Crowdsourced Bug Triaging

Ali Sajedi Badashian, Abram Hindle, Eleni Stroulia
Department of Computing Science, University of Alberta, Edmonton, Canada
{alisajedi, abram.hindle, stroulia} @ualberta.ca

Abstract—Bug triaging and assignment is a time-consuming
task in big projects. Most research in this area examines the
developers’ prior development and bug-fixing activities. We
propose a novel method that exploits a new source of evidence
for the developers’ expertise, namely their contributions to Q&A
platforms such as Stack Overflow, the popular software Q&A
platform. We evaluated this method in the context of the 20
largest GitHub projects, considering 7144 bug reports. Our results
demonstrate that our method exhibits superior accuracy to
other state-of-the-art methods and that future bug assignment
algorithms should consider exploring other sources of expertise
beyond the version control system and bug tracker.

I. INTRODUCTION AND BACKGROUND

Bug-triaging-and-assignment has received substantial atten-
tion by the software-engineering community [1], [2], [3], [4],
[5], [6]. Given a bug report, the goal is to find and rank rele-
vant developers on the project who would be knowledgeable
enough to fix it. This problem touches on two relevant research
areas: (1) expertise identification and recommendation, and (2)
bug triaging.

Relevant to expertise-recommendation, Venkataramani et
al. [7] described a system for recommending specific questions
to Stack Overflow members who would be qualified to answer
them. The system considers the names of the classes and
methods to which the developers have contributed to infer
their expertise. Similarly, Fritz e al. [8] posed the “Degree of
Knowledge” (DOK) metric to determine the level of a devel-
oper’s knowledge regarding a code element —class, method or
field— based on the developer’s contribution to the development
of this element. Mockus and Herbsleb [9] described Expertise
Browser (EB), a tool that identifies the developers’ expertise
about code and documentation, considering system commits
and changes to classes, sub-systems, packages, etc. Teyton et
al. [10] developed an automatic expertise-extraction method
that browses the developers’ source code for evidence of
expertise and summarizes them. In order to rank the members
of a community in terms of their expertise within a community,
Zhang et al. [11] described a method for constructing a
“Community Expertise Network” (CEN), from the post-reply
relations of Java Forum users. Assuming that asking questions
is evidence of ignorance and providing answers is evidence of
expertise, they defined and demonstrated the usefulnes of the
Z-score as an expertise indicator: Z = (a — q)/\/(a + q),
where ¢ and a are respectively the number of questions asked
and answered by a community member.

There has already been substantial research on bug triaging,
which has produced a number of different techniques to
select the (fop-k, where k is typically 1 and 5) most capable
developer(s) to resolve a given bug report. Table I summarizes
some key results of this work. In relation to this earlier
research, the method we propose in this paper is unique in

IEEE ICSME 2015 - ERA Track
Sep 29 - Oct 1, 2015, Bremen, Germany

that it uses the developer’s expertise, as demonstrated by
his contributions to Stack Overflow, as a source of evidence
regarding the competence of a developer to fix a bug. We
describe our method in Section II and we report on our
experimental-evaluation results in Section III. Reflecting on
these results and the corresponding results of earlier studies,
we argue for the merits of our method in Section III-C.
Finally, in Section IV, we conclude with the lessons we hope
to share with the community and our plans for future work.

II. A SOCIAL BUG-TRIAGING METHOD

Motivated by the overlap in the activities of developers
in GitHub and Stack Overflow [17][18], we ask what if we
combine expertise-recommendation based on networks like
Stack Overflow with bug-triaging of issues. we developed a
method that exploits evidence of expertise in the developers’
Stack Overflow activity traces, for identifying candidate bug
fixers in GitHub. The intuition underlying our method is that
whoever answers a question tagged with the jquery keyword,
and has received the community’s approval with many up-
votes, must have some expertise in jquery and, therefore,
should be a likely candidate for fixing bugs relevant to jquery,
e.g., the jquery keyword is in the bug description.

As an illustrative example, consider the activity around
five Stack Overflow questions, shown in Table II. The bold
tags indicate keywords that also appear in the bug report,
which needs to be addressed. The middle section of Table
IT reports the simple AnswerNum score, namely the total
number of questions answered by a developer, and the Z-
score [11], described above. These two expertise indicators
completely ignore the bug at hand, which is why we developed
the three additional scores, reported at the bottom of Table
IT and described in detail in Section II-A below. We use
Stack Overflow tags for cross-referencing Stack Overflow and
GitHub. As a sanity check for the applicability of tags in
GitHub bug reports, we examined the bug reports in 3 selected
projects (out of the 20 projects considered in this study) and
found that the textual information of each bug report (including
project language, project description, issue title and issue
body) mentions between 2 to 89 tags (avg=14.9 and o=11.5).
In effect, tags are community curated keywords that define
a common set of vocabularies for developers to exchange
information without the need for stop-word and noise-word
removal from the bug-report texts.

A. A Bug-Specific Social Metric of Expertise

Given a bug report, b, the objective is to estimate a de-
veloper’s expertise as it pertains to b. To that end, we define
matched_tags, ; and matched_tags, ;, as the set of tags of
a specific question (g) and its answers (a) that appear in the
textual information of the bug report (b). These metrics are

TABLE I
RECENT BUG-TRIAGING METHODS

Authors Basic method / Information used Effectiveness
Cubrani¢ and Naive Bayes classification of bug reports (i.e., “text documents”) to developers (i.e.,
« . P up to 30% top-1
Murphy[2] classes”); uses bug summary and description.
Anvik ef al. [1] Support Vector. Ma(f}nne (S’YM) classification of bug reports (}.e., text documents”) up to 57%, 64% and 18% iop-3 accuracy
to developers (i.e., “classes”); uses bug summary and description.
Tamrawi et A fuzzy-set representation of the relations between developers and the bug reports’ average 40% and 75% for top-1 and top-5
al. [12] technical terms. Uses bug summary and description. accuracy over 7 projects
Lamkanfi et Multinomial Naive Bayes and some other ML approaches. Uses bug report summary,
L. . 79% accuracy
al. [13] description, severity and component.

Lin et al. [14]

SVM and C4.5 classifiers. Uses bug summary and description, type, class, priority,
submitter and the module ID.

up to 77% accuracy

Nguyen et al. [6]

Regression model based on LDA topic modeling. Uses bug description.

Just estimated the time to fix for each
developer 2.3 days

Canfora and
Cerulo [15]

A probabilistic IR method to query the new bug report’s text and find the best
developer (considered as a document). Uses descriptions of the change requests.

62% and 85% accuracy in two projects

Matter et al. [5]

Vector Space Model (an IR method). Uses source-code commits and the bug-report
keywords.

34% and 71% top-1 and top-10 accuracies

Linares-Vasquez

IR-based concept location techniques. Uses text of a change request and source code

85% top-5 accuracy

et al. [4] files.
Shokripour et A method based on information extraction. Uses bug summary and description, ?E%Saz?cdcfri?egof) ;II tii;j ig?;c?srl(zbge?\ien
al. [16] detailed source code info (comments, names of classes, methods, fields, etc.). P proj

57 and 9 developers respectively)

Jeong et al. [3] report title and description

Introduced “tossing graphs” of developers to reduce bug reassignment. Uses bug

up to 77% top-5 accuracy

calculated for each pairwise combination of bug reports and
questions (and answers) provided by the project developers.

We next define A, p, relative weighted answers, and @, 5,
relevant weighted questions to replace a and g respectively
in the original definition of Z-score, taking into account the
community’s assessment of the “quality” of a developer’s
contributions. The definition of A, ; is shown in Equation
1. At any point in the time, for every answer a developer
has contributed in the past that is relevant to the bug under
consideration the number of matched_tags,; is multiplied
with the number of the answer’s upVotes (plus one, for the
answer itself).

Au,b = Z

acanswers
posted by u

(upVotes,+1)-(matched_tagsqp) (1)

The Q, is calculated as shown in Equation 2. In principle,
questions are considered as negative evidence of expertise
[11]. However, to mitigate the adverse effects of asking
“good” questions, we divide matched_tags, ; by the number
of upVotes (plus one for the question itself). This tends to
make the value of Q,; very small, in comparison to A, ,
which is why we use the p normalization factor to adjust it.

2.

qEquestions
posted by u

(matched_tagsqp)
(upVotesq + 1)

Qub = p 2

The Social Subject-Aware Z-score (SSA_Z-score) can then
be defined, as shown in Equation 3.

(Au,b - Qu,b)

SSA_Z-score, , =
(Aup + Quyp)

3)

Note that, in order to capture the temporal awareness of a
developer’s expertise, this formula only involves questions and
answers posted before the time when the bug was reported
(ie, tqg <ty and t, < tp).

B. A Recency-Sensitive SSA_Z-score

The expertise of the developers shifts over time as they
work on different projects with potentially different technolo-
gies. This is why, many related expertise-modeling methdolo-
gies [5], [16], [1] include a decay factor for older evidence
of expertise and weigh it less than more recent one. To
capture this intuition, that “recent evidence of expertise is
more valuable”, we defined Recency_of_activity as shown in
Equation 4 below.

Recency_of _activity,, =

1
4
z‘ze: 1+ |{d|debugs of u & tq > t; & tq <tp }| @

bugs of u

Note that t is the time of bug report and the denominator
counts the number of bug reports occurred between i and b.
The key intuition here is that bug-fixing exhibits a certain
locality, namely “the developers that have been fixing bugs
recently are likely to fix bug reports in the near future” [12].
We combine the two last metrics to assign each user a new
score for his/her relevance to the bug currently being triaged:

Triage_scorey, = o - (SSA_Z-score,) +
B - (Recency_of _activity,p) (5)

In this formula, o and B are parameters, which are tuned
following a systematic process explained in Section III-B.
Having the Triage_score for all users in the community over
a bug report, our bug-triaging algorithm sorts the users and
reports the top k as the most capable developers to fix the
bug.

III. EVALUATION
We obtained two Stack Overflow data sets [19], [20] (ap-
proximately 65GB and 90GB). They consist of several XML
files including information of 2,332,403 and 3,080,577 users,
their posts, tags, votes, etc.). In order to link these users to
GitHub, their email hash is needed [18], which is provided

TABLE II
EXAMPLE OF DIFFERENT SCORES FOR USERS: EACH ROW SHOWS A QUESTION AND NUMBER OF UPVOTES FOR EACH OF ITS ANSWERS
(BY DIFFERENT USERS)

Questions Answerer Bob Ali Taylor Yakob Jane Brian Harpreet
QI by Yalfob, 3 upVotes 46 5 53 8
tags: [version control], [open source]
Q2 by Jane 1 upVotes
tags: [ajax], [data], [search], [jquery], [php] 20 16 22 6
Q3 by Yakob, 21 upVotes
tags: [lucene], [elasticsearch], [php], [java] 1 14 29 10
Q4 by Ali, 0 upVotes 27 0 36
tags: [https], [css], [java], [jira], [data]
Q5 by Harpreet, 70 upVotes ~
tags: [java], [ajax], [https], [xml], [lucene] ! 18 42 4 14 8
-
AnswerNum 5 4 4 3 3 2 0
Z-score 2.24 1.34 0.45 1 1.41 -1
(46+1)-1 +
(5+1)-1 + (53+1)-1 +
QO+D-2+ | e o 4 | o41)2 4 | OFD2+) CBD-LTgl)y
A D3+ g)3+ | @o+1)3 4 | @FDA+ | (A0+D3 4+ 1 g0 1) 5 0
27+1)-4 + (-4+1)-5 (14+1)-5 A
(18+1)-5 (42+1)-5 — — =843
(1+1)-5 =3 =137
W = 180 = 405
T
Q 20-(547) 20-(z35+ | 20-(¢3y) 20-(7527)
(1= 20) 0 =80 0 57)=77 =20 0 =1.41
SSA_Z-score 15.72 6.20 20.12 -1.44 9.34 29.03 -1.19

by the older data set. We merged these two data sets to get a
large data set including users of old data set with newer posts.

On the other hand, we used GHTorrent mySQL dump
[21] (with a size of about 21GB) containing information
about 4,212,377 GitHub users and their project memberships.
However, this data set did not include the textual information
of the bug reports. We obtained this information from a set
of MongoDB dumps from GHTorrent site (210GB) including
information of 2,908,292 users. Again, we merged the two data
sets and obtained a large data set including information about
GitHub users, projects and bug reports. Note that for some
of the projects (e.g., Scala and Gaia), the issue tracker is not
visible through the browser on the web, but all the information
required by our method is available in the data dump. As our
method assigns bugs to developers with a presence in both
GitHub and Stack Overflow, we encoded users’s emails in
GitHub with MD-5 function and compared them with every
e-mail hash available in Stack Overflow [17], [18]. With this

approach, we found 358,472 common users!.

A. Experiment Setup and Implementation

We first extracted the community members of each project
as the union of the sets of project members, committers,
bug reporters, and bug assignees. We then removed from this
community, developers who had no questions or answers on
Stack Overflow. Next, we identified the top 20 ranked projects
based on the number of community members !

For the selected 20 projects, the number of community
members vary from 28 to 822 (average=127, 0=169, me-
dian=87). Out of 14,172 bug reports in all the selected projects,
we examined 7144 bug reports that have been assigned to one
of the community members in the related project. Note that we

'Due to space limitation, our data sets, information of 3+17
projects, Java implementation of our approach and output and tuning
results are available online at: http://github.com/alisajedi/BugTriaging

could not use the rest of bug reports since they were assigned
to developers with no Stack Overflow activity. However, if
this approach is applied in the workplace, alternative networks
should be tested and used. We used bug reports from three
of these projects for training and tuning purposes and 17 for
final evaluation. For each bug report in each project, we ran
our algorithm to recognize the expertise score of all project-
community members and ranked the users from the highest
score to the lowest. Then report fop-1 and top-5 accuracies as
well as Mean Average Precision (MAP) as a synthesized, rank
based evaluation measure [22].

To approximate comparison with other state of the art
methods, we experimented with the scikit—learn 2 imple-
mentations of a number of machine-learning algorithms used
as the basis for the above research [1], [2], [13], [14] which
we applied® to our own data set:

1) INN, 3NN and 5NN

2) Naive Bayes

3) Multinomial Naive Bayes

4) SVM

We used the title and body words of the bug reports as
TFIDF vectors for the features. In order to make the process
competitive enough to our approach, we made the process
online; train them on first n-1 bug reports and then test on the
n™. Then train on first n bug reports and test on n+1™ and so
on.

We used the following parameters for scikit-learn
machine learners: For KNN, we chose k as the parameter (1, 3
or 5), weights=‘uniform’, algorithm="auto’, leaf_size=30, p=2,
metric="minkowski’ and metric_params=None. For Multino-
mial Naive Bayes, we used Laplace smoothing priors (o =

Zhttp://scikit-learn.org/stable/

3 Our Python implementations:
bug-triager-scikit/blob/ali/dumpbayes.py More explanation of the
methods are also available at the repository.

http://github.com/abramhindle/
ML

1.0) fit to prior distribution using OneVsRestClassifier classi-
fier strategy. Similarly for Naive Bayes, but it uses multiclass
classification. For SVM, we used Support Vector Classification
(SVC) class. We chose RBF kernel type, used shrinking
heuristic, with gamma kernel coefficient 1/n for n features,
error penalty=1 and probability=true.

B. Results

Out of 20 projects, we selected three projects randomly (in-
cluding 490 bug reports). We then measured the performance
metrics of different approaches from AnswerNum to original
Z-score, to Subject-Aware Z-score (SA_Z-score, to Social
Subject-Aware Z-score (SSA_Z-score), to the final recency-
aware SSA_Z-score (Triage_score). In each step, we observed
an improvement in accuracy. This validates our effort toward
considering Stack Overflow upVotes while being aware of
bug content. For the purpose of tuning and calibrating our
method, we needed to determine the best values for u, o and 3
(Equations 2 and 5). The best obtained values are as follows: 1
(normalization factor) is set to “Harmonic Mean plus 1”, =1
and o=0.01. This is because of very large numbers attained for
Social_Z-score (i.e., number of upVotes multiplied by number
of tags, summed over all answers of each user). We apply the
parameter values (i, « and () obtained from the three test
projects into the remaining 17 projects in our final evaluation.

As the final evaluation, we ran our algorithm over 17
projects (holding out the three projects used for tuning) includ-
ing 6654 bug reports and sorted the recommended developers
for each bug report. The average fop-k accuracies of our
approach for k from 1 to 5 are 45.17%, 66.41%, 77.50%,
84.79% and 89.43% respectively. We also obtained the Mean
Average Precision (MAP) as 0.633, which is very strong and
shows that the harmonic mean of the real assignee is 1.58 over
all the bug reports.

We also implemented the other approaches discussed in
Section III-A. We ran those experiments to compare the results
of our method with other approaches on the same data set. The
results for average top-1 and top-5 accuracies as well as MAP
are shown in Table III.

The values reported in Table III are averages over all
17 projects examined. However, we examined the detailed
results for each project and found them close to the mean
(median=90.19 and ¢=7.81 for fop-5 accuracies). Our results
demonstrate that our Triage_score, relying on evidence of
developers’ expertise from their Stack Overflow activities, is
very effective in selecting the right assignee for the right bug,
much more so than all competing machine-learning algorithms
relying exclusively on GitHub data. It is noteworthy that
our approach is fast and efficient enough since it avoids the
typical text pre-processing of most IR-based methods, such as
stemming and indexing. Each bug report was triaged in almost
a second, which is fast enough for real-time use.

C. Analysis

The results in Table III show that our method exhibits the
best performance, with SVM coming second. Our method
outperforms all of the other machine learning methods in
terms of fop-5 accuracy and MAP. 3NN, 5NN and SVM do
well for top-1 accuracy, slightly better than our approach. Our

average fop-5 accuracy is between 8 to 19 percent better than
other approaches. The MAP value of our approach —0.633—
corresponds to the harmonic mean 1.58 for the rank of the real
assignee (implying that the real assignee frequently appeared
in the rank-1 and rank-2 positions in the results). MAP varies
from 0.575 (for INN) to 0.617 (for SVM as the best approach
after our’s). Comparing the different algorithms on the same
data set demonstrates in the usefulness of our method.

On the other hand, we compare our results with previously
published results. In short, as one of the best obtained accu-
racies in the previous studies, Shokripour et al. obtained 48%
top-1 and 60% and 89% top-5 accuracies on two projects
(between 57 and 9 developers respectively). Our top-5 ac-
curacy outperforms theirs, but their approach performs 3%
better on fop-1. Note that their best results were obtained in a
project with only 9 candidate developers (our projects included
between 28 and 822 developers). Also note that their approach
was tested only on 80 and 85 bug reports, as opposed to our
7144 bug reports.

To summarize our comparison findings, it is important to
mention the following. Our evaluation of our metric is the most
thorough reported in the literature (with 20 projects and 7144
bug reports). Our metric highly outperforms all previously
reported methods in terms of average fop-5 accuracy, and most
of them in terms of average fop-1 accuracy. More importantly,
our metric exhibits the highest MAP.

D. Limitations and Threats to Validity

An external validity threat is that the common users (be-
tween Stack Overflow and GitHub) constitute up to 20% of
the total number of users in each of these networks. Currently,
for privacy reasons, much of the Q&A content at the software
social networks is provided anonymously. However, the large
number (i.e., thousands) of developers and bug reports on
which we tested our approach mitigates this limitation. One
could envision that project managers could easily request their
developers to provide their IDs in Q&A networks like Stack
Overflow, as part of their CV. As a result, more extensive
Q&A contributions (or alternative sources of information) will
become available to the bug-assignment process.

Another concern is how to treat the phenomenon of devel-
opers answering their own questions to announce a commonly
encountered issue with some API, library, etc. However, we
investigated the questions and answers of members of three
projects out of 20 and found that only 3% of their answers
are answers to one’s own question and only in around half of
these cases, the question is up-voted, meaning that the case did
not indicate expertise, but lack of expertise (as we assumed).

IV. CONCLUSIONS AND FUTURE WORK

In this paper we described a method that effectively uti-
lizes the Stack Overflow contributions of developers and their
previous bug-assignment history to decide the best candidate
developer for fixing a bug. We have thoroughly evaluated our
method with 20 popular GitHub projects, comparing its perfor-
mance (a) against six traditional machine-learning approaches
that have been widely used for bug assignment before, and
(b) against the reported accuracies of previous bug-triaging
publications. Our approach outperforms the competition.

TABLE III
ACCURACY RESULTS FOR DIFFERENT SIMULATED APPROACHES COMPARED WITH OURS

Method . Multinomial Our
Evaluation Measure INN 3NN SNN Naive Bayes Naive Bayes SVM approach
Top 1 Accuracy (%) 43.09 46.48 45.60 43.77 42.75 45.46 45.17
Top 5 Accuracy (%) 70.46 75.63 75.00 78.98 75.97 81.82 89.43
MAP 0.575 0.610 0.596 0.609 0.606 0.617 0.633

The fundamental novelty of our work is that it takes advan-
tage of contributions of the developers in software Q&A net-
works as a rich, unexploited socio-technical source of expertise
information, beyond their code. This leads us to a more inter-
esting insight: regardless of applicability of Stack Overflow in
bug assignment and its possible limitations, applying various
third party expertise networks in bug triaging envisions
new horizons for software maintenance community. While
some developers contribute in Stack Overflow, many others
may prefer Java Forum, Ask Ubuntu, Experts Exchange, Code
Project, Web developer, SUN Forums, MSDN Forums and
so on. As part of their development process, developers may
provide their IDs in their desired software social platforms, to
better inform our method regarding their expertise and thus
improve the triaging process.

In the future, we plan to consider tag synonyms; Stack
Overflow has introduced lists of tag synonyms and suggests
that users use the primary definitions (e.g., “servlets” instead
of “webservlet”, “authentication” instead of “login™), but it
does not enforce this policy. In the future, we plan to consider
integration of the synonyms in their primary definition ad-
dressing in bug reports and Q&A contents. Finally, capturing
level of similarity of the keywords in bug reports with tags
(e.g., “xml-parser”, “xml parser”, “xmlparsing” and “xml
parsing” compared to tag “xml-parsing”) can be a useful
extension. Curation, noise reduction, and tag recommender
approaches [23] may also be useful in this case.

ACKNOWLEDGMENTS
This work has been partially funded by IBM, the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC) and the GRAND NCE.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Pro-
ceedings of the 28th International Conference on Software Engineering,
ser. ICSE "06. ACM, 2006, pp. 361-370.

[2] D. Cubrani¢ and G. C. Murphy, “Automatic bug triage using text catego-
rization,” in In SEKE 2004: Proceedings of the Sixteenth International
Conference on Software Engineering & Knowledge Engineering, 2004.

[3] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” in Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ser. ESEC/FSE
’09. ACM, 2009, pp. 111-120.

[4] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and
D. Poshyvanyk, “Triaging incoming change requests: Bug or commit
history, or code authorship?” in Software Maintenance (ICSM), 2012
28th IEEE International Conference on. 1EEE, 2012, pp. 451-460.

[5] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using
a vocabulary-based expertise model of developers,” in Mining Software
Repositories, 2009. MSR °09. 6th IEEE International Working Confer-
ence on, May 2009, pp. 131-140.

[6] T. T. Nguyen, A. T. Nguyen, and T. N. Nguyen, “Topic-based, time-
aware bug assignment,” SIGSOFT Softw. Eng. Notes, vol. 39, no. 1, pp.
1-4, Feb. 2014.

[71 R. Venkataramani, A. Gupta, A. Asadullah, B. Muddu, and V. Bhat,
“Discovery of technical expertise from open source code repositories,”
in Proceedings of the 22Nd International Conference on World Wide
Web Companion, ser. WWW °13 Companion. International World Wide
Web Conferences Steering Committee, 2013, pp. 97-98.

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-of-
knowledge model to capture source code familiarity,” in Proceedings of
the 32Nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ser. ICSE *10. ACM, 2010, pp. 385-394.

A. Mockus and J. D. Herbsleb, “Expertise browser: A quantitative ap-
proach to identifying expertise,” in Proceedings of the 24th International
Conference on Software Engineering, ser. ICSE 02. ACM, 2002.

C. Teyton, M. Palyart, J.-R. Falleri, F. Morandat, and X. Blanc, “Au-
tomatic extraction of developer expertise,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering. ACM, 2014, p. 8.

J. Zhang, M. S. Ackerman, and L. Adamic, “Expertise networks in
online communities: Structure and algorithms,” in Proceedings of the
16th International Conference on World Wide Web, ser. WWW ’07.
ACM, 2007, pp. 221-230.

A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen, “Fuzzy
set-based automatic bug triaging (nier track),” in Proceedings of the
33rd International Conference on Software Engineering, ser. ICSE *11.
ACM, 2011, pp. 884-887.

A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in
Software Maintenance and Reengineering (CSMR), 2011 15th European
Conference on. 1EEE, 2011, pp. 249-258.

Z.Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang, “An empirical study on bug
assignment automation using chinese bug data,” in Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM °09. IEEE Computer Society, 2009.

G. Canfora and L. Cerulo, “Supporting change request assignment in
open source development,” in Proceedings of the 2006 ACM Symposium
on Applied Computing, ser. SAC 06. ACM, 2006, pp. 1767-1772.

R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation,” in Proceedings of the 10th Working
Conference on Mining Software Repositories, ser. MSR ’13. IEEE
Press, 2013, pp. 2-11.

B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:
associations between software development and crowdsourced knowl-
edge,” in Social Computing (SocialCom), 2013 International Conference
on. 1EEE, 2013, pp. 188-195.

A. Sajedi, A. Esteki, A. GholiPour, A. Hindle, and E. Stroulia, “In-
volvement, contribution and influence in github and stack overflow,” in
Proceedings of the 2014 Conference of the Center for Advanced Studies
on Collaborative Research, ser. CASCON ’14. Markham, Toronto,
Canada: ACM, 2014.

Stack Exchange Community. Is there a direct down-
load link with a raw data dump of stack overflow?
“http://meta.stackexchange.com/questions/198915/is-there-a-direct-
download-link-with-a-raw-data-dump-of-stack-overflow-not-a-t”,
Visited on 2014/08/20.

Stack Exchange, Inc. Stack exchange data dump.
“https://archive.org/details/stackexchange”, Visited on 2014/08/20.

G. Gousios, “The ghtorent dataset and tool suite,” in Proceedings of
the 10th Working Conference on Mining Software Repositories. 1TEEE
Press, 2013, pp. 233-236.

C.-P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei,
“Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis,” in Software Maintenance and Evolution (ICSME),
2014 IEEE International Conference on. 1EEE, 2014, pp. 181-190.

S. Wang, D. Lo, B. Vasilescu, and A. Serebrenik, “Entagrec: an
enhanced tag recommendation system for software information sites,” in
Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. 1EEE, 2014, pp. 291-300.

