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Abstract

The classical Fermi~Ulam Accelerator vas originally introduced as a simple time
dependent system for studying the transition from classical tc statistical mechanics.
It consists of a particle trapped between two rigid walls, one of which moves in somc
prescribed manner. The particle bounces elastically from the walls and will gain or
lose energy with each collision with the moving wall. Recently, a quantum version of
the system has been introduced. The main object of studies involving the quantuin
Accelerator has been to examine the transition from quantum to classical mechanics
in a simple time dependent system. This thesis looks at 2 formulation of the quantum
Accelerator from within the framework of the Heisenberg picture. Along the wav to
formulating the problem, a detailed examination of the quantum particle-in-a-hox

problem is made.
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Chapter 1

Introduction

In 1949, Fermi [1], proposed a model for a cosmic radiation source. At that time, there
were several unanswered questions concerning cosmic rays; it was not understood
how any known source could produce particles of such high energy with such prea
intensity. Fermi proposed the following: giant molecular clonds, ionized sufticien fv
for « niagner feld to be trapped in the cloud, could transfer tremendous aronns of
energy tc char;led particles inter.i: 1 *7 e magnetic field. The Process consistod
of a series of collisions between the particles and the randomly moving < ouds. Fermg
felt that, overall, there would be a net transfer of momentum to the particles aped
that, given enough time, the particles would attain very high encrgies. The sheer sioe

of the clouds would account for the intensity of observed radiation

Similar models were studied by Ulam [2]. He examined several svstems il
as gravitational 3-body systems and n-particle systems with clastic collisions i I
the intention of understanding the transition frem classical to statistical techiios,
The most well known system which he examined is now called the Formi Ulann Aeeel
erator. It consists of two walls (usually infinitely massive) which move witl respect
to one another, and a particle trapped between them. The particle collides (v
ally elastically) with the walls and will either gain or lose encrgy during the collision
depending on whether the wall and particle are moving towards or awayv {romu o
another at the time of collision. Ulam performed numerical simulations of 11 sy
tem and was surprised not to find the kind of energy growth predicted by statistic]

arguments.



The contradiction between the theoretical work of Fermi and Ulam and the
numerical work of Ulam provoked many detailed studies of the phase space over the
next decade. Numerical and theoretical work by Zaslavskil and Chirikov [3. 4]. Brahic
[5] and Lichtenberg and Lieberman [6], revealed that the Fermi-Ulam Accelerator only
follows statistical laws in some regions of phase space, and that the energy growtl

proposed by Ulam and Fermi is limited by the size of the stochastic regions.

The complicated nature of the phase space of the Fermi-Ulam Accelerator Lias
made it a useful model for demonstrating many aspects of classical behavionr for
more than thirty years. Oddly, though, the natural transition to the quantum Fermi -
Ulam Accelerator has only been made recently. Its study has been prompted. to o
large extent, by interest in quantum chaology—-the study of quantum systemns wliose
classical counterparts exhibit stochastic behaviour. The bulk of the work in this ficld
has been with time independent systems. The first of the time dependent systens
to be seriously studied was the kicked quantum rotor (consisting of a periodically
forced rotating system for which the forcing function is composed of a series of delta
function kicks)[7}. The quantum Fermi-Ulam Accelerator, introduced in 1956 by Jose

and Cordery [8], is the second time dependent system to receive widespread stidy.

Time dependent quantum systems have a number of experimental applications
as well as the purely theoretical ones described above. One of the most interesting
applications is to electromagnetic traps, which are mathematically similar to the
quantum Fermi-Ulam Accelerator. Two thirds of the 1989 Nobel Prize in Physics
was awarded to Dehmelt and Paul [9, 10] for their contribution to the physics of single
particle systems. In one experiment, Dehmelt was able to store a single clectron in
a trap for ten months in order to study its structure. One of the most fascinating
aspects of this work is that it allows direct observations of the single particle quantum
wavefunction; virtually all other experiments can only provide statistical results from

a very large number of quantum particles. These kinds of experimentally realised



s.ngle particle quantum systems have made theoretical sturdies of similar SVSEeTs
(such as the quantum Fermi- Ulam Accelerator) extremely interesting: they provide
a motivation for studying different time dependent models and an opportunity to

confinin the results.

Obtaining a description of the quantum behaviour of any svstem is the first
goal of most studies of time dependent systems. The second goal is usually 1o un-
derstand the correlation between the quantum and classical behaviour. The second
goal forms the basis of quantum chaology [7]. The aim of this thesis was originally to
address these two problems. However, as work progressed it became apparent that o
thorough understanding of the formulation of the problem is crucial, and o faree pon
tion of the thesis is «icdicated to this topic. The thesis is ordered as 1ollonws: Clinpiten
2 of the thesis is a short description of the classical problem. Chapter 3 contains o -
scription of several approaches to the quantum Fermi-Ulam Accelerator, foliowed iy
a discussion of the discrepancies which occur between two of the approaches. Chaprog
4 consists of a very careful treatment of the operators needed 16 deseribe the quay
tum problem, with the aim of resolving the discrepancies mentioned in chapter 2
Chapter 5 is a brief discussion the the semiclassical limit. Chapter 6 contains bty o
solution to the Heisenberg equations for a special case of the Fermi Ul Acoclorato
in whicl the wall motion is linear and a discussion of an alternative formmlation ol
the problem. Chapter 7, the conclusion, contains a summary of the results of te

thesis as well as a discussion of the work which next needs to be doune,



Chapter 2

Classical Theory

A Fernn-Ulam Acrelerator is nsually constructed as follows[2]: Fixed rigic walls arc
placed at £ = 0 and at r = L(t), ¢ being time. A ball bounces elastically between the
walls. The position of the ball is denoted by z(t). The ball maoves freely betwecn the
walls and the bounces are given by the following boundary conditions: wlon » = 0
then p - —pand when z = L(t) taen p — —p+2mL {m is the mass of the particle. p
15 the momentum and tie overdot denotes differentiation with respect to time). The
benhaviour of the system is usually discussed in terms of the values of p. 2 and t at

th

the ' bounce from the moving wall.

The time between two successive bounces from the moving wail is

m
tu+l — i, = —_'—T[L(t ) + L(i11+1)]-

| Pr !

——
tJ
—

Here p, is the momentum of the ball after the n™ bounce from the moving wall and

it 1s always negative:

hJ
[N

Pn = Pp—1 + QmL(tn)- (:

The position at the n'* bounce is simply:

T = L(t,).

Qv
(]
-

Equations 2.1 and 2.2 form a set of difference equations which (except for a few simple

cases) cannot be explicitly solved. Equation 2.3 follows trivially.

A wall motion for which the transcendental nature of 2.1 is removed is formed



from a pilecewise connection of wall motions of the forr

L(t) = VA2 + Bt + C, (2.0

for which 2.1 and 2.2 become

B+ [A + (pa/m)?|ty + 2(] pa | /m)\/:(t';’, + Bt, + '
(pn/m)? — A

tn+1 =

and
At, + B2

VAL + Bt, +C

The interesting feature of this case is that it is the most general type of wall motion

Pn = pn_1+ 2m

for which the quantum version of the problem has been solved.

The kinds of wall motions used by other authors include special cases of 2.0,
such as connected segments of linear wall motion [11, 12] and conucetod seements
with A = 0 [13], as well as more general motions such as connceted segments witl
linearly changing wall velocity (L(t) = A2 + Bt + C ) [3, 4] and even sinnsoidal
variations [14]. In general, the simpler forms of wall motion allow a tore ACCHTHLC
treatment of the behaviour and the more complicated (eg. sinuscidal) motions requiye

approximations which necessarily limit the scope of the -+ork.

The classical system has proven interesting for { wo reasons. The first veason is
that it is an excellent model of a time dependent system that exbilits stochastic and
regular behaviour. The original proposal, by Fermi (1], of the possibility of unbonnded
energy growth led to more detailed explorations of the phase space [2, 3, 4, 13, ¢).
The problem is well studied and the conclusions can be summarised: There is a finate
upper bound to the energy which any particle can gain int a periodic Fermi Ulan
Accelerator [15]. Furthermore, for particles with high enough initial cuergics, there
are also bounds on the amount of energy which can be lost. In general there are three

regions of phase space:



1 Lew particle voloeiries for vwhich the maticon ie stochnctic

2. imermedinc particle velocities for which islands of stabilitz are contained in .

othierwis cto o hustic phase space.

3. High particle veloeities for which the motion is regular and the encrgy oscillates
about a mean value with the period of the walls. In this limit the wall 1motion

15 adiabatic relative to the particle motion.

A second reason for studying the classical system is to understand the transiiion from
quantum to classical svstems [11, 16, 7]. This is a poorly developed arca of tlicory

wiich will be discussed in detail in a later chapter.



Chapter 3

Quantum Theory

The classical system is usually quantised [13,11,12,8,17, 18] in the following snanne: -

the Hamiltonian which gener

+ " - .
b s [>883 icda PR .

1 h - :
TS ITCC PariiCiv LeUAVIGUT is
s -9 . . B .
H=5"/(2m). (3L

where the " is used to denote operators. It is usually assumed that the elissienl
‘bounce’ boundary conditions correspond to Dirichlet boundary conditions o 1l

crantumn wavetfunction:
U(z =0.1) = V{xr = L(t),t) = 0. (30
The Schrédinger equation becomes

— (R?/2m)3%V = iho, ¥ L5

-

where d; denotes the partial derivative with respect to o, This is nonseparable L
cause of the boundary conditions. For numerical studies (13, &] the wavefunerion i
traditionally expanded in terms of instantancous eigenstates, o, (o t). of the ol
tonian:

Gn = (=1)™2/L()) ?sinlnrr/1.(t) , Sy
IRYR S { )
and the time evelution of the expa usion coeflicients is calculated.

This is not a useful approach for analytical studies, however, and a4 o
recently developed approach is becoming standard {11,112, 16, 19, 17, 187 Toe non

scparability of the boundary conditions can be removed by the seqgnence of anivo

~]



transformations given by
- ) .
Ur = expl~52(2p + 77) log(L(1))] (3.5

and
. i ]
Jo — [— 2 (i
U, = expl‘?thLr ] (3.C

Along with thie comunutation rule

[#,p] = ih, (3.7
U, has the following effect:
Urpl, = p/L(¢)
Ul_l.i‘l}l = IL(t) (3.8
and 3.3 transforms into
- 2:;1283\11 = th&,¥ + %(i‘ﬁ + pz). (3.G;

Because the same notation is being used for the ope «tors before and after 11
transformation, it is important to understand the meaning ~f 3.8. The effect of U

on a function is
Uit f(z) = \/L(t) f(zL(t)) (3343
so that the boundary conditions now become
Ur'W(z=0) = Y(zL(t)=0)=¥(z =0} =0 (3.11)
UP'@(e = L(t)) = W(zL(t)=L(t)) = Y(z = 1) = 0. (3.12)

Uy scales the interval [0, L(t)] into the interval [0,1]. I, is introduced to climinate

the crossterms in 3.9:

U507 p0W0, = pIL(t) + mL(t) (3.13)
U0r'e000, = 2L(t) (3.1



and 3.9 becomes

2
v mo_ . )
- m ;‘Z\I’ + ?LLIQ\I' = thd,W {3150

It is often convenient to rescale the time in 3.15 so thai

reode
= _ - (3.1
T j L?-l\ j (3.1¢
and 3.15 becomes
n? ; ”
= —PV + Zg(r)22W = inop T
271 2
with
9(m) = {(1/L)diL — (2/L%)(d,.L)?). (3.18)

The bonndary conditions are not affected by Us and are still given by 3.11 and

i

It is easily shown that if L(t) is periodic, with period T, then g7 i~ also
periodic with period 7 = 7(T). Under such circumstances, 3.17 is known to hiave
solutions of Floquet type [20]: ¥(r) = l:'(T)\Il(O), where U(7) is a time evolunon
operator with the form

U(r) = P(r)e=#41r (3.1,
and P(7) is periodic with period T. Further, P(7 = 0) = I, the identity Gperator,
A is a time independent, self adjoint operator. The one cycle evolution operatar i-

defined as

U=U(T) = e #¥7 (35,20

After n cycles of wall motion the time evolution operator is just

UEU(RT):(/" [

NS
[
~

so that the time evoluticn of a system may be discussed in terms of the relatic P
simple operator, U. It is thi. approach that Seba [12] takes when he diseisacs 1l
boundedness of the quasienergy of a quantum particle. The technique e nses is gt

general and follows the work of [21].



The argument depends on the self adjointness of A7, which guarantees the
existence of a complete set of orthogonal eigenfunctions spanning the Hilbert space,
provided the cigenvalues are discrete [20]. Denoting the eigenfunctions by v, and
the eigenvalues by A,, an arbitrary wavefunction may be expanded in terms of these

states [21]:

U(r) = Y a.P(r)e iy,
= Za,,e"l”""f’('r)vpn (3.22)
so that the quasi-energy expectation value is
(U(T)[iRO-|U(7)) = 3 ajane  ¥Am=200T [\ 5 4 (Ua| PHT)iRO P(7) ). (3.23)

where ' denotes Hermitian conjugate. The infinite sum in 3.23 can be broken it i
finite sum
N .
D Rane ROmTAITIN s o+ (Un] P (7)iRO, P(7)|om)]
mn=1
and ar infinite sum,
oC .
Do Ahame KOm AT s 4 (| PYT)ihO, P(7)| ).
ma=N+1
The infinite sum can be made arbitrarily small by choosing N large enough. since
@, — 0 in the large-n limit (this is necessary for 3.22 to be normalised). The approx-
imation made to 3.22 by the finite sum will be recurrent in the sense that it will come
arbitrarily close to its initial value infinitely many times over the course of its evolu-
tion. The remaining infinite sum will not change this, because of its arbitrarily small
nature. Unbounded energy growth is not possible in recurrent systems. Of coursc,
this will break down if the spectrum, An, contains a continuous component-—in which
casc the time between recurrences becomes infinite. In such a case, unbounded energy

growth may occur.

10



Seba’s paper is, therefore, devoted to demonstrating the discrete nature of
the quasienergy spectrum. His condition for boundedness is that L{1) be five ties
differentiable, though failure to meet this requirement dees not necessarily ply

unbounded behaviour.

Seba also gives an example of, and a criterion for, unbounded energy growth
through a quantum resonance. Periodic wall motion which is continuous in time bt
which has occasional discontinuities in its derivative will provide a scries of delta

function kicks to the system: g(7) will have the form

9(7) = go(7) + ag D 61— 19— nT) + a, ST =1 —nT)

+...+aj26(r—7j—7:j“) (3.2

where gg is a piecewise continuous, periodic function, and there are J discontinuitices
over the course of one period of wall motion. The strengths of the discontinuitios ape

@;. Seba’s condition for resonant growth due to the §-kicks is that

T dt ) N
JA TL—(ﬂTQ = p/q~w, p,q are integer. (3.26)

This kind of resonance is a purely quantum effect that has no classicul counterpari.
It is one of the most dramatic conscquences of the differences between quantung aned
classical mechanics because it survives into the realm of the large energy it whicl,

is often taken to be a classical limit.

There are not many exact solutions for the quantum Fermi-Ulam Accelerator.
The most general exact solution is given by the case that g, is piccewise coustant. in
3.24. Solutions to 3.17 are separable and can be Joined across the discontinuities. As

was mentioned before, this case is given by piecewise connections of

L(t)= VA2 + Bt + C. (3,27

11



This solution, tho: sh limited, is interesting because it is an exact solution for whicl
the corresponding classical system exhibits both regular and stochastic behaviour.
The connection between the quantum and rlassical solutions for this special case are

discussed in detail in chapter 5.

Two unsatisfactory aspects of the work which has been described are the de-
pendence of the results on the periodicity of the wall motion and an inability to
discuss the behaviour of the solution as a continuous function of time. The sccond
of these is particularly a problem for discussions of semiclassical physics where it is
necessary to reconcile a discrete mapping over one period of wall motion cquantumn
picture) with a discrete mapping between consecutive bounces from the moving wall
(classical picture). This is discussed in [11], and will be examined in more detail in

chapter 5. An attempt at overcoming these difficulties is made by Razavy [17].

Razavy’s approach is to solve the operator equations of motion generated in
the Heisenberg picture by the Hamiltonian, 3.1. The Heisenberg cquations of motion
for an operator 4 are

ihA = [4, A). (3.28)

With the transformations, given by U; and Us, and the rescali:. o ~f time, given by

3.16, the equations of motion become,

ihd,z = [z, H] (3.29;
ihd.p = [p,H] (3.30)
H = p?/2m + (m/2)g(7)32, (3.31)

with g(7) given by 3.18. Along with 3.7, this bec.rac:

dz+g(T)E = 0 (3.32)

p = md.i. (3.33)

12



Equations 3.32 and 3.33 are just the harmonic os-illat~r cipuations of maotion
with a time varying oscillator strength. The classical equations corresponding to
these have been well studied and it is easily shown that the operator solutions can b

written
r = i‘oF(T)—}-ﬁQG(T)/TI?,
p = zZomd,.F(7)+ pod,G(7) (3.3:1)
where F(7) and G(r) are linearly independent solutious of the classical problem
satisfying
F(0) = d.G(0)
= 1 {(3.350
G(0) = d.F(0)
= 0 (3.0

Here Zy and pg are the Heisenberg operators at 7 = 0 an-l they coincide withy 1

Schrédinger operators so that

Tof(x) = zf(x) (15,57

Pof(z) = —ihd. f(x). (3.5%
At this point it is important to realise that 3.18 can be rewritten

d2(1/L) + g(7)(1/L) = 0 (3.39;

which has the same form 3.32. so that solutions of F and G are related to (1/1,. A
b J

second solurion to 3.39 is easily shown to be

A(T) =(1/L) /OT LA(7")dr! (340

13



and F and G may be written in terms of L and A.

F(r) = 1/L(7) = [d(1/L(7))}-=0A(7)
G(r) = A(7). LA

For a physically meaningful system, L(7) is never zero or infinite, so that A is an

increasing function of 7.

Rewriting the Hamiltonian, 3.31, in terms of the solution, 3.34, gives:

H = (m/2)[(d-F)* + g(T)F?z2 + (1/2m){(d.G)? + ()G

+(1/2)[d-Fd,G + g(r) FG](#0po + poto)

g

(3.42}%

From this it is obvious that unbounded quasi—energy growth will generally oc-
cur provided that g(7) does not asymptotically vanish. This contradicts thie result of
Seba but is not necessarily unphysical because g{T) — O corresponds to L(1} — con-
stant, which is certainly more physically reasonabie than having periodic oscillations

for all time.

What is unphysical, however, is the behaviour of (7). A simiple example shows
that something is not correct with the solution, 3.34: £ Heisciiberg wavefunction

chosen such that (U y|pe{¥y) = 6 will have a position expectation value

(2) = (2o) F(7).

However, there are many L(t) for which F(7) will grow without bound, so that (i)

will leave the interval [0, 1], and therefore be outside the walls of the box.

It 1s not obvious where the Heisenberg approach has gone wrong. The Heisen-
berg approach is known to be fully equivalent [22] to the Schrédinger approach. A
first guess might be that the choice of Hamiltonian is wrong, but this would not

explain why the same wrong result is not given by both zpproachies. The problem,

14



It turns out, is in working on the finite interval [0.1]. and the diticultios that this

introduces are discussed in the next section.



Chapter 4

The Interval [0, 1]

This section is a review of some of the mathematical concepts required for working
on the interval {0, 11, with applications to the Fermi-Ulam Accelerator [23. 24]. The
aim of this chapter is to find the source of the inconsistency between the Schrodinger
and Heisenberg apn-oaches used in the last chapter. The discussion is started with
4 definition of the space in which the system is described. Unless ot herwise stated,

natura! usits (7 = 72 == 1) will be used in this chapter.

The Hilbert space, H, used to discuss quantum mechanics on the interval
x € (0,1} is,
H = L?|0, 1], (4.1)

the set of square integrable functions over the iuterval [0,1]. An inner product of rwo

functions is defined by
1
(flg) =/0 dx f g (4.2;

so that square integrability implies (f|f) < oco. The norm of a function is defined Dy

AP = (f11)- (4.3)

A function, f, is in the domain of an operator, A, if Af is defined; this is denoted

f € D(A).

For an operator to represent a physical quantity, it must satisfy certain re-

quirements:

16



L. Anoperator must be Hermitian. An operator, A. is Hermitian if, Viige D
(Aflg) = (fiAy). (41

The momentum operat«. —i0; for example, will only be Hermitian if
f'g[cl, =0 for all f,¢ € D(p) (L)

since

/01 fhgde = —i_/: f 0.qdr
= z'/olgé)t_f‘ dr —i f gl
= [[orrods—i o). 4
Hermiticity of an operator guarantees that expectation values are real.

2. A stronger condition is that an operator must be sclf adjoint. A Hermnia

operator, A, will also be self adjoint if

<fifi£l> = (¢lg) = f € D(A) and Af = o,
Vge D(A); ¢, f € H. (1.7

An example of a Hermitian operator which is not self adjoint in tho

operator defined as

Pyg(r) = —id.g(x)

Vg(z) 2 g(0) = ¢(1) = 0. (1.5

This operator is obviously Hermitian, sizce 4.5 is true. However, it swill also he
true that, given g € D(P), f*gly will always vanish whether f is also in D),
or not. From this it follows directly that 4.7 is not true, and P is not <olf ol

Joint. Self adjointness of operators implies the completeness of their cigenstatos

provided, as has been already mentioned, the eigenvalues are diserete,

17



The definition, 4.7, can be shown to be equivalent to the statenients

A is Hermitian,

Vf€eH3g, € D(A) 3 (Axijgy = f. (4.9,

In other words, self adjointness means that the domain of an operator. 4. is large
enough that A4 maps into the entire Hilbert space. For practical purposes. 4.9
is easier to work with than 4.7. A simple proof of 4.9 can be found in Schechtor

[23, Corollary 1.8.1].

3. A third condition on physically meaningful operators is that they be defined.
This is not a trivial statement. A function, f, may be in D(p), the domain of
the momentum operator, and yet Zf may not be in D(p), so that pif would
not be defined. The problem of defining operators is critical when combinations
of operators are considered. The domain of a combination of operators cauy
always be found by insisting that each operator map into the domain of the
subsequent operator. However it is often possible to extend thie domain of the
vesultant operator by operating on Cauchy sequences for which cach of the
elements is in the domain of the operator, but the limit points arc outside of
the domain of the operator. What is meant by this will become more ohvions

when some practical calculations are done.

The operatcrs used in solving the particle-in-a~box problem can now be de-

fined. The position operator is defined as
Tg=1xg, g€ H (4.10)
This is obviously Hermitian. Further, given any function, f € H,

(Zxi)gs = f
=g+ = f[(xzk3) (4.11)
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and g4 € D(#). From 4.9 it follows that # is solf adjoint,
The momentum operator is defined as
PI) = —id, f(x)
where f(0) = ¢“f(1). (h12)

Here, 6 is a fixed constant and there are an infinite number of detinitions of p e
pending on how @ is chosen. The mementum operator will be self adjoint sinee 1.5

will be sati ied and since, given feH,

(Pti)ge = f
= 0:9+ Fgxr = if
(1ot
which has a solution
z L
g+ = e [gy +i/ S(2")e¥ da'). (111
0
The final requirement of 4.9 is that g+ be in (p). This can casily be seen to be (i
case if
9+(1) -0 -
g+ (0)
so that
. 1 —
go = ve'?*! / f(2")e® da'. (416
0

From 4.9 it follows that p is self adjoint.

If 4.8 had been taken as the definition of the monientun operator theny .17

would become
9x(0) = 94,(1) =0

which leads to the statement
1 o,
0=g:(1) = ieﬂ/ f(z)eF do’
0
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FES T . <1 r 2 <

SULrRLLel Leilue Sur wibdliary € H. This s consistent with the catlier concinsion
that 4.8 15 not celf adjoint.
The free particle Hamiltonian (taken elsewkiere to be P7/2) 1s nexit 16 be de-
fined. Let
Hog(z) = —02g(x)
g Ir) = z‘g ‘T/

where g(0) = g(1) = 0.

—
e
—
|

Tuc choice of boundary conditions is based on physical reasons and is not unique. M
15 Hermitian:
R .
(File) = [(Ffygde
= ~0; fgly+ fr0:qly + (f|Hy)

= (flHg). 418
for all f,g € D(H). Further, from 4.9,
~2 SR
- Zgi' i zgi - f’
where f € H, implies that
r o Y dx”’
g4 = Gi[go +] 9 28 Gi2f(-[ ) ad (].?7,] 1\419
0 Gi

where gg and g, are constants and G. are solutions of the homogencous equation
2 .
—d;G+ £iGy = 0.

The solution, 4.19, will be in D(H) if

g9 = 0
1£’Gij’d:" y
o Mo —de 1.2
gy = 116;2(11- (4.20)
0



From this and 4.9 it follows that M is self adjoint.

It is very important to realise that . defined by 417 i mof 577 The Qo

~ ~) . . - - . o~ .
01 p” 1s a subspace of the domain of p which contains all the elemcnts. o, for which

pa € D(p), so that p?g = j(pg) is defined. In fact
D(p%) = {4l9(0) = ¢9(1),9:9(0) = e“drg(1)}. SR

Defined this way, p° is obviously Hermitian since 4.18 will be true and g andd o e
be found in a straightforward manner such that g+ € D{p?). This process tuav e
continued and higher powers of momentum may be defined. In a similar fashion.
higher powers of the free particle Hamilitonian, M, may be detined. With 1his done
it is possible to define quantities like e~ in terms of their Tavior series (Hove, A |

a real number).

Now the domain of a quantity like e~#3 can easily be scen to be fnnetions
for which all derivatives satisfy the boundary conditions f(™ ) = UL (wher
f" denotes the n'® derivative of f). This may seem like a restrictive donin, b
1t is. in fact, dense in the Hilbert space. Further, it is a bounded operiror which
may be extended to act cn the entire Hilbert space by means of Canucliv scinence
as mentioned before: If f, is a convergent sequence of functions in the domnin of
e~2 with a limit point, f, outside of the domain, then ¢ 2 f 1mav he defined -
lim,_..e P2 f,. The boundedness of the operator, e~ guarantces the conversene:
of the limit. In general, unbounded operators, such as the momentunm operator, wiil

diverge under such a limiting process.

There is nothing in the above discussion to determine 6 (introduced i 412,

The physical meaning of 9 has been examined by Wightman {25] and Capai (20

1

What is important is the effect that 6§ has on the trapslation operator:
T(A) = e~ (4.
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lu unrestricted space, T is known [22] to translate a function by an aniount A-

T(8)f(z) = f(z — A).

e
Lo
W

However, on the interval {0, 1], the effect is somewhat different. Tle eigenfuncticus

of p are
&, = ei(2n1r—0)z (424\)
with eigenvalues
Pn=2nmw— 6 (4.25:
An arbitrary state, ¥, can be expanded in terins of these eigenfunctions so that
¥ = Z a, =0z (4.2G

N==—2C
The eigenfunctions, ¢, are obviously in the domain of T{A) so that T(A)Y may be

evaluated with 4.26:

T(ANT = e P2y

= (=iA) X _
— Z ( = Z a,,p"’e'(z"" O)r
=0 J:

n=—o0

oo
— Z anei(‘lnx—(})(r—-A). (4127,

n=—o0c
It is tempting to write this as ¥(z — A), but it must not be forgotten that P'{ur) =
U(r — A)is only defined r0<r—A<landnot(<z< 1, so that ¥'(.r) is not
a well defined function on the interval [0,1]. A closer look at 4.27 reveals that the
effect of T(A) is to shift the function to the right by an amount A, and return the
portion that leaves [0, 1] via the opposite wall with a phase shift of ¢??. A commonly
used term describing this is ‘physics on a cirele’, which implies that, in some sensc

the variable, r, is an angle-I’ke variable.

It is now becoming clear why it is undesirable to define H in terms of the

momentum operator: p? will not generate the reflection needed at the bouudaries o
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simulate a box with rigid walls. The free particle Hamiitonizn, on the other hand.

will generate the desired behaviour. The operator H has eigenstates
Gn = ﬁsin(nxr) Chos
which form a complete basis set, so that an arbitrary wavefunction can he expanded:
o
Y(x,t =0)= Z a,,\/isin(nnr). (1.2
n=1
The time evolution operator associated with 7 is
U=e M2 (1,30

The wavefunction, ¥ given by 4.29, is in the domain of I7 so that {7V can be evidunted

Notice that ¥, given by 4.26. is not in the domain of L .
[y oc o=
U(z,t) = e /2 Z anV2sin{nwr)
n=1

o N
> a,V2sin(nmx)e 2 (-1.31)

n=1

he wall reflection can easily be seen from the behaviour of a wiavepacket made )

of the first two eigenstates:
U(x,t) = e 2sin(nz) + e (2712 sin(27.r). (4.132
for which (p) is
(P) = 8/3sin[37%t/2). (1.3,
This can be compared with the behaviour of a wavefunction whosc generator of notion
is
U = e #/2 (10,

A wavefunction constructed from the first two positive eigenstates of p? s

U = (1/\/x:-;)[(,;'{(2#—-0)1‘—(‘21!’—0)%/2} + ei{(dr—l)}z——(vh.'4—0,"-'1/"..’;} [

—
[\
~
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for which (p) is
(p) =1/2[(27 — 6) + (47 — 8)]. (4.36)

As 1s evident, there is no change in the sign of the momentum and the wavepacke:
is transmitted through the right hand wall of the box (at £ = 1) with a constant
moementum. As was discussed earlier, probability is conserved as the posrtion of the
wavepacket which leaves, reappears through the left hand wall (at z = 0). It is
apparent that the different domains for 52 and H determine which series CXpansions
can be used to represent a wavefunction. It is the difference in these basis sets which

produces the different behaviour of the two cases.

The point of the previous example is to demonstrate how crucial the choice
of operator is when trying t. represent the physical behaviour of the systemn. and to
motivate the choice of H for the free particle generator of motion. This discussion
also gives a clue as to what the source of the discrepancy between the Schrodinger
and Heisenberg approaches, discussed in the previous chapter, could be. Recall that

the Heisenberg equations of motion were given in 3.29 and 3.30 as

ihd.& = [z, H),
ihd,p = [p, H], (4.37)

where H was given by 3.31, and will now be correctly written as
H =ﬂ/2m+mg(r)iz/2. (4.38)

For the remainder of this chapter and for chapter 6, operators will be assumed to
be Heisenberg operators (with an implied time dependence) unless otherwise denoted
with a subscript 0. Occasionally the time dependence of an operator will be indicates

for emphasis.

To solve these equaticns it is necessary to evaluate the commutators [T, H],

(. H] and [, #2). This will be done by first evaluating the commutators at = =

24



0—{%0, Ho). [P0, Ho) and [Po, 25]—and then noting the general relationship: 1f, for

Heisenberg operators A.B and ¢

then

[‘407 BO] = COs

[A(7). B()] = C(7).

As was discussed earlier, particular attention must be paid to defining the operator

combinations which appear in these commutators. The operators are dealt with in

order:

1.

The first commutator is
[i‘o,'}:l,.}] = [5:07:1,'0 —_ Hoi'u], (-1.30

which has in its domain all functions, f, such that the combinations 2ot and

7%05'0 are defined.
D([Zo,Ho]) = {f|f € D(Ho).f € D(%¢), Hof € D(ry). dof € DOFHi
= {flf(0) = f(1) =0} (1.0,

For functions in D([#,, Ho]),
[£0, Ho] = 2inPy, SRy

where P is defined by 4.8. It should be recalled that in unrestricted space thie

commutator is
[Zo, Fo] = 2ifip,. (442,

The two commutators, 4.41 and 4.42, differ because of the size of the domaine
of po and 750. The domain of 750 can be extended by the method descrilyed

before; Cauchy sequences which converge outside of the domain of the operator
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may be used to extend the domain of the operator. An operator, defined over
its extended domain, is called the closure of the operator and is denotod with
an overbar. An orcrator will only be distinguished from its closure if thiere is a
possibility of con.. sion. Since P, is an unbounded operator, Py is expected to
contain divergent terms. However, provided the divergences are weak. they will

not pose insurmouutabl- problems. Let f € D(py) be given, and write it as

f = a+br+g(z),
a = f(0),
b = f(1)- f(0)
9(x) € D(P) (4.43)
Now the Cauchy sequence
fu= i<2/m)la — (a +b)(=1)"]sin(n7z) + g(2) (4.44)

can be defined. The sequence converges in the norm to f € ID(P,), but cach of
the terms, fyu, is in D(’f’o). Then it is possible to detine
Pof = lim Pofn
N—oo
N
= -1 i —_ -1y 7 —1 if) Ha
ih Jﬂé?[a (a + b)(—1)*]cos(nmzx) + —ihd jia)

= —ih[3.f + 2f(0)6(z) — 2f(1)8(1 — 2] (4.45)

For the moment, it is assumed that the divergences can be dealt with as neces-

sary, and Py will now be extended:

Po = po— 2ih[6(Z0) — 6( — o)),
D(Po) = D(#o). (240)

The identity operator is denoted by [. At any time, then, the following hold

true
[£,71 = 2inP (4.47)
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[, H] = 2inP

= 2ihp +4R°[6(%) — (1 — ). RINES

It is clear, from 4.46 that P is similar to P, but differs by a termn which is not

Hermitian (an imaginary function of z is. in fact, anti-Hermitian).

[

. The second commutator to be dealt with is [}30,7%0}. From the formn of U '}}'(.]

it follows that

D([po. Hal) = {£1(0) = (1) = 0,0.| = 0.7

=0 027], = i )
(1.1

For elements in [jg, H).

[Bo, Folf = inPa3f — i 9} f
= 0. (-1.50)
The operator, [py, 7;(0], may be extended by the same method used above .

since it is a bounded operator, it may be extended to the eutire Hilbert spiee.

Then, for any value of 7,

p,H] = 0
D(p,H]) = H. (1.5
By a similar calculation
[P,H] = ©
D([P,H]) = H. (4.5

3. The third commutator is [5y, 3]. It has a domain

D([po, 23]) = {f1£(0) = f(1) = 0}, (.53
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and for elements in this domain

{Po, 23] f = —2ihzf. (4.

o
e

Now Zg is a bounded operator and may therefore be extended to have the entire

Hilbert space in its domain. Again,

p,&] = —2ins
D([p,%%]) = H (4.55)
and
[P, 3y = —2ihi
D([P,i%) = H (4.5G)
In general,
(p, 2] == —iaNEN-1 [P, 3N] = —iaNFN ! g
N - D)
[2,pV] = ihNpN-1 [z, PN] = ihNPN -
follow from the identity (for operators A, B’)
[4,B"] = [4, BIB™ + B[4, B1B"? + ...+ B-'[. B, (4.58)
and the commutators, [£,p] = [£, P] = ih.
The Heisenberg equations, 3.29 and 3.30, become
d.& = (—i/R){[%, F/2m] + [z, mg(7)2?/2]}
= P/m, (4.59)
d,P = (—i/R){[P, H/2m] + [P, mg(7)2%/2]}
= —mg(7)Z (4.60)
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and

d.p = (——z'/ﬁ){[j)','}:(/Qm] + [p.mg(r)27/2])

= —mg(7)x. (-1 G

Equation 4.59 gives a definition of 75(T). It will be shown in chapter 6 that
this definition agrees with the definition given in 4.8 at 7 = 0. Equations -1.60 and
4.61 are equations of motion for the two operators, 75(7) and p(7). The identical form
of 4.60 and 4.61 hide the very different behaviour which they generate for the two
operators. It will be shown in chapter 6 that the difference in the domainus allows the
effects of the walls to be included in 7—:’(7'), but not in (7). This is not surprisine: it
was shown in equations 4.30-4.36 that the boundary conditions have a trenendons

impact on the evolution of the systemi.

For now it will be shown that, in the special case g(7) = 0, the two nos

obvious solutions for 4.59 are wrong. The first choice is

T = poT/m + Iy, (162)
for which
d,.z :ﬁo/nl. 1.63,
Combining 4.59 and 4.60 gives
d.T = ’po/m, (4.G1)

which disagrees with 4.63. Further, the discrepancy between 4.63 and 4.64 is not Just

that the domains are different. Taking the closure of 4.63 gives the condition
d.% = po — ih[6(z) — 6(] - 1)), (1.65)
which is still wrong. The second obvious choice for # is
& = Pyr/m + 3. (1.66,
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It satisfies the Heisenberg equations of motion but fails because it is not self adjoint
(since Py is not self adjoint). Self adjointness guarantees the existence of a complete
set of eigenfunctions with real eigenvalues. It is easily seen that Z, given by 4.66 has

no real eigenvalues. If

where K is an eigenvalue and ¢ is an eigenfunction, then

b= e—im[rz/Z—Kz']/(h‘r)-

There are no real values of x for which ¢ will vanish at the boundaries. This lack of
cigenfunctions is one of the major difficulties in working with the solution which is

presented in chapter 6.

This chapter is concluded with a brief discussion of momentum. Obviously 7
and P are not suitable to represent the observable momentum; neither is self adjoint.
Unfortunately, the only remaining candidate, p also fails to be suitable. In the special
case g(7) = 0, for example, equation 4.61 implies that (p) is a conserved quantity
for any Heisenberg wavefunction. This is the same result that is found in cquations
4.34—4.36, where the behaviour of (p) is examined in the Schrédinger picture. Tlis
kind of behaviour is not characteristic of the mechanical momentum which is observed.

To what does p correspond, then? In the classical Hamiltonian
H = p%/2m,

the quantity, p, is a conserved quantity, while the mechanical (observed) momentum

is £p. The operator, p, then corresponds to the canonical momentum.
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Chapter 5

The Semiclassical Limit

Correspondence between the classical and quantum Fermi--Ulam Accelerator is not
an obvious thing. There are a number of technical problems, specitic to this particular
model, as well as a number of problems which are generally present in the semiclas
sical limit of any system. Semiclassical physics is primarily a tool used for findine
quantum mechanical information based on quasiclassical arguments. Traditionally,
the question of finding classical information from a quantumm system has not heen as
popular, mainly because classical mechanics is the simplest practical method of find-
ing an answer in the classical domain. The problem of the transition fronm quantun to
classical mechanics has often been relegated to the status of a philosophical problem,
or explained in terms of statistical arguments. With the advent of expertimentally ye
alised single particle quantum systems (e.g. [9, 10]) the problen: is hecoming relevin

and in need of an answer.

This chapter is not intended as a discussion of all aspoects of semiclassicn]
physics, but instead is meant as a review of some of the work specifically dealinge
with the semiclassical limit of the Fermi-Ulam Accelerator, and as a discussion of 1]
differences in the ciassical and quantum treatments of the problein. This chapter will
not answer the question of how classical behaviour (ie. a localised particle obevinge
classical equations of motion) can be found, in some limit, from quantim mechanics.
It will, however, show how the information required to define the classical systenn is

contained in the quantum system.

In order to compare the work of chapters 2 and 3, the trcatments shonld e
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made as similar as possible. The first step is to find a classical coordinare transfor-
wation analogous to 3.5 and 3.6. Such a transformation is given by the generating
function (see [26, chapter 9], {19])

zP mx?L

_ 5.1
a7 R Y; (&)
which transforms the old coordinates
(z,p), where 0 < = < L(t)
to the new coordinates
(X,P), where 0 < X < 1 (5.2)
according to
X = 0pF,
= z/L(t) (5.3)
Db = é).1-'F2
= P/L(t) + mzL(t)/L(1)
= P/L(t) + mX L(t). (5.4)
The Hamiltonian will, for the moment, be taken as
2
L . z I
= —— V{— D¢
o+ (L(t)) (5.5)
with V(x/L(t)) representing the moving walls of the box. This Hamiltowian trans-
forms to
K = H(z(X,P),p(X,P),t)+ 8, Fo(z(X, P), P,t)
= P ~5 + —l-mL(t)f,(t)X2 + V(X) (5.6)
T o2mI(t)? " 2 ' >
The new Hamiltonian generates the equations of motion
. P _
X = -~ (5.7)
P = —mXLL-é6xVv (5.8)
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The equations of motion for r and p generated by H o can be vegained by divect

substitution. A rescaling of time, given by 3.16, will turn these into

(XN = p (O
2 <~ r r/Q(r) - -

;X +g(n) Y + =28, = . (Ol
m

The assumption is made that the potential representing the walls of the hox is

only felt by the particle for short periods of time, during the bounce. Near the wall
of the box, the walls dominate the behaviour:

L3(7)

m

J2X +

8_\~ Vo=9.

The interaction is short enough that L(7) is constaut and this couation may be

integrated once to give
¢« L7)

b mn

1 -\2
5 (0:X)

V(X)

b
The limits of integration are chosen to be points just before (4) and after () the

collision. At these points, V' will rapidly become negligible and this bhecones

P‘E

L= P2] (5.11)
a

I other words, the potential can be replaced with boundary couditions whicl, chionec
the sign of P at the turning points X = 0 and X = 1. Direct substitution for 72

X will give back the boundary conditions given in chapter 9.

Away from the walls the potential, V', is negligible, so that the equation of

motion for X becomes

02X + g(T)X = 0. (5.12)

o

From this it is possible to replace the Hamiltonian 5.6 with

K' = LXm)K(t(r))
2

1 N .
= 2_7’)-; + —2-mg(7').f\ (5.1

Y

ot

P
~
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Tl Loiindda v conddition<s 5 11 There is 4 5 et oFf on I S - -
dafics e boldndaaly Conallions 0.1 1. 1LEre€ 1S, then, a set of canouicai transiorinations

which is analogous to the quantum transformations of chapter 3.

The comparison of the quantum and classical systems can now be carricd
out in the transformed coordinate system. There remains, however the question
of how to compare them. The JWKB approximation {22, 27] is one of the most
couinon semiclassical techniques. It is only useful in systems with tin: independent
potentials (for which the classical action is separable), and so limits the discussion to

&
i

R T

1 cryeecin? S, for T /2N St Yoo 0 o~ TP P e A PN PU ™
L Spodial 1OITe 10T Ly gived Uy 3.27. The {orn. of the wavelunctiovn in the S inl

approximation is
eiS(X,T)/h
U — (5,14
on (.X N T)
wliere S is the classical action. The appeal of the JWKB approach is that it allows
a direct comparison of a classical quantity, S, with a quantum quantity, ¥. Unforti-

nately, a siniple physical interpretation of the meaning of this is not obvious.

The standard approach to finding 5.14 is to start by finding the classical action.

For a one dimensional Hamiltonian of the form

P2
H=—4+U((X), (5.15
2m
where £ is the time independent potential, the Hamilton--Jacobi equation iz
0xS)?
OxS7 L y(xy = —6.8 (5.16)
2m
implying that
X
Szi/ V2m(E —U(X))dz — Er, (5.17]
where E is a separation constant. The momentum of the particle is given by
P = 0xS
= £/2m(E - U(X)). (5.18;



Thus the brench of 5.17 is determined by the sign of the momentum ot the vart
As a result, the particie will change branches at the turning points of its trajecion
With the condition that S must be a continuous function along the trajoctory, o
the fact that S is always increasing along the trajectory. 5.17 turns out to Lo
infinite number of branches of either sign, distinguished by additive constants 0 ..

. . - .8, . . .
turning points are at X =0 and .. - 1 then the 2% branch of the action will be

nAS if 1 is even

X
Se=(-1 [ \JZmlE — (XN dX + Ve
0 (n+ 1)AS if 11 is odd J

where

1
AS = / 2m(E — U(N)) dX
[ Jam( (X))
The particle can only be associated with one branch of the action at ALV RIvels tipne
and therefore it will have an action of the form

S(X,7) = z: Sn0(T — 1,)0(1 51 — T) (520

n=—0ox
where 6(7) is the step function and the 7, are the times at which tiwe prarticle mke-
the n'* bounce from either the left or right turning points (this scries is different fromn:
that defined in chapter 2 where only bounces from the moving wail are inchuded ). It
should be observed that the most important effect of the Loundirios is 1o detornin.
a sequence of turning timzes (the quantity AS follows from a kuowledeo of tarnine
times if dX is replaced with d, X d7 and the integration is performed with respect 1o

- o~ oy -1
\;nd that tl:u ECUlIan

#iy

g8 iin of 5 bs independent of these times.

Equation 5.20 describes the motion of a particle as a sequence of scattepne:
from the walls of the box. In the JWKB approximation the final wavefunetion i
considered as a sum of scattered and re-scattered waves. Such a wavefnuction wil’
not depend on a series of scattering times, and vet this information mnst Le coutaiue:
in the quantum wavefunction (otherwise the classical system could not be o e

case of the quantum system). The aim of the next few pages 1s to shaow how the
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information reguired ro define the classical problemn is contained within the quantum

solution.

The JWKB wavefunction, 5.14, is an approximate solution to a Sclirédinger

cquation of the form
r 0%¥ + U(X)T = ihd, V. (5.21)

2m

When substituted in, the approximation turns the wave equation into

B2 s . I
i (Ox §)7HE — (0x §)7 %9, 8 = —m[ajf(axsrl/z—(1/h)—(a_¥5) 25y S

+U(XWOxS)~ V2.
Choosing S to be the classical action given by 5.16 simplifies this to

22

/

W

R?9%(0xS)"V2 =0, {

whicli is obviously not generally true. ""he value of 5.14 as an approximation. ther..
depends on 5.22 being approximateiy t _ .. The requirement of the relative simalluess

of the left hand side of 5.22 can be rewriiten
R*VPOL P12 « P2, (5.23)

This conditicn will be met in regions in which the potential is relatively conustant. aud
in regions in which there are no classical turning points. For a quadratic potential
embedded in a box, this will be true at large energies everywhere except at the edgos

B

of the box. A different approxirnation needs to be made near the edge of the box.

The standard approach near a boundary [27] is to take a Fourier transform of
5.21 , solve a similar approximation to the one above, and Fourier transform back to
the position space. This approach requires that the boundary be soft enough that the
region of validity of the approximation be several wavelengths. Unfortunately, this
will not be the case in a box, where the assumption is that the wall appears hard for

all energies of the wavefunction.
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The use of the solution for the wavefunction near the boundarices is to give a
condition for joining incident and scattered w..--os at the boundary. The condition

takes the form of a phase shift between the waves. The complete solution to 5.2}

is formed of an infinite sum of incident and scattered waves, joined by these phasce

shifts:
o0 e'(sn/h‘*'cn)

¥ = | (5.2.h

where &,, are the phase shifts and are closely related o the Maslon indices. T 0.0,
the (n + 1) term is the scattered wave due to the n't terny, and S, is given by
9.19. This kind of series is similar to the Breminer series for multiply reflected waves,
discussed in [28]. By choosing the phase shifts, ¢, = —na /2, which result from the

standard fashion of dealing with the boundaries. 5.24 becones

: X 4 AN ’ S X 1 e " -
M) [ A 2m(EST(X) dx 4+ (=i fy V2 E—U N7y dN ]

v = P’
Rm(E —U(X )7 {
% i ein{'z/hfo‘ 1/211:(E—U(X’))dX’-—7r]. (597
The infinite sum is a delta-function and will only be nonzero for
1
AS = / J2m(E —U(X7))dx’

0

= hrnlk+1/2], (5.0,

where % is an integer. The phyvsical meaning of 5.25 is that the infiniee oy oF
scattered waves will only interfere constructively for certain, special values of £. The
quantisation rule, 5.26, applies to any one dimensional, time independent svsten, aned

should be compared with the Bohr-Sommerfeld (BS) quantisation rule [29):
AS = hkn (5.27,

The JWKB quantisation rule will give wavefunctions which do not vanish at botl;

ends of the interval [0,1] and gives energy eigenvalues which never converge 1o the
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true cigenvalues in the large energy limit. BS quantisation converges to rhe truc
cnergy cigenvalues in the large energy limit and gives wavefunctions which vanish
at both ends of the interval. On the other hand, in a harmonic oscillator potential.

JWKB quantisation gives accurate results where BS guantisation fails.

The effect of thie boundary conditions in 5.25 is to set the euergy cigenstates;
the actual form of the wavefunction does not explicitly depend on the boundaries.
This is reminiscent of what was said about the classical system-—that the turning
times are determined by the boundaries while the form of the solution is independent
of the boundaries. The connection between the form of the wavefunction and the
form of the classical solution is obvious and is given by equation 5.14. What will be
shown now, through an explicit example, is how the classical turning times for ]
Fermi-Ulam Accelerator are contained in the quantisation of the cucrgy.

If the Hamiltonian,

P2 mgX?
H = 5.28:
2m + 2 (5.23

wher« gg is constant, is embedded in a box with walls at X = 0 and at X" = 1. then

the semiclassical wavefunction will be

eiSe{X m)/h L o=iSo(X.n)/h iEaun
\ Zm(E, — mgox2/2)/4 } €

E, ., [mgo WE, o | N2 .
So(X,n) = ﬁarcsm( ZEQOX)—}-\/mQ ,\\/l—ﬁlgg—. (5.29)

The eigenv. s, E,, are determined in the large energy limit by a perturbation

v,

31

expansion over gg. The large energy limit should not be confused with a classical
limit, which will be described shortly. The large energy limit is a computational

convenience. To first order in gp,

(hnm)? 1 1 ;
E, ~ — - — 5.30}
2m + m‘(]0[6 (2717.')2] (5.30;

The goal, now, is to show how the spectrum, E,,, can be compared with the
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JWIB or BS semiclassical spectrum (given by 5.26 and 5.27) to give both the elassical
turning points (which, in this case, are X = 0 and \" = 1} and the classical turning
times. Substitutiug 5.30 into the explicit form for So g ven in 5.29 and carrving terins

to order go/n7 gives

o
- (b — M 90 3 _ 3 (7
AS(X,n) ~ knm(b— a) + sl —a—(0* ~ oY), (5.31)

Here, b und a are the unknown turning points. They will in general depondd o o,

The classical limit is taken as follows: A region is found in which the eieenstates,
E,, are dense enough that §,a ~ 6,b ~ 0, and in which any classical cnergy nay
be approximated well by a specific quantum eigenstate. The term 6,,a is defined as

a(n 4+ 1) — a(n).

For a box, whose turning points are fixed, the semiclassical limit implics only
that the eigenvalues E, = (hnw)2/(2mL2) (where L is the width of the box) becorne
closely spaced. The classical limit, for a box then, is that the spacing of the walls. /.
becomes large relative to the eigenvalue , n. In this case, the classical limnit is clearly

not the large energy limit. For a harmonic oscillator, for which £, = I w [0 + 1/2]

{(w? is the oscillator strength), the turning points are at :l:\/h.[‘Zn + 1)/ Gy Then
6,1\//‘2,{277, + 1j/(mw) ~ \/h/([n + 1/2]mw) which becomes small in the large 1 i

The eigenstates will be closely spaced if the oscillator strength is moderate. For the

harmonic oscillator, the large energy limit corresponds to the semiclassical Tt

For equation 5.31, the semiclassical limit implies that

BaAS(X,n) ~ hrr(b — @) — T80 [b—a— (13— d?) (5.32]
" - )~ Shntx ) ' T
But, for either the JWKB or BS quantisation
WAS(X,n) = hr

so that

o
[~
[y

~

2 "
L~ (b a) = O (- ) (5
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The statemnent that 5.33 must be independent of n immediately yields the turning
points b = 1, = Q or b = 0,a = —1. These solutions are in fact the same solution
under a coordinate reflection. It is not necessary to find 5.33 to find the turning
times, however. Instead, the classical equation of motion generated by the classical
action is [26, chapter 10}:

B =0gSy— T, (5.34)

where [ is a constant of the motion. With 5.29, this becomes

mgOX)

_ _.1/2 ) -
T+ 0 =gy " wrcsin( 5E

and the time between turning points is

AT = 961/2(arcsin( n;—glb) - arcsin(\/%—gjga)). (

Here, E is the classical constant of motion and should not be confused with E,,, the

ot
w
()]

quantised eigenvalues. Write

(hzm)?
2m

1 1 o
+ mgo{~ — 1, (5.36)

E= 6 (2z7)2

where 2 1s a continuous parameter. Then 5.35 can be written approximately =

m(b— a) m3gg

~ 3
AT hzmw 6(hzm)3 e

—(b—a)]. (5.37)

The requirements of the semiclassical regime are that it be possible to approximate

z by the nearest n in value. From 5.37 and 5.33 it follows that

AT ~ nh2 26 AS()
m_
hnn

\/ + % 5 2E)3/2 (5.38)

Simple inspection reveals that the first equation is true for any value of g, provided

the system is in the semiclassical domain, while the third equation is the explicit
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solution for the case mgy/E is small. The results in 5.38 agree to first order in o,

with the solution obtained by setting b= 1,a = 0 in 5.35.

The above results can be summarised: If, from the wavefunction, it is possible
to find the classical action, then the classical equations of motion will follow (equation
5.34). In the semiclassical regime, defined in terms of the density of cigenstates, the
turning points and turning times can also be found directly from the cuergy spectri
and either of the semiclassical quantisation rules (equation 5.38). The results can be

generalised to include any time independent potential in the semiclassical regine:

6,AS)

AT 6. E.

(5.39)

This result supports the idea that classical behaviour is a property of groups of ¢losely
spaced quantum eigenstates. There has been some discussion [7] about whether classi-
cal mechanics depends on the behaviour of single eigenstates or groups of eigenstates,
The most interesting feature of equation 5.39 is that the chaotic behavionr of the
classical system manifests itself in the sequence of turning times, ¢, (recall the cqua-
tions 3.1 and 3.2). Equation 5.39 provides a direct method of formulating a condition
for classical stochasticity in terms of the quantum eigenstates in the special case for

which the wall motion is given by 3.27 (ie. g{7) is piccewise constant).

Although it has been shown that the information reauired to define the classicn]
problem is contained within the quantum wavefunction, nothing has been said abonut
the way the classical behaviour comes about in the semiclassical limit. This is niot &
trivial problem. The usual way to produce a classical limit is to construct localised
wavepackets which represent the classical particle. The behaviour of the wavepicliet
i1s given by Ehrenfest’s theorem (see, for example [22]), which states that for any
wavepacket

d}{z) = =8,V (x)). (5.0,

This is similar to the classical equation of motion for a particle, except that the partinl
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derivative appears inside the expectation value brackets. For a localised wavepacket.

centred at xg,

@:V(2) = [voV(zwds
~ OV (20) [T dz
~ 6,0V(:co),

(i’) ~ Ig.

In the Heisenberg picture, the wavepacket does not spread so that equation 5.40 gives
the classical equation of motion for the expectation value of the wavepacket. However,
the uncertainty in ¥ grows with time so that the probability of finding the particie
at the centre of mass of the wavepacket, xy can be quite small. In the Schrodinger
picture the loss of classical behaviour is manifested in the wavepacket spreading,.
Unfortunately, wavepacket spreading is an extremely rapid process and the period
of time for which the behaviour of the wavepacket is classical is extremely short. A
free particie wavepacket, for example, representing an electron will double its width
in roughly 10~?° seconds. For a particle in a box, the spreading time will be similar.
and strongly non-classical behaviour will result very quickly as the spreading wave
becomes comparable in size to the box and interferes with itself. There are techniques
for using non-spreading wavepackets in semiclassical physics [30], but they are used
for the purpose of finding approximate quantum results, and do not say anything

about the classical limit.

The transition from quantum to classical mechanics is discussed by Scheiainger
and Kleber [11]. The wall motion they consider consists of piecewise joinings of
the form L(t) = vt + Lo, which is a special case of 3.27 Their treatment of the
quantum problem is that of chapter 3—they find a one cycle evolution operator in
the transformed system—and so they are left with the problem of comparing the once

cycle (quantum) mapping with a (classical) mapping between consccutive bounces
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(recall chapter 2). The solutiou to the problem lies in their special choiee of L{t), for
which a one cycle classical mapping can also be found. Their work hus three nain

alms:

1. To reconcile the different mappings found in the quantum and classical cases.

2. To examine the behaviour of classical phase space areas (le. to compare a clas-

sical ensemble of particles with the corresponding wavefunction).

3. To discuss the effects of the nonlocality of the wavefunction in the classical

limit.

The conclusions Scheininger and Kleber draw from their study of the phase
space are interesting—they show a correspondence between stationary points of the
classical one cycle mapping and wavefunctions with the same momentun.  Tliese
wavefunctions are nearly recurrent under the one cycle mapping in the Jarge cneros
limit. They take the large energy limit to be a semiclassical limit ud state that
the simplest, periodic trajectories in phase space have corresponding, nearly periodic

semiclassical states.

‘The effects of the nonlocality of the wavefunction in the classical it their
third major topice, is an interesting atiempt to discuss the h — 0 limit. Unfort tately
they do not seem to be aware of the classical transformations 5.3 and 5.4. Their failure
to distinguish between the momenta in the two coordinate systems leads them to infor
the existence of a ‘local’ momentum, P (which actually corresponds to p), defined in
terms of the canonical momentum $ (which actually corresponds to P?), and state
that “It is the local momentum $ (and not p) to which the semiclassical Limit of 1
quantum problem corresponds.” The mistake that they make is to be unaware of the
existence of P and to take p to be equivalent to p- In this case, p really would appear

to be some kind of nonlocality effect. Their conclusion, however, is trivially true fromn,
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the nature of the coordinate transformation, and there is no nonlocality effect of this
bl -

kind.

Another interesting discussion of the classical limit is made by Karner [15].
who examines the stability of the quantum and classical solutions. He makes the
interesting point that the choice of boundary couditions (Dirichlet) is not obvious
and may be responsible for forcing a certain kind of quantum behaviour. He chooscs
to work in the coordinate system given by the application of U; (equation 3.5), so
that the Schrodinger equation is 3.9. The Hamiltonian which generates this is
=2
H= 2:;1:2

L
- ﬁ[:iﬁ-%-ﬁi'], (5.41)

and it can easily be found classically by the analogous transformation generated by
F, = zP/L. Karner's statement is “that in the case of linear equations of motion
[which are generated by the classical form of 5.41], the classical and guautal time
evolutions agree.” The absence of quantum stochasticity then implies an abscuce
of classical stochasticity. He blames this on the Dirichlet boundary conditions. His
mistake is to fail to include the bounces at the boundary in his classical equations
of motion. These are strongly nonlinear and are the source of classical chaos in the
first place. It is not surprising, then, that a failure to include boundary effccts gives

noni-chaotic Lehaviour.

It is still interesting to question, however, whether or not Dirichlet boundary
conditions are too restrictive to adequately describe the problem. The physically
satisfactcry way to answer this is to substitute a potential for the walls and examine
the behaviour of the wavefunction near the wall. Under the transformations {/; and
(./'2, a quantum Hamiltonian of the form 5.5 transforms to

- ﬁz 2 -
H=§—T;+L('r)1/(2:)+

mg(r)%?

2

The most striking feature of this equation is the absence of separable cases; cven the
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case g(7) = constant is nonseparable. Separability can only be regained if the wave

function is excluded from the region in which V" is nonzero. The related Hamiltonian,
A p 2 \v -
H = — 4+ 12V (x 5.43)
2o (T)V () (

will be examined in order to provide some insight into this. The Schridinger equation

associated with H' is
—h? 5 2 . . i
Q—maz\I/+L (T)" (1‘)\1’ = Zflar‘l’. (O

Let V(z) be approximated by

Vo <0
Viz)=¢ 0 0<zr<i (5.15)
Vo z2>1

where 14 is large. Now let

H = H°4+ g!

H° = p?/2m+ L2(0)V ()

H' = [L%(7) - L*(0)]V(x). (5.10)
Solutions to
H%) = ihd, (517
are
Uy = d)n(x)e—iEnT/h? (—)18}‘

where the ¢, are eigenstates of H°. A solution tc 5.44 can be written in terms of tle

basis states, 1,:
U =3 an(7)pn(x)e B/ (5.49)

where a,, are expansion coefficients satisfying

i 3 — i En~FEg)T/h - -
drar = =3 3 an(7) (el H' g, )™ (B Fermin, (5.50)
n
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IFor the particular forin of the potential, 5.45

ki

J Ane,/zm(vo—g,.)z/rx <0

¢ (1) = Bncfmr + C,,c_%"'“)m"“"r O<a<i (5.51)
[ Dne—\/Zm(Vo—E,,)(z:—-l)/h r>1
witl;
-1
. I/('} - En
n = nll— -
A 2B [ z E. J
-1
; Vo — FE, .
D, = 2Bnei"§"‘1"‘ [1 +1 —O_E——_} (5.52)
The time evclution of the a; can now be found
B:B, —i(En-Ex)T
dyax = —4iV, [L¥(7) — L2(0)) 3" an(r) Lnl
n V2rm(Vo — En) + /2m(1, — Ev)
X __1 4+ !
(1= iy [RozBe)(1 4 iy [BzEn) (144, /BzBey(1 — 4, [Tt
(5.53)

The assumption that the walls are rigid is that there is a cutoff, j, such that E, <1y

and such that a,, =0, Vm > j. Then

d.a; ~ —4i [L2(r) — L*(0)]

: = Za.,BzBﬂ\‘/E;CE,Z(?—%(E"_E“)T. (5.5
V2mbyg nsi

1/2

It is apparent that d.a, o< Vy /. In the limit Vj — oo, d,ar — 0 and the o,

become stationary states of the Hamiltonian, A’. Thus, in the large V4 limit, 5.42

k]

becomes s+parable and L2(7)V/(z) may be replaced by Dirichlet boundary conditions.

The resonant case, for which a periodic application of an infinitesimal effect
can cause unbounded quasienergy growth, has been ignored through all of this. For
this case, Vj — oo does not separate the Schréodinger equation. However, the termns
L*(7)V(x) and (m/2)g(7)#? have the same periodicity so that the condition for reso-

nant growth in the Fermi-Ulam Accelerator will be satisfied by the quadratic potential
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if it is satisfied by the ‘wall’ potential (recall that the condition is given by 3.26). The
quadratic potential, however, will be the dominant source of the resonant growtl;,
and .. error in ignoring the boundary effects, and using Dirichlet conditions, will T

small.
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Cliapter 6

'The Heisenberg Problem

This chapter begins with the introduction of a solution to the Heisenberg equations
of motion 4.89 and 4.60. The iospiration for the solution (as for all Heisenberg
solutions} lies in the classical solution. The for::. of the classical solution. however.
ninst be carefully chosen—it cannot depend ex—licitly on a sequence of turning times.
7. because the idea of a turning time is not dufined in quantum mechanics. For the
special case g(7) = 0, it is possible to write a solution by taking the Fourier series of

the motion,

—~ 1- (_—l "] nx T/m+zx /
1,(7.) — 1/2 . Z [ (Tm}g) J€ w(poT/m+z0) {(G.1,
ey

Using the notation of chapter 4, the corresponding operrtor is defined as

A : (1= (=1)"] mncPorimss ‘

: (T = _[ 2— [_——_—__—___“ ’ﬂ"(’pOT,mTTO). /(4.3'

#r) =1/ n=§—:oc mm)z € (6.2
n#0

The method of quantising an operator is not unique and a very good discussion is
given by Shewell [31].
It will now be shown that #(7) satisfies the requirements necessary for it 1o e

an acceptable solution. There are two necessary requirements:

1. It solves the Heisenberg equations of motiomn,

ind,z = [z, H.

H = H/2m. (6.3)
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Explicitly substitutii g 6.2 into the commutator gives

o [1_(v1)1.]r

[,‘f“ H] - Z i (nﬂ’)z leinx(‘f’ov/nzﬁ»}“)‘}"j]
TaA

= Q-1 &

- - 5

nN=——2x

nE{

(n7)2 [(7%//7“ + o)L L (6

With the identity 4.58, this becomes

~ 7 o 1 — 1 Fi 7\]
£, H = -~ Z | (n(r)2) ]Z a
n#0

=1 ~ o ‘
X D (Por/m + mk{(%r/m +Zo), H{(Por /i + iy F
k=0

= —(zh/mn) Z 7)2 ]i(?‘n.‘,"r)j

n=—2>x¢

n#0

j=-1 A )
> Z(POT/m + ) Po(Pyr/m + K79 Lt (G
k=0

Further,

. - . et - 1 ad i ‘
thd, T = —ih Z (n(7r)—) ] Z() ”; ) ) ('pu/ Jrn g
n=—0oo 1= °

n#0

= (i} ,
(zz/nz)n:X_::>o (e 2l
n#0

i1

XS APy im + 7D AD ~ /0y 1 R g
PR i Ty L N ] N LR V) v .
k=0

From the equations 6.5 and 6.6 it is apparent that the Hetsenbiery cquation,
6.3, is satisfied. The equations 6.5 and 6.6 would nst have agrecd i 0 had ooy

defined as
—(—=1)"
(nm)?

i'(T)Zj/Q— Z [1 chnrj r/mﬁr“) ;T
n=-—onc
n#0
. The operator, #(7) is self adjoint. This will Le shown in several stens. Frrat g

should be recalled from chapter 4 that D(P(,) ={fIf0) = fi1; =0} Faith
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it is casily seen that D(Po7/m + £9) = D{Py). The exponential operators iu
6.2 are defined by their Taylor series, so that all powers of By 7 [+ Zg mitist Le

defined for the exponential operators to be defined. This gives

D(cmPor/mtE0)y — ( F1(Pyr/m + 20 flaco = (BPor/m + o) flewy = 0.95}.
(C.8)
This domain is not so restrictive as it might appear—the domain is dense in the
Hilbert space and the operator, £, is bounded (as will be shown next) so that

the domain can be extenc .. Now, consider the operator

é(n) = einx('f’or/m-i—i'o) + e—if(f(ﬁuT/m+i’u)- (6.0
Then
. =< {1 —(-1)"]., . ‘
F=1/2-3" { (=1 Lé(n). (G.du

The operator, é(n), can easily be shown to be Hermitian. Starting with the

Taylor expansion for the exponential operator it can be shown that. for f Iin

D(explinm(Por/m + Zo)}),

1 . ) > (inw¥ 71 . ,
/0 freinT(Por/mtiay 4y Z (27;-7,—} /{; S (Porjm+ #¢) hdr
. = !

= Z(ZnT) {—7ff (Pyr Jm o+ @) ’hl

< T/ oy P Y~ ’ - ML I 'l
—i{(Potfue+ Loj i {Pem /e +dgy iy — ...

0

1

~ih[(Por/m + o)~ 'R |

1 N .
+/0 [(Por/m + £0) f}"h dx}

1 . - -
—_ -/Ole—lnﬁ(poT/m-i-Io)‘f}ah d.’L‘ (61])

where 6.8 has been used to eliminate the extra terms in the last step of 6.11.

From this it follows that é(1:) is Hermitian. Further, it is obvious from G.10 that
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T is Hermitian. Next it can be shown that €(n) is bounded. First it is showun

that exp[z'nﬂﬁw/m + Zy)] preserves the norm of a function:

”einx(ﬁor/m-f.i-o)f”? —_ (einx(’f’ar/mq'».{-g)flenx:(f‘k,r/m-fi-[,)f:)

— <e—-{71r('f’07/n:—i—.i‘o)en.- x(l_'cr/yrn +iu) fl f';

7112,

where G.11 has been used. From this it follows that £(n) is bounded. Equation
6.10 is a convergent series of bounded operators so that I, too, is bounded. Nt
should be remarked that even though explin®(Py7/m + o) s norm preserving.
it is not unitary, since 7507/777. + T is not self adjoint

Finally, it is straightforward to show that botl e{n) and & arc self adjoint. T Ge
domain of a dense, bounded operator can always be extended (as descrilyed

In chapter 4) to include the entire Hilbert space. Then equation 6.8 can b

extended to

D(é(n)) = D{s) = H.
Now, if (¢lé(n)h) = (f|k), for &, f € Hand h € D(é(n)) then

9 € D{é(n)) (trivially)

é(n)p = f (since é(n) is Hermitiaun).
From the definition of self adjointness, equation 4.7, it follows o . Cdsoself
adjoint. An identical argument will show that z(r)is alsosel: s o Tt shionld

be remembered that the important feature of self adjointness is v xistenee of

a complete set of eigenfunctions with reaj eigenvalues.

The connection between equation 6.2 and the equations of mwotion 1.59 1.4

needs to be made. Equation 4.59 gives a definition of P.

P = md,7



Z [1 - ( 1) R | :11'(77()7'/711-L—"g)pu
"Z¥5°
—ih/2 3 1 — (=1)"]eimPer/mtia) (6.12,
n=—2o0
n#C

Equation 6.12 is just a reordering of 6.6. First it can be shown that, 2zt 7 = 0, P

agrees with the definition 4.8, It is obvious from 6.12 that

D(P(0)) {F1f(0)= f(1) =0}

= D(7). (G.13)

With this choice of domain, the second term in 6.12 becomes tlie zero operator:

Cousider any two functions f,h € D(P(0)). Then

S = (—1)7 R

n=—od

n#0
) 1
= Y [1=(-1)" / e I fhdr
= o J0
"0
] tnrr 1 einrrr
= z [1 —( 1) ] { f 73 ~/ - dx(f']'l)dl' (GC.14;
e 0 0 nm
n#0
The sum in 6.14 is
-1 ~-1<zr<0
n#0 1 0<z<1

and is periodically continued along the real axis.The behaviour at the points r = ()
and £ =1 in 6.15 cause the first term in 6.14 to vanish identically. The remainine

[n]

integral, however, is not affected by the discontinuities in 6.15 and is

P =1 s wpy g e !d P
/0 ngm o e d.(f*h)ydr =(f h)lo' (G106
n7#0
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This vanishes Lecause of 6.13. From the fact that f. A are arbitrary clements of

D(P(0)). and that D(P(0)) is dense. it follows that

oo

Z [1 _ (_l)n]elnxi' =0. (()ll—)

nx0

With 6.17 and 6.15, 6.12 becomes (at 7 = 0)

The importance of the boundary conditions in determining the behavionr of the so-

lution is hinted at in this calculation.

A similar calculation which is more revealing is one that shows that d- Pl -

g
0. Equation 4.60 requires that any solution for P have a vanishing tine derivative
all times, but at this point a proof has oaly been found for the case 7 = 0. Startine

with 6.12, d,P is

d*r’/f) — i [1 — (_1>n] ei'x(vnr)27/2m PSS ey'nxf'o'r/m ﬁ";’/“l
n=-occ

n#C

+(h/m) 3 [ = (= 1)) @HOm 2o s oy

n=—oc
n#0
oo
+(h2/4m) Z [1 _ (__l)n](nﬂ,).’ eih(rnr)'r/'l:n (_:'rnrr (lrn.'-l‘nr/:u ((;Ai.(),l
n=-—oo
n#0

The exponential operator has been rewritten with the identity

einx('f)or/m+ig) — eih(nw)2r/2meinzreint'.i’or/m

(see [31]). The first term in 6.19 is the Fourier expansion for

2 7 [6(Por/m+ do — 251) = 6((25 + 1)f = (Pyr/m + 20))) -

j=—o0
while the remaining two terms are derivatives of this. Equation 6.19 is divergent

only makes sense in an integration. The domain of 6.19 is
D(d,P) = {f|f(0) = f(1) =0,d, flo = d, f], = 0}, (00,
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The three terms in G.19 will be shown to vanish (at 7 = 0) one at a time. The method
used here is very similar that used to show 6.18. The first term in 6.19 is dealt with

first. For any f, h € D(d,P),

S 1 (=1 ]/ frem = P2hdz =

n=—oC

n#0

> -y 1{ " PR

n#0

1
1

leinﬂr .
_/0_ d,[f'pgh]dz.-}, (6.21)

0 mw

at 7 = 0. The first term in 6.21 vanishes identically because of 6.15. The remaining

integral is not, however, affected by the discontinuities in 6.15 and is

/0 Z 1-{-1)"]

n=—oo

|n1r.z'

— d[f"BEn)dr = A= AN
= 0. (6.22)

Equation 6.20 has been used to show that this vanishes. Similarly, for the second

term in 6.19,

}: 1—(- 1)"]n~r/ fre" T Pohdr =

T
unrz' 1 inrwr . 1
S -1y lmr{ FPull| =z del ol
ﬂ;;oa‘.) N
1 eimr.r 2 . »
— L .)
+/0 ) d:[f Pgh]dx}. (6.23)

The first term in 6.23 vanishes because of 6.20. The second term vanishes ideutically

because of 6.15 and the third term is

[ S n- oS Benlds = dlrBon],
P ag0
= 0. (G.24)
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Finally, for the third term in 6.19,

oC

> - (—1)"](n7r)2/01e‘""[f'h] dr =

n=—o0

n#0

oo inxxr 1 inwr 1 SnTr
> [1—(—1>"1<mr>2{-e [f'h]] A 0| I TP

e inw o (inm)? g linT)?
nZd Y
/l ein:r.r d3 [f-h] .
o (inm)3 7 )
= 0. (6G.27)

It follows from equations 6.22, 6.24 and 6.25, the fact that D(d,P) is dense. and the

arbitrariness of f and h, that

d,P|,—0 = 0, (6G.26)

as required.

A simple way of understanding the above calculation is to realise that G.26
1s a statement that all the matrix elements of 6.19 vauish. The cholee of Hhonndary
conditions is critical in this calculation: if 6.19 had been written with fi, talking the
place of Py, then 6.22, 6.24 and 6.25 would not have vanished. This is i vers clear

demonstration of the difference between the statements

(recall equation 4.60) and

(recall equation 4.61). The first of these equations allows P to account for the Lound.
aries (as has just been shown). There is, however no solution for P which will acconunt
for the boundaries and still satisfy the second equation. The indifference of ot
the walls is in keeping with the discussion at the end of chapter 4, in whicli ji wie

identified as corresponding to the canonical momentum.
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Omne final calculation involving this solution will be included in this chapter

for thie sake of completeness. The commutator, {z. 'ﬁ], is found:

5 S = [P (=D)" [ = (1))
- — . :Jrr{’Po-r/rn+:rg) 1n‘r(’Po-r/m—v-*u 1
['T},P] - Z Z (Tl7r)2 ]’1T [ 7301
N=—00 J=—00
n#0 50
© - (=" - (-1)] . o
= 1ih Z Z ( )][ ;W )Je!nﬁ'(PoT/m"f*Io)et]u(’}:g'/ +10)
n——oogz—co
7‘#0 J#O

where equations 6.2 and 6.12, and

[einx(’ﬁ'o'r/m-*-io) efj?(ﬁof/m+'i‘e)] =0

have been used. Define p =n + 7 so that

o [1'( 1) [} = (=1)P7"] i Bor/maio)
..’p — __2h e!pn FoT/m—rxg
& 7] p_z_oo n_}:__:oo (p—n)m
n#0,p
— - 3. = > [1 — (___1)"][1 + (_l)P] 1 1 4i])ﬂ('i‘g?‘/’m-.'~.f“)
in 3% L e

w (p—mn)7]

p=-—o00 'n=--ou b7
pséO Ovp

& [L-(=1)7]
z"zngoo (n'lr)? .

n#0

The sum over n in the first term is zero so that
[£,P) = 2in 3 —- —~
= 1th (6.27)
This is not surprising since P is not very much different from a momentum operator.

The chapter will be concluded with the discussion of a phenomenological ap-
proach to the quantum Fermi-Ulam Accele-ator, which has been proposed by Razavy

[32]. For the case g(7) = 0, the classical Hamiltonian is chosen to be

2
- P
H = Lo
¥ = [26(z)— 1][26(1 — z) — 1], (6.28)
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where () is the step function. In the interval 0 < r < 1. 6.28 has the forn of it frec
particle Hamiltonian. The function ¥(x) has been chiosen such that a particle will be

contained within the interval. This is obvious from the equations of motion

d,x = 0,H
— .2_ NI R
= 5,-9(x) (6.20)
d,p = —09:H
9
b / s
= - I(x y.30)
deﬂ () (6.30)

Differentiating 6.29 with respect to time and using 6.30 to eliminate o, gives

2
dr = ~L a9+ La.sdo
2m?2 m
d
ég(dﬂ)z- (G

This can be integrated once to give

d.r = £C/9(x) (G2

where C is a constant of integration. Then p is (from 6.29)

mC

From 6.32 it is clear that z = 0 and z = 1 are turning points since d, . is only reqd

valued inside [0, 1]. Outside [0,1], d,z is imaginary. The same kind of hebaviour car

be observed in a potential well in which d,z = :l:\/Q(E — Vi{z))/m. From 6.33 11 i«
clear that p is the mechanical momentum in the region 0 < r < 1, hut diverees at

the endpoints.

The Hamiltonian is quantised:

1 U

H = -S—T;[ﬁ(l‘)p + 2p9(2)p + p*0()]
- 2 I(2)p% — ihd,D(2)p ffd?a(fv 163
= om p dv(T )p 4.;1‘). Jort)
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This form is not unique [31], but other choices will differ by terms of order 2. Equa-

tion 6.34 gives the equations of motion

. [0(5:);3 + 13'0(1')]
d,z =
2m
_ [ezp  in )
= [ - —%dzﬁ(:c)] (6.35)
1.5 1 S\=2 - 230 5 A h? 3.9( .5
d-p = ~om d:.9(Z)p —zﬁ(dﬁ(r))p—zd,'ﬁ(r) : (6.36)

Here, p is obviously different from the canonical momentum operator which is used

throughout the earlier chapters. However, at 7 = 0

p(0) = —iho, (C

W
N

)

G
£20) = =z (6.38)

(o]

Using these two equations, and the Hamiltonian given in 6.34, the Schrodinger equa-

tion is
2

1
E¢= [9d20 + 0 dov + >d20 1,] (6.39)
L -

1

2m
This equation is just the free particle Schrédinger equation in the region 0 < 2 < 1.
Furthermore, the last term on the right forces the boundary conditions ¢2(0) = ¥(1) =

8. This can be shown if equation 6.39 is integrated once. Let xy be in the interval.

Then

r h2 z T 1 T
/ Evyd, = ———[ ﬁdiwdr-&-/ 40 dyib dy + ~d 0 2
7 2m Jx, 1 4 .
— l/t d.9 d,wd,} (6.40)
4 Jz
The term

1 T
2d,0
290 Y|

is badly behaved in the limits £ — 0 and £ — 1 unless ) goes to zero quite strongly.
The left side of equation 6.40 should be continuous for physical reasons. Lowever.

From this it follows that ¥ must vanish at the endpoints of the box.
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It is instructive to compare equation 6.35 with cquation 6.12. Fquation 6.1

may be written as

d.& = 9 (Por/m + i¢) Py — % de [(Porfon + F0)] - (G4

The function ¥'(z) is similar to Y(r) but is periedically continued along the real axis:

1 2j<r<2j+1
F(r)={ 0 z=...-1,0,1... (G.12)
-1 27+1<ax<25j42

where j is any integer. Classically the difference between 6.41 and 6.35 i clear
Po7T/m + x¢ is the total distance travelled by the particle, while o is the displacement
of the particle. The function V'(poT/m + x¢) is alternately +1 and —1 dependinge,
on the distance the particle has travelled. The * .itial momentuny, pg, is a0 constant
so that the combination ¥'(per/m + z4)po changes sign as the particle Lounees from
the walls. In the combination I(x)p, however, the function V() is alwavs +1 and
it is p that changes sign as the particle strikes the walls. Thus, the comdination:.
V(poT/m + z0)pe and I(z)p generate the same classical behaviour, and cquations
6.35 and 6.41 are the quantum analogues of two different classical deseriptions of the

fame system.

The case of the quantum Fermi-Ulam Accelerator with nonzero g can now he

formulated. The Hamiltonian is

H = 1 1) 52 —ihd IT)p nzd%‘(f) + m((T) 2 (6.4
—_— -1 - _— —— - N LIS RPN
2m p p 4 2 7

The equations of motion are

d.z = [29(1‘)}3 _ifid,za(f;)] (G.11,
m 2m

2
— %n_ [d,ﬁ(i)fﬂ — ihd?0(2) p — %dgg(i-)} —nglT)i (615

I

d.p

and Dirichlet boundary conditions still apply.
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Chapter 7

Sumrmary and Ccniclusion

The most impressive thing which has been demonstrated in this thesis is just how
complicated the Heisenberg approach to the particle-in-a-box problem is. The
Schrodinger approach is simple enough to be the second example (after the free parti-
cle) discussed in any introductory quantum mechanics course. The classical problem
is too trivial to even make it into a classical mechanics course. There are threc points

which contribute to the difficulty of working in the Heisenberg picture:

1. Quantum operators must be self adjoint. Self adjointness is really a statement
about the d - =in of the operator. The first consequence of self adjointness is
that expect» .. values of the operator will be real. The need for this is obvious
since the expectation values correspond *o ohysically observed quantities. The
second consequence of self adjointnes: ~ ‘hat a complete set of cigenstates of
the operator exists. The importance of this point is not so obvious, and vet
the consequences are far reaching. The eigenstates of an operator provide an
important basis set in terms of which quantumn states may be represented. The
behaviour of the state is crucially dependent on the choice of basis sct, a point
which is made clear in the comparison of $2 and # in chapter 4. It is interesting
to notice that if the domain of 7{ had been the entire Hilbert space, then i
could not have represented a physical quantity: there would be a choice of basic
sets, both of which would generatz different physical behaviour. The condition
of self adjointness guarantees an unambiguous choice of basis states with whicl,

to work.
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The effects of self adjointness on the Heisenberg equations of motion are subtle,
This is demonstrated in chapters 4 and 6 where the behaviour of the opera
tors p and P is compared. Here, again, the difference in behaviour is directly
attributable to the domain of the operators. In chapter 4 it is shown how the
choice of Hamiltonian disallows solutions for # which ignore the boundaries,
while in chapter 6 it is shown that a solution which mncorporates boundary of
fects is a solution. A very careful definition of the operators involved is essentind

tc casure that a solution to the Heisenberg equations is correct.

A solution to the Heisenberg equations must be found. Generally, it o solution
for the classical problem can be found then there is an algorithmic method of
generating the operator behaviour [31]. The classical equations of motion nre.
nonlinear, however, and tend to be more difficult to solve than the corresponding
Schrédinger equation. Furthermore, the form of the solution must be Very
carefully chosen—it cannct consist of a number of separate solutions joined by
hand, which is the usual approach for dealing with a discontinuity in a classicn]
system. This poses a problem for the quantum Ferini-Ulam Accelerator. whep
the classical solution is joined at every bounce. In the very sinplest case. deadt
with in chapter 6, a solutien is possible becaus:. the classical motion is periodic,
and the classical motion may be writtc. as a Fovrier scries. The example
studied in chapter 6 is for the case g{7) = 0. The case glr) = con e aleo
ylelds periodic classical solutious. The nroblen: with Guantising this is Lhad
there are two types of classical solution depeading on the cnergy of the particle
(the turningz points are at the walls at the higher energies ana fall short of the

walls at lovver energies). Tkis problem may not e insurmountalsle,

It must be pocsible to calculate physical quantities with the solution. Une of
the major difficulties in working with (1) is finding a set of orthogonal stater.

which foria a2 complete basis. This is hinted at in chapter 4, where it i shov
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that Por/m + T, has 1o eigenstates.

With all the difficulties inherent in the Heisenberg approach. it is reasounble
o ask why the problemn is worth undertaking. The most intriguing feature of the
Heisenberg approach is its closeness to the classical solution. Operater solutions
differ from their classical counterparts by terms of order h or higher. They provide
s much closer link to classical mechanics than does the Schrédinger formalisin. For
this reason, the Heisenberg formalism may be able to provide better insisht into
the semiclassical i:nit than the Schrédinger picture has in the past. In particular.
the preblem of comparing classical stochasticity with the quantum behaviour in 1l
quantur: Fermi-Ulam Accelerator seems to lend itself to the Heisenberg formulation.
Another problem which is worth studying in terms of the Heiseuberg formularion is
the phenomenon of quantum resonance (recall the discussion in cliapter 3). Hereo It
scems that the terms proportional to powers of h in the operator solutions dorinaic

the classical terms so that an effect with no classical counterpart is obtained.
1

The solution to the Heisenberg equations of motion preseuted in chapter G s
obviously not complete. A complete set of eigenstates needs te be found. waid the
proof that P satisfies the equations of motion for 2ll times needs to be fouud. The
next goal would be to extend the solution to the case where g{7) is plecewise constant,
Such a system exhibits both regular and stochastic behaviour and lends itsclf 1o o
comparison of the quantum and classical evolutions. The work of chapter 3 provides a
starting point for studies of the semiclassical regime. The Imteresting question is how
the spectrum of the Hamiltonian manifests itself in the behaviour of the Helsenberg
operators. The alternative formulation of the problem. prescuted in chapter G. also
requires more study. The hope is that it might provide a siupler method for finding
solutions. Less immediate . aues of research include understruding why o classical

solution must be of a specific forn before it can be quantised. discovering Liow to



formulate the semiclassical limit for svstems in which the tine depenndence canngs 1
removed and investigating whether a similar kind of treatnient can be minie o e .
of the time independent svstems which are popular i guantun

, R
1ochnialoey
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