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Abstract

Synthetic image generation using Generative Adversarial Networks (GANs) has
emerged as a promising technique to address the challenge of limited datasets
in the field of garbage classification. With supervised machine learning algo-
rithms relying on labeled data and larger training examples, the small size and
scarcity of annotated samples in the medical imaging domain pose significant
obstacles. Traditional data augmentation techniques offer limited diversity,
motivating the exploration of synthetic data examples to introduce more vari-
ability and enhance the training process. GANs, known for their ability to
generate high-quality and realistic images, have gained popularity in computer
vision tasks and have been successfully applied to medical imaging applications.
In this study, we investigate the application of GANs for synthetic image gener-
ation in the garbage classification dataset. By training the GAN model with a
large number of images, we aim to generate synthetic images that closely resem-
ble real images, thereby expanding the dataset and improving the robustness
of garbage classification algorithms. We also evaluate the similarity between
the real and generated images using metrics such as the Inception Score and
Frechet Inception Distance. Through our research, we seek to demonstrate the
efficacy of GAN-based synthetic image generation as a means to enhance the
garbage classification dataset and improve the accuracy of classification algo-
rithms for efficient waste management.

Keywords: Synthetic Image Data Generation, GAN, Inception Score, Frechet
Inception Distance, Machine Learning.
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1 Introduction
For resolving data availability concerns in a variety of fields, including computer
vision, natural language processing, and medicine, synthetic dataset generation has
emerged as a promising approach [1]. In recent years, the application of Generative
Adversarial Networks (GANs) for synthetic image data generation has gained signifi-
cant attention and has proven to be highly effective. GANs are deep learning models
that consist of a generator network and a discriminator network, working together
in a competitive fashion to generate realistic and high-quality images.

Numerous recent papers have contributed to the advancement of synthetic image data
generation using GANs, proposing innovative architectures and training strategies
to improve the quality and diversity of generated images. One prominent research
direction focuses on the development of conditional GANs, which allow the genera-
tion of images conditioned on specific attributes or class labels [6]. By incorporating
additional information into the GAN framework, researchers have achieved impres-
sive results in tasks such as image synthesis, image-to-image translation, and style
transfer.

Synthetic image data generation plays a pivotal role in various computer vision ap-
plications, enabling researchers and developers to overcome limitations associated
with scarce or expensive real-world data [2]. In the context of Garbage Classification
Dataset, generating synthetic images using a Generative Adversarial Network (GAN)
has become an increasingly important technique. By training the GAN model on a
large number of images, the aim is to generate synthetic images that closely resem-
ble real images, thus expanding the dataset and enhancing the robustness of garbage
classification algorithms [1].

Recent research has highlighted the significance of assessing the similarity between
real and generated images in order to evaluate the effectiveness of the GAN model.
Two widely used metrics for this purpose are the Inception Score and the Frechet
Inception Distance. The Inception Score measures the quality and diversity of the
generated images by evaluating the conditional class probabilities assigned by an
Inception model [4]. On the other hand, the Frechet Inception Distance quantifies
the dissimilarity between the feature distributions of real and generated images,
providing a more comprehensive measure of similarity.

To achieve the goal of generating high-quality synthetic images for the Garbage
Classification Dataset, researchers have explored various techniques and architec-
tures within the GAN framework. Conditional GANs have proven to be effective by
incorporating specific attributes or class labels into the generation process, allowing
for the synthesis of images tailored to different garbage classes [6]. Additionally,
advancements in unsupervised learning with GANs have enabled the development of
meaningful representations and improved the overall quality and diversity of gener-
ated images [8].
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This report aims to present a comprehensive implementation of synthetic image
data generation for the Garbage Classification Dataset. By training a GAN model
with a large number of images, we focus on generating synthetic images that closely
resemble real images in order to enhance the dataset and improve the performance of
garbage classification algorithms. Moreover, we evaluate the similarity between the
real and generated images using the Inception Score and Frechet Inception Distance,
providing quantitative measures of the GAN model’s effectiveness.

2 Literature review
The field of synthetic image data generation has proven to be crucial in various
domains, particularly when dealing with limited datasets and a scarcity of anno-
tated samples. In the context of medical imaging, where annotations are often
time-consuming and require expert knowledge, the challenge becomes even more pro-
nounced. While public medical datasets and challenges have provided some relief,
they still have limitations in terms of size and applicability to specific medical prob-
lems. Collecting medical data is an intricate and expensive process that necessitates
collaboration between researchers and radiologists [1].

To address these challenges, researchers have explored data augmentation techniques,
which typically involve simple modifications of dataset images, such as translation,
rotation, flip, and scale. While these techniques have become standard practice
in computer vision tasks and provide some diversity, the variability they introduce
remains relatively limited [1]. Consequently, the use of synthetic data examples has
emerged as a promising approach to enhance dataset variability and improve the
training process of systems.

Generative Adversarial Networks (GANs) have gained significant popularity in the
computer vision community and have shown promise in generating high-quality and
realistic natural images. GANs consist of a generator network and a discrimina-
tor network that compete against each other during training. Recently, the GAN
framework has also been applied to various medical imaging applications [1]. These
studies have employed GANs for tasks such as label-to-segmentation translation,
segmentation-to-image translation, cross-modality translations, and image inpaint-
ing [1]. By leveraging the GAN framework, the study seeks to create synthetic
medical images that can be used for data augmentation. This data augmentation
technique is expected to boost the performance of liver lesion classification models
by increasing the diversity and size of the training dataset [1].

In the specific domain of liver lesion classification, there is a pressing need to develop
automated diagnostic tools to assist radiologists in diagnosing liver lesions, as liver
cancer is a significant cause of mortality worldwide. Prior studies have proposed
methods for automatic classification of focal liver lesions in CT images [1]. By
maximizing the use of the GAN’s learned parameters, the authors seek to overcome
the limitations of previous methods and provide a better way to train deep CNNs

2



using synthetic data [10]. This strategy is expected to improve the realism and
diversity of the generated examples, ultimately enhancing the performance of deep
CNNs trained on the synthetic data [10].

Large amounts of synthetic data have been produced using Generative Adversarial
Networks (GANs). This data is used to train deep convolutional neural networks
(CNNs) by supplementing with real-world examples. Studies have demonstrated
that the produced instances are deficient in variety and don’t have enough realism
to train deep CNNs [11]. We propose our straightforward, practical, and easy-to-
implement synthetic data generation method to train the model more effectively and
precisely, in contrast to prior research that randomly augmented the synthetic data
with actual data [11].

Generative Adversarial Networks (GAN) provide training samples that replicate the
distribution of the actual dataset. These GAN-synthesized picture samples are
utilised extensively in medical imaging for dataset augmentation; further uses for
the images include image translation, registration, super-resolution, denoising, mo-
tion correction, segmentation, reconstruction, and contrast enhancement [8].A GAN
is made up of two concurrently trained image-based networks: the discriminator and
the generator. The discriminator network compares and evaluates the false pictures
against the real ones after the generator creates copies of the original images [8]. The
discriminator gains knowledge of the original input’s characteristics by training on
both kinds of inputs. Discriminator loss, or the difference between the two inputs,
is sent to the generator network to change the settings for better performance [8].

GAN’s work through an adversarial process between a generator and a discrimina-
tor. The generator’s objective is to produce increasingly realistic images, while the
discriminator’s goal is to distinguish between the generated images and real images
[12]. This ongoing competition between the two components enables GANs to create
high-quality and lifelike images either from existing images or random noise [12].

3 Implementation Plan
1. Data Collection

Collected dataset for Garbage Classification with images for 12 classes and
storing them appropriately for processing the data.

2. Data Preprocessing

Applied necessary preprocessing steps to the images to ensure they are in a
consistent format and size. This includes resizing the images, normalizing pixel
values, and converting them to a suitable format (eg. numpy array).

3. GAN Architecture Design

The GAN consists of two main components: the generator and the discrimi-
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nator. The generator creates synthetic images, while the discriminator distin-
guishes between real and synthetic images. The generator generates images of
size 128,128 and discriminator distinguishes between the images of same size.

4. Training the GAN

Trained the GAN by alternating between updating the discriminator and the
generator. The generator constantly gets trained on the data that is fed to
the model while the discriminator becomes more accurate in distinguishing
between real and fake images.

5. Generating Synthetic Data

Generating synthetic data based on the parameters defined such as Latent Dim
and Input Shape.

6. Calculating Evaluation Metrics

The Inception Score measures the quality and diversity of generated images. It
uses the Inception-v3 neural network to evaluate the generated images based on
their class probabilities and the entropy of the distribution. Higher Inception
Score values indicate better image quality and diversity.

The FID is another popular metric that uses the Inception-v3 network to mea-
sure the similarity between the real data distribution and the generated data
distribution in the feature space. Lower FID values indicate better similarity
and thus better quality of generated samples.

7. Statistical Similarity To evaluate the statistical similarity between the real
data distribution and the generated data distribution in a GAN, one of the
commonly used metrics is the Fréchet Inception Distance (FID). FID uses a pre-
trained Inception-v3 model to extract feature representations from both real
and generated samples. Then, it calculates the Fréchet distance between the
two multivariate Gaussian distributions formed by the feature representations.

8. Iterative Improvement In order to improve results, it is necessary to regularly
analyse the data collected, collect feedback, and modify the GAN implemen-
tation.
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4 Project Design
Fig. 1 illustrates the GAN architecture. The generator is supplied with random
noise as input, while the discriminator receives real images. The generator utilizes
feedback from the discriminator to produce synthetic images [13]. Both components
of the GAN work together in tandem to enhance overall performance.

Figure 1: GAN Architecture [13]

The primary task of the discriminator is to accurately distinguish between real and
fake images. If the discriminator fails to keep pace with the generator, the model
will not effectively train, resulting in poorly generated images[13].

Ensuring accurate Generator and Discriminator losses is crucial for the GAN model’s
success [13]. Inaccurate losses can lead to false results, undermining the model’s
ability to produce high-quality and realistic synthetic images.
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5 Generator Model
Fig. 2 and Fig. 3 shows the layout of the Generator model used for implementing
the GAN architecture.

Figure 2: Generator Architecture

6



Figure 3: Generator Architecture (Cont.)
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• Input(shape=(LATENT_DIM, )): This defines the input layer for the
generator. The generator takes a random noise vector as input, which is usually
drawn from a normal distribution with a fixed dimension LATENT_DIM. The
noise vector acts as a seed for generating the synthetic data.

• Dense(128 * 16 * 16): This dense layer takes the input noise vector and
maps it to a higher-dimensional space. It transforms the 1D noise vector into a
higher-dimensional representation (128 * 16 * 16), which will later be reshaped
to a 3D tensor.

• LeakyReLU: This activation function is used throughout the model. Leaky
ReLU allows small negative values, preventing the vanishing gradient problem
during training and promoting better learning.

• Reshape((16, 16, 128)) This reshapes the higher-dimensional tensor into a
3D tensor with dimensions (16, 16, 128). This 3D tensor acts as the initial
feature map for the subsequent convolutional layers.

• Conv2D: The first set of convolutional layers aims to upscale the initial
feature map gradually. This layer applies 256 filters of size 5x5 to the input,
preserving the spatial dimensions while increasing the depth to 256. The ’same’
padding ensures the output spatial dimensions remain unchanged.

• Conv2DTranspose: The transpose convolutional layers are used to upsam-
ple the feature map. This layer applies 256 filters of size 4x4, with a stride
of 2, which effectively doubles the spatial dimensions while maintaining the
depth. The generator repeats the Conv2DTranspose layer three times. With
each repetition, the spatial dimensions are doubled while preserving the depth.

• Conv2D(512, 5, padding=’same’): This layer further increases the depth
of the feature map to 512 while preserving spatial dimensions.

• Conv2D(CHANNELS, 7, activation=’tanh’, padding=’same’): The
final convolutional layer reduces the depth to the desired number of channels
(e.g., 3 for RGB images) and applies a hyperbolic tangent (tanh) activation
function to scale the output values between -1 and 1. This ensures the gener-
ated images are within a valid pixel range.

The output of this generator is a synthetic image that is intended to resemble
a real image. The generator’s training involves minimizing the difference be-
tween the generated images and real images, while the discriminator (another
component of the GAN) aims to distinguish between real and fake images.
Through adversarial training, the generator learns to produce increasingly re-
alistic synthetic images over time.
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6 Discriminator Model
Fig. 4 and Fig. 5 shows the layout of the Discriminator model used for implementing
the GAN architecture.

Figure 4: Discriminator Architecture
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Figure 5: Discriminator Architecture (Cont.)

• Input(shape=(HEIGHT, WIDTH, CHANNELS)): This defines the
input layer for the discriminator. The discriminator takes an image tensor as
input, where HEIGHT, WIDTH, and CHANNELS represent the dimensions of
the input image.

• Conv2D: The discriminator uses a series of convolutional layers to extract
features from the input images. This layer applies 256 filters of size 3x3 to the
input image, capturing different patterns and features in the data. The output
from this layer is a feature map.
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• LeakyReLU: This activation function is used throughout the model. Leaky
ReLU allows small negative values, preventing the vanishing gradient problem
during training and promoting better learning.
The discriminator repeats the Conv2D layer four times, each time with a stride
of 2. This progressively reduces the spatial dimensions of the feature map
while increasing its depth, resulting in a compressed representation of the input
image.

• Flatten The flatten layer converts the 2D feature map into a 1D vector, prepar-
ing it for input to the dense layers.

• Dropout: To avoid overfitting, a dropout layer is applied, randomly setting
a fraction (40%) of the inputs to 0 during training.

• Dense: The dense layer is a fully connected layer with 1 neuron, responsible
for the final classification. It performs a binary classification, with the activa-
tion function set to sigmoid. The output value is a probability score, indicating
the likelihood that the input image is real (1) or fake (0).

The discriminator is trained to minimize the binary cross-entropy loss, which
measures the difference between its predictions and the ground truth labels
(real or fake). The GAN’s training involves a continuous interplay between the
generator and the discriminator. The generator tries to produce more realistic
images to deceive the discriminator, while the discriminator continuously im-
proves its ability to distinguish between real and fake images. This adversarial
process leads to the generation of increasingly realistic synthetic images by the
GAN.

7 Evaluation Metrics
• Inception Score: The Inception Score measures the quality and diversity

of generated images. It uses the Inception-v3 neural network to evaluate the
generated images based on their class probabilities and the entropy of the dis-
tribution. Higher Inception Score values indicate better image quality and
diversity [14]. The first step is to use the preprocess_input function for the
generated images. Inception model then predicts the pixel values of the gen-
erated images and computes the score. The below mentioned Inception Score
is calculated after executing the GAN model to predict synthetic images for
Garbage Classification Dataset [14].

Inception Distance: 41.576263427734375

• Frechet Inception Distance: The Fréchet Inception Distance (FID) is a
commonly used metric for assessing the quality of generated images produced
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by a Generative Adversarial Network (GAN) or other generative models [14].
FID quantifies the similarity between the distribution of real images and the
distribution of generated images in a high-dimensional feature space.

Fréchet Inception Distance (FID): 361.72460972948346

To evaluate the statistical similarity between the real data distribution and the
generated data distribution in a GAN, one of the commonly used metrics is the
Fréchet Inception Distance (FID). FID uses a pre-trained Inception-v3 model
to extract feature representations from both real and generated samples. [14]
Then, it calculates the Fréchet distance between the two multivariate Gaussian
distributions formed by the feature representations [14].
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8 Results
Fig. 6 indicates the plot for Generator and Discriminator loss.

Figure 6: Generator and Discriminator Loss

The loss function for the Generator measures how well it performs in generating
realistic data. he most common loss function for the Generator in GANs is the binary
cross-entropy loss, which encourages the Generator to maximize the probability that
the Discriminator classifies its generated samples as real (outputting a label close to
1).

The Discriminator’s objective is to distinguish between real data and data generated
by the Generator. Its loss function measures how well it performs in correctly classi-
fying real and generated samples. Similar to the Generator, the Discriminator often
uses binary cross-entropy loss to optimize its training. The loss function encourages
the Discriminator to maximize the probability of correctly classifying real samples
as real (outputting a label close to 1) and generated samples as fake (outputting a
label close to 0).
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Fig. 7 indicates the series of images from the initial stage to the final result.

Figure 7: Real Image to Generated Image

The initial image displayed serves as the authentic input for training the Generative
Adversarial Network (GAN) model.

Prior to training, this image is resized to a consistent dimension of 128 x 128 pixels
and converted into a numpy array to facilitate further processing. Subsequently, the
numpy array undergoes normalization, transforming the pixel values into a standard-
ized range between 0 and 1, which ensures stability during training.

The initial image displayed serves as the authentic input for training the Generative
Adversarial Network (GAN) model. Prior to training, this image is resized to a con-
sistent dimension of 128 x 128 pixels and converted into a numpy array to facilitate
further processing. Subsequently, the numpy array undergoes normalization, trans-
forming the pixel values into a standardized range between 0 and 1, which ensures
stability during training.

During compilation, the GAN model is configured with the Adam optimizer, utilizing
a learning rate of 0.0001. This optimizer is a popular choice for GANs due to its
adaptive nature, which enhances training efficiency and convergence. With the model
prepared for training, the numpy array representing the real image is fed into the
GAN, accompanied by pre-defined hyperparameters. These hyperparameters play a
vital role in shaping the GAN’s learning process and influence the generated results.

Throughout the training procedure, the GAN generates images at various stages of
learning. After every 50 steps, an intermediate image is generated, demonstrating
the model’s progression in capturing features and patterns from the training data.
At the 150th step, the second image reflects the model’s improved ability to generate
more realistic samples. Finally, after 350 steps, the third image showcases the GAN’s
proficiency in generating high-quality synthetic images.
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8.1 Learning Rate: 0.0001

Fig. 8 illustrates the plot for Generator and Discriminator Loss with learning rate
set to 0.0001.

Figure 8: Generator and Discriminator Plot(LR:0.0001)

Setting an appropriate learning rate is essential to ensure the stability and conver-
gence of the GAN during training. If the learning rate is too high, it may cause
training instability, leading to oscillations or divergence in the loss functions. On
the other hand, if the learning rate is too low, the training process may become
slow, and the model may struggle to learn meaningful features. Therefore, as per the
experiments and results, the generator and discriminator loss plot for learning rate
0.0001 is observed to be more efficient.

8.2 Learning Rate: 0.0002

Fig. 9 illustrates the plot for Generator and Discriminator Loss with learning rate
set to 0.0002.
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Figure 9: Generator and Discriminator Plot(LR:0.0002)

Upon careful observation, it becomes evident that using a learning rate of 0.0002 is
causing significant oscillations in the loss plot, leading to unstable results during GAN
training. Consequently, this instability can negatively impact the model’s accuracy
and overall performance on image generation tasks. To improve the stability and
quality of the training process, it is highly recommended to revert to a learning rate
of 0.0001.

By setting the learning rate to 0.0001, the GAN’s training process is expected to be
more controlled and smoother. A lower learning rate ensures more gradual updates
to the discriminator and generator’s parameters, which can lead to a more stable
convergence of the GAN. This stability helps prevent oscillations and divergence in
the loss functions, resulting in a more reliable and accurate GAN model for image
synthesis.

In conclusion, reverting to a learning rate of 0.0001 is a prudent decision to enhance
the stability, convergence, and accuracy of the GAN during training. This adjustment
is expected to yield improved image generation results and contribute to the overall
success of the GAN-based image synthesis model. As always, fine-tuning the learning
rate and other hyperparameters may still be necessary to achieve the best possible
results, but starting with a lower learning rate is a step in the right direction.
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9 Future Scope
1. Enhanced Realism: Future research will focus on improving the realism of

generated images. GANs will be equipped with more sophisticated architec-
tures, attention mechanisms, and advanced loss functions to create images that
are even more indistinguishable from real-world data.

2. Conducting Qualitative Analysis: One of the main future goals for qual-
itative analysis in GANs is to enhance the visual quality of generated im-
ages. Researchers can explore new architectural modifications, loss functions,
or training techniques to produce more realistic and visually appealing images.

3. Fusion of Generated Image and Noise: Synthetic Images can be further
generated using a Fusion technique of Noise and Image instead of random vector
noise. To achieve synthesis realism in both geometry and appearance spaces,
Spatial Fusion GAN combines a geometry synthesiser with an appearance syn-
thesiser. The appearance synthesiser harmoniously integrates foreground items
into background pictures by adjusting their colour, brightness, and styles [12].

4. GAN Generated Image Detection: Generative Adversarial Networks (GAN),
which have been used in phoney social media profiles and other forms of de-
ception that have the potential to have substantial effects, have produced very
realistic face photos [9]. As a result, techniques for GAN-face identification
that can look at and spot these fake faces are now being developed [9].
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10 Advantages of Synthetic Image Data Generation
Fig. 10 indicates a diagrammatic representation of Advantages of Synthetic Image
Data generator.

Figure 10: Advantages of GAN

1. Realistic Image Generation: GANs are capable of producing high-quality,
realistic images that closely resemble the distribution of real-world data. The
generator and discriminator adversarial setup forces the generator to contin-
ually improve its image generation capabilities, leading to more visually con-
vincing and accurate results.

2. Privacy Preservation: GANs allow data generation without direct access to
the original data, making them valuable for applications in privacy-sensitive
domains. Synthetic data can be used for testing and development without
exposing sensitive information.

3. Data Generation for Simulation: GANs can produce synthetic data for
training models in simulation environments, making it easier to test and refine
algorithms in various scenarios without relying solely on real-world data.

11 Conclusions
In conclusion, synthetic image data generation using Generative Adversarial Net-
works (GANs) for garbage classification offers a promising solution to address the
challenges of limited and imbalanced real-world datasets in this domain. GANs have
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proven to be effective in generating realistic and diverse images that can supplement
the existing data and enhance the performance of garbage classification models.

By leveraging GANs, we can create synthetic images that closely resemble real-world
garbage items across various classes. These synthetic images can effectively increase
the size of the dataset, enabling the garbage classification model to generalize better
and improve its accuracy and robustness.

However, it is essential to acknowledge some challenges and considerations when
using synthetic data. The quality and diversity of the generated images heavily
depend on the GAN’s architecture, training parameters, and the size of the original
dataset. Ensuring the GAN produces high-quality and diverse images requires careful
tuning and validation.

In summary, synthetic image data generation using GANs presents a valuable tool
for augmenting garbage classification datasets, mitigating class imbalance issues, and
improving the performance of garbage classification models. By combining real and
synthetic data judiciously, we can enhance the accuracy and robustness of garbage
classification systems, contributing to more effective waste management and envi-
ronmental conservation efforts.

12 Appendix

12.1 Code

from tqdm import tqdm
from keras.optimizers import RMSprop
from matplotlib import pyplot as plt

from tqdm import tqdm
from PIL import Image
from keras import Input
from keras.layers import Dense, Reshape, LeakyReLU, Conv2D, Conv2DTranspose, Flatten, Dropout
from keras.models import Model
from keras.optimizers import RMSprop
import os
import numpy as np
from IPython.display import Image
from keras.utils.vis_utils import model_to_dot

PIC_DIRS = [
’/content/drive/MyDrive/Capstone/Test Data/Battery’,
’/content/drive/MyDrive/Capstone/Test Data/Biological’,
’/content/drive/MyDrive/Capstone/Test Data/Brown-Glass’,
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’/content/drive/MyDrive/Capstone/Test Data/Cardboard’,
’/content/drive/MyDrive/Capstone/Test Data/Clothes’,
’/content/drive/MyDrive/Capstone/Test Data/Green-glass’,
’/content/drive/MyDrive/Capstone/Test Data/Metal’,
’/content/drive/MyDrive/Capstone/Test Data/Paper’,
’/content/drive/MyDrive/Capstone/Test Data/Plastic’,
’/content/drive/MyDrive/Capstone/Test Data/Shoes’,
’/content/drive/MyDrive/Capstone/Test Data/Trash’,
’/content/drive/MyDrive/Capstone/Test Data/White-Glass’

# Add paths for the remaining classes
]

IMAGES_COUNT = 10000

ORIG_WIDTH = 178
ORIG_HEIGHT = 208
diff = (ORIG_HEIGHT - ORIG_WIDTH) // 2

WIDTH = 128
HEIGHT = 128

crop_rect = (0, diff, ORIG_WIDTH, ORIG_HEIGHT - diff)

images = []
class_labels = []

for class_dir in PIC_DIRS:
class_name = os.path.basename(class_dir) # Get the class name from the directory
for pic_file in tqdm(os.listdir(class_dir)[:IMAGES_COUNT]):

pic_path = os.path.join(class_dir, pic_file)
pic = img.open(pic_path).crop(crop_rect)
pic.thumbnail((WIDTH, HEIGHT), img.ANTIALIAS)
images.append(np.uint8(pic))
class_labels.append(class_name)

images = np.array(images)
class_labels = np.array(class_labels)

print("Images shape:", images.shape)
print("Labels shape:", class_labels.shape)

# Now ’class_labels’ contains class names instead of class indices
# Use ’class_labels’ as required for your further processing.
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#Code That Runs
#Display Some Images
plt.figure(1, figsize=(10, 10))
for i in range(len(images)):

plt.subplot(10, 10, i+1)
plt.imshow(images[i])
plt.axis(’off’)

plt.show()

#Image shape
images = np.array(images) / 255
print(images.shape)

#Generator Function
LATENT_DIM = 32
CHANNELS = 3

def create_generator():
gen_input = Input(shape=(LATENT_DIM, ))

x = Dense(128 * 16 * 16)(gen_input)
x = LeakyReLU()(x)
x = Reshape((16, 16, 128))(x)

x = Conv2D(256, 5, padding=’same’)(x)
x = LeakyReLU()(x)

x = Conv2DTranspose(256, 4, strides=2, padding=’same’)(x)
x = LeakyReLU()(x)

x = Conv2DTranspose(256, 4, strides=2, padding=’same’)(x)
x = LeakyReLU()(x)

x = Conv2DTranspose(256, 4, strides=2, padding=’same’)(x)
x = LeakyReLU()(x)

x = Conv2D(512, 5, padding=’same’)(x)
x = LeakyReLU()(x)
x = Conv2D(512, 5, padding=’same’)(x)
x = LeakyReLU()(x)
x = Conv2D(CHANNELS, 7, activation=’tanh’, padding=’same’)(x)

generator = Model(gen_input, x)
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return generator

#Discriminator Function

def create_discriminator():
disc_input = Input(shape=(HEIGHT, WIDTH, CHANNELS))

x = Conv2D(256, 3)(disc_input)
x = LeakyReLU()(x)

x = Conv2D(256, 4, strides=2)(x)
x = LeakyReLU()(x)

x = Conv2D(256, 4, strides=2)(x)
x = LeakyReLU()(x)

x = Conv2D(256, 4, strides=2)(x)
x = LeakyReLU()(x)

x = Conv2D(256, 4, strides=2)(x)
x = LeakyReLU()(x)

x = Flatten()(x)
x = Dropout(0.4)(x)

x = Dense(1, activation=’sigmoid’)(x)
discriminator = Model(disc_input, x)

optimizer = RMSprop(
lr=.0001,
clipvalue=1.0,
decay=1e-8

)

discriminator.compile(
optimizer=optimizer,
loss=’binary_crossentropy’

)

return discriminator

#Declare Generator
generator = create_generator()
generator.summary()
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#Display Generator Model as Image
Image(model_to_dot(generator, show_shapes=True).create_png())

#Declare Discriminator
discriminator = create_discriminator()
discriminator.trainable = False
discriminator.summary()

#Define Gan Model
gan_input = Input(shape=(LATENT_DIM, ))
gan_output = discriminator(generator(gan_input))
gan = Model(gan_input, gan_output)

#Optimizer Function
optimizer = RMSprop(lr=.0001, clipvalue=1.0, decay=1e-8)
gan.compile(optimizer=optimizer, loss=’binary_crossentropy’)

#Print GAN Summary
gan.summary()

#Training Function
import time
from PIL import Image as Img
iters = 250
batch_size = 1

RES_DIR = ’/content/drive/MyDrive/CAPSTONE/Data/Test Result Data/Synthetic_Data_v5/Synthetic_Data_v7/’
FILE_PATH = ’%s/generated_%d.png’
if not os.path.isdir(RES_DIR):

os.mkdir(RES_DIR)

CONTROL_SIZE_SQRT = 1
control_vectors = np.random.normal(size=(CONTROL_SIZE_SQRT**2, LATENT_DIM)) / 2

start = 0
d_losses = []
a_losses = []
images_saved = 0
for i in range(len(images)):

plt.imshow(images[i])
plt.axis(’off’)
for step in range(iters):

print(step)
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start_time = time.time()
latent_vectors = np.random.normal(size=(batch_size, LATENT_DIM))
generated = generator.predict(latent_vectors)

# real = images[start:start + batch_size]
real = np.expand_dims(images[i], axis=0)
combined_images = np.concatenate([generated, real])

labels = np.concatenate([np.ones((batch_size, 1)), np.zeros((batch_size, 1))])
labels += .05 * np.random.random(labels.shape)

d_loss = discriminator.train_on_batch(combined_images, labels)
d_losses.append(d_loss)

latent_vectors = np.random.normal(size=(batch_size, LATENT_DIM))
misleading_targets = np.zeros((batch_size, 1))

a_loss = gan.train_on_batch(latent_vectors, misleading_targets)
a_losses.append(a_loss)

start += batch_size
if start > images.shape[0] - batch_size:

start = 0

if step % 50 == 49:
gan.save_weights(’/gan.h5’)

#print(’%d/%d: d_loss: %.4f, a_loss: %.4f. (%.1f sec)’ % (step + 1, iters, d_loss, a_loss, time.time() - start_time))
print(’%d/%d: a_loss: %.4f. (%.1f sec)’ % (step + 1, iters, a_loss, time.time() - start_time))

control_image = np.zeros((WIDTH * CONTROL_SIZE_SQRT, HEIGHT * CONTROL_SIZE_SQRT, CHANNELS))
control_generated = generator.predict(control_vectors)

for j in range(CONTROL_SIZE_SQRT ** 2):
x_off = j % CONTROL_SIZE_SQRT
y_off = j // CONTROL_SIZE_SQRT
control_image[x_off * WIDTH:(x_off + 1) * WIDTH, y_off * HEIGHT:(y_off + 1) * HEIGHT, :] = control_generated[j, :, :, :]

im = Img.fromarray(np.uint8(control_image * 255))#.save(StringIO(), ’jpeg’)
im.save(FILE_PATH % (RES_DIR, images_saved))
images_saved += 1

#Plotting the Generator and Discriminator Loss
plt.figure(1, figsize=(12, 8))
plt.subplot(121)
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plt.plot(d_losses, color=’red’)
plt.xlabel(’epochs’)
plt.ylabel(’discriminant losses’)
plt.subplot(122)
plt.plot(a_losses)
plt.xlabel(’epochs’)
plt.ylabel(’adversary losses’)
plt.show()
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