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The Sprawl’s geodesics were lightening into predawn grey as Case
left the building ... Vibrations beneath his feet as a train hissed past.
Sirens dopplered in the distance.

—William Gibson, Neuromancer
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Abstract

The rapid rotation of recycled neutron stars in accretion-powered millisecond-period X-ray
pulsars has important consequences for models of their pulsed emission, and by extension, the
analysis of observations of these objects. We begin by considering the problem of calculating
the time-varying bolometric flux arising due to emission from a bright spot on the surface
of a rapidly rotating neutron star, with rotational period on the order of a millisecond. We
restrict to the case of isotropic emission from an infinitesimal emission zone, but carry out
the calculations with sufficient generality to incorporate a precisely solved spacetime metric
and stellar structure. The geodesic equation is integrated numerically.

Using the computer code developed for this work, we investigate the effect that commonly-
used simplifying approximations have on the shape of the pulse profile compared to the full
calculation. In particular, we consider the effect of neglecting the phase-dependent travel time
of photons, approximating the exterior metric as either Schwarzschild or Kerr, and neglecting
the rotation-induced oblateness of the neutron star.

We also consider the consequences that result when approximate pulse profiles are used
to obtain neutron star parameters such as mass, radius, emission inclination, and observer
inclination via least squares fitting. Specifically, we look at fitting light curves calculated using
the Schwarzschild metric and a spherical star to a light curve calculated using a precisely-
solved metric and stellar structure. We are able to conclude that, in an idealised case where
there is no random noise component and all light curves are for bolometric fluxes from isotropic
emission, neglecting photon times-of-flight or stellar oblateness in model light curves used for
fitting can introduce errors at the level of several tens of percent on the determination of mass
and radius individually. However, these errors will often offset each other such that the fitted
parameters will yield better determinations of the compactness.

To facilitate the inclusion of oblateness effects in other codes, we give a single polynomial
which describes the oblate shape of stars for a range of masses and rotation periods for three

separate equations of state.
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Chapter 1

Introduction

The rapid rotation of neutron stars in millisecond-period X-ray pulsars has impor-
tant consequences for models of the pulsed emission, and by extension, the analysis
of observations of these objects. Motivated by the “classical” slowly-rotating X-ray
pulsars, models of pulsed X-ray emission from near the surfaces of neutron stars
have been pursued since the 1980s. The earliest treatment of this problem did not
account for the effect of gravity on the path followed by the emitted light (Wang and
Welter, 1981), but a formalism set out by Pechenick et al. (1983), which included
gravitational effects, established the basic framework used in most treatments of
this problem even today. Such models yielded a tool with which to analyse X-ray
pulsars, since by comparing calculations of model light curves to observations, it
became possible to draw conclusions about the properties of the underlying neu-
tron star and the emission mechanisms. These models were originally developed
to describe situations where the rotational period of the star was on the order of
several seconds, which for typical neutron star radii ~ 10 km imply non-relativistic
velocities at the surface of the star, negligible light-crossing times compared to the
rotational period, and insignificant rotational effects on the stellar structure. In
this situation, a number of simplifications result. For example, the “light bending”
caused by the neutron star can be included by assuming that the star is spheri-
cally symmetric, and that the exterior spacetime is Schwarzschild. Additionally,
the Doppler boosting of photon energies, and the phase-dependent times-of-flight
of photons can also be neglected. With the recent discovery of millisecond-period
X-ray pulsars, of which the 2.5 ms pulsar SAX J1808.4-3658 was the first example
(Wijnands and van der Klis, 1998), a natural question arises: to what extent can
the methods developed for longer-period X-ray pulsars be applied to this new class

of objects? This dissertation seizes upon answering this question from two points
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1.1 NEUTRON STARS 2

of view: from the modelling perspective, and from the data analysis perspective.
Although a precise treatment of millisecond X-ray pulsars is more complicated than
for the classical X-ray pulsars, this work argues the necessity of incorporating new
effects in models of millisecond X-ray pulsars, and concludes with a suggestion of a
practical way forward. In this chapter, the millisecond-period X-ray pulsars which
motivated this work are described and placed in a broader context. The chapter

concludes with an outline of the remainder of the dissertation.

1.1 Neutron stars

Neutrons were discovered by Chadwick (1932), who was awarded the 1935 Nobel
Prize in Physics for the discovery. The possibility of neutron stars as the remnant
of a massive star which had exhausted its nuclear fuel and exploded as a supernova
was first proposed by Baade and Zwicky (1934) (also see Oppenheimer and Volkoff
(1939) for early theoretical work). Neutron stars represent a middle ground between
the endpoint of massive stars with initial masses of 2 25 M, which will collapse
to form black holes at the end of their lives, and lighter stars with initial masses
S 8 Mg, which end their lives as white dwarfs (Tauris and van den Heuvel, 2006).
The first observational evidences of these objects, first as members in some X-ray
binaries, and shortly thereafter as pulsars, were not discovered until more than
three decades later.

An interesting counterpoint to this story is the case of white dwarf stars (for
example, Sirius B, a white dwarf in a binary) which were known by observation
to have masses ~ Mg, and luminosities ~ L /300, but radii ~ Rg ~ 1072 Rg.
Eddington (1924) pointed out that Sirius B was incredibly dense, but paradoxically
“much too faint for its mass,” and it was unclear how such a star could support itself
against gravity. It wasn’t until the development of Fermi-Dirac statistics (Dirac,
1926), that the eventual resolution of this problem by Fowler (1926) was possible.
White dwarfs are now known to be supported by electron degeneracy pressure.

The name “neutron star” is appropriately given to the remnants of massive stars
formed during the collapse of their iron cores, but which are too light to collapse
to black holes, since the matter passes through a phase where it becomes dense

enough that the inverse beta decay reaction
e +p—on+tv (1.1)

converts much of the matter to neutrons, roughly in the ratione :np :ny, =1:1:8
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1.1 NEUTRON STARS 3

(Shapiro and Teukolsky, 1983). This is not the complete story, however, as the core
continues to collapse reaching densities ranging from several to tens of times that of
ordinary nuclear matter (ppue ~ 10'* g/cm?®), at which point degeneracy pressure
acts to arrest the core collapse. The final state of matter comprising the core of a
neutron star is poorly understood, since at the implied distance scale the strong nu-
clear force becomes important. As a result, neutron degeneracy pressure alone does
not determine the state of matter, and a full treatment would require a better un-
derstanding of multibody processes in quantum chromodynamics (QCD). It is clear
that the detailed equation of state of this matter, specified by p(p), determines the
mass-radius relation obeyed by neutron stars. Shapiro and Teukolsky (1983) and
Glendenning (2000) are texts which include a thorough discussion of neutron star
equations of state. Modern candidate equations of state, including some strange
quark matter (SQM) models, are discussed by Lattimer and Prakash (2001), while
older candidate equations of state were catalogued by Arnett and Bowers (1977).
Lattimer and Prakash (2004) provide a short overview on neutron star structure
and equations of state. One potential application of neutron star observations is
the empirical constraint of the state of matter at these densities. There are now
also terrestrial experiments that can probe these densities, for example the Rela-
tivistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) in
New York, USA (Ludlam and McLerran, 2003). Experiments at RHIC may also
help to constrain the state of matter at these densities. However, it should be noted
that these experiments primarily probe the physics of hot (~ 10!2K) dense matter,
and in particular the state of hot quark-gluon plasma and the phase transition to
hadronic matter as the plasma cools (Schiffer et al., 1999). In old neutron stars,
the temperatures are much lower (~ 105-10° K) than the temperatures probed by
RHIC (Lattimer and Prakash, 2004). For neutron star equations of state, the tem-
perature dependence is usually left out since the fluid is assumed to be in thermal
equilibrium, and at these temperatures the neutrons have energies below the Fermi
energy.

Typical models of neutron stars will have masses on the order of 1.4 M and
radii on the order of 10km, or a few times the Schwarzschild radius, so that their
gravitational field requires a general relativistic description. In the sections that
folldw, we discuss the two main astrophysical manifestations of neutron stars: a
class of X-ray binaries, and radio pulsars. Then we consider a category of neutron
stars which not only have relativistic gravitational fields, but are also rotating

at relativistic speeds; these are the main class of neutron stars which are under
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1.2 X-RAY BINARIES 4

consideration in this dissertation.

1.2 X-ray binaries

The observation of X-rays from cosmic sources must be carried out above the at-
mosphere. Some of the earliest experiments took place using captured V-2 rockets
fitted with proportional counters launched in White Sands, New Mexico, USA,
in 1949. The first extra-solar cosmic X-ray source, Sco X-1, was discovered by
Riccardo Giacconi in 1961 during an attempt to observe solar X-rays reflected
by the moon (Giacconi et al., 1971). Today, the field of X-ray astronomy repre-
sents a significant fraction of the total endeavour in physics by humankind. Con-
sider that in 2002, Giacconi was awarded 1 /2 of the Nobel Prize for Physics “for
pioneering contributions to astrophysics, which have led to the discovery of cos-
mic X-ray sources.” In the same year, some 20% of the papers published in
The Astrophysical Journal, Monthly Notices of the Royal Astronomical Society,
and Astronomy and Astrophysics contained the word “X-ray” in their abstract
(Barcons and Negueruela, 2003). Using space-based instruments, a variety of as-
trophysical phenomena are visible in the X-ray sky, among them active galactic
nuclei (AGNs) and clusters of galaxies, and within our Galaxy (and, increasingly,
elsewhere in the local group) X-ray binaries and supernova remnants. The bright-
est class of these objects, of which Sco X-1 is an example, are the X-ray binaries,
which consist of a neutron star or black hole accreting matter from a companion star
(White et al., 1995). A similar situation can occur for accretion onto white dwarfs,
but these objects are generally weaker X-ray sources, and are usually referred to as
cataclysmic variables.

If we denote the radius of the compact object as R = 7R, where the gravita-
tional radius Ry = 2GM/c?, then the gravitational potential energy liberated by
an infalling nucleon of mass m, ~ 940MeV/c? is

AE = %(CQmp), (1.2)
in the non-relativistic limit 1/ <« 1. For an order-of-magnitude calculation, the
typical radii of the neutron stars and black holes have 1 < 7 < 5, so that a single
infalling nucleon must liberate on the order of several times 10~! GeV on its journey
into the compact object’s gravitational well. This is about ten times more energy
per nucleon than can be achieved by nuclear fusion: the binding energy per nucleon

for stable nuclei is at most about 9MeV (for a Fe nucleus). The typical lumi-
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1.2 X-RAY BINARIES 5

nosities of X-ray binaries are within an order of magnitﬁde of 1037 ergs™! (White
et al., 1995), or around one thousand times the luminosity of the Sun. Clearly ac-
cretion onto compact objects is a potent source of astrophysical energy, a fact first
realised by Salpeter (1964), Zel’dovich (1964), and Zel’dovich and Novikov (1964)
with application to quasars and AGNs (accreting supermassive black holes), and
by Zel’dovich and Guseynov (1966), Novikov and Zel’dovich (1966), and Shklovskii
(1967) in the context of X-ray binaries (Tauris and van den Heuvel, 2006).
Continuing this ordér—of—magnitude energetics calculation, the typical luminos-

ity of X-ray binaries is powered by accretion rates M within an order of

M =~ (L/10%ergs™) x (1037 erg/s) x (6.24 x 10° MeV Jerg) x (3.16 x 107 s/a)
x ((27/940) accreted nucleons/MeV) x (8.35 x 107°® M, /nucleon)

L
~ ~10 r

This is approximately an order of magnitude smaller than the Eddington rate.
The Eddington rate is defined as the point at which the radiation pressure of the
accretion-powered luminosity disrupts the infalling matter stream (Shapiro and
Teukolsky, 1983). To calculate it, one balances the force generated by radiation
pressure on electrons with the gravitational force on the infalling protons, which

gives the Eddington luminosity

4rGM

Lpaq = (mpc) = (1.8 x 10% erg/s) ( (1.4)

1.4 M@> ’
where o = 0.66 x 1072 cm? is the Thomson cross section for the scattering of
photons by electrons. The Eddington accretion rate Mgqq is the accretion rate

which would yield this luminosity; applying Equation 1.3 yields

Mgaq = (1.5 x 107 M /a) (106%) : (1.5)

In practise, X-ray binaries are classified according to the mass of the compan-

ion star: high-mass X-ray binaries (HMXBs) have a companion star with mass

M, Z 10Mg; low-mass X-ray binaries (LMXBs) have a companion star with mass

M. < 1M (Verbunt and van den Heuvel, 1995). Determining which class a given

X-ray binary falls into usually relies on one or more of the following (White et al.,
1995; Lewin et al., 1995; Verbunt and van den Heuvel, 1995):

Identification of companion In LMXBs, the donor star is typically optically
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1.3 PULSARS AND ACCRETION-POWERED RECYCLING 6

faint (if it is observable at all), while in HMXBs the optical luminosity of the
companion star dominates the total emission from the system. The donor star
in an HMXB is typically two orders of magnitude brighter than the donor in
an LMXB, and can often be identified.

Luminosities The ratio of X-ray to optical luminosities in LMXBs ranges from
~ 102 to ~ 10%; for HMXBs the ratio ranges from ~ 1073 to ~ 10!,

X-ray spectra The X-ray spectra of LMXBs are typically softer than those of
HMXBs.

Bursting behaviour LMXBs might exhibit X-ray bursts, which are sudden rises

in the X-ray activity which fades away over several minutes.

Orbital period LMXBs will typically have orbital periods ranging from minutes
to several days, while HMXBs typically do not have orbital periods less than
12 hours.

In LMXBs, the accretion typically occurs via Roche lobe overflow, where matter
from the donor star is driven through the inner Lagrange point, and enters an
accretion disk around the accreting object. In HMXBs, the orbit is usually wide
and the donor star does not overflow its Roche lobe. Instead, matter is captured
from the donor star’s stellar wind. The typical lifetime of an HMXB is on the order
of 10°-107 a, which is determined by the lifespan of the high-mass donor. LMXBs
have lifetimes about two orders of magnitude larger, 10°-10° a, which is determined
by the mass-transfer process (Psaltis, 2006).

1.3 Pulsars and accretion-powered recycling

1.3.1 Introduction and observational history

Rotating neutron stars with relatively strong magnetic fields reveal themselves as
pulsars, the hallmark of which is the extremely regular pulsation of electromagnetic
radiation, especially in the radio part of the spectrum. The first pulsar was discov-
ered by Hewish et al. (1968), and Anthony Hewish was awarded half of the 1974
Nobel Prize in Physics “for his decisive role in the discovery of pulsars.” Initially
it was not clear what mechanism was producing the pulsed radiation, and several
proposals were made that it was the signature of radial pulsations of a degener-
ate star. One such model was advanced by Israel (1968), who posited that the

pulsed radiation was the signature of a neutron star on the brink of collapsing to
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1.3 PULSARS AND ACCRETION-POWERED RECYCLING 7

a black hole. In this model, a thin hydrogen-rich envelope collected on the surface
of such a neutron star, which forced the neutron star to begin collapsing. In so
doing, the accreted envelope would heat up—perhaps by nuclear burning—enough
to blow off enough of the accreted matter to stop the collapse. Then the neutron
star core would snap back, propelling the remaining matter away from the star at
relativistic velocities, causing synchrotron radiation. In this model, the period of
the pulsations was related to the time interval required for the envelope to re-settle
on the neutron star, beginning the whole process again. Gold (1968) was the first
to suggest the currently accepted model, where the rotation of a magnetised neu-
tron star powers synchrotron emission from a sparse plasma located near the star’s
light cylinder (i.e., the radius at which co-rotation with the star requires travel at
the speed of light). The pulsed radio emission is interpreted as a directed beam of
radiation pointing in the direction of the star’s magnetic field, which is not aligned
with its spin axis. As a result, the radiation beam periodically cuts across the line-
of-sight as the star rotates. There are now approximately 1700 known radio pulsars
(Lorimer, 2005). Gold (1968) hypothesised that there should be a measurable pe-
riod derivative resulting from the conversion of rotational energy to electromagnetic
radiation due to magnetic dipole radiation, and an analysis of this suggestion was
first carried through by Pacini (1968). This led directly to the standard model of
dipole braking by pulsars (Gunn and Ostriker, 1969, 1970): as newly-born isolated
pulsars age, the period of the pulsations gradually lengthens. Measurements of the
period derivative P can be used to infer the magnetic field strength of the neutron
star by attributing the lost rotational energy of the neutron star to dipole radiation.
One can obtain the surface magnetic field strength B \/ﬁ and a characteristic
age 7, = P/(2P). The derived magnetic field for typical radio pulsars is ~ 102 G,
with characteristic age ~ 107 a (Lorimer, 2005).

It was the discovery of the 1.6 ms radio pulsar PSR 1937421 in 1982 (Backer
et al., 1982) which pointed to the existence of a new class of much older pulsars
with weak magnetic fields. In a review of millisecond pulsars, Bhattacharya (1995)
points out that these new objects were immediately thought to be old neutron
stars which had been “spun up” by accreting mass and angular momentum from
a companion star (Alpar et al., 1982). This was not a new idea, as the Hulse-
Taylor binary pulsar PSR 1913+16 (Hulse and Taylor, 1975) had been discovered
some eight years prior, and it was conjectured to be a highly-evolved binary system
(Flannery and van den Heuvel, 1975; Smarr and Blandford, 1976). However, the

first millisecond pulsar was the first evidence that such neutron stars could be
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1.3 PULSARS AND ACCRETION-POWERED RECYCLING 8

spun up to large fractions of their theoretical maximum frequency. One problem
with this picture was that there was no evidence for a companion star in this new
system and so if it had evolved from a binary, it must have lost its companion in
some way. Soon after this discovery, the 6 ms binary radio pulsar PSR 1953429 was
discovered (Boriakoff et al., 1983) which solidified the case for the “recycling” of old
neutron stars by capturing angular momentum in binary systems (Savonije (1983);
Paczyriski (1983); and more recently, Tauris and Savonije (1999)). It is possible
that these recycled pulsars eventually destroy their companions by electromagnetic
radiation. The “evaporation” of the companion by electromagnetic radiation has
been observed in the famous 1.6 ms “Black Widow” pulsar, PSR, 1957420 (Fruchter
et al., 1988). To date, the fastest known radio pulsar has P = 1.4 ms, which was
discovered by a radio survey of the globular cluster Terzan 5 (Hessels et al., 2006).
Today there are approximately 160 known recycled radio pulsars; of these, the
typical derived fields and ages are B ~ 108G and 7, ~ 10% a (Lorimer, 2005).

Upon the discovery of the first millisecond radio.pulsar, there were perhaps
20 or so known X-ray pulsars in X-ray binaries. These are systems that exhibit
pulsations in the X-ray flux corresponding to the rotation rate of the underlying
neutron star. The first X-ray pulsar to be discovered was Cen X-3, a 4.8 s pulsar
in a 2.1d orbital period HMXB (Giacconi et al., 1971). Most known X-ray pulsars
tended to occur in HMXBs, although not exclusively so. For example, the 1.24s
X-ray pulsar Her X-1 was discovered in 1972 (Tananbaum et al., 1972) and is one of
approximately five examples of X-ray pulsars in low (or intermediate) mass X-ray
binaries (Psaltis, 2006). If it was true that recycled radio pulsars were formed by
the evolution of neutron stars in LMXBs, then it was a puzzle why there were no
known millisecond-period X-ray pulsars, a situation which continued for some time
in spite of several efforts made to search for them (among them Leahy et al. (1983),
Mereghetti and Grindlay (1987), Wood et al. (1991), and Vaughan et al. (1994), as
is pointed out by Wijnands and van der Klis (1998)).

The discovery in 1996 (Strohmayer et al., 1996) of coherent millisecond-period
brightness oscillations during Type 1 X-ray bursts resolved the long-standing prob-
lem of the absence of evidence for accretion-induced spin-up of neutron stars in
LMXBs (Strohmayer and Lee, 1996). Type I X-ray bursts are thermonuclear flashes
occurring on the surface of weakly-magnetic accreting neutron stars in LMXBs, and
the frequency of the brightness oscillations is understood as arising from rotational
modulation of a hot spot on the surface of the neutron star. Bursts are discussed

in more detail in Section 1.3.4. The discovery and study of these burst oscillations
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1.3 PULSARS AND ACCRETION-POWERED RECYCLING 9

was made possible after the launch of the Rossi X-ray Timing Explorer (RXTE)
satellite in December 1995 which had unprecedented sensitivity, timing resolution,
and pointing flexibility (Bradt et al. (1993); also see Jahoda et al. (1996) which
discusses the on-board proportional counting array (PCA)).

It wasn’t until 1998 that the first persistent millisecond-period X-ray pulsar,
SAX J1808.4-3658, was discovered (Wijnands and van der Klis, 1998) in a 2.01h
orbital period LMXB (Chakrabarty and Morgan, 1998). This provided further ev-
idence of the evolutionary link to the old millisecond radio pulsars. While RXTE
observations revealed the pulsar nature of SAX J1808.4-3658, its initial identifi-
cation was made following an observation in September 1996 by the Wide Field
Cameras on board BeppoSAX, which observed two type I X-ray bursts. This
source was classified as an LMXB at a distance of approximately 4 kpc (in 't Zand
et al., 1998). There are now seven known millisecond X-ray pulsars, which are
listed in Table 1.1 with their rotational and orbital periods. It is difficult to find
millisecond-period X-ray pulsars and it is still a puzzle how these seven examples
differ from other LMXBs which do not exhibit persistent X-ray pulsations. The
review by Psaltis (2006) (also see Chakrabarty (2005)) discusses the two main sug-
gestions that have been made to resolve this problem, but these proposals have
significant shortcomings. First, upon the discovery of SAX J1808.4-3658 it was
suggested that perhaps the detection of pulsations was made possible by viewing
SAX J1808.4-3658 at small inclinations to the plane of the binary, preventing the
X-ray pulses from being blocked by the accretion flow (Psaltis and Chakrabarty,
1999). This seems less likely now with the discovery of more millisecond X-ray pul-
sars, and with the detection of an arrival time modulation in all of these systems.
Second, it was suggested that since these pulsars all have relatively low accretion
rates, that perhaps in the non-pulsing LMXBs the accretion rates are high enough
to make the magnetic field dynamically unimportant (Cumming et al., 2001); see
Equation 1.9 and the related discussion below for an illustration of the importance
of the accretion rate. If this was the case, the accreted matter would not be fun-
nelled to polar caps on the surface, and persistent pulsed X-rays would not be
detected. However, the similarity between these pulsars and non-pulsing LMXBs
in terms of their spectra and aperiodic variability makes it hard to accept this
suggestion as the resolution of this puzzle (Psaltis, 2006).

In the sections that follow, it is shown in more detail how LMXBs provide the
correct conditions for recycling of neutron stars. Then some remarks about the

population of LMXBs are in order, as the evolutionary history of these systems has
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Name Q. T Orbital Selected references to observations
(Hz) (ms) period (hr)
SAX J1808.4-3658 400 2.5 2.01 Wijnands and van der Klis (1998),

Chakrabarty and Morgan (1998),
Papitto et al. (2005)

XTE J1751-305 435 2.3 0.7 Markwardt et al. (2002)

XTE J0929-314 185 5.4 0.73 Galloway et al. (2002)

XTE J1807-294 191 5.2 0.67 Markwardt et al. (2003b),
Markwardt et al. (2003a)

XTE J1814-338 314 3.2 4.28 Markwardt and Swank (2003)
Markwardt et al. (2003c)

IGR J00291+5934 599 1.67 2.46 Markwardt et al. (2004),
Galloway et al. (2005)

HETE J1900.1-2455 377.3 2.65 1.39 Kaaret et al. (2006)'

Table 1.1: The seven known accretion-powered millisecond-period X-ray pulsars
with their spin and orbital periods in the order of their discovery.

not been firmly established.

1.3.2 LMXBs and accretion-induced recycling

In neutron star LMXBs, a neutron star accretes matter from a low mass companion
which is overflowing its Roche lobe. The infalling matter forms an accretion disk
where the matter orbits at the local Keplerian speed with a relatively small inward
drift velocity. Angular momentum and approximately half of the available accretion
energy is dissipated in the disk through stresses arising from turbulent flow. The
basic picture of thin accretion disks was pioneered by Shakura and Sunyaev (1973)
and Lynden-Bell and Pringle (1974). The central dynamical issue in accretion disk
flows is the transport of angular momentum, but the thin disk models do not specify
the mechanism for this—its effect is inserted in an ad hoc manner. More recently,
a promising candidate for the angular momentum transport mechanism, known as
the weak-field magnetorotational instability (MRI), was proposed by Balbus and
Hawley (1991). This mechanism is driven by a magnetic field which is too weak
to affect the orbital dynamics of the matter, but the disk shear winds up the field
and transports angular momentum outwards. Reconnection limits the field growth
and results in dissipation (King, 2006). Currently, there are efforts to use 3-D
magnetohydrodynamics codes to model the turbulent flow in accretion disks (e.g.,
Miller and Stone (2000), Hawley and Krolik (2001), Krolik and Hawley (2002), and
Hirose et al. (2006)). A pedagogical treatment of accretion physics is Frank et al.
(2002); reviews of accretion disk physics include King (1995), Balbus and Hawley
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(1998), and King (2006).

The accreting matter eventually reaches the inner edge of the disk where the
flow is disrupted by the magnetic field of the star, and the infalling matter follows
the magnetic field lines down to the neutron star’s surface. The difference between
the Keplerian orbital frequency at the inner edge of the disk and the star’s spin
frequency determines the fate of the accreting matter: if the orbit at the inner
edge of the disk is faster than the star, the matter binds to the field lines and
a magnetic torque acts to spin up the star (Ghosh and Lamb, 1978). On the
other hand, if the orbit at the inner edge of the disk is slower than the star, a
torque acts to spin down the star. In this situation the infalling matter may be
flung away from the star since it cannot penetrate the centrifugal barrier. This is
called the “propeller mechanism” after Illarionov and Sunyaev (1975). Over time,
one expeéts the frequency of the inner edge of the disk and the neutron star to
equalise. To calculate this equilibrium frequency, one first requires an estimate of
where the magnetic ficld disrupts the disk; this is known as the Alfvén radius R4.
Although we are considering disk accretion, estimates of R4 are usually obtained
by considering spherical accretion onto the star, and obtaining the point at which
the ram pressure of the fluid flow is equalised by the magnetic pressure on the
infalling matter (Davidson and Ostriker (1973), but we have referred to a textbook
replication of this argument in §6.3 of Frank et al. (2002)). The ram pressure is
pv?, where p is the mass density of the fluid, and at the inner edge of the disk the
velocity v &~ vg = (2GM/r)Y/?, the free-fall velocity. For spherical accretion, we

have .
M
PU = (1.6)
so that the ram pressure at radius r is
2GM)Y2 M
Pram = ,OU2 = "‘—'—( ) . (1.7)

Aqrr5/?

Assuming a dipole field, the magnetic field density B at radius r is roughly ~ u/r3,
where p is the magnetic dipole moment of the star. It is related to the surface field

density and stellar radius by p = B,R3. The magnetic pressure exerted on the

47 B? 47 u?
ma = — — —— . ]. ¢8
Pmag [uo] 8 [uo] 8 (18

infalling plasma is
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The pressures equalise at R4, giving

o\ T —1/7 4)7 10/7
R, = (2.6 x 10% cm) M ( M ) (B*) ( i ) :

(1.9)

where we have used Equation 1.5 to establish the scale of M in terms of the Edding-

ton rate Mgqq. To get the steady state of the star’s rotation period, we compute the
orbital period of the infalling matter at the Alfvén radius; no angular momentum
transfer occurs when the matter at the Alfvén radius is co-rotating with the star.
The period P and radius R of a circular orbit about a mass M are related by

472

P?=__R% 1.10

i (1.10)
Putting R = R4, we obtain the equilibrium spin period of the star (this is Equation
5.3 of Bhattacharya (1995) except a typo is corrected):

. —3/7 —5/7 6/7 15/7
Py = (1.9ms) [ -2 < M ) (J?,*) ( }:* ) - (111)
Meaq 1.4 Mg, 109G 105 cm

This treatment is a considerable idealisation, but it shows the basic dependence on

the equilibrium period with the four basic quantities describing the situation. It
shows, for example, that in order to spin up to millisecond periods, the magnetic
field strength at the surface of the neutron star must be relatively weak: closer
to 10° G than 10?2 G. This agrees with the magnetic field strengths inferred from
the spin-down of recycled radio pulsars. It is also consistent with the bursting
behaviour in many LMXBs, as higher magnetic field strengths have been shown
to suppress the thermonuclear instability (Joss and Li, 1980). Furthermore, it is
a reason why millisecond-period X-ray pulsations are difficult to detect, as weaker
magnetic fields lead to larger polar caps as well as weaker binding of the infalling
matter to the magnetic field lines. While it is apparent from Equation 1.11 that
relatively weak magnetic fields are necessary for accretion-powered recycling to
millisecond periods, it is not well-established how these neutron stars come to have
magnetic fields so weak compared to the larger population of conventional pulsars.
Models of the origin and evolution of neutron star magnetic fields are reviewed
by Bhattacharya and Srinivasan (1995) and Bhattacharya (2002). Some modern
models of magnetic field evolution in neutron stars suggest that long-term accretion

leads to the decay of the magnetic field strength of the neutron star, a possibility
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first suggested by Bisnovatyi-Kogan and Komberg (1974). Urpin et al. (1998)
have developed a model of neutron star evolution including accretion effects on the
magnetic field (and period) evolution of an accreting neutron star in an LMXB. In
their calculations it is not just the amount of accreted mass that determines the
final magnetic field, but the accretion rate and the length of the accretion phase
(also see Urpin and Geppert (1995)). The lower the accretion rate, the weaker the
magnetic field for a given AM.

Completing the order-of-magnitude estimates, we can also make an estimate of
the amount of matter that needs to be accreted to spin up to the steady state. The
specific angular momentum of the matter at the Alfvén radius is 27 R%/P. Using
Equation 1.10, the rate of angular momentum accretion is therefore

J=M\/GMRy,. (1.12)

The moment of inertia of the star is I, ~ M*RZ, and J, ~ I,Q,. The time scale

for spin-up to Peq is:

T, 2R3V M

Tepinoup = — = — 2~ ~ 1.4 x 107 a, 1.13
spin—up 7 PeqM\/G—}%A- ( )

where we have assumed Peq = 1.9ms, R4 = 2.6x10%cm, M = Mgqq = 1.5 x 1078 My/a,
R, = 10%cm, and M = 1.4 M. Over this length of time, the neutron star will
accrete about 0.1 M. Such long-term accretion can only take place in LMXBs. In

an HMXB, the separation of the system is either such that the neutron star only
accretes via a wind (a less efficient means of transferring angular momentum and
mass), or else the donor star is overflowing its Roche lobe, which for HMXBs is
unstable and does not persist for longer than about 103-10% a, at the end of which
tides bring the system into close enough contact that a common envelope forms
(Bhattacharya, 1995; Tauris and van den Heuvel, 2006).

It is theoretically possible for the spin periods of neutron stars to be in the sub-
millisecond range since the breakup speed of neutron stars can exceed 1000 Hz (see
Table 4.1 for the breakup speeds of 1.4 M neutron star models computed using
two different equations of state, also Cook et al. (1994a) and Cook et al. (1994c)).
However, no observation of any object which has been recycled by accretion flow
(X-ray and radio millisecond pulsars, and type I bursters) has yet ruled out even
the largest realistic models of neutron stars, corresponding to the lowest breakup

speeds and stiffest equation of state candidates. This might be explained by typi-
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cal LMXB properties being such that the steady-state spin period of Equation 1.11
never reaches the bound imposed by the breakup speed of neutron stars. On the
other hand, an exciting possibility is that gravitational radiation provides an angu-
lar momentum sink beyond about 700 Hz (Bildsten, 1998). Two possibilities that
would provide the necessary time-dependent mass quadrupole for gravitational ra-
diation are anisotropies in the temperatures in the surface layers of the neutron
star, resulting in anisotropies in the matter (Bildsten, 1998), or the excitation of
non-radial stellar oscillations (Andersson, 1998; Friedman and Morsink, 1998; An-
dersson et al., 1999). Heyl (2002) suggested that the gravitational radiation from
such oscillations may be detectable with LIGO.

1.3.3 Evolution of X-ray binaries

The total number of X-ray binaries in the Galaxy is thought to be on the order
of several hundred (Psaltis, 2006), and there are about 160 known recycled mil-
lisecond radio pulsars (Lorimer, 2005). The relatively small total number of these
objects implies that they are the byproduct of rare evolutionary scenarios, and their
concentration in old stellar populations towards the galactic centre and in globular
clusters implies that the processes leading to their formation take very long to con-
clude. Models of X-ray binary formation and evolution are reviewed by Verbunt
(1993), Verbunt and van den Heuvel (1995) and Tauris and van den Heuvel (2006);
only a very brief overview of the main formative processes thought to be involved
in the evolution of LMXBs is given here. .

First, it is relatively straightforward to see why one needs to appeal to exotic
formation processes, especially in the case of LMXBs. The standard picture of
binary evolution involves two stars in a binary of masses M; and M, separated
in a circular orbit of diameter a. Suppose that M; > Ms, so that M; evolves
faster and and is massive enough to leave behind a neutron star or black hole of
mass M, after the supernova at the end of its life. For the system to be initially
gravitationally bound, the energy E; = KE + PE < 0. The initial energy in terms
of the masses is

GM M,

1 1
E; = -2—M1’U% ~+- §MQ'U§ — (114)

Since the stars orbit about their mutual centre of mass, we know that M;ijv;| =

Mj|vg|. Then
1 Mo

Ei = §M21)% <1 + ﬁl) -

The virial theorem of Clausius (see Clausius (1870); Goldstein (1950) includes a

GM M,

: (1.15)
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proof as does a short online article by Baez (2000) and other mechanics texts;
other applications to astrophysics are discussed in Saslaw (1985), and Binney and

Tremaine (1987)) says that this gravitationally bound system satisfies
1
E, = 5PE; (1.16)

therefore,
GMi M, 1

Mo = ‘
22 a 1+ My/M

(1.17)

For the purpose of this argument, we make the unrealistic assumption that the core
collapse and resulting explosion is spherically symmetric, and that My is neither

significantly ablated nor propelled by the explosion. Then the final energy Fy is

1 1 GM, M.
Ef = §Mrv3 + §M2’U% b
_ GM; ”
= Sa(ih 1 3Gy M~ MM+ M), (1.18)

where we have made use of Equation 1.17. For the system to remain bound after
the supernova, Fy < 0. Then Equation 1.18 implies that for the binary to survive

the explosion
1

24 Ms/My~

Consider that the formation of a neutron star by an isolated star is the endpoint

M, > M (1.19)

of main sequence stars with initial masses 8 My < M; < 25 Mg, which during
their evolution obtain He cores with masses between 2.1-8 Mg, (Tauris and van den
Heuvel, 2006). In an LMXB, My < 1 Mg . In the cases we are interested in, the mass
of the remnant must be more than about M;/2 in order for the binary to remain
bound. But surely, this condition is never satisfied since the canonical neutron
star mass is M, ~ 1.4 My, much less than half the initial mass M;. Therefore, as
pointed out by Tauris and van den Heuvel (2006), a necessary ingredient to explain
the existence of LMXBs must be one or more of the factors we have neglected: the
possibility of large scale mass transfer prior to the supernova (discussed below),
ablation of the companion by the supernova, or the possibility of asymmetric core
collapse which imparts a “kick” to the resulting neutron star. The importance of
supernova kicks for the formation of short-period LMXBs is discussed by Kalogera
and Webbink (1998), and their dynamical consequences have been analysed by Hills
(1983), and Tauris and Takens (1998) (Tauris and van den Heuvel, 2006). Modern

models of binary evolution must include some consideration of all of these effects
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in order to allow for a non-zero birthrate of LMXBs.
LMXBs might be formed by several different processes. The standard picture
is as the product of common envelope (CE) evolution of an extreme mass ratio
e T main sequence binary, but several other scenarios might also form LMXBs which
are mentioned at the end of the section. The CE evolution scenario was first
proposed by Paczynski (1976) and Ostriker (1976), and is discussed in detail in
the aforementioned reviews and their accompanying references. A typical picture
of CE evolution (Tauris and van den Heuvel, 2006) of a binary with an LMXB as
the endpoint involves two main sequence stars, one with mass M; = 10 M, the
other with mass My ~ 1 M. The more massive star evolves faster, and if the
binary is close enough M; will fill its Roche lobe when it enters the red giant phase
of its evolution and begin transferring mass to M;. The transfer of mass drives
the inspiral of the binary. This is easy to see in the framework of a conservative
system (Verbunt and van den Heuvel, 1995): if the total mass M; + My is always

conserved, then

My = My—(AM) (1.20)

The total angular momentum J of the system is also conserved, with value

This leads to the following expressions for the change in the separation a and period
P of the binary in terms of the initial masses and the size of the mass transfer AM
(Kepler’s third law is invoked for the result involving P):

a; My — My (AM)? )2
_— = 1+ (AM + 1.23
af ( ( ) My; Mo, My; Mo, (1.23)
P My — My (AM)2\°®
— = 1 AM . 1.24
Py ( +(AM) My Mo + My; Mo; (1.2)

So it is clear that mass transfer in a binary leads to inspiral of the stars. In the
case we are considering, the inspiral will eventually bring the lower mass star inside
the Roche lobe of the giant, and the CE evolution phase begins. In CE evolution
(Tauris and van den Heuvel, 2006), the inspiral accelerates due to the drag on the

lower mass star. At the same time, the deposition of the orbital energy within the
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envelope leads to relatively rapid dissipation of the envelope of the giant’s He core.
At the end of this phase of evolution, a naked He star is in a small orbit with a
main sequence star. Eventually the He star evolves resulting in a supernova and
formation of a neutron star. At this stage of evolution, the binary will have evolved
for on the order of several times 107 a, set by the nuclear timescale of the initially
more massive star, Tpye == 10 Ga(M/Mg)~25.

If the binary remains bound after the supernova, then under certain conditions
a subsequent phase of inspiral lasting on the order of several times 10° a (Tauris and
van den Heuvel, 2006) may take place which brings the binary back into contact for
another period of mass transfer, resulting in the formation of an LMXB. Detailed
models of CE evolution solve the problem of bringing the progenitors of the LMXB
into a close enough orbit that the second phase of mass transfer begins within the
Hubble time.! The evolﬁtion of the bound post-supernova binary is determined
largely by detailed models of the mechanisms which can dissipate orbital angular
momentum. These mechanisms can include magnetic braking of the binary, the
possible exchange of angular momentum between the star spin and the orbit by ex-
pansion or contraction of the non-degenerate star, mass loss, and gravitational wave
radiation (Tauris and van den Heuvel, 2006). Gravitational wave radiation is only
important in close binaries, and would not necessarily be the dominant mechanism
initially driving the inspiral after the supernova of the more massive star. During
this second inspiral phase, the stars may again be brought into contact and the
remaining main sequence star begins mass transfer through its Roche lobe to the
neutron star (in the opposite direction of the initial mass transfer!), and the system
manifests itself as an LMXB. When the system is in contact, the mass transfer is
driven by the continued loss of angular momentum via magnetic braking (discussed
in §16.4.1 of Tauris and van den Heuvel (2006)), or gravitational wave radiation,
the importance of which was recognised by Faulkner (1971) who considered the
similar scenario of white dwarf stars accreting matter by Roche lobe overflow of a
red main sequence companion.

Other processes leading to the formation of LMXBs have been suggestéd as well
(Verbunt and van den Heuvel, 1995). In one scenario, suggested by Whelan and
Iben (1973), Canal and Schatzman (1976), and Canal et al. (1990), one begins again
with a high-mass binary of extreme mass ratio but this time the massive star evolves

to a relatively massive white dwarf instead of a neutron star. The inspiral phase

YA rough estimate of the age of the universe is given by the inverse of the Hubble constant,
Ho = 100h Mpc™tkms™ . The three year WMAP results have h = 0.73 £ 0.03 (Spergel et al.,
2006); the corresponding rough estimate of the universe’s age is 1.3 x 10!% a.
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after the formation of the white dwarf leads to mass transfer from the remaining
main sequence star, which pushes the white dwarf over the Chandrasekhar limit,
resulting in the formation of a neutron star binary. This process is called “accretion-

induced collapse.”

One advantage of this scenario is that the resulting supernova
may be less disruptive to the system than the direct formation of a neutron star
by the evolution of a massive He core.

In globular clusters, capture scenarios may contribute to the formation of LMXBs
(Verbunt and van den Heuvel (1995) point out Clark (1975), Fabian et al. (1975),
Sutantyo (1975), and Verbunt (1988); Verbunt and Lewin (2006) review the globu-
lar cluster X-ray sources). X-ray binaries are over-represented in globular clusters
compared to the Galaxy: consider that some 10% of known X-ray binaries are in
globular clusters which contain on the order of 10™% as many stars as the Galaxy
(Verbunt and van den Heuvel, 1995), so it seems reasonable to suggest additional
evolutionary scenarios that enhance the birth of LMXBs in globular clusters. The
reviews by Verbunt and van den Heuvel (1995) and Verbunt and Lewin (2006) dis-
cuss these scenarios in detail: First, it has been suggested that single neutron stars
can pass a binary in globular clusters, forming a triple. Triples are unstable, and
typically the lowest mass member is ejected, which may leave behind a neutron star
binary. The other scenario that has been suggested is the tidal capture of a main
sequence or giant star by a neutron star, or possibly direct collisions between giant
stars and neutron stars. These scenarios may be problematic owing to the possible
destruction of the companion by tides (McMillan et al., 1987; Ray et al., 1987).

1.3.4 X-ray pulsation mechanisms

The remaining chapters are primarily concerned with the interpretation of millisecond-
period pulsed X-ray light from a region on (or close to) the surface of neutron stars.
In the context of LMXBs containing a rapidly-rotating neutron star, the broad cate-
gory of “X-ray variability” encompasses the seven millisecond-period X-ray pulsars,
the aforementioned type I X-ray burst oscillations, and there is also a category of
oscillations known as (kilohertz) quasi-periodic oscillations (QPOs). The work in
this thesis was primarily motivated by the prospect of analysing the pulse profiles
of the millisecond X-ray pulsars. This is a very young field of endeavour, as the
only published phase-resolved spectra of such systems with persistent pulsations
are for the first millisecond X-ray pulsar, SAX J1808.4-3658 (see Cui et al. (1998),
Gierliniski et al. (2002) and Papitto et al. (2005)). Like radio pulsars, the pulse

profile of X-ray pulsars can be determined by sufficiently long observation, so for
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the sort of analysis we envision it is important to consider mainly sources with per-
sistent pulsations and stable frequencies. There is also direct applicability of this
work to the analysis of type I X-ray burst light curves, since this phenomenon also
arises from the rotational modulation of a bright spot on the surface of a neutron
star. In comparison with the persistent millisecond X-ray pulsars, pulse profiles
of X-ray burst oscillations are somewhat more readily available, but present other
analysis challenges arising in part from their necessarily short observation time.
An additional complication is that these sources do not have stable (brightness) os-
cillation frequencies, although they are approximately so, and the phenomenology
of the frequency evolution is mostly well-described (Strohmayer and Markwardt,
1999). The QPO phenomenon is thought to be a completely separate issue and the
chapters that follow have no obvious applicability to this category of variability. In

this section we give a very brief overview of these separate categories.

X-ray pulsars

After the discovery of the first long-period X-ray pulsar in an HMXB (Giacconi
et al., 1971), it was quickly understood that these pulsars came about by accretion
of matter directed onto the magnetic poles of a rotating neutron star. In this
situation, the heating of the neutron star surface caused by the funnelling of hot
plasma to the magnetic poles produced a bright spot which rotates through the
line-of-sight of the observer, which is observed as pulsed X-ray light.

A variety of models of accretion geometries near the surface of the neutron
star have been developed to provide a theoretical basis for the interpretation of
the phase-resolved spectroscopy of X-ray pulsar observations. For example, Nagel
(1981) used radiative transfer calculations to investigate the emitted spectrum and
anisotropy in two different accretion geometries: a slab perpendicular to the mag-
netic field, and a cylindrical accretion column with its axis parallel to the magnetic
field. The slab geometry is most applicable in low luminosity sources when the
accreting matter is decelerated close to the star; in this case radiation was pref-
erentially emitted along the magnetic axis (a “pencil beam”). In the accretion
column case, a radiative shock forms far from the star beneath which the accreting
matter settles onto the star via a stagnant flow, and radiation escaped from the
sides of the resulting column (a “fan beam” emitted preferentially away from the
radial direction). More complicated accretion geometries can be envisaged. For
example, Kraus et al. (2003) investigated the pulse profile produced by a dipole-

shaped accretion funnel with a blackbody “halo” around the base of the funnel on
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the surface of the neutron star, and others have proposed that the accretion flow
forms a “mound” shape under the shock.

In addition to the accretion geometry, the spectrum of the emitted light is also
important. A realistic description of the spectrum of accreting X-ray pulsars de-
pends on the energies being considered. A blackbody component of the spectrum
describes soft X-rays, which may be X-rays emitted from the surface of the neu-
tron star which is heated by the accretion flow (see, e.g., Zavlin et al. (1995) for a
detailed treatment of this point, and Kraus et al. (2003)). The spectrum of hard
X-rays is described by a power law with an exponential cutoff at high energies; this
radiation is understood as originating in the accreted matter and “Comptonized”
by hot electrons before leaving the accreting system. This is understood by consid-
ering radiation passing through an optically thick cloud of hot, completely ionized
plasma, where the photons and plasma, interact only by Compton scattering. Mul-
tiple scatterings of X-ray photons on thermal electrons result in the distortion, or
Comptonization, of the input spectrum, since in each scattering the frequency of
the photon changes due to the Doppler and recoil effects (Sunyaev and Titarchuk
(1980); also see Rybicki and Lightman (1979)).

Additionally, there may be discrete spectral features in the phase-averaged spec-
trum such as cyclotron resonance scattering features, or spectral lines. Ibrahim
et al. (2002) discuss observational evidence of a cyclotron resonance feature in SGR
1806-20, and Heind! et al. (2004) review this phenomenon in the context of clas-
sical X-ray pulsars. Considering the spectral lines, Cottam et al. (2002) observed
a gravitationally-redshifted absorption line from a neutron star, and Chang et al.
(2006) is a recent theoretical treatment of the effects of rotation on such spectral
lines. These discrete spectral features in neutron star spectra may permit a direct
measurement of the total redshift (and therefore the compactness), and in the case
of the cyclotron lines, the magnetic field.

With a model of the emission region and a model of the emitted spectrum, gen-
eral relativity can be used to calculate the path taken by photons from the emission
region to the observer, and an observed pulse profile calculated, which generally de-
pends on the observed energy band. The simplest case of such a calculation which
included relativistic light deflection was carried out by Pechenick et al. (1983) for
emission from polar caps, with application to the slow X-ray pulsars. Using this
basic method to compute model light curves, perhaps with different accretion ge-
ometries and model spectra, fits to observations of the slow X-ray pulsars have

yielded constraints on the compactness of the neutron star and the nature of the
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emitted radiation; this is discussed in more detail in the introduction to Chapter 4.
The first, and so far only, application of this kind of analysis for persistent millisec-
ond X-ray pulsars was carried through by Poutanen and Gierliriski (2003), which
yielded a loose constraint on the mass and radius of the neutron star and the in-
clination of the system. This particular analysis used phase-resolved spectroscopy
of the pulsar in the soft and hard bands together with a two component spectral
model of the beamed emission. However, it is straightforward to see how the mass
and radius of the neutron star can be encoded in a simplified version of the situa-
tion, where the‘pulsed light arises from isotropic emission, and one observes only
the bolometric light curve. In this situation, the (relativistic) velocity of the emis-
sion region (which scales with R) determines the asymmetry of the light curve due
to Doppler boosting, while the compactness M /R determines the degree to which
light can “bend” around the star. By fitting model light curves with observations,
a set of parameters consistent with the data can be obtained. In a standard ap-
plication of the framework provided by Pechenick et al. (1983), the star’s surface
and the exterior spacetime is assumed to be spherically-symmetric, and the varia-
tion of the time-of-flight of photons with phase is neglected. The overarching goal
of this dissertation is to show that such computational approximations which are
useful for slower pulsars, such as using an approzrimate spacetime, neglecting some
time delay effects, or neglecting stellar oblateness, can lead to significant failures in

interpreting the pulse profiles of millisecond pulsars.

Type I X-ray bursts: “nuclear-powered” pulsars

The discovery of coherent X-ray pulsations in the cooling tails of type I X-ray
bursts provided the first evidence that neutron stars in LMXBs could be spun
up by accretion to millisecond periods. The bursting behaviour of LMXBs was
not a new phenomenon, having first been observed in 1976 (Grindlay et al., 1976;
Belian et al., 1976), and the physics which gives rise to the bursts is relatively well
understood. A recent review of type I X-ray bursts is given by Strohmayer and
Bildsten (2006); also see Lewin et al. (1995).

These flashes are a manifestation of the “thin shell” instability of Schwarzschild
and Harm (1965), which was originally discovered as an instability in the thin
helium shell residing above the carbon/oxygen core during the asymptotic giant
branch of stellar evolution (Strohmayer and Bildsten, 2006). In this situation,
the rate of thermonuclear burning is more temperature sensitive than the rate of

radiative cooling. Hansen and van Horn (1975) showed that the same instability
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can apply to the accreted hydrogen and helium on the surface of a neutron star.
X-ray bursts arising from the unstable burning of accreted matter are known as
“type I” bursts. The physics of the burning of the accreted material depends not
only on the composition of the matter being accreted, but also on the accretion
rate. For low accretion rates, unstable hydrogen burning ignites a hydrogen/helium
mixture. At higher rates, the accreted hydrogen burns stably via the CNO cycle
(although at the highest accretion rates, it may not burn completely off) and the
burst is fuelled by the unstable ignition of helium. Strohmayer and Bildsten (2006)
point out some relevant papers discussing the accretion-rate dependence of nuclear
burning by Fujimoto et al. (1981), Fushiki and Lamb (1987), and Cumming and
Bildsten (2000). Bursts are not observed from classical high magnetic field X-ray
pulsars, because the accreted matter is strongly channelled to the magnetic poles
resulting in a high local accretion rate which leads to stable burning (Joss and Li,
1980).

There is also a recently-discovered class of related bursts called “superbursts”
(the first such burst was discovered by Cornelisse et al. (2000) (Strohmayer and
Bildsten, 2006)) which are much rarer, with recurrence interval of years, versus
days or months for type I bursts. These bursts are thought possibly to be the result
of unstable burning of carbon deeper down in the surface layers of the neutron star.
“Type II” bursts are an unrelated, and poorly understood, phenomenon thought
to be related to an accretion instability which leads to a rapidly varying rate of
mass deposition on the neutron star. In 2003 there were only two known examples
of type II bursters. We will always mean the nuclear-powered bursts when we refer
to X-ray bursts.

In 2003 there were about 160 known LMXBs, 70 of which were bursting sources,
and apprdximately eleven of these had been observed to exhibit coherent burst os-
cillations with frequencies ranging between 270-620 Hz (Strohmayer and Bildsten,
2006). Muno (2002) undertook a systematic analysis of all type I X-ray bursts from
eight LMXBs in public RXTE data as of September 2001, and identified 68 oscil-
lation trains detected in a search of 159 separate bursts. The main results of this
work were published as Muno et al. (2000), Muno et al. (2002a), and Muno et al.
(2002b). A common feature of burst oscillations is an observed increase in frequency
by several Hz during the burst, but the mechanism producing this effect is not well-
established. The phenomenology of the frequency evolution is often well-described
as an exponential “chirp,” with the asymptotic frequency in the cooling tail being a

stable characteristic of the bursting source and is taken to be the rotation frequency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.3 PULSARS AND ACCRETION-POWERED RECYCLING 23

of the neutron star. Strohmayer et al. (1997) suggested that this phenomenon might
be understood as the combined effect of angular momentum conservation and ex-
pansion of the burning matter. In this model, a “shell” of accreted matter expands
(e.g., hydrostatically) as energy is released by the burning. The expanded shell of
the burning matter initially rotates with a longer rotational period than that of the
underlying star, owing to the larger radius of rotation and conservation of angular
momentum. The subsequent cooling and contraction of the shell, still governed
by the conservation of angular momentum, produces the observed increase in the
frequency of the oscillations in the tail of the burst. A theoretical analysis of this
process was carried out by Cumming et al. (2002), where it was shown that this
basic model cannot account for the size of the observed frequency shifts. Other
work (e.g., Spitkovsky et al. (2002)) on understanding the frequency evolution of
X-ray burst oscillations has concentrated on modelling the evolution of the burning
front on the surface of the rotating neutron star, by considering the Coriolis force
and nuclear physics effects on the propagation of the “thermonuclear flame.” Heyl
(2004) has considered the possibility that the burst oscillations arise from modes
of the neutron star atmosphere excited by the thermonuclear detonation.

As applications, X-ray bursts may have the potential to constrain the radius
of neutron stars loosely. The basic technique is to fit the observed spectrum with
a blackbody and assume isotropic emission to obtain the surface area of the star.
The main problem with this is that the radiation is not isotropic and perhaps
only a fraction of the surface is emitting (van Paradijs, 1979). X-ray bursts that
exhibit radius expansion, also revealed through spectral fits taken over different
times, may also give an approximate standard candle for distance measurements,
as radius expansion is expected to occur when the luminosity of the burst exceeds
the Eddington limit (van Paradijs, 1978). The theoretical Eddington luminosity
is known given at least the mass of the accreting neutron star by Equation 1.4,
which applies to the non-relativistic limit 1/7 < 1 and spherical accretion of hy-
drogen plasma. In practice, more complex treatments are used which account for
relativistic effects, the composition of the accreted material, and anisotropy of the
accretion (e.g., van Paradijs and Lewin (1987)). Therefore, if reasonable values of
the parameters which determine the Eddington luminosity are known, the observed
flux can be used to obtain the implied distance to the source. van Paradijs (1979)
recognised that this simple interpretation could also be problematic in practice.
For example, a recent examination by Kuulkers et al. (2003) of X-ray burst oscil-

lations showed that these bursts are not perfect standard candles since the peak
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luminosities of Eddington-limited X-ray bursts are not exactly constant, but can
vary by about 15%.

The basic physical process envisioned in this dissertation concerns the rota-
tional modulation of X-ray light emitted from a region on the surface of a neutron
star, which is how X-ray burst oscillations come about. While phase-resolved spec-
troscopy of X-ray burst oscillations is made more difficult by their intermittent
nature, there has been some work on using formalisms similar to Pechenick et al.
(1983) to compute model pulse profiles for X-ray burst oscillations which have been
used to constrain neutron star parameters (see Weinberg et al. (2001), Nath et al.
(2002), Muno (2002), and Bhattacharyya et al. (2005)). As a result, the work car-
ried out in this dissertation is also relevant to similar analyses of burst oscillation

pulse profiles.

Kilohertz Quasi-periodic oscillations (QPOs)

Another phenomenon associated with millisecond variability of X-ray light from
LMXBs are kilohertz QPOs; this and other phenomena associated with X-ray vari-
ability are reviewed by van der Klis (1995) and van der Klis (2006). QPOs are
generally defined as broad peaks revealed in the Fourier power spectra of X-ray
timing observations. For the kHz QPOs in LMXBs, the Fourier spectra often
indicate significant power at frequencies typically between 200-1200 Hz, but the
broadness of the peaks in the power spectrum indicate that the oscillations are
not coherent as in the case of the X-ray burst oscillations and X-ray pulsars. A
lot of attention has been paid to the fact that often there are two peaks in the
power spectrum in LMXBs, an upper QPO centred on vy; and a lower QPO at v,.
Méndez et al. (2001) and the references they cite give a concise description of kilo-
hertz QPO phenomenology: in a given binary, during observations over timescales
of a day or less, a QPO frequency versus intensity diagram tends to display a set of
almost parallel tracks, i.e., tracks separated by nearly constant Av = vy — 1. On
this timescale, QPO frequency and X-ray count are positively correlated, with the
peak locations changing by typically a few hundred Hertz, but their separation Av
changing by only tens of Hertz. However, in observations separated by a few days
the source occupies different tracks in such a diagram, and QPO frequency and
X-ray count rate are now known to be uncorrelated over the long term (Méndez
et al,, 2001). The early realisation that Av appeared to be nearly constant led
to suggestions that the upper QPO is associated with the orbital motion at the
inner edge of the accretion disk, with the lower QPO a beat between the upper
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QPO and the neutron star rotation frequency (Miller et al. (1998), but see Morsink
(2000) for a popular description of the QPO beat frequency model). While the phe-
nomenology of these QPOs is interesting (for example, it has been suggested that
they may contain an observational signature of the innermost stable circular orbit
(ISCO) predicted by general relativity by Barret et al. (2006)), it seems likely that
a complete understanding will involve detailed modelling of the star-disk interac-
tion. Recent progress has been made on modelling the magnetohydrodynamics of
the accretion flow with application to kilohertz QPOs by Romanova et al. (2006).
We mention the kilohertz QPOs only to distinguish them from the phenomena that
this work directly applies to.

1.4 Organisation of the dissertation

This work is carried out in two phases. The first phase is constructive, where a
means by which to compute a pulse profile is established within the framework of
a precisely solved spacetime metric and stellar structure, with all photon time-of-
flight effects included. We also need to be able to carry out approximate versions
of this calculation which have direct analogies in the literature in order to make
statements about the degree by which the full calculation differs from its approx-
imations. The analytical framework for this is set out in Chapter 2 which begins
with a discussion of the general stationary axisymmetric spacetime metric and its
special cases, through: to the integration of null geodesics in using this metric, and
a careful discussion of the effects introduced by rapid motion of the emission re-
gion. The chapter concludes with an analytical comparison of the proposed “full”
calculation, with an extant adaptation of the method described by Pechenick et al.
(1983) designed for millisecond period X-ray pulsars. The constructive phase con-
cludes in Chapter 3, where the computer code that was developed for this work is
described and verified.

The next phase of the work, Chapter 4, is inductive. We make substantial
use of the developed computer code in a variety of cases to determine the level
at which commonly-used simplifying approximations change the calculated pulse
profiles, and the impact this will have on conclusions arrived at by fitting model
pulse profiles to X-ray observations. In the first part of this work, we consider a
simple model where light is emitted and observed in the equatorial plane, and the
phase-dependent time-of-flight of photons from the emission region to the observer

is discarded in the approximate calculation. In the next part of the work, we allow
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the inclinations of the observer and emission regions to be general, and we consider
the effects of approximating the spacetime and discarding the rotation-induced
deformation of the star’s surface. The result of this work provides compelling
evidence that the techniques which have been developed for slower pulsars (which
use approximate spacetimes, neglect some time delay effects, and neglect stellar
oblateness) cannot be directly applied to the interpretation of the pulse profiles of
accretion-powered millisecond X-ray pulsars.

Finally, we set the stage for future work at the end of Chapter 4 by giving
a simple model of rotation-induced oblateness which does not require the user to
perform a full stellar structure calculation, and we make a demonstration that
this oblateness model can be used to substantially improve extant codes which are

optimised for fitting quickly-computed pulse profiles to data.

1.4.1 Notes on the text

The major conclusions of this research have been published or accepted for pub-
lication as Cadeau et al. (2005) and Cadeau et al. (2006). Some figures and text
from these papers are reproduced here; material appearing in Cadeau et al. (2005)
is “©2005. The American Astronomical Society. All rights reserved.”, and ma-
terial appearing in Cadeau et al. (2006) is “©2007. The American Astronomical
Society. All rights reserved.” The Society grants a standard non-exclusive license
to authors to republish their material if appropriate credit is given to the Journal
and the copyright notice is reproduced.

The oblateness model and suggested adaptation of simpler pulse profile codes
which is given at the end of Chapter 4 only appears here and is the subject of
ongoing work. The constructive part of this work was carried out independently.
For the inductive part, I calculated the “non-approximate” versions of the pulse
profiles using the code I developed, while D. A. Leahy calculated the fitted sets of
parameters using a coniputer code which employed an “approximate” calculation
for the forward calculation of the pulse profile. I was also fortunate to be able
to both contribute to, and benefit from, collaboration with D. A. Leahy in the

verification phases of our respective codes.
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Chapter 2

Calculating the light curve

2.1 Introduction

In this chapter we devise a means to calculate the light curve, or pulse profile, of a
rapidly-rotating neutron star which emits light from a small patch on its surface.
To begin with, consider a two-dimensional area of a non-rotating star which emits
light with frequency v, with specific intensity I,.. An observer far from the star
sees that the area of the emitting region subtends a solid angle d2, on the sky, and
the received photons have an observed frequency v,. Without relativistic effects,
the received light will have the same frequency as the emitted light, and the received
specific intensity is independent of the distance to the source (Shu, 1991). When
relativistic effects such as Doppler boosting or gravity act to change the frequency
of the observed light, one defines the redshift z through the relation 1+ z = v, /v,.
In this case, making use of conservation of photon number density in phase space,
the intensity reaching the observer can be shown to transform as L,=1,/(1+2)>?
(Misner et al., 1973; Shapiro and Teukolsky, 1983). The element of observed specific

flux is

1 3
dF, =1,dQ, =1, { —— | dQ,. 2.1
Vo o o Ve (1“!"2) o ( )

The total flux registered by a detector is given by the frequency integral over the
detector’s sensitivity band. If the detector is sensitive to all frequencies, then the

integrated flux is called the bolometric flux. The integral is

= [ (1) a0
—/’;o Qls Ly, 1+ 2 )

lo
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In general, the radiation may be beamed, and the intensity I, will depend on the

initial direction rays take to reach the observer. If a, is the angle the observed
rays form with the normal to the surface of the star, then the shape of the beam
is given by specifying I, {ae). In this work we will show how our calculation can
be easily extended for beamed emission, but our main results will be presented in
the context of isotropic emission and bolometric flux. We wish to study funda-
mental issues concerning pulse profile calculations and their applications for the
millisecond-period X-ray pulsars. Considering the uncertainty in the correct mod-
els for the energy and direction dependence of I, our calculations have been limited
to bolometric, isotropic flux for the results presented in this dissertation.

At this stage we have not yet introduced the rotation of the star, but a few
things are already intuitively obvious: in order to calculate the received flux by an
observer far from the star, we will need to know about the particular light rays
which reach the observer. For example, as the emission region rotates around the

star, we know that:

1. The redshift z may depend on phase if the speeds at the star’s surface are

relativistic, since in this case the photon energies will be Doppler boosted.

2. As the emission region moves around the star, its orientation along the ob-
server’s line-of-sight, and therefore its projection on the observer’s sky, will

be changing. Thus df2, is phase-dependent.

3. The times-of-flight for photons to reach the observer will generally be phase
dependent, and in the case of the fastest millisecond-period X-ray pulsars,
this variation becomes an appreciable fraction of the rotation period. Thus

the time-of-arrival of flux at the observer is phase-dependent.

In order to quantify these effects, we need to be able to calculate a description of the
light rays connecting the emission region on the star and the observer. This is the
basic idea behind the pulse shape codes developed for slowly-rotating neutron stars
by Pechenick et al. (1983), where the main effect being investigated is the effect of
gravitational “bending” of light around neutron stars on the observed pulse profile.
In contrast to this treatment, for rapidly-rotating neutron stars the spacetime is
no longer spherically symmetric, nor analytically specified, which complicates the

problem.
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In relativity, light rays follow (null) geodesic paths. Solving for the null geodesics
of precisely-solved neutron star spacetimes, discussed below, is not a new problem.
Nollert et al. (1989) presented computer graphic images of neutron stars which
included the effect of light bending in accurate spacetimes. Bhattacharyya et al.
(2001) used a code which implemented ray-tracing in accurate neutron star space-
times to calculate the spectra of accretion disks. Campbell (2003) developed a
code to calculate null geodesics and studied the effect of neutron star mass, radius,
and spin frequency on the thermal emission from neutron stars. In the context
of pulsed emission from neutron stars, Bhattacharyya et al. (2005) acknowledge
that it is desireable to carry out pulse profile computations in the framework of a
precisely solved spacetime.

In this chapter, we begin by setting out the description of the spacetime metric
Section 2.2. In Section 2.3 we write out the equations describing the general null
geodesics, and give the equations for the redshift of photons and the emission
direction. The use of the calculated null geodesics to obtain the pulse profile is
discussed in Section 2.4. To assist with code verification, in Section 2.5 we obtain
independent formulas for the pulse profile in the case of a spherical star and the
Schwarzschild spacetime, and discuss an extant method which employs a similar

method in the context of accurate spacetimes.

2.2 Stationary axisymmetric spacetimes in general relativity

The metric for the general stationary axisymmetric spacetime is described by the

line element
ds? = —e7tPdt? 4 &7 P2 sin? O(dg — wdt)? + e2(d7? + 72d6?). (2.3)

In stationary axisymmetry, there are two symmetries of the spacetime given by the
Killing vectors t* and ¢®. The potentials «, «, p, and w will generally depend on ¥
and 6. It should be noted that this metric is specified in quasi-isotropic coordinates,
and circles centred on the axis of symmetry have proper length 27e(Y=2)/2F sin 0,
and so 7 should not be interpreted like the usual Schwarzschild areal r» coordinate.
In Section 2.2.1 we will give the expressions for the metric potentials for the Kerr
and Schwarzschild spacetimes.

A precise computation of the metric potentials for a rapidly rotating neutron
star must be carried out numerically. Stergioulas (2003) describes the various

numerical techniques that have been used. In this work, we have made use of
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a public-domain computer code called RNS to accomplish this (Stergioulas and
Friedman, 1995). The code assumes that the star is a rigidly-rotating perfect
fluid, with four-velocity u® o< (t* 4+ Q.¢®*). The angular velocity of the star as
measured at infinity is the constant €2,. The Einstein field equations for the metric
potentials are given by Butterworth and Ipser (1976), and are a set of three elliptic
PDEs for the potentials v, p, and w. The potential « is determined by solving
a first-order ODE involving the other three potentials. The basic method used
to solve these equations in RNS was originally devised by Komatsu et al. (1989).
The method was subsequently improved upon by Cook et al. (1992) who applied
their code to calculations of rapidly-rotating stars with polytropic equations of
state (also see Cook et al. (1994b)). Cook et al. (1994a) extended this code to
use tabulated realistic equations of state, where the function p(e) describing the
compressibility of neutron star matter is determined by interpolation of datapoints
corresponding to realistic equation of state candidates. RNS is an independent
implementation of a method similar to the one used by Cook et al. (1994a), with
additional improvements.

The basic tactic proposed by Komatsu et al. (1989) is to convert the elliptic
field equations into integral equations using appropriate Green’s functions. The user
specifies parameters describing the desired neutron star model, which in the case of
standard RNS are the ratio of the polar to equatorial radius of the star 7, /7, and
the central energy density, which are held fixed. The code computes an initial guess
for the metric potentials by solving the Tolman-Oppenheimer-Volkoff equations for
hydrostatic equilibrium of a non-rotating star, and successive improvements to the
computed metric potentials are obtained by iterating on the integral equations
for the new set of potentials. This procedure eventually converges, resulting in
the potentials describing the desired model. In addition to the metric potentials,
integral equations can similarly be added to RNS to accurately compute the first
partial derivatives, and the second mixed partial derivative of the metric potentials
(Morsink, 2005a). This assists with accurate interpolation of the metric values
between gridpoints, using bicubic spline interpolation (Press et al., 1988). We
have made independent modifications to RNS so that it automatically converges
on models of a specified mass and angular velocity. Additionally, the location of
the surface at all latitudes is computed by locating the zero of enthalpy, which is
the boundary condition for the star’s surface (Haensel and Potekhin, 2004). All
useful quantities are output to computer files which are read by the computer code

developed for this work, which is described in.Chapter 3.
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2.2.1 Special cases: Schwarzschild & Kerr metrics

The coordinates used to express the line element in Equation 2.3 are known as
“quasi-isotropic” coordinates. When the Schwarzschild metric is expressed in these
coordinates, the metric is
(1 My2F)? ,
ds® = —(——/)idtz’ + (14 M/27)* (d7% + 72d6? + 7 sin® 0dg?),  (2.4)
(1+ M/27F)

which has the property that surfaces of constant ¢ are conformally Euclidean. These
coordinates are known as “isotropic coordinates.” The quasi-isotropic coordinates
of the general metric in Equation 2.3 are a generalisation of the usual Schwarzschild
isotropic coordinates. '

In the limit of zero rotation, the following combinations of metric functions are:

1/2
thoe%(%p) - <1_2%) ’ (2.5)
* T r
limofe_p = r(l——r——) , and (2.6)
-1
1im06a”%(7+p>df = <1—ﬂ> dr, (2.7)
* T

where €2, is the star’s angular velocity, as measured by an observer at infinity.*
The Kerr metric for a black hole without an electromagnetic field in Boyer-

Lindquist coordinates is (Boyer and Lindquist, 1967):
2 2M
ds’ =% (% + d02> + (r? + a®) sin® 0de¢? — dt* + T’”(asm2 fdg — dt)?, (2.8)

with ¥ = 72 + a?cos?0 and A = r? — 2Mr + a®. The parameter a is called the
specific angular momentum, and is the ratio of the total angular momentum to
mass, a = J/M. Our goal in this section is to express this metric in the form of
Equation 2.3.

The a = 0 case is the Schwarzschild metric, but not in isotropic coordinates,
so the first step is to find the appropriate transformation r = 7f(F) to express

this metric in quasi-isotropic coordinates. Looking at the (r, 8) plane, and putting

!Note that the unbarred r appearing on the right-hand side of Equations 2.5-2.7 refer to the
areal Schwarzschild r coordinate, where circles centred on the axis of symmetry have proper length
27rsin 0 = 2rel7 P/ 27 sin 6.
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dr = (f + 7f")d7, we have:

dot = % <§£_2 * dw) (2.9)
=£)2 2 2
(75;{2)—2;4:;12 (f +7f)2dr? + [(7f)? + a® cos® 6] 46> (2.10)

(ff)z-l-azcosZG [ F2(f +7f)2
(Ff)2—2M7f +a?

di? + F2d02} : (2.11)

7:2

This is of the required form do? = e2*(d7? 4 #2d6?) if f(7) satisfies

P(f+7f")? = (7f)? — 2MFf + a®, (2.12)
or 9
(Ff)? + 2Ff)f = ~2]\;‘[f + % (2.13)

A solution to this equation is

r=rf(F) = (M+7)+ M—Z—;ﬁ (2.14)
- 7 (1 n M; a) (1 + M2; a) : (2.15)

with constant rescalings of 7 providing the other solutions in general. In the a =0
case, this reduces to the well-known transformation for putting the Schwarzschild
metric in isotropic form, r = #(1 + M/27)?.

After a coordinate change of the Kerr metric in Equation 2.8, we can read off
the form of the a potential directly. The remaining potentials are solved for by
equating the gy, g4, and ggs metric components of the transformed Kerr metric

and the general metric in Equation 2.3. They are:

1 M +a\? M—a\? &

a = §ln [<1+ o7 ) <1+ 57 > +¥—2—cos 0 (2.16)

M? — g2
= ] 1- 2.

R[S 2.17)
Sr7 (1 - 2M 2 /p2)1/2

p = In il [r+a?/r) _ (2.18)

rd 4+ g2 (E+T2c0529+2Mrsm 0)
w = 2Mar (2.19)

rd 4 a2 (Z+r2cos29+2M7‘sin29).
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Take note that in the above expressions for p and w, both r and 7 appear, which
are related by Equation 2.15.

We also need the 7 and 6 derivatives of the metric potentials. These are:

Rt 4 (14 23e) (14 Mpe) (4 + M)

o = - - (2.20)
(0 2557 (T 52)7+ S oot
1 M? —a®
1 2.21
v F 23 |1 = (MQ—QQ)/(4FZ)] ( )
) 7.7 M a?
2rr 7 LR 1, B -w
pi = T— - - 2M 2
> Tr T 1-— - + %Z
77 (4r® + 2a® (r(1 + cos® ) + M sin?9)) (2.22)
™ + a2 (3 + r?cos? 0 + 2Mrsin? §) |
3rt 4+ a2 (r?2 + (r? - a?) cos? 6
e — oM, [3rf + a® (2 + ( ) )] - (2.23)
[r4 4+ a2 ( + r2 cos? 0 + 2Mrsin? 6)
with M M
+a —a
1o 7 .24
r, ( 27 ) < 27 > (2 )
and
2 -
a® sin(260
ag = - ~9 M+a\2 ( M)—a 2 | 42cos20 (2'25)
27 [(14-“2;—) (1+ %)+ 72 ]
1 = 0 » (2.26)
1 7‘2 -+ a2 — 2Mr
2 .
_ oy | L 2.27
p’e [4) Sln( ) [E 7,,4 _|__ a2 (E _.l_ fr-2 COS2 9 —|— 2M7‘ Sin2 9)} ( )
2 2_o2M
we = 2Ma*rsin(20) rre - (2:28)

[7"4 + a? (E + 72 cos? @ + 2Mr sin? 0)]2 )

2.3 Null geodesics of the stationary axisymmetric space
time
2.3.1 Equations of motion

In this section, we discuss how to obtain the description of the light rays from the
star’s surface to the observer. First we consider the calculation of the null geodesics
of the general stationary axisymmetric spacetime of Section 2.2. For a given ray,

we wish to obtain the curve z*()\) describing its path through the spacetime. In
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relativity, such curves are geodesics, i.e., they parallel transport their own tangent

vectors £2 = dz®/d )\, which means that for an arbitrary parameter A
00V 0% o 4P (2.29)

Such curves can always be reparameterised so that the constant of proportionality
in Equation 2.29 is 0,
V0 = 0. (2.30)

Equation 2.30 is known as the geodesic equation.

Recalling the line element of Equation 2.3,
ds® = —e"PAt* + e PF2 sin® 0(dg — wdt)® + >*(d7° + 72d6?),

we know that since the metric components are independent of the coordinates ¢
and ¢ that the corresponding four-momenta are conserved, ¢; = —F and £y = L.
This yields the first two equations describing the curves:

o= glag, = —e= (g, — we—(w+p)g¢ (2.31)
. _ e Tte _
¢ = 9%, = —we (7+p)ft + 2?0 w’e 7+p] £y (2.32)

Defining the “impact parameter” b = L/FE, and setting £ = 1 without loss of

generality, Equations 2.31 and 2.32 can be written

g—; = 01— wh) (2.33)
¢ _ —(v+p) b
ﬁ = e w(l — (Ub) + ejm . (234)

The remaining equations are obtained by writing Equation 2.30 in a coordinate
basis using the Christoffel symbols I'}.:

d2zb da™ da™
OV = —— b = 2.
Vat' =2 Tl gy =0 (2.35)
and the Christoffel symbols I'}, are
a 1 am
be = 59" (Gmbsc +Fmesb —Gbesm ) - (2.36)

2

The Christoffel symbols for the metric we are considering, Equation 2.3, are dis-
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played in Table 2.1. Making use of Equations 2.33 and 2.34, we obtain the following

two equations from Equation 2.35:

d20 7%2 A2 1 P 1 —92

—dA2 = O,p <—7_12 - 9 ) - 2 <a7'F +%) 7"9 + 5[‘:56 a879 (237)
d?r ) . O |

d/\g = —a,; <f2 - F292) — 20,570 + 76% + 56“20‘3,? , (2.38)

where 8 = (d6/d)\), and similarly for 7, and we have defined

b2eP—7

B(’F, 9) = 6_(’Y+p)(1 - Wb)2 — m
r° Sin

(2.39)
With appropriate initial conditions, integration of the Equations 2.33, 2.34, 2.37
and 2.38 yields the points along the curve defining the path of a light ray through
the spacetime. These equations are overspecified since we have not yet invoked that
the curves must be null, so up to this point these equations are also applicable to
both timelike and spacelike geodesics. The question of appropriate initial conditions

is addressed in Section 2.3.2.

2.3.2 Initial conditions for null geodesics

‘We can now specialise to the case of null geodesics by picking appropriate initial
conditions. We wish to consider rays which are initially null, that is, £2£, = 0. This

constraint leads to the equation
7 + 7262 = e 2B(F, 0) = A(F, 6). (2.40)

‘When initial conditions for the geodesic are set to obey this momentum constraint,
the geodesic is initially null and therefore will be null at every point along its path.?

In practice, we will have in hand a description 75(8) of the location of the
star’s surface as a function of the colatitude 8. With initial values of 8 = 6; and

7 = T; = 75(0;) in hand, the positivity of the right-hand side of Equation 2.40 yields

2Differentiating ¢°¢, along the geodesic, we apply the Leibnitz rule to obtain

OV (008) = OV L+ 0V, 4,
= 0OV + 27V o (gset®)
(£°V o %) + gbc(£°V ol®) + £°(£°V ugbe),

where the first two terms in parentheses are 0 by application of the geodesic equation, and the last
is zero by compatibility of the metric with V,.
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Iy = % (Vo7 +po7 —ww 5 e~ 272 gin? 9)
I";qﬁ = —;—w,; e 272 sin? 0
Ih, = %w,g e 2P sin’ @
e, = —%e'”p"za [fy,f (1 — w?e %7 sin? 9) + D7 (1 + wle %P7 sin? 9)
—2we™ 7% sin 0 (w,f +;—)}
W = 367_9_20‘7‘“2 sin? 0 [w (Vo =7 ) + wyp +g§}
IW;F = Oy
o=
b0 = ‘%67_”_2%2 sin® ¢ (77? —Pi +§>
bo = —T(1+7ar)

1 1
F?F = W <p777 —;) - —iw,; (1 -+ w2e‘2pf2 Sin2 0)

F‘fe = w(p,p—cotl) — %w,g (14 w?e 27 sin? 9)

F;qu = % (ww,; e %P7 gin? 0 + Vi — P +—§)

Fg(p = % (ww,g e 272 5in% 0 + v, —p,0 +2 cot 9)

ré, = %ewﬂ’*%‘ [v.0 (1 — w?e™ %P2 sin? 0) + p,o (1 + w?e” %P2 sin? 9)
—2we 272 5in? 6 (w,g +w cot 9)]

Pt9¢ = 367””“20‘ sin 8 [w (7,6 —p,0 ) + 2w cot O + w,g ]

Fgf = "‘%

Fgo = 7 + a,F

Fg(b = —%e”‘p_%‘ sin® @ (—7,9 +p,p —2 cot )

T =

Table 2.1: Christoffel symbols for the stationary axisymmetric spacetime.
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a constraint on the allowed values of b, b_ < b < by, with

e Pr;sin 8;
by ==+ 241
+ 14 werr;sind;’ ( )

where the metric potentials are to be evaluated at the initial coordinate. With an
initial point and a value of b in hand, we can carry on to calculate the allowed

values of 0;. Rewriting the left-hand side of Equation 2.40, we have that
o | (dF\? 2 -
0 5 + 7| = A(7,0), (2.42)

where 7/ 0 = dr/df. To discover the allowed values of 6 requires finding the ex-
tremes of the term in parentheses on the left-hand side of Equation 2.42; typically
one expects 7 > 0 for outgoing rays, but since we are considering stars that are
(perhaps very slightly) oblate, there are certain “glancing” rays with 7; < 0. Fig-
ure 2.1 shows the situation for points above and below the equatorial plane in four
separate regions where rays can be defined. Using the quantity A(7, ) defined in
Equation 2.40, choosing the sign of £ in what follows to match the sign of cos6;,
and evaluating all quantities at the initial point, we have the following situations

in Figure 2.1:

Region I. Rays with 7; < 0 and +0; < 0. In this region we have

A 0
ST e S0 <
72 + (dr,/df)

FUBS

. (2.43)

2

This region contains the rays that would be prohibited if the surface of the

star was “spherical” with coordinate radius 7; = const.

Region IL. Rays with 7; > 0 and +6; < 0. In this region,

: A
2
0 S' 0; < 2 (2.44)
Region III. Rays with 7; > 0 and +6; > 0. In this region,
0<6?< —A———i. (2.45)
72 4 (d7s/d6)
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spin axis A 11 de/dA=0

< 1

! 6 =12 (equator)

Z 11

n d6/dA=0

Figure 2.1: Initial conditions for null geodesics originating from an oblate star: This
figure is of the (7, 8) plane, where the shaded region represents the volume occupied
by an oblate star. The radial coordinate is 7, and the dashed line represents a
surface of constant 7. As discussed in the text, determining the allowed values of
6; and 7; requires knowing which region, I, II, or III, the particular ray resides in.
Region IV describes the initial conditions corresponding to rays which cannot reach
the observer since they are initially directed into the star. This figure appears as
Figure 1 of Cadeau et al. (2006).

Region IV. Rays with #; > 0 and +6; > 0 are not received by the observer when

A

— <#2<
72 + (d7,/d0)

T

‘ (2.46)

This is the region between a constant 7 surface and the oblate surface of the
star where rays would be initially directed into the star and do not reach the
observer. The values of 6; in this region are excluded from the calculation of
rays reaching the observer.

With a value of 6; in hand, the corresponding value of 7; is fixed by Equation 2.40.
If necessary, the sign of 7; is disambiguated according to which region in Figure 2.1
one is considering.

Integration of a single null ray proceeds by setting the initial coordinates 7; and
¢, selecting an allowed value of b, selecting an allowed value 6; according to the
above prescription of the geometric constraints, and fixing 1%12 and the sign of 7; by
the momentum and geometric constraints. The differential equations 2.33, 2.34,
2.37, and 2.38 are then integrated numerically. In principle it would be possible

to reduce the number of equations to be integrated by computing 7 from 6 via
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the momentum constraint. However, it is a useful diagnostic to keep track of the

momentum constraint as a check on the integration code.

2.3.3 Redshift

The redshift, z, of photons is defined as

14 7= —emit (2.47)
Vobs

where the energies of emitted and received photons are hvenit and hvgps respectively.
Suppose that a photon is emitted at coordinates § = 6; and 7 = 74(6;) in a frame
with four-velocity u?, and received at coordinates 6 = 6y, ¥ = 77 in a frame with
four-velocity w®. Then if p® is the four-momentum of the photon, Aveyiy = —u®pa,
with the inner product evaluated at the emission point. Similarly, hvgps = —w?pg,
with the inner product evaluated at the observation point. In practice we are
concerned with photons emitted from a frame with u® o (t* + €,¢%), where (1, is
the angular velocity of the star as measured at infinity. If u® = (¢t + Q0% /V,

then using the normalisation u®u, = —1 we have
V2= e [1 - (0, - w)?e P sin?6) (2.48)
Similarly, the observation frame has w® = t*/W, with
W? = e’ [1 — w?e % sin® 0] . (2.49)

Evaluating the inner products, we have that along a null ray with impact parameter
b that the redshift is

1/2
e(7+P)obs [1 — w?e2PF2gin? 0] obs

e(r+p)emit [1 — (€ — w)? e~2°F2 sin? 6}

14 2= (1—bS,) (2.50)

emit

A zero angular momentum observer (ZAMO) will measure the velocity of the

fluid at the star’s surface to have speed
vz = (Qy —w)e PFsinb, (2.51)

and in the case of a distant observer, the numerator of Equation 2.50 goes to 1. So
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for a distant observer, the redshift can be written

(2.52)

2.3.4 Zenith angle

In general the intensity I, will depend on the zenith angle of the emitted photons,
(re; this is the angle the emitted ray forms with the normal n® to the star’s surface
in the emission frame. In the case where we have solved for the stellar structure

¢ is parallel to the four-acceleration of a fluid ele-

and metric potentials exactly, n
ment at the surface.®> However, we will also be considering cases where we invoke
approximate solutions for the metric and stellar structure, and in these cases we
will want to consider n® as arising solely from where we are positing the location
of the p = 0 surface without relying on Euler’s equation being satisfied; we will call
this the geometric normal to the star’s surface. In the following sections we will
develop these two different notions of the normal vector at the surface, establish

how they differ, and set out the definition of the zenith angle.

Four-acceleration of fluid elements

The four-acceleration a’ = u°V.ub can be calculated by using the fact that the

four-velocities of the fluid elements u® are proportional to the Killing vector field
% = (1% + Q,¢?), with u® =€%/V and V defined by V2 = —£2¢,, which is written
in terms of the metric components and €, in Equation 2.48. The Killing vector &%
satisfies Killing’s Equation:
vaéb + bea =0. (253)
Starting with the definition of a?, we have:
a® = Vb
(u® is parallel to £%) = (lfa) Va (l§b>
14 V
1 1

(Leibnitz rule for V) = Vﬁa (g”vav + %Va§b>

3This is a consequence of Euler’s equation for perfect fluids, —(p + p)u?V,ub = Vip +
(u®Vp) u®. The left-hand side concerns the four-acceleration u*V,u®. In an equilibrium configura-
tion, the pressure does not change along a flow line, so ©*V,p = 0. Therefore the four-acceleration
is proportional to the gradient of pressure, which is the same as saying that the four-acceleration
is parallel to the normal n®.
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. 1. bea 1 1 a b
(Chain rule) —‘75 ¢ (—anv> + Wf Vaé

1 1
= Vel + e Vat” (2.54)

Let us consider the terms in Equation 2.54 separately. First, we know that the
term containing

£V, V =0, (2.55)

since £% generates isometries of the spacetime, and V involves only metric com-
ponents and quantities that don’t change in the direction of £* (i.e., V does not

depend on either ¢ or ¢). Next we work out the second term in Equation 2.54:

Ve = 6V, (5%

1
(Leibnitz and compatibility of g, and V) = Wg“gbcvagc
1
(Applying Killing’s Equation) = —Wgagbcvcga
1 a
= _W§ vbe,. (2.56)

From here in, rather than saying “Leibnitz and compatibility of g, and V,” notice
that these rules amount to a statement of commutativity of g, with V. Consider
the term £2VP¢,:

ax7b _lab lab
eV = SV + 36V

(Inserting Kronecker) = %g“vbga + %gacgcvbga
1 1
(Expanding Kronecker) = Egavbga -+ 3 494,65V,
1 1
(gap and V commute) = igavbga + §gdc§°’vb (gadfa)
— 1 ax7b 1 bed
= SEVI, + 6V
: 1 ax7b 1 bea
(Relabelling) = 55 V. + §§aV £
1
(Leibnitz rule) = §Vb (€%a)
(Definition of V?) = —%Vb (v?)
(Chain rule) = VvV (2.57)
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Inserting Equation 2.57 into Equation 2.56, we obtain:

1 1
_ﬁgavagb — _V_éé-avbga
L oo
= =VV
VV
(Chain rule) = V®(InV). (2.58)

Inserting Equations 2.55 and 2.58 into Equation 2.54, one obtains
o=V (InV). (2.59)

This is the four-acceleration of a fluid element (or co-rotating observer), with V'
defined in Equation 2.48. For the general stationary axisymmetric metric, Equa-

tion 2.3, the components of the four-acceleration are:

roo_ gffv V2
o = VAV
1

= '2"6_2(] (v +py)

+%67+p_2a [( — w)e 27 sin? 0 (Fw,z +(Q — w)(7Fp,r —1))] (2.60)
0 g% 2
(2 = 2—‘7§VQ(V )

1 T
= 3=2° 2a(7,9+/7,0)—m67 p2e

X [(§2 —w)sin@ (w,gsin @ + (e — w)(cosf — pgsinb))]. (2.61)

Direction of normal as defined by surface

We define the geometric normal to the surface by starting with the coordinate
position of the surface 75(0). A tangent to this surface is the vector s* with non-
zero components
= dr
(3 S
s = — 2.62
0 (2.62)
$ = 1 (2.63)

The geometric normal to this surface is defined via s,n® = 0; non-zero components

of the normal vector are therefore

o= 1 (2.64)
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1 drs

n’ = P (2.65)
With two methods available to determine the direction of the normal at the sur-
face of the star, we obtain a check on subsequent numerical calculations by ensuring
that these directions do coincide in the exact cage, since they come from quantities
that will be independently specified. In some of the approximate treatments we
will investigate, we will break the solution of Euler’s equation and one needs to
be careful about which direction is meant by the normal, i.e., whether it should
be defined by the direction of force at the star’s surface, or whether it should be

defined by the shape of the embedded surface.

Angle between null geodesic and the normal n® in the co-rotating frame
(Zenith angle)

Once a specification for the direction of the normal n® is chosen, we wish to know
the angle a, formed between the ray £* and the normal in the emission frame so
that anisotropic emissitivities can, in principle, be included in the calculation. The
measurement of angles is an observer dependent procedure. In this case, we wish
to know the angle measured by an observer with u® = (t* 4+ Q,¢%)/V, i.e., one
co-rotating with the star. The angle a. between these is given by the usual “cos

angle” relation where

COS & = =, 266
AT (2.66)

and the tildes indicate that the vectors have been projected into the space or-
thogonal to u® by contracting with the projection operator hup = uqtp + gop- A
more compact way of writing this is by noticing that hgp is just the metric on the

three-surface orthogonal to u®, so we can write

hapf®nb

COS Qe — —-—Iea'hlnalh’

(2.67)

where the subscripted h in the denominator serves to remind that we want the
lengths of the projected vectors. This simplifies to
" + 720n?

(1 — Q) (n7)2 + 72(n0)2) M

cosa, = Ve®

(2.68)

where everything is evaluated at the emission point and the dotted quantities refer

to the initial conditions for the null geodesic as discussed in Section 2.3.2, and the
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components of n® are obtained by one of the two methods given above.

Angle between null geodesic and the normal n® in the observer’s frame

In a similar fashion to what was done for the zenith angle as measured in the
emission frame, another calculation can be carried out for an observer with four-
velocity w® = t¢/W at the surface, where W? is defined in Equation 2.49. One

obtains o .
rn’ 4 720n?

()2 +72(n0)2) >

cos o, = We” (2.69)

2.4 Calculation of light curve

To complete our treatment of the light curve calculation, we devise a means by
which to determine the solid angle d€) subtended by an emission region in a distant
observer’s sky for a non-moving emitter (Section 2.4.1), and the manner in which
Equation 2.1 should be adjusted to account for the motion of an emitting region
around the star (Section 2.4.2). The section concludes with a listing of the steps

we will follow to compute the light curve.

2.4.1 Solid angle

Consider a distant observer who sees an infinitesimal rectangular emission region
as describled in Figure 2.2 and the accompanying caption. We take each side of
the emission region to appear as a line segment in the observer’s sky; the length
of the line segment dl = Dde, where D is the radius of the observer’s sky and
de is the angle formed between the two corresponding rays as measured by the
distant observer. Since we can calculate the length of each side, it is possible to
calculate the apparent area dA of the emission region; the solid angle subtended
by the emission region df) = dA/D?.

To begin with we need to establish the angle between two null rays £* and m® as
measured by a distant observer with four-velocity u® = ¢t*/W, where W is defined
by W2 = —gu. Say that £4/(—¢;) = b, and my/(—my) = c. Starting with the same

relation as with the zenith angle calculation, we have that

hapf®mP
cosde —_—
[€3]n|malp
ZF mF
= 1+ (—gu) |¢" — (b+)g"® + bcg®® + g < 7 ) ( )
—Lt —my
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Figure 2.2: To calculate the solid angle subtended by the emission region in the
observer’s sky, we consider a small rectangle of angular size df x d¢. If we know
which rays reach from the corners of the rectangle to the observer, it is possible
to calculate the area of the rectangle as seen by the observer. Labels i — 1, 4, and
7 + 1 indicate neighbouring regions with the same angular size in anticipation of
the eventual discretisation of the calculation.
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(G e

Now let ¢ = b+db, m” /(—my) = (€7 /(—£))+de7, and m? /(—my) = (€9/(—€,)) + de®.

Continuing on from Equation 2.70, we have

. Va £9 2 EG
+df" [ — } grr+ | — goo + del | — goo | - (2.71)
—0 —t —ty

The underlined terms in this equation are essentially £,£%, so they vanish. Equa-

N2
cosde = 1+ (—gs) [gtt — 2bg" — dbg'®+b?g%? 4 bdbg?? + ( ; ) g7
g —209" AN )

tion 2.71 is exact; we haven’t done anything that is only first-order in db, d¢", or
dé?. To simplify the remaining terms square brackets, we start with mem® = 0,
which after using £,£* = 0 again, becomes

_ [T _
0 = —2dbg"® + 2bdbg?® + (db)%g?® + grr [2(1@’" (7) + (dﬁﬂ
it

t

+906 [w@ <£> + (dee)ﬂ : (2.72)

We expect de to be small for a distant observer, so it is appropriate to use the
approximation cosde = 1 — de?/2 + O(de*). Together, Equations 2.71 and 2.72
yield

de? + O(de") = (—gu) |g%*(db)* + gre(A€) + guo(de?)?] . (2.73)

Finally, we can use the momentum constraint m,m? = 0 to eliminate one of the
quantities db, d¢” or d¢’. Since far from the star most of the motion will be radial, it
is best to write d¢” in terms of the other quantities. To first order in the differentials,

the relation between these quantities is

0
=~ /(l_ft)) [FZ (%) A4 e <w(1 —wh+ (e_PFZin 9)‘2) db} :

(2.74)

Considering Figure 2.2, Equation 2.73 allows us to calculate six lengths (four
sides, and two diagonals) in the observed image of the emission region by calculating
the angles formed by pairs of null rays as measured by the observer. The observed
area of the emission region can be calculated by choosing a diagonal of the emission
region and calculating the areas of the two triangles which comprise the image using,

e.g., Heron’s formula for the area of a triangle, which says that a triangle with side
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lengths u, v, w and semi-perimeter s = (u+ v+ w)/2 is

A= +/s(s—u)(s—v)(s —w). (2.75)

Equivalently, the solid angle subtended by the triangle can be calculated using this

formula where u, v, and w are angles computed via Equation 2.73.

2.4.2 Calculation of light curve including arrival time effects

For a precise calculation of the light curve, one must account for the fact that the
time-of-flight of photons from the star to a distant observer is not constant over
the visible surface of the star. This is particularly important for the case of the
millisecond-period pulsars, as the light-crossing time of the neutron star reaches a
significant fraction of the rotational period—up to about 5% for a pulsar with the
shortest known rotational period, and the maximum likely size of neutron stars. A
second effect that needs to be considered results from the motion of the emitting
area, as one needs to account for the difference between emitted and observed
time intervals. The first problem is easy to deal with since the times-of-flight
are calculable from the equations of motion. The second problem is more subtle,
and impacts the manner in which the observed flux should be calculated. It was
similar considerations that led Penrose (1959) and Terrell (1959) to observe nearly
50 years after the publication of the theory of special relativity that rapidly moving
extended objects in flat space are not observed contracted, but rotated, contrary to
the expectations of Finstein and Lorentz. This result can be arrived at by carefully
considering which photons from the object are arriving at an observer at a given
instant. In this section we discuss the effect of the motion of the emitting region
on the observed light curve.

To calculate the flux arriving at the observer at time ¢,, we need to integrate
the flux arriving from the visible part of the emission region at the instant the

observation is made; that is,

a1,
Rat) = [ e (2.76)

where the integral is taken over those coordinates on the star labelled by ¢ which
are visible to the observer at the instant of observer proper time ¢,.

To determine which regions of the star are visible to the observer at a given
instant, we consider an emission region comoving with the star which has constant

angular width A¢, in the star’s rest frame, located at some constant latitude 6.
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In the observer’s frame, the emission region is seen to be moving with angular
velocity €1, as measured at infinity. In the observer’s frame at the surface, the
emission region is Lorentz contracted and an observer at the surface will infer that
the emission region has width A¢g, = (A¢L)/T', where the boost factor I' and the

observed speed v of the star at the emission region are

I' = (1—v®)""2 and (2.77)
Qe Prsind

= . 2.78

v 14+ w(Qy — w)e 2,72 5in? @ (278)

As depicted in Figure 2.3, in the observer’s frame at the surface of the star, such
an emission region has the property that points located at the coordinate ¢ are

illuminated between coordinate times t., <t < t.,, with

I

t@l 1(¢ - (A¢8/2))a and (279)

0
QN ¢+ (Age/2)). (2.80)

Il

’tez

Denoting by T'(¢) the lapse of coordinate time required for a photon to travel
between the emission point at ¢ and the observer, we have that the light emit-
ted from ¢ is observed between coordinate times (and so, observer proper times)
to, <t < to,, With ty, = te, +7T(¢) and similarly for ¢,,. To determine what portion
of the emission region is visible to an observer at time t,, we need to determine the

set of points labelled by ¢ that satisfy the inequalities

T(9) + 9. (¢ — (A¢/2)) < to <T(d) + g + (AB/2), (2.81)

i.e., those points which are emitting light over an interval which will be received in
an interval containing t = t,. To solve for these points, first consider that T'(¢) can

be approximated by

dar

TO)~ T + 55| (6= b0) (282)
p=o
where ¢, is defined as the solution to
to = 05 $o + T(0); | (2.83)

¢, corresponds to the ¢ coordinate that continues to be observable at time ¢, in
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t<tel

=tel

telS t= tez

t=te2

t>te2

bo

Figure 2.3: An emission region of width A¢,. as seen in the observer’s frame at
the surface of the star can be realised by considering that the points located at
coordinate ¢ (represented by the bold line), are illuminated between coordinate
times te, = Q71 (¢ — (Ade/2)) and te, = Q7Hd + (Ade/2)).
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the limit of ever smaller emission regions. The inequalities in Equation 2.81 have

the solution

(892
1+ Q,dT/dgly—g,

(Ade/2)
Q*dT/d¢’¢:¢o -

S —do < i (2.84)
These are the visible coordinates at an instant of observer time, given an emission
region of fixed angular size A¢g. in the observer’s frame at the surface. The visible
region is centred on the coordinate ¢,, which is defined via Equation 2.83. This
result says that if the times of flight are growing (respectively, shrinking) as the
emission region moves that this has the effect of narrowing (widening) the visible
size of the emission region as determined by an instantaneous observation by the
distant observer.

To evaluate the integral for flux in Equation 2.76, we make the assumption that

the integrand is approximately constant (i.e., that A¢/ is small), and so

df 1, (¢o)
Fuolte) = B0 47| T5 2(0))? 2.8
O(t ) i d¢ d=do (1 + z(¢o))3 ( 5)
N LS ] I G
1 + Q*dT/d¢]¢:¢o d¢ ¢:¢O (1 + z(¢o))3’ (2.86)

where the last line makes use of the result in Equation 2.84. In this form, the light
curve of an infinitesimal emission region is calculable by chosing a coordinate ¢,

and following these steps:
1. Calculate t, via Equation 2.83.

2. Calculate the term 1+ ,dT/d¢|g—e,. In practice this was done numerically
by centred finite differences to calculate the derivative of T’ using neighbouring
rays. However, we show below that this term has a general simple expression
in terms of b and )., which obviates the need to calculate the derivative

numerically.

3. Calculate d2/d¢|s—s, by approximating it as the quotient AQ/A¢,, where
A is the solid angle subtended in the observer’s sky by photons emitted at
the same time from a rectangular emission region of width A¢, and height
A#. The emission region is centred on ¢ = ¢,, as depicted in Figure 2.2.
The quantity A€} can be calculated by following the method prescribed in
Section 2.4.1, which is to calculate the apparent size of the rectangle observed

by a distant observer. A second method, set out in Section 2.5 is available for
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the Schwarzschild spacetime where spherical symmetry allows us to describe

areas on the distant observer’s sky in simpler terms.

4. Calculate the redshift z of the rays emitted from ¢ = ¢, via Equation 2.50.
This also is required to determine v, from v, if spectral effects are to be

included.

5. If the emission is anisotropic, I(¢,) should be calculated according to the
prescription of anisotropy using the zenith angle of the rays emitted from ¢,,

which is set out Section 2.3.4.

All elements of this calculation require knowing the actual rays joining points on
the star with the observer. Solving for these rays is dealt with numerically, using
the method described in Chapter 3.

It is possible to understand the factor 1 4 Q,d7T/d¢|¢—s, appearing in Equa-
tion 2.86 in terms of comparing intervals of emitted and received proper times: An
observer corotating with the emission region at the surface of the star measures

intervals of proper time according to
dr? = V2dt?, (2.87)

where Ve2 is evaluated at the point of emission according to Equation 2.48. For an

observer being held at the same spatial coordinates, the proper time interval is
dr? = w2dt?, (2.88)

where W2 is evaluated at the observer’s coordinates according to Equation 2.49.
At large 7, W2 ~ 1 and 7, ~ t,. However our calculations are concerned with
comparing the emitted and observed intervals of proper time joined by photons
emitted from a moving surface, so it is also necessary to introduce a third quantity,
Tr: the proper time at which a photon emitted at 7. is received, as measured on
the distant observer’s clock. Using ¢, = t, + T from the discussion above, we have
Tp = T¢/V + T(7e). So we have that the term 1 + ,dT/d¢|s=¢, appearing in
Equation 2.86 can be written as

dt
14+ 04T /dd| gy, = a‘i (2.89)
€
dr./W
— 2.
dre/V (2.90)
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dr,/dre
= 2.91
dr,/dr.’ ( )

where between Equations 2.90 and 2.91 we made use of Equations 2.87 and 2.88.
This result says that the term correcting the visible size of the extended emission
region is: the rate at which the receiving times 7 measured by the distant observer
change per unit of proper time in the emission frame, divided by a factor which is
the rate the observer’s clock runs at per unit of proper time in the emission frame,
dr,/d7e.

We will show at the end of Section 2.5 that the overall factor of I'(1+Q,dT /ddg=¢, )

is similar to the “Doppler factor” of special relativity, defined as
1/6 =T(1 —vcosd), (2.92)

where £ is the angle formed by photons reaching the observer with the extended
object’s velocity vector in the observer’s frame (Ghisellini, 1999; Leahy, 2003b).
According to special relativity, an emitting area dS’ moving with respect to a
distant observer is observed to have area dS = §dS’ in a “snapshot” where one
captures the photons reaching the observer at the same instant in time (Terrell,
1959). The above argument shows the sense in which our observer will observe the

same effect for a moving emission region when gravity is involved.

Analytical form of 1 + Q,dT/d¢

Morsink (2005b) observed that the derivative d7/d¢, where ¢ is the azimuthal
deflection of a light ray, has a surprisingly simple form in general. This leads
to a simplification of the term 1 + Q,d7/d¢. To see this, we can begin with
the momentum constraint, Equation 2.40, and define new quantities § and h(b)

according to

§$ = 47262 = e 7P 2(p), with (2.93)
b?
e 2r72sin? g’

h(b) (1 — wb)? —

(2.94)

The derivatives of h(b) satisfy

dh b

P el —wb) 2.9
b [w( “ )+e~2pf2sin20] (2.95)
d?h 1

= 2= 2.
b2 [ “ +e—2pf2sin26} (2.96)
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bdh
—— — 2.
53 (1 —wb) (2.97)
dh d?h
et Shorli —9%u. 2.98
ab  dn? “ (2.98)

Reparameterising the equations of motion for the t and ¢ coordinates (Equa-

tions 2.33 and 2.34) by s, which is the coordinate length of the geodesic projected

into the (7, 0) coordinate plane, we obtain

dt 1—wb
il a—(y+p)/2
P SV (2.99)
o dt a=(y+p)/2 b
—— = : 2.1
Obds h3/2  e=20725in2 6’ and (2.100)
dp 1 e (v+0)/2 gp
- T hmE @ (2.101)
a—(y+p)/2
Od¢ _ e L (2.102)
b ds h3/2  e~20725in? 4
So,
0 dt 0 d¢
=bh——. 2.1
b ds 0b ds (2.103)
Regarding T" and A¢ as functions of s, we have
5 dt
— 2.104
/0 as S (2.104)
Sf d¢
/0 dsa—s- (2.105)

Equations 2.104 and 2.105 are of the form of exact line integrals. Thus, if the
impact parameter b is held fixed, the values of these two integrals depends only on
the endpoints (74, 6;) and (7¢,8;). If the endpoints of the geodesic are kept fixed,
then we can obtain new integral expressions for the derivative of the arrival time
and azimuthal deflection with respect to b, by interchanging the order of integration

and differentiation as follows:
Sf ds(dt/ds)

5 fosf ds(d¢/ds)
fosf ds-Z (dt/ds)

dr aT /b

dg.  —0(Ag)/0b

- 2.106
fsf dsab(dqb/ds) ( )
b [y dsF(dg/ds)
fJ’Of T2 (d9/d) (2.107)
= —b. (2.108)
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Therefore, according to this argument, the factor which accounts for the motion of

the emitting region satisfies (however, see below for a caveat)
14 9,dT/d¢ =1 — Q,b. (2.109)

In this calculation, it is claimed that the order of differentiation with respect to
b and the path integral in the (7,80) plane can be interchanged because we were
holding the endpoints of the curve fixed, and the integrals were of the form of exact
line integrals. Omne possible objection to this argument is that we have neglected
terms in the derivative related to how the path length changes with small changes
in b. This is a technical point that we wish to study further. However, note that
in Section 3.5.4 we show the result of a numerical experiment which shows that
Equation 2.109 holds to reasonable accuracy (typically within a few parts in 10%)
in our code when the left-hand side is calculated by finite differencing the arrival
times. So if additional terms are required to make Equation 2.109 formally correct,
our experiments have indicated that any such additional terms would be small, i.e.,
that Equation 2.109 seems to hold in the neutron star spacetimes we considered.
As discussed in Chapter 3, our pulse profile calculations calculated the left-hand
side of Equation 2.109 numerically using the integrated arrival times. Making use

of this formula was left to future work.

2.5 Calculating the light curve in the Schwarzschild

metric

In this section we develop a method for calculating the light curve when the exterior
spacetime is taken to be Schwarzschild, and the star is taken to be spherical. The
additional symmetry allows us to obtain a formula for the light curve which is
eagsily computed and doesn’t rely on the methodology envisaged for calculating the
light curves in the more general case. Thus, it’s a method to check independently
the implementation of the more general method that we have laid the foundations
for in this chapter. This check is carried out in Section 3.5.2. The formalism
for calculating the light curves for emission from the bright spots on the surface of
slowly-rotating neutron stars was developed by Pechenick et al. (1983), and employs
the Schwarzschild metric to describe gravitational effects. The development of this
section draws on Leahy (2003b) and Poutanen and Gierlifiski (2003), but additional
details are filled in and the effect due to the motion of the emitting region is treated

differently.
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l {ray to observer}

Figure 2.4: Geometry for calculating projection of emitting region onto observer’s
sky in Schwarzschild metric

We are considering the flux from a star of radius R and mass M, and the
geometry of the situation is depicted in Figure 2.4. A useful way to describe the
geometry is to define a three-vector k which points from the origin towards the
observer inclined at an angle 6, to the spin axis of the star, and a second three-
vector m which points at the emitting region inclined at an angle 6, to the spin
axis, and located at azimuthal angle (i.e., rotational phase) ¢ = Q,t.. In a right-
handed system of rectilinear coordinates where the z-axis is located at ¢ = 0 in the
equatorial plane of the star, and the z-axis points along the spin axis of the star,

the rectilinear components of these vectors can be taken to be

k = (sinf,,0,cos6,), and, (2.110)
m = (cos¢sinb,sin@sinbe,cosbe). (2.111)

In the coordinate plane containing the origin, emission region, and observer, ob-

served photons are deflected through an angle 4, with

cos 1y = k - m = cos b, cos b, + sin 0, sin O, cos ¢. (2.112)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5 CALCULATING THE LIGHT CURVE IN THE SCHWARZSCHILD METRIC 56

The Schwarzschild spacetime is spherically symmetric, and the metric is given

by
dr?

ds? = —(1 - 2M LT
s ( /r)dt +1—2M/7“

+ 72 <d§2 + sin? édz/;Q) : (2.113)

The spherical symmetry allows us to consider all photon orbits as orbits in a co-
ordinate equatorial plane (§ = n/2) which in general does not coincide with the
star’s equatorial plane. The orbits of photons in this plane are described by the

equations of motion

dt 1
= = 114
dA 1—-2M)r (2.114)
dap b

2+1/2
% - [1 _ —2M/r)i—2 ., (2.116)

where the impact parameter b is a constant of the motion, with [b] < R/(1 —
2M/R)'/? for outgoing rays. The angular deflection 1(b) between the star’s sur-
face at r = R and a distant observer at 7 = r; can be calculated by dividing

Equation 2.115 by Equation 2.116 and integrating:

Tf 1

w(b) = / dr . (2.117)
R r[r2/b? — (1 —2M/r)]/?

The lapse of coordinate time between two radial coordinates joined by a photon

orbit can be found in a similar way, but because this quantity will diverge in the

limit ry — oo, it is more convenient to calculate the difference between this time

and the time a radial (b = 0) ray would take:

T(b)—/rfdr ! ! ~1 (2.118)
Jr o 1=2M/r | (1 - (1 - 2M/r)b2/r2)'/? ' '

Measured in the observer’s frame, the angle a formed by the initial direction
of the outgoing ray with the (radial) normal to the star’s surface can be calculated
using the “cos angle” relation (see Equation 2.67) where the observer in this situa-
tion has u® = t%/(—gy) /2. If £% is the four-momentum of the emitted photon, one
obtains that

cosa =17, (2.119)
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which, using Equation 2.116, is
sina = (1 — 2M/R)"?b/R. (2.120)

We also would like to calculate the angle & formed by the light ray and the velocity
vector at the surface of the star. One way to do this is by explicitly setting out a
rotation mapping (6, ¢) “star” coordinates to the (é, ) “propagation” coordinates,
however this is not the most straightforward approach.* Instead, it is more con-
venient to make use of an orthonormal basis for the photon propagation plane to
complete the calculation. Take m and k; to be the basis vectors, with

k— (m-k)m k — cosym

T o sy (2121

If 1; is a unit vector pointing in the initial direction of the photon propagation, then

in terms of the given basis vectors, it has components

li = (li ‘m)m—l— (li ‘kJ_)kJ_
[cos(¢p — o) — cosp cos af (k — cosypm)

= cosam + —
sin?

_ sin(y - «) sin «
= e Mt g (2.122)

Considering the rectlilinear components of k and m in Equations 2.110 and 2.111,

and that a unit vector pointing in the direction the star’s motion has components
in this system given by
v = (—sin ¢, cos ¢, 0), (2.123)

then we have that £ is related to «, 0,, ¢, and ¢ by:

sin asin 6, sin ¢

siny

cos{ =1 -v=— (2.124)
To calculate the projection of the emission region on the observer’s sky, also
depicted in Figure 2.4, consider that rays reaching the observer will land on the

image plane at radial coordinate b and azimuthal angle ¢,, which is given by

Ng,=0 - (k X m)

2.125

cos ¢, =

4The explicit rotation is considered briefly in Section 4.5.1, where in that section we require
the description of the ray in both systems of coordinates.
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where ng ¢ is an arbitary unit vector perpendicular to k which defines the direction

on the image plane corresponding to ¢, = 0. If we take ny,—o = (0,1,0), then

cos 0, sin 8, cos ¢ — sin B, cos 6,

COS Py = . (2.126)
° [sin2 6, sin® ¢ + (cos 0, sin 0 cos ¢ — sin B, cos 96)2] 1/2
The element of flux received by the observer is
dF = 1,dS,/D?, (2.127)

where I, is the intensity of the observed radiation, D the distance separating the

source and observer, and the element of area dS5, on the image plane, which is
dS, = bdbdg,. (2.128)

Ultimately we want to be able to express the integral for flux in terms of the
coordinates 8., ¢ on the star’s surface, which will require the Jacobian
L _ Db og, b0,
90, 0 O 06,

B 1 (a(cos P) O(cos o) I(cos ) I(cos ¢o)> (2.129)
~ dy¢/dbsingsing, \ 06, o op M. )

By differentiation of Equation 2.112 for cosv and Equation 2.126 for cos ¢,, the
Jacobian in Equation 2.129 is seen (after a very tedious exercise) to be

1 sinf,

so the integral for the observed flux from a stationary emitting region on the surface

of the star is

1 I, 1 sinf,
F, = — G cdo. 2.131
° D2/(1+z)3bdw/dbsinwd9 ¢ (2.131)

To bring in the effect of rotation on the observed light curve, we know that for

a bright spot of width A¢,, in the emission frame, only a region of width

Age/T
1+ Q,dT/dg

is visible to the observer at the instant ¢t = t, = Q,¢ + T(b). The denominator of

this term is 4T d L ar
1+, — =1+ id

; PV (2.132)
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where
% _ sinis;l;iz sin é o.133)
T - /: @ ['r? —(1— 2;4/r)b2/r2]1/2 T —1221(~1—;J\24J\/47«/)22/r2}3/2
N /Rf o 2?\4/701)2/7«2]3/2 (2134)
% - /Rf T 211)\4/7’)1)2/7*2]3/2 - b%%' (2:135)

So for a small emission region of size A¢), x A, the quantity to be evaluated

is

17 1 siné, (AgL)/T
F(to) = —5r3b —(Ab,) T (2.136)
D2 (14 2)3 dy/db siny 1+Q*d—<1§dw/db‘%
1 I, 1 siné, (Agl)/T
= — = A £ . .
D71+ 2 /b sin )1 1 0,63 (2.137)

The evaluation is accomplished in the following manner:

1.

Pick a rotation phase ¢ = ,t.. Calculate the bending angle ¢ via Equa-
tion 2.112.

. Solve for the impact parameter b which yields ¢ via the integral given in

Equation 2.117. This can be done either numerically or via a polynomial

approximation to the integral such as the one given by Beloborodov (2002).

. Calculate the arrival time ¢, = t, + T'(b) by evaluating the integral for T in

Equation 2.118.

Calculate the derivatives appearing in Equation 2.137 by using the Equa-
tion 2.133 for dv/d¢, and Equation 2.134 for d¢/db.

Calculate I' = (1 — v?)'/?, using v = RS, sin6./(1 — 2M/R)'/? at the star’s

surface.

Calculate the redshift (1 + z) = (1 — 2M/R)"'/2/§, where § is defined in
Equation 2.92, and cos€ is given in Equation 2.124.
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2.5.1 The Doppler factor and times-of-flight in Poutanen and Gierliniski
(2003)

Poutanen and Gierliniski (2003) derive the integral to be evaluated for the light
curve in a slightly different manner. They start off with an element of area dS’
in the emission frame, and an element dS in the observer’s frame. Observing
that the zenith angle of emitted rays between the emission and observation frames
transforms as cosa’ = dcosa, and that Terrell (1959) says that observed and
emitted areas transform as ddS’ = dS, they see that the projected area dS’ cosa’ =
dS cos « is an invariant, and they proceed.

It’s difficult to see whether the result dd.S’” = d.S holds for our situation, as this
is a result inspired by special relativity. By comparison with the above calculations,

but relabelling b from Section 2.5 as ¥/, it amounts to a claim that

1/T
T4+ 0055
which is the same as saying
1—wcosé =1+ Q*b’j—g. (2.139)

To assess the sense in which Equation 2.139 holds, let us again consider the situation
with the general metric. First, the & on the right-hand side is related to the
conserved angular momentum £, in the propagation plane. From Equations 2.132
and 2.135, we know that the right-hand side satisfies
dvy dT
14+ OQ0b0 -1 =1+ 0Q,-—. 2.140
T =14 Qg (2.140)
In terms of the axisymmetric coordinates for the general case, b is defined via the
angular momentum E¢, and by comparing Equation 2.140 with Equation 2.109, we
conclude that )
1+Q0 -2 =1-Q,b 2.141
+ d¢ *x Uy ( )

and the claim in Equation 2.139 is now
1—wvcosé L1-Q,0. (2.142)

To see the conditions under which Equation 2.142 is true, we now express the

left-hand side in terms of quantities in the general axisymmetric metric. Note
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that we are doing these calculations for the observer u® = t*/W and not the zero
angular momentum observer. The angle £ formed between the fluid velocity and

the emitted ray in the observer’s frame can be calculated via the formula

(W/V)(1 ~ 4,b) + (gu + Qugrg) /[ (WV)

O T (gu + g WV

(2.143)

and the velocity measured at the surface in the observer’s frame is

2172
ve 1o — TV (2.144)
(gt + Qegig)?

Then in the general spacetime, the left-hand side can be expressed as

wvVv w git + Qgis
1 = 1+ —2 Q) T
vecosé + 90 + g [V ( )+ WV
W2
= — (1-,b
|9t + igeg] ( )
' 1
- _(1-Q,b). (2.145)

14 (Qgt/ gte)

When the exterior spacetime is taken to be Schwarzschild, the metric component
gty = 0 (i.e., there is no frame dragging), and so Equation 2.142 holds exactly. In
the general case, however, g;5 # 0 and the Doppler factor is not equivalent (and
ought not to be used in place of) the factor 1 — Qb = 1 + Q,dT/d¢, which is
brought in to account for the motion of the emitting region.

The calculation by Poutanen and Gierliniski (2003) is correct in the sense that
they are calculating an integral which is exactly correct in the case they consider
(i.e., when the exterior spacetime is Schwarzschild and the star is taken to be
spherical), but they omit the step of calculating the arrival time t, = te + T'(b) by
evaluating the integral for 7" in Equation 2.118 at each step. Instead they adopt
the approximation that t, = t. + const for the construction of their light curves,
which results in a distortion of the curves they obtained for rapid rotation. Put
another way, they account for the fact that the arrival times are changing (because
the emission region is moving) for the purpose of calculating the flux, but don’t
account for this in assigning the integrated flux to some observed time. This distorts
the pulse shape, and has implications for data analysis. This is discussed further

in Section 4.3.
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Chapter 3

Numerical procedure

3.1 Introduction

The main objective of this work is, first, to set out a general method by which the
observed flux from a bright spot on the surface of a rapidly-rotating neutron star can
be calculated without invoking a special choice of the exterior metric, and including
the effects of the varying times-of-flight of photons and the motion of the emitting
region. The analytical part of this was set out in Chapter 2, but the method that
is envisioned requires numerical methods to evaluate the integrals that result—at
least because, in general, the metric components are only known numerically. A
second objective is to determine the degree to which an accurate calculation with a
precise metric, stellar oblateness, time-of-flight, and motion effects included, differs
from calculations that make approximations to one or more of these elements which
our method is designed to include. In order to accomplish this, it was necessary
to implement a code that was flexible enough that it would be possible to carry
through the precise calculation, but also several variations on it. In this chapter,
we touch on the various techniques we have used in this implementation of this
computer code, and provide a look at some of the code verification which was
performed.

The computer code for this project was implemented in the C++ programming
language (Stroustrup (1997); also see Eckel (2000) for an excellent guide to the
language). In its current form, approximately 13.1 x 10? lines of source code were
developed for this work including declarations, comments, and a small amount of
superceded code, but not including blank lines. We also make use of an external
library (Gammel, 2005) for interpolation methods, and have customised a version
of the RNS code (Stergioulas and Friedman, 1995) to produce files containing the
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metric components, their derivatives, stellar oblateness, and other stellar parame-
ters for a stellar model specified by a choice of equation of state (EOS), mass, and
spin frequency. Details about RNS and the modifications are given in Section 2.2.

Developing the code in C++ was a natural choice, because it allows the soft-
ware to be written in a fashion where logical concepts (e.g., a metric, of basic
type Metric) are decoupled from the implementation details (e.g., the code to deal
with a numerically-specified metric from RNS output in the class RNSMetric, or
perhaps an analytically specified metric, as in the class KerrMetric). In this ex-
ample, RNSMetric is called a subclass of the class Metric. The exact specification
of metric type can be made at runtime using command-line arguments, but aside
from the initial creation of the metric data structure, the remainder of the code
need only ever be written to deal with the generic base type Metric, rather than
dealing with all possible subclasses of Metric that might be encountered. In other
words, one does not need to write complicated branching routines, or multiple ver-
sions of functions adapted for every conceivable subclass of the base class Metric,
and instead one just deals with a common interface that all such subclasses im-
plement. The correct mapping, or “binding”, between a function call somewhere
in the code to a method that all instances of classes deriving from Metric must
implement (e.g., all such instances must provide an implementation of the function
Metric::rho(r,theta)), to the required implementation of that function (e.g., a
call to the code for RNSMetric: :rho(r, theta)), is determined automatically at
runtime with no additional effort by the programmer. This is one of the basic fea-
tures of object-oriented programming languages. This feature of C++-, and others
which are not present in procedural languages like C and FORTRAN, are used to

solve several problems in the design of the code.

3.1.1 Details of metric and stellar surface descriptions

In particular, given an EOS, mass M, and frequency €,, we investigate the following

five situations, which each represent a subclass of Metric:

Exact Using the exact metric, and surface location 74(#) as output by the cus-
tomised RNS code.

Oblate Kerr (OK) Using the Kerr metric as given in Section 2.2.1 with a =
J/M, where J is obtained from the RNS calculation, and the stellar surface

located at the same 74() as in the Exact case.
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“Spherical” Kerr (SK) As above, but the stellar surface is located at constant
7 =Ts(m/2) at all 6.

Oblate Schwarzschild (OS) As for OK, but setting a = 0.

Spherical Schwarzschild (SS) Where the Exact case is used to calculate the
areal (Schwarzschild) radius on the equator, R = exp|(y — p)/2]7s(7w/2), and
the surface is located at coordinate ¥ such that the areal radius has value R

(using the Schwarzschild metric) at all angles.

It should be noted that with this definition, the OS and SS cases do not agree on the
value of ¥ or R on the equator due to the slight difference in their definition. While it
is possible to redefine the OS or SS approximation so that they are consistent in this
fashion; the definitions above represent perhaps the most straightforward means
by which a person with access to a structure code such as RNS and a ray tracing
code for the Schwarzschild or Kerr spacetimes might attempt to approximate the

situation.

3.2 Integration of rays

Integration of a single null ray proceeds by setting the initial coordinates 7; and
0;, selecting an allowed value of b according to the constraint at Equation 2.41,
and initial values of §; and 7; which are constrained by the geometry of the stellar
surface. With the initial conditions in hand, the ordinary differential equations 2.33,
2.34, 2.37, and 2.38 for the path followed by the ray can be integrated numerically.
Since Equations 2.37 and 2.38 are second order equations, we add two equations
to the family to reduce the set of ODEs to a set of six first order equations for
[HN), 6(0), 6(N), 60N, F(N), F V).

To accomplish this integration, we use a customised version of a standard adap-
tive 4th-5th order Runge-Kutta routine (Press et al., 1988). The particular cus-
tomisations were to allow for more flexible error controls than the routine given
in Press et al. (1988), as well as an adaptation to accomodate the peculiarities of
the coordinate system we are using. For example, in the (¢, 0) angular coordinates
that we use, it is possible for a numerical integrator to get into difficulty by step-
ping to 6 < 0; additional care must be taken so that such steps are corrected for
appropriately by changing the sign of 6 and taking ¢ to ¢ -+ @ without causing
problems with the adaptive step control. Additionally, care must be taken that all

integrations end at the same value of ¥ = 7.
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For some applications, all that we require is an accurate determination of 0y
and A¢ given a set of initial conditions. In this situation, we are able to run the
integration in a faster mode since it is possible to extrapolate the final values of
and A¢ accurately after most of the integration has run, without doing the time-
consuming integration of the final values of fandFat7 =7 7- This extrapolation is
accomplished using the polint routine in Press et al. (1988). The full integration
to ¥ = 7y runs approximately 8 times slower than this fast version, but the cost
of using the fast integrator is that the final values of 0 and 7 are not useable; the
integrals obtained in this manner are useful for making the interpolation routine
described in Section 3.3 reasonably fast since it contains an iteration which requires
the repeated integration of geodesics.

3.2.1 Calculating the time-of-flight

Another modification of the numerical ODE integrator allows us to get accurate
times-of-flight of the rays. As in the case of the Schwarzschild formulation of the
problem in Section 2.5, it is more convenient to calculate the time-of-flight of a
photon relative to some other ray, since the relative time-of-flight is much smaller
than the values of ¢y output by the straightforward integration. To accomplish this
calculation, we use the Runge-Kutta integrator to integrate a set of 13 ODEs: 6
of which are for the ray being integrated, 6 of which are for the integral of the ray
chosen as having zero (relative) time-of-flight, and a final equation to accumulate

the relative time-of-flight

dT

5= fray (A) = fzera(A). (3.1)

Of course care must be taken to account for the different parameter lengths of
the “zero” ray and the ray being integrated. Since we envision finite-differencing
the time-of-flight arrived at in this way to get a derivative, the error in this quan-
tity must be small relative to the change in the time-of-flight over the size of the
rotational phase bins.

This integration can run roughly 20 times slower than the standard integration
described above, and 160 times slower than the fast version described above. For
efficiency, this method is only used to obtain the time-of-flight of particular rays;
the fastest method is used to examine the variation of A¢ and 6 over the space of

allowed initial conditions.
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3.3 Interpolation of rays

The straightfoward integration of geodesics takes initial conditions 6;, 7(6;), b,
6;, and sgn(r;), and yields the azimuthal deflection A¢ and final value 6 at the
endpoint of the integration. However, determining the rays extending from a given
position on the star to the observer requires solving a slightly different problem:
we need a method by which to determine b, 6;, and sgn(;) if we know 6;, 7(6;),
A¢ and f5. To accomplish this, we fix 0; and 7;, and integrate a number of rays
over the entire range of the remaining initial conditions b, 6;, sgn(r;). Finally, we
use interpolation to construct the functions b(A¢, §y), éi(Aqb, 0¢), and 7;(Ag, 0f) in
order to determine estimates of the initial conditions which will yield the particular
rays we seek. Once an estimate of the required initial conditions is obtained in
this manner, the forward integration of the interpolated initial conditions can be
carried out as described above, and the precision of the interpolation checked. If
necessary, subsequent interpolations can be carried out so that ultimately we arrive
at a set of values b, 6;, and sgn(r;) which, after integration, yield A¢ and 65 to
a required accuracy. Once a final set of initial conditions is arrived at, the ray is
re-integrated using the time-of-flight method described above. |

The choice of methods by which the interpolating functions can be constructed
is limited by the fact that the “data” to be used for the interpolations do not fall on
a regularly-spaced grid in A¢ and 8. This rules out the use of standard methods
such as bicubic spline interpolation (Press et al., 1988). An obvious choice for the
interpolation method is a bilinear approach: this would proceed roughly by taking
the three closest points close to the desired A¢, 0y, and regarding the quantities to
be interpolated, denoted f(Ag¢,8y), as being described by the unique plane which
passes through the three data. In practise, this method required too large a col-
lection of interpolating data for the iteration described above to converge reliably:
if the ray corresponding to the interpolated initial conditions is not closer to the
desired point than the three vertices used to construct the interpolating function,
then this method cannot be used as an iteration for successively improved rays.
It was found that Shepard’s method (Shepard, 1968) for interpolation performed
acceptably well in that it did not require too much data for the envisaged inter-
polation to converge quickly; we make use of a publicly-available implementation
of a modified Shepard’s method which is distributed with the Matpack C++ Nu-
merics and Graphics Library (Gammel, 2005; Renka, 1988). The details of this

interpolation algorithm are set out below in Section 3.3.1.
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3.3.1 Shepard’s Interpolation of Scattered Datal

Shepard’s method uses a system of weighted averages to produce a once contin-
uously differentiable interpolating function which passes though the interpolating
data; the method also attempts to account for “screening” of far away data by
closer data in the same direction, and to produce an interpolating function with
reasonable partial derivatives. Following Shepard (1968), we will describe how the
method can accomplish these objectives, although the specific implementation by
Renka (1988) has been improved in certain respects. Starting with N data values
z; for points D; = (=i, y;), we wish to interpolate the value of a function f(z,y)
described by the data at the point P = (z,y). If d(P, D;) = d; is the Euclidean
distance between P and D;, then the basic idea of weighted average interpolation
is to compute the approximation

fley) %ﬁ if d; # 0 forevery ¢
1 y = T

=z if d; = 0 for some 3.

(3.2)

The requirement that the interpolating function f is differentiable requires u > 1.
This particular prescription has the property that the z and y partial derivatives
of the interpolation function approach 0 at the data, and it is desireable to find
a method by which takes into account the “slope” of the data so that reasonable
partial derivatives are obtained. Empirically, Shepard (1968) found that u > 2
leads to situations where the interpolating function is quite flat near the data and
has steep transition zones between data, whereas u = 2 tended to work better for
general purposes.

To make the calculation more efficient, it is reasonable to compute the above
approximation by summing over only those points in some r-neighbourhood of
P, Cp = {D;|d; < r}, with r chosen so that a sufficient number of data are
included, but small enough for the computation to be efficient. Futhermore, one

can reasonably generalise the weights 1/d; to be weaker for the most distant points.

!The development of this section follows almost identically the exposition originally given by
Shepard (1968); the development is repeated here since it’s not a difficult algorithm, and significant
use is made of it. Furthermore, it is not discussed in standard numerical methods texts like Press
et al. (1988).
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Shepard (1968) proposes the weights s; = s(d;) given by

1 f0<d<r/3
s(d)={ Z(4-1)" ifr<d<r (3.3)
0 if r < d.

These weights have the required continuity at d = r/3, and have the property that
points outside of C'p are not included in the weighted average. The interpolating
function is taken to be

&if; if d; 5 0 for every 4
fo(z,y) = 225 (3.4)
=z if d; = 0 forsome 1.

To incorporate the effect of “screening” of more distant data by closer data in

the same direction, the weights are further modified by incorporating a directional

term,
o >_;8i(1 — cos(D;PD;))
tz - Z] Sj 7 (35)
where
COS(DiPDj) — (.’IZ—I‘@')(.’IZ—.ZJ') + (y_yz)(y_yj) (36)

d;d;
The factor ¢; tends to be close to 0 when D; lies generally in the same direction
as the other data away from P, and close to 2 when D; lies opposite the other
data from P. Shepard (1968) defines new weighting functions w; = (s;)%(1 + ;)
which has the effect of increasing the influence of unscreened data and decreasing

the influence of screened data. The interpolating function is given by

2iWi% if d £ () forevery i
- i ( Yyt .
fa(my) =4 Ziw , (3.7)
=z if d; = 0 forsome i.

The remaining issue that Shepard (1968) deals with is an adjustment to account
for the “slope” of the data, as the preceding interpolating functions all have the
property that at every D;, 0f/0x = 0f /0y = 0. This is accomplished by setting
out a weighted average corresponding to an approximation of the partial derivatives

of the data; summing over the data in C’}, = Cp \ D,

Spsech Wi Capn

2p;eci, W)

4 = (3.8)
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Z NG =2 )y —ys)
Dj EC}; J d(Di,D]')2

B; =
. p;eci, i

(3.9)

Clearly A; and B; are respectively estimates of the x and y partial derivatives of
the data at D;. To see this, consider the general situation of a function F(z,y) and

a second function G(A) which is once continuously differentiable, with
N = (- @)+ (y—v)° (3.10)

G satisfying G(0) = F(zs,y:) = 2z and G(d(Dy, D;)) = F(zj,y;) = z;. Then if
dF = dG, we have

3
0 dx-I—QEd 1d&

> AR [(z = zi)dz + (y — vi)dy] (3.11)

Approximation of OF/0z at D; is obtained by approximating dG/dX =~ AG/A,
where AG = G(d(D;, D;)) — G(0) and A = d(D;, D;), so that

OF _ (AG)(w; — =)

o5~ d(D;, D, (3.12)

The quantity A is just the weighted average of these approximations over pairs of
data. Similarly, the y partial derivative is approximated by B.

These slope terms should be introduced in such a manner that they affect the
interpolated values close to the data, but have little effect far from data. Shepard

(1968) accomplishes this by defining a distance parameter
v = B(max(2;) — min(z;))/(max(A? + Bf))'/?, (3.13)

where (3 is a small number (8 = 0.1 in Shepard (1968)). Then, given P, increments
Az; are computed for each D; according to

Az = (Ai(z — ;) + Bi(y — u:)) (3.14)

14
v+d;

Obviously at every D;, the z and y partial derivatives of the increment Az; are A;

and B; respectively. The size of the increments are bounded by

|Az| < f(max(z;) — min(z;)), (3.15)
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and approach 0 as d; — oo. The final interpolating function is

Si——"= if d; # 0 forevery i
fa(z,y) = { 2 ' (3.16)

=z if d; = 0 for some i;

This interpolating function has the additional property that the partial derivatives
evaluated at the data points have reasonable values. This is the final interpolating
function the Shepard (1968) proposed; improvement in this method is achieved by
Renka (1988) by making different choices of weights, w;, and the “nodal functions,”
in this case (z; + Az). '

3.4 Calculating the light curve

Several separate programs are run in order to produce the light curves. Except-
ing the SS calculations which can optionally use manually specified parameters,
the metric and stellar structure computation must be carried out for the desired
combination of EOS, mass, and spin frequency. This takes place by running an
instance of a program based on RNS (Stergioulas and Friedman, 1995), described
in Section 2.2. The output of this program is a binary file containing the metric
potentials and derivatives, the location of the star’s surface as a function of lati-
tude, the central energy density of the model, and the angular momentum of the
star. This output is designed to be loaded by the other programs we use. The file
for a single model is approximately 9 megabytes in size, corresponding to a com-
putational grid of 201 x 401 divisions (angular x spatial grid points), and a single
execution takes on the order of minutes, since the modified program is designed
to iterate over several models to find a desired mass and frequency. The standard
RNS algorithm computes models given the central energy density and ratio of polar
to equatorial axes, 7y /Te.

The next stage of the calculation is to generate the tables used for ray interpo-
lation. These are files containing data describing null geodesics for a fixed initial
latitude ; and radius 74(6;), ranging over all allowed initial conditions. This pro-
gram uses the fastest version of the Runge-Kutta integrator, described above, since
at this stage all we require is the mapping between initial conditions b, 6;, and
sgn(r;), to the angular deflections of the photon trajectories A¢ and 6. The tables
will depend on the approximation scheme being considered (Exact, OK, OS, SK,
SS), since the allowed initial conditions and final integrals depend on the choice

of metric and description of the stellar surface. Each latitude of the stellar model
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requires a separate table, and for a given pulse profile, at least two tables are re-
quired for the northern and southern boundaries of the emitting region. In practice
we have typically generated all of the tables for a given stellar model and approxi-
mation mode at a time, for typical angular separations of 2°. In the configuration
used for the bulk of our results, a single table at a'given latitude would contain
approximately 10? separate integrals of the geodesic equations, and the results are
stored in a file approximately 500 kilobytes in size. In the current configuration a
single table would take approximately 1-3 CPU hours to compute on commodity
Pentium IV class hardware. To compute 45 tables covering the whole of the upper
hemisphere of a neutron star model takes on the order of 2 CPU days. Each invo-
cation of this program is for a fixed 6;, and so the task of calculating all tables for a
given stellar model can be easily split up between different computers, for example
in a cluster environment.

The next stage of the calculation requires the neutron star model and two of
the tables computed in the previous step, corresponding to the upper and lower
boundary of the emission region. The location of the observer §; for the desired
pulse profile is also specified. With this information, we use Shepard’s interpola-
tion to compute the initial conditions b, 8;, and sgn(7;) corresponding to photons
originating at initial angular coordinates (¢; = n(27/N),6;), and landing at co-
ordinates (0,0¢). N = 180 is the typical number of azimuthal subdivisions that
we used, and n is an index running from 0 to N — 1. For each value n, an iter-
ation takes place where Shepard’s interpolation is used to obtain a guess for the
desired initial conditions. The fast version of the Runge-Kutta integrator is used
to check the guess. If the obtained angular deflections are not within a required
tolerance, the result of the integration is added to the table and another guess is
made. When this procedure converges on the required initial conditions, the slow
version of the Runge-Kutta integrator is started to compute the time-of-flight and
final directions of the light ray, and the result is saved. Obviously, this iteration
will fail if the desired ray falls outside of the bounds of the scattered data, and
in this case the location is marked as invisible to the observer. The collection of
final integrated rays are written to a file. For 180 azimuthal divisions the files for a
single initial latitude 6; are several tens of kilobytes. In the current configuration,
a single latitude may take anywhere from minutes to 1-2 CPU hours to calculate,
depending on the viewing geometry and the metric being employed. This task is
also well-suited to cluster computing, since the starting and stopping value of the

index n can be selected at runtime and the results of the calculations merged to-
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gether when all values of n have been computed. Two executions of this calculation
are required for a single pulse shape, corresponding to the top and bottom of the
emission region. '

The final stage of the calculation simply reads in the “north” and “south” ray
solutions from the previous step, and uses the steps enumerated in Section 2.4.2
to compute the pulse profile. In this thesis. we have restricted ourselves to the
bolometric flux from a small, isotropically emitting region on the surface of the
star. For each location ¢, of the rectangular emitting region, the solid angle dQ2
subtended by the patch on the observer’s sky is calculated, using Equations 2.73,
2.74, and 2.75. The average value of (1 + 2) is calculated using Equation 2.50,
and the arrival time of the flux t, = ¢/ + T(¢e) is calculated, where T(¢e)
is the average time-of-flight of photons to reach the observer from the emitting
patch. Also, the factor (1 + Q,dT/d¢|s—s,) is calculated by finite differencing the
time-of-flight on neighbouring bins. The bolometric flux is then taken to be

dQ
(1+ 2)41 + Q. (dT/dg))’

F(t,) (3.17)
A final step rescales the maximum flux to value 1.0, and interpolates the calculated
fluxes onto evenly-spaced arrival times. This interpolation step is necessary to
aid with subsequent analysis, since the emission patches are spaced uniformly by
azimuthal angle, and not by uniform increments of arrival time. In this step it is
also possible to optionally disregard the time-of-flight 7'(¢.) when computing t,,
since we wish to investigate the effect this approximation will have on the shape of
the light curve. This program takes a few seconds to run and outputs short text
files containing the results of the calculation.

We have also written a code implementing the method for a spherical star and
Schwarzschild metric, following the independent method derived in Section 2.5.
This is used partially as verification, to see that when the general method employs
the SS approximation to compute a pulse profile, that it recovers what would be
calculated by a code that is specialised for this purpose.

3.5 Verifying the implementation

We have implemented a new method of calculating the observed light curve for sur-
face emission from rotating neutron stars, which makes use of the exact spacetime
metric, and accounts for the time-of-flight of photons and the motion of the emit-

ting region. It is not possible to check the full version of this calculation because
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both the method used and the quantity calculated are new. However, it is possible
to check that important quantities in the code are self-consistent, and that when
the code is run with approximations to the exterior metric and stellar structure,
that the output matches (or can be sensibly compared to) what can be obtained

using more straightforward methods.

3.5.1 Checking 7,(0)

We modified a third-party computer code, RNS (Stergioulas and Friedman, 1995),
to calculate the location of the stellar surface, and to output this in a file in addition
to the spacetime metric potentials and their derivatives, and several other physical
values which describe the stellar model corresponding to a supplied EOS, mass,
and frequency.

To check that the obtained location of the stellar surface, 75(8), is correct, we can
calculate the angle formed between the normal to the star’s surface as defined by the
four-acceleration of the fluid elements at the surface, described in Section 2.3.4, and
the geometric normal defined by the coordinate position of the surface, described
in Section 2.3.4. The former quantity depends on the metric potentials and their
derivatives, while the latter depends on a derivative of 75(8). In an equilibrium
configuration, these definitions should coincide and the angle formed between these
vectors should be 0.

We found that for the exact metrics this angle was on the order of 1074 degrees
or smaller, and for the oblate approximations OK and OS, that this angle was on
the order of 10~1 degrees. For the spherical approximations SK and SS, where this
check ought to fail, this angle was as large as order 10 degrees for the models that
were the most oblate.

These checks suggest that values of 74(#) calculated in our customised version

of RNS are consistent with the values of the metric components.

3.5.2 Comparison with Schwarzschild light curves
Spherical models

In Section 2.5, a method to calculate the light curve using the approximation
of a spherical star and Schwarzschild exterior spacetime was presented. Using
a completely separate computer code, we can evaluate the flux according to Equa-
tion 2.136 for a set of parameters, and compare the result to the output of the

general code we developed. If the results are the same, then we have confirma-
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tion that, at least for this set of assumptions, the programs calculate equivalent
quantities and the general method we are proposing is correct.

In particular, the verification code relies only on the numerical intergration
of ¥(b) and T'(b) (Equations 2.117 and 2.118, respectively) and a root-finding
algorithm to determine b(v); we used Ridder’s method (Press et al., 1988) on a
precomputed array of ¢(b) values to accomplish this. The general code is what we
will eventually use with the RNS numerical spacetimes and an accurate calculation
of the stellar oblateness, except for verification purposes we are running it for the
SS approximation described above. This method depends on the general solution
of the geodesics chosen in the less convenient coordinate system where 8 = 7/2
corresponds to the star’s equatorial plane (i.e., the plane normal to the spin axis),
and on the determination of the solid angle projection according to the method
described in Section 2.4.1; which involves inner products of pairs of rays arriving at
the observer which can be traced back to a patch of fixed angular size on the star.

In Figure 3.1, we show the observed bolometric flux calculated from a small
emitting region for a variety of geometries and M/R values, and the equivalence of

these two methods in these cases is apparent.

Oblate model compared to spherical model

A further check is to compare the OS approximation to an appropriately chosen
SS calculation. We do this as follows: given 6. for the emission region, we can
calculate the radius R(f.) in the OS approximation, and run the SS calculation for
the same set of parameters. In what follows it is useful to consider a model where’
the effect of oblateness is not small; we will use the SS and OS approximations
to the model calculated with EOS L for Q, = 600Hz, and M/M; = 14. This
particular model is spinning at a rate close to its breakup speed of 742 Hz, which
results in distortion of the star’s surface. An indication of the degree of oblateness
is given by the axes ratio for this model which is 75(0)/7s(7w/2) ~ 0.83. We wish
to examine the effect arising from the different orientations of surface elements in
the SS and OS calculations, and so we must pick 8, away from the spin axis and
the equator, so that d7y(#)/d@ # 0. For this section, all comparisons are made
using 6., = 41°, 6, = 20°. For this situation, we use R = 14.7538 km for the
corresponding SS model. Also, with these particular values the code will integrate
to 7y = 696.32 km for the OS model, and 7y = 617.41 km for the SS model.

First we check that the redshifts and dt,/dt. are the same for both the OS and
SS calculations, which are depicted in Figures 3.2 and 3.3 respectively. Both figures
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Figure 3.1: Comparing direct Schwarzschild calculation of bolometric flux to SS

approximation in the general code: These figures show the calculated bolomet-
All three calculations have rotation

ric flux as a function of the observed time.
1.4. The top panel is for a star with

rate ), = 600Hz, and mass M/Mg
GM/(c?R) = 0.211, and Schwarzschild radius R = 9.78 km, corresponding to val-

ues at the equator for a model computed with EOS A; the emission is from 6, = 41°,
and observation from 6, = 100°. The middle panel and bottom panels are for a star
with GM/(c?R) = 0.126, R = 16.38 km, corresponding to values at the equator for
a model computed with EOS L. The middle panel was calculated for 8, = 41°,

8, = 20°. The bottom panel has 8, = 85°, 6, = 100°.
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Figure 3.2: Comparison of (1 + z) in spherical and oblate codes, when M/R and
R is matched: This is a plot of the ratio of (1 + z) values calculated in the OS and
SS calculations as a function of rotational phase, when all quantities are otherwise
the same (to finite precision).

are plots of the ratios of the relevant values between the OS and SS calculations
as a function of rotation phase (not observed phase). Ideally these graphs should
show a constant value of 1 at all times; in practice there is a limit to the precision.
We see that the redshift ratio in Figure 3.2 has very weak rotational modulation
around a value of 0.99953; which tends to indicate that the calculation of z is the
same in either the SS or OS case as intended. The slight shift away from 1 and
weak modulation is not unreasonable because for the purpose of this calculation the
SS parameters were manually set at runtime, and the parameters M, R, ), were
not input to better than the indicated accuracy. Similarly, the graph of dt,/dt.
In Figure 3.3 shows a very mild rotationally-modulated error about 1. So we have
demonstrated that in these respects the SS and OS calculations agree, which they
must for a correctly implemented code.

These calculations must differ, however, on the projected solid angle df2. How-
ever, it is also possible to see that they differ in a predictable way: one naively
expects that the difference in the projected solid angle between the SS and OS
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Figure 3.3: Comparison of dt,/dt. in spherical and oblate codes, when M/R and R
is matched: As with Figure 3.2, this is another check that quantities that ought to
match between the spherical (SS) and oblate (OS) calculations match to reasonable

precision.
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calculations should be governed by

dQog ~ & d€gg
COS QS cosass’

(3.18)

where « is the zenith angle as measured by an observer at the surface of the star,
and k is a constant chosen to account for the different radial location of the observer
in the OS and SS cases which results because of a coordinate choice that is made

in the computer code. In terms of the above relations, we expect that
k ~ Dgs/Dds, (3.19)

where D represents the radius of the observer’s sky, and so D =~ 7 for the geodesic
integrations. In Figure 3.4, we show the ratio kdQss/dQ2og agrees with the ratio
cosagg/ cosaps when k = 0.7988. In this case k was chosen by inspection, but
(FJ%)SS / (f?c)Os = 0.7862 in this case, indicating that k is accounted for to within 2%
by the different final values of 7 used in these two calculations. That this relation
isn’t exact isn’t surprising, because we have made a number of idealisations; for
example, about the “radius” D of the observer’s sky, and that we are comparing
emitting regions of fixed angular size and not fixed area. Another way of presenting
the same material is that the above amounts to a claim that FJ%dQ/ cosa is a
constant function of rotational phase, and that this constant ought to be the same
for both the SS and OS calculations. In Figure 3.5 we check this, and see that this
does approximately hold to about the same level.

The fact that the difference in the solid angle projection between the SS and
OS modes of calculation can generally be understood so well in basic terms serves
as a check that the method created for calculating the solid angle projection via
inner products in the general code is a correct one. It is also suggestive of a
means by which existing computer codes based on the Schwarzschild formalism of
Section 2.5, similar to the independent code we used earlier in this section, might
be adapted for rapid rotation to some effect by properly accounting for oblateness
which becomes a factor in these models. To make this adaptation would require
a specification R4(#) for the location of the surface of the star, which in principle
could be used to obtain a correction factor like cos a1,/ cos agph. for the calculated
flux. Making this adaptation would also require care with the visibility condition
cosa > 0 as in certain circumstances light is blocked in the oblate case that would
otherwise be visible, and vice versa. In Section 4.5 a model of R;(f) is given in

terms of polynomials and simple parameters, and the correction factor implied by
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Figure 3.4: Comparing kdQgg/dQ20s with cos asg/ cosaps: This is a check that
the solid angle projections calculated in the SS and OS methods scale in a manner
determined by the shape of the surface.
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Figure 3.5: Checking constantness of F;dﬂ/ cosa: This check is related to Fig-
ure 3.4; it is another way of seeing that the solid angle projection is determined by
the orientation of the emitting region.
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these observations is given explicitly.

3.5.3 Checking Carter’s constant

Comparisons to cases calculated using the Schwarzschild metric are only useful
up to a point. An additional check on our general code can be made by running
calculations in either the OK or SK configuration, where the exterior metric is ap-
proximated as Kerr with a = J/M; J is obtained via the RNS structure calculation.
In the Kerr spacetime, there is an additional symmetry beyond stationarity and

axisymmetry which results in the quantity
K = (7 (4% /E))? + b?/ sin(0) + a® sin®() (3.20)

being conserved along the photon’s world line. K is Carter’s constant (Carter,
1968). By looking at the initial and final values of Carter’s constant, we found that
the change was typically on the order of a few parts in 10° when the exterior space-
time was Kerr, which suggests that the computer code for the geodesic integration
functions correctly. When the general code is run with the exact exterior metric,
the relative change in Carter’s constant increases to up to a few parts in 102%; we
don’t expect Carter’s constant to be conserved when using the exact exterior metric

since the conservation of K is a result that is special to Kerr spacetimes.

3.5.4 Checking time-of-flight & future improvements

In its current configuration, the factor 1 4 ,dT"/d¢ appearing in the flux integral
is calculated by direct finite-differencing the times-of-flight T over equally-spaced
divisions in ¢.. Considering Equation 2.109, it would be better to modify the code
so that it calculates this factor only in terms of b and £; this is an opportunity
for future improvement of the code. As it is, the slow integration which obtains
the time-of-flight after an appropriate combination of initial conditions is found
must be run at a high—enough precision that the derivative of 17" can be accurately
calculated numerically; the precision of this integral can be relaxed somewhat (and
made faster) if we use the analytical expression for this factor instead. This'is a
trivial change to make; the more time-consuming part is re-tuning the accuracy
controls for the slow integral so that the required precision in ] ¢ is retained.

The current configuration at least allows us to check that the times-of-flight are
being calculated correctly, by comparing 1+ Q,d7"/d¢ with 1 —Q,b. In Figure 3.6,
the quotient of these quantities is plotted, indicating agreement at the level of
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Figure 3.6: Verification of time-of-flight via its numerical derivative: Equation 2.109
says that 1 + Q,d7T/d¢ = 1 — Q,b. Using the finite-differenced derivative of T
to evaluate the left-hand side, and the interpolated value of b for the right-hand
side, we check that the correct correspondence exists between 7" and b by plotting
(14 9,dT/d¢)/(1 — Qb). In this case, we used an EOS L stellar model with

Q, = 600Hz, M = 1.4My, R = 16.38km, GM/c*R = 0.126 (EOS L), 6, = 41°,

6, = 100°. The agreement of these quantities is within 0.15%.

0.15%. We can be confident that the times-of-flight are calculated correctly, and

that the error resulting from using the finite-differenced derivative is acceptably

small.
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Chapter 4

Results

4.1 Introduction

Observations of pulsed light emitted from the surface of a neutron star have the
potential to constrain the star’s mass and radius, and so the equation of state of
the matter comprising the neutron star (Lattimer and Prakash, 2001). One can
see that this information is encoded in the light curve roughly via the velocity of
the emission region (which scales with R), and the star’s compactness (i.e., M/R).
The velocity controls the Doppler boosting of photon energies and the special rel-
ativistic Terrell (Terrell, 1959) effect, which largely determines the asymmetry of
the lightcurve. The compactness controls the degree to which light can “bend”
around the star, which determines the length of any eclipse which may be present
in the data. In cases where the associated velocities are not relativistic, it may be
that only M /R can be obtained from the light curve since the rotational variation
of redshift becomes unimportant (alternatively, some additional mechanism affect-
ing the model light curve which relies on R would need to be introduced). Since
both of these effects require light to be emitted from the surface of the star to be
significant, light curves obtained from observations of radio pulsars are unlikely to
be useful in the sense of constraining these neutron star properties, since for these
objects light is probably emitted close to the light cylinder. On the other hand,
most X-ray pulsars emit light liberated by accreting matter which is decelerated
close to the surface of the neutron star, or else light emitted by thermonuclear burn-
ing of accreted matter on the surface. There are efforts being made to use X-ray
timing observations from accreting X-ray binaries to provide a determination of
the global properties of neutron stars. In practice, information is extracted from

the light curve by adjusting the parameters of a calculable model so as to find the
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parameters that are most consistent with the observations. Realistic model light
curves generally incorporate parameters describing one or more spectral compo-
nents which may have different associated anisotropies, as well as the shape and
size of the emitting region.

The first attempts to model observed X-ray pulsar light curves did not include
gravitational effects and used polar cap models of the emitting region (Wang and
Welter, 1981; Leahy, 1990, 1991). The latter of these models were motivated by
radiative transfer calculations of the emissivity by caps and columns of Mészéros
and Nagel (1985). Pechenick et al. (1983) set out a formalism to account for
gravity in such models for slow rotation, by tracing out the paths of photons in the
Schwarzschild spacetime. This formalism was used to calculate the pulse profile pro-
duced by radiation from hot spots and accretion columns by Riffert and Mészaros
(1988), which in a follow-up paper was extended to incorporate a spectral model
(Mészéros and Riffert, 1988). Leahy and Li (1995) accounted for gravity in fits of
cap models to observed pulse profiles. Other accretion column models with light-
bending were computed by Kraus (2001), Leahy (2003a) and Kraus et al. (2003). In
an analysis of the occultation sequence of the X-ray pulsar Her X-1 by Scott et al.
(2000), it was determined that the pulse profile corresponded to a pencil beam from
the near pole and a gravitationally-focused fan beam from the far pole. This led
to a quantitative model for the pulse shape of Her X-1 by Leahy (2004a), which in
turn resulted in a constraint on M/R for the neutron star (Leahy, 2004b).

Clearly, the application of models based on Pechenick et al. (1983) to the anal-
ysis of conventional X-ray pulsars is adequate because the periods of these pulsars
are so long (the fastest is 69 ms, most are > 1 s) that the gravitational field is
well-approximated as Schwarzschild, and accounting for the motion of the emission
region, to the extent that it’s necessary, is trivially accomplished by inserting the
appropriate factors to account for the rotation-induced blue-/redshift and the Ter-
rell, or “snapshot,” effect. The first millisecond period X-ray pulsar in a low-mass
X-ray binary, SAX J1808.4-3658, was recently discovered by Wijnands and van der
Klis (1998) and spins at a frequency of 400 Hz (Chakrabarty and Morgan, 1998).
This is fast enough that the rotational speeds at the equator must be relativistic.
An application of this category of model with corrections for relativistic motion
to the pulse profile SAX J1808.4-3658 was undertaken by Poutanen and Gierliriski
(2003), to obtain a constraint on M/R. However, it should be noted that their
model did not include time-of-flight effects, which at these speeds might reach a

few percent of the rotation period. This is a failing that many of the models in
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this category (but not all) share. Extensions to this Schwarzschild-based method
of modelling the pulsed emission has been undertaken by Kapoor and Datta (1986)
using the slowly-rotating neutron star metric, and by Kapoor (1991) using a weak
form of the Kerr black hole metric (discarding terms of order a?/R? and higher).
Chen and Shaham (1989) developed a model using the full Kerr metric. Braje et al.
(2000) made use of a Monte Carlo method to produce light curves using the full
Kerr metric, and they made the important point that accounting for the varying
photon travel times is necessary for the millisecond pulsars. This work was followed
up in Braje and Romani (2001), where the authors pointed out that the differences
introduced in their light curve calculation by using the Kerr metric instead of
the Schwarzschild metric for the photon propagation introduced changes that were
probably too small to measure, and that these changes were less important than
the effects that rotation-induced oblateness would introduce for rapidly-rotating
models. A separate model using the Kerr metric for photon propagation was devel-
oped by Bhattacharyya et al. (2005), and notably they used their model to obtain a
constraint on neutron star parameters by fitting to the burst oscillation light curves
of the accreting 3.2 ms pulsar XTE J1814-338.

One application of these models is to understand the observed phase lag of the
low-energy light curve (e.g., in the soft X-ray band) compared to the high-energy
light curve (in hard X-rays) for the same source, which may have its genesis in the
relativistic motion of the emission region. A model of this was developed by Ford
(1999) by accounting for special relativistic Doppler effects but neglecting gravity.
This model was improved by incorporating gravity using the Schwarzschild metric
and applied to the observed energy-dependent delays in SAX J1808.4-3658 by Ford
(2000). . Similar models were developed to model the oscillation amplitudes and
energy phase lags during X-ray burst on rapidly-rotating neutron stars by Miller
and Lamb (1998) and Weinberg et al. (2001). These models were further improved
by Muno et al. (2002b) by incorporating the time-of-flight effects.

It is still early in the history of analysis of millisecond X-ray pulsar light curves,
partly due to the paucity of suitably reduced data for analysis. In the literature
that does exist, many of the techniques and tools used are borrowed, or at least in-
spired by, the profusion of models developed for slowly-rotating X-ray pulsars. One
is forced to wonder to what extent these methods can be straightforwardly adapted
to carry through analyses of observations of millisecond pulsars by including the
relevant special-relativistic contributions. To what extent does the approximation

of the spacetime as Schwarzschild matter? Does the inclusion of travel-time effects
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matter? Do the effects of rotation on stellar structure matter? The answer to
these questions in the case of slow X-ray pulsars is uniformly “no,” but little prior
analysis has been undertaken to answer these questions in the case of millisecond
pulsars, and furthermore it seems reasonable to assume that at least under certain
circumstances these effects can have significant implications. The main complica-
tion in assessing the applicability of these approximations has been the absence of a
calculation which can account for these effects to whatever extent they matter. We
have described and implemented a model which accounts for all of these effects in
earlier chapters, which is the main tool by which we attempt to answer these ques-
tions. We restrict our considerations this way to observed bolometric flux which
is isotropically emitted by an infinitesimal emission region on the surface of the
neutron star, because problems identified in this simple case will persist in some
form when complications such as emission spectra and emitting region shape are
included.

This chapter is organised as follows: First, in Section 4.2 we discuss the models
we have selected which are used in the work that follows. In Section 4.3, we
consider a simplified situation in which one wishes to use light curves which are
calculated without accounting for the different integrated times-of-flight of photons
to draw conclusions about hypothetical data where the effect of the times-of-flight
are present. Section 4.4 considers the effect of approximations to the spacetime
metric and the effect of stellar oblateness, in the sense of comparing the forward
calculations with various approximations for the same set of parameters, and also
in the sense of utilising an approximate method for obtaining fits to hypothetical
data. It becomes apparent that adequately including the effect of oblateness is
important for rapid rotation, so in Section 4.5 a model is developed which specifies
the surface value of the Schwarzschild R coordinate as a function of polar angle,
given a single dimensionless quantity involving M, R at the equator, and §2,. An
initial attempt is made to incorporate this model into a simpler computer code
with some success. Although this programme was not carried through completely,
enough has been completed to indicate that it should be fruitful to modify other
extant codes to incorporate a reasonable estimate of the effect of stellar oblateness
using the model we have devised.
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4.2 Choice of neutron star models

In the sections that follow, we will refer to the stellar models we used by equa-
tion of state (EOS) and the frequency 2, of rotation. All of our models have
M = 1.4 Mg, which is a conventional choice for the fiducial mass of a neutron
star. This choice is experimentally justified by the recent mass measurement of
the neutron star in the recycled binary radio pulsar PSR J1909-3744 which has a
mass (1.44 + 0.02) Mg (Jacoby et al., 2005). Other experimental justifications for
this figure come from double neutron star systems containing slower radio pulsars,
which with two exceptions have experimentally determined masses falling inside the
range (1.35 4 0.04) My (Thorsett and Chakrabarty, 1999). There is some evidence
that neutron stars can be heavier than this canonical value: an extreme example
is a recent measurement by Nice et al. (2005) who used precision measurements
of the millisecond radio pulsar binary PSR J0751+1807 to determine a mass of
(2.1 £ 0.2) Mg for the neutron star via its general relativistic orbital decay, which
is the largest known neutron star mass. Future observations of this pulsar will
improve this mass measurement. If its relatively high mass holds, it may lead to a
significant constraint on the state of neutron star matter, since this mass exceeds
or is at the upper end of the maximum mass that can be supported by several
candidate equations of state (Lattimer and Prakash, 2001, 2004).

For this work we have chosen to use the candidate equations of state EOS A
and L from the Arnett and Bowers (1977) catalogue which span a wide range of
stiffiness. EOS A is one of the softest equations of state, and EOS L is one of the
stiffest allowed by present observations. For each EOS we have computed equilib-
rium models using RNS (Stergioulas and Friedman, 1995) for a number of different
frequencies, spanning the range of frequencies observed in accreting millisecond pul-
sars. The parameters describing these models are given in Table 4.1. The EOS L,
600 Hz model is one that we return to a few times since it is the fastest and largest
of the set; we expect that effects due to varying times-of-flight will be maximised
(it is quite large, so has a relatively long light-crossing time), as well as effects due
to deformation of the surface (or “oblateness,” since it is spinning at a frequency

quite near its breakup speed).
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EOS p/27%Hz) Q./27 (Hz) R%km) cJ/(GM?) GM/(c*?R) v/c® we,/2n%Hz)

A 1387 100 9.57 0.036 0.216 0.03 16.8
200 9.59 0.073 0.216 0.06 33.6
300 9.62 0.109 0.215 0.08 50.2
400 9.66 0.147 0.214 0.11 66.7
500 9.71 0.185 0.213 0.13 82.8
600 9.78 0.223 0.211 0.16 984

L 742 100 14.86 0.076 0.139 0.04 9.5
200 14.95 0.154 0.138 0.07 18.9
300 15.11 0.234 0.137 0.11 279
400 15.36 0.318 0.135 0.15 36.4
500 15.74 0.408 0.131 0.19 43.8
600 16.38 0.508 0.126 0.24 49.0

@The break-up spin frequency for a star with the given mass and equation of state.

b The equatorial Schwarzschild radius.

¢ The speed of the neutron star at the equator measured by a static observer at the surface.
Velocities are calculated with the full metric.

¢ The frame-dragging term at the equator; this is the angular velocity of a zero angular mo-
mentum particle at the equator.

Table 4.1: Neutron Star Models with Mass = 1.4 My

4.3 The effect of neglecting time-of-flight!

4.3.1 Introduction

In the case of Pechenick et al. (1983), slow rotation was being contemplated, and
there was no need to account for variations of the travel time, or time-of-flight, of
photons as the neutron star rotated because these variations were small compared
to the rotation period. Some extant analyses of millisecond-period pulsars, for
example the work on SAX J1808.4-3658 by Poutanen and Gierliriski (2003), retain
this assumption but are modified to incorporate the necessary special relativistic
effects arising from the relativistic motion of the emitting region. Braje et al.
(2000) pointed out that the varying photon time-of-flight was important to account
for, but they did not carry through an analysis of how important it was from
the point of view of systematic error that might be introduced by neglecting it.
Section 2.5 contains a careful discussion of how light curves can be calculated in
the Schwarzschild case. In that Section, it was shown that the calculation by

Poutanen and Gierliriski (2003) is correct in the sense that they are calculating an

!A version of this section was originally published as Cadeau et al. (2005), and substantial
portions of this paper are incorporated here. Some details have been updated here to account for
an erratum in the original publication, which is discussed in the text.
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integral which is exactly correct in the case they consider (i.e., when the exterior
spacetime is Schwarzschild and the star is taken to be spherical), but they omit the
step of calculating the arrival time ¢, = t. + T'(b) by evaluating the time-of-flight
integral at each step of the calculation. Instead they adopt the approximation that
to = te + const for the construction of their light curves, which results in a degree
of distortion of the curves they obtained for rapid rotation. Put another way,
they account for the fact that the arrival times are changing (because the emission
region is moving) for the purpose of calculating the flux—this is the origin of the
special relativistic factors they make use of—but they don’t account for this in
assigning the integrated flux to some observed time. The purpose of this section is
to determine the worst extent to which this approximation will affect the outcome
of the analysis of millisecond pulsar data. We make no claim as to the validity
or not of the result in Poutanen and Gierlinski (2003), but instead are using their
treatment of the problem as but one example of several treatments which neglect
times-of-flight in this manner.

To carry through this analysis, we begin by setting out some details of how the
general treatment in earlier chapters simplifies when one is restricted to considering
photons only in the equatorial plane. In Section 3.1.1, we set out a number of
different approximation schemes that one can contemplate as variations on the
basic method contemplated by Pechenick et al. (1983). In this section what we are
doing is assessing the impact of using the SS approximation without times-of-flight
included, as a means by which to obtain fits to data corresponding to the Exact
method with times-of-flight included. In order to do this within the context of the
simplifying assumption we’re making in this section, a non-standard definition of
flux is adopted where the emitting region is a small line segment located on the
equator of the neutron star, and correspondingly the observer’s sky is taken to be
one-dimensional. Both the “Exact” and “SS without times-of-flight” methods are
adapted to agree on this non-standard definition of flux so that the eflect we are
measuring will be a result only of the inclusion/exclusion of times-of-flight, and
the approximation of the metric. In this section we are mainly concerned with the
300 Hz and 600 Hz models for both EOS A and L from Table 4.1. These models
span a reasonable range of stiffness, and span observed frequencies of millisecond

pulsars and X-ray burst oscillations.
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4.3.2 Equations of motion

To accomplish our goal in this section, we consider a simplified case where we
restrict our calculations to photons emitted from the equator which travel in the
equatorial plane to the observer. This has the effect of simplifying the necessary
calculations, as well ag maximising the effect of the time-of-flight of photons. In
this case, the motion of a photon is specified once the initial location and impact

parameter are specified. The simplified equations of motion are:

dt
=) = et —
(d/\) e (1 — wb), (4.1)
ey _ —(v+0) (1 — b oy
<d/\> = we (1—wb)+ =¢7, and (4.2)
_ /2
AP\ et (1 oy e 1
<d/\) = e 972 (1 —wb) -3¢ , (4.3)

where b is the photon’s impact parameter and A is an affine parameter defined so
that photon orbits are independent of energy. We are considering photons origi-
nating on the equatorial plane (8 = 7/2) emitted parallel to the equatorial plane
(u? = 0 initially). It is a straightforward calculation to show that such photons
must remain in the equatorial plane, i.e., df/dX = 0.

Since the radial component of the four-velocity must be real, the impact pa-
rameters must lie in the range byin < b < byax, where the minimum and maximum

impact parameters are:

_ 1
bmin = —Te pm, and (44)
1
= e P
boa = Te 1+ wre=r’ (4.5)

where the metric potentials are to be evaluated at the point at which the null ray
originates, i.e., at the surface of the star. The frame-dragging term is positive, so
the effect of rotation is that |bymin] > |bmax|- As a result, rotation allows an observer
to see more of the side of the star which is moving away from the observer, as
shown in Figure 4.1. In this figure, bg corresponds to the maximum value of the
impact parameter allowed for a static star.

In Figure 4.1 we illustrate the deflection of photons from the point of emission on
the star to the observer. We define the azimuthal location of the distant observer
to be at ¢ = 0. A photon with impact parameter b hits the observer if it was
emitted at azimuthal angle ¢;. The initial emission location is found by dividing
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observer

Figure 4.1: Angles in the simplified 1-D case. This figure was originally published
as Figure 1 of Cadeau et al. (2005).

Equation 4.2 by Equation 4.3, and integrating from the star’s surface to the distant

observer: b2 /52
w(l — wb) + be*P /T i (4.6)

(1 —wb)?2 — bzezp/?;z)lm .

o0 1
—¢i(b) = / ez (v+p)
Te

The deflection angle 1) is defined by ¥ = —¢;. In the calculation of flux from a star,
both the quantities ¥ (b) and d¢/db are of importance. These quantities are plotted
for the 600 Hz EOS L model in Figure 4.2. In addition, we show the deflections
calculated using the SS approximation. The differences between the calculations
with and without rotation are very small. The worst errors occur at the limbs
of the star, so these differences are only likely to be of importance if the light is

preferentially emitted in directions close to the horizontal.

4.3.3 Times-of-flight

To accurately model pulse shapes, we account for the different amounts of coordi-
nate time that photons emitted from different regions of the star will take to reach
the observer. Once the times-of-flight—alternatively, the times-of-arrival (TOA)—
are known, the photons can be placed into the correct detector timing bins. The
choice of zero time is arbitrary, so we have chosen a value of zero TOA for a pho-
ton with zero impact parameter. For photons emitted with the maximal values of
impact parameter, the TOA is similar to the light travel time across the star. For
the EOS L, 600 Hz model with R = 16.38 km, the light travel time is close to 80
us. Compared to a spin period of 1.6 ms, this corresponds to a 5% effect, which
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Figure 4.2: Bending angle v(b) and dv/db for photons in the equatorial plane,
calculated using both the exact metric and using the corresponding SS metric for
the EOS L, 600 Hz model. This figure was originally published as Figure 2 of
Cadeau et al. (2005).
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will be seen to have a significant effect on the calculated pulse shapes.

The TOA is calculated by dividing Equation 4.1 by Equation 4.3, integrating
from the star’s surface to the distant observer and then subtracting off the corre-
sponding quantity for a b = 0 photon. This yields the following formula for the

arrival times T'(b):

a1 (1 —wb)F _
T(b) = /Fe e~z (7+p) (((1 T 52620)1/2 — 1) dr. (4.7)

In Figure 4.3 we plot the TOA for the 600 Hz EOS L model using both the Exact
method and SS approximation. Note that in the Exact calculation, the retrograde

photon takes longer to reach the observer than the prograde photon. This is due to
the frame-dragging effect. The magnitude of this effect is about 1/10 of the effect
due to the light-crossing time in the corresponding SS models so we expect that for

most timing applications that it will not be detectable.

4.3.4 Redshift

In our units, the photon’s energy as measured by an observer far from the star has
been normalized to unity. Any observer with four-velocity u® measures a photon
energy of E, = —{%u,, where the photon’s four-velocity components ¢% = dz®/dA

are given in Equations 4.1-4.3. The star’s four-velocity at the equator is

1
u® = — (t* + Q,¢%), (4.8)
|4
where (), is the star’s angular velocity as measured by an observer at infinity, and
the normalization condition u%u, = —1 yields
V=" (1 — (U —w)?i?e %), (4.9)

where all quantities are evaluated on the star’s equator.
The redshift factor (1 + z) between light emitted at the star’s equator and
detected by an observer at infinity is

(1—Q,b)
V1= (Q —w)2r2e2p )

14z = e 2000 (4.10)

Note that the quantity v% avo = (2 — w)?72e~2% appearing in the denominator is

the square of the velocity of the star’s fluid as measured by an observer with zero
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Figure 4.3: Times-of-flight as a function of bending angle: This plot shows times-
of-flight (TOA) as a function of bending angle v calculated in both the Exact
case and the SS case for the 600 Hz EOS L model. To illustrate the magnitude
of the difference between the two calculations, we have also plotted the difference
between them on the right-hand axis, “ATOA.” This plot was originally published
as Figure 3 of Cadeau et al. (2005).
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angular momentum; i.e., an observer with ug = o =u =0.

4.3.5 Angles between Photons

In a more general calculation of flux from a two-dimensional emitting area on the
star, we would need to calculate the solid angle subtended by the area, as viewed
by the observer at infinity. In this section (4.3), we are only including the flux of
photons emitted from a segment of the equator into the equatorial plane. Adopting
this special one-dimensional emission region means that observed radiation will
subtend zero solid angle in the observer’s sky. The most straightforward way of
adjusting the usual definition of flux for this simplified emission region is to define
flux in terms of an integral over angle in the observer’s one-dimensional “sky” which
coincides with the equatorial plane.

In Figure 4.1 we show a curve of angular extent A¢ on the star, and the angle
measured by the observer at infinity between the two photons emitted from the end-
points (points ¢_ and ¢, ) is de. If the impact parameters for these two photons
are related by by = b_ 4 db, the angle observed between the two photons reduces
at infinity to

de = %2 (4.11)

r

if both photons are restricted to move only in the equatorial plane. This is a well-
known result in the Schwarzschild spacetime, but to obtain it in general, proceed by
letting the two photons have four-velocities £* and m?®, with impact parameters by
and b_, respectively. The angle the distant observer measures is calculated via the
“cos angle” relation, which is also relied on for the results in Sections 2.3.4 and 2.4.1:
The observer has u®* « t%, and we define the projection operator as hf;,))o) = JabtUgUp
and the magnitudes of the projected null vectors as £* = |4, | = [h((;o)ﬁbl. The angle
is calculated by the inner product of the projected vectors:

hey 4 mt

cose =
femu

e
= w(by+b_)+bib_ (?2 ~ w2>

4/ (@ —wby)? — bi_fp (1—wb_)2— vl (4.12)
| =

,,72

This formula is only valid when the photons are restricted to move in the equatorial

plane, i.e., u? = 0. To get the infinitesimal version of this equation, put b, = b_-+db,
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and Taylor expand the left-hand side for small angles de. Expanding the right-hand

side in db and equating the second-order terms gives:

. 2
46 = —at (1 — wb_)? b%eQﬂ} w?r? — e w2b_7? — b_e? — wr?
= — — wb_ — _
P21 —wb )? —b2e?r  \ 72(1—wb_ ) —be?
(4.13)

In the large 7 limit, w falls off as 1/72, so to leading order in 1/7 the first term in
square brackets is ~ 1 and the second term in square brackets is ~ —e?? /72, So we

have for large 7,

Pdb
de = e—:—

4.14
<@ (414)
and in terms of the usual Schwarzschild r coordinate given by Equation 2.6, this is

de = %, (4.15)
r

which is Equation 4.11. Note Equation 4.11 applies to the case of an emitting
region that is not moving. An additional factor must be brought in to account for
the “snapshot effect” as discussed in Section 2.4.2: at an instant of observer’s time,

an observer actually sees an angle de/(1 — CL.b).

4.3.6 Outline of Numerical Method

To accomplish our goal, there are two main tasks that need to be carried out: first,
we need a method to compute the pulse profile for the special case under consider-
ation using the exact metric and including time-of-flight effects; these calculations
will be what we regard as “data” for fitting in Section 4.3.8. Second, to accom-
plish this fitting we need a method to quickly calculate a number of light curves
using the Schwarzschild metric without times-of-flight included. In principle the
same method could be used for both tasks with the appropriate adaptations, but
it was more convenient to carry out the former task using an early version of code
described in Chapter 3 to compute the exact light curves, and a special code to cal-
culate the Schwarzschild light curves which is similar to what might ordinarily be
done in other implementations of the method described by Poutanen and Gierlifiski
(2003) (we are also aware of an equivalent, but independent, implementation by
Leahy (2003b)), but which has been modified for our case of a one-dimensional
emission region located and observed in the equatorial plane. For completeness, we

describe both calculations here.
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1-D version of Exact calculation

The Exact version of the calculation proceeds as follows: We discretise the period
of the azimuthal coordinate ¢ into N bins and keep track of the fluxes F'(i) and
arrival times to(¢), where 4 is the bin index running from 0 to N — 1. The size of
each angular subdivision is A¢ = 27 /N, and we take the centre of the emission
region at each step to be ¢(7) = (i)(A¢). Figure 4.1 shows the relevant quantities.

We obtain the fluxes F'(i) by performing the following steps at each period
step 1:

1. Calculate the impact parameters of the null rays arriving at the observer

from ¢_ = ¢(i) — (A@)/2, ¢(i), and ¢ = ¢(i) + (A¢)/2. Denote these
impact parameters by b_, b, and b;. This is done by numerically solving
Equation 4.6.

2. Calculate the redshift z(b) using Equation 4.10.
3. Calculate the angular contribution to the flux integral, de, using Equation 4.11.

4. Calculate the arrival time ¢,(i) of the flux by evaluating Equation 4.7 for
impact parameter b, and putting ¢,(3) = ¢(¢)/Q + T'(b).

5. Assign to F(i) the value of the flux integral

(1+Z)”°high I (a )
Fq_ :/ dv, /de Vel € , 4.16
Al U S T T () CL

where Vo, and Vo, correspond to the lower and upper limits of the detec-
tor’s energy band. In the particular case we are considering, we can leave
out the integral over energies (we integrate over all energies hv, for bolomet-
ric flux), and disregard the dependence of I on a, since we are considering
isotropic radiation. Also note, again, that this integral is a non-standard def-
inition of flux which we are adopting because we are dealing with a special
one-dimensional emission region, as discussed in Section 4.3.5. The observer
only receives photons from within the equatorial plane (the sky is effectively
one-dimensional), so the integral is over a one-dimensional angle, not the

usual solid angle for a two-dimensional sky.

Once the calculation for each step is completed, the stored values F(z) and t,(¢) are
used to construct the function F'(t,) at equally spaced intervals of ¢, via a standard

interpolation method. This step is necessary to facilitate fitting in the next section,
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as the statistic that the fits rely on require comparing values at equal values of ¢,.
Also note that the rns code calculates the Exact metric potentials to a finite value
of 7, and so our calculation is performed at distance r ~ 10'° cm and not at infinity,
however we have used expressions which account for locating the observer at finite
7 in our code. Also, for M = 1.4 My, at this distance 2GM/(c?r) ~ 2 x 107° so
that the spacetime is close to flat.

For the purpose of illustration in Section 4.3.7, it will also be interesting to
perform this calculation without time-of-flight effects included. To do this, the
only change that needs to be made is to take 7'(b) = 0 at every 7 in the above

calculation.

1-D version of Schwarzschild calculation without times-of-flight

We had a special code at hand to calculate the Schwarzschild light curves with-
out times of flight included, although in principle an adaptation of the above
method could also have been used. Instead, we adapted Equation 2.137 for our
one-dimensional emission region. In practise this means that instead of the area
element on the image plane given by Equation 2.128, i.e., dS, = bdbd¢,, we use
the appropriate length element d¢ = db. Using a similar argument as that leading
to Equation 2.137, we obtain the following special expression specialised to the
Schwarzschild metric for bolometric flux from a one-dimensional emitting region:
/
F1p,Schw.,bol. (to) = 215(1 fz)4 d1/;1/db (f_ﬁ%ﬁ; (4.17)

L(1 - 2M/R)*(A¢}) 1
< 5D ) (1 — Q,b)5dyp/db’

(4.18)

where the term in parentheses is a constant that can be taken out of the calculation
since we are only considering the shape of the pulse profile and not the value of
the received flux. In this calculation, the evaluation of the light curve proceeds in
a similar manner as above, except that we need only solve Equation 4.6 for b given
¢() (eliminating the need to solve this equation for ¢_ and ¢4 as well), and then
evaluate the intégral given by Equation 2.134 for d¢/db. Also, since we are not
including the times-of-flight we need only take t, = ¢(2)/,; the integral for T'(b)
given in Equation 4.7 does not need to be calculated, and the final steps above
to interpolate the F(i) and ¢,(4) to values that are regularly-spaced in ¢, does not

need to be carried out since this calculation already has this property.
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4.3.7 Light curve calculations

We are now able to discuss the properties of light curves calculated using the
method that we have set out in this section. In Figure 4.4, we show the curves
calculated using the Exact method with times-of-flight included for EOS A and
L, for the 300 Hz and 600 Hz cases. First, note that the more compact EOS A
models have a shorter eclipse than the EOS L models, as one would expect: the
effect of “light bending” is greater for the more compact model. Also, the length
of the eclipse expressed as a fraction of the period does not change a great deal
as the speed of the models is increased; this is because the compactness decreases
only by about 2% in the EOS A case as the star is spun up. In the EOS L case,
the 600 Hz model is approaching breakup speed and the change is greater: about
10% between the 300 Hz and 600 Hz model. The other notable feature of these
calculations is that as frequency (or speed) is increased, the pulse profiles become
more asymmetric. So there is an indication that speed at the equator tends to
equate to greater asymmetry in the pulse profile.

The main purpose of this section is to understand the effect of leaving out the
time-of-flight in these calculations. In Figure 4.5, we have given a series of three
plots corresponding to a €2, =50 Hz, 300 Hz, and 600 Hz model calculated using
EOS L for a 1.4 Mg star. Each plot shows two light curves: one is computed in
a manner that flux arriving from further away is binned relatively later than light
arriving from closer points (i.e., we put t, = &(7)/€2 + T'(b) as described in Sec-
tion 4.3.6), the other light curve is calculated by binning flux only by rotational
phase of the star, but retaining the required Doppler factor to account for magni-
fication or reduction of the emitting region due to its motion (i.e., we only discard
the T'(b) term in calculating t,). As the light-crossing time of the star becomes a
larger fraction of the rotation period, the distortion introduced by discarding the
time-of-flight increases, and is noticable at the 300 Hz and 600 Hz levels covering
the range of frequencies occupied by millisecond pulsars.

Another important observation from Figure 4.5 is that the plots which have
the time-of-flight included tend to be more asymmetric than those that do not.
This observation together with what we noted above about Figure 4.4 suggests
the following: if one were to set about interpreting an observed pulse profile to
extract M and R for a real millisecond-period source by referring only to sample
calculations that did not include the photon travel times, one would tend to pick
models with larger speeds at the equator in order to capture the greater asymmetry

that is present in the data. Since the frequency of source would be fixed by the
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Figure 4.4: Light curves for 1-D emitting region: This figure shows the light curve
produced by a 1-D emitting region located and observed in the equatorial plane
for the 300 Hz and 600 Hz models for both EOS A and L, as listed in Table 4.1.
The light curves are calculated using the exact metric, with all time-of-flight effects
accounted for.
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data, the only available mechanism to increase the speed is by increasing K. The
length of the eclipse would also be fixed by the data, which fixes the value of M /R,
thus a corresponding increase in M would be required. In sum, it seems reasonable
to assume that this method of extracting M and R would tend to systematically
over-estimate both M and R, but keep the value of M/R close to the true value.
The remainder of this section tests this hypothesis.

4.3.8 Fit results

To determine the degree to which neglecting times-of-flight might (maximally) im-
pact an analysis of real millisecond pulsar data, we attempted to fit the Exact
method light curves shown in Figure 4.4 to curves calculated using the SS method
without times-of-flight included. To accomplish this, we first calculated a number
of approximate light curves over a range of values of M and R. If true(7) represents
discrete values of the exact light curve calculation at observed phase i(A¢), for
A¢ =2n/N, and 0 < i < N — 1; and approx(?) is similarly the discretised values
of the light curve obtained using the approximate calculation we are considering,
then the best fit values of M and R—to the extent that they are unique-—are taken
to be the ones which achieve the minimum

N—1

min min Z (true(z) — approx((s + k)mod N))?| .  (4.19)

1
.Sq./N = —
8-Sq./ N M,Ro<k<N—1 pr

The minimisation over k is necessary since a constant phase shift of the approximate
light curve relative to the true one should not influence the results of the fitting.
The resulting fitted parameters are shown in Table 4.2. It is helpful to see the sense
in which the result of this calculation produces a “fit” to the data: Figure 4.6 shows
plots of the true light curve together with the best fit approximate light curve for
the EOS A models. Similarly, Figure 4.7 shows this for the EOS L models. Our
hypothesis is partially borne out by the results of this experiment: in 3 of the 4
cases, both M and R were over-estimated by 30-40%, while the error on M/R was
constrained to less than 8%. The results for the EOS L, 600 Hz model do not follow
from the simple argument we set out earlier: this case resulted in the poorest fit
(measured via S.Sq./N), and overestimated R by 20%, but underestimated M by
12%. Of the four cases considered, this is the case where the introduction of the
times-of-flight has the largest effect, since this is the largest model used (so with
the longest-light crossing time), and the shortest period considered (so the times-of-

flight represent the largest fraction of one period). What appears to happen is that
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Figure 4.5: Distortion introduced by not including all time-of-flight effects: Each
plot in this series shows two light curves: one is computed with photon travel time
accounted for, the other is not. A 1.4 Mg, EOS L model was used to produce these
plots; from top to bottom the frequencies used are 50 Hz, 300 Hz, and 600 Hz.
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EOS Q./2n | R Err. M Err. GM/(c’R) Eurr. S.Sq./N
() | () (M) (x10-4)°
A 300 13.3  +38.3% | 2.0 +42.9% | 0.22 +3.3% | 0.4
600 125  +27.8% | 1.8 +28.6% | 0.21 +0.6% 2.6
L 300 19.4 428.4% | 1.94 +38.6% | 0.15 +7.9% | 0.8
600 19.8 +20.9% | 1.2 —-14.3% | 0.09 —-29.1% | 4.9

2 The sum of squared differences between fitted approximate calculation and exact
calculation, divided by the number of phase bins in the exact pulse shape. (N = 180
for all fits).

Table 4.2: Results of fits to exact 1-D light curves via an approximate calculation
which does not include time-of-flight. See remark in text about possible degeneracy
or non-uniqueness of fit results.

it is not possible to obtain a close fit to the data using the approximate method, and
the fitting procedure preferentially attempts to fit the rise of the pulse as closely as
possible which required a decrease in compactness and a corresponding shortening
of the eclipse. The errors in the fit are moved to the portion of the pulse as the
emitting region moves out of view. It is worth noting here that this fitting procedure
has the undesireable property that good fits in the sense of small values of S.Sq./N
do not imply good performance in estimating M and R individually: the worst fit
has the smallest relative errors in these parameters. A similar statement applies to
the resulting fitted value of M/R: the errors on the obtained value of M/R do not
appear to be linked in a straightforward way to the quality of fit.

It is also necessary to discuss an apparent operational difficulty in obtaining
these fits which foreshadows a well-known difficulty which is discussed in greater
detail in Section 4.4.2 for the general case of the two-dimensional emitting region.
In Figure 4.8 we have plotted contours of the S.Sq./N value for the EOS L, 300
Hz case, as a function of the M and R values of the candidate fitted models. In
this plot, there are clearly two separate minima corresponding to different sets
of parameters which result in approximately the same quality of fit: one is at
M =194 My, R = 19.4 km; the other at M = 1.74 My, R = 18.4 km. Both of
these results have the same quality to within 1 part in 10% of S.Sq./N, and although
the best of these is tabulated in Table 4.2 it would be incorrect to say that there is
a single well-defined best-fitting model. While this is the only case that exhibited
a distinct double minimum in this statistic, all of the cases we examined show a
long, flat valley in these contours. One might expect this feature since, as has been
pointed out, the best-fit models will tend to be those constrained to a narrow range

of M/R. This example shows that there is a degree of degeneracy in obtaining fits
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Figure 4.6: Fitted 1-D light curves for EOS A models: The best fit approximate
light curves from Table 4.2 are plotted against the exact 1-D calculation.
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Figure 4.7: Fitted 1-D light curves for EOS L models: The best fit approximate
light curves from Table 4.2 are plotted against the exact 1-D calculation.
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Figure 4.8: Contours of sum of squared differences for fit: Contours of the “S.Sq. /
N7 value for the EOS L, 300 Hz case are shown. In this plot there are clearly two
separate minima corresponding to different sets of parameters with approximately
the same quality-of-fit.

even in this simplified case.

Erratum in Cadeau et al. (2005)

This section is based on an idea pursued in Cadeau et al. (2005), except that in the
results presented here a subtle change has been made in calculation of the Exact
light curves and the fit results have been recalculated. The result is that the net
size of the effect has changed, although the essence of the result has not. In Cadeau
et al. (2005), the Exact light curves were calculated using a series of instantaneous
flashes from the surface of the star, which were then composed together to give the
“true” light curve. By doing this, however, the snapshot effect was removed from
the true values, whilst it was included in the approximate light curves which were
used for fitting. This is because the snapshot effect arises because of continuous-
time emission from a moving object, measured at an instant of observer time.
Instantaneous emission from a moving extended region, on the other hand, deposits

energy over a range of observer times. The basic approach in Cadeau et al. (2005)
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was to bin the flux arriving at the observer from instantaneous flashes, when it
would have been more correct to bin flux arriving at the observer for emission over
a range of times At.; this would numerically capture the snapshot effect and no
additional change would need to be made to the basic idea in Cadeau et al. (2005).
In this section, we have discarded the flux-binning method described in Cadeau
et al. (2005) in favor of correcting the subtended angle de by the required factor,
which is derived in Section 2.4.2.

Cadeau et al. (2005) states that the maximal error arising from using a fitting
program which does not incorporate time-of-flight effects is “approximately +10%";
the results shown in Table 4.2 indicate that the resulting systematic error is much
higher than that. .

4.3.9 Conclusion

In this section we have set out a simplification of the full problem of calculating
the light curve which relies on restricting both the emitter and observer to the
equatorial plane, and furthermore adopting a non-standard definition of flux in
order to suit this restriction. Many, but not all, analyses of millisecond pulsar data
and related phenomena have not accounted for the differences in photon travel time
as an emitting region moves with a rapidly-rotating neutron star. Furthermore, it
is common to use the Schwarzschild metric as the framework in which to calculate
deflection angles for photons reaching the observer. Within the simplified context of
this section, we have calculated light curves using the exact metric and accounting
for time-of-flight effects, and attempted to fit them by a least-squares method
using light curves calculated using the Schwarzschild metric without time-of-flight
effects included. We found that to capture the additional asymmetry in the pulse
profile introduced by the time-of-flight effects, significant errors in the obtained
best-fit parameters were introduced at the level of up to about 40% in M and R in
isolation, and up to about 12% in M/R in the worst case. Furthermore, a degree
of degeneracy in picking the “best fit” models was noted.

Since there is no difficulty in evaluating the times-of-flight, the efforts to fit
millisecond-period pulsed light from accreting X-ray binaries with model light
curves to infer neutron star parameters ought to include these effects, in view of
the potentially considerable systematic error that would otherwise be introduced

as a result.
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4.4 The applicability of other approximate techniques?

In Section 4.3 we have provided a demonstration that it is important to account
for the varying times-of-flight in the calculation of the light curve for rapid rota-
tion, and in this section these effects are always included. This section is concerned
with the approximations described in Section 3.1.1 to the general light curve cal-
culation set out in Chapters 2 and 3. In particular, we described a number of
possible approximations to the calculation of the light curve, which amount to a
selection of metric (precise solution, Kerr, or Schwarzschild), and the manner by
which the oblateness of the stellar surface is accounted for (“oblate,” where the
surface 74(0) is specified via the structure calculation; or “spherical”, i.e. con-
stant 7 (for SK), or constant Schwarzschild r = exp|(y — p)/2]7s(7/2) (for SS)).
The “Exact” method represents the first calculation of light curves using a precise
solution of the spacetime metric and stellar structure, and the remaining meth-
ods are various approximations that may be conceived of and are analogous to
other calculations found in the literature. For example, Muno et al. (2002b) use a
method similar to our “SS” method in their studies of the amplitude evolution and
harmonic content of X-ray burst oscillations (they included times-of-flight in their
models). Bhattacharyya et al. (2005) use the Kerr metric and a spherical stellar
surface star to obtain light curves which they used to model the burst oscillations
of the X-ray pulsar XTE J1814-338; this is similar to what we refer to as the “SK
approximation”. In their calculation, Bhattacharyya et al. (2005) make use of a
structure calculation to obtain the angular momentum, mass, and radii of their
stellar models given an EOS, which allows them to fix the Kerr parameter a in
their calculations, similar to what we did to calculate Table 4.1. However, they
“do not include the effects of spin-induced stellar oblateness,” which they argue are
small since the oblateness is second order in €2,. One of the goals of this section
is to test this assertion. Finally, Braje et al. (2000) use a Monte Carlo method to
obtain a calculation similar to our SK calculation, and in Braje and Romani (2001)
they undertook a comparison of a light curve model for either oblate or spherical
stellar surfaces. We have also made it possible to marry our light curve calcula-
tions to a precise solution of the stellar structure, by incorporating the oblateness
of rapidly-rotating neutron star models, as expressed by 75(6): the coordinate loca-
tion of the star’s surface as a function of colatitude. Knowing this makes it possible

to pick correct initial conditions for the integration of null geodesics, as discussed

2Some of the results appearing in this section are contained in Cadeau et al. (2006), and
portions of the paper are incorporated here.
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in Section 2.3.2.

This section is arranged as follows: First, we attempt to quantify the differences
between the five different methods we are contemplating in Section 4.4.1. Then, in
Section 4.4.2 we present a study where we calculated light curves using the Exact
method, then then obtained fits to them by varying the input parameters of the SS

calculation so as to minimise the y2 between the Exact and SS methods.

4.4.1 Methods comparison

To begin with, one expects that all reasonable methods of calculating the light curve
should converge as the spin is reduced. To illustrate this, in Figure 4.9 we have
computed the light curve for an EOS L, 1.4 Mg model for emission from 6, = 41°,
and observation at 8, = 100° spinning at ), = 200 Hz, 400 Hz, and 600 Hz, using
the Exact calculation as well as the approximations OK, OS, SK, and SS. As €,
increases, it is apparent that the calculations which account for oblateness in some
fashion (i.e., Exact, OK, OS) depart from the ones that do not (i.e., SK, SS), but
that for the slowest speed shown there is little difference. It is clear that of the
models we are considering from Table 4.1, that the 600 Hz EOS L case will be
the most oblate. The simplest way of seeing this is classically: this model has the
largest radius and angular velocity, and so the effect due to centrifugal force on the
surface is greatest. This model is quite close to the breakup speed, or mass-shedding
limit, when the rotating fluid elements at the surface are no longer gravitationally
bound to the star (or, in the relativity language, they have no four-acceleration).
In this case, 75(0)/7s(m/2) = 0.827, compared to the 600 Hz EOS A case where
the same ratio is 0.96. Since we are concerned with the worst-case of effects due to
oblateness for realistic models, we will limit what follows to considering the 600 Hz
EOS L case; this is relaxed again in Section 4.4.2.

To illustrate the distortions that appear in the calculated light curves when
oblateness is incorporated, we have chosen two cases where there are significant
differences in the light curve calculated by the methods with an oblateness descrip-
tion compared with the “spherical” methods. In Figure 4.10, we have plotted the
light curve obtained using all of the methods we are considering for: emission from
0. = 15°, and observation at 8, = 100° in the top panel, and 6, = 45°, 8, = 135°
in the bottom panel. In the top panel, the clear difference is that the oblate cal-
culations do not eclipse, while the spherical ones do. In the bottom panel the
situation is reversed: the oblate calculations eclipse for longer than do the spher-

ical calculations. Clearly these differences might have significant implications for
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Figure 4.9: Oblateness becomes important as €1, increases: In this series of light
curves, we vary the speed of the model and leave the other parameters fixed. The
top panel is the slowest (200 Hz), and the bottom is the fastest (600 Hz). Note
that as speed increases, the calculated pulse profile increasingly depends on the
particular method used.
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data analysis: fitting routines are based on minimisation of x? will tend to match
eclipse durations or pulsed fractions of data with those features predicted by a the-
oretical light curve model. As Figure 4.10 illustrates, these features as calculated in
the “spherical” approximations are not reliable approximations of the situation for
the Exact method, or other approximate methods with an oblateness description
built-in.

To understand the genesis of this distortion, we consider the ., = 15°, §, = 100°
case more carefully. In Figure 4.11, we show two panels corresponding to the Exact
method (top) and the SS method (bottom), where we have plotted as a function
of rotation phase two quantities: first, a parameter which corresponds to 6; for
the rays reaching the observer using cross symbols against the left-hand axis, and
second, a parameter corresponding to 7; using a line against the right-hand axis.
Note that the plotted parameters are actually rescalings of these values used by
the code such that the sign and relative sizes of these values are maintained—
only the relative sizes and signs matter for the discussion at hand. When 6; is
negative, the ray initially heads “north” in angular coordinates. Comparing the
values of the 7; parameter in the Exact (top) panel where there is no eclipse, and
SS (bottom) panel where the emission region is eclipsed (the eclipse occurs at those
points where the cross symbols are absent compared to the top panel), we see
that the value of 7; becomes negative in the Exact case, which allows additional
rays to reach the observer during those phases for which the emission region is
eclipsed in the SS calculation. The eclipse is introduced in the SS calculation
because 7; > 0 when the star is taken to be spherical, but north-directed rays from
the upper hemisphere can have negative values of #; when the star’s oblateness is
accounted for. An illustration of this is given in Figure 4.12. The bottom panel
of Figure 4.10, where the SS calculation is visible for longer than in the Exact
calculation, can be explained in a similar way: in this case, the rays reaching the
observer are south-directed from the upper hemisphere, and in the exact case the
7; values must remain above a positive critical value determined by the oblateness,
while in the SS calculation they can reach zero. In the sense of Figure 2.1, the top
panel of Figure 4.10 involves a case where some rays reaching the observer in the
exact calculation are in Region I, which is prohibited in the SS calculation. The
bottom panel involves a case where rays reaching the observer in the SS calculation
are in Region 1V, which is prohibited in the Exact calculation.

Naturally, one is led to wonder how the approximate methods we have consid-

ered fare as 6., 6, are varied. To investigate this, we calculated the Exact, SS, and
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Figure 4.10: Qualitative changes in lightcurves when oblateness is accounted for:
These plots show light curves calculated for EOS L, 1.4 Mg, Q, = 600 Hz. The top
panel shows the case where emission is from . = 15°, and observation takes place
at 8, = 100°; the bottom panel is for 8. = 45°, 6, = 135°.
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Figure 4.11: Different rays can reach the observer in oblate calculation (6. = 15°,
6, = 100°): This figure corresponds to the top panel of Figure 4.10. On these two
panels, we have plotted a parameter which corresponds to 6; for the rays reaching
the observer using cross symbols against the left-hand axis, and a parameter cor-
responding to ; using a line against the right-hand axis, as a function of rotation
phase (the plotted parameters are rescalings of these values used in the code such
that the sign and relative sizes of these values are maintained).
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Figure 4.12: Exact method allows for rays with #; < 0, but in the SS calcula-
tion these rays would be prohibited, leading to an eclipse as in the top panel of
Figure 4.10.

OK light curves for a range of angles, and then computed the S.Sq./N statistic, de-
fined in Equation 4.19. The results are shown in Figure 4.13 where we have plotted
contours of S.8q./N as a function of the two angular parameters for the SS calcula-
tion (top panel) and OK calculation (bottom panel). Both plots show a steep peak
in S.3q./N for calculation with light coming from near the spin axis and observed
by highly-inclined observers, which is the worst-performing case. The peak size of
the statistic is about two orders of magnitude smaller for the OK calculation than
the SS calculation, indicating that in the worst case, the disagreement between
the OK and Exact calculation is about 1/10 the disagreement between the SS and
Exact methods, on average. Also, these contour plots indicate that the agreement
between methods is best for light emitted and observed near the equatorial plane.
This makes sense as at the equator there is no effect due to oblateness, because all
methods agree on a description of the stellar radius (whether isotropic or areal) at
the emission region, and there are no additional or prohibited rays that are intro-
duced since at the equator di/df = 0. As a further illustration, in Figure 4.14,
we have shown calculations corresponding to the worst case (top panel, 8, = 15°,
6, = 90°), and the best case (bottom panel, 8. = 90°, §, = 90°) scenarios that we
have identified by this procedure.

In the best case, there is still a small effect due to the precision to which light-
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Figure 4.13: Determining the worst-case scenario for approximate calculation: In
each panel, we have plotted contours of S.Sq./N, defined in Equation 4.19, as a
function of g, and 6, to compare the Exact calculation to the SS calculation (top
panel), and to the OK calculation (bottom panel), using calculations for EOS L,
1.4 Mg, 2, = 600 Hz.
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Figure 4.14: Example of worst- and best-case scenarios for approximate calcula-
tions: Following on from Figure 4.13, we have produced an examples of the “worst”
(top) and “best” (bottom) cases for EOS L, 1.4 Mg, §2, = 600 Hz. In the top panel,
computed for 8, = 15°, 8, = 90°, there is significant discrepancy between the cal-
culations which account for oblateness (Exact, OK, OS), and the ones that do not
(SK, SS). On the other hand, the bottom panel shows the 8. = 90°, 8, = 90° case,
where all calculation methods essentially coincide.
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bending can be calculated using an approximate metric, but this is a much smaller
effect than oblateness can introduce for general values of the angular parameters.
This agrees with what Braje and Romani (2001) found. Their work allowed for the
possibility of a rotationally-flattened star in their studies of thermal emission from a
single polar cap for both spherical and “elliptical” stars. They noted that the differ-
ence in the light curve calculation introduced by passing from the Schwarzschild to
Kerr metric was smaller than other considerations that become important for rapid
rotation, among them time delays (as we showed in Section 4.3), Doppler boosts,
aberration, and oblateness. So it is somewhat surprising that there are no extant
analyses of millisecond pulsar data which account for oblateness (Braje and Romani
(2001) discusses a theoretical model without an application to data), but effort has
been expended to improve the accuracy of photon propagation by incorporating
the Kerr metric (for example, by Bhattacharyya et al. (2005)). Clearly the priority
under circumstances similar to what we’re considering—surface emission from a
millisecond pulsar—should be to incorporate a good description of oblateness in
these models.

Perhaps the reason for the absence of effort in analysis this way is understand-
able: the rotation-induced oblateness as measured by how 7g(8) differs from some
fiducial value (e.g., #s(m/2)) is of order Q2 so one is tempted to assert that it
is a small effect (Bhattacharyya et al., 2005). This is absolutely correct from the
point of view of those effects that rely on the size of 7 (or speed), for example, the
rotation-induced part of redshift (i.e., Doppler boosting). However, there are two
problems with this argument; first, 75(0)/7s(7/2) is not coordinate invariant and
is not directly observable. Second, it is really the derivative d7g(#)/dé that bears
the major responsibility for effects due to oblateness discussed here, as this controls
the orientation of surface elements along the observer’s line of sight. Introducing
these effects which are not captured in the analogous “spherical” cases is primarily
what causes the effects we have noted here, and are more significant than might
be suggested by looking at the ellipticity of the surface. Beyond the temptation to
dismiss these effects as “small,” there is also the practical matter of producing a
model that incorporates a sufficiently flexible model of oblateness while being fast
enough for fitting. Braje and Romani (2001) calculated pulse shapes similar to our
OS and OK calculations via a Monte Carlo method they devised, which is not at
all similar to what is usually done for pulse shape models which are used for fitting,
and is probably not suitable for such an application because of the computationally

intensive nature of the Monte Carlo method. Methods based on the formalism of
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Pechenick et al. (1983) can be adapted for oblateness, but not without significant
complication. A first look is taken at this in Section 4.5.

4.4.2 Fits to obtain parameters

We have established that, all other things being equal, reasonable variations on the
light curve calculation method can result in significant differences in the computed
pulse profile. Furthermore, the magnitudes of these differences are sensitive to the
emission region’s and observer’s inclination angles. In this section we would like to
ask a different question: how well can one expect a x? minimization program based
on fitting to the SS calculation to perform for millisecond-period pulsars? In other
words, if we compute the observed bolometric pulse profile for an infinitesimal emit-
ting region using the Exact method for some stellar model and choice of inclination
angles, will we reliably recover the relevant parameters by minimising the x? to SS
calculations with all but the frequency left undetermined? This is an important
question because if the SS fitting technique performs acceptably well, then no, or
perhaps only minor work will need to be done to adapt the extant fitting codes for
rapid-rotation. On the other hand, if it does not perform well, then it will indicate
a general need to replace tools based on SS (or SK) calculations to incorporate
oblateness. The restriction to infinitesimal and isotropic emission regions allows us
to isolate the effect just due to oblateness, and tests the robustness of the fitting
procedure when slightly different descriptions of the photon orbits are used.

To carry through this study, we first computed light curves using the Exact
method for a number of 1.4 My stellar models from Table 4.1, for a number of
choices of emission and observer inclinations angles. Then fits were obtained to
these light curves using a program which minimises x? against the SS calculation
(Leahy, 2005). The true values for the cases considered are displayed in Table 4.3,
where we show the Schwarzschild radius as a function of emission inclination angle,
R(8,), for all of the considered cases, as well as GM/(c?>R(6.)), since the results of
the fit are for the value of R and GM/(c?R) at the emitting region and not on the
equator.

The results of the fits are shown in Tables 4.4 and 4.5. The fits were obtained
by first fixing the value of GM/(c*R) at the emission region; this means that all
evaluations of the angular deflection integral are for a single value of GM/(c?R),
which makes it easy to numerically solve for impact parameters b given a required

angular deflection. Then the program attempts to find the global minimum in x?,
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9. EOS %, (Hz) R(0.) (km) GM/(CR(8.))

15 A 100 9.57 0.216
300 9.55 0.217

400 9.53 0.217

500 9.51 0.217

600 9.49 0.218

L 300 14.63 0.141
400 14.47 0.143

500 14.25 0.145

600 13.98 0.148

41° A 100 9.57 0.216
300 9.58 0.216

400 9.58 0.216

500 9.59 0.216

600 9.60 0.215

L 300 14.82 0.140
400 14.80 0.140

500 14.78 0.140

600 14.74 0.140

45° A 166 9.57 0.216
200 9.58 0.216

300 9.58 0.216

400 9.59 0.216

500 9.61 0.215

600 9.63 0.215

L 100 14.83 0.139
200 14.84 0.139

300 14.85 0.139

400 14.87 0.139

500 14.89 0.139

600 14.90 0.139

85° A 100 9.57 0.216
200 9.59 0.216

300 9.62 0.215

400 9.66 0.214

500 9.71 0.213

600 9.78 0.211

L 100 14.86 0.139
200 14.95 0.138

300 15.10 0.137

400 15.35 0.135

500 15.73 0.131

600 16.35 0.127

Table 4.3: The true values of R(f.), GM/(c?R(6.)) are displayed for the fitted light
curves; the results of the fits are displayed in Tables 4.4 and 4.5.
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defined by N-1 true(s) — fit(:) ) 2
o (_) | (4.20)

i=0 g

by varying R, 6. and 6,. M is obtained from the assumed value of GM/(c’R)
and the fitted value of the radius. We have taken a constant value o = 0.01 to be
the “error” on the true values, which will allow us to establish confidence intervals
on the obtained fits. The minimisation of x? is achieved by an application of the
conjugate gradient method described by Press et al. (1988) (Leahy, 2005). This is
much faster than doing an evaluation everywhere in the parameter space, but has
the side-effect that it is sometimes sensitive to the initial values of the parameters
at the beginning of the minimisation process. By carrying out this process for a
number of values of GM/(c?R), we select the result with the lowest minimum 2.
We have also calculated the 90% uncertainty in the value of GM/(c?R), which for
one parameter of interest is found by interpolating for the values of GM/(c?R) with
X? = X + 2.71 (Leahy, 2005). In several cases, the minimum in x? is so shallow
that no meaningful error bars can be computed and these cases are marked with an
asterisk in the relevant column. These fits are degenerate in the sense that almost
any reasonable value of GM/(c?R) can correspond to a good fit. The difficulty in
obtaining unique fits was foreshadowed in Section 4.3.8, and it is relatively well-
known that fitting in this way sometimes has non-unique solutions. Bhattacharyya
et al. (2005) pointed out that it is the presence of significant power in the higher
harmonics of the data that allows for this kind of analysis to take place, because
such power is necessary for significant asymmetry in the pulse profile. One of the
cases suffering from degeneracy is f, = 15°, 8, = 100°; considering the top panel of
Figure 4.14 (actually computed for §, = 90°), it is clear that for this set of angles
that the light curve does not have significant power in higher harmonics, and as a
result it is easy to fit a large number of different models to it. In related work, Muno
et al. (2002b) remark on a degeneracy in fits containing our two inclination angles
and a parameter controlling the emission region size in their fits to the amplitudes
of thermonuclear X-ray bursts. Also, the possibility of degeneracies in fitting light
curves of isolated X-ray dim neutron stars to their models was raised by Zane and
Turolla (2005). '

Considering the non-degenerate fit results, first we note that x2 tends to increase
with frequency, indicating that at higher speeds the best fit SS models fit the Exact
calculation more poorly than for slower models. Examining the best fit values of

GM/(c*R(0.)), we see that with two exceptions, the true values were generally
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within the established error bar, and the errors on the fitted values were constrained
to about 11%, often much less. The exceptional cases were also the most extreme
tests of this method, corresponding to the EOS L, 600 Hz model for §, = 45°,
A, = 135° and for 8, = 41°, 8, = 100°, where the true values fell outside the error
bar and large errors in the fitted values were noted.

Considering the fits to values of M and R individually, we see that for the slower
100 Hz and 200 Hz cases, that the errors on these quantities are generally confined
to less than 10%. An exception is the approximately 20% errors noted for the EOS
A, 200 Hz case for 6, = 45°, §, = 135°, which may indicate a possible degeneracy
problem for this case, since we know that the Exact and SS light curves nearly
coincide in this limit. For the faster models, the errors on these fitted values can
reach the 20% level in several different cases. Finally, considering the fits to the
angular parameters, we found that there were significant difficulties establishing
the true angles for nearly all of the 8. = 41°, 8, = 100° cases (signalling a possible
degeneracy issue), as well as for the single non-degenerate 6, = 85°, 8, = 20° case,
with errors at the level of a few tens of degrees. The 6, = 45°, 8, = 135° results
were quite good with errors almost uniformly at the level of a few degrees. Finally,
the 6, = 85°, 6, = 100° results were reliable for the slower models, with the errors
tending to increase with speed above 200 Hz.

It is also interesting to see an illustration that the fitted models do, indeed,
describe the data. Figure 4.15 shows two plots illustrating the differences between
light curves obtained via the SS calculation using both fitted and true values for
the parameters, compared to the Exact calculation. The top panel is for the EOS
L, Q, = 300Hz, 8. = 85° 6, = 100° case in Table 4.5. We see that although
the best fit case over-estimated both mass and radius by about 20% over the true
values, there is no appreciable difference between the three light curves. In this
case the true value of GM/(c?R) falls within the error bar given on the fit. The
bottom panel is for the EOS L, Q, = 600Hz, 8, = 41°, 8, = 100° case: this fit
underestimated mass by 7% and underestimated radius by 12%, and the fitted value
of GM/(c?R) was too high by 14%. In this case, the fitting program shortened the
eclipse to better fit the data by tending to a larger value of GM/(c?R); note that

the SS calculation produced using the true values has an eclipse that is too short.

4.4.3 Conclusion

In this section, we first undertook a comparison of the Exact light curve calculation

method we set out in Chapters 2 and 3, with the approximations we described in
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O 0o EOS | Q. (Hz) M/Mg R(fe) (km) 0. (deg) 0o (deg) GM/c?R(6.) P%
fit rel. err. fit rel. err. fit abs. err, fit abs. err. fit unc. rel. err.

15°  20° A 100 1.40 -0.002 10.3 0.08 14.2 -0.8 - 19.9 -0.1 0.2 * -0.07 0.002
A 300 140 | —=7x 1075 || 9.85 0.03 14.3 -0.7 19.9 -0.1 0.21 * -0.03 0.01
L 1.40 -0.002 16.5 0.1 13.0 -2.0 20.1 0.1 0.125 * -0.1 0.01
A 400 1.40 —4x 1074 10.3 0.08 13.9 -1.1 19.4 -0.6 0.2 * -0.08 0.03
L 1.39 -0.004 17.9 0.2 12.3 -2.7 19.1 -0.9 0.115 * -0.2 0.03
A 500 1.40 0.002 10.9 0.2 13.4 -1.6 18.9 -1.1 0.19 * -0.1 0.04
L 1.39 -0.008 19.5 0.4 11.6 -3.4 18.1 -1.9 0.105 * -0.3 0.03
A 600 1.40 0.003 11.5 0.2 12.9 -2.1 18.4 -1.6 0.18 * -0.2 0.04
L 1.41 0.009 19.0 0.4 11.5 -3.5 17.8 -2.2 0.11 * -0.3. 0.1

15°  100° | A 100 1.08 -0.2 6,35 -0.3 30.1 15.1 80.9 -19.1 0.25 * 0.2 4
A 500 0.593 -0.6 8.76 -0.08 54.7 39.7 21.8 -78.2 0.1 < 0.225 -0.5 1
L 0.854 -0.4 8.41 -0.4 30.2 15.2 78.1 -21.9 0,15 < 0.2 0.03 0.8
A 600 0.678 -0.5 9.10 -0.04 56.9 41.9 20.3 -79.7 0.11 * -0.5 0.8
L 0.918 -0.3 7.98 -0.4 34.1 19.1 69.5 -30.5 0.17 * 0.1 2

41°  20° A 100 1.41 0.004 9.23 -0.04 29.8 -11.2 28.9 8.9 0.225 * 0.04 0.005 ~
A 500 1.40 0.002 10.4 0.08 20.6 -20.4 35.3 15.3 0.2 * -0.07 0.05
L 1.99 0.4 16.8 0.1 33.2 -7.8 21.5 1.5 0.175 * 0.3 0.03
A 600 1.40 0.001 10.9 0.1 20.2 -20.8 34.0 14.0 0.19 * -0.1 0.07
L 2.53 0.8 17.8 0.2 28.8 -12.2 23.2 3.2 0.21 * 0.5 0.06

41° 100° | A 100 1.48 0.06 10.2 0.06 80.5 39.5 139.2 39.2 0.215 0.011 -0.005 0.1
A 300 1.49 0.06 10.0 0.04 79.8 38.8 138.0 38.0 0.220 0.005 0.02 1
L 1.09 -0.2 11.1 -0.3 67.0 26.0 95.6 -4.4 0.145 0.024 0.04 0.3
A 400 1.45 0.04 9.55 -0.004 80.8 39.8 134.9 34.9 0.225 0.006 0.04 2
L 1.17 -0.2 11.9 -0.2 58.0 17.0 96.3 -3.7 0.145 0.023 0.04 0.4
A 500 1.51 0.08 9.89 0.03 80.2 39.2 136.9 36.9 0.225 0.005 0.04 3
L 1.29 -0.08 12.7 -0.1 52.7 11.7 98.1 -1.9 0.15 0.02 0.07 0.8
A 600 1.58 0.1 10.2 0.06 41.9 0.9 102.2 2.2 0.230 0.007 0.07 4
L 1.30 -0.07 12.0 -0.2 57.9 16.9 97.5 -2.5 0.160 0.015 0.1 2

Table 4.4: Fits to light curves using SS method to extract parameters, part 1: For the tabulated cases, the best fit Schwarzschild
calculation (corresponding to our SS method with general M and R) to our light curves calculated using the Exact method
were obtained by Leahy (2005) to assess the impact of using this approximation in this context. Where the uncertainty value
of GM/c®R is given as *, this indicates that the best fit was degenerate in this parameter. Table 4.3 displays the true values

of R(6.) and GM/(c*R(6,)). All models have true mass 1.4 M. This table is continued in Table 4.5
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EOS L, 1.4 Msun, 300 Hz: 8, = 85°, 8, = 100°
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Figure 4.15: Comparing light curves with fitted parameters to true values: These
two plots illustrate the differences hetween light curves obtained via the SS calcu-
lation using both fitted and true values for the parameters, compared to the Exact
calculation.
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Section 3.1.1: namely, the oblate Kerr and Schwarzschild (OK, OS) methods, and
the “spherical” Kerr and Schwarzschild (SK, SS) methods. We found that while
there was little difference introduced by using the Kerr metric for photon prop-
agation over the Schwarzschild metric, significant differences could be introduced
by describing the stellar surface as oblate instead of spherical. These finding are
consistent with what was suggested by Braje and Romani (2001). Furthermore, the
differences between the Exact calculation and both of these approximations were
maximised in the case when light was emitted from close to the rotation axis, and
observed close to the equatorial plane. The maximum disagreement between the
OK and Exact methods were on the average 10% of the size of the disagreement
between the SS and Exact methods.

Using our Exact calculation as a source of synthetic data for the observed bolo-
metric pulse profile of an infinitesimal isotropic emission region, we then attempted
to extract the corresponding parameters by minimising x? against light curves cal-
culated using the SS method. We found that several of the cases studied suffered
from degeneracy in the fits, in the sense that there was no unique way to map the
pulse profile to parameters. This is expected in cases where there is not significant
power present in the higher harmonics of the pulse. For the non-degenerate cases,
our results tended to indicate that it is generally possible to get a good estimate
of GM/(c2R(6.)) by fits to the SS calculation, for all but the most extremely de-
formed stars (i.e., the stiff EOS L model at 600 Hz). Modulo some cases that are
likely to have suffered from a degeneracy, however, this method is much less reliable
in establishing the M and R parameters individually for frequencies higher than
about 200 Hz, when the errors on these fitted parameters taken alone can be as
high as about +20%, which is not small enough to place interesting constraints on
neutron star parameters. The poor performance of this fitting procedure for higher
frequencies is likely to be a result of the increasing significance of oblateness. It
seems reasonable that fitting to millisecond-period pulsar data is best done using
theoretical models that account for oblateness in some fashion. '

In the next section we go some distance to show how it is possible to avoid
structure calculations in estimating the effect of oblateness for a certain family
of equations of state, and we do preliminary work to show that in principle it is
possible to modify simple pulse profile calculation codes to capture the qualitative

effects of oblateness.
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4.5 Modelling oblateness: Model of Schwarzschild radius

Setting the initial conditions for integration of null rays requires knowing the lo-
cation of the surface, 75(#), and this is obtained from the structure calculation
from which we also obtain the values of the metric potentials and their deriva-
tives. Considering the apparent usefulness of the OK and OS approximations to
the calculation of the flux, we have developed a simple model for the oblateness of
rapidly-rotating neutron stars which may be suitable for applications where it is
not desireable to compute the structure of a model star, or one wishes to consider
models which do not necessarily derive from a known equation of state.

We have heretofore considered oblateness in terms of the coordinate 7 at the
surface given the colatitude 6, 75(6). To make the model as convenient as possi-
ble to use, we remove the potential necessity of having to translate between the
quasi-isotropic 7 coordinate and the regular areal (Schwarzschild) r coordinate by
considering the value of the r coordinate at the surface as a function of u = cos 9,

rs(p) = expl(y — p)/2]7s(6). Then we consider the expansion

re(1) = ) danPan(1)- (4.21)
n=0

In this expansion, as, has units of length; we consider an expansion in terms of the
dimensionless quantity

(4.22)

Aop = fy
where R = r4(0). Given a model integrated by the RNS computer code for some
EOS, M and €., the corresponding as, values can be calculated via the relation

5 dn + 1
A2n =

1
/ 0 Pon (1) (4.23)

and the corresponding ao, values are calculated via the definition in Equation 4.22.
To accomplish this integration we make use of the AdaptiveSimpson and LegendreP
methods included with the Matpack C++ Numerics and Graphics Library (Gam-
mel, 2005). Given a means of calculating the ag, values for a particular model, we
can also attempt to approximate them by regarding them only as functions of the
dimensionless quantity

z=O2R3/(GM); (4.24)
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2n Son ton U2n

0 | —0.074 +£0.011 —0.1495 + 0.0033 1.00003 £ 0.00013
2 | —0.001 +0.022 —0.3152 £ 0.0063 | 0.00015 £ 0.00024
4 | 0.1578 £0.0030 | —0.01622 = 0.00089 | (6.1 + 3.4) x 10~5

Table 4.6: Using a set of 60 stellar models, we have obtained quadratic fits to the
coeflicients aq, which describe the stellar oblateness. We have fitted the quadratic
polynomial fo,(x), with  defined by Equation 4.24, to the data ag, so that ag, ~

fon(z).
that is, we're seeking functions fo, such that

f2n(x) ~ azgn- (4.25)

To accomplish this, we calculated the ao, coeflicients for the 60 models such that
EOS € {A,APR, L}, M/Mg € {1.4,1.6,1.8,2.0}, and €2, € {100, 200, 300,400, 600} Hz.
Such a set consists of models spanning a reasonable range of compactness, fre-
quency, and mass. With the exact ag, in hand for these 60 models, we used the
fit routine in the Gnuplot Plotting Utility (Williams and Kelley, 2004) to fit the

data points to the quadratic polynomials
fon(x) = s9n@” + ton® + ugn. (4.26)

The results of the fits for orders n = 0...2 are tabulated in Table 4.6. By discarding
the fitted coefficients which are approximately 0 within the standard error, we
obtain the simplified model

fo(z) = —0.0742® —0.15z + 1 (4.27)
falx) = 0315z (4.28)
fa(z) = 0.158z> — 0.0162z. (4.29)

Figure 4.16 shows the as, data compared to the fitted polynomial models for the
f 2n($)

To understand the level at which this model of oblateness applies, we can look
at a plot of the next order terms, ag, for each of these 60 models as a function
of 0, in Figure 4.17. As one expects, the truncation error in the expansion is
higher as the frequency increases, but is at worst 0.3% of the equatorial radius.
The polynomial models above describe the data well enough that we can take this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.5 MODELLING OBLATENESS: MODEL OF SCHWARZSCHILD RADIUS 128

Actual values  +
W D074 X 20,1541

098 |- e,

ap
3
g

086 |

. . , \ N L
0 0.05 0.1 0.15 0.2 0.28 0.3 0.35
Q&G

! ! j " Actualvalues  +
W 0315 v

©0.04 | P

-0.06 +

ay

-0.1 |

L . . . L N
0 0.05 0.1 0.15 02 025 03 0.35
@R/ (GM)

0.014 —— T T
Actual values  +
0.158"x""2 - 0.0162"x ----~;

0.012 |

001 ¥

0.004 |-

0.002 |

e
.
Pt i sy 5 it

0.05 0.1 0.15 02 025 0.3 035
P RY (GM)

-0.002
0

Figure 4.16: Quadratic polynomial models for oblateness coefficients aq, for n =
0...2: The top panel shows the g¢ data points compared to the fitted polynomial
model ag &~ fo(z) = —0.074z2 — 0.15z + 1. The middle panel shows the ay data
points compared to the fitted polynomial model a2 ~ fo(x) = —0.315z. The
bottom panel shows the a4 data points compared to the fitted polynomial nodel
as ~ fi(x) = 0.158z% — 0.01622.
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Figure 4.17: Leading truncation term in polynomal oblateness model: The ag
coefficients of the 60 models we considered to develop the fitted polynomials to the
lower-order terms are plotted versus {2,. Note that the absolute truncation error
increases with frequency, but is at worst only 0.3% of the equatorial radius.

as an indicator of the worst accuracy of rs(u) obtained from the model compared
to the true values. Figure 4.18 is a plot of rs(u) showing the worst-performing case
for this model compared to the true values, and a level of error consistent with the

truncation error is observed.

4.5.1 Adaptation of Schwarzschild light curve calculation to incor-
porate oblateness

In Section 3.5.2, it was observed that the light curve from the OS calculation was
related to the light curve from the SS calculation by a factor of cos ab1./ cos agph.,
where « is the zenith angle as measured at the surface in the observer’s frame, when
r; and ry are equal. This can be understood as an observation that the projection
of solid angle onto the observer’s sky involves a factor of cosa as measured at
the surface; Poutanen and Gierliniski (2003) make use of this observation in their
calculation. Now that we have a numerical model for oblateness, it should be

possible to incorporate this factor into the Schwarzschild formulation of the light
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Figure 4.18: The oblateness of the EOS L, 1.4My, 600 Hz model .is most
poorly described by the fitted polynomial model. In this plot Ars(u)/R =
(rs(p)true — Ts()series) /R is plotted versus p using the series in Equation 4.21
truncated after the a4 term using both the exact coefficients for this model
(ag = 0.9411, ag = —0.1058, a4 = 0.01282), and those obtained via the polyno-
mial fits (ag = 0.9413, aa = —0.1058, ay = 0.01237). The worst error is about
0.24% of the equatorial radius of R = 16.376 km, which is consistent with the size
of the next order term in the series.
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curve calculation, given in Section 2.5. The main difficulty of doing this is that
the numerical model of oblateness is set out in terms of the angle # measured from
the spin axis of the star, whereas the Schwarzschild formulation takes place in a
coordinate system chosen so as always to maintain the origin, emission region, and
observer in the same coordinate plane, #/ = 7/2. As we pointed out in Section 2.3.4,
the calculation of the zenith angle involves an inner product between the normal of
the surface and the initial four-momentum of the emitted light ray, and so to carry
through this calculation we need to re-express the normal to the surface in terms
of the coordinates used in the Schwarzschild formulation of the problem.

The transformation between coordinate systems is given by an appropriate com-

position of rotation matrices. In particular,

sin @’ cos ¢’ 1 0 0 cos¢ 0 sin( sin 6 cos ¢
sin@sing’ | = | 0 cosoc —sino 0 1 0 sin @ sin ¢
cos ' 0 sinoc coso —sin¢ 0 cos¢ cos 6
(4.30)

The parameters ¢ and ¢ can be found by requiring that the observer, at § = 6,,
¢ = 0, and the emission region, at 8 = 6., ¢ = ¢, be both located at &/ = 7/2 in the
new coordinate system. The impact parameter b in the Schwarzschild formulation

is related to the conserved ¢’ momentum. One obtains

/2 — 6, (4.31)

¢
tano  — + cos 8, sin 9}6 cos <;.$e F sin 8, cos b, ' (4.32)
sin f, sin ¢,

To obtain the desired continuity, choose + above when ¢, € [0, 7], and — otherwise.

The explicit transformation into the primed angular coordinates is

sin &’ cos ¢’ - cos(sinfcos ¢+ sin( cos b
sinf'sing’ | = sin ¢ sin o sin @ cos ¢ + cos o sin @ sin ¢ — cos  sin o cos #
cos —sin( cososinf cos ¢ + sino sinésin ¢ + cos ( coso cos b

(4.33)
If n® is the normal to the surface as given by the numerical model, then the

zenith angle in the observer’s frame is obtained by evaluating

haplenb

i .

cCosox =
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at the surface, with hgp = gop + ugup and ug = t,/W. This becomes

s = VT (L= 2M]N)P]r® 4 ¥ (1~ 2M/r)b
- ((n")2 + (1 — 2M/r)r2(nf)2)1/2 : (4.35)

In the limit of a spherical star, n? and n?® tend toward zero and this equation
reduces to the familiar
sina = (1—2M/r)?b/r. (4.36)

Given the function r5(@), which is obtained from the oblateness model, we know

that the components of the normal vector in the unprimed system are

n’ = 1 (4.37)
9 1 d?"s

4 . .
To evaluate n?’, we use the transformation of vector components relation

/ 40 2
n’ =n 327 (4.39)
In this situation, this means that
/ o’
n? = no—;; (4.40)

Using the explicit coordinate transformation from Equation 4.33, we have

o¢'

50 = csc? 0 (sin o cos ¢ + sin ¢ cos o sin ). (4.41)

The only element that remains is to calculate dr;/df in terms of the polynomial

oblateness model. Our model is the series

s(cosf) = R Z fon(x)Pap(cos6), (4.42)

n=0

where R is the equatorial radius of the star, and z defined via Equation 4.24. Then
we have that
drs

2
45 = Rsind > fon(z)Ph, (cos ). (4.43)

n=1

At these low orders, it is easiest to directly work out the derivatives of the Legendre
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polynomials
Po(z) = 1 (4.44)
Pox) = %(3332—1) (4.45)
Py(z) = %(35x4—30x2+3), (4.46)

which are
Py(z) = 0 (4.47)
Py(z) = 3z (4.48)
Pi(z) = 2(35932—15). (4.49)

At this stage, we have enough that a computer code based on the Schwarzschild
formulation given in Section 2.5, such as the one used in the verification of the gen-
eral code in Section 3.5.2, can be modified to account (to an extent) for rapid
rotation by building in an oblateness term. This is done by including a correction
factor of the form cos ap./ €os agph, in the integral. This approach only works for
those data described by rays visible in both the spherical and oblate cases. All
we are seeking here is proof-of-concept for an application of the above oblateness
model and zenith angle calculation, so this is satisfactory. The modified calcula-
tion proceeds by choosing an initial equatorial radius R, mass M, frequency 2y,
and emission colatitude .. Then r(f.) is calculated via the model; this is the
initial radius for the ¥(b) and T'(b) integrals, and the radius that enters into the
relavent redshift and velocity factors. Finally, at every step of the calculation the
factor cos a1/ €os agpn. is computed and multiplied with the flux calculated via
the standard Schwarzschild formulation.

We have made this trivial modification to our computer code based on the
Schwarzschild formulation of Section 2.5, and show in Figure 4.19 how the resulting
light curve compares to a calculation done with our more general method. For the
chosen parameters, introducing this correction factor makes the light curve track the
Exact and OS calculations much more closely than the one produced by assuming a
spherical surface. The key difference is that the simpler method has no knowledge
of the initial structure beyond the oblateness model given above, and the mass,
equatorial radius, and frequency of the exact model. The modified computer code
takes only seconds to compute a light curve, compared to several hours for the

exact calculation using the general code.
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Figure 4.19: Incorporating oblateness model into calculations: We made a minor
modification to our simple computer code based on the Schwarzschild formulation
to incorporate a factor of cos agp). / cos agpp, to attempt to incorporate the effect
of oblateness on the observed light curve. Both graphs were calculated for the
EOS L, 1.4 Mg, 600 Hz model which is the most oblate model we are considering.
Each graph shows the light curve as calculated by the general code running in the
exact configuration (the “true” value) and in the OS configuration, the light curve
calculated by the oblateness-modified code with the equatorial radius set to agree
with the true model, and the light curve calculated by the spherical Schwarzschild
code where the radius is set to agree with the true value at the emission region.
The top graph is for emission at #, = 41° and observation at 6, = 20°; the bottom
graph has 8. = 49° and observation at 8, = 70°. The oblateness modified code
cannot calculate the flux arising when the emission region is not visible, as there is
nothing to apply the correction factor to. The improvement is significant enough
that this idea should be further developed beyond this prototype.
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Incorporating the oblateness model via a correction factor seems to improve the
performance of codes based on the Schwarzschild formulation given in Section 2.5
which assume a spherical surface, but the formulation itself needs to be modified in
order to account for the changed visible region when oblateness is included. Having
given the required oblateness model and worked out the modification to the zenith
angle when oblateness is included above, the remainder of the details on this point

are left to future work.
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Chapter 5

Conclusion

Summary

The discovery of millisecond-period X-ray pulsars within the last decade (Wijnands
and van der Klis, 1998), and the related discovery of coherent oscillations in the
cooling tails of Type I X-ray bursts (Strohmayer et al., 1996), offers a tantalising
opportunity to use these new observations to unravel the physics of neutron stars. In
contrast to radio pulsars, the pulsed light from these objects is understood to arise
from on or near the surface of the neutron star, and so it provides a direct probe of
the neutron star’s gravitational field. Moreover, their short rotation periods imply
relativistic velocities at the equator. The possibility of determining the neutron star
mass and radius using the observed phase-resolved flux from these systems offers a
potential route to constraining the state of matter in neutron star cores. The main
result of this work is that the rapid rotation of neutron stars in millisecond-period
X-ray pulsars has important consequences for models of the pulsed emission, and
by extension, the analysis of observations of these objects. We have argued in this
dissertation that the most useful models of millisecond-period pulsed emission will
account for the phase-dependent times-of-flight of photons from the star to the
observer, and the rotation-induced “flattening” of rapidly rotating neutron stars.
Of these effects, the former is accounted for more often than the latter, although
neither consideration is universally applied to treatments of this problem, and it
is important to understand what impacts this might have in applications of these
models to data.

The structure of rapidly rotating neutron stars and the spacetimes they inhabit
are not well-approximated by their static and spherically symmetric counterparts.

Furthermore, precise descriptions of the situation, both interior and exterior to
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the star, are only known numerically. The reduced symmetry requires that the
light rays joining the star and the observer are described in more generality than
is commonly seen in the literature (Chapter 2). In the spherically symmetric case,
obtaining a definite description of these rays requires only the numerical inversion
of a straightforward quadrature. In contrast, the more general situation requires
much more computational work (Chapter 3). v

Using observations of these new systems to make statements about neutron star
parameters, such as mass and radius, involves finding the best fit of a calculable
model of the pulsed emission to data. This is the basic methodology followed in
work on classical X-ray pulsars (e.g., Leahy (2004b)), and more recently, attempts
have been made to apply similar techniques with some corrections to account for the
speed of these objects (Poutanen and Gierliniski, 2003; Bhattacharyya et al., 2005).
Finding the best fit model will typically involve many evaluations of the model over
a region of its parameter space, and so from a practical point of view, it is best to
use a model of the pulsed emission which is quickly computed. A formally correct
pulse profile model would be cumbersome for this purpose, because a general step
in the parameter space will typically require a solution of the field equations for
the model corresponding to the new parameter values.

After implementing a computer code to calculate the pulsed emission from the
surface of a neutron star in the context of realistic stellar structure and precisely-
solved spacetime metric, we investigated the extent to which one could interpret
these light curves using a least-squares fitting method which compared our syn-
thetic “data” with approximate, but easily evaluated pulse profiles for a spherical
star and the Schwarzschild spacetime metric (Chapter 4). Such a procedure is anal-
ogous to methods that have recently appeared in the literature with application to
observational data. The goal was to investigate how successful such a procedure
would be in an idealised situation where there was no random noise added to the
signal.

First, we considered the question of fitting using light curves which additionally
ignore the variation in the photon times-of-flight, which may be at the level of
several tens of microseconds (representing up to about 5% of a rotation period).
We also restricted ourselves to the worst-case situation, where both the observer
and emission are in the equatorial plane. For 300 and 600 Hz models, for both soft
and stiff equations of state, large errors at the level of tens of percent were found for
the obtained fitted values of M and R, although the fitted value M /R was within

less than 10% of the true values in 3 of the 4 cases we tried. The most problematic
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case was also the largest star.

Our next experiment was similar, except we did not restrict ourselves to the
equatorial plane. We generated synthetic data for fitting using the full calculation,
and to these we fit a light curve calculated using the formula for the Schwarzschild
case with all time-of-flight effects included. We found that it was difficult to obtain
reliable results for M or R individually when €, 2 200 Hz.

Future directions

Using fitted models of stellar oblateness

By comparing pulse profiles calculated using various approximations, we found that
stellar oblateness can have a significant impact on the resulting pulse shape, and
that this was often more significant than the choice of exterior metric (whether
Schwarzschild, Kerr, or exact). This is surprising, because generally there is more
focus in the literature on using rotating metrics in this kind of calculation than in
using improved descriptions of the stellar structure.

At the end of Chapter 4, it was shown that in an approximate way, one can es-
cape the necessity of computing stellar models to obtain a description of oblateness.
This addresses the importance of efficient calculations for the purpose of calculating
the forward problem during fitting. We exhibited a simple polynomial which cap-
tures the oblateness of a wide range of models for three equations of state spanning
a range of stiffness. There is still work to do on this, because we only examined a
limited number of candidate equations of state, and have not shown that all other
reasonable equations of state yield models that are well-approximated by the same
polynomial. We also showed that in principle it would be possible to take this poly-
nomial model and use it to correct the basic Schwarzschild calculation of the light
curve for oblateness. Since this was only demonstrated by inserting a correction
factor one expects to enter the expression, it still remains to treat the problem care-
fully and properly account for the changed visibility of these polynomial oblateness
models in the context of the basic Schwarzschild formalism.

We have demonstrated that there is a level of error introduced when millisecond-
period pulsar data are analysed from the point of view of spherical stars and the
Schwarzschild metric. A thorough treatment of the idea at the end of Chapter 4
may lead to a practical way to incorporate the effect of rotation on stellar structure

in such analyses.
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Computer code improvements

During the development of the general computer code that was used to calculate
the pulse profiles in the precise spacetime, we initially took the view that it was best
to perform the calculation using formulas that expressed what an observer would
measure if they had knowledge of the light rays which extended from them to the
visible part of the star. Our motivation was to leave out formulas and assumptions
that may only be valid for a spherical star in the Schwarzschild metric. For ex-
ample, the projection of a two-dimensional emission region onto the observer’s sky
was calculated in terms of the angle formed between pairs of light rays received by
an observer (Section 2.4.1). With four rays extending from the corners of a small
quadrilateral on the surface of the star to the observer, the area of the quadrilateral
projected onto the observer’s sky could be calculated (Figure 2.2). We also argued
in Section 2.4.2 that, similar to the case in special relativity (Penrose, 1959; Terrell,
1959), the motion of the emitting region impacts the visible portion of the emit-
ting region at an instant of observer time. The emitting region will appear to be
stretched by an amount related to the rate of change of the photon times-of-flight.
The importance of this effect in the context of X-ray pulsars has been pointed out
by, e.g., Poutanen and Gierlifiski (2003) and Viironen and Poutanen (2004).
Initially, the required term involving the derivative of the times-of-flight was
only known numerically for the general case, although the additional symmetry in
the Schwarzschild spacetime allows this quantity to be written down analytically
(Equation 2.132 and the expressions that follow). The computer code was therefore
designed to compute times-of-flight accurately enough that the derivative could be
numerically calculated by finite differences, which results in long integration times.
After numerical investigations, we discovered that it was generally true that a
similar expression as for the Schwarzschild case holds in complete generality. This
surprising analytical result is discussed at the end of Section 2.4.2. In principle,
it might be possible to avoid the slow computation of the times-of-flight in the
manner described in Section 3.2.1; certainly, the accuracy can be reduced if the
analytical expression is used for the derivative rather than numerical differencing.
In circumstances where rays originating from a single latitude are being considered,
it might be possible to skip the time-of-flight calculation altogether in favour of
using the much faster procedure used to find the initial conditions for rays linking
specific star and observer coordinates (Section 3.3), and using the analytical form of
the time-of-flight derivative d7'/d¢ = —b to compute their relative times-of-flight.
Additionally, it would be desirable to improve upon the described method to
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compute the projection of a small emitting region onto the observer’s sky. The
method we used relies on accurately integrating the final values of the direction
9 of the rays reaching the observer, and accurately enough that it can be used
for differencing when evaluating the angle formed by two rays at the observer (see
Equations 2.73 and 2.74). This places a practical lower limit on the size of the
angular patches we used to cover the star’s surface. We know that the projection
of the emission region on the observer’s sky should be ~ cos(a), if « is the angle
formed between the emitted ray and the normal to the surface of the star, but
we are missing a convincing argument that this is identically true in general. If
this quantity could be generally written down in terms of only the locations of
the emission region and observer, and the initial conditions for the ray, additional
efficiencies can be realised. Nevertheless, the method we used agrees well with an
independent analytical treatment of the problem for the Schwarzschild scenario and
was seen to have the expected behaviour (Section 3.5.2).

Finally, it may also be desirable to incorporate elements present in more realistic
models of the pulsed emission and to depart from our idealisation of bolometric flux
from an infinitesimal, isotropic emitting region. Such enhancements would include
allowing for multi-component emission spectra, different detector energy bands, and
extended emission regions on the surface. These problems were not considered in
depth since we wished to isolate the fundamental issues arising from rapid rotation.

Realising these future goals and improvements would require significant time.
The route we took to obtain a means to consider the implications of rapid rotation
on pulse profile models of millisecond X-ray pulsars was testable in many respects
and led to interesting conclusions which are understandable in simple terms and
indicate a need to account for effects unique to this relatively young category of

objects.
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