illisecond rad io  pu lsar b ina ry  PSR J0751+1807 to  determ ine a mass o f 

(2.1 ±  0.2) M q  for the  neutron star v ia  its  general re la tiv is tic  o rb ita l decay, which 

is the largest known neutron star mass. Fu tu re  observations o f th is  pulsar w ill 

im prove th is  mass measurement. I f  its  re la tive ly  high mass holds, i t  m ay lead to  a 

s ign ificant constra in t on the state o f neutron star m a tte r, since th is  mass exceeds 

or is a t the  upper end o f the  m axim um  mass th a t can be supported by several 

candidate equations o f state (L a ttim e r and Prakash, 2001, 2004).

For th is  w ork we have chosen to  use the candidate equations o f state EOS A  

and L  from  the A rn e tt and Bowers (1977) catalogue which span a w ide range o f 

stiffness. EOS A  is one o f the  softest equations o f state, and EOS L  is one o f the 

stiffest allowed by present observations. For each EOS we have com puted equ ilib 

r iu m  models using RNS (Stergioulas and Friedm an, 1995) fo r a num ber o f d ifferent 

frequencies, spanning the  range o f frequencies observed in  accreting m illisecond p u l

sars. The parameters describing these models are given in  Table 4.1. The EOS L, 

600 Hz m odel is one th a t we re tu rn  to  a few tim es since i t  is the  fastest and largest 

o f the set; we expect th a t effects due to  va ry ing  tim es-o f-fligh t w il l  be maxim ised 

( it  is qu ite  large, so has a re la tive ly  long light-crossing tim e), as well as effects due 

to  deform ation o f the surface (or “oblateness,”  since i t  is spinn ing a t a frequency 

qu ite  near its  breakup speed).
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EOS 0 B/27Ta(Hz) 0*/27r (Hz) R b{ km) cJ /(G M 'z) G M /(c zR) v /ec weg/27rd(Hzj
A 1387 100 9.57 0.036 0.216 0.03 16.8

200 9.59 0.073 0.216 0.05 33.6
300 9.62 0.109 0.215 0.08 50.2
400 9.66 0.147 0.214 0.11 66.7
500 9.71 0.185 0.213 0.13 82.8
600 9.78 0.223 0.211 0.16 98.4

L 742 100 14.86 0.076 0.139 0.04 9.5
200 14.95 0.154 0.138 0.07 18.9
300 15.11 0.234 0.137 0.11 27.9
400 15.36 0.318 0.135 0.15 36.4
500 15.74 0.408 0.131 0.19 43.8
600 16.38 0.508 0.126 0.24 49.0

° The break-up spin frequency for a star w ith  the given mass and equation of state. 
b The equatorial Schwarzschild radius.
c The speed of the neutron star at the equator measured by a static observer at the surface.

Velocities are calculated w ith  the fu ll metric. 
d The frame-dragging term at the equator; this is the angular velocity of a zero angular mo

mentum particle at the equator.

Table 4.1: N eutron  S tar Models w ith  Mass =  1.4 M ©

4.3  T h e effect o f  n eg lec tin g  tim e-o f-flig h t1

4 .3 .1  In tr o d u c tio n

In  the case o f Pechenick et al. (1983), slow ro ta tio n  was being contem plated, and 

there was no need to  account fo r varia tions o f the  trave l tim e, or tim e -o f-fligh t, o f 

photons as the neutron sta r ro ta ted  because these varia tions were sm all compared 

to  the ro ta tio n  period. Some ex tan t analyses o f m illisecond-period pulsars, for 

example the w ork on S A X  J1808.4-3658 by Poutanen and G ie rlinsk i (2003), re ta in  

th is  assumption b u t are m odified to  incorpora te  the  necessary special re la tiv is tic  

effects aris ing from  the re la tiv is tic  m o tion  o f the  e m ittin g  region. B ra je  et al.

(2000) po in ted ou t th a t the va ry ing  photon tim e -o f-fligh t was im p o rta n t to  account 

for, b u t they d id  no t ca rry  th rough  an analysis o f how im p o rta n t i t  was from  

the p o in t o f view  o f system atic e rro r th a t m igh t be in troduced by neglecting it .  

Section 2.5 contains a careful discussion o f how lig h t curves can be calculated in  

the Schwarzschild case. In  th a t Section, i t  was shown th a t the  ca lcu la tion  by 

Poutanen and G ie rlinsk i (2003) is correct in  the  sense th a t they  are ca lcu la ting  an

: A  ve rs ion  o f  th is  sec tion  w as o r ig in a lly  p u b lis h e d  as C adeau et al. (2005 ), an d  s u b s ta n tia l 
p o rt io n s  o f  th is  p a p e r are in c o rp o ra te d  here. Som e d e ta ils  have been u p d a te d  he re  to  a cco u n t fo r 
an e rra tu m  in  th e  o r ig in a l p u b lic a t io n , w h ic h  is d iscussed in  th e  te x t.
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in tegra l which is exactly  correct in  the  case they consider (i.e., when the exte rio r 

spacetime is Schwarzschild and the star is taken to  be spherical), b u t they  o m it the 

step o f ca lcu la ting  the a rriva l tim e  t 0 =  te +  T(b)  by evaluating the tim e -o f-fligh t 

in tegra l at each step o f the  ca lcu la tion . Instead they  adopt the  approx im ation  th a t 

t 0  =  te +  const fo r the construction  o f th e ir lig h t curves, which results in  a degree 

o f d is to rtio n  o f the  curves they  obta ined fo r rap id  ro ta tion . P u t another way, 

they account fo r the  fact th a t the a rriva l tim es are changing (because the emission 

region is m oving) fo r the purpose o f ca lcu la ting  the flu x— th is  is the  o rig in  o f the 

special re la tiv is tic  factors they  make use o f— b u t they  don’t  account fo r th is  in  

assigning the in tegrated flu x  to  some observed tim e. The purpose o f th is  section is 

to  determ ine the worst extent to  w hich th is  approxim ation w ill affect the outcome 

o f the analysis o f m illisecond pulsar data. We make no cla im  as to  the v a lid ity  

or not o f the  result in  Poutanen and G ie rlinsk i (2003), bu t instead are using th e ir 

trea tm ent o f the  prob lem  as b u t one example o f several treatm ents w hich neglect 

tim es-o f-fligh t in  th is  manner.

To ca rry  th rough  th is  analysis, we begin by se tting  out some details o f how the 

general trea tm ent in  earlier chapters sim plifies when one is restric ted  to  considering 

photons on ly  in  the equatoria l plane. In  Section 3.1.1, we set ou t a num ber o f 

d ifferent approx im ation  schemes th a t one can contem plate as varia tions on the 

basic m ethod contem plated by Pechenick et al. (1983). In  th is  section w ha t we are 

doing is assessing the im pact o f using the SS approxim ation w ith o u t tim es-o f-fligh t 

included, as a means by w hich to  ob ta in  fits  to  da ta  corresponding to  the E xact 

m ethod w ith  tim es-o f-fligh t included. In  order to  do th is  w ith in  the  context o f the 

s im p lify ing  assum ption we’re m aking in  th is  section, a non-standard de fin ition  o f 

flu x  is adopted where the e m ittin g  region is a sm all line segment located on the 

equator o f the neutron star, and correspondingly the  observer’s sky is taken to  be 

one-dimensional. B o th  the “E xact”  and “ SS w ith o u t tim es-o f-fligh t” methods are 

adapted to  agree on th is  non-standard de fin ition  o f flu x  so th a t the  effect we are 

measuring w ill be a result on ly  o f the inc lus ion/exclusion o f tim es-o f-fligh t, and 

the approxim ation o f the  m etric . In  th is  section we are m a in ly  concerned w ith  the 

300 Hz and 600 Hz models fo r b o th  EOS A  and L  from  Table 4.1. These models 

span a reasonable range o f stiffness, and span observed frequencies o f m illisecond 

pulsars and X -ray  bu rs t oscillations.
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4 .3 .2  E q u a tio n s  o f  m o tio n

To accomplish our goal in  th is  section, we consider a s im p lified  case where we 

res tric t our calculations to  photons em itted  from  the equator which trave l in  the 

equatoria l plane to  the observer. T h is  has the  effect o f s im p lify ing  the  necessary 

calculations, as well as m axim is ing the effect o f the  tim e-o f-fligh t o f photons. In  

th is  case, the m otion  o f a photon is specified once the in it ia l loca tion  and im pact 

param eter are specified. The sim p lified  equations o f m o tion  are:

=  e ~ ^ +p\ l  - tu b ) , (4.1)

7 , and (4.2)

b2 o A 1/2
(4.3)

d t  

dX /

=  io e ~ ^+p\  1 -  Lob) +
dA J  

d r  A 
d A /

where b is the  pho ton ’s im pact param eter and A is an affine param eter defined so 

th a t photon o rb its  are independent o f energy. We are considering photons o rig i

na ting  on the  equatoria l plane (9 =  7t/2) em itted  para lle l to  the equatoria l plane 

(u° =  0 in it ia lly ) .  I t  is a s tra igh tfo rw ard  ca lcu la tion  to  show th a t such photons 

must rem ain in  the equatoria l plane, i.e., d9 /dX  =  0.

Since the  ra d ia l com ponent o f the  fou r-ve loc ity  m ust be real, the  im pact pa

rameters m ust lie  in  the  range i»rnin <  b <  6max, where the  m in im um  and m axim um

im pact parameters are:

bmin =  - f e ~ p- ^ a n d  (4.4)
1 — Lure p

frmax =  fe ~ p- -  1_ , (4.5)
1 +  Lore p

where the  m etric  po ten tia ls  are to  be evaluated at the  p o in t a t which the n u ll ray 

originates, i.e., a t the  surface o f the  star. The  fram e-dragging te rm  is positive, so 

the effect o f ro ta tio n  is th a t |6 m i n | >  |bmax|- As a resu lt, ro ta tio n  allows an observer 

to  see more o f the  side o f the  sta r which is m oving away from  the observer, as 

shown in  F igure 4.1. In  th is  figure, bs corresponds to  the m axim um  value o f the 

im pact param eter allowed fo r a s ta tic  star.

In  F igure 4.1 we illu s tra te  the  deflection o f photons from  the  p o in t o f emission on 

the star to  the  observer. We define the azim utha l location  o f the  d is tan t observer 

to  be at <p =  0. A  photon w ith  im pact param eter b h its  the  observer i f  i t  was 

em itted  a t azim utha l angle (pi. The  in it ia l emission loca tion  is found by d iv id in g
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observer

Figure 4.1: Angles in  the s im p lified  1-D case. T h is  figure was o rig in a lly  published 
as F igure 1 o f Cadeau et al. (2005).

E quation 4.2 by E quation  4.3, and in teg ra ting  from  the s ta r’s surface to  the d is tan t 

observer:

The deflection angle ip is defined by ip =  —<pi. In  the ca lcu la tion  o f flu x  from  a star, 

bo th  the  quantities tp(b) and dtp/db  are o f im portance. These quantities  are p lo tted  

fo r the  600 Hz EOS L  model in  F igure  4.2. In  add ition , we show the  deflections 

calculated using the  SS approxim ation . The differences between the  calculations 

w ith  and w ith o u t ro ta tio n  are very sm all. The  worst errors occur a t the  lim bs 

o f the star, so these differences are on ly  like ly  to  be o f im portance i f  the  lig h t is 

pre fe ren tia lly  em itted  in  d irections close to  the horizonta l.

4 .3 .3  T im es-o f-flig h t

To accurate ly model pulse shapes, we account fo r the  d ifferent amounts o f coord i

nate tim e  th a t photons em itted  from  different regions o f the star w ill take to  reach 

the observer. Once the tim es-o f-fligh t— alternative ly, the  tim es-o f-a rriva l (T O A )—  

are known, the photons can be placed in to  the correct detector t im in g  bins. The 

choice o f zero tim e  is a rb itra ry , so we have chosen a value o f zero T O A  for a pho

ton  w ith  zero im pact param eter. For photons em itted  w ith  the  m axim a l values o f 

im pact param eter, the  T O A  is s im ila r to  the  lig h t trave l tim e  across the star. For 

the EOS L , 600 Hz model w ith  R  =  16.38 km , the lig h t trave l tim e  is close to  80 

//s. Compared to  a spin period  o f 1.6 ms, th is  corresponds to  a 5% effect, which

(4.6)
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Figure 4.2: Bending angle 'ip(j)) and dip/db  fo r photons in  the  equatoria l plane, 
calculated using b o th  the exact m etric  and using the corresponding SS m etric  fo r 
the  EOS L , 600 Hz m odel. T h is  figure was o rig in a lly  published as F igure  2 o f 
Cadeau et al. (2005).
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w ill be seen to  have a s ign ificant effect on the  calculated pulse shapes.

The T O A  is calculated by d iv id in g  E quation  4.1 by Equation  4.3, in teg ra ting  

from  the s ta r’s surface to  the  d is tan t observer and then sub tracting  o ff the  corre

sponding q u a n tity  fo r a b =  0 photon. T h is  yields the  fo llow ing fo rm u la  fo r the 

a rriva l tim es T(b):

T (b) =  ( ------------(1 ~  ^ -------—  -  A d r. (4.7)
J f e \ ( ( 1  — cob)2 r 2 — b2 e2p)  ̂ )

In  F igure 4.3 we p lo t the T O A  fo r the  600 Hz EOS L  model using bo th  the Exact 

m ethod and SS approx im ation . Note th a t in  the  Exact calculation, the  retrograde 

photon takes longer to  reach the observer than  the prograde photon. T h is  is due to  

the  fram e-dragging effect. The m agnitude o f th is  effect is about 1 /10 o f the  effect 

due to  the light-crossing tim e  in  the  corresponding SS models so we expect th a t for 

most tim in g  applications th a t i t  w il l no t be detectable.

4 .3 .4  R e d sh ift

In  our un its , the  p ho ton ’s energy as measured by an observer fa r from  the star has

been norm alized to  un ity . A n y  observer w ith  four-ve loc ity  ua measures a photon

energy o f E u — —£aua, where the  pho ton ’s fou r-ve loc ity  components i a =  dcc“ /d A  

are given in  Equations 4.1-4.3. The s ta r’s fou r-ve loc ity  at the  equator is

u a =  ^ ( t a +  n ^ a) ,  (4.8)

where 0 *  is the  s ta r ’s angular ve loc ity  as measured by an observer a t in fin ity , and 

the  norm aliza tion  cond ition  uaua =  — 1 yields

V 2  =  e 1+p (1 -  ( f t*  -  uS)2 f 2 e~2p) , (4.9)

where a ll quantities  are evaluated on the s ta r’s equator.

The redsh ift facto r (1 +  z) between lig h t em itted  a t the  s ta r’s equator and 

detected by an observer a t in f in ity  is

1 +  z =  e~|(7+p)
> / l  — ( f t*  — io)2 r 2e 2p

Note th a t the  q u a n tity  v \ AMO =  ( f t*  — to)2 f 2 e~2p appearing in  the denom inator is 

the  square o f the  ve loc ity  o f the  s ta r’s f lu id  as measured by an observer w ith  zero
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F igure 4.3: T im es-o f-fligh t as a func tion  o f bending angle: T h is  p lo t shows times- 
o f-fligh t (T O A ) as a func tion  o f bending angle ip calculated in  b o th  the Exact 
case and the SS case for the  600 Hz EOS L  m odel. To illu s tra te  the  m agnitude 
o f the  difference between the tw o calculations, we have also p lo tte d  the difference 
between them  on the righ t-hand  axis, “ A T O A .”  T h is  p lo t was o rig in a lly  published 
as F igure 3 o f Cadeau et al. (2005).
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angular m om entum ; i.e., an observer w ith  =  ur — v? — 0.

4 .3 .5  A n g le s  b e tw e e n  P h o to n s

In  a more general ca lcu la tion  o f flu x  from  a two-dim ensional e m ittin g  area on the 

star, we w ould need to  calculate the solid angle subtended by the area, as viewed 

by the  observer a t in fin ity . In  th is  section (4.3), we are on ly  inc lud ing  the  flu x  o f 

photons em itted  from  a segment o f the  equator in to  the equatoria l plane. A dop ting  

th is  special one-dimensional emission region means th a t observed rad ia tion  w ill 

subtend zero solid angle in  the  observer’s sky. The most s tra igh tfo rw ard  way o f 

ad justing  the  usual de fin ition  o f flu x  fo r th is  s im p lified  emission region is to  define 

flu x  in  term s o f an in tegra l over angle in  the  observer’s one-dimensional “sky” which 

coincides w ith  the equatoria l plane.

In  F igure 4.1 we show a curve o f angular extent A (f> on the  star, and the angle 

measured by the  observer at in f in ity  between the  tw o photons em itted  from  the end

points (po in ts 4>- and 0_|_) is dc. I f  the  im pact parameters fo r these tw o photons 

are re lated by b+ — +  d b, the  angle observed between the tw o photons reduces

at in f in ity  to

=  (4.11)
r

i f  bo th  photons are restric ted to  move on ly  in  the equatoria l plane. T h is  is a well- 

known result in  the  Schwarzschild spacetime, b u t to  ob ta in  i t  in  general, proceed by 

le ttin g  the tw o photons have four-ve locities i a and m a, w ith  im pact parameters 6+ 

and b- , respectively. The angle the d is tan t observer measures is calculated v ia  the 

“ cos angle” re la tion , which is also re lied on fo r the  results in  Sections 2.3.4 and 2.4.1: 

The observer has u a oc t " , and we define the p ro jec tion  operator as =  gab + uaub 

and the  magnitudes o f the  pro jected n u ll vectors as l u =  \ l± \  =  \ h ^ £ b\. The angle 

is calculated by the inner p roduct o f the  p ro jected vectors:

COS £  =  ,  —
£ u m u

f e 2p
=  Lu(b+ +  b - )  +  b+ b -  ( -3j- -  UJ‘

+  1
b2,e 2p 

( l - t u b + r  + (4.12)

T h is  fo rm u la  is on ly  va lid  when the  photons are restric ted to  move in  the equatoria l 

plane, i.e., v°  =  0. To get the  in fin ites im a l version o f th is  equation, p u t b+ =  b +db.
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and Tay lo r expand the le ft-hand side for sm all angles de. Expanding the righ t-hand  

side in  db and equating the second-order term s gives:

de2 =  - d  b1
b2 e2p

(1 - W6_)2 - f 2

ui2 r 2 — e2p (  uj2 b - r 2 — b~e2p — tor2

r 2 (1 — uib- ) 2  — b2_e2p y r 2 (1 — wh__)2 — b2_e2p

(4.13)

In  the large f  l im it ,  u  fa lls o ff as 1 / f 3, so to  leading order in  1 / f  the  firs t te rm  in  

square brackets is ~  1 and the second te rm  in  square brackets is ~  — e2p / f 2. So we 

have for large f ,
, epdb

de =  — , (4-14)
r

and in  term s o f the  usual Schwarzschild r  coordinate given by Equation  2.6, th is  is

de =  — , (4-15)
r

which is Equation  4.11. Note E quation  4.11 applies to  the case o f an e m ittin g  

region th a t is no t m oving. A n  add itiona l facto r m ust be brought in  to  account for 

the  “ snapshot effect”  as discussed in  Section 2.4.2: a t an instan t o f observer’s tim e, 

an observer ac tua lly  sees an angle d e / ( l  — f Kb).

4 .3 .6  O u tlin e  o f  N u m e r ic a l M e th o d

To accomplish our goal, there are tw o m ain tasks th a t need to  be carried out: firs t, 

we need a m ethod to  com pute the pulse pro file  fo r the  special case under consider

a tion  using the exact m etric  and inc lud ing  tim e -o f-fligh t effects; these calculations 

w ill be w ha t we regard as “ da ta ” fo r f it t in g  in  Section 4.3.8. Second, to  accom

plish th is  f it t in g  we need a m ethod to  qu ick ly  calculate a num ber o f lig h t curves 

using the Schwarzschild m e tric  w ith o u t tim es-o f-fligh t included. In  p rinc ip le  the 

same m ethod could be used for b o th  tasks w ith  the  appropria te  adaptations, b u t 

i t  was more convenient to  ca rry  ou t the  form er task using an early version o f code 

described in  Chapter 3 to  com pute the exact lig h t curves, and a special code to  cal

culate the  Schwarzschild lig h t curves w hich is s im ila r to  w hat m igh t o rd in a rily  be 

done in  o ther im plem entations o f the m ethod described by Poutanen and G ie rlihsk i 

(2003) (we are also aware o f an equivalent, b u t independent, im p lem enta tion  by 

Leahy (2003b)), bu t which has been m odified fo r our case o f a one-dimensional 

emission region located and observed in  the equato ria l plane. For completeness, we 

describe bo th  calculations here.
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1-D version o f E xact calculation

The E xact version o f the  ca lcu la tion  proceeds as follows: We discretise the period

arriva l tim es where i  is the  b in  index runn ing  from  0 to  N  — 1. The  size o f 

each angular subdiv is ion is A <f> =  2 ir /N ,  and we take the centre o f the  emission 

region at each step to  be <f>{i) =  (i)(A<^>). F igure 4.1 shows the relevant quantities.

We ob ta in  the fluxes F ( i ) by perfo rm ing  the  fo llow ing steps a t each period 

step i :

1. Calcu la te the im pact parameters o f the  nu ll rays a rriv ing  a t the  observer 

from  =  <f)(i) — (A</>)/2, <f)(i), and </>+ =  <p(i) +  (Acf>)/2. Denote these 

im pact parameters by b. and b\ . T h is  is done by num erica lly  solving 

E quation  4.6.

2. Calcu la te the redsh ift z(b) using Equation  4.10.

3. Calculate the  angular co n tribu tion  to  the flu x  integral, de, using E qua tion  4.11.

4. Calculate the  a rriva l tim e  t a( i ) o f the flu x  by  evaluating E qua tion  4.7 for 

im pact param eter b, and p u ttin g  t 0 ( i ) =  +  T(b).

5. Assign to  F ( i )  the  value o f the  flu x  in tegra l

where u0low and /y,higli correspond to  the  lower and upper lim its  o f the  detec

to r ’s energy band. In  the p a rticu la r case we are considering, we can leave 

ou t the  in tegra l over energies (we in tegrate over a ll energies hv 0  fo r bolom et- 

r ic  flu x ), and disregard the dependence o f I  on a e since we are considering 

iso trop ic  rad ia tion . A lso note, again, th a t th is  in tegra l is a non-standard def

in it io n  o f flu x  w hich we are adopting because we are dealing w ith  a special 

one-dimensional emission region, as discussed in  Section 4.3.5. The observer 

on ly  receives photons from  w ith in  the  equatoria l plane (the sky is effectively 

one-dim ensional), so the  in teg ra l is over a one-dimensional angle, no t the 

usual solid angle for a two-dim ensional sky.

Once the  ca lcu la tion  for each step is completed, the  stored values F ( i )  and t 0 ( i )  are 

used to  construct the  func tion  F ( t 0) a t equally spaced intervals o f t a v ia  a standard 

in te rpo la tio n  m ethod. Th is  step is necessary to  fa c ilita te  f it t in g  in  the  next section,

o f the azim utha l coordinate 4> in to  N  bins and keep track  o f the  fluxes F ( i )  and

(4.16)
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as the s ta tis tic  th a t the  fits  re ly  on require com paring values a t equal values o f t 0. 

A lso note th a t the rn s  code calculates the E xact m etric  potentia ls to  a fin ite  value

f  in  our code. Also, fo r M  =  1.4 M q , at th is  distance 2 G M / ( c 2r )  « 2 x  10-5  so 

th a t the  spacetime is close to  fla t.

For the purpose o f illu s tra tio n  in  Section 4.3.7, i t  w ill also be in teresting  to  

perform  th is  ca lcu la tion  w ith o u t tim e -o f-fligh t effects included. To do th is , the 

on ly  change th a t needs to  be made is to  take T(b)  =  0 a t every i  in  the  above 

calculation.

1-D version o f  Schwarzschild calculation w ith ou t tim es-of-flight

We had a special code at hand to  calculate the Schwarzschild lig h t curves w ith 

ou t tim es o f flig h t included, a lthough in  p rinc ip le  an adapta tion  o f the above 

m ethod could also have been used. Instead, we adapted E quation  2.137 for our 

one-dimensional emission region. In  practise th is  means th a t instead o f the area 

element on the image plane given by E quation  2.128, i.e., dS'o =  b db d(f>0, we use 

the appropria te  length  element d I  =  db. Using a s im ila r argument as th a t leading 

to  Equation  2.137, we ob ta in  the fo llow ing  special expression specialised to  the 

Schwarzschild m etric  fo r bo lom etric  flu x  from  a one-dimensional e m ittin g  region:

where the te rm  in  parentheses is a constant th a t can be taken ou t o f the ca lcu la tion 

since we are on ly  considering the shape o f the pulse profile  and no t the  value o f 

the received flux . In  th is  ca lcu lation , the  evaluation o f the lig h t curve proceeds in  

a s im ila r m anner as above, except th a t we need on ly  solve E qua tion  4.6 fo r b given 

4>{i) (e lim ina ting  the need to  solve th is  equation fo r <p_ and 4>+  as w e ll), and then 

evaluate the in tegra l given by  E qua tion  2.134 fo r d ’tp/db. A lso, since we are not 

inc lud ing  the tim es-o f-fligh t we need on ly  take t a =  (/)(?')/U * ; the  in tegra l fo r T{b)  

given in  E quation  4.7 does no t need to  be calculated, and the fina l steps above 

to  in te rpo la te  the F ( i ) and t Q{i)  to  values th a t are regularly-spaced in  t (} does not 

need to  be carried ou t since th is  ca lcu la tion  already has th is  property.

o f r ,  and so our ca lcu lation is perform ed at distance r  «  1010 cm and no t at in fin ity , 

however we have used expressions which account fo r locating  the  observer a t fin ite

-^1—D, Schw., bol. { t o )
i  i e i  ( A ^ y r

D  (1 +  z )4 dtp/db  1 — 12*6 

f I e{ l - 2 M / R ) 2(A<j/e)
(1 — 0 *6 )5d ^ /d 6 ’

(4.17)
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4 .3 .7  L igh t cu rv e  ca lcu la tio n s

We are now able to  discuss, the  properties o f lig h t curves calculated using the 

m ethod th a t we have set ou t in  th is  section. In  F igure  4.4, we show the curves 

calculated using the E xact m ethod w ith  tim es-o f-fligh t included fo r EOS A  and 

L , for the  300 Hz and 600 Hz cases. F irs t, note th a t the more com pact EOS A  

models have a shorter eclipse than  the EOS L  models, as one would expect: the 

effect o f “ lig h t bending” is greater fo r the  more compact model. Also, the  length 

o f the  eclipse expressed as a frac tion  o f the  period does no t change a great deal 

as the speed o f the  models is increased; th is  is because the compactness decreases 

on ly  by about 2% in  the EOS A  case as the s ta r is spun up. In  the EOS L  case, 

the 600 Hz model is approaching breakup speed and the change is greater: about 

10% between the 300 Hz and 600 Hz model. The o ther notable feature o f these 

calculations is th a t as frequency (or speed) is increased, the pulse profiles become 

more asym m etric. So there is an ind ica tion  th a t speed a t the  equator tends to  

equate to  greater asym m etry in  the  pulse profile.

The m ain purpose o f th is  section is to  understand the effect o f leaving ou t the  

tim e-o f-fligh t in  these calculations. In  F igure  4.5, we have given a series o f three 

p lo ts corresponding to  a = 50  Hz, 300 Hz, and 600 Hz model calculated using 

EOS L  fo r a 1.4 M 0  star. Each p lo t shows tw o lig h t curves: one is com puted in  

a manner th a t flu x  a rr iv in g  from  fu rth e r away is b inned re la tive ly  la te r than  lig h t 

a rr iv in g  from  closer po in ts (i.e., we p u t t a =  <!>{%)/ f i *  +  T(b)  as described in  Sec

tio n  4.3.6), the o ther lig h t curve is calculated by b inn ing  flu x  on ly  by ro ta tio n a l 

phase o f the  star, b u t re ta in ing  the required D oppler factor to  account fo r m agni

fica tion  or reduction  o f the  e m ittin g  region due to  its  m otion  (i.e., we on ly  discard 

the T (b ) te rm  in  ca lcu la ting  t a). As the light-crossing tim e  o f the star becomes a 

larger frac tion  o f the  ro ta tio n  period, the  d is to rtio n  in troduced by d iscarding the  

tim e-o f-fligh t increases, and is noticable a t the  300 Hz and 600 Hz levels covering 

the range o f frequencies occupied by m illisecond pulsars.

A no ther im p o rta n t observation from  F igure 4.5 is th a t the  p lo ts w hich have 

the tim e -o f-fligh t included tend to  be more asym m etric than  those th a t do not. 

T h is  observation together w ith  w ha t we noted above about F igure  4.4 suggests 

the fo llow ing: i f  one were to  set about in te rp re ting  an observed pulse pro file  to  

ex trac t M  and R  fo r a real m illisecond-period source by re ferring on ly  to  sample 

calculations th a t d id  not include the photon trave l times, one would tend to  p ick 

models w ith  larger speeds at the  equator in  order to  capture the greater asym m etry 

th a t is present in  the  data. Since the frequency o f source would be fixed by the
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Figure 4.4: L ig h t curves fo r 1-D e m ittin g  region: T h is  figure shows the  lig h t curve 
produced by a 1-D e m ittin g  region located and observed in  the equatoria l plane 
fo r the  300 Hz and 600 Hz models fo r bo th  EOS A  and L, as lis ted in  Table 4.1. 
The lig h t curves are calculated using the exact m etric , w ith  a ll tim e -o f-fligh t effects 
accounted for.
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data, the  on ly  available mechanism to  increase the speed is by increasing R.  The 

length o f the  eclipse w ould also be fixed by the data, which fixes the value o f M / R ; 

thus a corresponding increase in  M  w ou ld  be required. In  sum, i t  seems reasonable 

to  assume th a t th is  m ethod o f ex trac ting  M  and R  would tend to  system atica lly  

over-estimate bo th  M  and R , b u t keep the  value o f M / R  close to  the true  value. 

The rem ainder o f th is  section tests th is  hypothesis.

4 .3 .8  F it  re su lts

To determ ine the degree to  which neglecting tim es-o f-fligh t m igh t (m ax im a lly ) im 

pact an analysis o f real m illisecond pulsar data, we a ttem pted to  f i t  the Exact 

m ethod lig h t curves shown in  F igure  4.4 to  curves calculated using the SS m ethod 

w ith o u t tim es-o f-fligh t included. To accomplish th is , we firs t calculated a num ber 

o f approxim ate lig h t curves over a range o f values o f M  and R. I f  tru e ( i)  represents 

discrete values o f the  exact lig h t curve ca lcu la tion  a t observed phase i(Acf)), for 

Acj) =  2 i r / N , and 0  <  i  <  N  — 1 ; and app rox(i) is s im ila rly  the  discretised values 

o f the lig h t curve obta ined using the approxim ate calcu lation we are considering, 

then the best f i t  values o f M  and R — to  the extent th a t they are unique— are taken 

to  be the ones which achieve the m in im um

1  r * - 1
S.Sq , / N  =  —  m in  m in  (true(z) — approx((z +  k)m od N ) ) 2

N  M,R 0 < k < N - l  w  vv '  u
  L i = 0

The m in im isa tion  over k  is necessary since a constant phase sh ift o f the  approxim ate 

ligh t curve re la tive  to  the  true  one should no t influence the results o f the  fit t in g . 

The resu lting  fitte d  parameters are shown in  Table 4.2. I t  is he lp fu l to  see the  sense 

in  which the  resu lt o f th is  ca lcu la tion  produces a “ f i t ”  to  the data: F igure  4.6 shows 

p lo ts o f the  true  lig h t curve together w ith  the best f i t  approxim ate lig h t curve for 

the EOS A  models. S im ilarly, F igure  4.7 shows th is  fo r the EOS L  models. O ur 

hypothesis is p a rtia lly  borne ou t by the results o f th is  experim ent: in  3 o f the  4 

cases, bo th  M  and R  were over-estimated by 30-40%, while the error on M / R  was 

constrained to  less than  8 %. The results fo r the  EOS L, 600 Hz model do no t fo llow  

from  the simple argum ent we set ou t earlier: th is  case resulted in  the poorest f i t  

(measured v ia  S.Sq ./AT), and overestimated R  by 20%, bu t underestimated M  by 

12%. O f the fou r cases considered, th is  is the  case where the in tro d u c tio n  o f the 

tim es-o f-fligh t has the largest effect, since th is  is the  largest model used (so w ith  

the longest-ligh t crossing tim e ), and the  shortest period considered (so the tim es-of- 

fligh t represent the  largest frac tion  o f one period). W h a t appears to  happen is th a t

(4.19)
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EOS L, 1.4 Msun, 50 H?
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Figure 4.5: D is to rtio n  in troduced by no t inc lud ing  a ll tim e -o f-fligh t effects: Each 
p lo t in  th is  series shows tw o lig h t curves: one is com puted w ith  photon trave l tim e  
accounted for, the  o ther is not. A  1.4 M & , EOS L  model was used to  produce these 
plots; from  top  to  b o tto m  the frequencies used are 50 Hz, 300 Hz, and 600 Hz.
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EOS R*/2vr 
(Hz)

R
(km)

Err. M
( M e )

Err. G M / ( c 2R ) Err. S.Sq . / N  
( x l0 -4 )a

A 300 13.3 +38.3% 2.0 +42.9% 0.22 +3.3% 0.4
600 12.5 +27.8% 1.8 +28.6% 0.21 +0.6% 2.6

L 300 19.4 +28.4% 1.94 +38.6% 0.15 +7.9% 0.8
600 19.8 +20.9% 1.2 — 14.3% 0.09 -29.1% 4.9

a The sum of squared differences between fitted approximate calculation and exact 
calculation, divided by the number of phase bins in the exact pulse shape. ( N  = 180 
for all fits).

Table 4.2: Results o f fits  to  exact 1-D lig h t curves v ia  an approxim ate ca lcu la tion  
which does not include tim e-o f-fligh t. See rem ark in  te x t about possible degeneracy 
or non-uniqueness o f f i t  results.

i t  is not possible to  ob ta in  a close f i t  to  the  da ta  using the approxim ate m ethod, and 

the f it t in g  procedure p re fe ren tia lly  a ttem pts to  f i t  the  rise o f the  pulse as closely as 

possible which required a decrease in  compactness and a corresponding shortening 

o f the  eclipse. The errors in  the f i t  are moved to  the po rtio n  o f the  pulse as the 

e m ittin g  region moves ou t o f view . I t  is w o rth  no ting  here th a t th is  f it t in g  procedure 

has the undesireable p rope rty  th a t good fits  in  the  sense o f sm all values o f S.Sq./N  

do not im p ly  good performance in  es tim ating  M  and R  in d iv id u a lly : the  worst f i t  

has the smallest re la tive  errors in  these parameters. A  s im ila r statem ent applies to  

the resu lting  fitte d  value o f M / R :  the errors on the  obtained value o f M / R  do not 

appear to  be linked in  a s tra igh tfo rw ard  way to  the q ua lity  o f f it.

I t  is also necessary to  discuss an apparent operational d iff ic u lty  in  ob ta in ing  

these fits  which foreshadows a w ell-know n d iff ic u lty  which is discussed in  greater 

de ta il in  Section 4.4.2 fo r the  general case o f the  two-dim ensional e m ittin g  region. 

In  F igure 4.8 we have p lo tted  contours o f the  S.Sq. / N  value for the  EOS L, 300 

Hz case, as a func tion  o f the M  and R  values o f the candidate fitte d  models. In  

th is  p lo t, there are c learly two separate m in im a  corresponding to  d ifferent sets 

o f parameters w hich result in  approx im ate ly  the same q ua lity  o f f it :  one is at 

M  =  1.94 M q , R  — 19.4 km ; the other a t M  — 1.74 M q , R  — 18.4 km . B o th  o f 

these results have the same q u a lity  to  w ith in  1  p a rt in  103  o f S.Sq./IV, and although 

the best o f these is tabu la ted  in  Table 4.2 i t  w ould be incorrect to  say th a t there is 

a single well-defined b e s t-fittin g  model. W h ile  th is  is the  on ly  case th a t exh ib ited  

a d is tinc t double m in im um  in  th is  s ta tis tic , a ll o f the  cases we examined show a 

long, fla t valley in  these contours. One m igh t expect th is  feature since, as has been 

po inted out, the  bes t-fit models w ill tend to  be those constrained to  a narrow  range 

o f M / R .  T h is  example shows th a t there is a degree o f degeneracy in  ob ta in ing  fits
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EOS A, 1.4 Msun, 300 Hz
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Figure 4.6: F itte d  1-D lig h t curves for EOS A  models: The best f i t  approxim ate 
lig h t curves from  Table 4.2 are p lo tted  against the  exact 1-D calculation .
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EOS L, 1.4 Msun, 300 Hz
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F igure 4.7: F it te d  1-D lig h t curves fo r EOS L  models: The best f i t  approxim ate 
lig h t curves from  Table 4.2 are p lo tted  against the  exact 1-D calculation .
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SSq/N Contours for EOS L, 1.4 Msun, 300 Hz
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Figure 4.8: Contours o f sum o f squared differences fo r f it: Contours o f the  “ S.Sq. /  
N ”  value fo r the  EOS L , 300 Hz case are shown. In  th is  p lo t there are c learly tw o 
separate m in im a  corresponding to  d iffe rent sets o f parameters w ith  approxim ate ly  
the same q u a lity -o f-fit.

even in  th is  s im p lified  case.

Erratum  in Cadeau e t  a l .  (2005)

T h is  section is based on an idea pursued in  Cadeau et al. (2005), except th a t in  the  

results presented here a subtle  change has been made in  ca lcu la tion  o f the Exact 

lig h t curves and the f i t  results have been recalculated. The result is th a t the  net 

size o f the  effect has changed, a lthough the  essence o f the  result has not. In  Cadeau 

et al. (2005), the  E xact lig h t curves were calculated using a series o f instantaneous 

flashes from  the  surface o f the  star, w hich were then composed together to  give the 

“ true ” lig h t curve. B y  do ing th is , however, the  snapshot effect was removed from  

the tru e  values, w h ils t i t  was included in  the approxim ate lig h t curves which were 

used fo r f it t in g . T h is  is because the snapshot effect arises because o f continuous

tim e  emission from  a m oving ob ject, measured a t an ins tan t o f observer tim e. 

Instantaneous emission from  a m oving extended region, on the o ther hand, deposits 

energy over a range o f observer times. The basic approach in  Cadeau et al. (2005)
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was to  b in  the  flu x  a rr iv in g  at the observer from  instantaneous flashes, when i t  

would have been more correct to  b in  flu x  a rr iv in g  at the  observer fo r emission over 

a range o f tim es A te; th is  would num erica lly  capture the snapshot effect and no 

add itiona l change w ould need to  be made to  the basic idea in  Cadeau et al. (2005). 

In  th is  section, we have discarded the flu x -b inn ing  m ethod described in  Cadeau 

et al. (2005) in  favor o f correcting the subtended angle de by the required factor, 

which is derived in  Section 2.4.2.

Cadeau et al. (2005) states th a t the  m axim a l e rro r aris ing from  using a f it t in g  

program  w hich does no t incorpora te  tim e-o f-fligh t effects is “ approx im ate ly  ± 1 0 %” ; 

the results shown in  Table 4.2 ind ica te  th a t the  resu lting  system atic e rro r is much 

higher than  th a t.

4 .3 .9  C o n c lu sio n

In  th is  section we have set ou t a s im p lifica tion  o f the  fu ll p rob lem  o f ca lcu la ting  

the lig h t curve w hich relies on re s tric tin g  bo th  the e m itte r and observer to  the 

equatoria l plane, and fu rthe rm ore  adopting a non-standard de fin ition  o f flu x  in  

order to  su it th is  res tric tion . Many, b u t no t all, analyses o f m illisecond pulsar data  

and related phenomena have no t accounted fo r the differences in  photon trave l tim e  

as an e m ittin g  region moves w ith  a ra p id ly -ro ta tin g  neutron star. Furtherm ore, i t  

is common to  use the  Schwarzschild m e tric  as the  fram ew ork in  w hich to  calculate 

deflection angles for photons reaching the observer. W ith in  the s im p lified  context o f 

th is  section, we have calculated lig h t curves using the  exact m e tric  and accounting 

fo r tim e -o f-fligh t effects, and a ttem pted  to  f i t  them  by a least-squares m ethod 

using lig h t curves calculated using the  Schwarzschild m etric  w ith o u t tim e -o f-fligh t 

effects included. We found th a t to  capture the add itiona l asym m etry in  the pulse 

profile  in troduced by  the  tim e -o f-fligh t effects, s ignificant errors in  the  obta ined 

best-fit parameters were in troduced a t the  level o f up to  about 40% in  M  and R  in  

iso lation, and up to  about 12% in  M / R  in  the  worst case. Furtherm ore, a degree 

o f degeneracy in  p ick ing the “best f i t ”  models was noted.

Since there is no d iffic u lty  in  eva luating the  tim es-o f-fligh t, the  efforts to  f i t  

m illisecond-period pulsed lig h t from  accreting X -ra y  binaries w ith  model lig h t 

curves to  in fe r neutron star parameters ought to  include these effects, in  v iew  o f 

the p o te n tia lly  considerable system atic e rro r th a t w ould otherw ise be in troduced 

as a result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 . 4  T h e  a p p l i c a b i l i t y  o f  o t h e r  a p p r o x i m a t e  t e c h n i q u e s 108

4.4  T h e ap p licab ility  o f o th er  ap p rox im ate tech n iq u es2

In  Section 4.3 we have provided a dem onstration th a t i t  is im p o rta n t to  account 

fo r the  vary ing  tim es-o f-fligh t in  the ca lcu la tion  o f the lig h t curve fo r rap id  ro ta 

tion , and in  th is  section these effects are always included. T h is  section is concerned 

w ith  the approxim ations described in  Section 3.1.1 to  the general lig h t curve cal

cu la tion  set ou t in  Chapters 2 and 3. In  pa rticu la r, we described a num ber o f 

possible approxim ations to  the ca lcu la tion  o f the  lig h t curve, which am ount to  a 

selection o f m e tric  (precise solution, K e rr, or Schwarzschild), and the m anner by 

which the oblateness o f the  s te lla r surface is accounted for ( “ob la te,”  where the 

surface f s(0 ) is specified v ia  the  s truc tu re  ca lcu la tion ; or “spherical” , i.e. con

stant f  (fo r SK), o r constant Schwarzschild r  =  exp [ ( 7  — p ) /2 ] f s(n /2 )  (fo r SS)). 

The “E xact”  m ethod represents the firs t ca lcu la tion  o f lig h t curves using a precise 

solution o f the  spacetime m e tric  and s te lla r structu re , and the rem ain ing m eth

ods are various approxim ations th a t m ay be conceived o f and are analogous to  

other calculations found in  the lite ra tu re . For example, M uno et al. (2002b) use a 

m ethod s im ila r to  our “ SS”  m ethod in  th e ir studies o f the  am plitude  evo lu tion  and 

harm onic content o f X -ra y  bu rs t oscillations (they included tim es-o f-fligh t in  th e ir 

models). B hattacharyya  et al. (2005) use the K e rr m etric  and a spherical ste llar 

surface star to  ob ta in  lig h t curves which they  used to  model the burs t oscillations 

o f the X -ra y  pulsar X T E  J1814-338; th is  is s im ila r to  w hat we refer to  as the  “ SK 

approx im ation” . In  th e ir ca lcu lation , B ha ttacharyya  et al. (2005) make use o f a 

s tructu re  ca lcu la tion  to  ob ta in  the angular m om entum , mass, and ra d ii o f th e ir 

s te lla r models given an EOS, w hich allows them  to  f ix  the  K e rr param eter a in  

th e ir  calculations, s im ila r to  w ha t we d id  to  calculate Table 4.1. However, they  

“ do no t include the effects o f spin-induced ste lla r oblateness,” w h ich they argue are 

small since the oblateness is second order in  f l* .  One o f the  goals o f th is  section 

is to  test th is  assertion. F ina lly , B ra je  et al. (2000) use a M onte Carlo  m ethod to  

obta in  a ca lcu la tion  s im ila r to  our SK calculation , and in  B ra je  and Rom ani (2001) 

they undertook a comparison o f a lig h t curve model fo r e ither obla te or spherical 

ste lla r surfaces. We have also made i t  possible to  m arry  our lig h t curve calcula

tions to  a precise so lu tion  o f the  ste llar structu re , by inco rpora ting  the oblateness 

o f ra p id ly -ro ta tin g  neutron star models, as expressed by f s(6 ): the  coordinate loca

tio n  o f the  s ta r’s surface as a func tion  o f co la titude . Know ing  th is  makes i t  possible 

to  p ick correct in it ia l conditions fo r the  in teg ra tion  o f nu ll geodesics, as discussed

2Som e o f  th e  re su lts  a p p e a rin g  in  th is  sec tion  are  co n ta ine d  in  C adeau et al. (2006), and 
p o rtio n s  o f  th e  p a p e r are  in c o rp o ra te d  here.
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in  Section 2.3.2.

Th is  section is arranged as follows: F irs t, we a tte m p t to  qu a n tify  the  differences 

between the five d ifferent methods we are contem pla ting  in  Section 4.4.1. Then, in  

Section 4.4.2 we present a s tudy where we calculated lig h t curves using the Exact 

m ethod, then then obta ined fits  to  them  by vary ing  the  in p u t parameters o f the SS 

ca lcu lation so as to  m inim ise the y 2  between the Exact and SS methods.

4 .4 .1  M e th o d s  co m p a riso n

To begin w ith , one expects th a t a ll reasonable m ethods o f ca lcu la ting  the  lig h t curve 

should converge as the  spin is reduced. To illu s tra te  th is , in  F igure  4.9 we have 

computed the  lig h t curve fo r an EOS L, 1 .4M q m odel for emission from  9e =  41°, 

and observation a t 0O =  100° spinn ing at Q* =  200 Hz, 400 Hz, and 600 Hz, using 

the Exact ca lcu la tion  as well as the approxim ations O K , OS, SK, and SS. As Q* 

increases, i t  is apparent th a t the  calculations w hich account fo r oblateness in  some 

fashion (i.e., Exact, O K , OS) depart from  the ones th a t do not (i.e., SK, SS), b u t 

th a t fo r the  slowest speed shown there is l i t t le  difference. I t  is clear th a t o f the  

models we are considering from  Table 4.1, th a t the 600 Hz EOS L  case w ill be 

the most oblate. The sim plest way o f seeing th is  is classically: th is  model has the 

largest radius and angular velocity, and so the effect due to  centrifuga l force on th e ' 

surface is greatest. T h is  m odel is qu ite  close to  the  breakup speed, o r mass-shedding 

lim it,  when the ro ta tin g  flu id  elements a t the  surface are no longer g ra v ita tio n a lly  

bound to  the  star (or, in  the  re la t iv ity  language, they  have no four-acceleration). 

In  th is  case, f s(0 ) / f s(7r / 2 ) =  0.827, compared to  the 600 Hz EOS A  case where 

the same ra tio  is 0.96. Since we are concerned w ith  the worst-case o f effects due to  

oblateness fo r rea listic models, we w ill l im it  w ha t follows to  considering the  600 Hz 

EOS L  case; th is  is relaxed again in  Section 4.4.2.

To illu s tra te  the d is to rtions th a t appear in  the calculated lig h t curves when 

oblateness is incorporated, we have chosen two cases where there are s ign ificant 

differences in  the lig h t curve calculated by  the methods w ith  an oblateness descrip

tio n  compared w ith  the “spherical”  methods. In  F igure  4.10, we have p lo tted  the 

ligh t curve obta ined using a ll o f the  m ethods we are considering for: emission from  

9e =  15°, and observation at 90 =  100° in  the top  panel, and 9e =  45°, 9a =  135° 

in  the  bo tto m  panel. In  the top  panel, the  clear difference is th a t the  obla te cal

culations do not eclipse, w h ile  the spherical ones do. In  the  b o tto m  panel the  

s itua tion  is reversed: the  oblate calculations eclipse fo r longer than  do the  spher

ical calculations. C learly  these differences m igh t have significant im p lica tions  for
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Figure 4.9: Oblateness becomes im p o rta n t as O* increases: In  th is  series o f lig h t 
curves, we va ry  the  speed o f the  model and leave the o ther parameters fixed. The 
top  panel is the  slowest (200 Hz), and the b o tto m  is the fastest (600 Hz). N ote 
th a t as speed increases, the  calculated pulse p ro file  increasingly depends on the 
p a rticu la r m ethod used.
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data analysis: f i t t in g  routines are based on m in im isa tion  o f x~ w ill tend to  match 

eclipse dura tions or pulsed fractions o f da ta  w ith  those features predicted by a the

oretica l lig h t curve model. As F igure 4.10 illus tra tes, these features as calculated in  

the  “ spherical”  approxim ations are no t re liab le  approxim ations o f the  s itua tion  for 

the Exact m ethod, or o ther approxim ate m ethods w ith  an oblateness description 

b u ilt- in .

To understand the genesis o f th is  d is to rtion , we consider the 9e =  15°, 6 0 =  100° 

case more carefully. In  F igure  4.11, we show tw o panels corresponding to  the E xact 

m ethod (top ) and the SS m ethod (bo ttom ), where we have p lo tted  as a function  

o f ro ta tio n  phase tw o quantities: firs t, a param eter which corresponds to  6 i for 

the rays reaching the  observer using cross symbols against the  le ft-hand axis, and 

second, a param eter corresponding to  f j  using a line against the  righ t-hand  axis. 

Note th a t the p lo tted  parameters are ac tua lly  rescalings o f these values used by 

the code such th a t the  sign and re la tive  sizes o f these values are m ain ta ined—  

on ly the re la tive  sizes and signs m a tte r fo r the  discussion at hand. W hen 9i is 

negative, the  ray in it ia l ly  heads “ n o rth ” in  angular coordinates. C om paring the 

values o f the  r ,  param eter in  the E xact (top ) panel where there is no eclipse, and 

SS (bo ttom ) panel where the  emission region is eclipsed (the eclipse occurs a t those 

points where the cross symbols are absent compared to  the top  panel), we see 

th a t the  value o f Fj becomes negative in  the  E xact case, w hich allows add itiona l 

rays to  reach the observer du ring  those phases fo r which the  emission region is 

eclipsed in  the  SS ca lcu la tion . The eclipse is in troduced in  the  SS calcu la tion 

because Fj >  0  when the sta r is taken to  be spherical, b u t north -d irec ted  rays from  

the upper hemisphere can have negative values o f F j  when the s ta r’s oblateness is 

accounted for. A n  illu s tra tio n  o f th is  is given in  F igure  4.12. The b o tto m  panel 

o f F igure  4.10, where the SS ca lcu la tion  is v is ib le  fo r longer than  in  the E xact 

calculation , can be explained in  a s im ila r way: in  th is  case, the  rays reaching the 

observer are south-directed from  the upper hemisphere, and in  the  exact case the 

f j  values m ust rem ain above a positive c r it ica l value determ ined by the oblateness, 

w h ile  in  the SS ca lcu la tion  they  can reach zero. In  the sense o f F igure  2.1, the  top  

panel o f F igure 4.10 involves a case where some rays reaching the observer in  the  

exact ca lcu la tion  are in  Region I, w hich is p roh ib ited  in  the  SS calculation . The 

b o tto m  panel involves a case where rays reaching the observer in  the  SS ca lcu la tion 

are in  Region IV , w hich is p roh ib ited  in  the E xact calculation.

N a tu ra lly , one is led to  wonder how the approxim ate m ethods we have consid

ered fare as 9e, 9a are varied. To investigate th is , we calculated the  Exact, SS, and
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F igure 4.10: Q ua lita tive  changes in  lightcurves when oblateness is accounted for: 
These p lo ts show lig h t curves calculated fo r EOS L , 1.4 M g , 0 *  =  600 Hz. The top 
panel shows the case where emission is from  6 e — 15°, and observation takes place 
a t 0o =  100°; the  b o tto m  panel is fo r 0e =  45°, 0o =  135°.
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L-1.4-600 (Exact method), 0emit=15 deg, 0obs=1OOdeg
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Figure 4.11: D iffe rent rays can reach the observer in  oblate ca lcu la tion  (9e =  15°, 
90  — 100°): T h is  figure corresponds to  the top  panel o f F igure 4.10. On these tw o 
panels, we have p lo tted  a param eter w hich corresponds to  9i fo r the  rays reaching 
the observer using cross symbols against the  le ft-hand axis, and a param eter cor
responding to  f j  using a line  against the  righ t-hand  axis, as a func tion  o f ro ta tio n  
phase (the  p lo tted  parameters are rescalings o f these values used in  the  code such 
th a t the sign and re la tive  sizes o f these values are m ainta ined).
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ray reaching 
observer

dr/de = 0

Figure 4.12: E xact m ethod allows fo r rays w ith  f t <  0, b u t in  the  SS calcula
tio n  these rays w ould be p roh ib ited , leading to  an eclipse as in  the  top  panel o f 
F igure 4.10.

O K  lig h t curves fo r a range o f angles, and then com puted the S.Sq./N  s ta tis tic , de

fined in  E quation  4.19. The results are shown in  F igure 4.13 where we have p lo tted  

contours o f S .Sq./lV  as a func tion  o f the  tw o angular parameters fo r the  SS calcula

tio n  (top  panel) and O K  ca lcu la tion  (b o tto m  pane l). B o th  p lo ts show a steep peak 

in  S.Sq. / N  fo r ca lcu la tion  w ith  lig h t com ing from  near the spin axis and observed 

by h igh ly-inc lined  observers, w hich is the  w orst-perform ing case. The peak size o f 

the s ta tis tic  is about tw o orders o f m agnitude smaller fo r the O K  ca lcu la tion  than  

the SS ca lcu lation , ind ica ting  th a t in  the  w orst case, the disagreement between 

the O K  and E xact ca lcu la tion  is about 1/10 the disagreement between the SS and 

E xact methods, on average. Also, these contour p lo ts ind ica te  th a t the  agreement 

between methods is best fo r lig h t em itted  and observed near the  equatoria l plane. 

Th is  makes sense as a t the  equator there is no effect due to  oblateness, because a ll 

methods agree on a descrip tion o f the  ste lla r radius (whether iso trop ic  o r areal) at 

the emission region, and there are no add itiona l o r p roh ib ited  rays th a t are in tro 

duced since a t the  equator d r /d #  =  0. As a fu rth e r illu s tra tio n , in  F igure  4.14, 

we have shown calculations corresponding to  the  worst case (top  panel, 9e =  15°, 

90  =  90°), and the best case (b o tto m  panel, (),, — 90°, 0O =  90°) scenarios th a t we 

have identified  by th is  procedure.

In  the best case, there is s t i l l  a sm all effect due to  the precision to  w hich ligh t-
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Contours of S.Sq./N for L-1.4-600, Exact versus SS
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Figure 4.13: D e te rm in ing  the worst-case scenario fo r approxim ate ca lcu lation : In  
each panel, we have p lo tted  contours o f S.Sq./N ,  defined in  E quation  4.19, as a 
function  o f 6 e and 0o to  compare the Exact ca lcu la tion  to  the SS ca lcu la tion  (top  
panel), and to  the O K  ca lcu la tion  (b o tto m  panel), using calculations fo r EOS L, 
1.4 M q , D * =  600 Hz.
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L-600, 0e=15 deg, 9o=90 deg
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Figure 4.14: Exam ple o f worst- and best-case scenarios for approxim ate calcula
tions: Follow ing on from  F igure 4.13, we have produced an examples o f the “w orst” 
(top) and “best” (bo ttom ) cases fo r EOS L, 1 .4 M 0 , SI* =  600 Hz. In  the top  panel, 
computed fo r 9e =  15°, 90  =  90°, there is s ign ificant discrepancy between the cal
culations w hich account fo r oblateness (Exact, O K , OS), and the ones th a t do not 
(SK, SS). On the o ther hand, the  b o tto m  panel shows the 9e =  90°, 90  =  90° case, 
where a ll ca lcu la tion  m ethods essentially coincide.
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bending can be calculated using an approxim ate m etric , bu t th is  is a much smaller 

effect than  oblateness can in troduce for general values o f the  angular parameters. 

T h is  agrees w ith  w hat B ra je  and Rom ani (2001) found. T he ir w ork allowed fo r the 

poss ib ility  o f a ro ta tiona lly -fla ttened  star in  th e ir studies o f the rm a l emission from  a 

single po lar cap fo r bo th  spherical and “e llip tica l”  stars. They noted th a t the  d iffe r

ence in  the lig h t curve ca lcu la tion  in troduced by passing from  the Schwarzschild to  

K e rr m etric  was sm aller than  o ther considerations th a t become im p o rta n t fo r rap id  

ro ta tion , among them  tim e  delays (as we showed in  Section 4.3), D opp ler boosts, 

aberration , and oblateness. So i t  is somewhat surpris ing th a t there are no extan t 

analyses o f m illisecond pulsar da ta  w hich account fo r oblateness (B ra je  and Rom ani 

( 2 0 0 1 ) discusses a theore tica l model w ith o u t an app lica tion  to  data), b u t e ffo rt has 

been expended to  im prove the accuracy o f photon propagation by inco rpora ting  

the K e rr m etric  (fo r example, by B ha ttacharyya  et al. (2005)). C learly  the  p r io r ity  

under circumstances s im ila r to  w hat we’re considering— surface emission from  a 

m illisecond pulsar— should be to  incorpora te  a good description o f oblateness in  

these models.

Perhaps the reason for the  absence o f e ffo rt in  analysis th is  way is understand

able: the ro ta tion-induced oblateness as measured by how f s ( 0 )  differs from  some 

fiduc ia l value (e.g., r s ( t t / 2 )) is o f order f t* ,  so one is tem pted to  assert th a t i t  

is a sm all effect (B hattacharyya  et al., 2005). T h is  is absolute ly correct from  the 

po in t o f v iew  o f those effects th a t re ly  on the  size o f r  (or speed), fo r example, the 

ro ta tion-induced p a rt o f redsh ift (i.e., Doppler boosting). However, there are two 

problems w ith  th is  argum ent; firs t, f s ( 0 ) / r s ( 7r / 2 ) is not coordinate inva rian t and 

is not d ire c tly  observable. Second, i t  is rea lly  the  derivative d r s ( 0 ) / d d  th a t bears 

the m a jo r responsib ility  fo r effects due to  oblateness discussed here, as th is  controls 

the o rien ta tion  o f surface elements along the observer’s line o f sight. In troduc ing  

these effects w hich are not captured in  the analogous “ spherical”  cases is p r im a rily  

w hat causes the effects we have noted here, and are more sign ificant than  m igh t 

be suggested by looking at the  e llip t ic ity  o f the  surface. Beyond the tem p ta tio n  to  

dismiss these effects as “sm all,”  there is also the practica l m a tte r o f p roducing  a 

model th a t incorporates a suffic ien tly  flexib le  model o f oblateness w h ile  being fast 

enough for f it t in g . B ra je  and Rom ani (2001) calculated pulse shapes s im ila r to  our 

OS and O K  calculations v ia  a M onte  Carlo m ethod they devised, w hich is not at 

a ll s im ila r to  w ha t is usually done for pulse shape models which are used for f it t in g , 

and is probab ly  no t su itab le fo r such an app lica tion  because o f the com pu ta tiona lly  

intensive nature  o f the  M onte  Carlo m ethod. M ethods based on the  form alism  o f
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Pechenick et al. (1983) can be adapted fo r oblateness, bu t no t w ith o u t significant 

com plication. A  firs t look is taken a t th is  in  Section 4.5.

4 .4 .2  F its  to  o b ta in  p a ra m eters

We have established th a t, a ll o ther th ings being equal, reasonable varia tions on the 

lig h t curve ca lcu la tion m ethod can result in  s ignificant differences in  the com puted 

pulse profile . Furtherm ore, the  m agnitudes o f these differences are sensitive to  the 

emission region’s and observer’s inc lina tion  angles. In  th is  section we would like  to  

ask a d ifferent question: how well can one expect a y 2  m in im iza tion  program  based 

on f it t in g  to  the  SS ca lcu la tion  to  perfo rm  for m illisecond-period pulsars? In  o ther 

words, i f  we com pute the observed bo lom etric  pulse profile  fo r an in fin ites im a l em it

tin g  region using the Exact m ethod fo r some ste lla r model and choice o f in c lina tion  

angles, w il l we re liab ly  recover the relevant parameters by m in im is ing  the y 2  to  SS 

calculations w ith  a ll b u t the frequency le ft undeterm ined? T h is  is an im p o rta n t 

question because i f  the SS f it t in g  technique perform s acceptably well, then no, or 

perhaps on ly  m ino r w ork w il l  need to  be done to  adapt the  extan t f i t t in g  codes for 

rap id -ro ta tion . On the o ther hand, i f  i t  does not perform  well, then i t  w il l  ind ica te  

a general need to  replace too ls based on SS (or SK) calculations to  incorpora te  

oblateness. The res tric tion  to  in fin ites im a l and iso trop ic  emission regions allows us 

to  isolate the effect ju s t due to  oblateness, and tests the robustness o f the  f it t in g  

procedure when s ligh tly  d ifferent descriptions o f the  photon o rb its  are used.

To ca rry  th rough  th is  study, we firs t com puted lig h t curves using the E xact 

m ethod fo r a num ber o f 1.4 M ©  ste lla r models from  Table 4.1, fo r a num ber o f 

choices o f emission and observer inc lina tions angles. Then fits  were obta ined to  

these lig h t curves using a program  which m inim ises y 2  against the  SS ca lcu la tion 

(Leahy, 2005). The true  values fo r the  cases considered are displayed in  Table 4.3, 

where we show the Schwarzschild radius as a function  o f emission in c lina tion  angle, 

R(9e)i f ° r  al l  o f the considered cases, as well as G M / (c2 R ( 0 e)), since the results o f 

the f i t  are for the value o f R  and G M / ( c 2 R ) a t the e m ittin g  region and not on the 

equator.

The results o f the fits  are shown in  Tables 4.4 and 4.5. The fits  were obta ined 

by firs t fix in g  the value o f G M / ( c 2 R ) a t the emission region; th is  means th a t a ll 

evaluations o f the  angular deflection in tegra l are fo r a single value o f G M / { c 2 R ), 

which makes i t  easy to  num erica lly  solve for im pact parameters b given a required 

angular deflection. Then the program  a ttem pts to  find  the global m in im um  in  y 2,
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Oe EOS 0* (Hz) R (0e) (km) G M / ( c 2R( 0e))
15° A 100 9.57 0.216

300 9.55 0.217
400 9.53 0.217
500 9.51 0.217
600 9.49 0.218

L 300 14.63 0.141
400 14.47 0.143
500 14.25 0.145
600 13.98 0.148

41° A 100 9.57 0.216
300 9.58 0.216
400 9.58 0.216
500 9.59 0.216
600 9.60 0.215

L 300 14.82 0.140
400 14.80 0.140
500 14.78 0.140
600 14.74 0.140

45° A 100 9.57 0.216
200 9.58 0.216
300 9.58 0.216
400 9.59 0.216
500 9.61 0.215
600 9.63 0.215

L 100 14.83 0.139
200 14.84 0.139
300 14.85 0.139
400 14.87 0.139
500 14.89 0.139
600 14.90 0.139

85° A 100 9.57 0.216
200 9.59 0.216
300 9.62 0.215
400 9.66 0.214
500 9.71 0.213
600 9.78 0.211

L 100 14.86 0.139
200 14.95 0.138
300 15.10 0.137
400 15.35 0.135
500 15.73 0.131
600 16.35 0.127

Table 4.3: The true  values o f R(0e), G M / (c‘2R ( 6 e)) are displayed for the fitte d  lig h t 
curves; the  results o f the fits  are displayed in  Tables 4.4 and 4.5.
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defined by
N - 1

tru e ( i)  — f i t ( i ) 2

(4.20)
a

i=0

by vary ing  R, 9e and 0O. M  is obta ined from  the assumed value o f G M / ( c 2 R)  

and the fitte d  value o f the  radius. We have taken a constant value a  =  0.01 to  be

conjugate grad ient m ethod described by Press et al. (1988) (Leahy, 2005). T h is  is 

much faster than  doing an evaluation everywhere in  the param eter space, b u t has 

the side-effect th a t i t  is sometimes sensitive to  the in it ia l values o f the  parameters 

at the  beginning o f the  m in im isa tion  process. B y  ca rry ing  ou t th is  process for a

We have also calculated the 90% uncerta in ty  in  the value o f G M / ( c 2 R ), which for 

one param eter o f in terest is found by in te rpo la tin g  for the  values o f G M / ( c 2 R ) w ith  

y 2  — Xbest +  2.71 (Leahy, 2005). In  several cases, the  m in im um  in  y 2  is so shallow 

th a t no m eaningfu l error bars can be com puted and these cases are m arked w ith  an 

asterisk in  the relevant colum n. These fits  are degenerate in  the sense th a t almost 

any reasonable value o f G M / ( c 2 R ) can correspond to  a good fit .  The d iff ic u lty  in  

ob ta in ing  unique fits  was foreshadowed in  Section 4.3.8, and i t  is re la tive ly  well- 

known th a t f it t in g  in  th is  way sometimes has non-unique solutions. B ha ttacharyya  

et al. (2005) po in ted ou t th a t i t  is the  presence o f s ignificant power in  the  higher 

harmonics o f the  data  th a t allows for th is  k in d  o f analysis to  take place, because 

such power is necessary for s ign ificant asym m etry in  the pulse profile. One o f the 

cases suffering from  degeneracy is 9e =  15°, 90 =  100°; considering the top  panel o f 

F igure 4.14 (ac tua lly  com puted fo r 90 =  90°), i t  is clear th a t fo r th is  set o f angles 

th a t the  lig h t curve does no t have significant power in  higher harmonics, and as a 

result i t  is easy to  f i t  a large num ber o f d ifferent models to  it .  In  re lated work, M uno 

et al. (2 0 0 2 b) rem ark on a degeneracy in  fits  conta in ing our tw o in c lin a tio n  angles 

and a param eter con tro lling  the emission region size in  th e ir fits  to  the am plitudes 

o f therm onuclear X -ra y  bursts. Also, the poss ib ility  o f degeneracies in  f i t t in g  lig h t 

curves o f isolated X -ra y  d im  neutron stars to  th e ir models was raised by Zane and 

T u ro lla  (2005).

Considering the non-degenerate f i t  results, firs t we note th a t y 2  tends to  increase 

w ith  frequency, ind ica ting  th a t a t h igher speeds the  best f it  SS models f i t  the  E xact 

ca lcu la tion more poo rly  than  fo r slower models. Exam in ing  the best f i t  values o f 

G M / { c 2 R{9e)), we see th a t w ith  tw o exceptions, the true  values were generally

the “ error”  on the tru e  values, w hich w ill a llow  us to  establish confidence intervals 

on the obta ined fits . The m in im isa tion  o f y 2  is achieved by an app lica tion  o f the

num ber o f values o f G M / ( c 2 R ),  we select the  resu lt w ith  the lowest m in im um  y 2.
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w ith in  the established error bar, and the errors on the  fitte d  values were constrained 

to  about 11%, often much less. The exceptional cases were also the m ost extreme 

tests o f th is  m ethod, corresponding to  the EOS L , 600 Hz model fo r 9e •= 45°, 

0O — 135° and for Be =  41°, 0o =  100°, where the true  values fe ll outside the  error 

bar and large errors in  the fitte d  values were noted.

Considering the fits  to  values o f M  and R  ind iv idua lly , we see th a t fo r the  slower 

100 Hz and 200 Hz cases, th a t the  errors on these quantities are generally confined 

to  less than  10%. A n  exception is the  approxim ate ly  20% errors noted for the  EOS 

A , 200 Hz case fo r 9e — 45°, 90 =  135°, which m ay ind ica te  a possible degeneracy 

problem  for th is  case, since we know th a t the  E xact and SS lig h t curves nearly 

coincide in  th is  l im it .  For the faster models, the  errors on these fit te d  values can 

reach the 20% level in  several d ifferent cases. F ina lly , considering the fits  to  the 

angular parameters, we found th a t there were significant d ifficu lties  establishing 

the true  angles fo r nearly  a ll o f the  9e =  41°, 9a =  100° cases (s igna lling  a possible 

degeneracy issue), as well as fo r the  single non-degenerate 9e — 85°, 90  — 20° case, 

w ith  errors a t the level o f a few tens o f degrees. The 9e =  45°, 9t) =  135° results 

were qu ite  good w ith  errors almost u n ifo rm ly  a t the  level o f a few degrees. F ina lly , 

the  9e =  85°, 90  — 100° results were re liable fo r the  slower models, w ith  the errors 

tend ing to  increase w ith  speed above 200 Hz.

I t  is also in teresting  to  see an illu s tra tio n  th a t the  fitte d  models do, indeed, 

describe the data. F igure  4.15 shows tw o p lo ts illu s tra tin g  the differences between 

lig h t curves obta ined v ia  the  SS ca lcu la tion  using bo th  fitte d  and true  values for 

the  parameters, compared to  the  E xact ca lcu lation . The top  panel is fo r the  EOS 

L, =  300Hz, 9e =  85°, 9a =  100° case in  Table 4.5. We see th a t a lthough 

the best f i t  case over-estim ated b o th  mass and radius by about 2 0 % over the  true  

values, there is no appreciable difference between the  three lig h t curves. In  th is  

case the true  value o f G M / ( c 2R ) fa lls w ith in  the e rro r bar given on the fit .  The 

bo ttom  panel is fo r the  EOS L, f I *  =  600Hz, 9e — 41°, 90 — 100° case: th is  f i t  

underestim ated mass by 7% and underestim ated radius by 12%, and the fitte d  value 

o f G M / ( c 2R ) was too  h igh by 14%. In  th is  case, the  f it t in g  program  shortened the 

eclipse to  be tte r f i t  the  da ta  by tend ing  to  a larger value o f G M / ( c 2R ); note th a t 

the SS ca lcu lation produced using the true  values has an eclipse th a t is too  short.

4 .4 .3  C o n c lu sio n

In  th is  section, we firs t undertook a comparison o f the  Exact lig h t curve ca lcu la tion 

m ethod we set ou t in  Chapters 2 and 3, w ith  the  approxim ations we described in
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d e  ®o E O S n *  ( H z ) 7

f i t

V I / M ®  

r e l .  e r r .

R ( d

f i t

e )  ( k m )

r e l .  e r r .

Be

f i t

( d e g )  

a b s .  e r r .

e 0

f i t

( d e g )  

a b s .  e r r . f i t

G M / c 2 R ( (

u n c .

h )

r e l .  e r r .

1 5 °  2 0 ° A 1 0 0 1 .4 0 - 0 . 0 0 2 1 0 .3 0 .0 8 1 4 .2 - 0 . 8 1 9 .9 - 0 . 1 0 .2 * - 0 . 0 7 0 .0 0 2

A 3 0 0 1 .4 0 - 7  X  1 0 ~ 5 9 .8 5 0 .0 3 1 4 .3 - 0 . 7 1 9 .9 - 0 , 1 0 .2 1 * - 0 . 0 3 0 .0 1

L 1 .4 0 - 0 . 0 0 2 1 6 .5 0 .1 1 3 .0 - 2 . 0 2 0 .1 0 .1 0 .1 2 5 * - 0 .1 0 .0 1

A 4 0 0 1 .4 0 - 4  x  1 0 - 4 1 0 .3 0 .0 8 1 3 .9 - 1 . 1 1 9 .4 - 0 . 6 0 .2 * - 0 . 0 8 0 .0 3

L 1 .3 9 - 0 . 0 0 4 1 7 .9 0 .2 1 2 .3 - 2 . 7 1 9 .1 - 0 . 9 0 .1 1 5 * - 0 . 2 0 .0 3

A 5 0 0 1 .4 0 0 .0 0 2 1 0 .9 0 .2 1 3 .4 - 1 . 6 1 8 .9 - 1 . 1 0 .1 9 * - 0 .1 0 .0 4

L 1 .3 9 - 0 . 0 0 8 1 9 .5 0 .4 1 1 .6 - 3 . 4 1 8 .1 - 1 . 9 0 .1 0 5 * - 0 . 3 0 .0 3

A 6 0 0 1 .4 0 0 .0 0 3 1 1 .5 0 .2 1 2 .9 - 2 .1 1 8 .4 - 1 . 6 0 .1 8 * - 0 . 2 0 .0 4

L 1 .4 1 0 .0 0 9 1 9 .0 0 .4 1 1 .5 - 3 . 5 1 7 .8 - 2 . 2 0 .1 1 * -0 .3 . 0 .1

1 5 °  1 0 0 ° A 1 0 0 1 .0 8 - 0 , 2 6 .3 5 - 0 . 3 3 0 .1 1 5 .1 8 0 .9 - 1 9 . 1 0 .2 5 * 0 .2 4

A 5 0 0 0 .5 9 3 - 0 . 6 8 .7 6 - 0 . 0 8 5 4 . 7 3 9 . 7 2 1 .8 - 7 8 . 2 0 .1 <  0 .2 2 5 - 0 . 5 1

L 0 .8 5 4 - 0 . 4 8 .4 1 - 0 . 4 3 0 .2 1 5 .2 7 8 .1 - 2 1 . 9 0 ,1 5 <  0 .2 0 .0 3 0 .8

A 6 0 0 0 .6 7 8 - 0 . 5 9 .1 0 - 0 . 0 4 5 6 .9 4 1 .9 2 0 .3 - 7 9 . 7 0 .1 1 * - 0 . 5 0 .8

L 0 .9 1 8 - 0 . 3 7 ,9 8 - 0 . 4 3 4 .1 1 9 .1 6 9 .5 - 3 0 . 5 0 .1 7 * 0 .1 2

4 1 °  2 0 ° A 1 0 0 1 .4 1 0 .0 0 4 9 .2 3 - 0 . 0 4 2 9 .8 - 1 1 .2 2 8 .9 8 .9 0 .2 2 5 * 0 .0 4 0 .0 0 5

A 5 0 0 1 .4 0 0 .0 0 2 1 0 .4 0 .0 8 2 0 .6 - 2 0 .4 3 5 .3 1 5 .3 0 .2 * - 0 . 0 7 0 .0 5

L 1 .9 9 0 .4 1 6 .8 0 .1 3 3 .2 - 7 . 8 2 1 .5 1 .5 0 .1 7 5 * 0 .3 0 .0 3

A 6 0 0 1 .4 0 0 .0 0 1 1 0 .9 0 .1 2 0 .2 - 2 0 .8 3 4 .0 1 4 .0 0 .1 9 * - 0 . 1 0 .0 7

L 2 .5 3 0 .8 1 7 .8 0 .2 2 8 .8 - 1 2 .2 2 3 .2 3 .2 0 .2 1 * 0 .5 0 .0 6

1—
' O o o o A 1 0 0 1 .4 8 0 .0 6 1 0 .2 0 .0 6 8 0 .5 3 9 .5 1 3 9 .2 3 9 .2 0 .2 1 5 0 .0 1 1 - 0 . 0 0 5 0 .1

A 3 0 0 1 .4 9 0 .0 6 1 0 .0 0 .0 4 7 9 .8 3 8 .8 1 3 8 .0 3 8 . 0 0 .2 2 0 0 .0 0 5 0 .0 2 1

L 1 .0 9 - 0 . 2 1 1 .1 - 0 . 3 6 7 . 0 2 6 .0 9 5 .6 - 4 . 4 0 .1 4 5 0 .0 2 4 0 .0 4 0 .3

A 4 0 0 1 .4 5 0 .0 4 9 .5 5 - 0 . 0 0 4 8 0 .8 3 9 .8 1 3 4 .9 3 4 .9 0 .2 2 5 0 .0 0 6 0 .0 4 2

L 1 .1 7 - 0 . 2 1 1 .9 - 0 . 2 5 8 .0 1 7 .0 9 6 .3 - 3 . 7 0 .1 4 5 0 .0 2 3 0 .0 4 0 .4

A 5 0 0 1 .5 1 0 .0 8 9 .8 9 0 .0 3 8 0 .2 3 9 . 2 1 3 6 .9 3 6 . 9 0 .2 2 5 0 .0 0 5 0 .0 4 3

L 1 .2 9 - 0 . 0 8 1 2 .7 - 0 . 1 5 2 . 7 1 1 .7 9 8 .1 - 1 . 9 0 .1 5 0 .0 2 0 .0 7 0 .8

A 6 0 0 1 .5 8 0 .1 1 0 .2 0 .0 6 4 1 . 9 0 .9 1 0 2 .2 2 .2 0 .2 3 0 0 .0 0 7 0 .0 7 4

L 1 .3 0 - 0 . 0 7 1 2 .0 - 0 . 2 5 7 .9 1 6 .9 9 7 .5 - 2 . 5 0 .1 6 0 0 .0 1 5 0 .1 2

Table 4.4: F its  to  ligh t curves using SS m ethod to  ex trac t parameters, p a rt 1: For the tabu la ted  cases, the best f i t  Schwarzschild 
calcu lation (corresponding to  our SS m ethod w ith  general M  and R)  to  our lig h t curves calculated using the Exact method 
were obtained by Leahy (2005) to  assess the im pact o f using th is  approxim ation in  th is  context. W here the uncerta in ty  value 
o f G M /c 2R  is given as *, th is  indicates th a t the best f i t  was degenerate in  th is  param eter. Table 4.3 displays the true  values 
o f R(9e) and G M / ( c 2 R(9e)). A l l  models have true  mass 1.4M © . Th is  table is continued in  Table 4.5
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EOS L, 1.4 Msun, 300 Hz: 0e = 85°, 0O = 100°
1

0.8

0.6

0.4

0.2

l . Exact
§S, fitted params 
SS, true params

0
0.2 0.3 0.4 0.5

Observed phase / (2n)
0.6 0.7 0.8 0.9

EOS L, 1.4 Msun, 600 Hz: 0e = 41°, 60 = 100°
1

0.8

0.6

0.4

0.2

Exact ------
SS, fitted params +  
SS, true params ------

0
0 0.2 0.4 0.6 0.8 1 1.2

Observed Phase /  (2jr)

Figure 4.15: C om paring lig h t curves w ith  f it te d  parameters to  true  values: These 
two p lo ts illu s tra te  the differences between lig h t curves obtained v ia  the SS calcu
la tion  using bo th  f itte d  and true  values fo r the parameters, compared to  the  E xact 
calculation .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 . 4  T h e  a p p l i c a b i l i t y  o f  o t h e r  a p p r o x i m a t e  t e c h n i q u e s 125

Section 3.1.1: namely, the  oblate K e rr and Schwarzschild (O K , OS) methods, and 

the “ spherical”  K e rr and Schwarzschild (SK, SS) methods. We found th a t w h ile  

there was l i t t le  difference in troduced by using the K e rr m etric  fo r photon prop

agation over the Schwarzschild m etric , s ignificant differences could be in troduced 

by describ ing the ste lla r surface as oblate instead o f spherical. These find ing  are 

consistent w ith  w ha t was suggested by B ra je  and Rom ani (2001). Furtherm ore, the 

differences between the Exact ca lcu la tion  and bo th  o f these approxim ations were 

m axim ised in  the case when lig h t was em itted  from  close to  the ro ta tio n  axis, and 

observed close to  the equatoria l plane. The m axim um  disagreement between the 

O K  and E xact methods were on the  average 10% o f the  size o f the disagreement 

between the SS and Exact methods.

Using our E xact ca lcu lation as a source o f synthe tic  data  for the observed bolo- 

m etric  pulse pro file  o f an in fin ites im a l isotrop ic emission region, we then a ttem pted  

to  extract the  corresponding parameters by m in im is ing  x 2 against lig h t curves cal

culated using the SS method. We found th a t several o f the cases studied suffered 

from  degeneracy in  the  fits , in  the  sense th a t there was no unique way to  map the 

pulse pro file  to  parameters. T h is  is expected in  cases where there is no t s ignificant 

power present in  the h igher harmonics o f the  pulse. For the non-degenerate cases, 

our results tended to  ind ica te  th a t i t  is generally possible to  get a good estim ate 

o f G M / ( c 2 R(0e)) by fits  to  the  SS ca lcu lation , fo r a ll b u t the  most extrem ely de

formed stars (i.e., the s t if f  EOS L  model at 600 Hz). M odu lo  some cases th a t are 

like ly  to  have suffered from  a degeneracy, however, th is  m ethod is much less re liable 

in  establishing the M  and R  parameters in d iv id u a lly  for frequencies h igher than  

about 200 Hz, when the errors on these fit te d  parameters taken alone can be as 

high as about ± 2 0 %, w hich is no t sm all enough to  place in teresting constra in ts on 

neutron star parameters. The poor performance o f th is  f it t in g  procedure for h igher 

frequencies is like ly  to  be a result o f the  increasing significance o f oblateness. I t  

seems reasonable th a t f it t in g  to  m illisecond-period pulsar da ta  is best done using 

theore tica l models th a t account fo r oblateness in  some fashion.

In  the next section we go some distance to  show how i t  is possible to  avoid 

structu re  calculations in  estim ating  the effect o f oblateness for a certa in  fa m ily  

o f equations o f state, and we do p re lim ina ry  w ork to  show th a t in  p rinc ip le  i t  is 

possible to  m od ify  simple pulse profile  ca lcu la tion  codes to  capture the  qua lita tive  

effects o f oblateness.
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4.5  M o d ellin g  ob lateness: M o d el o f  Schw arzschild  radius

S etting  the in it ia l conditions for in tegra tion  o f n u ll rays requires know ing the lo

cation  o f the  surface, r s(0 ). and th is  is obta ined from  the s truc tu re  calcu lation 

from  w hich we also ob ta in  the values o f the  m etric  potentia ls and th e ir deriva

tives. Considering the apparent usefulness o f the O K  and OS approxim ations to  

the ca lcu la tion  o f the  flux, we have developed a sim ple model fo r the oblateness o f 

ra p id ly -ro ta tin g  neutron stars which m ay be suitable for applications where i t  is 

not desireable to  compute the s truc tu re  o f a model star, or one wishes to  consider 

models which do no t necessarily derive from  a known equation o f state.

We have heretofore considered oblateness in  term s o f the  coordinate F a t the 

surface given the co la titude  9 , f s(9). To make the model as convenient as possi

ble to  use, we remove the po ten tia l necessity o f having to  transla te  between the 

quasi-isotrop ic f  coordinate and the regular areal (Schwarzschild) r  coord inate by 

considering the value o f the  r  coordinate a t the  surface as a func tion  o f p  =  cos 9, 

r s(n) — exp [(y  — p ) /2 ] fs{9). Then we consider the expansion

OO

r s(p ) =  ^ a 2 nP 2 n(yu)- (4 -2 1 )
n = 0

In  th is  expansion, a<in has un its  o f length; we consider an expansion in  term s o f the 

dimensionless q u a n tity

a2n =  ^ ,  (4.22)

where R  =  r s(0). G iven a model in tegrated by the RNS com puter code for some 

EOS, M  and f I* ,  the  corresponding r+n values can be calculated v ia  the re la tion

4n +  1 Z* 1

® 2 n  =  — 2 —  J r (A t ) - f>2 n ( z t ) d / i ,  (4.23)

and the  corresponding a2n values are calculated v ia  the  de fin ition  in  E quation  4.22. 

To accomplish th is  in teg ra tion  we make use o f the A d a p tiv e  Simp son and LegendreP 

m ethods included w ith  the M atpack C + +  Numerics and G raphics L ib ra ry  (Gam- 

mel, 2005). G iven a means o f ca lcu la ting  the «2 n values fo r a p a rticu la r model, we 

can also a tte m p t to  approxim ate them  by regarding them  only as functions o f the 

dimensionless q u a n tity

x  =  n lR 3 / {G M ) -  (4.24)
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2  n s2n t2n n
0 -0 .0 7 4  ± 0 .011 —0.1495 ±  0.0033 1.00003 ±  0.00013
2 - 0 . 0 0 1  ±  0 . 0 2 2 —0.3152 ±  0.0063 0.00015 ±  0.00024
4 0.1578 ±  0.0030 -0 .01622 ±  0.00089 (6.1 ±  3.4) x  10~ 5

Table 4.6: Using a set o f 60 ste lla r models, we have obta ined quadra tic  fits  to  the 
coefficients a2n w hich describe the ste lla r oblateness. We have fitte d  the quadra tic  
po lynom ia l f 2n{x ), w ith  x  defined by E quation  4.24, to  the da ta  (i2n so th a t a2n ~  
f 2n(x ).

th a t is, we’re seeking functions f 2n such th a t

f 2n (x )  «  a2n. (4.25)

To accomplish th is , we calculated the  0 2 n coefficients fo r the  60 models such th a t 

EOS 6  {A , A P R , L } ,  M /M q  e {1 .4 ,1 .6 ,1 .8 ,2 .0 }, and € {100 ,200 ,300 ,400 ,600} Hz. 

Such a set consists o f models spanning a reasonable range o f compactness, fre

quency, and mass. W ith  the exact a2n in  hand fo r these 60 models, we used the 

f i t  rou tine  in  the G nup lo t P lo tt in g  U t i l i t y  (W illia m s  and Kelley, 2004) to  f i t  the 

data  po in ts to  the quadra tic  polynom ia ls

f 2n(x ) =  S2nX2 +  t 2nx  +  u 2n- (4.26)

The results o f the  fits  fo r orders n — 0 . . .  2 are tabu la ted  in  Table 4.6. B y  d iscarding 

the fitte d  coefficients w hich are approx im ate ly  0  w ith in  the  standard e rror, we 

ob ta in  the s im plified  model

fo (x )  =  —0.074a;2 -  0.15a: +  1 (4.27)

f 2(x )  =  -0.315a; (4.28)

f 4(x ) =  0.158a;2 -  0.0162a;. (4.29)

F igure 4.16 shows the  a2n da ta  compared to  the fitte d  po lynom ia l models fo r the

f 2n(x ).

To understand the level a t w hich th is  model o f oblateness applies, we can look 

a t a p lo t o f the next order term s, a&, fo r each o f these 60 models as a func tion  

o f f t*  in  F igure  4.17. As one expects, the  tru n ca tio n  error in  the  expansion is 

higher as the frequency increases, b u t is at worst 0.3% o f the  equatoria l radius. 

The po lynom ia l models above describe the  da ta  well enough th a t we can take th is
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n2 R3/ (G M)

Figure 4.16: Q uadra tic  po lynom ia l models fo r oblateness coefficients a^,, fo r n  =  
0 . . .  2: The top  panel shows the  oq da ta  po in ts compared to  the  fitte d  po lynom ia l 
model ao ~  fo (x ) =  —0.074a:2 — 0.15a: +  1. The m iddle panel shows the 0 2  da ta  
po in ts compared to  the fit te d  po lynom ia l model a2  ~  /a(a:) =  —0.315.x. The 
b o tto m  panel shows the  0 4  da ta  po in ts compared to  the  fitte d  po lynom ia l nodel 
« 4  ~  f i { x ) — 0.158a;2 — 0.0162x.
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Figure 4.17: Leading tru n ca tio n  te rm  in  po lynom al oblateness m odel: The  «,(; 
coefficients o f the  60 models we considered to  develop the fitte d  po lynom ia ls to  the 
lower-order term s are p lo tted  versus f l* .  Note th a t the  absolute tru n ca tio n  error 
increases w ith  frequency, b u t is a t worst on ly  0.3% o f the  equato ria l radius.

as an ind ica to r o f the  worst accuracy o f r s(fi)  obta ined from  the model compared 

to  the tru e  values. F igure  4.18 is a p lo t o f r s(/j,) showing the w orst-perfo rm ing  case 

for th is  m odel compared to  the true  values, and a level o f e rror consistent w ith  the 

tru n ca tio n  error is observed.

4 .5 .1  A d a p ta t io n  o f  S ch w arzsch ild  lig h t cu rv e  c a lc u la tio n  to  in co r
p o r a te  o b la te n e ss

In  Section 3.5.2, i t  was observed th a t the  lig h t curve from  the  OS ca lcu la tion  was 

related to  the lig h t curve from  the SS ca lcu la tion  by a facto r o f cosa 0 b i./ cosasph., 

where a  is the  zen ith  angle as measured a t the surface in  the observer’s frame, when 

ri  and r j  are equal. T h is  can be understood as an observation th a t the  p ro jec tion  

o f solid angle onto  the observer’s sky involves a facto r o f cos a  as measured at 

the surface; Poutanen and G ierlinsk i (2003) make use o f th is  observation in  th e ir 

calculation. Now th a t we have a num erical model fo r oblateness, i t  should be 

possible to  incorpora te  th is  facto r in to  the  Schwarzschild fo rm u la tion  o f the  figh t
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F igure 4.18: The oblateness o f the EOS L , 1.4M©, 600 Hz model is most
poo rly  described by the fit te d  po lynom ia l model. In  th is  p lo t A r s( /r ) / f?  =  
( r s(n ) t rUe — r sO)senes)/-R  is p lo tte d  versus p. using the series in  E quation  4.21 
trunca ted  a fter the  a4  te rm  using bo th  the exact coefficients fo r th is  model 
(do =  0.9411, ci2 =  —0.1058, <24 =  0.01282), and those obta ined v ia  the po lyno
m ia l fits  (cio =  0.9413, a.2  =  —0.1058, 0 4  =  0.01237). The worst error is about 
0.24% o f the  equatoria l radius o f R  — 16.376 km , w hich is consistent w ith  the size 
o f the next order te rm  in  the  series.
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curve ca lcu la tion , given in  Section 2 .5 . The m ain  d iffic u lty  o f do ing th is  is th a t 

the num erical model o f oblateness is set ou t in  term s o f the angle 0  measured from  

the spin axis o f the  star, whereas the  Schwarzschild fo rm u la tion  takes place in  a 

coordinate system chosen so as always to  m a in ta in  the orig in , emission region, and 

observer in  the  same coordinate plane, O' =  7t / 2 . A s we poin ted ou t in  Section 2 .3 .4 , 

the  ca lcu la tion  o f the  zenith  angle involves an inner product between the  norm al o f 

the surface and the in it ia l four-m om entum  o f the  em itted  lig h t ray, and so to  ca rry  

th rough  th is  calcu la tion we need to  re-express the norm al to  the surface in  term s 

o f the coordinates used in  the Schwarzschild fo rm u la tion  o f the  problem .

The transfo rm ation  between coordinate systems is given by an appropria te  com

position  o f ro ta tio n  matrices. In  pa rticu la r,

sin O' cos <b'

sin O' sin d>'

cost

1 0 0
0  cos a  — sin a  

0  sin cr cos a

cos £ 0  sin £

0 1 0  
— sin £ 0  cos £

sin 9 cos (j>

sin 0  sin 4>

cos 0
(4.30)

The parameters £ and a  can be found by requ iring  th a t the  observer, a t 0 =  0o, 

4> =  0, and the emission region, at 0 =  0e, <fi =  (f>e, be bo th  located at O' =  i t /2  in  the 

new coordinate system. The im pact param eter b in  the Schwarzschild fo rm u la tion  

is related to  the conserved <b' m om entum . One obtains

c
tan  cr =

± t t / 2  
±  COS ( , S ill I , cos< sin 0 o cos t

sm Uf, sm <

(4 .3 1 )

(4 .3 2 )

To ob ta in  the desired con tinu ity , choose +  above when <pe € [0 ,7r], and — otherwise. 

The e xp lic it transfo rm ation  in to  the prim ed angular coordinates is

sin O' cos 6 '

sin O' sin S'

cos (

cos £ sin 9 cos </> +  sin £ cos 0  

sin £ sin a  sin 0  cos (f> +  cos a  sin 0  sin cf> — cos £ sin cr cos 0  

-  sin £ cos cr sin 0  cos (f> +  sin a  sin 6  sin <f> +  cos £ cos cr cos I
(4 .3 3 )

I f  n ° is the  norm al to  the surface as given by the num erical model, then the 

zenith  angle in  the observer’s frame is obta ined by evaluating

<a„b
COS a  =

h g b £ a n '

I Za\h\naW
(4 .3 4 )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 .5  M o d e l l in g  o b l a t e n e s s : M o d e l  o f  S c h w a r z s c h il d  r a d iu s 132

at the surface, w ith  hab =  gab +  u aUb and u a =  t a/W .  Th is  becomes

_  n V 1  -  ( i  -  2 M /r ) b 2 / r 2 +  n ^ (  1  -  2 M /r ) b  

c o s a -  ((n r ) 2  +  ( 1  -  2 M / r ) r 2 (n 0 ) 2 ) 1 / 2  ' ( '

In  the l im it  o f a spherical star, n (> and r f i '  tend tow ard zero and th is  equation 

reduces to  the fam ilia r

s in a  =  (1 — 2 M / r ) l / 2 b /r . (4.36)

Given the function  r s(0), which is obta ined from  the  oblateness model, we know

th a t the  components o f the norm al vector in  the unprim ed system are

n r  =  1 (4.37)

"* -  <438>

To evaluate r p ' , we use the trans fo rm ation  o f vector components re la tion

/ dx^
rP  = n ^ .  (4.39)

In  th is  s itua tion , th is  means th a t

v ?  =  n ^ .  (4,40)

Using the  e xp lic it coordinate trans fo rm ation  from  E quation 4.33, we have

Qg
-qq =  esc2  0' (sin a  cos 4> +  sin £ cos cr sin 0). (4-41)

The on ly  element th a t remains is to  calculate d rs/d 9  in  term s o f the  po lynom ia l

oblateness model. O ur model is the  series

2

r  S( c o s 0 )  =  R Y , f 2 n ( x ) P 2n ( c o s 9 ) ,  (4.42)
n = 0

where R  is the equatoria l radius o f the  star, and x  defined v ia  Equation  4.24. Then 

we have th a t
d r

=  R s m 9 ^ 2  f 2n {x)P2n{cos9). (4.43)
n = 1

A t these low  orders, i t  is easiest to  d ire c tly  w ork ou t the  derivatives o f the  Legendre
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polynom ials

Po(x) =  1 (4.44)

P2(X) =  I ( 3 * 2 - l )  (4.45)

P4(x ) =  l ( 3 5 x 4 -  30x2 +  3), (4.46)

which are

P '( x )  =  0 (4.47)

P ^ x )  =  3x (4.48)

p [ ( x ) =  ^ (3 5 x 2 - 1 5 ) .  (4.49)

A t th is  stage, we have enough th a t a com puter code based on the Schwarzschild

fo rm u la tion  given in  Section 2.5, such as the one used in  the ve rifica tion  o f the  gen

eral code in  Section 3.5.2, can be m odified to  account (to  an extent) fo r rap id  

ro ta tio n  by bu ild ing  in  an oblateness te rm . T h is  is done by inc lud ing  a correction 

factor o f the fo rm  coso;0 b i./ cos a sph. in  the in tegra l. Th is  approach on ly  works fo r 

those data  described by rays v is ib le  in  both the  spherical and oblate cases. A l l  

we are seeking here is proof-of-concept fo r an app lica tion  o f the  above oblateness 

model and zenith  angle ca lcu lation , so th is  is satisfactory. The  m odified  calcula

tio n  proceeds by choosing an in it ia l equatoria l radius R, mass M ,  frequency f 2*, 

and emission co la titude  9e. Then r (9 e) is calculated v ia  the model; th is  is the 

in it ia l radius for the  ip(b) and T(b) integrals, and the  radius th a t enters in to  the 

relavent redshift and ve loc ity  factors. F ina lly , at every step o f the  ca lcu la tion  the 

facto r cosa 0 bi./coso;Sph. is com puted and m u ltip lie d  w ith  the flu x  calculated v ia  

the standard Schwarzschild fo rm u la tion .

We have made th is  t r iv ia l m od ifica tion  to  our com puter code based on the 

Schwarzschild fo rm u la tion  o f Section 2.5, and show in  F igure 4.19 how the  resu lting  

lig h t curve compares to  a ca lcu la tion  done w ith  our more general m ethod. For the  

chosen parameters, in troduc ing  th is  correction fac to r makes the  lig h t curve track  the 

E xact and OS calculations much more closely than  the one produced by assuming a 

spherical surface. The key difference is th a t the sim pler m ethod has no knowledge 

o f the  in it ia l s tructu re  beyond the oblateness model given above, and the mass, 

equatoria l radius, and frequency o f the  exact model. The m odified com puter code 

takes on ly  seconds to  com pute a lig h t curve, compared to  several hours fo r the 

exact ca lcu lation using the general code.
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Oblateness modified Schw. code, R matched at eq. 
Standard Schw. code, R matched at emission region
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Figure 4.19: Inco rpora ting  oblateness model in to  calculations: We made a m inor 
m od ifica tion  to  our sim ple com puter code based on the  Schwarzschild fo rm u la tion  
to  incorpora te  a facto r o f cosoQhi /  cososph. to  a tte m p t to  incorpora te  the effect 
o f oblateness on the observed lig h t curve. B o th  graphs were calculated fo r the  
EOS L, 1.4 M q ,  600 Hz model w hich is the most oblate model we are considering. 
Each graph shows the lig h t curve as calculated by the  general code runn ing  in  the 
exact configura tion  (the “ tru e ” value) and in  the OS configuration, the  lig h t curve 
calculated by the oblateness-modified code w ith  the equatoria l radius set to  agree 
w ith  the true  model, and the lig h t curve calculated by the spherical Schwarzschild 
code where the radius is set to  agree w ith  the true  value at the  emission region. 
The to p  graph is fo r emission a t 9e =  41° and observation a t 90 =  20°; the  b o tto m  
graph has 9e =  49° and observation a t 90  =  70°. The oblateness m odified code 
cannot calculate the flu x  arising when the emission region is no t visib le, as there is 
no th ing  to  app ly the  correction facto r to . The im provem ent is s ign ificant enough 
th a t th is  idea should be fu rth e r developed beyond th is  pro to type.
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In co rpo ra tin g  the  oblateness model v ia  a correction factor seems to  im prove the 

performance o f codes based on the Schwarzschild fo rm u la tion  given in  Section 2.5 

which assume a spherical surface, b u t the  fo rm u la tion  itse lf needs to  be m odified in  

order to  account fo r the  changed vis ib le  region when oblateness is included. H aving 

given the required oblateness model and worked ou t the  m od ifica tion  to  the zenith 

angle when oblateness is included above, the  rem ainder o f the details on th is  po in t 

are le ft to  fu tu re  work.
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C hapter 5 

C onclusion

Sum m ary

The discovery o f m illisecond-period X -ra y  pulsars w ith in  the last decade (W ijnands 

and van der K lis , 1998), and the re lated discovery o f coherent oscilla tions in  the 

cooling ta ils  o f Type  I  X -ra y  bursts (S trohm ayer et a l,  1996), offers a tan ta lis ing  

o p p o rtu n ity  to  use these new observations to  unravel the  physics o f neutron stars. In  

contrast to  rad io  pulsars, the  pulsed lig h t from  these objects is understood to  arise 

from  on or near the  surface o f the  neutron star, and so i t  provides a d irect probe o f 

the  neutron s ta r’s g rav ita tiona l field. Moreover, th e ir short ro ta tio n  periods im p ly  

re la tiv is tic  velocities a t the  equator. The p oss ib ility  o f dete rm in ing  the neutron star 

mass and rad ius using the  observed phase-resolved flu x  from  these systems offers a 

po ten tia l rou te  to  constra in ing the  state o f m a tte r in  neutron star cores. The  m ain 

result o f th is  w ork is th a t the  rap id  ro ta tio n  o f neutron stars in  m illisecond-period 

X -ray  pulsars has im p o rta n t consequences fo r models o f the  pulsed emission, and 

by  extension, the analysis o f observations o f these objects. We have argued in  th is  

d issertation th a t the  m ost useful models o f m illisecond-period pulsed emission w ill 

account fo r the  phase-dependent tim es-o f-fligh t o f photons from  the star to  the 

observer, and the ro ta tion-induced “ fla tten ing ” o f ra p id ly  ro ta tin g  neutron stars. 

O f these effects, the  form er is accounted fo r more often than  the  la tte r, a lthough 

ne ither consideration is un iversa lly  applied to  treatm ents o f th is  problem , and i t  

is im p o rta n t to  understand w ha t im pacts th is  m igh t have in  applications o f these 

models to  data.

The s truc tu re  o f ra p id ly  ro ta tin g  neutron stars and the spacetimes they  in h a b it 

are no t w ell-approxim ated by th e ir s ta tic  and spherica lly sym m etric  counterparts. 

Furtherm ore, precise descriptions o f the  s itua tion , bo th  in te rio r and ex te rio r to
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the  star, are on ly  known num erically. The reduced sym m etry  requires th a t the 

lig h t rays jo in in g  the sta r and the observer are described in  more genera lity  than  

is com m only seen in  the lite ra tu re  (C hapter 2). In  the  spherically sym m etric  case, 

ob ta in ing  a defin ite  descrip tion o f these rays requires on ly  the num erical inversion 

o f a stra igh tfo rw ard  quadrature. In  contrast, the  more general s itua tion  requires 

much more com puta tiona l w ork  (C hapter 3).

Using observations o f these new systems to  make statements about neutron  star 

parameters, such as mass and radius, involves find ing  the best f i t  o f a calculable 

model o f the  pulsed emission to  data. T h is  is the  basic m ethodology followed in  

w ork on classical X -ra y  pulsars (e.g., Leahy (2004b)), and more recently, a ttem pts  

have been made to  apply s im ila r techniques w ith  some corrections to  account fo r the  

speed o f these objects (Poutanen and G ierlinsk i, 2003; B hattacharyya  et a l,  2005). 

F ind ing  the best f i t  model w ill ty p ica lly  involve m any evaluations o f the  model over 

a region o f its  param eter space, and so from  a p ractica l po in t o f view, i t  is best to  

use a model o f the pulsed emission w hich is qu ick ly  com puted. A  fo rm a lly  correct 

pulse pro file  model would be cumbersome fo r th is  purpose, because a general step 

in  the param eter space w il l  ty p ica lly  require a so lu tion  o f the  fie ld equations fo r 

the model corresponding to  the new param eter values.

A fte r im p lem enting a com puter code to  calculate the pulsed emission from  the 

surface o f a neutron sta r in  the  context o f rea lis tic  s te lla r s truc tu re  and precisely- 

solved spacetime m etric , we investigated the extent to  which one could in te rp re t 

these lig h t curves using a least-squares f it t in g  m ethod which com pared our syn

the tic  “da ta ” w ith  approxim ate, b u t easily evaluated pulse profiles fo r a spherical 

star and the Schwarzschild spacetime m etric  (C hapter 4). Such a procedure is anal

ogous to  methods th a t have recently appeared in  the  lite ra tu re  w ith  app lica tion  to  

observational data. The goal was to  investigate how successful such a procedure 

would be in  an idealised s itua tion  where there was no random  noise added to  the 

signal.

F irs t, we considered the question o f f i t t in g  using lig h t curves w hich a d d itio n a lly  

ignore the  va ria tion  in  the photon tim es-o f-fligh t, which m ay be a t the  level o f 

several tens o f microseconds (representing up to  about 5% o f a ro ta tio n  period). 

We also restric ted ourselves to  the  worst-case s itua tion , where bo th  the  observer 

and emission are in  the equatoria l plane. For 300 and 600 Hz models, fo r b o th  soft 

and s t if f  equations o f state, large errors a t the  level o f tens o f percent were found for 

the obta ined fitte d  values o f M  and R. a lthough the  fitte d  value M / R  was w ith in  

less than  10% o f the true  values in  3 o f the  4 cases we tried . The m ost prob lem atic
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case was also the largest star.

O ur next experim ent was s im ila r, except we d id  not res tric t ourselves to  the 

equatoria l plane. We generated synthe tic  data  fo r f it t in g  using the  fu ll ca lcu la tion , 

and to  these we f i t  a lig h t curve calculated using the form u la  fo r the  Schwarzschild 

case w ith  a ll tim e -o f-fligh t effects included. We found th a t i t  was d iffic u lt to  ob ta in  

re liable results fo r M  or R  in d iv id u a lly  when f i *  >  200 Hz.

F uture d irection s

U sin g  f it te d  m o d e ls  o f  s te lla r  o b la te n e ss

B y  com paring pulse profiles calculated using various approxim ations, we found th a t 

s te llar oblateness can have a s ign ificant im pact on the  resu lting  pulse shape, and 

th a t th is  was often more sign ificant than  the choice o f exte rio r m etric  (whether 

Schwarzschild, K e rr, or exact). T h is  is surpris ing, because generally there is more 

focus in  the lite ra tu re  on using ro ta tin g  m etrics in  th is  k ind  o f ca lcu la tion  than  in  

using im proved descriptions o f the ste lla r s tructure .

A t  the end o f C hapter 4, i t  was shown th a t in  an approxim ate way, one can es

cape the necessity o f com puting  ste lla r models to  ob ta in  a description o f oblateness. 

T h is  addresses the im portance o f efficient calculations fo r the purpose o f ca lcu la ting  

the forw ard problem  du ring  fit t in g . We exh ib ited  a simple po lynom ia l w hich cap

tures the oblateness o f a w ide range o f models fo r three equations o f state spanning 

a range o f stiffness. There is s t i l l  w ork to  do on th is , because we on ly  examined a 

lim ite d  num ber o f candidate equations o f state, and have not shown th a t a ll o ther 

reasonable equations o f state y ie ld  models th a t are well-approxim ated by the  same 

po lynom ia l. We also showed th a t in  p rinc ip le  i t  w ould be possible to  take th is  po ly 

nom ial model and use i t  to  correct the  basic Schwarzschild ca lcu la tion  o f the  lig h t 

curve for oblateness. Since th is  was on ly  dem onstrated by inse rting  a correction 

factor one expects to  enter the  expression, i t  s t i l l  remains to  tre a t the prob lem  care

fu lly  and p roperly  account fo r the changed v is ib ility  o f these po lynom ia l oblateness 

models in  the context o f the basic Schwarzschild form alism .

We have dem onstrated th a t there is a level o f e rror in troduced when m illisecond- 

period pulsar da ta  are analysed from  the  po in t o f v iew  o f spherical stars and the 

Schwarzschild m etric . A  thorough trea tm ent o f the  idea at the  end o f C hapter 4 

m ay lead to  a prac tica l way to  incorpora te  the  effect o f ro ta tio n  on ste lla r s tructu re  

in  such analyses.
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C o m p u ter  c o d e  im p ro v em e n ts

D uring  the development o f the  general com puter code th a t was used to  calculate 

the pulse profiles in  the precise spacetime, we in it ia l ly  to o k  the v iew  th a t i t  was best 

to  perform  the ca lcu la tion  using form ulas th a t expressed w ha t an observer would 

measure i f  they  had knowledge o f the lig h t rays which extended from  them  to  the 

v is ib le  p a rt o f the star. O ur m o tiva tion  was to  leave ou t form ulas and assumptions 

th a t m ay on ly  be va lid  fo r a spherical star in  the  Schwarzschild m etric . For ex

ample, the p ro jec tion  o f a two-dim ensional emission region onto  the  observer’s sky 

was calculated in  term s o f the  angle form ed between pairs o f lig h t rays received by 

an observer (Section 2.4.1). W ith  four rays extending from  the corners o f a sm all 

quadrila te ra l on the surface o f the  star to  the observer, the area o f the  quadrila te ra l 

p ro jected onto the observer’s sky could be calculated (F igure 2.2). We also argued 

in  Section 2.4.2 th a t, s im ila r to  the case in  special re la tiv ity  (Penrose, 1959; Terre ll, 

1959), the  m otion  o f the  e m ittin g  region im pacts the v is ib le  p o rtio n  o f the  em it

t in g  region a t an ins tan t o f observer tim e. The e m ittin g  region w il l  appear to  be 

stretched by an am ount re lated to  the ra te  o f change o f the photon tim es-o f-fligh t. 

The im portance o f th is  effect in  the  context o f X -ra y  pulsars has been po inted out 

by, e.g., Poutanen and G ie rlinsk i (2003) and V iironen  and Poutanen (2004).

In it ia lly , the  required te rm  invo lv ing  the deriva tive  o f the  tim es-o f-fligh t was 

on ly  known num erica lly  fo r the  general case, a lthough the add ition a l sym m etry  in  

the Schwarzschild spacetime allows th is  q u a n tity  to  be w ritte n  down a n a ly tica lly  

(Equation 2.132 and the  expressions th a t fo llow ). The com puter code was therefore 

designed to  com pute tim es-o f-fligh t accurate ly enough th a t the  derivative could be 

num erica lly  calculated by fin ite  differences, w hich results in  long in teg ra tion  times. 

A fte r  num erical investigations, we discovered th a t i t  was generally true  th a t a 

s im ila r expression as fo r the  Schwarzschild case holds in  com plete generality. Th is  

surpris ing analytica l resu lt is discussed a t the  end o f Section 2.4.2. In  princ ip le , 

i t  m igh t be possible to  avoid the  slow com puta tion  o f the tim es-o f-fligh t in  the 

manner described in  Section 3.2.1; certa in ly, the  accuracy can be reduced i f  the 

ana ly tica l expression is used for the  deriva tive  ra the r than  num erical d ifferencing. 

In  circumstances where rays o rig ina ting  from  a single la titu d e  are being considered, 

i t  m igh t be possible to  skip the tim e -o f-fligh t ca lcu la tion a ltogether in  favour o f 

using the much faster procedure used to  find  the  in it ia l conditions fo r rays lin k in g  

specific s ta r and observer coordinates (Section 3.3), and using the ana ly tica l fo rm  o f 

the  tim e-o f-fligh t deriva tive  ( IT fd<?!> =  —b to  com pute th e ir re la tive  tim es-o f-fligh t.

A dd itio n a lly , i t  would be desirable to  im prove upon the described m ethod to
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compute the p ro jec tion  o f a sm all e m ittin g  region onto the observer’s sky. The 

m ethod we used relies on accurate ly in teg ra ting  the fina l values o f the  d irection  

£ 9 o f the  rays reaching the observer, and accurate ly enough th a t i t  can be used 

fo r d ifferencing when evaluating the angle form ed by tw o rays a t the  observer (see 

Equations 2.73 and 2.74). Th is  places a p ractica l lower l im it  on the size o f the 

angular patches we used to  cover the s ta r’s surface. We know th a t the  p ro jec tion  

o f the emission region on the observer’s sky should be ~  cos(a), i f  a  is the  angle 

formed between the em itted  ray and the norm al to  the surface o f the  star, bu t 

we are m issing a convincing argum ent th a t th is  is iden tica lly  true  in  general. I f  

th is  q u a n tity  could be generally w r itte n  down in  term s o f on ly  the locations o f 

the emission region and observer, and the  in it ia l conditions fo r the  ray, add itiona l 

efficiencies can be realised. Nevertheless, the  m ethod we used agrees well w ith  an 

independent ana ly tica l trea tm en t o f the  problem  for the  Schwarzschild scenario and 

was seen to  have the expected behaviour (Section 3.5.2).

F ina lly , i t  m ay also be desirable to  incorpora te  elements present in  more rea lis tic  

models o f the  pulsed emission and to  depart from  our idealisation o f bo lom etric  flu x  

from  an in fin ites im a l, isotrop ic e m ittin g  region. Such enhancements would include 

a llow ing fo r m ulti-com ponent emission spectra, d ifferent detector energy bands, and 

extended emission regions on the surface. These problems were no t considered in  

depth since we wished to  isolate the  fundam enta l issues arising from  rap id  ro ta tion .

Realising these fu tu re  goals and im provem ents w ould require s ign ificant tim e. 

The rou te  we to o k  to  ob ta in  a means to  consider the  im p lica tions o f rap id  ro ta tio n  

on pulse pro file  models o f m illisecond X -ra y  pulsars was testable in  m any respects 

and led to  in teresting  conclusions which are understandable in  simple term s and 

ind ica te  a need to  account fo r effects unique to  th is  re la tive ly  young category o f 

objects.
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