
Nonconvex Optimization Methods for Large-scale Statistical
Machine Learning

by

Rui Zhu

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Engineering

Department of Electrical and Computer Engineering

University of Alberta

c© Rui Zhu, 2018

Abstract

The development of modern machine learning systems not only provides the oppor-

tunity of applications in various fields but also creates many challenges. The core

of machine learning is to train a model based on a dataset, which can be posed

as solving an optimization problem, usually expressed regarding carefully chosen

losses and regularizers. However, those formulated optimization problems are more

complicated than they appear. Many of them are not convex in model parameters,

and we need advanced techniques to solve them. This thesis focuses on how to

develop algorithms that can provide solutions for nonconvex optimization problems

at different levels.

Some nonconvex optimization problems have specific inner structure, and this

allows us to develop convex approximations. In this way, we can turn to find solu-

tions for convex approximation problems. This thesis firstly focuses on an instance

of this approach for matrix and tensor estimation problem. Given a subset of ob-

servations, i.e., incomplete entries in a matrix (or a tensor), our target here is to

find a matrix (or a tensor) that has the minimum rank. We use Schatten-p norm

(1 ≤ p ≤ 2) to approximate the matrix rank, a nonconvex function, and propose It-

erative Reweighted Schatten-p Norm (IS-p) method to solve this convex approxima-

tion. Extensive performance evaluations driven by synthesized data and real-world

latency measurements show that our proposed approach achieves better and more

robust performance than multiple state-of-the-art matrix completion algorithms in

the presence of noise.

Secondly, this thesis studies nonconvex optimization problems by exploiting the

convexity of objective function from a local view. In machine learning, many objec-

ii

tive functions have specific inner structures near global optimums, and this allows

us to find efficient algorithms to solve. In the second part, we focus on an instance

of this approach, matrix factorization for skewed data. Matrix factorization has

been proved to be powerful tools in many fields including recommender systems and

web latency estimation. However, traditional methods estimate conditional means

which may be biased in skewed data settings. We propose Quantile Matrix Factor-

ization (QMF) and Expectile Matrix Factorization (EMF) to overcome such issue.

We exploit local strong convexity of global optimums for EMF and shows that we

can achieve global optimum under certain conditions in EMF by alternating mini-

mization.

Finally, we study general nonconvex nonsmooth optimization problems that

are prevalent in machine learning. Modern applications of machine learning have

brought challenges in model complexity and data volume, and the focus of this the-

sis is to design distributed algorithms that allow us to solve these problems using

multiple worker nodes in parallel. We propose asynchronous optimization methods

that can enable worker nodes not waiting for others once they complete their tasks,

which saves time. We implement the new algorithms on the parameter server sys-

tem and test on large scale real data sets. We successfully demonstrate that our

proposed algorithms can almost achieve linear speedup and accelerate large-scale

distributed machine learning.

iii

Preface

The introduction to nonconvex optimization and distributed optimization in Chap-

ter 1 presents concepts and ideas from various of classical textbooks and papers,

including [1, 2, 3, 4]. Chapter 2 introduces related work in the literature. The

rest of this thesis is grounded on joint work with Di Niu, Zongpeng Li, and other

co-authors.

Chapter 3 has been published as R. Zhu, B. Liu, D. Niu, Z. Li, and H. V. Zhao,

“Network latency estimation for personal devices: A matrix completion approach,”

IEEE/ACM Transactions on Networking (ToN), 25(2):724-737, April 2017.

Chapter 4 has been published as R. Zhu, D. Niu, and Z. Li, “Robust Web Service

Recommendation via Quantile Matrix Factorization,” in the Proceedings of IEEE

INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017.

Chapter 5 has been published as R. Zhu, D. Niu, L. Kong, and Z. Li, “Expectile

Matrix Factorization for Skewed Data Analysis,” in the Proceedings of AAAI 2017,

San Francisco, CA, USA, February 4-9, 2017.

In Part III, Chapter 6, 7 are joint work with Di Niu and Zongpeng Li [5, 6],

which is based on our technical reports [5] and [6]. Chapter 8 is joint work with Di

Niu, which is based on our technical report [7].

iv

To my family.

v

The test of a first-rate intelligence is the ability to hold two opposed ideas in mind

at the same time and still retain the ability to function.

– F. Scott Fitzgerald, 1936.

vi

Acknowledgements

My time at the University of Alberta has been a great time in my life. My expe-

riences at the University are part of who I am, and have dramatically shaped my

foreseeable future.

At the University of Alberta, I have been very fortunate to be supervised by

Dr. Di Niu. I am grateful to them for giving me a change to work with him and

providing an excellent research environment with their encouragement, mentoring,

wisdom, and kindness. Not only have I acquired invaluable background form his

diverse knowledge and intuition in many topics, they have also shown the path to

becoming a productive scientist with his brilliant approaches. I am grateful to Dr.

Zongpeng Li for his fruitful discussion during the last few years.

I also thank the members of my thesis examining committee, Hao Liang, Hamzeh

Khazaei, Ming Zuo, and Liang Zhao, for taking time from their tight schedule to

gather for my defense, for their great feedback on this work, as well as the lively

discussions.

I would also like to thank Hongwen Zhang and Husam Kinawi for taking me as an

intern at Wedge Networks in 2017. I gained valuable industrial research experience.

I also thank my family for their unwavering support. Finally, I thank Yali Yuan

for her support and encouragement with love and understanding. She has been my

cheerleader, my project manager, my dietitian, my lover, and my friend. Despite

the completion of my PhD, I suspect that part of my nonsense is going to persist.

My hope is that her company will persist as well.

vii

Contents

1 Introduction 1

1.1 Nonconvex Optimization . 2

1.1.1 Convergence Criteria . 5

1.1.2 Approaches . 6

1.1.3 Algorithms . 8

1.2 Parallel and Distributed Optimization 10

1.3 Overview of Thesis & Our Results 14

1.3.1 Bibliographic Notes . 18

2 Related Work 19

2.1 Matrix Completion via Rank Minimization 19

2.2 Matrix Factorization . 20

2.3 Large Scale Optimization Algorithms 22

3 Iterative Reweighted Schatten-p Norm for Matrix and Tensor Es-

timation 25

3.1 Background . 25

3.2 Robust Matrix Completion via Schatten-p Norm Minimization . . . 26

3.2.1 A Family of Iterative Weighted Algorithms 27

3.3 Convergence Analysis . 29

3.3.1 Relationships to Prior Algorithms 31

3.4 Performance on Synthesized Low-Rank Data 33

3.5 Extension to Tensor Approximation 35

3.6 Performance Evaluation . 38

3.6.1 Single-Frame Matrix Completion 38

3.6.2 Multi-Frame Tensor Approximation 40

3.7 Proof for Lemma 3.3.1 . 42

viii

4 Quantile Matrix Factorization 47

4.1 Background . 47

4.2 Problem Description . 48

4.2.1 From Quantile Regression to Quantile Matrix Factorization . 50

4.3 Algorithms . 53

4.4 Convergence Analysis . 56

4.5 Performance Evaluation . 58

4.5.1 Experimental Setup . 58

4.5.2 Ranking performance . 60

4.5.3 Recovery accuracy . 62

4.5.4 Impact of the latent feature dimension 63

5 Expectile Matrix Factorization 64

5.1 Background . 64

5.2 Expectile Matrix Factorization . 65

5.3 Algorithm and Theoretical Results 68

5.4 Theoretical Results . 69

5.5 Experiments . 73

5.5.1 Experiments on Skewed Synthetic Data 73

5.5.2 Experiments on Web Service Latency Estimation 76

5.6 Detailed Proofs for Theoretical Results 77

5.6.1 Preliminaries . 77

5.6.2 Proof of Lemma 5.4.2 . 78

5.6.3 Proof of Lemma 5.4.1 . 79

5.6.4 Proof of Lemma 5.4.3 . 80

5.6.5 Proof of Lemma 5.4.4 . 80

5.6.6 Proof of Theorem 5.4.1 . 81

5.6.7 Proofs for auxiliary lemmas 82

6 Asynchronous Blockwise ADMM 86

6.1 Background . 86

6.2 Preliminaries . 89

6.2.1 Consensus Optimization and ADMM 89

6.2.2 General Form Consensus Optimization 89

6.3 A Block-wise, Asynchronous, and Distributed ADMM Algorithm . . 91

ix

6.3.1 Block-wise Synchronous ADMM 91

6.3.2 Block-wise Asynchronous ADMM 93

6.4 Convergence Analysis . 95

6.4.1 Assumptions and Metrics . 96

6.4.2 Main Result . 97

6.5 Experiments . 98

6.6 Preliminaries . 100

6.6.1 Auxiliary Lemmas . 101

6.7 Proof of Theorem 6.4.1 . 102

6.7.1 Proof of Lemma 6.7.1 . 105

6.7.2 Proof of Lemma 6.7.2 . 109

7 Asynchronous Proximal Stochastic Gradient Descent 111

7.1 Background . 111

7.2 Asynchronous Proximal Gradient Descent 113

7.3 Convergence Analysis . 114

7.3.1 Assumptions and Metrics . 114

7.3.2 Convergence Analysis for Asyn-ProxSGD 115

7.4 Experiments . 117

7.5 Proof of Theorem 7.3.1 . 119

7.5.1 Milestone lemmas . 119

7.6 Proof of Corollary 7.3.1 . 121

7.7 Proof of Milestone Lemmas . 122

8 Asynchronous Block Proximal Stochastic Gradient 128

8.1 Background . 128

8.2 AsyB-ProxSGD: Asynchronous Block Proximal

Stochastic Gradient . 129

8.3 Convergence Analysis . 130

8.3.1 Assumptions and Metrics . 132

8.3.2 Theoretical Results . 132

8.4 Experiments . 134

8.5 Proof of Theorem 8.3.1 . 137

8.5.1 Milestone Lemmas . 137

8.6 Proof of Corollary 8.3.1 . 139

x

8.7 Proof of Milestone Lemmas . 139

9 Conclusion 143

Bibliography 146

Appendix A Preliminary Lemmas for Chapter 7 and 8 154

A.1 Auxiliary Lemmas . 154

xi

List of Tables

4.1 Ranking Performance Comparison of Response Time on NDCG@k

and Precision@k (Larger value indicates higher ranking performance).

Here N@k indicates NDCG@k and P@k indicates Precision@k . . . 58

4.2 Ranking Performance Comparison of Throughput on NDCG@k and

Precision@k (Larger value indicates higher ranking performance).

Here N@k indicates NDCG@k and P@k indicates Precision@k . . . 59

6.1 Running time (in seconds) for iterations k and worker count. 100

7.1 Iteration speedup and time speedup of Asyn-ProxSGD at the subop-

timality level 10−3. (a9a) . 118

7.2 Description of the two classification datasets used. 118

7.3 Iteration speedup and time speedup of Asyn-ProxSGD at the subop-

timality level 10−3. (mnist) . 119

8.1 Iteration speedup and time speedup of AsyB-ProxSGD at the opti-

mality level 10−1. 137

xii

List of Figures

1.1 Data flow of Parameter Servers. “PS” represents a parameter server

task and “Worker” represents a worker task. 11

3.1 Performance of IS-p (p = 1) and other algorithms on synthetic 100×
100 matrices with rank r = 20, under sample rates R = 0.3 and R = 0.7. 33

3.2 A comparison between IS-1 (the nuclear-norm version) and IS-2 (the

Frobenius-norm version) in terms of recovery errors and running time. 34

3.3 Illustration of tensor unfolding for the 3D case. 36

3.4 The CDFs of relative estimation errors on missing values for the Seat-

tle dataset, under sample rates R = 0.3 and R = 0.7, respectively. . . 39

3.5 The CDFs of relative estimation errors on missing values for the Plan-

etLab dataset, under sample rates R = 0.3 and R = 0.7, respectively. 39

3.6 The CDFs of relative estimation errors on the missing values in the

current frame with sample rates R = 0.3 and R = 0.7 for the Seattle

dataset. Feature extraction has been applied in all experiments. . . . 46

4.1 Histograms of response times and throughput between 5825 web ser-

vices and 339 service users. Both QoS metrics are highly skewed.

. 50

4.2 Quantile regression vs. linear regression. By taking multiple quan-

tile levels, we can have a more complete picture of distribution and

provide better estimation than ordinary linear regression. 51

4.3 Smoothing a quantile check loss function. In both figures, we consider

τ = 0.2. (a) The check loss function in quantile regression, placing

different weights on positive residuals and negative residuals. (b) An

illustration of the smoothed quantile function. 53

4.4 The CDFs of relative estimation errors of response time and through-

put on the missing values with sample rate 1%, 10% and 30%. . . . 61

xiii

4.5 Histograms of residuals via MSE minimization 62

4.6 Impact of dimension of latent vectors on QMF in terms of median

relative error and NDCG@100. 62

5.1 (a) The asymmetric least squares loss function, placing different weights

on positive residuals and negative residuals. (b) For a skewed χ2
3 dis-

tribution, expectile regression with ω = 0.1 generates an estimate

closer to the mode than the conditional mean (ω = 0.5) does due to

the long tail. 67

5.2 CDF of relative errors via expectile matrix factorization on synthetic

1000× 1000 matrices with skewed noise. 73

5.3 Histograms of a) response times between 5825 web services and 339

service users; b) the residuals of estimates from MSE-based matrix

factorization applied on the complete matrix. 74

5.4 CDF of relative errors via expectile matrix factorization for web ser-

vice response time estimation under different sampling rates and ω. . 74

5.5 Box plots of relative errors for different bins of true latencies in the

test sets. 75

5.6 The medians and IQRs of relative errors for different bins as ω varies. 75

6.1 Convergence of AsyBADMM on the sparse logistic regression problem. 99

7.1 Performance of ProxGD and Async-ProxSGD on a9a (left) and mnist

(right) datasets. Here the x-axis represents how many sample gra-

dients is computed (divided by n), and the y-axis is the function

suboptimality f(x) − f(x̂) where x̂ is obtained by running gradient

descent for many iterations with multiple restarts. Note all values on

the y-axis are normalized by n. 126

7.2 Performance of ProxGD and Async-ProxSGD on a9a (left) and mnist

(right) datasets. Here the x-axis represents the actual running time,

and the y-axis is the function suboptimality. Note all values on the

y-axis are normalized by n. 127

8.1 Convergence of AsyB-ProxSGD on the sparse logistic regression prob-

lem under different numbers of workers. In this figure, the number of

servers is fixed to 8. 134

xiv

8.2 Convergence of AsyB-ProxSGD on the sparse logistic regression prob-

lem under different numbers of servers. In this figure, we use 8 workers

with different numbers of servers. 136

xv

Chapter 1

Introduction

Many machine learning problems can be formulated as the following optimization

problem:

min
x∈X

Ψ(x) := f(x) + h(x), (1.1)

where X ⊆ Rd is a compact convex set. In the context of machine learning, we call

f(x) as the loss function that shows how much cost if we choose x as the parameters

of a model, h(x) as the regularizer term that introduces some desired structures on

the parameters. Usually, f(x) is in the form of finite-sum like 1
n

∑n
i=1 fi(x), where

n is the size of a dataset and fi(x) is an individual loss function. Problems like (1.1)

are usually referred as empirical risk minimization (ERM) problems, and they are

prevalent in machine learning, as exemplified by deep learning with regularization

[8, 9, 10], LASSO [11], sparse logistic regression [12], robust matrix completion

[13, 14], and sparse support vector machine (SVM) [4].

Before proceeding any further, we need to understand the challenges of this

problem in the context of modern machine learning applications. The past decades

have witnessed a myriad of successes of machine learning applications in self-driving

cars, recommender systems, e-commerce systems, autonomous robots, etc. Modern

machine learning applications, however, have introduced new challenges within the

following two categories:

1. Model complexity. Traditional machine learning methods focus on develop-

ing convex models and algorithms, e.g ., SVM and logistic regression. However,

nonconvex models like deep learning have achieved exciting progresses. These

highly complex models have state-of-the-art performance and are now trans-

forming our world. To train a deep neural network [15] which can include

1

hundreds of layers with millions of parameters, we need to develop fast and

efficient optimization techniques to address model complexity challenges.

2. Large-scale and distributed data. With advances in methods like stream-

ing data processing, wireless sensory networks and Internet-of-Things, collect-

ing and managing large volumes of datasets become feasible and popular. Due

to the large dataset size, it is distributed across several computing nodes to

store, manage, and process. Modern machine learning systems like Parameter

Server [16], GraphLab [17] and TensorFlow [18] can handle dataset size in the

order of terabytes, and this scale of data brings challenges in heavy burdens

on computational and communication workloads.

The main focus of this thesis is to make progresses towards highly complex

nonconvex optimization problems addressing these important aspects of the modern

machine learning applications. This chapter introduces the background material for

this thesis focusing on nonconvex and distributed optimization. Some important

notations and terminologies are also introduced in this thesis. Finally, we summarize

the contributions of this thesis.

1.1 Nonconvex Optimization

In this section, we will take a brief view of nonconvex optimization. Let us start

with recalling some definitions and terminologies that will be used throughout this

thesis. A vector x = (x1, . . . , xd) ∈ Rd is a column vector by default. We use Ai,j

(or Ai,j) to denote the (i, j)-th entry of the matrix A. We use ‖·‖ to denote a

norm. Popular norms include Frobenius norm ‖·‖F and spectral norm ‖A‖2 when

A is a matrix, and `p norm ‖x‖p when x is a vector1. We also denote 〈·, ·〉 as the

inner product. For two matrices A and B with the same size, their inner product is

defined as 〈A,B〉 = tr(A>B) =
∑

i,j Ai,jBi,j . For a multi-variate function f(x) :=

f(x1, . . . , xd), we denote the partial derivative w.r.t. to its i-th coordinate (or block)

xi as ∇if(x).

Some chapters of this thesis will discuss optimization problems on matrices and

we will introduce some additional notations here. Let A be a matrix with the

size of m × n (w.l.o.g., we assume m ≥ n). The vector of eigenvalues of A is

1A potential ambiguity here is the notation ‖·‖2 which may stand for both `2 norm and spectral
norm, since spectral norm is induced by the `2 norm. In fact, spectral norm is only discussed in
Chapter 5 in this thesis.

2

denoted by λ(A) = (λ1(A), λ2(A), . . . , λn(A)), and they are ordered as λ1(A) ≥
λ2(A) ≥ . . . ≥ λn(A) ≥ 0. The vector of diagonal elements of A is denoted by

d(A) = (d1(A), d2(A), . . . , dn(A)). For any A, there exists the singular value de-

composition. The singular values are arranged in decreasing order and denoted by

σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ 0. Sometimes we also denote σmax(A) as its

maximum singular value and σmin(A) as its minimum singular value. It is clear

that the singular values of A are the nonnegative square roots of the eigenvalues of

the positive semidefinite matrix A>A, or equivalently, they are the eigenvalues of

the positive semidefinite square root (A>A)1/2, so that σi(A) = [λi(A
>A)]1/2 =

λi[(A
>A)1/2], (i = 1, . . . , n).

Definition 1.1.1 (Lipschitz Gradient). A function f is called L-Lipschitz gradient,

if there exists a constant L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rd.

If f is L-Lipschitz gradient, we can prove that f is also L-smooth, which is a

common assumption in the analysis of first-order methods [19, 1, 20]:
f(x) ≥ f(y) + 〈∇f(y),x− y〉 − L

2
‖x− y‖2,

f(x) ≤ f(y) + 〈∇f(y),x− y〉+
L

2
‖x− y‖2,

for all x,y ∈ Rd. In fact, the value of L controls the curvature of f which prevents

situations like rapid changes and breakpoints.

Definition 1.1.2 (Convex Set). A set X is called convex, iff. for all x,y ∈ X and

0 ≤ λ ≤ 1, we have λx + (1− λ)y ∈ X .

Definition 1.1.3 (Convex Function). Let X be a convex set. A function f is called

convex if

f (λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y),

for all x,y ∈ X and λ such that 0 ≤ λ ≤ 1. If we further have a constant µ > 0 s.t.

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖x− y‖2,

we say f is a µ-strongly convex function.

For a convex function f , we also have (e.g ., [1, 20]) 〈∇f(x),x− y〉 ≥ f(x)−f(y)

for all x,y ∈ X . If f is µ-strongly convex, we have:

3

Lemma 1.1.1 (Polyak- Lojasiewicz Inequality). If f is µ-strongly convex, then it

also satisfies the following inequality:

‖∇f(x)‖2 ≥ 2µ(f(x)− f(x∗))

for all x ∈ X , where x∗ is a minimizer of f(x).

Proof. From the definition of µ-strongly convex we have

f(x)− f(x∗) ≤〈∇f(x),x− x∗〉 − µ

2
‖x− x∗‖2

=− 1

2
‖√µ(x− x∗)− 1√

µ
∇f(x)‖2 +

1

2µ
‖∇f(x)‖22

≤ 1

2µ
‖∇f(x)‖2.

ut

Next, we introduce some definitions on the regularizer term h(x) which intro-

duces some inner structures on x. A key difference for h is that, we do not assume

smoothness on h(x), and gradient of h(x) may not exist or discontinuous at some

points in X . We consider an extension of gradient to handle the nonsmoothness of

h(x).

Definition 1.1.4 (Subdifferential e.g., [21]). We say a vector p ∈ Rd is a subgra-

dient of the function h : Rd → R at x ∈ dom h, if for all z ∈ dom h,

h(z) ≥ h(x) + 〈p, z− x〉. (1.2)

Moreover, denote the set of all such subgradients at x by ∂h(x), which is called the

subdifferential of h at x.

Now we introduce the concept of critical point for Ψ(x) as follows:

Definition 1.1.5 (Critical point [22]). A point x ∈ Rd is a critical point of Ψ(x) =

f(x) + h(x), iff. 0 ∈ ∇f(x) + ∂h(x).

Nonconvex optimization are significantly more difficult than convex optimization

from many aspects. Generally, finding a stationary point in a convex optimization

problem is usually sufficient, since any stationary point of a convex function is a

local minimum as well as a global minimum [1], which doesn’t hold for a nonconvex

function. In fact, stationary points of nonconvex functions are more complicated.

4

Definition 1.1.6. Given an L-smooth function f , a point x ∈ Rd is called a:

1. stationary point, if ∇f(x) = 0;

2. local minimum, if x is a stationary point and there exists a neighborhood set

B(x) ⊆ Rd such that for all y ∈ B(x), we have f(x) ≤ f(y);

3. global minimum, if x is a stationary point and for all y ∈ Rd, we have

f(x) ≤ f(y);

4. saddle point, if x is a stationary point but not a local minimum.

Therefore, a stationary point of a nonconvex function f has three possibilities:

local minimum, global minimum, or a saddle point. This means, stationary points

of a nonconvex function may not be good solutions, and we need further techniques

to check if they are minimum points. Unfortunately, for some nonconvex functions,

it is NP-hard to check if a given solution is a local minimum [23], even hard for

finding stationary points and checking the optimality.

1.1.1 Convergence Criteria

Convergence analysis is a significant part of designing and analyzing optimization

algorithms for the aforementioned problem. In convex optimization, we aim to

measure suboptimality based on f(x)−f(x∗) or ‖x− x∗‖2 as convergence criterion,

where x∗ is a minimum point. In some nonconvex optimization problems, we can still

use these types of convergence criterion, which can lead to convergence to the global

minimum. Since nonconvex functions usually have complex geometry of landscape,

convergence to global minimum is hard to achieve, or with certain conditions. This

calls for more realistic convergence criterion for more popular nonconvex problems.

In most part of this thesis, we assume that f is a smooth function with Lipschitz

gradient property. It implies that, we can obtain ∇f(x) for all x ∈ X , which is

essential to check if x is a stationary point. Following convergence analysis from

[19] and [24], we use ‖∇f(x)‖2 to check stationarity of point x. In particular, we

will consider the following kind of solutions:

Definition 1.1.7 (ε-accuracy point, e.g ., [25]). We call a point x ∈ X is ε-accurate

if its gradient is bounded by ‖∇f(x)‖2 ≤ ε.

The definition of ε-accuracy can help us define iteration complexity as follows:

5

Definition 1.1.8 (Iteration complexity w.r.t. ε-accuracy). If a deterministic al-

gorithm needs at least K steps to achieve ε-accuracy, i.e., ‖∇f(xk)‖2 ≤ ε for all

k ≥ K, we then call its iteration complexity as K. For stochastic algorithms, we

replace the definition of ε-accuracy by its expectations: E[‖∇f(xk)‖2] ≤ ε for all

k ≥ K.

When a nonsmooth regularizer h(x) is involved, we turn to study convergence

to critical points and gradient mapping is the metric we will use for convergence

analysis:

P (x,g, η) :=
1

η

(
x− proxηh(x− ηg)

)
, (1.3)

P(x) :=P (x,∇f(x), η). (1.4)

Lemma 1.1.2 (Nonconvex Nonsmooth Convergence [22]). A point x is a critical

point of (1.1), iff. P(x) = 0.

From this lemma, we can define iteration complexity for nonconvex nonsmooth

optimization problem as follows:

Definition 1.1.9 (c.n.t. Iteration complexity w.r.t. ε-accuracy). If a deterministic

algorithm needs at least K steps to achieve ‖P(x)‖2 ≤ ε, we call its iteration com-

plexity as K. For a stochastic algorithm, the ε-accuracy is defined by E[‖P(x)‖2] ≤ ε.

1.1.2 Approaches

Although a general nonconvex optimization problem can be very hard, we can still

find a number of instances that can have efficient algorithms to solve in feasible time.

In this thesis, we consider thre wee typical approaches for nonconvex optimization.

The first approach is to reformulate the nonconvex problem into a convex one,

or approximate it. As we have known, convex optimization problems usually have

stronger theoretical results that show convergence to global optimality. Thus, the

key of this approach becomes to design such transformation and prove the equiva-

lence. One good example here is to compute the minimum eigenvalue of symmetric

matrix A ∈ Rd×d, which can be formulated as follows:

min
x 6=0

x>Ax

‖x‖2 .

Garber et al . [26] prove that we can solve the following convex optimization problem

repeatedly to find the answer:

min
y

1

2
y>(A− λI)y + y>b,

6

for some λ ∈ R such that A− λI � 0 and b ∈ Rd.

Supported by fruitful convex optimization results, solutions found by this type

of methods usually have solid performance guarantees. However, designing methods

of this approach is problem-specific and requires special techniques, so this only

applies in a limited range of nonconvex optimization problems. In Chapter 3, we

will see how to use a convex optimization algorithm to find a matrix with minimum

rank, which is a complicated nonconvex problem with various applications.

The second approach is to exploit the convexity of objective function from a

local view. Recall that if f(x) is a convex function, we have

〈∇f(x),x− y〉 ≥ f(x)− f(y),

which holds for all x,y ∈ X . In addition, if we have

‖∇f(x)‖2 ≥ α(f(x)− f(y)),

for all x,y, the objective function f(x) is called α-strongly convex function.

Although nonconvex functions may not satisfy these two inequalities, we can

relax it to hold around one point x∗. In particular, we have the following definitions:

Definition 1.1.10 (One-point Convexity and Strongly Convexity). If function f(x)

satisfies the following inequality around the solution x∗:

〈∇f(x),x− x∗〉 ≥ f(x)− f(x∗) (1.5)

for all x ∈ X , we say f(x) is a one-point convex function. In addition, if there is

some α ≥ 0 such that the following inequality holds:

‖∇f(x)‖2 ≥ α(f(x)− f(x∗)), (1.6)

then we say f(x) is a one-point α-strongly convex function.

This category of problems provide some opportunities to achieve global solutions

by achieving local convergence to global minimum. That is, given some conditions, we

can find a proper initialization scheme to ensure the initial point is close to a global

minimum. Due to the one-point convexity property, a number of popular algorithms

including gradient descent (GD), alternating minimization (AltMin) that will be

introduced later can ensure all iterates are close to the global optimum, which leads

to convergence. In Chapter 4 and 5, we will discuss matrix factorization problem

7

that satisfies these conditions, and we will show how our proposed algorithm achieves

global optimality under certain condition by exploiting the one-point convexity (or

strongly convexity).

If f does not satisfy any of the above properties, the most natural condition we

have is its smoothness, which is equivalent with Lipschitz gradient condition. In

this case, the best result we can have is to achieve stationary points or local optimal

points. For this type of approaches, our goal is to design algorithms that achieve

ε-accuracy with fewer iterations, and try to avoid saddle points. In Chapter 6 and

7, we will propose our algorithms that achieve stationary points for a number of

large-scale machine learning problems.

1.1.3 Algorithms

We now review some important algorithms for nonconvex optimization. The gra-

dient descent algorithm is a generic procedure for minimizing functions, both for

convex and nonconvex ones. In this algorithm, the objective function f(x) decreases

at its negative gradient direction, i.e.:

xk+1 ← xk − ηk∇f(xk), (1.7)

for all iterations k = 1, 2, It has been shown that if ηk is sufficiently small, i.e.,

at most 1/L, we have f(xk+1) ≤ f(xk). Therefore, one starts with a point x0 ∈ Rd,

and solutions generated by gradient descent are forming a non-increasing sequence:

f(x0) ≥ f(x1) ≥ . . . ,

which leads to convergence. Gradient descent has been proved to converge to sta-

tionary points with iteration complexity of O(1/ε) (e.g . [20]).

Gradient descent is one of the most well-known optimization algorithms for its

effectiveness and simplicity. However, gradient descent has some drawbacks that

limits its applications. Firstly, gradient descent does not provide guarantee that

xk ∈ X in each iteration, so if constraints exist (i.e., X ⊂ Rd), we need an additional

step to project xk on X . Secondly, gradient descent requires a gradient. This is not

hard for smooth objective function f(x), but not for nonsmooth functions. For

example, if the objective function Ψ(x) has an `1 regularizer term h(x) = ‖x‖1, the

gradient of Ψ(x) does not exist at origin and we cannot apply gradient descent at

this point. Finally, evaluating ∇f(x) can be time consuming in large-scale machine

8

learning applications. In machine learning, f(x) is usually a function with the sum

of n individual ones, so evaluating ∇f(x) requires to go through the whole dataset

of n samples in each iteration, which is time consuming.

To handle the issue brought by X , we can define a projection operator:

ΠX (x) := argmin
z∈X

1

2
‖z− x‖2. (1.8)

The intuition of projection operator is to find a point zinX that is closet with x,

and ΠX (x) = x when x is in X . Any distance function that well-defined on X can

be used in projection operator by replacing the squared distance above. Given this

operator, we can revise the GD by adding a step to project xk at iteration k into

X , which is called projected gradient descent in the literature:

xk+1 ← ΠX (xk − ηk∇f(xk)). (1.9)

When optimizing Ψ(x) or h(x) that may have a some nonsmooth term, a natural

idea is to consider subgradient when gradient is not available at some point. Suppose

we denote p ∈ ∂Ψ(xk) as the subgradient at iteration k, we can extend GD into

subgradient descent as follows:

xk+1 ← xk − ηkp, for k = 1, 2, . . .

The iteration complexity of subgradient descent is proved (e.g ., [27]) to be O(1/ε2)

when achieving ε-accuracy.

Another popular variant of GD to handle smoothness is proximal gradient de-

scent. It utilizes another operator called proximal operator :

Definition 1.1.11 (Proximal operator). The proximal operator prox of a point

x ∈ Rd under a proper and closed function h with parameter η > 0 is defined as:

proxηh(x) = arg min
y∈Rd

{
h(y) +

1

2η
‖x− y‖2

}
. (1.10)

And proximal gradient descent performs the following iterative updates:

xk+1 ← proxηkh(xk − ηk∇f(xk)),

for k = 1, 2, If we want to incorporate constraints brought by X , we just add

an indicator function in h(x):

IX (x) =

{
0, if x ∈ X
∞, otherwise

. (1.11)

9

Finally, we introduce stochastic optimization algorithms for large-scale machine

learning problems. A common issue of many machine learning problems is the cost of

evaluating f(x) and ∇f(x), since f(x) consists of calculating functions for a large

number of data points. Stochastic gradient descent (SGD) attempts to alleviate

this problem by taking a subset of data points to calculate a gradient for each

iteration, which requires fewer calculations than gradient descent discussed above.

In particular, at iteration k, we perform the following equation:

xk+1 ← xk − ηk
|Ξk|

∑
ξ∈Ξk

∇F (xk; ξ).

In SGD, the gradient ∇f is replaced by the gradients from a random subset of

training samples, denoted by Ξk at iteration k. We call Ξk as a mini-batch. Since ξ

is a random variable indicating a random index in {1, . . . , n}, F (x; ξ) is a random

loss function for the random sample ξ, such that f(x) := Eξ[F (x; ξ)].

SGD is one of the most popular algorithm in modern machine learning prob-

lems, including training deep neural networks. Therefore, it is included in all deep

learning frameworks (to our best knowledge). We can still guarantee that SGD can

converge to stationary points. However, we have to note that SGD has slower con-

vergence rate than GD, since the gradient calculated in each iteration is noisy due

to random sampling. In fact, to achieve ε-accuracy, SGD needs O(1/ε2) iterations.

Note that unlike GD, SGD cannot achieve 0-accuracy by constant learning rate,

even we take infinite steps. Therefore, SGD needs learning rate decay schemes in

practical applications.

1.2 Parallel and Distributed Optimization

So far we have discussed the challenges of modern machine learning from the per-

spective of nonconvex optimization. In this section, we focus on how to handle the

issue of large scales for modern machine learning. Recent years have witnessed rapid

development of parallel and distributed computation frameworks for large-scale ma-

chine learning problems. One popular architecture is called parameter server [8, 16],

which consists of some worker nodes and server nodes, shown in Fig. 1.1. In this

architecture, one or multiple master machines play the role of parameter servers,

which maintain the model x. All other machines are worker nodes that communicate

with the server for training machine learning models.

10

PS

Worker

Data

M
od

el
 U

pd
at

e M
odel Fetch

PS PS PS

Worker

Data

Worker

Data

Worker

Data

Worker

Data

Figure 1.1: Data flow of Parameter Servers. “PS” represents a parameter server
task and “Worker” represents a worker task.

A number of machine learning problems can use parameter server architecture

to scale up training. Examples include train deep neural networks [8], large scale

sparse logistic regression [16], industrial scale factorization machine [28], natural

language topic models [29], etc. Despite problem specific details, workers perform

the following steps in each iteration:

1. Workers “pull” the current model parameters from server nodes.

2. Workers get some data points to calculate model updates.

3. Workers “push” model updates to server nodes.

We can clearly see that “pull” and “push” are two essential primitives to describe

communications between worker nodes and server nodes. In the rest of this section,

we will discuss some variants under the parameter server framework for distributed

machine learning, which will be discussed in Chapter 6, 7 and 8.

Batch vs. Stochastic Training. Recall that in machine learning, f(x) con-

sists of evaluating n individual losses, and the same with ∇f(x). Traditional algo-

rithms evaluates the gradient explicitly by using all samples in the training dataset.

An optimization algorithm runs in this fashion is called batch update. A typical

batch update algorithm is gradient descent. In the vanilla gradient descent, we

perform the following step:

xk+1 ← xk − ηk∇f(xk), (1.12)

for all iterations k = 1, 2,

When the dataset size n is large, evaluating the “true” gradient ∇f(xk) is time

and memory consuming, and therefore infeasible. A more practical approach is

11

to sample a few random data points to evaluate a gradient on these data points

in each iteration. Compared with batch update, each iteration can be faster and

consume less memory in each iterations. However, the gradient becomes noisy due

to sampling, and we need more time to converge. In fact, Ghadimi and Lan [24]

prove that stochastic gradient descent can only achieve O(1/
√
K)-accuracy after K

iterations, which is worse than O(1/K) for batch gradient descent.

Synchronous vs. Asynchronous Update. As discussed above, all workers

send their updates to servers in each iteration. Due to potential communication

latencies and computational heterogeneity among workers, servers may receive up-

dates at different time. Before proceeding any further iterations, servers can wait

for all workers to complete the current iteration, and then send the updated model

parameters to servers afterwards. Here we need a synchronization step to ensure

that all workers are in the same iteration, and we call this model update scheme as

synchronous update. Synchronization here ensures that implementations in parallel

mode can behaves exactly the same with sequential ones. Unfortunately, such syn-

chronous updating schemes are often slow since servers have to wait for the slowest

participant worker in each iteration.

To circumvent this issue, we can remove this synchronization step and allow

workers to update model parameters and continue. This asynchronous update

scheme works well in practice since it tries to minimize idle time. Existing suc-

cessful stories include downpour SGD for training deep neural networks [8], topic

models [29], etc. However, we should be aware of some drawbacks ahead. Since

asynchronous updating schemes use staled information during updating, its conver-

gence is usually slower than synchronous schemes.

Data Storage Service vs. Data shards. We now live in the era of big data.

We can easily generate petabytes (PBs) of data streams per day in e-commerce

websites, face with terabytes of application samples to be scanned, and watching

millions of online videos on YouTube. It is quite common to train a model with

large data, and this creates challenges of data storage and management for machine

learning. At least, we cannot put everything in a single machine.

One popular way is to store the whole dataset in an external distributed file

systems, like HDFS, Amazon S3, and Google Cloud Storage. In this approach,

each worker accesses to its external storage service, downloads a number of random

samples via some provided APIs, and calculates updates for them to send to servers.

12

Thanks to recent advances in cloud computing, we can conduct experiments on a

cluster using virtual machine instances (Amazon EC2) and the external storage

service (Amazon S3) from the same vendor (Amazon Web Service), and network

latencies between workers and the storage service can be neglected.

Another common solution is to split a large dataset into some smaller ones, each

of which will be distributed into a worker machine as its local dataset (or a data

shard). Due to its ease of implementation and potential privacy-preserving benefits,

this data storage method is widely adopted in practical systems with less results

of theoretical analysis in the literature, since data distributions among workers can

vary a lot.

Model Shards. In the case of large and complex models, we can split the whole

model into several shards as well. Each parameter server keeps one model shard,

and workers send updates to according server nodes. For example, if we have 4

model shards without overlaps, workers send updates on shard 1 to server 1 only,

and similarly for other servers. It has advantages when the model is sparse. For

example, in recommender systems, data samples in a worker node may only have

information on 10 users out of 1 million, so this worker only have to send updates

on these 10 users only instead of to the whole model. Obviously, it saves bandwidth.

Note that if a distributed machine learning scheme divides a dataset or a mini-

batch into several parts and let workers evaluate updates in parallel, this corresponds

to data parallelism (e.g., [30, 31]). If workers update model in parallel by simul-

taneously updating different model shards, this refers to model parallelism (e.g.,

[32, 33]). Typically, data parallelism is more suitable when n� d, i.e., large dataset

with moderate model size, and model parallelism is more suitable when d� n.

Consistent vs. Inconsistent. So far we assume that all parameter server

nodes and worker nodes are running in a distributed cluster. In this setting, each

node is a physical or virtual machine with its own memory. Worker nodes simply

send “push” requests and let server nodes update the model. Server nodes, on the

other hand, handle all requests in query queues one-by-one, so “pull” requests and

“push” requests are hardly conflict. Therefore, we can see that the model pulled by

workers is consistent with that stored on the server side at some time.

We can simply extend our idea in a shared-memory systems, e.g., a machine with

multiple CPU cores or GPU chips. The parameter server architecture still applies

here with some variations. Firstly, read and write may conflict, so each processor

13

may obtain a model that is inconsistent with any state of model in the shared

memory at any time. Secondly, we prefer model parallelism to data parallelism, since

model parallelism can avoid software locks when updating models asynchronously.

1.3 Overview of Thesis & Our Results

This thesis presents a selection of my work on nonconvex optimization methods for

machine learning. The content of the thesis corresponds to three nonconvex ap-

proaches as we discussed above: convex reformulation or approximation, exploita-

tion on “one-point” convexity, and finding stationary points or local minima. In

particular, Chapter 3 shows how to solve rank minimization problem using convex

approximation, which is the first approach. Chapter 4 and 5 propose two novel

matrix factorization methods for skewed data, which are common in many fields.

To analyze the convergence behavior, we exploit the “one-point” convexity around

global optimum points and prove local convergence to global optimum. Finally, we

study large-scale optimization methods in Chapter 6 to 8 with focus on compu-

tational and communication efficiency. In the rest of this section, we provide an

overview of these chapters here.

Part I: Convex Approximation

The first part of the thesis focuses on how to use convex optimization as a pow-

erful tool to solve a nonconvex problem, rank minimization for matrix and tensor

estimation. Given a number of possibly noisy observations on a low-rank matrix or

tensor, our target is to estimate other unknown entries by finding a matrix or tensor

with the least rank. However, the rank function is nonconvex, and it is even worse

for tensor estimation since computing the rank is NP-hard [34]. This part includes

Chapter 3.

Chapter 3: Iterative Reweighted Schatten-p Norm for Matrix and Tensor

Estimation

Estimating a low-rank matrix from a few observed entries is a popular prob-

lem in many fields, and the problem studied in Chapter 3 is to find a matrix with

minimum rank. Since rank is a nonconvex objective function, we can use a convex

objective function to approximate it. For example, it has been proved [35, 36] that

matrix nuclear norm, the sum of singular values of the matrix, is the closet con-

vex approximation for matrix rank. Based on this observation, various approaches

14

have been proposed, including using semidefinite programming [36], singular value

thresholding (SVT) [37], etc.

However, the gap between matrix rank and nuclear norm for a matrix is still

visible. In this chapter, we propose a new class of algorithms, called Iterative

weighted Schatten-p norm minimization (IS-p), with 1 ≤ p ≤ 2, to approximate

rank minimization with weighted Schatten-p norm minimization. In each iteration,

our algorithm will attempt to solve a convex optimization problem that minimizes

“weighted Schatten-p norm”, in which Schatten-p norm is a generalization of ma-

trix nuclear norm and matrix Frobenius norm, then adjust the weight such that the

weighted sum of Schatten-p norm is close to the matrix rank, which provides better

recovery performance.

Later in this chapter, we further extend the proposed IS-p method to tensor

approximation. Unlike matrix rank, computing the tensor rank is proved to be NP-

hard [34], and it is more complicated to minimize tensor rank directly. We consider

a convex approximation of tensor rank [38] by unfolding the tensor into several

matrices, and use IS-p to iteratively minimize the reweighted Schatten-p norm of

each unfolded matrix.

Part II: “One-point” Convexity

This part of the thesis studies the second approach by exploiting the local curva-

ture for nonconvex optimization. In particular, we study the matrix factorization

problem using this approach. We have seen that we can find a good estimation of a

matrix with partially observations by rank minimization, and matrix factorization

is another line of methods. The name matrix factorization is from the fact that

finding a matrix with rank at most r is actually to factorize the matrix into two tall

ones with only r columns. Chapter 4 and 5 are included in this part.

Chapter 4: Quantile Matrix Factorization

In Chapter 4, we propose a novel scheme, quantile matrix factorization (QMF),

that focuses on applications when observations are highly skewed. We point out that

in reality many datasets, e.g. web service response time dataset and video watching

dataset, follow highly skewed distributions. In this case, the conditional mean esti-

mates generated by traditional matrix completion approaches can be heavily biased

towards a few outliers, leading to poor web service recommendation performance.

In this chapter, we propose the Quantile Matrix Factorization (QMF) technique

15

for matrix completion by introducing quantile regression into the matrix factor-

ization framework. We propose a novel and efficient algorithm based on Iterative

Reweighted Least Squares (IRLS) to solve the QMF problem involving a nons-

mooth objective function. Extensive evaluation based on a large-scale QoS dataset

has shown that our schemes significantly outperform various state-of-the-art web

service QoS estimation schemes in terms of personalized recommendation perfor-

mance.

Chapter 5: Expectile Matrix Factorization

This chapter introduces another method of matrix factorization for skewed data.

In this chapter, we propose expectile matrix factorization by introducing asymmetric

least squares, a key concept in expectile regression analysis, into the matrix factor-

ization framework. We propose an efficient algorithm to solve the new problem

based on alternating minimization and quadratic programming. We prove that our

algorithm converges to a global optimum and exactly recovers the true underlying

low-rank matrices when noise is zero. For synthetic data with skewed noise and

a real-world dataset containing web service response times, the proposed scheme

achieves lower recovery errors than the existing matrix factorization method based

on least squares in a wide range of settings.

Part III: Large Scale Optimization Methods

In the third part, we look into asynchronous and distributed optimization problems.

In particular, we focus on problems with large scale and parallelism is important.

Communication cost is usually the dominating factor when deploying parallel algo-

rithms in a distributed cluster. In order to lower communication cost in parallel

algorithms, the distribution optimization algorithm needs to be flexible to various

node synchronization schemes, which is our focus in this part. This part of the thesis

is to design novel asynchronous algorithms for nonconvex nonsmooth problems in

various settings, and includes Chapter 6, 7 and 8.

Chapter 6: Asynchronous Blockwise ADMM

A number of algorithms have been proposed to solve nonconvex nonsmooth

optimization problem (1.1), and alternating direction multiplier method (ADMM)

is one of the most popular algorithm [2]. In ADMM, workers have their own datasets

and maintain their own solutions, called local models, while the server side maintains

a global solution, so workers perform most of the computation. The communication

16

among workers and the server is just to ensure that local models are consensus with

the global model, which eliminates a lot of unnecessary communications. Due to

its flexibility and communication efficiency, many recent efforts have been made to

develop asynchronous distributed ADMM to handle large amounts of training data.

However, all existing asynchronous distributed ADMM methods are based on full

model updates and require locking all global model parameters to handle concur-

rency, which essentially serializes the updates from different workers. In this paper,

we present a novel block-wise, asynchronous and distributed ADMM algorithm,

which allows different blocks of model parameters to be updated in parallel. The

block-wise algorithm may greatly speedup sparse optimization problems, a common

scenario in reality, in which most model updates only modify a subset of all deci-

sion variables. We theoretically prove the convergence of our proposed algorithm

to stationary points for nonconvex general form consensus problems with possibly

nonsmooth regularizers.

Chapter 7: Asynchronous Proximal Stochastic Gradient Descent

Many optimization algorithms are designed for small-scale problems, and batch

gradient is needed. For example, in gradient descent, we should go through all

n samples in each iteration, and similarly in our proposed asynchronous ADMM

algorithm in Chapter 6. However, in large-scale setting, batch methods become

intractable even we split them into several parts. In such scenarios, stochastic

methods are preferred. In Chapter 7 and 8, we focus on proximal stochastic gradient

descent methods for two parallelism settings.

In Chapter 7, we propose and analyze asynchronous parallel stochastic proximal

gradient (Asyn-ProxSGD) methods for nonconvex problems. We consider data par-

allelism in this chapter, in which all workers compute sample gradients for a whole

minibatch in parallel. For example, if we have a minibatch with 128 samples, and we

have 8 workers, then each worker should compute gradients on 16 samples. We then

establish an ergodic convergence rate of O(1/
√
K) for the proposed Asyn-ProxSGD,

where K is the number of updates made on the model, matching the convergence

rate currently known for AsynSGD (for smooth problems). To our knowledge, this is

the first work that provides convergence rates of asynchronous parallel ProxSGD al-

gorithms for nonconvex problems. Furthermore, our results are also the first to show

the convergence of any stochastic proximal methods without assuming an increasing

batch size or the use of additional variance reduction techniques.

17

Chapter 8: Asynchronous Block Proximal Stochastic Gradient

This chapter also focuses on asynchronous proximal stochastic gradient method

for model parallelism. In model parallelism, each worker computes gradients for the

whole minibatch but only updates one block of the model. For example, suppose

we still have 128 samples in a minibatch with 8 workers. Each worker still has to

compute gradients on all 128 samples, but it only updates one block instead of the

whole model. In contrast, the algorithm discussed in Chapter 7 assumes that all

workers should update the whole model in each iteration. The motivation here is

that large models are prevalent in modern machine learning scenarios, including

deep learning, recommender systems, etc., which can have millions or even billions

of parameters.

In this chapter, we propose a model parallel proximal stochastic gradient al-

gorithm, AsyB-ProxSGD, to deal with large models using model parallel blockwise

updates while in the meantime handling a large amount of training data using proxi-

mal stochastic gradient descent (ProxSGD). We prove that AsyB-ProxSGD achieves

a convergence rate of O(1/
√
K) to stationary points for nonconvex problems under

constant minibatch sizes, where K is the total number of block updates. This rate

matches the best-known rates of convergence for a wide range of gradient-like al-

gorithms. Furthermore, we show that when the number of workers is bounded by

O(K1/4), we can expect AsyB-ProxSGD to achieve linear speedup as the number of

workers increases.

1.3.1 Bibliographic Notes

My research in this thesis is based on joint works with many co-authors as follows.

In Part I, Chapter 3 is based on joint work with Bang Liu, Di Niu, Zongpeng Li

and Hong V. Zhao, which is based on our published work in TON [39]. In Part

II, Chapter 4 and 5 are joint works with Di Niu, Linglong Kong and Zongpeng

Li, which are based on our published work in IEEE INFOCOM [40] and AAAI

[41], respectively. In Part III, Chapter 6, 7 and 8 are joint work with Di Niu and

Zongpeng Li [5, 6], which is based on our technical report [5], our work submitted

to AAAI, and our work submitted to AISTATS [7], respectively.

18

Chapter 2

Related Work

2.1 Matrix Completion via Rank Minimization

Matrix estimation has wide applications in many fields such as recommendation

systems [42], network latency estimation [43], computer vision [44], system identifi-

cation [45], etc. For example, a movie recommendation system aims to recover all

user-movie preferences based on the ratings between some user-movie pairs [42, 46],

or based on implicit feedback, e.g., watching times/frequencies, that are logged for

some users on some movies [47, 48]. In network or web service latency estimation

[43, 49, 50], given partially collected latency measurements between some nodes that

are possibly contaminated by noise, the goal is to recover the underlying low-rank

latency matrix, which is present due to network path and function correlations.

Given partial and possibly noisy observations on some entries, our target is to

find a low-rank matrix that recovers all unknown entries, which is called matrix com-

pletion in the literature. There are two different approaches to solve this problem.

The first approach is to find a matrix with the minimum rank under conditions from

observations. Specifically, this approach attempts to solve the following problem:

minimize
M̂∈Rm×n

rank(M̂)

subject to M̂i,j = Mi,j , (i, j) ∈ Ω,
(2.1)

where Ω is the set of observed entries. Generally, this is an NP-hard problem, and

we turn to a more tractable solution by minimizing the nuclear norm, which has

been proved to be the closest convex relaxation of matrix rank [35]. Using nuclear

norm as a relaxation has a nice connection with compressive sensing [51, 52]: the

nuclear norm of a matrix is the sum of its singular values, which can be viewed as

the `1-norm of the vector consisting of all its singular values. The matrix rank can

19

be viewed as the `0-norm of that vector, since it is the number of nonzero singular

values of a matrix.

A number of algorithms have been proposed to solve (2.1). In [36], Recht et al .

propose to reformulate (2.1) as a semidefinite program (SDP) and solved to global

optima by using standard SDP solvers. This works good for small matrices. To

deal with larger matrices, some first order algorithms have been proposed, e.g. the

singular value thresholding (SVT) algorithm [37] and its variants [53].

A number of iterative reweighted approximations to rank minimization have also

been proposed. The key idea for these methods is to put some weights on singular

values such that the weighted matrix norm, for example weighted nuclear norm or

weighted Frobenius norm, is close to the matrix rank. Depending on different norms

considered, they may differ in recovery performance as well as the formulation of

the weight matrix. Daubechies et al . propose Iterative Reweighted Least Squares

(IRLS-p and sIRLS-p), which minimizes a weighted Frobenius norm in each iteration.

Another reweighted algorithm is proposed by Mohan and Fazel [54], which minimizes

the weighted nuclear norm in each iteration. In Chapter 3, we will propose IS-p, a

family of Iterative reweighted Schatten-p norm method that generalizes these two

algorithms, providing better performance in recovery and flexibility to trade off

recovery accuracy and running time.

2.2 Matrix Factorization

Another approach for matrix estimation is matrix factorization. In the matrix fac-

torization approach, the rank of the truth matrix M∗ is assumed to be at most r,

so we can find two tall matrices X ∈ Rm×r and Y ∈ Rn×r such that M∗ = XY>.

So if we attempt to recover some missing entries in M∗, we solve the following

optimization problem:

min
X∈Rm×r,Y∈Rn×r

∑
(i,j)∈Ω

L(Mi,j , 〈xi,yj〉). (2.2)

Here xi denotes the i-th row of X, and same for yj . The function L is the loss

function that measures how much difference between the observation Mi,j and the

estimation 〈xi,yj〉. In many cases, we may put additional regularizer terms like

λ(‖X‖2F + ‖Y‖2F) that penalize solutions with large norm. In fact, by setting L
as the squared error, we can easily obtain this formulation by MAP (maximum a

20

posteriori) estimation under a certain probabilistic model [55]. Since minimizing

(mean) squared error is to estimate the conditional mean, this approach may not

work for problems on skewed data. In Chapter 4 and 5, we will see how to choose

better loss functions for skewed data distribution.

Although we often choose a convex function L in (2.2), and the regularizer term

is also often convex, the overall problem is unfortunately nonconvex. The reason

is that if we find a pair of solutions XY> = M∗, we can generate another pair of

solutions by letting X′ = XP and Y′ = YP−1 for any invertible matrix P ∈ Rr×r.

This also brings challenges to find a proper distance function that measures how far

the current iteration apart from the global optimum.

We firstly note that various existing algorithms can find solutions that converge

to stationary points, such as alternating minimization (AltMin), gradient descent

(GD), and stochastic gradient descent (SGD). AltMin is widely used in matrix fac-

torization [42]. It works by fixing one variable, saying X, and find optimal solutions

given X, then fix Y and do the same procedure again, and iterates until stops. We

can see that when fixing either X or Y, the objective function becomes convex,

and thus minimization becomes easy. In fact, we can even find close-form equations

for some popular L like the squared loss. Another benefit for AltMin is that when

fixing either X or Y, we can find solutions for each row in parallel, which makes

AltMin very popular for large-scale matrix factorization tasks. Other algorithms

like GD and SGD are also popular for large-scale matrix factorization and have

been implemented in industrial systems, e.g . [17, 28].

Despite its success in applications, theoretical understanding of matrix factor-

ization is rather limited. A lot of work on the local convergence analysis have shown

that various algorithms can converge to global optimum given a sufficiently good

initialization. In particular, Sun and Luo [14] and Zheng and Lafferty [56] have

shown that under some conditions, standard matrix factorization algorithms like

AltMin, GD and SGD can exactly recover the true low-rank matrix. They accom-

plish this by showing geometric property and exploiting the “one-convex” property

around global optimum points. Recent works (e.g . [57, 58, 59, 60]) provide advanced

analyses of matrix completion by more complicated initialization procedure and re-

fined assumptions. In Chapter 5, we will provide our local convergence analysis

for our proposed matrix factorization scheme (expectile matrix factorization, EMF)

and show that our algorithm can converge to global optimum when observations are

21

noiseless, which implies exactly recovery of the true low-rank matrix M∗.

2.3 Large Scale Optimization Algorithms

In this section we review several types of optimization algorithms for large scale

machine learning problems. We focus on two types: stochastic optimization algo-

rithms that may involve randomly choosing samples or coordinates during iterations,

and parallel optimization algorithms that run on distributed clusters. This section

summarizes related work for Chapter 6, 7 and 8.

Stochastic optimization. Stochastic optimization problems have been studied

since the seminal work in 1951 [61], in which a classical stochastic approximation

algorithm is proposed for solving a class of strongly convex problems. Since then, a

series of studies on stochastic programming have focused on convex problems using

SGD [62, 63, 64]. The convergence rates of SGD for convex and strongly convex

problems are known to be O(1/
√
K) and O(1/K), respectively. For nonconvex opti-

mization problems using SGD, Ghadimi and Lan [24] proved an ergodic convergence

rate of O(1/
√
K), which is consistent with the convergence rate of SGD for convex

problems.

Stochastic Proximal Methods. When h(·) in (1.1) is not necessarily smooth,

there are other methods to handle the nonsmoothness. One approach is closely re-

lated to mirror descent stochastic approximation, e.g., [65, 66]. Another approach is

based on proximal operators [21], and is often referred to as the proximal stochastic

gradient descent (ProxSGD) method. Duchi et al. [67] prove that under a diminish-

ing learning rate ηk = 1/(µk) for µ-strongly convex objective functions, ProxSGD

can achieve a convergence rate of O(1/µK). For a nonconvex problem like (1.1),

rather limited studies on ProxSGD exist so far. Ghadimi et al . [68] propose a

stochastic proximal gradient (ProxSGD) algorithm and their convergence analysis

shows that ProxSGD can converge to stationary points when the objective function

is convex. For the nonconvex case, their convergence result relies on the assumption

that the minibatch size in each iteration should increase, which may not be practi-

cal in implementations. In Chapter 7, we will fill this gap by proving that constant

minibatch size is sufficient for convergence to critical points.

Synchronous Parallel Methods. In parallel algorithms, multiple workers

are working together to execute one computational task, and the scheme to keep

them on the same pace is called synchronization in the literature. In the context of

22

machine learning, synchronous methods ask worker nodes to fetch the model stored

on parameter server(s) and the parameter server should synchronize all the received

updates (e.g . stochastic gradients from workers), then aggregate them and finally

update the model.

Here we list some important synchronous parallel algorithms involved in this

thesis. Most of them are trying to parallelize their sequential version, which are

designed to run in a single machine. Algorithms for matrix factorization like gradient

descent and alternating minimization are easy to parallelize by finding solutions

for each row of X (or Y). Another important algorithm that runs in parallel is

alternating direction multiplier method (ADMM) [2]. In this algorithm, each worker

computes a local model xi (in parallel) by minimizing its own objective function fi,

and try to be consensus with the global model z stored in the parameter server.

Block Coordinate Methods. One special type of parallel methods is the

type of block coordinate methods. In these methods, each worker updates one

block in parallel, instead of the whole model. Block coordinate methods for smooth

problems with separable, convex constraints [69] and general nonsmooth regularizers

[70, 71, 72] are proposed. However, the study on stochastic coordinate descent is

limited and existing work like [73] focuses on convex problems. Xu and Yin [74]

study block stochastic proximal methods for nonconvex problems. However, they

only analyze convergence to stationary points assuming an increasing minibatch

size, and the convergence rate is not provided.

Asynchronous Parallel Methods. To deal with big data, asynchronous par-

allel optimization algorithms have been heavily studied, although pioneer studies

started from 1980s [3]. The rapid development of hardware resources and system

designs, recent years have witnessed a lot of successes of asynchronous parallelism

in wide range of applications. A number of works focuses on stochastic gradient

descent for smooth optimization, e.g ., [32, 30, 75, 33, 76] and deterministic ADMM,

e.g. [77, 78].

Extending consensus ADMM to the asynchronous setting has been discussed

in recent years. In [77], they consider a asynchronous consensus ADMM with as-

sumption on bounded delay, but only convex cases are analyzed. References [79, 80]

propose a asynchronous ADMM algorithm with analysis on both convex and non-

convex cases. However, they require each worker solve a subproblem exactly and it

might be time costly in some cases. Reference [78] proposes another asynchronous

23

algorithm that each worker only calculates gradients and updates of all xi,yi and z

are done on the server side, which can consume a lot of memory in a large cluster.

References [81, 82] consider asynchronous ADMM for decentralized networks. In

particular, reference [81] assumes that communication links between nodes can fail

randomly and provides convergence analysis in a probability-one sense.

To our best knowledge, existing asynchronous ADMM algorithms do not support

blockwise updates. In Chapter 6, we make the first attempt to study blockwise

updates of ADMM in asynchronous settings.

Asynchronous Parallel Stochastic Methods. Asynchronous algorithms for

stochastic gradient algorithms have been discussed and we have known more re-

sults for convex objective functions. Agarwal and Duchi [30] provides convergence

analysis of asynchronous SGD for convex smooth functions. Feyzmahdavian et al .

[83] extends their analysis for problems with the “convex loss + nonsmooth convex

regularizer” form. Niu et al . [32] propose a lock free asynchronous implementation

on shared memory systems, in which each worker can update a block of model with-

out software locks. They provide convergence analysis for strongly convex smooth

objectives.

However, theoretical analysis for nonconvex objectives are limited in the lit-

erature. Lian et al . [75] provide convergence analysis of asynchronous SGD for

nonconvex smooth objectives. A non-stochastic asynchronous ProxSGD algorithm

is presented by [84], which however did not provide convergence rates for nonconvex

problems. In Chapter 7, we fill the gap in the literature by providing convergence

rates for ProxSGD under constant batch sizes without variance reduction.

Davis et al . [85] present a stochastic block coordinate method, which is the closest

one with our work in this paper. However, the algorithm studied in [85] depends

on the use of a noise term with diminishing variance to guarantee convergence. In

Chapter 8, we propose AsyB-ProxSGD and our convergence results of ProxSGD do

not rely on the assumption of increasing batch sizes, variance reduction or the use

of additional noise terms.

24

Chapter 3

Iterative Reweighted Schatten-p
Norm for Matrix and Tensor
Estimation

3.1 Background

In this chapter, we present our first demonstration on the task of Matrix Estimation

and its extension to Tensor Estimation. In these problems, a low-rank matrix M∗ ∈
Rm×n or a linear mapping A(M∗) from the low-rank matrix M∗ is assumed to

underlie some possibly noisy observations, where A : Rm×n → Rp. The objective

is to recover the underlying low-rank matrix based on partial observations bi, i =

1, . . . , p. This is also called matrix sensing problem in the literature. In particular,

if the linear mapping A is actually a projection operator, which takes one entry of

M∗ and vanishes all others to zero, observations bi’s form an incomplete matrix,

and the task to estimate the original M∗ is called matrix completion.

To exploit the low-rank structure, there are two approaches in the literature

that formulates such problem. One is to find a matrix with minimum rank, which

is referred as rank minimization approach in the literature. The other approach is

to find a matrix that has rank at most r, which is a prior given hyperparameter.

Since the matrix M∗ with the rank of r can be represented as the product of two

factor matrices, i.e., M∗ = UV>, where U ∈ Rm×r and V ∈ Rn×r, this approach

is referred as matrix factorization (MF) approach in the literature. In this chapter,

we consider the approach that attempts to find a low-rank matrix by solving a rank

minimization problem, and we will investigate the MF approach in the next chapter.

To effectively find a matrix with minimum rank, in this chapter, we propose

a new class of algorithms, called Iterative weighted Schatten-p norm minimization

25

(IS-p), with 1 ≤ p ≤ 2, to approximate rank minimization with weighted Schatten-p

norm minimization, with p = 1 representing the nuclear norm that achieves better

approximation to the rank, and p = 2 representing the Frobenius norm with more

efficient computation. The proposed algorithm turns out to be a generalization of a

number of previously proposed iterative re-weighted algorithms [86] based on either

only the nuclear norm or only the Frobenius norm to a flexible class of algorithms

that can trade optimization accuracy off for computational efficiency, depending

on the application requirements. We prove that our algorithms can converge for

any p between 1 and 2. Simulations based on synthesized low-rank matrices have

shown that our algorithms are more robust than a number of state-of-the-art matrix

completion algorithms, including Singular Value Thresholding (SVT) [37], Iterative

Reweighted Least Squares Minimization (IRLS-p) [86] and DMFSGD Matrix Com-

pletion [43], in both noisy and noiseless scenarios.

We further extend our proposed IS-p algorithm to tensor completion. Specifi-

cally, we consider the problem of estimating missing entries of a 3D tensor that has

“low-rank” property. Similar to rank minimization in matrix completion, to com-

plete the missing entries in a tensor and especially those in the current timeframe,

we minimize a weighted sum of the ranks of three matrices, each unfolded from the

tensor along a different dimension. We then extend the proposed IS-p algorithm

to solve this approximate tensor completion problem, which again leads to convex

optimization that can be efficiently solved.

The results in Chapter 3 have been published in our TON paper [39].

3.2 Robust Matrix Completion via Schatten-p Norm
Minimization

In this section, we formulate the robust matrix completion problem, and then intro-

duce our algorithm. Formally, given a noisy input matrix M ∈ Rm×n with missing

entries, the problem of low-rank matrix completion is to find a complete matrix M̂

by solving

minimize
M̂∈Rm×n

rank(M̂)

subject to |M̂i,j −Mi,j | ≤ τ, (i, j) ∈ Ω,
(3.1)

where τ is a parameter to control the error tolerance on known entries of the input

matrix M [87] or the maximum noise that is present in the observation of each

26

known pair (i, j) ∈ Ω. It is well-known that problem (3.1) is an NP-hard problem.

In contrast to matrix factorization [43], the advantage of the matrix completion

formulation above is that we do need to assume the rank of the network feature

matrix is known a priori.

One popular approach to solve (3.1) is to use the sum of singular values of M̂,

i.e., the nuclear norm, to approximate its rank. The nuclear norm is proved to be the

convex envelope of the rank [36] and can be minimized by a number of algorithms,

including the well-known singular value thresholding (SVT) [37]. Other smooth

approximations include Reweighted Nuclear Norm Minimization [88], and Iterative

Reweighted Least Squares algorithm IRLS-p (with 0 ≤ p ≤ 1) [86], which attempts

to minimize a weighted Frobenius norm of M̂.

3.2.1 A Family of Iterative Weighted Algorithms

Note that all the state-of-the-art rank minimization algorithms mentioned above

either minimize the nuclear norm, which is a better approximation to rank, or the

Frobenius norm, which is efficient to solve. In this thesis, we propose a family

of robust algorithms, called Iterative weighted Schatten-p norm minimization (IS-

p), with 1 ≤ p ≤ 2, which is a generalization of a number of previous “iterative

reweighted” algorithms to a tunable framework; the IS-p algorithm minimizes a

reweighted nuclear norm if p = 1 and minimizes a reweighted Frobenius norm if

p = 2. We will show that with IS-p is more robust to any practical parameter settings

and trades complexity off for accuracy depending on the application requirements.

The IS-p algorithm is described in Algorithm 1. Note that when p = 1, problem

(3.2) is a nuclear-norm minimization problem, and when p = 2, problem (3.2)

becomes Frobenius-norm minimization. In fact, for 1 ≤ p ≤ 2, problem (3.2) is

a convex problem in general. To see this, for any M ∈ Rm×n (m ≤ n). Then, we

have ‖M‖pp =
∑m

i=1 (σi(M))p = tr
(

(M>M)
p
2

)
, which is a convex function for p ≥ 1,

since tr(M>M)
p
2 is convex and non-decreasing for p ≥ 1 [88]. A large number of

efficient solutions have been proposed to solve the nuclear-norm and Frobenius-norm

versions of (3.2) [37, 88], while for 1 ≤ p ≤ 2 problem (3.2) is convex in general.

Therefore, we resort to existing methods to solve the convex problem (3.2), which

will not be the focus of this thesis. Furthermore, exact singular value decomposition

for M̂k in Step 6 can be performed within polynomial time with a complexity of

O(m2n).

27

Algorithm 1 The IS-p Algorithm (1 ≤ p ≤ 2)

1: Input: An incomplete matrix M ∈ Rm×n (m ≤ n) with entries known only for
(i, j) ∈ Ω; the error tolerance τ on known entries

2: Output: M̂ as an approximate solution to (3.1).
3: Initially, L0 := I, δ0 is an arbitrary positive number
4: for k = 1 to maxIter do
5: Solve the following convex optimization problem to obtain the optimal solu-

tion M̂k:
minimize

M̂
‖Lk−1M̂‖pp

subject to |M̂i,j −Mi,j | ≤ τ, (i, j) ∈ Ω
(3.2)

6: [Uk,Σk,Vk] := SVD(M̂k), where Σk is an m × n diagonal matrix with
non-negative real numbers (singular values of M̂k) σk1 , . . . , σ

k
m on the diagonal

7: Form a weight matrix Wk ∈ Rm×m, where

Wk
ij :=

{(
(σki)

p
+ δk−1

)− 1
p , i = j

0, i 6= j

8: Choose δk such that 0 < δk ≤ δk−1.
9: Lk := UkWkUk>

10: end for
11: M̂ := M̂maxIter

Let us now provide some mathematical intuition to explain why Algorithm 1

can approximate the rank minimization. Initially, we replace the objective func-

tion rank(M̂) with ‖M̂‖p. Subsequently, in each iteration k, we are minimizing

‖Lk−1M̂‖pp. Recall that in Step 6 of iteration k, the optimal solution M̂k can be fac-

torized as M̂k = UkΣkVk via singular value decomposition, where Uk ∈ Rm×m and

Vk ∈ Rn×n are unitary square matrices, i.e., Uk>Uk = I, Vk>Vk = I. Thus, we

have ‖Lk−1M̂k‖pp = ‖Uk−1Wk−1Uk−1>UkΣkVk‖pp. If Uk−1 ≈ Uk after a number

of iterations, we will have

‖Lk−1M̂k‖pp ≈ ‖Uk−1Wk−1Uk>UkΣkVk‖pp
= ‖Uk−1(W k−1Σk)V k‖pp

=

m∑
i=1

(
σi

(
Wk−1Σk

))p
=

m∑
i=1

(
σki

((σk−1
i)p + δk−1)1/p

)p
=

m∑
i=1

(σki)p

(σk−1
i)p + δk−1

,

(3.3)

which eventually approaches rank(M̂k). To see this, note that for two sufficiently

28

small positive constants δk−1 and δk, upon convergence, i.e., when σki = σk−1
i , we

have
(σki)p

(σk−1
i)p + δk−1

≈ (σki)p

(σki)p + δk
≈
{

0 if σki = 0,
1 if σki > 0,

Therefore, ‖Lk−1M̂k‖pp represents the number of nonzero singular values σki in M̂k,

which is exactly the rank of M̂k.

3.3 Convergence Analysis

The above informal analysis only provides an intuitive explanation as to why the

algorithm works, based on the hope that the algorithm will converge. The follow-

ing theorem can ensure the convergence of the produced rank(M̂k) and therefore

guarantee the convergence of Algorithm 1.

Theorem 3.3.1. Suppose M̂k is the output of Algorithm 1 in iteration k. For any

matrix M ∈ Rm×n and any p ∈ [1, 2], rank(M̂k) converges. In particular, for a

sufficiently large k, we have σi(M̂
k)− σi(M̂k−1)→ 0, for i = 1, . . . ,m.

Proof. We first present some useful lemmas.

Lemma 3.3.1. For any A ∈ Rm×n and B ∈ Rn×r, the following holds for all

1 ≤ p ≤ 2:
n∑
i=1

σpn−i+1(A)σpi (B) ≤ ‖AB‖pp ≤
n∑
i=1

σpi (A)σpi (B), (3.4)

where σi(A) denotes the ith singular value of A.

We leave the proof of this lemma in Sec. 3.7.

Corollary 3.3.1. Given an m ×m diagonal matrix A with nonnegative and non-

decreasing (non-increasing) diagonal entries a11, . . . , amm, and another m×n diago-

nal matrix B with nonnegative and non-increasing (non-decreasing) diagonal entries

b11, . . . , bmm, we have ‖AUB‖p ≥ ‖AB‖p for any m×m square unitary matrix U

(i.e., U> = I), where 1 ≤ p ≤ 2.

Proof of Corollary 3.3.1. Without loss of generality, we assume a11 ≥ a22 ≥ . . . ≥
amm ≥ 0 and 0 ≤ b11 ≤ b22 ≤ . . . ≤ bmm. By Lemma 3.3.1, we have

‖AUB‖pp ≥
m∑
i=1

σpi (A)σpn−i+1(UBI) =

m∑
i=1

σpi (A)σpn−i+1(B)

=
m∑
i=1

apiib
p
ii =

m∑
i=1

σpi (AB) = ‖AB‖pp,

29

proving the corollary. ut

We now prove Theorem 3.3.1. According to Corollary 3.3.1 and the unitarily

invariant property of Schatten-p norms, we have

‖Lk−1M̂k‖p = ‖Uk−1Wk−1Uk−1>UkΣkVk>‖p (3.5)

= ‖Wk−1Uk−1>UkΣk‖p (3.6)

≥ ‖Wk−1Σk‖p (3.7)

=

 n∑
i=1

(
σki
)p(

σk−1
i

)p
+ δk−1

 1
p

, (3.8)

where (3.7) is due to Lemma 3.3.1, since Wk−1 and Σk are diagonal matrices with

nonnegative non-decreasing and non-increasing entries, respectively, and Uk−1>Uk

is still unitary.

Since M̂k is the optimal solution to (3.2), we have

‖Lk−1M̂k‖p ≤ ‖Lk−1M̂k−1‖p (3.9)

= ‖Uk−1Wk−1Σk−1Vk−1>‖p (3.10)

= ‖Wk−1Σk−1‖p (3.11)

=

 n∑
i=1

(
σk−1
i

)p(
σk−1
i

)p
+ δk−1


1
p

(3.12)

Since δk ≤ δk−1, we have

n∑
i=1

(
σki
)p(

σk−1
i

)p
+ δk−1

≤
n∑
i=1

(
σk−1
i

)p(
σk−1
i

)p
+ δk−1

,

n∑
i=1

(
σki
)p

+ δk(
σk−1
i

)p
+ δk−1

≤
n∑
i=1

(
σk−1
i

)p
+ δk−1(

σk−1
i

)p
+ δk−1

= n.

Let xki := (σki)p and xk = (xk1, x
k
2, ..., x

k
n). Define a function L : Rn → R+, L(x) =∏n

i=1(xi + δk), with δk > 0. We will show that the sequence L(xk) is monotonically

non-increasing using a similar method in [89], and prove the convergence of σki for

1 ≤ i ≤ n.

Using the inequality between the arithmetic and geometric means for nonnega-

tive terms, we have
n∏
i=1

xki + δk

xk−1
i + δk−1

≤ 1, (3.13)

30

which implies that L(xk) ≤ L(xk−1). Also, since xki ≥ 0, L is bounded below by δn,

the sequence L(xk) converges. It implies that

n∏
i=1

xki + δk

xk−1
i + δk−1

=
L(xk)

L(xk−1)
→ 1. (3.14)

Define yk to be

yki =
xki + δk

xk−1
i + δk−1

,

and yk1 = 1 + ε. We have

n∏
i=1

yki = (1 + ε)
n∏
i=2

yki ≤ (1 + ε)

(
1− ε

n− 1

)n−1

= f(ε) (3.15)

by combining
∑n

i=1 y
k
i ≤ n and the inequality between the arithmetic and geometric

means. Function f(ε) is continuous and satisfies f(0) = 1, f ′(0) = 0, and f ′′(ε) < 0,

for |ε| < 1. Hence, f(ε) < 1 for ε 6= 0, |ε| < 1.

Therefore, since
∏n
i=1 y

k
i → 1, we have f(ε) → 1, which in turn implies ε → 0.

Hence yk1 → 1, and the same holds for all yki . Thus, we have

yki =
(σki)p + δk

(σk−1
i)p + δk−1

→ 1.

By monotone convergence theorem, there exists a point δ∗ ≥ 0 such that δk → δ∗,

and thus δk−1 − δk ≤ δk−1 − δ∗ → 0, implying δk−1 − δk → 0. Since σki is finite,

we conclude that σki − σk−1
i → 0, for all i = 1, . . . , n, which implies rank(M̂k) −

rank(M̂k−1)→ 0. ut

3.3.1 Relationships to Prior Algorithms

We now point out that the proposed IS-p algorithm is a generalization of a number

of previous reweighted approximate algorithms based on either nuclear norm or

Frobenius norm alone to a tunable class of algorithms trading complexity off for

performance.

Singular value thresholding (SVT) is an algorithm to solve the convex nuclear

norm minimization:

minimize
M̂∈Rm×n

‖M̂‖∗

subject to |M̂i,j −Mi,j | ≤ τ, (i, j) ∈ Ω,
(3.16)

which approximates (3.1). It is shown [90] that for most matrices of rank r, (3.16)

yields the same solution as (3.1), provided that the number of known entries m ≥
31

Cn6/5r log n for some positive constant C. However, when m < Cn6/5r log n, the

nuclear-norm-minimizing solution from SVT usually cannot approximate (3.1) well.

In fact, SVT can be viewed as only performing the first iteration of the proposed

Algorithm 1 with p = 1. In contrast, Algorithm 1 adopts multiple iterations of

reweighted minimizations to refine the results and can further approximate the rank

minimization problem over iterations, even if m < Cn6/5r log n.

A number of iterative reweighted approximations to (3.1) have been proposed.

They could be different in performance, mainly due to the different norms (ei-

ther Frobenius norm or nuclear norm) adopted as well as the way to form the

weight matrix Lk. Iterative Reweighted Least Squares (IRLS-p and sIRLS-p) [88]

is also a reweighted algorithm to approximate the affine rank minimization prob-

lem (i.e., problem (3.1) with τ = 0 in the constraint). It minimizes a weighted

Frobenius norm ‖Lk−1M‖F in each iteration k to produce an Mk, where Lk−1 :=√
(Mk−1>Mk−1 + δI)p/2−1 with 0 ≤ p ≤ 1. By simple maths derivations, we find

the weight Lk−1 in IRLS-p is different from that in Algorithm 1, therefore yielding

different approximation results. Furthermore, IRLS-p can only minimize a Frobe-

nius norm in each iteration, whereas the nuclear norm is known to be the best convex

approximation of the rank function [36]. In contrast, the proposed Algorithm 1 rep-

resents a family of algorithms including nuclear norm minimization (when p = 1) on

one end to achieve better approximation and Frobenius norm minimization (when

p = 2) on the other end for faster computation.

Furthermore, [54] presents another iterative reweighted algorithm that essen-

tially minimizes ‖Lk1MLk2‖∗, which can only minimize the nuclear norm but not

Frobenius norms, and thus takes longer time to compute in each iteration. [91]

presents a reweighted nuclear norm minimization scheme which essentially morphs

to minimizing ‖Lk−1M‖∗ in each iteration, where Lk = Uk(Σk + δI)−1Uk, where

as in our algorithm, Lk = Uk((Σk)p + δI)−1/pUk>. When p = 1, note that the only

difference here is that a Uk> = Uk−1
is multiplied at the end, whereas in [91] Uk

itself is multiplied. In fact, Theorem 3.3.1 holds for any Lk = Uk((Σk)p+δI)−1/pQ,

where Q is unitary (i.e., Q>Q = I), since (3.7) will hold for any unitary Q, includ-

ing Q = Uk and Q = Uk>, according to Corollary 3.3.1 in the appendix. However,

when Q = Uk>, as has been shown in (3.3), ‖Lk−1M̂k‖ will eventually approach

rank(M̂k), yielding better approximation.

32

0 0.02 0.04 0.06 0.08 0.1
Relative Error

0

0.2

0.4

0.6

0.8

1

C
D

F
Algorithm 2
SVT
sIRLSp
DMFSGD

(a) R = 0.3, ε=0

0 0.02 0.04 0.06 0.08 0.1
Relative Error

0

0.2

0.4

0.6

0.8

1

C
D

F

Algorithm 2
SVT
sIRLSp
DMFSGD

(b) R = 0.3, ε=0.1

0 0.02 0.04 0.06 0.08 0.1
Relative Error

0

0.2

0.4

0.6

0.8

1

C
D

F

Algorithm 2
SVT
sIRLSp
DMFSGD

(c) R = 0.7, ε=0

0 0.02 0.04 0.06 0.08 0.1
Relative Error

0

0.2

0.4

0.6

0.8

1

C
D

F

Algorithm 2
SVT
sIRLSp
DMFSGD

(d) R = 0.7, ε=0.1

Figure 3.1: Performance of IS-p (p = 1) and other algorithms on synthetic 100×100
matrices with rank r = 20, under sample rates R = 0.3 and R = 0.7.

3.4 Performance on Synthesized Low-Rank Data

We evaluate our algorithm based on synthesized true low-rank matrices contami-

nated by random noises, in comparison with several state-of-the-art approaches to

matrix completion:

• Singular Value Thresholding (SVT) [37]: an algorithm for nuclear norm

minimization as an approximation to rank minimization;

• Iterative Reweighted Least Squares (sIRLS-p) [88]: an iterative algo-

rithm to approximate rank minimization with a reweighted Frobenius-norm

minimization in each iteration. According to [88], the performance of sIRLS-1

is proved to guarantee the recovery performance, thus we choose sIRLS-1 for

comparison;

• DMFSGD Matrix Factorization [43]: a distributed network latency pre-

diction algorithm that attempts to approximate a given matrix M using the

product of two smaller matrices M̂ = UV>, where U ∈ Rn×r and V ∈ Rn×r,

such that a loss function based on M−M̂ is minimized, where r is the assumed

rank of M̂.

In our experiments, we randomly generate 100× 100 matrices with rank r = 20,

contaminated by noise. The generated matrix can be represented as X = UV>+εN,

where U and V are randomly generated n × r matrices (n = 100, r = 20) with

entries uniformly distributed between 0 and 1. N is an n × n standard Gaussian

noise matrix. We run simulations under the sample rates R = 0.3 and R = 0.7 and

under both the noiseless case ε = 0 and the noisy case ε = 0.1 to test the algorithm

robustness.

33

10
-1

10
0

10
1

10
2

10
3

10
4

Time (Second)

10
-4

10
-3

10
-2

10
-1

10
0

M
e

a
n

 R
e

la
ti
v
e

 E
rr

o
r

Algorithm 2 (p = 1, R = 0.3, ǫ = 0.1)
Algorithm 2 (p = 2, R = 0.3, ǫ = 0.1)
Algorithm 2 (p = 1, R = 0.7, ǫ = 0.1)
Algorithm 2 (p = 2, R = 0.7, ǫ = 0.1)

Figure 3.2: A comparison between IS-1 (the nuclear-norm version) and IS-2 (the
Frobenius-norm version) in terms of recovery errors and running time.

Fig. 3.1(a) and Fig. 3.1(c) compare the performance of different algorithms in

the noiseless case. As we can see, our algorithm is the best at low sample rate

(R = 0.3). When the sample rate is high (R = 0.7), both our algorithm and SVT

are the best. For the noisy case, Fig. 3.1(b) and Fig. 3.1(d) show that our algorithm

outperforms all other algorithms at both the low sample rate (R = 0.3) and the

high sample rate (R = 0.7), thus proving that our algorithm is the most robust to

noise.

Under the same setting, we now investigate the tradeoff between setting p = 1

(the Nuclear norm version) and p = 2 (the Frobenius norm version) in IS-p in

Fig. 3.2. In general, the nuclear norm version (IS-1) usually converges in a few

iterations (usually one iteration) and more iterations will give little improvement.

On the other hand, the Frobenius norm version (IS-2) requires more iterations to

converge, and the relative recovery error decreases significantly as more iterations

are adopted.

Specifically, under R = 0.3, IS-1 already achieves a low error within about

10 seconds. In this case, although IS-2 leads to a higher error, yet it enables a

tunable tradeoff between accuracy and running time. When R = 0.7, IS-2 is better

considering both the running time and accuracy. Therefore, we make the following

conclusions:

First, IS-1 (the nuclear norm version) achieves better accuracy in general, yet

at the cost of a higher complexity. IS-1 could be slower when more training data is

available. The reason is that when problem (3.2) for p = 1 in Algorithm 1 is solved

by a semidefinite program (SDP) (with performance guarantees [36]), which could

be slow when data size increases. Note that SVT or other first-order algorithms

34

cannot be applied to (3.2) due to the weight matrix L in the objective. Therefore,

IS-1 should only be used upon abundant computational power or high requirement

on accuracy.

Second, IS-2 has a low per-iteration cost, i.e., the error decreases gradually when

more iterations are used. Therefore, it allows the system operator to flexibly tune the

achieved accuracy by controlling the running time invested. Furthermore, although

IS-2 does not always lead to the best performance, the achieved relative error is

usually sufficient. Due to this flexible nature of IS-2, we set p = 2 for our experiments

on network latency estimation in Sec. 3.6, so that we can control the rank of the

recovered matrix that we want to achieve, under a given budget of running time.

In our experiments, we actually set δk = δk−1/η, where η > 1 is a constant. We

find that good performance is usually achieved by a large initial value of δ and an

appropriate η. Specifically, we set the initial δ to 100,000 and η = 2.

3.5 Extension to Tensor Approximation

In this section, we extend our proposed IS-p algorithm to tensor completion. In

particular, we use a tensor M = (Mi,j,t) ∈ Rm×n×T to represent a 3-dimensional

array that consists of T matrices with missing values. Examples of 3D tensors in-

clude color images, which consists 3 channels that represent red, green and blue, and

network round-trip time (RTT) matrices in different time periods. For simplicity,

we call each m× n matrix as a “frame” or “channel” in this section. Note that we

focus on 3D tensors for brevity and it is natural to extend to higher order tensors.

Let Ω denote the set of indices (i, j, t) where the measurements Mi,j,t are known

and Θ denote the set of unknown indices. The problem is to recover missing values

in M.

In order to complete all missing values inM, we generalize the matrix completion

problem to tensor completion and extend our IS-p algorithm to the tensor case.

Here we only focus on tensors in Rn×n×T , a size relevant to our specific latency

estimation problem, although our idea can be applied to general tensors. Given a

tensorM∈ Rn×n×T with missing entries, tensor completion aims to find a complete

low-rank tensor M̂ by solving

minimize
M̂∈Rn×n×T

rank(M̂)

subject to |M̂i,j,t −Mi,j,t| ≤ τ, (i, j, t) ∈ Ω,
(3.17)

35

X

X

X

X(1)

X(2)

X(3)

I1

I1

I1

I1 I1 I1

I2

I2

I2 I2 I2 I2

I3 I3 I3I3

I3

I3

I1

I2

I3

I2 · I3

I3 · I1

I1 · I2

Figure 3.3: Illustration of tensor unfolding for the 3D case.

where τ is a parameter to control the error tolerance on known entries. However,

unlike the case of matrices, the problem of finding a low rank approximation to a

tensor is ill-posed. More specifically, it has been shown that the space of rank-r

tensors is non-compact [92] and that the nonexistence of low-rank approximations

occurs for many different ranks and orders. In fact, even computing the rank of a

general tensor (with a dimension≥ 3) is an NP hard problem [34] and there is no

known explicit expression for the convex envelope of the tensor rank.

A natural alternative is to minimize a weighted sum of the ranks of some 2D

matrices “unfolded” from the 3D tensor, hence reducing tensor completion to matrix

completion. The unfold operation is illustrated in Fig. 3.3 for a 3D tensor along

each of the three dimensions. Here I1, I2 and I3 are index sets for each dimension.

These unfolded matrices can be computed as follows:

• The column vectors of M are column vectors of M(1) ∈ Rm×nT .

• The row vectors of M are column vectors of M(2) ∈ Rn×mT .

• The (depth) vectors on the third dimension ofM are column vectors of M(3) ∈
RT×mn.

With unfolding operations defined above, the problem of “low-rank” tensor ap-

proximation can be formulated as minimizing the weighted sum of ranks for all three

36

unfolded matrices [93]:

minimize
M̂∈Rn×n×T

3∑
l=1

αl · rank(M̂(l))

subject to |M̂i,j,t −Mi,j,t| ≤ τ, (i, j, t) ∈ Ω,

(3.18)

where αl is a convex combination coefficient, with αl ≥ 0 and
∑3

l=1 αl = 1.

Apparently, the above nonconvex problem of minimizing the weighted sum of

ranks is still hard to solve. We propose a generalization of the proposed IS-p al-

gorithm to the tensor case. Our “low-rank” tensor approximation algorithm is

described in Algorithm 2. The algorithm first solves a convex optimization prob-

lem by minimizing the sum of weighted Schatten-p norms of all unfolded matrices

within the given noise tolerance. Here the weight matrices L(l) are assigned for each

unfolded matrix of tensor X . Then the algorithm will update weight matrices L(l)

one by one. This procedure is similar to what we did in 2D matrix completion.

Algorithm 2 IS-p Algorithm for Tensor Completion

1: Initialize L0
(l) := I, p, δ0

(l), τ(l), η(l), l = 1, 2, 3
2: for k = 1 to maxIter do
3: Solve the following convex optimization problem to obtain the optimal solu-

tion M̂k:

minimize
M̂

3∑
l=1

αl‖Lk−1
(l) M̂(l)‖pp

subject to |M̂ijt −Mijt| ≤ τ, (i, j, t) ∈ Ω

(3.19)

4: for l = 1 to 3 do
5: [Uk

(l),Σ
k
(l),V

k
(l)] := SV D

(
M̂k

(l)

)
, where Σk

(l) is a diagonal matrix with

diagonal elements of {σk(l),i}.

6: Wk
(l),ij :=


((
σk(l),i

)p
+ δk−1

(l)

)− 1
p
, i = j

0, i 6= j

7: Lk(l) := Uk
(l)W

k
(l)U

k
(l)

>

8: Choose δk(l) such that 0 < δk(l) ≤ δk−1
(l) .

9: end for
10: end for
11: M̂ := M̂maxIter

It is not hard to check that problem (3.19) is a convex problem for all 1 ≤ p ≤ 2,

since for a fixed weight matrix L, ||LX||pp is a convex function of X. In (3.19),

we can see that the objective function is a convex combination of three convex

functions. Note that the convergence of Algorithm 2 cannot be extended directly

37

from the matrix case, but we observe in simulation that our algorithm has robust

convergence performance.

3.6 Performance Evaluation

We evaluate our proposed network latency estimation approaches on both single

frames of 2D RTT matrices and 3D multi-frame RTT measurements, in comparison

with a number of state-of-the-art latency estimation algorithms. For network latency

prediction based on 2D data, we evaluate our algorithm on the Seattle dataset and

PlanetLab dataset; for dynamic network latency prediction based on 3D data, our

algorithm is evaluated based on the Seattle dataset1.

3.6.1 Single-Frame Matrix Completion

We define the relative estimation error (RE) on missing entries as |M̂ij −Mij |/Mij ,

for (i, j) ∈ Ω, which will be used to evaluate prediction accuracy. We compare our

algorithm with the following approaches:

• Vivaldi with dimension d = 3, d = 7, and d = 3 plus a height parameter;

• DMFSGD Matrix Factorization is a matrix factorization approach for

RTT prediction under an assumed rank, and

• PD with feature extraction as shown in [94], which uses Penalty Decom-

position for matrix completion with feature extraction [39].

When estimating network latencies, [39] have shown that it is beneficial to do low-

rank matrix completion on feature matrix instead of directly on latency matrix.

In particular, the network latency matrix M is regarded as a composite of two

matrices, the distance matrix D and a low-rank feature matrix F, by Hadamard

product M = D ◦ F. The feature matrix F is extracted by running an alternating

algorithm and we refer readers to [39] for more details of this approach.

Note that our proposed IS-p approach attempts to recover F, not directly on M.

For our method, the Euclidean embedding part in feature extraction is done using

Vivaldi with a low dimension of d = 3 without the height.

We randomly choose 50 frames from the 688 frames in the Seattle data. For

PlanetLab data, as differences among the 18 frames are small, we randomly choose

1We have made both datasets publicly available for reproducibility: https://github.com/

uofa-rzhu3/NetLatency-Data.

38

https://github.com/uofa-rzhu3/NetLatency-Data
https://github.com/uofa-rzhu3/NetLatency-Data

Relative Error
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IS-2 with Feature Extraction
PD with Feature Extraction
DMFSGD Matrix Factorization
Vivaldi (7D)
Vivaldi (3D)
Vivaldi (3D + Height)

(a) Seattle (Sample rate R = 0.3)

Relative Error
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

C
D

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IS-2 with Feature Extraction
PD with Feature Extraction
DMFSGD Matrix Factorization
Vivaldi (7D)
Vivaldi (3D)
Vivaldi (3D + Height)

(b) Seattle (Sample rate R = 0.7)

Figure 3.4: The CDFs of relative estimation errors on missing values for the Seattle
dataset, under sample rates R = 0.3 and R = 0.7, respectively.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

IS−2 with Feature Extraction
DMFSGD Matrix Factorization
Vivaldi (7D)
Vivaldi (3D)
Vivaldi (3D + Height)

(a) PlanetLab (Sample rate R = 0.3)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Relative Error
C

D
F

IS−2 with Feature Extraction
DMFSGD Matrix Factorization
Vivaldi (7D)
Vivaldi (3D)
Vivaldi (3D + Height)

(b) PlanetLab (Sample rate R = 0.7)

Figure 3.5: The CDFs of relative estimation errors on missing values for the Plan-
etLab dataset, under sample rates R = 0.3 and R = 0.7, respectively.

one frame to test the methods. Recall that the sample rate R is defined as the

percentage of known entries. Each chosen frame is independently sampled at a low

rate R = 0.3 (70% latencies are missing) and at a high rate R = 0.7, respectively.

For DMFSGD, we set the rank of the estimation matrix M̂ to r = 20 for Seattle

data and r = 10 for PlanetLab data, respectively, since the 20th (or 10th) singular

value of M is less than 5% of the largest singular value in Seattle (or PlanetLab).

In fact, r = 10 is adopted by the original DMFSGD work [43] based on PlanetLab

data. We have tried other ranks between 10-30 and observed similar performance.

We plot the relative estimation errors on missing latencies in Fig. 3.4 for the Seattle

data and Fig. 3.5 for the PlanetLab data. They are both under 5 methods.

For the Seattle results in Fig. 3.4(a) and Fig. 3.4(b), we can see that the IS-2

algorithm with feature extraction outperform all other methods by a substantial

margin. We first check the Vivaldi algorithms. Even if Vivaldi Euclidean embed-

ding is performed in a 7D space, it only improves over 3D space slightly, due to the

fundamental limitation of Euclidean assumption. Furthermore, the 3D Vivaldi with

a height parameter, which models the “last-mile latency” to the Internet core [95],

is even worse than the 3D Vivaldi without heights in Seattle. This implies that la-

39

tencies between personal devices are better modeled by their pairwise core distances

multiplied by the network conditions, rather than by pairwise core distances plus a

“last-mile latency”.

The DMFSGD algorithm is also inferior to our algorithm both because it solely

relies on the low-rank assumption, which may not be enough to model the Seattle

latency matrices accurately, and because the proposed IS-p algorithm has better

performance than DMFSGD in terms matrix completion.

Fig. 3.4 also shows that the proposed IS-2 with feature extraction is even bet-

ter than our work [94] that adopts the Penalty Decomposition (PD) heuristic for

matrix completion after feature extraction, the latter showing the second best per-

formance among all methods on Seattle data. This justifies our adoption of IS-2 as

a high-performance algorithm for the matrix completion part, especially for highly

unpredictable Seattle latencies.

In contrast, for the PlanetLab results shown in Fig. 3.5(a) and Fig. 3.5(b), our

algorithm does not have a clear benefit over other state-of-the-art algorithms. The

reason behind is that, the latencies in PlanetLab are symmetric and only a small

portion of them violate the triangle inequality. Thus, network coordinate systems

such as Vivaldi already have excellent performance. Furthermore, the RTT ma-

trix M and the distance matrix D̂ have similar singular values. Hence, there is no

need to extract the network feature matrix F for PlanetLab. In this case, perform-

ing a distance-feature decomposition could introduce additional errors and is not

necessary. These observations again show the unique advantage of our approach

to personal device networks, although it could be an overkill for stable PlanetLab

nodes.

3.6.2 Multi-Frame Tensor Approximation

We test our multi-frame latency tensor completion approach on 50 groups of consec-

utive frames in Seattle. Each group contains T = 3 consecutive frames of incomplete

RTT measurements, forming an incomplete tensor, and such triple-frame groups are

randomly selected from the Seattle dataset. The objective is to recover all the miss-

ing values in each selected tensor.

Recall that tensor completion is applied on the network feature tensor F , whose

unfolding matrices are F(l) for l = 1, 2, 3. Since our tensor has a size of Rn×n×T , the

first two unfolded matrices F(1) and F(2) have the same size n × nT . Since T = 3

40

in our experiment, the size of the other unfolded matrix F(3) is 3 × n2. As the

convex combination coefficient α1, α2, α3 assigned to the three unfolded matrices

may affect the performance of data recovery, in our evaluation, we consider the

following versions of Algorithm 2:

• Algorithm 2 with single unfolding: only one unfolded matrix is assigned

a positive weight 1 while the other two ones are assigned weight 0.

• Algorithm 2 with double unfolding: two of the unfolded matrices are

assigned with equal weight 0.5;

• Algorithm 2 with differentiation: Divide the index set of all missing

entries Θ into two subsets:

ΘA ={(i, j)|Mijt is known for at least one t ∈ {1, . . . , T − 1}},

ΘB ={(i, j)|Mijt is missing for all t ∈ {1, . . . , T − 1}}.

To recover the missing entries in ΘA, apply Algorithm 2 with weights α1 =

α2 = 0, α3 = 1. To recover the missing entries in ΘB, apply Algorithm 2 with

weights α1 = 1, α2 = α3 = 0.

We compare the above versions of Algorithm 2 with static prediction methods

based on single frames, including Algorithm 1, DMFSGD and Vivaldi (7D). All

versions of Algorithm 2 and Algorithm 1 are applied with feature extraction.

First, in Fig. 3.6(a) and Fig. 3.6(b), we compare Algorithm 2 with all the static

prediction algorithms. For both low and high sample rates R = 0.3 and R =

0.7, Algorithm 2 leveraging tensor properties significantly outperforms the static

latency prediction methods. It verifies the significant benefit of utilizing multi-

frames, and reveals the strong correlation between different latency frames over time.

By exploiting the low-rank structure of all three unfolded matrices, Algorithm 2

takes full advantage of the implicit information in the tensor data.

Second, we compare the performance of all different versions of Algorithm 2 in

Fig. 3.6(c), Fig. 3.6(d), Fig. 3.6(e) and Fig. 3.6(f), under different weight assignment

schemes for the unfolded matrices F(l) for l = 1, 2, 3.

Fig. 3.6(c) and Fig. 3.6(d) compare various single unfolding schemes to Algo-

rithm 2 with differentiation. Among all single unfolding schemes, Algorithm 2 per-

forms similarly for l = 1 and 2, which outperforms l = 3. The reason is that if an

entry is missing in all 3 frames, we cannot hope to recover it only based on F(3).

41

The discrepancy between using the single unfolding F(1) (or F(2)) and using F(3) is

shrinking when the sample rate is high (R = 0.7), because the chance that a node

pair is missing in all 3 frames is small. This motivates us that we can benefit more

from historical values of Mi,j when they are available rather than using network con-

dition correlations between different nodes for estimation, and weight differentiation

in Algorithm 2 would improve the recovery performance of our algorithm.

We further evaluate the performance of Algorithm 2 with double unfolding, and

show the results in Fig. 3.6(e) and Fig. 3.6(f). The weight assignments used for

double unfolding are α1 = 0.5, α2 = 0, α3 = 0.5. As we can see, the algorithm with

differentiation still outperforms the algorithm that minimizes the sum of the ranks

of two unfolded matrices, at both high (R = 0.7) and low (R = 0.3) sample rates.

Through all the above comparisons, we show the benefits of incorporating mul-

tiple latency frames to perform multi-frame recovery, and the advantage of differen-

tiated treatments to missing node pairs (i, j) ∈ ΘA and (i, j) ∈ ΘB. Specifically,

the third unfolded matrix F(3) is suitable for dealing with node pairs (i, j) ∈ ΘA,

while any of the first two unfolded matrices F(1) and F(2) are better to handle miss-

ing entries (i, j) ∈ ΘB. It is shown that Algorithm 2 with such differentiation is

optimal.

3.7 Proof for Lemma 3.3.1

In this appendix, we present our proof of Lemma 3.3.1, the key lemma in the proof

of convergence of Algorithm 1. Before our formal proof, we firstly introduce some

notations and preliminaries for matrix inequalities, which play an important role in

our proof for Lemma 3.3.1.

We firstly introduce the theory of majorization, one of the most powerful tech-

niques for deriving inequalities. Given a real vector x = (x1, . . . , xn) ∈ Rn, we

rearrange its components as x[1] ≥ x[2] ≥ . . . ≥ x[n]. The definition of majorization

is as follows. For x,y ∈ Rn, if

k∑
i=1

x[i] ≤
k∑
i=1

y[i] for k = 1, . . . , n− 1

and
n∑
i=1

x[i] =
n∑
i=1

y[i],

42

then we say that x is majorized by y and denote x ≺ y. If

n∑
i=1

x[i] ≤
n∑
i=1

y[i],

we say that x is weakly majorized by y and denote x ≺w y. We introduce some

properties for majorization and weak majorization, which can be found in quite a

wide range of literature, e.g. [96]. Interested readers can find detailed proofs in

these references.

Lemma 3.7.1 (cf. [96], Ch. 1). Let g(t) be an increasing and convex function.

Let g(x) := (g(x1), g(x2), . . . , g(xn)) and g(y) := (g(y1), g(y2), . . . , g(yn)). Then,

x ≺w y implies g(x) ≺ g(y).

Theorem 3.7.1 (cf. [96], Ch. 9). If A is a Hermitian matrix (real symmetric for

a real matrix A), then we have d(A) ≺ λ(A).

Note that the singular values of A are the eigenvalues of the positive semidefinite

matrix A>A. We then have:

Corollary 3.7.1. If A is a real symmetric matrix, and we denote |A| as the positive

semidefinite square root of A>A, we have d(|A|) ≺ λ(|A|) = σ(A).

Lemma 3.7.2 (cf. [96], Ch. 9). For any matrices A and B, we have σ(AB) ≺w
σ(A) ◦ σ(B), where ◦ denotes the Hadamard product (or entry-wise product).

Lemma 3.7.3 (Abel’s Lemma). For two sequences of real numbers a1, . . . , an and

b1, . . . , bn, we have

n∑
i=1

aibi =

n−1∑
i=1

(ai − ai+1)

 i∑
j=1

bi

+ an

n∑
i=1

bi.

Lemma 3.7.4. If x ≺ y and w = (w1, w2, . . . , wn), where 0 ≤ w1 ≤ w2 ≤ . . . ≤ wn,
we have

n∑
i=1

wixi ≥
n∑
i=1

wiyi.

Proof. For any 1 ≤ k < n, we have

k∑
i=1

xi ≤
k∑
i=1

yi.

43

Then, since wk ≤ wk+1, we have

(wk − wk+1)

k∑
i=1

xi ≥ (wk − wk+1)

k∑
i=1

yi

In addition, for k = n, we have

wn

n∑
i=1

xi = wn

n∑
i=1

yi,

since x ≺ y implies that the summation of xi and yi are identical. Summing up all

n inequalities above, we have

n−1∑
k=1

(wk − wk+1)

(
k∑
i=1

xi

)
+ wn

n∑
i=1

xi

≥
n−1∑
k=1

(wk − wk+1)

(
k∑
i=1

yi

)
+ wn

n∑
i=1

yi. (3.20)

By applying the Abel’s Lemma for both sides, we have

n∑
k=1

wkxk ≥
n∑
k=1

wkyk,

which proves the lemma. ut

Theorem 3.7.2 (cf. [96], Ch. 9). If A and B are two positive semidefinite matrices,

then

tr(AB)α ≤ tr(AαBα), α > 1, (3.21)

tr(AB)α ≥ tr(AαBα), 0 < α ≤ 1. (3.22)

Now we are ready to prove our Lemma 3.3.1 as follows:

Proof of Lemma 3.3.1. The right inequality is a consequence of Lemma 3.7.2. To

see this, let g(t) = tp for all 1 ≤ p ≤ 2. For all t ≥ 0, g(t) is an increasing and

convex funciton. Thus, we have σ(AB) ≺w σ(A) ◦ σ(B) from Lemma 3.7.2, and

from Lemma 3.7.1 we have g(σ(AB)) ≺w g(σ(A) ◦ σ(B)) and it implies that

n∑
i=1

σpi (AB) ≤
n∑
i=1

σpi (A)σpi (B).

So now we can focus on the left inequality. Here we denote |A| as the positive

semidefinite square root of A>A. Suppose the singular value decomposition of A is

44

UAΣAV>A , and that of B is UBΣBV>B. By the unitary invariance of the singular

values and the Schatten-p norm, we have

||AB||pp = ||UAΣAV>AUBΣBV>B||pp (3.23)

= ||(ΣAV>AUB)ΣB||pp (3.24)

= ||A1B1||pp. (3.25)

Here we let A1 := ΣAV>AUB and B1 := ΣB. Thus, without loss of generality, we

can assume that B is diagonal. Then, from the definition of Schatten-p norm, we

have

||AB||pp = tr(|AB|p) = tr
(√

B>A>AB
)p

≥ tr((B>)
p
2 (A>A)

p
2 B

p
2) (3.26)

= tr((BB>)
p
2 (A>A)

p
2)

= tr(|B|p(A>A)
p
2)

= tr(|B|p|A|p) (3.27)

Here (3.26) is from (3.22) in Theorem 3.7.2, since |B| is diagonal with all nonnegative

entries, and A>A is a real symmetric matrix. Since B is diagonal, d(|B|) is just a

permutation of its singular value vector σ(B). Thus, we can simply rearrange the

order of sum in (3.27) as

tr(|B|p|A|p) =
n∑
i=1

di(|B|)di(|A|) (3.28)

=
n∑
i=1

d[n−i+1](|B|)dπ(i)(|A|), (3.29)

where π(·) is a permutation indicating the order of the new summation, and d[i](|B|) =

σi(B). From Lemma 3.7.1, we can see that d(|A|) ≺ σ(A), and by Lemma 3.7.4,

we finally have

||AB||pp =
n∑
i=1

dp[n−i+1](|B|)d
p
π(i)(|A|) (3.30)

=
n∑
i=1

σpn−i+1(B)dpπ(i)(|A|) (3.31)

≥
n∑
i=1

σpn−i+1(B)σpi (A). (3.32)

ut

45

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

Alg. 4 with Differentiation
Alg. 2
DMFSGD
Vivaldi (7D)

(a) Sample rate R = 0.3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

Alg. 4 with Differentiation
Alg. 2
DMFSGD
Vivaldi (7D)

(b) Sample rate R = 0.7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

Alg. 4 with Differentiation

Alg. 4 with Single Unfolding (α
1
=1)

Alg. 4 with Single Unfolding (α
2
=1)

Alg. 4 with Single Unfolding (α
3
=1)

(c) Sample rate R = 0.3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

Alg. 4 with Differentiation

Alg. 4 with Single Unfolding (α
1
=1)

Alg. 4 with Single Unfolding (α
2
=1)

Alg. 4 with Single Unfolding (α
3
=1)

(d) Sample rate R = 0.7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

Alg. 4 with Differentiation
Alg. 4 with Double Unfolding
(α

1
=α

3
=0.5)

(e) Sample rate R = 0.3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

Relative Error

C
D

F

Alg. 4 with Differentiation
Alg. 4 with Double Unfolding
(α

1
=α

3
=0.5)

(f) Sample rate R = 0.7

Figure 3.6: The CDFs of relative estimation errors on the missing values in the
current frame with sample rates R = 0.3 and R = 0.7 for the Seattle dataset.
Feature extraction has been applied in all experiments.

46

Chapter 4

Quantile Matrix Factorization

4.1 Background

In the last chapter, we use rank minimization approach, which is based on convex

optimization techniques, to estimate a low-rank matrix from some known observa-

tions. In this chapter and Chapter 5, we use matrix factorization that doing low-rank

matrix estimation that has been implemented and deployed in large-scale industrial

machine learning systems. Although matrix factorization problems are nonconvex,

they can be solved efficiently in practice at a large scale by several standard itera-

tive optimization methods such as alternating minimization and stochastic gradient

descent [14].

Nevertheless, a common limitation of all existing matrix estimation studies is

that they aim to estimate a conditional mean for each pair and have ignored the

fact that in many scenarios, i.e., quality of service (QoS) estimation including both

latencies and throughput, may be highly skewed in reality.

For example, in a dataset made available by recent studies [50], we can observe

that most web service response times are within 100 milliseconds while a few outliers

could exceed one or even several seconds due to network congestion or temporary

service unavailability [97, 98]. In this case, state-of-the-art matrix factorization

techniques, which aim to minimize a mean squared error, tend to only explain the

conditional mean response time or throughput between a user and a web service,

which may deviate from the “most probable” value due to the existence of outliers.

Therefore, using conditional mean QoS estimates to select and recommend top web

services for each user may lead to significant biases.

In this chapter, we propose Quantile Matrix Factorization (QMF). Our con-

tributions are with two folds: First, we propose the concept of Quantile Matrix

47

Factorization by replacing the least squares objective function in traditional matrix

factorization with an asymmetric loss function similar to that in Quantile Regres-

sion [99]. The new objective function enables us to estimate the conditional median

metrics, which can better explain the central tendency of skewed data, or to es-

timate a certain percentile of the value of interest. Second, although the QMF

problem has a nonsmooth quantile objective, we propose a simple yet efficient It-

eratively Reweighted Least Squares (IRLS) algorithm to efficiently solve a smooth

approximation of the QMF problem.

The results in Chapter 4 have been published in our INFOCOM paper [40].

4.2 Problem Description

For ease of representation, we focus on the scenario of QoS value estimation in

this chapter. Suppose we have a set m users and a set of n web services. Let

M ∈ Rm×n denote the matrix of QoS values between all the users and servers,

where the entry Mi,j represents the latency (or throughput) between user i and

service j. Assume we have observed the QoS value between some user-service pairs.

Let Ω denote the set of all such measured (i, j) pairs. The problem is to infer

the missing QoS entries in M only based on the partially observed values Ω =

{Mi,j |QoS value of (i, j) has been observed}.
One effective and popular method that has been successfully adopted in network

latency estimation based on partial observations is matrix factorization (e.g., [43],

[98]). Matrix factorization solves a nonconvex optimization problem, assuming that

each user i has a latent feature vector xi ∈ Rr and each service j has a latent

feature vector yj ∈ Rr. Let X := [x1, . . . ,xm]> and Y := [y1, . . . ,yn]>. Then,

the matrix factorization problem is to find two such tall matrices X and Y, with

r � {m,n, |Ω|} by solving

min
X∈Rm×r,Y∈Rn×r

∑
(i,j)∈Ω

L(Mi,j , M̂i,j) s.t. M̂ = XY>.

The most commonly used loss function in matrix factorization is the squared

loss (Mi,j −x>i yj)
2, with which the problem is to minimize the mean squared error

(MSE):

min
X,Y

1

2

∑
(i,j)∈Ω

(Mi,j − M̂i,j)
2 +

λ

2
‖X‖2F +

λ

2
‖Y‖2F

s.t. M̂ = XY>, ∀X ∈ Rm×r,Y ∈ Rn×r,

(4.1)

48

where ‖·‖F denotes the matrix Frobenius norm. The term λ
2‖X‖2F and λ

2‖Y‖2F
are usually called regularizer in order to encourage simple models to avoid over-

fitting issues (which make the model fit observed entries well but drift away from

unknown ones). Like linear regression, solving (4.1) actually aims to produce an

optimal solution M̂ such that M̂i,j = 〈xi,yj〉 estimates the conditional mean of

the observation Mi,j . For symmetric noise following a Gaussian distribution, the

conditional mean is the most efficient estimator.

However, for skewed or heavy-tailed noises, the conditional mean can be far

away from the central area where Mi,j is distributed, and thus is not representative

of the underlying most frequent value of Mi,j . In these cases, we need to develop

new techniques to better characterize the median and tail behavior of observations,

beyond conditional mean estimates.

To get an intuitive idea about the distributions of typical web service QoS data,

in Fig. 4.1(a) and Fig. 4.1(b), we plot the response times and throughput values

between 339 service users and 5825 web services distributed all around the world

from a publicly available dataset [50]. Here, the response time is the duration

between the time that a service user sends a request and the time that he/she has

received the corresponding response, including both the service latency and network

latency. We can see that both response times and throughput are highly skewed. In

Fig. 4.1(a) we can see that 90% of measured response times are smaller than 1.7s, yet

the largest measured latency is 19.9s. More importantly, the mean response time is

0.9s which is much larger than the median 0.32s, around which most response times

are distributed. Similarly, in Fig. 4.1(b), the mean throughput is 47.56 kbps, while

the median is only 13.95 kbps and 90% of measured throughput values are smaller

than 103.70 kbps while the largest measured value is 1000 kbps. This also shows

that the throughput is highly skewed and heavy-tailed.

Such a significant discrepancy between the mean and the median implies that

the conventional matrix factorization minimizing mean squared error (MSE) may

not be suitable for estimating web service QoS metrics, since it tends to yield a mean

estimation conditioned on the observations, while in reality QoS data will most likely

concentrate around their median values. Moreover, the use of MSE-based matrix

factorization can not estimate a certain percentile of the QoS values.

49

0 5 10 15 20
Response Time (s)

0

2

4

6

8

F
re

q
u
e
n
c
y

×10
5

(a) Response Time

0 500 1000
Throughput (Mbps)

0

2

4

6

8

F
re

q
u
e
n
c
y

×10
5

(b) Throughput

Figure 4.1: Histograms of response times and throughput between 5825 web services
and 339 service users. Both QoS metrics are highly skewed.

4.2.1 From Quantile Regression to Quantile Matrix Factorization

We now extend the idea of quantile regression to the case of matrix factorization,

and we call such a new approach quantile matrix factorization.

Quantile regression estimates conditional quantile functions. More formally, the

τ -th quantile of a real-valued random variable Z is defined as

Qτ (Z) = inf{z : Pr(Z ≤ z) ≥ τ},

among which the median is given by Q0.5(·). If the random variable Z is conditional

on some other variables or parameters, the quantile calculated here is called the

conditional quantile.

A useful key observation [99] in quantile regression is

Qτ (Z) = arg min
β

E[ρτ (Z− β)],

where

ρτ (z) := z(τ − 1(z < 0))

is called the check loss function, with 1(z < 0) equal to 1 if z < 0 and equal to

0 otherwise. The rationale behind the above equation is that, for any 0 < τ < 1,

minimizing ρτ (z) would push the lowest τ fraction to lie below z and 1− τ fraction

to lie above z.

Given the above observation, we can estimate the quantile of a random vari-

able Z from its sample observations z1, . . . , zN by solving the following optimization

problem [99]:

Q̂τ (Z) = arg min
β

N∑
i=1

ρτ (zi − β). (4.2)

50

Now we introduce a quantile-regression-like objective into the matrix factoriza-

tion problem by replacing the squared loss in the original matrix factorization by

a quantile check loss function. Under this setting, we can formulate the Quantile

Matrix Factorization (QMF) problem as

min
X,Y

∑
(i,j)∈Ω

ρτ (Mi,j − M̂i,j) +
λ

2
‖X‖2F +

λ

2
‖Y‖2F

s.t. M̂ = XY>,X ∈ Rm×r,Y ∈ Rn×r,

(4.3)

which aims to produce an optimal solution M̂ such that M̂i,j = 〈xi,yj〉 estimates the

τ -th quantile of the observation Mi,j . When τ = 0.5, we are essentially estimating

the median of each unobserved Mi,j .

2000 4000
Income

0.0000

0.0005

0.0010

Pr
op

or
tio

n

(a) Income

500 1000 1500 2000
Food Expenditure

0.0000

0.0005

0.0010

0.0015

0.0020

Pr
op

or
tio

n

(b) Food Expenditure

500 1000 1500 2000 2500 3000
Income

500

1000

1500

2000

Fo
od

 e
xp

en
di

tu
re

Q Reg: 0.1
Q Reg: 0.5
Q Reg: 0.9
Lin Reg

(c) Regression

Figure 4.2: Quantile regression vs. linear regression. By taking multiple quan-
tile levels, we can have a more complete picture of distribution and provide better
estimation than ordinary linear regression.

Here we take a toy example in Fig. 4.2 to show why quantile regression provides

better estimation for skewed distribution. We investigate relationship between in-

come and food expenditure for 235 working class households in 1857 Belgium1. From

1It is a built-in dataset in statsmodels, a Python statistics package: https://www.statsmodels.

51

https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html

Fig. 4.2(a) and Fig. 4.2(b), we can see that both income and food expenditure are

with skewed distribution. Most values concentrate on the left side and some rel-

atively large values also exist. As a result, many points are clustered on the left

bottom in Fig. 4.2(c). We then perform ordinary linear regression and quantile re-

gression on this dataset. The red solid line shows that linear regression can predict

conditional mean, but the residual becomes larger when income increases. When

doing quantile regression, we perform in three levels, namely, 0.1-th, 0.5-th and 0.9-

th quantiles. We can see that the 0.5-th quantile, which estimates the conditional

median, is closer to the center than linear regression. In addition, quantile regression

at 0.1-th and 0.9-th levels can predict values for high income class more accurately.

From this example, we can see quantile regression is a powerful tool. In fact, it

has been a well accepted method in economics, ecology and statistics. The above

quantile-regression-like formulation has two unique strengths:

First, the QMF formulation in problem 4.3 can shift estimates from mean statis-

tics to conditional medians or other quantiles of the observations. This is important

in practice. The conventional MSE-based MF, as discussed above, is to minimize

the mean squared error and actually estimates the mean of each Mi,j given the ob-

servations. However, when the data is not Gaussian, this method is not guaranteed

to be optimal, especially when the data are skewed or heavy-tailed.

Second, by focusing on different levels τ of quantiles, we can obtain a more

complete picture of the data than the conventional MSE-based methods. Actually,

the choice of τ depends on the practitioner’s interests. If we are interested in the

medians, we can set τ = 0.5, and we can get the first and third quartiles by setting

τ = 0.25 and 0.75, respectively. If we are interested in the tail property, e.g., 10-

percentile response time, we can set τ = 0.1. In more complicated cases, we can

even estimate a specific confidence interval for each Mi,j , e.g., a 90% confidence

interval of each Mi,j can be estimated by solving problem 4.3 under τ = 0.05 to get

a lower bound and then under τ = 0.95 to get an upper bound.

Because of these two strengths, the formulation in problem 4.3 is particularly

suitable for our web service recommendation task. First, as shown in Fig. 4.1(a)

and 4.1(b), the response time and throughput are highly skewed. Secondly, we can

utilize QMF to help a user narrow down the search of web services by estimating

extreme quantile values. QMF in our web service recommender system can also help

org/dev/datasets/generated/engel.html.

52

https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html
https://www.statsmodels.org/dev/datasets/generated/engel.html

users exclude the worst services with long response time and low throughput, which

can not be achieved by the traditional MSE-based estimator.

4.3 Algorithms

When it comes to directly optimizing the nonsmooth quantile loss function, choices

of efficient algorithms are limited. Meanwhile, the nonsmooth characteristic also

hinders its theoretical investigation. Many researchers use a smooth function to

approximate the quantile loss function, e.g., [100]. In this thesis, we use the same

strategy to find a smooth approximation to the quantile objective and then provide

an Iteratively Reweighted Least Square (IRLS) algorithm to solve the smoothed

approximation.

τ = 0.1

τ = 0.5

0 x

y

(a) The check loss ρτ (·)

x

y
Check loss

η = 0.1

η = 0.05

η = 0.02

(b) Smoothed Quantile Function

Figure 4.3: Smoothing a quantile check loss function. In both figures, we consider
τ = 0.2. (a) The check loss function in quantile regression, placing different weights
on positive residuals and negative residuals. (b) An illustration of the smoothed
quantile function.

We now introduce our smooth technique in Algorithm 3. For the residual Ri,j :=

Mi,j − M̂i,j , we have the following inequalities:

ρτ (Ri,j) ≤
√
ρ2
τ (Ri,j) + η2 ≤ 1

2

(
ρ2
τ (Ri,j) + η2

zi,j
+ zi,j

)
for η > 0, zi,j > 0. We notice that the constant η controls a trade-off between

smoothness and approximation gap: a larger η can make the function smoother,

but the gap between the first and the second term becomes larger, which may imply

slower convergence rate. Therefore, we should carefully choose a η that is small

enough but pertains some smoothness. Fig. 4.3 illustrates our proposed smooth

technique for quantile check loss functions. From Fig. 4.3(b), we can clearly see how

η controls the trade-off between smoothness and approximation gap. When η = 0.1,

53

Algorithm 3 IRLS for smoothed quantile matrix factorization.

1: Input: PΩ, target rank r
2: Parameter: Smooth constant η > 0, maximum number of iterations T
3: Initialize X(0) and Y(0) with random values
4: for t = 0 to T − 1 do
5: for i = 1, . . . ,m do

6: x
(t+1)
i ← arg minx∈Rr hi(x; Y(t),Z(t))

7: end for
8: for j = 1, . . . , n do

9: y
(t+1)
j ← arg miny∈Rr hj(y; X(t),Z(t))

10: end for
11: M(t+1) ← X(t+1)Y(t+1)>

12: for (i, j) ∈ Ω do

13: R
(t+1)
i,j ←Mi,j − 〈x(t+1)

i ,y
(t+1)
j 〉

14: z
(t+1)
i,j ←

√
ρ2
τ (R

(t+1)
i,j) + η2

15: end for
16: end for
17: Output: M← X(T)Y(T)>.

the blue solid line goes at the top and the gap from the check loss (the black solid

line) becomes largest in all settings. For a lower η, we can see that the smooth

function is getting closer to the check loss function while the function becomes less

smooth.

For the first inequality, we can choose a small constant η related to the sample

size |Ω|, e.g., η = 1/ log(|Ω|). Then the gap between the first two terms will dimin-

ish as |Ω| increases. When zi,j =
√
ρ2
τ (Ri,j) + η2, the last term is minimized and

the second inequality becomes the equality. Both the last two terms are smooth

approximations of the quantile loss function and under certain conditions, the ap-

proximations could be as close as possible. Motivated by this fact, we solve the

following problem as a smooth approximation of quantile matrix factorization:

min
X,Y

∑
(i,j)∈Ω

√
ρ2
τ (Mi,j − M̂i,j) + η2 +

λ

2
‖X‖2F +

λ

2
‖Y‖2F

s.t. M̂ = XY>, ∀X ∈ Rm×r,Y ∈ Rn×r.

(4.4)

Considering the fact that both the number of users and web services can be very

large in the real world, the optimization algorithm used should have simple steps in

each iteration, with intermediate results that are easy to store. One very popular

family of such algorithms is the Block-Coordinate Descent (BCD) method, which

alternately minimizes each coordinate or variable, i.e., each row of X or Y will be

54

updated alternately in a sequential order or in parallel. However, since minimizing

a square root loss function directly is not an easy task, we can try to minimize an

approximate function instead. Under some conditions, minimizing an approximate

function can even have performance similar to minimizing the original loss function.

The Iteratively Reweighted Least Square (IRLS) algorithm [101] is such an example,

and has recently been extended to a framework called block successive upper-bound

minimization (BSUM) [102].

Motivated by IRLS and BSUM, we propose an algorithm that iteratively mini-

mizes the following two functions for each user i and web service j:

hi(x; Y,Z) :=
1

2

∑
j∈Ω(i)

ρ2
τ (Mi,j − 〈x,yj〉)

zi,j
+
λ

2
‖x‖22,

hj(y; X,Z) :=
1

2

∑
i∈Ω(j)

ρ2
τ (Mi,j − 〈xi,y〉)

zi,j
+
λ

2
‖y‖22,

where Ω(i) denotes the set of observed services for user i, Ω(j) denotes the set of

observed users for service j, and ‖·‖2 denotes the `2 norm. The full procedure of

our algorithm is shown in Algorithm 3. Note that according to Theorem 2 in [102],

we can conclude that Algorithm 3 can converge to stationary points.

Now we present our approach to solve the above two sub-problems (shown in

Steps 6 and 9) by rewriting them as Quadratic Programming (QP) problems. Then,

we can use some standard solvers to solve QP. For simplicity, we only rewrite Step

6.

Suppose we have observed l web services for user i. For residual Ri,j , we can

extract its positive component R+
i,j := max(Ri,j , 0) and its negative component

R−i,j := −min(Ri,j , 0). Then, we can rewrite the corresponding term in hi(x; Y,Z)

as

ρ2
τ (Ri,j)

zi,j
= τ2(R+

i,j)
2/zi,j + (1− τ)2(R−i,j)

2/zi,j (4.5)

= τ2(S+
i,j)

2 + (1− τ)2(S−i,j)
2, (4.6)

where we denote S+
i,j := R+

i,j/
√
zi,j and S−i,j := R−i,j/

√
zi,j . All such S+

i,j and S−i,j

form vectors s+ ∈ Rl+ and s− ∈ Rl+, respectively. We then denote bj = Mi,j/
√
zi,j

and y′j = yj/
√
zi,j for j ∈ Ω(i). Then, we have

S+
i,j − S−i,j = (Mi,j − 〈x,yj〉)/√zi,j = bj − 〈x,y′j〉.

55

We can finally convert the sub-problem in Step 6 into the following QP problem:

min
u,s+,s−

τ2‖s+‖22 + (1− τ)2‖s−‖22 +
λ

2
‖x‖22

s.t. s+
j − s−j = bj − y′j

>u, ∀j ∈ Ω(i),

x ∈ Rr, s+, s− ∈ Rl+.

(4.7)

4.4 Convergence Analysis

We will show in this section that our proposed IRLS algorithm 3 can converge to

stationary point. Our results are based on a generic result in [102], which proposes a

block successive upper-bound minimization (BSUM) algorithm. We will take a brief

introduction of this more generic algorithm, and then introduce our convergence

analysis based on results in BSUM.

The BSUM algorithm is trying to find a solution for the following problem:

min f(x1, . . . , xN)

s.t. xj ∈ Xj .

Here we denote x = (x1, . . . , xN) and the feasible set X = X1 × . . . × XN with

Xj ⊆ Rdj .

Algorithm 4 Pseudocode of the BSUM Algorithm [102, 103].

1: Find a feasible point x0 ∈ X and set t = 0.
2: repeat
3: Pick index set It.
4: Let xtj = argminxj∈Xj uj(xj ,x

t−1), ∀j ∈ It.
5: Set xtk = xt−1

k , ∀k /∈ It.
6: t← t+ 1.
7: until stops

We display the BSUM algorithm in Algorithm 4. Simply, the BSUM algorithm

successively optimize some upper bounds or surrogate functions, instead of the orig-

inal objectives which might be hard to do so. There are a lot of candidate upper

bound functions uj(xj ,x
t−1), provided that the following assumptions are met:

56

Assumption 4.1. The update function uj(xj ,x) satisfies the following conditions:

uj(xj ,x) = f(x) ∀x ∈ X , ∀i, (4.8)

uj(xj ,y) ≥ f(xj ,y−j), ∀xj ∈ Xj , ∀y ∈ X , ∀j, (4.9)

u′j(xj ,y; dj)|xj=yj = f ′(y; d),

∀d = (0, . . . , dj , . . . , 0) s.t. yj + dj ∈ Xj , ∀j, (4.10)

uj(xj ,y) is continuous in (xj ,y), ∀j. (4.11)

Here we denote x−j to denote the vector x−j := (x1, . . . , xj−1, xj+1, . . . , xM)

that drops the j-th coordinate of x. To select an index set for It at iteration t,

we can either choose the cyclic rule, which chooses the coordinates cyclically in the

order of “1, 2, . . . , N, 1, 2, . . .”, or the randomized rule that picks some coordinates

with a given probability distribution. We refer interested readers to [102, 103] for

more details.

We now formally introduce the convergence result for the BSUM framework as

follows:

Theorem 4.4.1 (Theorem 2, [102]). 1. Suppose that the function uj(xj ,y) is

quasi-convex in xj for j = 1, . . . , N and Assumption 4.1 holds. Furthermore,

assume that the subproblem that minimizes uj(xj ,x
t−1) has a unique solution

for any point xt−1 ∈ X . Then, every limit point z of the iterates generated by

the BSUM algorithm is a coordinate-wise minimum of f(x). In addition, if

f(·) is regular at z, then z is a stationary point of f(x).

2. Suppose the level set X 0 = {x|f(x) ≤ f(x0)} is compact and Assumption 4.1

holds. Furthermore, assume that f(·) is regular at any point in X 0 and the

subproblem that minimizes uj(xj ,x
t−1) has a unique solution for any point

xt−1 ∈ X for at least M − 1 blocks. Then, the iterates generated by the BSUM

algorithm converge to the set of stationary points, i.e.,

lim
t→∞

d(xt,X ∗) = 0,

where the distance function d(x,S) between x and a set S ⊆ Rd is defined as

d(x,S) = inf
s∈S
‖x− s‖.

57

Now we apply Theorem 4.4.1 to obtain our convergence result. Note that we

alternatively minimizing xi’s and yj ’s by fixing Y and X, respectively. Therefore,

our objective function can be written as F(X,Y) := f(x1, . . . ,xm,y1, . . . ,yn) with

m + n blocks, where F(X,Y) is the objective in (4.4). From (4.3), we can see

that hi(xi; Y,Z) and hj(yj ; X,Z) satisfy Assumption 4.1. Note that minimizing

hi(xi; Y,Z) or hj(yj ; X,Z) can be converted to a QP shown in (4.7), in which the

quadratic coefficient matrix Q is a diagonal matrix with values of τ, 1 − τ, λ/2,

so Q should be positive definite and we can conclude that the subproblem (4.7)

has a unique solution. Therefore, we have our proposed IRLS can converge to

coordinatewise minimum. Note that F(X,Y) is smooth for all η > 0, F is regular

at (X(t),Y(t)) for all t, so we guarantee that the limit point of F(X,Y) is a stationary

point.

Table 4.1: Ranking Performance Comparison of Response Time on NDCG@k and
Precision@k (Larger value indicates higher ranking performance). Here N@k indi-
cates NDCG@k and P@k indicates Precision@k

Metric QMF, 0.1 QMF, 0.25 QMF, 0.5 PMF

Sampling Rate 1%

N@10 0.217 0.354 0.409 0.135
N@100 0.341 0.42 0.453 0.13
P@10 0.008 0.016 0.017 0.013
P@100 0.107 0.165 0.184 0.036

Sampling Rate 10%

N@10 0.572 0.615 0.595 0.085
N@100 0.638 0.694 0.715 0.165
P@10 0.036 0.042 0.037 0.013
P@100 0.391 0.473 0.52 0.044

Sampling Rate 30%

N@10 0.568 0.592 0.563 0.059
N@100 0.65 0.703 0.713 0.212
P@10 0.04 0.032 0.042 0.018
P@100 0.413 0.49 0.523 0.062

4.5 Performance Evaluation

We evaluate our QMF method on a publicly available dataset, which contains re-

sponse time and throughput records between 339 users and 5825 web services dis-

tributed worldwide, made available by a previous study [50].

4.5.1 Experimental Setup

We will first evaluate the performance of QMF in comparison to existing web service

recommendation schemes in terms of two performance metrics, namely, NDCG@k

58

Table 4.2: Ranking Performance Comparison of Throughput on NDCG@k and
Precision@k (Larger value indicates higher ranking performance). Here N@k in-
dicates NDCG@k and P@k indicates Precision@k

Metric QMF, 0.1 QMF, 0.25 QMF, 0.5 PMF

Sampling Rate 1%

N@10 0.272 0.548 0.601 0.02
N@100 0.252 0.472 0.586 0.052
P@10 0.016 0.059 0.078 0.005
P@100 0.048 0.155 0.222 0.012

Sampling Rate 10%

N@10 0.442 0.65 0.756 0.041
N@100 0.521 0.696 0.779 0.058
P@10 0.017 0.033 0.075 0.01
P@100 0.146 0.313 0.429 0.018

Sampling Rate 30%

N@10 0.586 0.743 0.779 0.079
N@100 0.67 0.779 0.774 0.095
P@10 0.026 0.067 0.103 0.016
P@100 0.279 0.429 0.41 0.025

(Normalized Discounted Cumulative Gain at top k) and Precision@k (Precision at

top k). These are two popular performance metrics for evaluating recommenda-

tion and ranking effectiveness. Instead of evaluating the relative/absolute pairwise

prediction errors, these two metrics compare the gap between the predicted order

and the observed order. Precision@k measures how many true top-k services in the

observation are correctly predicted by an algorithm. Formally, let Pk(i) be the pre-

dicted set of top k services in terms of a QoS metric, and P∗k(i) be the observed set,

and Precision@k(i) for user i is defined as

Precision@k(i) =
1

k

∑
j∈Pk(i)

1(j ∈ P∗k(i)).

Given a predicted ranked list of services πi for user i, the NDCG@k metric is defined

as

NDCG@k(i) :=
DCG@k(i, πi)

DCG@k(i, π∗i)
,

where

DCG@k(i, πi) = rel(i, πi(1)) +

k∑
j=2

rel(i, πi(j))

log2 j
,

where the value rel(i, πi(j)) is the relevance of the service πi(j). In our experiments,

we simply use the observed QoS metrics as the relevance values.

We also evaluate the recovery accuracy of QMF in comparison to several state-

of-the-art web service recommendation schemes, using the relative estimation errors

59

(REs) on missing entries, which are defined as |Mi,j − M̂i,j |/Mi,j for (i, j) /∈ Ω. In

particular, we compare the following schemes:

• Algorithm 3 (QMF): for each algorithm we set three quantiles τ = 0.1, 0.25, 0.5,

which represent the 10% quantile, the first quartile, and the median, respec-

tively.

• PMF (Probabilistic Matrix Factorization): a widely-used implementa-

tion of the matrix factorization model [55], which has been used to predict the

response times of web services [104] with a loss function of MSE.

The user-service matrices in the real world are typically very sparse, since a user

may have ever connected to only a small number of web services. We randomly

choose a subset of observed values in the user-service matrix with different sampling

rate, which is the ratio of the number of known entries in M to the number of all the

entries. In particular, we randomly set 1%, 10% and 30% of the matrix entries as

observed. Our algorithms and other baseline algorithms are employed to estimate

the missing QoS values and predict the ranking of web services for each user in the

descending order of the corresponding QoS values. For QMF, we set the dimension

of latent feature vectors to r = 10, and the smooth constant η = 1/ log(|Ω|) as we

have discussed in Sec. 4.2. For PMF, we also set the dimension of latent feature

vectors as r = 10.

4.5.2 Ranking performance

Table 4.1 and 4.2 show the ranking performance in NDCG and precision of response

time and throughput under the sampling rates of 1%, 10% and 30%. In this table we

focus on four metrics: NDCG@10, NDCG@100, Precision@10 and Precision@100.

We boldface the best performance for each column in the Table 4.1 and 4.2.

Compared with PMF, which minimizes MSE, Algorithm 3 obtains better predic-

tion accuracy for both response time and throughput under all settings of τ . Since

the data is highly skewed, our QMF algorithm can estimate different quantiles which

are closer to the center of distribution. In particular, we observe highest NDCG and

precision scores under τ = 0.5 in most cases. This implies that estimating median

is more robust than estimating mean.

For QMF, we can see that the ranking results under τ = 0.1 are worse than

results under τ = 0.25 and τ = 0.5, since the quantile τ = 0.1 is more extreme

60

0 1 2 3 4 5

Relative Error

0

0.2

0.4

0.6

0.8

1

C
D

F

QMF, τ = 0.1
QMF, τ = 0.25
QMF, τ = 0.5
PMF

(a) Sample rate 1%, response time

Relative Error
0 1 2 3 4 5

C
D

F

0

0.2

0.4

0.6

0.8

1

QMF, τ = 0.1
QMF, τ = 0.25
QMF, τ = 0.5
PMF

(b) Sample rate 1%, throughput

0 1 2 3 4 5

Relative Error

0

0.2

0.4

0.6

0.8

1

C
D

F

QMF, τ = 0.1
QMF, τ = 0.25
QMF, τ = 0.5
PMF

(c) Sample rate 10%, response time

Relative Error
0 1 2 3 4 5

C
D

F
0

0.2

0.4

0.6

0.8

1

QMF, τ = 0.1
QMF, τ = 0.25
QMF, τ = 0.5
PMF

(d) Sample rate 10%, throughput

0 1 2 3 4 5

Relative Error

0

0.2

0.4

0.6

0.8

1

C
D

F

QMF, τ = 0.1
QMF, τ = 0.25
QMF, τ = 0.5
PMF

(e) Sample rate 30%, response time

Relative Error
0 1 2 3 4 5

C
D

F

0

0.2

0.4

0.6

0.8

1

QMF, τ = 0.1
QMF, τ = 0.25
QMF, τ = 0.5
PMF

(f) Sample rate 30%, throughput

Figure 4.4: The CDFs of relative estimation errors of response time and throughput
on the missing values with sample rate 1%, 10% and 30%.

than τ = 0.25 and τ = 0.5 and the estimation under such quantile needs more data.

When explicit user features and explicit service features are incorporated, they can

provide initial estimation and it leads to decrease the demand of samples and lead

to better performance.

Now let’s see why our QMF is better in terms of ranking. We did top r = 10

singular value decomposition (SVD) for both response time matrix and throughput

matrix and we plot the results in Fig. 4.5. It is well known that top r SVD of M

provides its best approximation of rank r in terms of Frobenius norm [105], which is

actually the MSE. We plot the residuals of such method in Fig. 4.5. In these figures,

61

0 5 10 15 20
Residual (s)

0

2

4

6

8

10

12

F
re

q
u
e
n
c
y

×10
5

(a) Response Time

0 500 1000 1500
Residual (Mbps)

0

5

10

15

F
re

q
u
e
n
c
y

×10
5

(b) Throughput

Figure 4.5: Histograms of residuals via MSE minimization

90% of residuals of response time are smaller than 0.8, while the largest residual

can be as large as 19.73. Also, 90% of residuals of throughput are smaller than

30.75, but the largest residual is 1011. And now it is clear to see that in these two

datasets, the residuals are still highly skewed. Then we can conclude that if we use

the conditional mean for ranking web services, the results are not accurate, because

centers of these two datasets are distributed far away from their conditional means.

1 5 10 15 20 25

Rank

0.6

0.8

1

1.2

1.4

1.6

1.8

M
e

d
ia

n
 R

e
la

ti
v
e

 E
rr

o
r τ = 0.1

τ = 0.25

τ = 0.5

(a) Median Relative Error

1 5 10 15 20 25

Rank

0

0.2

0.4

0.6

0.8

N
D

C
G

@
1
0
0

τ = 0.1
τ = 0.25
τ = 0.5

(b) NDCG@100

Figure 4.6: Impact of dimension of latent vectors on QMF in terms of median
relative error and NDCG@100.

4.5.3 Recovery accuracy

We plot the relative estimation errors on missing response time and on missing

throughput in Fig. 4.4 under three settings of QMF and PMF. In Fig. 4.4(a), 4.4(c)

and 4.4(e), we can see that PMF is inferior to QMF under τ = 0.25 and 0.5 because

PMF is targeting minimizing MSE to estimate the conditional mean, but the highly

skewness of response time distribution leads the mean to be far away from the

62

center. For QMF with τ = 0.1, we can see that there are fewer small relative errors

and large relative errors than others, and these errors concentrate on a small range,

especially under low sampling rate as shown in Fig. 4.4(a). For the throughput

results in Fig. 4.4(b), 4.4(d) and 4.4(f), our algorithm is only slightly better than

PMF.

4.5.4 Impact of the latent feature dimension

We further investigate the impact of r, the dimension of user and service latent

feature vectors. In this experiment, we set the sampling rate to be 10% and com-

pare the median of relative estimation errors, called median relative error, and the

NDCG@100 score. We test the impact of the dimension r on QMF for the response

time dataset, and plot the results in Fig. 4.6. We can clearly see that both the rank-

ing precision and the estimation precision increase as the latent feature dimension

increases. However, when r > 15, the ranking performance almost stops increasing.

In addition, a higher dimension introduces higher computational cost. Therefore,

we suggest that r should be set in the range 5–15. The trend shown in these two

figures also holds for other ranking metrics, e.g., precisionk, and for other estimation

error metrics, e.g., mean relative errors. The results on the throughput dataset are

similar and omitted due to the space limit.

63

Chapter 5

Expectile Matrix Factorization

5.1 Background

In the last chapter, we have seen how QMF can handle the challenges brought by

skewed and heavy-tailed data that are prevalent in the real world in order to achieve

robustness to outliers and to better interpret the central tendency or dispersion of

observations. In this chapter, we propose the concept of expectile matrix factoriza-

tion (EMF) by replacing the symmetric least squares loss function in conventional

matrix factorization with a loss function similar to those used in expectile regres-

sion [106]. Our scheme is different from weighted matrix factorization [107], in that

we not only assign different weights to different residuals, but assign each weight

conditioned on whether the residual is positive or negative. Intuitively speaking, our

expectile matrix factorization problem aims to produce a low-rank matrix M̂ such

that A(M̂) can estimate any ωth conditional expectiles of the observations, not only

enhancing the robustness to outliers, but also offering more sophisticated statistical

understanding of observations from a matrix beyond mean statistics.

We investigate expectile matrix factorization from several aspects in this chap-

ter. First, we propose an efficient algorithm based on alternating minimization

and quadratic programming to solve expectile matrix factorization, which has low

complexity similar to that of alternating least squares in conventional matrix fac-

torization. Second, we theoretically prove that under certain conditions, expectile

matrix factorization retains the desirable properties that without noise, it achieves

the global optimality and exactly recovers the true underlying low-rank matrices.

This result generalizes the prior result [57] regarding the optimality of alternating

minimization for matrix estimation under the symmetric least squares loss (corre-

sponding to ω = 0.5 in EMF) to a general class of “asymmetric least squares” loss

64

functions for any ω ∈ (0, 1). The results are obtained by adapting a powerful tool

we have developed on the theoretical properties of weighted matrix factorization

involving varying weights across iterations. Third, for data generated from a low-

rank matrix contaminated by skewed noise, we show that our schemes can achieve

better approximation to the original low-rank matrix than conventional matrix fac-

torization based on least squares. Finally, we also performed extensive evaluation

based on a real-world dataset containing web service response times between 339

clients and 5825 web services distributed worldwide. We show that the proposed

EMF saliently outperforms the state-of-the-art matrix factorization scheme based

on least squares in terms of web service latency recovery from only 5-10% of samples.

The results in Chapter 5 have been published in our AAAI paper [41].

5.2 Expectile Matrix Factorization

In this chapter we focus on matrix sensing, a more general problem of matrix com-

pletion discussed in Chapter 3 and 4. Given a linear mapping A : Rm×n → Rp, we

can get p observations of an m×n matrix M∗ ∈ Rm×n. In particular, we can decom-

pose the linear mapping A into p inner products, i.e., 〈Ai,M
∗〉 for i = 1, . . . , p, with

Ai ∈ Rm×n. Denote the p observations by a column vector b = (b1, . . . , bp)
> ∈ Rp,

where bi is the observation of 〈Ai,M
∗〉 and may contain independent random noise.

The matrix sensing problem is to recover the underlying true matrix M∗ from ob-

servations b, assuming that M∗ has a low rank. Note that when Ai is a matrix

that has only one nonzero entry with the value of 1 and vanishes to zero at all other

entries, matrix sensing becomes the matrix completion problem.

We can use matrix factorization to solve this problem. Matrix factorization

assumes that the matrix M∗ has a rank no more than k, and can be factorized into

two tall matrices X ∈ Rm×k and Y ∈ Rn×k with k � {m,n, p}. Specifically, it

estimates M∗ by solving the following nonconvex optimization problem:

min
X∈Rm×k,Y∈Rn×k

p∑
i=1

L(bi, 〈Ai,M〉) s.t. M = XY>,

where L(·, ·) is a loss function. We denote the optimal solution to the problem above

by M̂.

The most common loss function used in matrix factorization is the squared loss

(bi − 〈Ai,XY>〉)2, with which the problem is to minimize the mean squared error

65

(MSE):

min
X∈Rm×k,Y∈Rn×k

p∑
i=1

1

2
(bi − 〈Ai,XY>〉)2. (5.1)

Just like linear regression based on least squares, (5.1) actually aims to produce

an M̂ which estimates the conditional mean of M∗ given partial observations. For

symmetric Gaussian noise, the conditional mean is the most efficient estimator.

However, for skewed or heavy-tailed noise, the conditional mean can be far away

from the central area where elements of the true M∗ are distributed. In these

cases, we need to develop new techniques to better characterize the central tendency,

dispersion and tail behavior of observations, beyond mean statistics.

Similar to quantile regression, expectile regression [106] is also a regression tech-

nique that achieves robustness against outliers, while in the meantime is more com-

putationally efficient than quantile regression by adopting a smooth loss function.

In particular, suppose samples {(xi, yi), i = 1, . . . , n} are generated from a linear

model yi = x>i β
∗ + εi, where xi = (1, xi1, . . . , xip)

> ∈ Rp+1 are predictors and

yi ∈ R is the response variable. The expectile regression estimates β∗ by solving

minimize
β

n∑
i=1

ρ[2]
ω (yi − x>i β),

where for a chosen constant ω ∈ (0, 1), ρ
[2]
ω (·) is the “asymmetric least squares” loss

function given by

ρ[2]
ω (t) := t2 · |ω − 1(t < 0)|,

where 1(t < 0) is the indicator function such that it equals to 1 if t < 0 and 0

otherwise.

Fig. 5.1(a) illustrates the shape of ρ
[2]
ω (·). When ω < 0.5, we can see that the

cost of a positive residual is lower than that of a negative residual, thus encouraging

a smaller estimate ŷi for the response variable, and vice versa when ω > 0.5. This

fact implies that when the response variable yi are not Gaussian but highly skewed,

we can choose an ω to push ŷi to its most probable area (i.e., the mode or median)

while being robust to outliers, as shown in Fig. 5.1(b).

We now extend expectile regression to the case of matrix estimation. Formally,

define ri := bi − 〈Ai,XY>〉 as the residual for bi. Then, in loss minimization, we

weight each squared residual r2
i by either ω or 1 − ω, conditioned on whether it is

positive or negative. Therefore, we formulate expectile matrix factorization (EMF)

66

ω = 0.1

ω = 0.5

0 x

y

(a) ρ
[2]
ω (·)

ω = 0.1

ω = 0.5

ω = 0.9

D
en

si
ty

o
f
y
i

(b) Expectile Regression

Figure 5.1: (a) The asymmetric least squares loss function, placing different weights
on positive residuals and negative residuals. (b) For a skewed χ2

3 distribution, ex-
pectile regression with ω = 0.1 generates an estimate closer to the mode than the
conditional mean (ω = 0.5) does due to the long tail.

as the following problem:

min
X∈Rm×k,Y∈Rn×k

F (X,Y) :=

p∑
i=1

ρ[2]
ω (bi − 〈Ai,XY>〉). (5.2)

Apparently, the MSE-based approach (5.1) is a special case of problem (5.2) by

setting ω = 0.5, which places equal weights on both positive and negative residuals.

Note that expectile matrix factorization proposed above is different from weighted

MSE [107], where a different yet fixed (predefined) weight is assigned to different

residuals. In expectile matrix factorization, each weight is either ω or 1−ω, depend-

ing on whether the residual of the estimate is positive or negative, i.e., we do not

know the assignments of weights before solving the optimization problem. In other

words, problem (5.2) estimates an M̂ such that each 〈Ai, M̂〉 estimates the ωth con-

ditional expectile [106] of bi. In the meantime, expectiles are based on second-order

moments and thus it is feasible to solve EMF efficiently, which we show in the next

section.

Just like expectile regression, the main attraction of expectile matrix factoriza-

tion goes beyond robustness to outliers. Being able to estimate any ωth expectile

of observations, EMF can characterize different measures of central tendency and

statistical dispersion, and is useful to obtain a more comprehensive understanding

of data distribution. For example, if we are interested in the tail behavior, we could

set ω = 0.9 and if we are interested in the conditional median in a highly skewed

dataset, we could set ω < 0.5.

67

5.3 Algorithm and Theoretical Results

We propose an efficient algorithm to solve expectile matrix factorization via a com-

bined use of alternating minimization and quadratic programming, as shown in

Algorithm 5, with complexity similar to that of alternating least squares in conven-

tional matrix factorization. To better approach potential optimal solutions, we first

sum up all measurement matrices Ai weighted by bi, and perform Singular Value

Decomposition (SVD) to get top k singular values.

Algorithm 5 Alternating minimization for expectile matrix factorization. In this
algorithm, we use X̄ to highlight that X̄ is orthonormal.

1: Input: observations b = (b1, . . . , bp)
> ∈ Rp, measurement matrices Ai ∈ Rm×n,

i = 1, . . . , p.
2: Parameter: Maximum number of iterations T
3: (X̄(0),D(0), Ȳ(0)) = SVDk(

∑p
i=1 biAi) . Singular Value Decomposition to get

top k singular values
4: for t = 0 to T − 1 do
5: Y(t+0.5) ← arg minY F (X̄(t),Y)
6: Ȳ(t+1) ← QR(Y(t+0.5)) . QR decomposition
7: X(t+0.5) ← arg minX F (X, Ȳ(t+1))
8: X̄(t+1) ← QR(X(t+0.5))
9: end for

10: Output: M(T) ← X(T−0.5)Ȳ(T)>

The QR decompositions in Step 6 and Step 8 are not necessary and are only

included here to simplify the presentation of theoretical analysis. QR decomposition

ensures the orthonormal property: given an orthonormal matrix X (or Y), the

objective function F (X,Y) is strongly convex and smooth with respect to Y (or

X), as shown in the appendix. However, it has been proved [108] that when ω = 0.5,

alternating minimization with and without QR decomposition are equivalent. The

same conclusion also holds for all ω. Therefore, in performance evaluation, we do

not have to and did not apply QR decomposition.

The subproblems in Step 5 and Step 7 can be solved efficiently with stan-

dard quadratic program (QP) solvers after some reformulation. We now illus-

trate such equivalence to QP for Step 5, which minimizes F (X̄,Y) given X̄. Let

r+
i := max(ri, 0) denote the positive part of residual ri, and r−i := −min(ri, 0)

denote the negative part of ri. We have ri = r+
i − r−i , and the asymmetric least

squares loss can be rewritten as

ρ[2]
ω (ri) = ω(r+

i)2 + (1− ω)(r−i)2.

68

Given X̄, we have

A(X̄Y>) = {〈Ai, X̄Y>〉}pi=1 = {〈A>i X̄,Y〉}pi=1.

Let r+ = (r+
1 , . . . , r

+
p)> and r− = (r−1 , . . . , r

−
p)>. For simplicity, let A1(Y) :=

A(X̄Y>). Then, minimizing F (X̄,Y) given X̄ in Step 5 is equivalent to the following

QP:

min
Y∈Rn×k,r+,r−∈Rp+

ω‖r+‖22 + (1− ω)‖r−‖22

s.t. r+ − r− = b−A1(Y).
(5.3)

Similarly, Step 7 can be reformulated as a QP as well.

Steps 5 and 7 can be solved even more efficiently in the matrix completion case,

which aims at recovering an incomplete low-rank matrix from a few observed entries

and is a special case of the matrix estimation problem under discussion, where each

bi is simply an observation of a matrix element (possibly with noise). In matrix

completion, we can decompose the above QP in Steps 5 and 7 by updating each row

of X (or Y), whose time complexity in practice is similar to conventional alternating

least squares, e.g., [42], which also solve QPs.

5.4 Theoretical Results

We now show that the proposed algorithm for expectile matrix factorization retains

the optimality for any ω ∈ (0, 1) when observations are noiseless, i.e., the produced

M(T) will eventually approach the true low-rank matrix M∗ to be recovered. We

generalize the recent result [57] of the optimality of alternating minimization for

matrix estimation under the symmetric least squares loss function (corresponding

to ω = 0.5 in EMF) to a general class of “asymmetric least squares” loss functions

with any ω ∈ (0, 1).

We assume that the linear mapping A satisfies the well-known 2k-RIP condition

[108]:

Assumption 5.1 (2k-RIP). There exists a constant δ2k ∈ (0, 1) such that for any

matrix M with rank at most 2k, the following property holds:

(1− δ2k)‖M‖2F ≤ ‖A(M)‖22 ≤ (1 + δ2k)‖M‖2F .

A linear mapping A satisfying the RIP condition can be obtained in various

ways. For example, if each entry of Ai is independently drawn from the sub-

69

Gaussian distribution, then A satisfies 2k-RIP property with high probability for

p = Ω(δ−2
2k kn log n) [108].

Clearly, Algorithm 5 involves minimizing a weighted sum of squared losses in

the form of

F(X,Y) =

p∑
i=1

wi(bi − 〈Ai,XY>〉)2,

although the weight wi depends on the sign of residual ri and may vary in each

iteration. We show that if the weights wi are confined within a closed interval

[w−, w+] with constants w−, w+ > 0, then the alternating minimization algorithm

for the weighted sum of squared losses will converge to an optimal point. Without

loss of generality, we can assume that w− ≤ 1/2 ≤ w+ and w− + w+ = 1 by weight

normalization.

The first step is to prove strongly convexity and smoothness of F(X,Y) if one

variable is fixed by a orthonormal matrix as follows:

Lemma 5.4.1. Suppose that δ2k and X̄(t) satisfy

δ2k ≤
√

2w2
−(1− δ2k)

2σk
24ξw+k(1 + δ2k)σ1

. (5.4)

and

‖X̄(t) − Ū(t)‖F ≤
w−(1− δ2k)σk

2ξw+(1 + δ2k)σ1
(5.5)

Then we have:

‖Y(t+0.5) −V(t)‖F ≤
σk
2ξ
‖X̄(t) − Ū(t)‖F .

Clearly, Algorithm 5 involves minimizing a weighted sum of squared losses in

the form of F(X,Y) =
∑p

i=1wi(bi − 〈Ai,XY>〉)2, although the weight wi depends

on the sign of residual ri and may vary in each iteration. We show that the if the

weights wi are confined in a closed interval [w−, w+] with constants w−, w+ > 0,

then the alternating minimization algorithm for the weighted sum of squared losses

will converge to the optimal point. Without loss of generality, we can assume that

w− ≤ 1/2 ≤ w+ and w−+w+ = 1 by weight normalization. For notation simplicity,

we denote a finite positive constant ξ > 1 throughout this thesis.

Lemma 5.4.2. Suppose the linear operator A(·) satisfies 2k-RIP with parameter

δ2k. For any orthonormal matrix ¯sX ∈ Rm×k, the function F(X̄,Y) with bounded

70

weights is strongly convex and smooth. In particular, if any weight wi in F(X̄,Y)

belongs to [w−, w+], the value of

F(X̄,Y′)−F(X̄,Y)− 〈∇YF(X̄,Y),Y′ −Y〉

is bounded by

[w−(1− δ2k)‖Y′ −Y‖2F , w+(1 + δ2k)‖Y′ −Y‖2F]

for all Y,Y′.

Lemma 5.4.2 shows that F(X,Y) can be block-wise strongly convex and smooth

if the weights wi belongs to [w−, w+]. In the following, we use U and V to denote

the optimal factorization of M∗ = UV>. Note that U and V are unique up to

orthogonal transformations. The following lemma shows that by taking the block-

wise minimum, the distance between the newly updated variable Y(t+0.5) and its

“nearby” V(t) is upper bounded by the distance between X(t) and its corresponding

neighbor U(t).

Lemma 5.4.3. Suppose that δ2k satisfies

δ2k ≤
w2
−(1− δ2k)

2σ4
k

48ξ2kw2
+(1 + δ2k)2σ4

1

.

We have ‖Ȳ(t+1) − V̄(t+1)‖F ≤ 1
ξ‖X̄(t) − Ū(t)‖F .

The following lemma shows an upper bound after initialization:

Lemma 5.4.4. Suppose that δ2k satisfies

δ2k ≤
w2
−(1− δ2k)

2σ4
k

48ξ2kw2
+(1 + δ2k)2σ4

1

.

Then there exists a factorization of M∗ = Ū0V(0)> such that Ū(0) ∈ Rm×k is an

orthonormal matrix, and satisfies

‖X̄(0) − Ū(0)‖F ≤
w−(1− δ2k)σk

2ξw+(1 + δ2k)σ1
.

With the above three lemmas, we can now provide our convergence analysis by

iteratively upper bounded the distance ‖Ȳ(t) − V̄(t)‖F as well as ‖X̄(t) − Ū(t)‖F .

First, we show the geometric convergence of alternating minimization for weighted

matrix factorization, if all weights belong to [w−, w+] in each iteration:

71

Theorem 5.4.1. Assume that the linear mapping A(·) satisfies 2k-RIP condition

with δ2k ≤ C1/k ·w2
−/w

2
+ for some small constant C1, and assume that the singular

values of M∗ are bounded in the range of [σmin(M∗), σmax(M∗)], where singular

values in M∗ are constants and do not scale with the matrix size. Suppose the weights

in F(X,Y) are bounded by two positive finite constants, i.e., wi ∈ [w−, w+] with 0 <

w− ≤ 1/2 ≤ w+ < 1 and w− + w+ = 1. Then, given any desired precision ε, there

exists a constant C2 such that by applying alternating minimization to F(X,Y), the

solution M(T) satisfies ‖M(T) −M∗‖F ≤ ε for all T ≥ O(log(C2/ε)+ log(w−/w+)).

The proof of this theorem is in Sec. 5.6. Theorem 5.4.1 implies that the weighted

matrix factorization can geometrically converge to a global optimum. Note that

the negative term log(w−/w+) does not imply that weighted matrix factorization

converges faster, since the value of C2 for two w’s may differ. In fact, due to the

lower RIP constant δ2k, the convergence rate in the case of w− 6= w+ is usually

slower than that in the case of w− = w+.

In Algorithm 5 for expectile matrix factorization, the weight wi in each iteration

for residual ri is ω if ri ≥ 0, and is 1 − ω otherwise. Although wi is changing

across iterations, we can choose w− = min(ω, 1− ω) and w+ = max(ω, 1− ω), both

satisfying the assumptions in Theorem 5.4.1, to bound all wi. Then we can derive

the following main result directly from Theorem 5.4.1.

Theorem 5.4.2 (Optimality of Algorithm 5). Suppose ω ≤ 1/2. Assume that the

linear mapping A(·) satisfies 2k-RIP condition with δ2k ≤ C3/k · (1 − ω)2/ω2 for

some small constant C3, and assume that the singular values of M∗ are bounded

in the range of [σmin(M∗), σmax(M∗)], where singular values in M∗ are constants

and do not scale with the matrix size. Then, given any desired precision ε, there

exists a constant C4 such that Algorithm 5 satisfies ‖M(T) −M∗‖F ≤ ε for all

T ≥ O(log(C4/ε) + log(ω/(1 − ω))). If ω > 1/2, we can get the same result by

substituting ω with 1− ω.

Additionally, we can further determine the sampling complexity, the number of

observations needed for exact recovery, as p = Ω
((1−ω)2

ω2 k3n log n
)
, if the entries of

Ai are independently drawn from a sub-Gaussian distribution with zero mean and

unit variance, since we require δ2k ≤ C/k · (1 − ω)2/ω2. This also matches the

sampling complexity of conventional matrix factorization [108].

72

0.0 0.5 1.0 1.5 2.0
Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F EMF-0.1

EMF-0.25

MF (MSE)

EMF-0.75

EMF-0.9

(a) Sampling rate R = 0.05

0.0 0.5 1.0 1.5 2.0
Relative Error

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F EMF-0.1

EMF-0.25

MF (MSE)

EMF-0.75

EMF-0.9

(b) Sampling rate R = 0.1

Figure 5.2: CDF of relative errors via expectile matrix factorization on synthetic
1000× 1000 matrices with skewed noise.

5.5 Experiments

In this section, we evaluate the performance of EMF in comparison to the state-of-

the-art MSE-based matrix factorization based on both skewed synthetic data and

a real-world dataset containing web service response times between 339 users and

5825 web services collected worldwide [50]. In both tasks, we aim to estimate a

true matrix M∗ based on partial observations. We define the relative error (RE)

as |M∗
i,j − M̂i,j |/M∗

i,j for all the missing entries (i, j). We use RE to evaluate

the prediction accuracy of different methods under a certain sampling rate R (the

fraction of known entries).

5.5.1 Experiments on Skewed Synthetic Data

We randomly generate a 1000 × 1000 matrix M∗ = XY> of rank k = 10, where

X ∈ Rm×k and Y ∈ Rn×k have independent and uniformly distributed entries in

[0, 1]. Then, we contaminate M∗ by a skewed noise matrix 0.5N, where N contains

independent Chi-square entries with 3 degrees of freedom. The 0.5 is to make

73

0 5 10 15 20
Response Time (s)

0
1
2
3
4
5
6
7

F
re

q
u
e
n
cy

£105

(a) Response times

0 5 10 15 20
Abs. Residuals (s)

0. 0

0. 2

0. 4

0. 6

0. 8

1. 0

1. 2

F
re

q
u
e
n
cy

£106

(b) Residuals from MSE-MF

Figure 5.3: Histograms of a) response times between 5825 web services and 339
service users; b) the residuals of estimates from MSE-based matrix factorization
applied on the complete matrix.

0.0 0.5 1.0 1.5 2.0
Relative Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
D

F EMF-0.1

EMF-0.25

MF (MSE)

EMF-0.75

EMF-0.9

(a) Sampling rate R = 0.05

0.0 0.5 1.0 1.5 2.0
Relative Error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

C
D

F EMF-0.1

EMF-0.25

MF (MSE)

EMF-0.75

EMF-0.9

(b) Sampling rate R = 0.1

Figure 5.4: CDF of relative errors via expectile matrix factorization for web service
response time estimation under different sampling rates and ω.

sure the noise does not dominate. We observe some elements in the contaminated

matrix and aim to recover the underlying true low-rank M∗ under two sampling rates

R = 0.05 and R = 0.1, respectively, where R is the fraction of elements observed.

The experiment is repeated for 10 times for each R. We plot the CDF of relative

errors in terms of recovering the missing elements of M∗ in Fig. 5.2. We can see that

74

expectile matrix factorization outperforms the conventional MSE-based algorithm

(EMF with ω = 0.5) in terms of recovery from skewed noise, with ω = 0.1 yielding

the best performance, under both R = 0.05 and R = 0.1. When more observations

are available with R = 0.1, EMF with ω = 0.1 demonstrates more benefit as it is

more robust to the heavy-tailed noise in data.

0-0.3 0.3-3.1 3.1-20
True latencies (s)

0

2

4

6

8

10

12
R

E

(a) EMF–0.1

0-0.3 0.3-3.1 3.1-20
True latencies (s)

0

2

4

6

8

10

12

R
E

(b) EMF–0.25

0-0.3 0.3-3.1 3.1-20
True latencies (s)

0

2

4

6

8

10

12

R
E

(c) MF–MSE (EMF–0.5)

0-0.3 0.3-3.1 3.1-20
True latencies (s)

0

2

4

6

8

10

12

R
E

(d) EMF–0.75

0-0.3 0.3-3.1 3.1-20
True latencies (s)

0

2

4

6

8

10

12

R
E

(e) EMF–0.9

Figure 5.5: Box plots of relative errors for different bins of true latencies in the test
sets.

0.1 0.25 0.5 0.75 0.9
!

0.6

0.8

1.0

1.2

1.4

1.6

1.8

[0
,
0
.3

]

0-0.3

3.1-20

0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54

[3
.1

,
2
0
]

(a) Median of REs

0.1 0.25 0.5 0.75 0.9
!

1

2

3

4

5

[0
,
0
.3

]

0-0.3

3.1-20

0.59

0.60

0.61

0.62

0.63

0.64

[3
.1

,
2
0
]

(b) IQR of REs

Figure 5.6: The medians and IQRs of relative errors for different bins as ω varies.

75

5.5.2 Experiments on Web Service Latency Estimation

In these experiments, we aim to recover the web service response times between 339

users and 5825 web services [50] distributed worldwide, under different sampling

rates.

Fig. 5.3(a) shows the histogram of all the response times measured between 339

users and 5825 web services. While most entries are less than 1 second, some re-

sponse times may be as high as 20 seconds due to network delay variations, software

glitches and even temporary service outages. The mean latency is 0.91 second,

whereas the median is only 0.32 second. This implies that the mean is heavily im-

pacted by the few tail values, while the 0.1-th expectile, which is 0.3 second, is closer

to the median of the data. Therefore, if we use the conventional MSE-based matrix

factorization to recover this skewed data, the result can be far away from the central

area, while EMF with ω = 0.1 may better explain the central tendency.

We further performed the MSE-based matrix factorization for the complete re-

sponse time matrix, which boils down to singular value decomposition (SVD) and

we plot the residual histogram in Fig. 5.3(b). In this figure, 90% of residuals are less

than 0.8, while the largest residual can be up to 19.73. Since the residuals are still

highly skewed, the conditional means do not serve as good estimates for the most

probable data.

In Fig. 5.4, we plot the relative errors of recovering missing response times with

EMF under different ω. Note that EMF-0.5 is essentially the conventional MSE-

based matrix factorization. In Fig. 5.4, we can see that EMF-0.1 performs the best

under both sampling rates, and EMF-0.9 performs the worst, because the 0.1-th

expectile is the closest to the median, while both the mean and 0.9-th expectile are

far away from the central area of data distribution.

To take a closer look at the performance EMF on different segments of data,

we divide the testing response times into three bins: 0-0.3s containing 47.5% of all

entries, 0.3-3.1s containing 45.4% of all entries, and 3.1-20s containing only 7.1%

of all entries. We show the relative errors for testing samples from different bins

in box plots in Fig. 5.5 under different ω. In addition, in Fig. 5.6, we plot the

median of REs and the interquartile range (IQR, the gap between the upper and

lower quartiles) of REs when R = 0.1, as ω varies for the lower latency bin and the

higher latency bin, respectively.

76

We can observe that EMF with a lower ω achieves higher accuracy in the lower

range 0-0.3s, while EMF with a higher ω can predict better in the higher end 3.1-

20s. This observation conforms to the intuition illustrated in Fig. 5.1: an ω < 0.5

penalizes negative residuals, pushing the estimates to be more accurate on the lower

end, where most data are centered around. From Fig. 5.6(a) and Fig. 5.6(b), we

can see that EMF-0.1 predicts the best for the lower range, while EMF-0.9 performs

the best for the higher range. However, since most data are distributed in the lower

range, EMF-0.1 is better at predicting the central tendency and achieves the best

overall accuracy.

5.6 Detailed Proofs for Theoretical Results

5.6.1 Preliminaries

Lemma 5.6.1 (Lemma B.1 of [108]). Suppose A(·) satisfies 2k-RIP. For any X,U ∈
Rm×k and Y,V ∈ Rn×k, we have

|〈A(XY>),A(UV>)〉 − 〈X>U,Y>V〉| ≤ 3δ2k‖XY>‖F · ‖UV>‖F

Lemma 5.6.2 (Lemma 2.1 of [109]). Let b = A(M∗) + ε, where M∗ is a matrix

with the rank of k, A is the linear mapping operator satisfies 2k-RIP with constant

δ2k < 1/3, and ε is a bounded error vector. Let M(t+1) be the t+ 1-th step iteration

of SVP, then we have

‖A(M(t+1))− b‖22 ≤ ‖A(M∗)− b‖22 + 2δ2k‖A(M(t))− b‖22.

Lemma 5.6.3 (Lemma 4.5 of [57]). Suppose that Y(t+0.5) in Alg. 5 satisfies the

following:

‖Y(t+0.5) −V(t)‖F ≤ σk/4.

Then, there exists a factorization of matrix M∗ = U(t+1)V̄(t+1)> such that V(t+1) ∈
Rn×k is an orthonormal matrix, and satisfies

‖Ȳ(t+1) − V̄(t+1)‖F ≤ 2/σk · ‖Y(t+0.5) −V(t)‖F .

77

5.6.2 Proof of Lemma 5.4.2

Now we begin to prove these lemmas. Note that a similar technique has also been

used by [57]. Since we should fix X(t) or Y(t) as orthonormal matrices, we perform

a QR decomposition after getting the minimum. The following lemma shows the

distance between Ȳ(t+1) and its “nearby” V̄(t+1) is still under control. Due to the

page limit, we leave all the proofs in the supplemental material.

Proof. Since F(X̄,Y) is a quadratic function, we have

F(X̄,Y′) = F(X̄,Y) + 〈∇Y F(X̄,Y),Y′ −Y〉

+
1

2
(vec(Y′)− vec(Y))>∇2

Y F(X̄,Y)(vec(Y′)− vec(Y)),

and it suffices to bound the singular values of the Hessian matrix Sω := ∇2
YF(X̄,Y)

so that

F(X̄,Y′)−F(X̄,Y)− 〈∇Y F(X̄,Y),Y′ −Y〉 ≤ σmax(Sω)

2
‖Y′ −Y‖2F

F(X̄,Y′)−F(X̄,Y)− 〈∇Y F(X̄,Y),Y′ −Y〉 ≥ σmin(Sω)

2
‖Y′ −Y‖2F .

Now we proceed to derive the Hessian matrix Sω. Using the fact vec(AXB) =

(B> ⊗A)vec(X), we can write Sω as follows:

Sω =

p∑
i=1

2wi · vec(A>i X̄)vec>(A>i X̄)

=

p∑
i=1

2wi · (Ik ⊗A>i)vec(X̄)vec>(X̄)(Ik ⊗Ai).

Consider a matrix Z ∈ Rn×k with ‖Z‖F = 1, and we denote z = vec(Z). Then we

have

z>Sωz =

p∑
i=1

2wi · z>(Ik ⊗A>i)vec(X̄)vec>(X̄)(Ik ⊗Ai)Z

=

p∑
i=1

2wi · vec>(AiZ)vec(X̄)vec>(X̄)vec(AiZ)

=

p∑
i=1

2wi · tr2(X̄>AiZ) =

p∑
i=1

2wi · tr2(A>i X̄Z>).

From the 2k-RIP property of A〉, we have

z>Sωz ≤
p∑
i=1

2w+tr2(X̄>AiZ)

≤ 2w+(1 + δ2k)‖X̄Z>‖F
= 2w+(1 + δ2k)‖Z>‖F = 2w+(1 + δ2k).

78

Similarly, we also have

z>Sωz ≥ 2w−(1− δ2k).

Therefore, the maximum singular value σmax is upper bounded by 2w+(1 + δ2k) and

the minimum singular value σmin is lower bounded by 2w−(1−δ2k), and the Lemma

has been proved. ut

5.6.3 Proof of Lemma 5.4.1

We prove this lemma by introducing a divergence function as follows.

D(Y(t+0.5),Y(t+0.5), X̄(t))

=

〈
∇Y F(Ū(t),Y(t+0.5))−∇Y F(X̄(t),Y(t+0.5)),

Y(t+0.5) −V(t)

‖Y(t+0.5) −V(t)‖F

〉
.

The following lemma helps us bound D(Y(t+0.5),Y(t+0.5), X̄(t)).

Lemma 5.6.4. Under the same condition in Lemma 5.4.1, we have

D(Y(t+0.5),Y(t+0.5), X̄(t)) ≤ 3(1− δ2k)σk
2ξ

· w
2
+

w−
‖X̄(t) − Ū(t)‖. (5.6)

Lemma 5.6.5.

‖Y(t+0.5) −V(t)‖F ≤
1

2w−(1− δ2k)
D(Y(t+0.5),Y(t+0.5), X̄(t)). (5.7)

Given Lemma 5.6.4 and Lemma 5.6.5, we can now bound ‖Y(t+0.5) −V(t)‖F
and thus prove Lemma 5.4.1.

Proof of Lemma 5.4.1. From Lemma 5.6.4, we have

D(Y(t+0.5),Y(t+0.5), X̄(t)) ≤ (1− δ2k)σkw−
ξ

‖X̄(t) − Ū(t)‖F ,

and from Lemma 5.6.5, we have

‖Y(t+0.5) −V(t)‖F ≤
1

2w−(1− δ2k)
D(Y(t+0.5),Y(t+0.5), X̂(t)).

Therefore,

‖Y(t+0.5) −V(t)‖F (5.8)

≤ (1− δ2k)σkw−
ξ

· 1

2w−(1− δ2k)
‖X̄(t) − Ū(t)‖F (5.9)

=
σk
2ξ
‖X̄(t) − Ū(t)‖F (5.10)

ut
79

5.6.4 Proof of Lemma 5.4.3

From Lemma 5.4.1, we have

‖Y(0.5) −V(t)‖F ≤ σk
2ξ
‖X̄(t) − Ū

(t)
F ‖ (5.11)

≤ (1− δ2k)σkw−
2ξ2(1 + δ2k)σ1w+

≤ σk
4
, (5.12)

where (5.12) is from ξ > 1. Thus, we can see from Lemma5.6.3 and we obtain that

‖Ȳ(t+1) − V̄(t+1)‖F ≤
2

σk
‖Y(0.5) −V(t)‖F ≤

1

ξ
‖X̄(t) − Ū(t)‖ ≤ (1− δ2k)σkw−

2ξ(1 + δ2k)σ1w+
.

(5.13)

5.6.5 Proof of Lemma 5.4.4

Proof of Lemma 5.4.4. The initialization step can be regarded as taking a step iter-

ate of singular value projection (SVP) as taking M(t) = 0 and the next iterate with

the step size 1/(1 + δ2k) will result M(t+1) = X̄(0)D(0)Ȳ(0)/(1 + δ2k), where X̄(0),

D(0) and Ȳ(0) are from the top k singular value decomposition of
∑p

i=1 biAi.

Then, by Lemma 5.6.2 and the fact that ε = 0, we have∥∥∥∥∥A
(

X̄(0)D(0)Ȳ(0)

1 + δ2k

)
−A(M∗)

∥∥∥∥∥
2

2

≤ 4δ2k‖0−A(M∗)‖22. (5.14)

From the 2k-RIP condition, we have∥∥∥∥∥X̄(0)D(0)Ȳ(0)

1 + δ2k

∥∥∥∥∥ ≤ 1

1− δ2k

∥∥∥∥∥A
(

X̄(0)D(0)Ȳ(0)

1 + δ2k

)
−A(M∗)

∥∥∥∥∥
2

2

≤ 4δ2k

1− δ2k
‖A(M∗)‖22

≤ 4δ2k(1 + δ2k)

1− δ2k
‖M∗‖2F ≤ 6δ2k‖M∗‖2F .

Then, we project each column of M∗ into the column subspace of X̄(0) and obtain

‖(X̄(0)X̄(0)> − I)M∗‖2F ≤ 6δ2k‖M∗‖2F .

We denote the orthonormal complement of X̄(0) as X̄
(0)
⊥ . Then, we have

6δ2kkσ
2
1

σ2
k

≥ ‖X̄(0)>
⊥ Ū∗‖2F ,

where Ū∗ is from the singular value decomposition of M∗ = ŪDV̄>. Then, there

exists a unitary matrix O ∈ Rk×k such that O>O = Ik and

‖X̄(0) − Ū∗O‖F ≤
√

2‖X̄(0)>
⊥ Ū∗‖F ≤ 2

√
3δ2k

σ1

σk
.

80

By taking the condition of δ2k, we have

‖X̄0 − Ū∗‖F ≤
(1− δ2k)σkw−

2ξ(1 + δ2k)σ1w+
. (5.15)

ut

5.6.6 Proof of Theorem 5.4.1

Proof of Theorem 5.4.1. The proof of Theorem 5.4.1 can be done by induction.

Firstly, we note that Lemma 5.4.4 ensures that the initial X̄(0) is close to a Ū(0).

Then, by Lemma 5.6.3 we have the following sequence of inequalities for all T iter-

ations:

‖Ȳ(T) − V̄(T)‖F
≤ 1

ξ
‖X̄(T−1) − Ū(T−1)‖F

≤ · · · ≤ 1

ξ2T−1
‖X̄(0) − Ū(0)‖F

≤ (1− δ2k)σkw−
2ξ2T (1 + δ2k)σ1w+

.

(5.16)

Therefore, we can bound the right most term by ε/2 for any given precision ε. By

algebra, we can derive the required number of iterations T as:

T ≥ 1

2
log

(
(1− δ2k)σkw−

2ε(1 + δ2k)σ1w+

)
log−1 ξ.

Similarly, we can also bound ‖X(T−0.5) −U(T)‖F ,

‖X(T−0.5) −U(T)‖F ≤
σk
2ξ
‖Ȳ(T) − V̄(T)‖F ≤

(1− δ2k)σ
2
kw−

4ξ(1 + δ2k)σ1w+
. (5.17)

To make it smaller than εσ1/2, we need the number of iterations as

T ≥ 1

2
log

(
(1− δ2k)σ

2
kw−

4ε(1 + δ2k)σ1w+

)
log−1 ξ.

Combining all results we have

‖M(T) −M∗‖F (5.18)

= ‖X(T−0.5)Ȳ(T)> −U(T)V̄(T)>‖F
= ‖X(T−0.5)Ȳ(T)> −U(T)Ȳ(T)> + U(T)Ȳ(T)> −U(T)V̄(T)>‖F
≤ ‖Ȳ(T)>‖2‖X(T−0.5) −U(T)‖F + ‖U(T)‖2‖Ȳ(T) − V̄(T)‖F ≤ ε. (5.19)

Here we use the fact that the orthonormal matrix V̄(T) leads to ‖V̄(T)‖2 = 1,

and ‖M∗‖2 = ‖U(T)V̄(T)>‖2 = ‖U(T)‖2 = σ1. Now we complete the proof of

Theorem 5.4.1. ut
81

5.6.7 Proofs for auxiliary lemmas

Proof of Lemma 5.6.4. In this proof we omit the iteration superscript, and Y stands

particularly for Y(t+0.5). Since bi is measured by 〈Ai, ŪV>〉, we have

F(X̄,Y) =

p∑
i=1

wi(〈Ai, X̄Y>〉 − 〈Ai, ŪV>〉)2.

By taking the partial derivatives on Y we have

∇YF(X̄,Y) =

p∑
i=1

2wi(〈Ai, X̄Y>〉 − 〈Ai, ŪV>〉)A>i X

=

p∑
i=1

2wi(〈A>i X̄,Y〉 − 〈A>i Ū,V〉)A>i X

Let x := vec(X̄), y := vec(Y), u := vec(Ū), and v := vec(V). Since Y minimizes

F(X̄, Ŷ), we have

vec(∇YF(X̄,Y))

=

p∑
i=1

2wi(〈A>i X̄,Y〉 − 〈A>i Ū,V〉)A>i X̄

=

p∑
i=1

2wi(vec(A>i X̄) · 〈A>i X̄,Y〉 − vec(A>i X̄) · 〈A>i X̄,Y〉)

=

p∑
i=1

2wi((Ik ⊗A>i)xx>(Ik ⊗Ai)y − (Ik ⊗A>i)xu>(Ik ⊗Ai)v)

We denote

Sω =

p∑
i=1

2wi · (Ik ⊗A>i)xx>(Ik ⊗Ai),

and

Jω =

p∑
i=1

2wi · (Ik ⊗A>i)xu>(Ik ⊗Ai),

So the equation becomes Sωy − Jωv = 0 and since Sω is invertible we have y =

(Sω)−1Jωv. Meanwhile, we denote

Gω =

p∑
i=1

2wi · (Ik ⊗A>i)uu>(Ik ⊗Ai)

82

as the Hessian matrix of ∇2
YF(Ū,Y). Then, the partial gradient ∇YF(Ū,Y) can

be written as

vec(∇YF(Ū,Y)) =

p∑
i=1

2wi

(
〈A>i Ū,Y〉 − 〈A>i Ū,V〉

)(
Ik ⊗A>i

)
u

=

p∑
i=1

2wi

(
(Ik ⊗A>i)uu>(Ik ⊗Ai)y − (Ik ⊗A>i)uu>(Ik ⊗Ai)v

)
= Gω(y − v)

= Gω(S−1
ω Jω − Ink)v.

Since we have vec(∇YF(X̄,Y)) = 0, the divergence becomes

D = 〈∇Y(Ū,Y), (Y −V)/‖Y −V‖F 〉.

So we need to bound ∇YF(Ū,Y). Let K := X̄>Ū ⊗ In. To get the estimate of

S−1
ω Jω − Ink, we rewrite it as

S−1
ω Jω − Ink = K− Ink + S−1

ω (Jω − SωK).

We firstly bound the term (K − Ink)v. Recall vec(AXB) = (B> ⊗A)vec(X), we

have

(K− Ink)v =
(

(X̄>Ū− Ik)⊗ In

)
v = vec

(
V(Ū>X − Ik)

)
‖(K− Ink)v‖2 = ‖V(Ū>X̄− Ik)‖F ≤ σ1‖Ū>X̄− Ik‖F

≤ σ1‖(X̄− Ū)>(X̄− Ū)‖F ≤ σ1‖X̄− Ū‖2F

We then bound the term Jω−SωK. For any two matrices Z1,Z2 ∈ Rn×k, we denote

z1 := vec(Z1) and z2 := vec(Z2). Then we have:

z>1 (SωK− Jω)z2

=

p∑
i=1

2wiz
>
1

(
(Ik ⊗A>i)xx>(Ik ⊗Ai)(X̄

>Ū⊗ In)−U>(Ik ⊗Ai)
)

z2

=

p∑
i=1

2wi〈Z1,A
>
i X̄〉 ·

(
X>(X̄>Ū⊗Ai)z2 − 〈Ū,AiZ〉

)
=

p∑
i=1

2wi〈Ai, X̄Z>1 〉〈Ai, (X̄X̄> − Im)ŪZ>2 〉

≤ 2w+〈A(X̄Z>1),A((X̄X̄> − Im)ŪZ>2)〉

83

Since X̄>(X̄X̄> − Im)Ū = 0, by Lemma 5.6.1 we have

z>1 (SωK− Jω)z2

≤ 2w+ · 3δ2k‖X̄Z>1 ‖F ‖(X̄X̄> − Im)ŪZ>2 ‖F
≤ 6w+δ2k‖Z1‖F

√
‖Ū>(X̄X̄> − Im)Ū‖F ‖Z>2 Z2‖F

= 6w+δ2k

√
‖Ū>(X̄X̄> − Im)Ū‖F

≤ 6w+δ2k

√
2k‖X̄− Ū‖F .

Thus, the spectral norm of this term is upper bounded by 6w+δ2k

√
2k‖X̄− Ū‖F

and finally we have

‖vec(∇Y F(Ū,Y))‖2
= ‖Gω(S−1

ω Jω − Ink)v‖2
≤ w+(1 + δ2k)

(
σ1‖X̄− Ū‖2F +

1

(1− δ2k)w−
‖SωK− Jω‖2‖V‖F

)
≤ w+(1 + δ2k)

(
σ1‖X̄− Ū‖2F +

σ1

√
k

(1− δ2k)w−
‖SωK− Jω‖2

)

≤ w+(1 + δ2k)σ1

(
‖X̄− Ū‖2F +

√
k · 6w+δ2k

√
2k

(1− δ2k)w−
‖X̄− Ū‖F

)

≤ w+(1 + δ2k)σ1

(
‖X̄− Ū‖2F +

6
√

2 · w+δ2kk

(1− δ2k)w−
‖X̄− Ū‖F

)
.

Under the given condition, we can upper bound ‖X̄− Ū‖ and δ2k and we go to the

final step as follows:

‖vec(∇YF(Ū,Y))‖2 ≤ (1− δ2k)σkw−
2ξ

+
(1− δ2k)σkw−

2ξ

=
(1− δ2k)σkw−

ξ

Thus, the divergence D(Y,Y, X̄) can be upperbounded by

D(Y,Y, X̄) ≤ ‖vec(∇YF(Ū,Y))‖2 ≤
(1− δ2k)σkw−

ξ
‖X̄(t) − Ū(t)‖F . (5.20)

ut

Proof of Lemma 5.6.5. Here we utilize the strongly convexity of F(X,Y) given a

orthonormal matrix X. By Lemma 5.4.2, we have

F(Ū,V) ≥ F(Ū,Y) + 〈∇YF(Ū,Y),V −Y〉+ w−(1− δ2k)‖V −Y‖2F . (5.21)

84

Since V minimizes the function F(Ū, V̂), we have 〈∇YF(Ū,V),Y −V〉 ≥ 0 and

thus

F(Ū,Y) ≥ F(Ū,V) + 〈∇YF(Ū,V),Y −V〉+ (1− δ2k)w−‖V −Y‖2F
≥ F(Ū,V) + w−(1− δ2k)‖V −Y‖2F .

(5.22)

Add (5.21) and (5.22) we have

〈∇YF(Ū,Y),Y −V〉 ≥ 2w−(1− δ2k)‖V −Y‖2F . (5.23)

Since Y also minimizes F(X̄, Ŷ), we have 〈∇YF(X̄,V),V −Y〉 ≥ 0 and thus

〈∇YF(Ū,Y)−∇YF(X̄,Y),Y −V〉 ≥ 〈∇YF(Ū,Y),Y −V〉

≥ 2w−(1− δ2k)‖V −Y‖2F .
(5.24)

Therefore, we have

‖V −Y‖F ≤
1

2w−(1− δ2k)
D(Y,Y, X̄) (5.25)

ut

85

Chapter 6

Asynchronous Blockwise
ADMM

6.1 Background

The need to scale up machine learning in the presence of sheer volume of data has

spurred recent interest in developing efficient distributed optimization algorithms.

In the rest of this thesis, we will study the following form of optimization problems:

min
x

f(x1, . . . , xM) +

M∑
j=1

hj(xj),

s.t. xj ∈ Xj , j = 1, . . . ,M

(6.1)

where f : X → R is a smooth but possibly nonconvex function that fitting the model

x := (x1, . . . , xM) from a dataset D that has n samples. When the dataset D is

large, we can either split D into N parts and distribute them to N machines, or store

it in a third-party distributed storage system like HDFS, Amazon S3 and Google

Cloud Storage. In this chapter, we study distributed optimization algorithms in

the former fashion, and we discuss optimization algorithms of the latter setting in

Chapter 7 and Chapter 8.

Suppose we have N machines, so now the problem in (6.1) becomes:

min
x

N∑
i=1

fi(x1, . . . , xM) +
M∑
j=1

hj(xj),

s.t. xj ∈ Xj , j = 1, . . . ,M

(6.2)

where each fi : X → R fits the model x := (x1, . . . , xM) to local training data

available on node i; each Xj is a closed, convex, and compact set; and the regularizer

86

h(x) :=
∑M

j=1 hj(xj) is a separable, convex but possibly nonsmooth regularization

term to prevent overfitting.

To date, a number of efficient asynchronous and distributed stochastic gradient

descent (SGD) algorithms, e.g., [32, 75, 16], have been proposed, in which each

worker node asynchronously updates its local model or gradients based on its local

dataset, and sends them to the server(s) for model updates or aggregation. Yet,

SGD is not particularly suitable for solving optimization problems with nonsmooth

objectives or with constraints, which are prevalent in practical machine learning

adopting regularization, e.g., [12]. Distributed (synchronous) ADMM [2, 77, 79, 80,

78, 81, 82, 110] has been widely studied as an alternative method, which avoids the

common pitfalls of SGD for highly nonconvex problems, such as saturation effects,

poor conditioning, and saddle points [110]. The original idea on distributed ADMM

can be found in [2], which is essentially a synchronous algorithm. In this work,

we focus on studying the asynchronous distributed alternating direction method of

multipliers (ADMM) for nonconvex nonsmooth optimization.

Asynchronous distributed ADMM has been actively discussed in recent litera-

ture. Zhang and Kwok [77] consider an asynchronous ADMM assuming bounded

delay, which enables each worker node to update a local copy of the model parame-

ters asynchronously without waiting for other workers to complete their work, while

a single server is responsible for driving the local copies of model parameters to ap-

proach the global consensus variables. They provide proof of convergence for convex

objective functions only. Wei and Ozdaglar [81] assume that communication links

between nodes can fail randomly, and propose an ADMM scheme that converges

almost surely to a saddle point. Chang et al. [79, 80] propose an asynchronous

ADMM algorithm with analysis for nonconvex objective functions. However, their

work requires each worker to solve a subproblem exactly, which is often costly in

practice. Hong [78] proposes another asynchronous ADMM algorithm, where each

worker only computes the gradients based on local data, while all model parameter

updates happen at a single server, a possible bottleneck in large clusters.

To our knowledge, all existing work on asynchronous distributed ADMM requires

locking global consensus variables at the (single) server for each model update; al-

though asynchrony is allowed among workers, i.e., workers are allowed to be at

different iterations of model updating. Such atomic or memory-locking operations

essentially serialize model updates contributed by different workers, which may se-

87

riously limit the algorithm scalability. In many practical problems, not all workers

need to access all model parameters. For example, in recommender systems, a local

dataset of user-item interactions is only associated with a specific set of users (and

items), and therefore does not need to access the latent variables of other users (or

items). In text categorization, each document usually consists of a subset of words

or terms in corpus, and each worker only needs to deal with the words in its own

local corpus.

It is worth noting that enabling block-wise updates in ADMM is critical for

training large models, such as sparse logistic regression, robust matrix completion,

etc., since not all worker nodes will need to work on all model parameters — each

worker only needs to work on the blocks of parameters pertaining to its local dataset.

For these reasons, block-wise updates have been extensively studied for a number of

gradient type of distributed optimization algorithms, including SGD [75], proximal

gradient descent [84], block or stochastic coordinate descent (BCD or SCD) [73], as

well as for a recently proposed block successive upper bound minimization method

(BSUM) [103].

In this work, we propose the first block-wise asynchronous distributed ADMM

algorithm that can increase efficiency over existing single-server ADMM algorithms,

by better exploiting the parallelization opportunity in model parameter updates.

Specifically, we introduce the general form consensus optimization problem [2], and

solve it in a block-wise asynchronous fashion, thus making ADMM amenable for

implementation on Parameter Server, with multiple servers hosting model param-

eters. In our algorithm, each worker only needs to work on one or multiple blocks

of parameters that are relevant to its local data, while different blocks of model

parameters can be updated in parallel asynchronously subject to a bounded delay.

Since this scheme does not require locking all the decision variables together, it

belongs to the set of lock-free optimization algorithms (e.g., HOGWILD! [32] as a

lock-free version of SGD) in the literature. Our scheme is also useful on shared

memory systems, such as on a single machine with multi-cores or multiple GPUs,

where enforcing atomicity on all the consensus variables is inefficient. Theoretically,

we prove that, for general nonconvex objective functions, our scheme can converge

to stationary points. The results in this chapter have appeared in [5].

88

6.2 Preliminaries

6.2.1 Consensus Optimization and ADMM

The minimization in (6.2) can be reformulated into a global variable consensus op-

timization problem [2]:

min
z,{xi}∈X

N∑
i=1

fi(xi) + h(z), (6.3a)

s.t. xi = z, ∀i = 1, . . . , N, (6.3b)

where z is often called the global consensus variable, traditionally stored on a

master node, and xi is its local copy updated and stored on one of N worker nodes.

The function h is decomposable. It has been shown [2] that such a problem can

be efficiently solved using distributed (synchronous) ADMM. In particular, let yi

denote the Lagrange dual variable associated with each constraint in (6.3b) and

define the Augmented Lagrangian as

L(X,Y, z) =
N∑
i=1

fi(xi) + h(z) +
N∑
i=1

〈yi,xi − z〉

+
N∑
i=1

ρi
2
‖xi − z‖2,

(6.4)

where X := (x1, . . . ,xN) represents a juxtaposed matrix of all xi , and Y represents

the juxtaposed matrix of all yi. We have, for (synchronized) rounds t = 0, 1, . . ., the

following variable updating equations:

xt+1
i = arg min

xi∈X
fi(xi) + 〈yti,xi − zt〉+

ρi
2
‖xi − zt‖2,

yt+1
i = yti + ρi(x

t+1
i − zt),

zt+1 = arg min
z∈X

h(z) +
N∑
i=1

〈yti,xti − zt〉+
N∑
i=1

ρi
2
‖xti − zt‖2.

6.2.2 General Form Consensus Optimization

Many machine learning problems involve highly sparse models, in the sense that

each local dataset on a worker is only associated with a few model parameters,

i.e., each fi only depends on a subset of the elements in x. The global consensus

optimization problem in (6.3), however, ignores such sparsity, since in each round

each worker i must push the entire vectors xi and yi to the master node to update

z. In fact, this is the setting of all recent work on asynchronous distributed ADMM,

89

e.g., [77]. In this case, when multiple workers attempt to update the global census

variable z at the same time, z must be locked to ensure atomic updates, which leads

to diminishing efficiency as the number of workers N increases.

To better exploit model sparsity in practice for further parallelization opportuni-

ties between workers, we consider the general form consensus optimization problem

[2]. Specifically, with N worker nodes and M server nodes, the vectors xi, yi and

z can all be decomposed into M blocks. Let zj denote the j-th block of the global

consensus variable z, located on server j, for j = 1, . . . ,M . Similarly, let xi,j (yi,j)

denote the corresponding j-th block of the local variable xi (yi) on worker i. Let

E be all the (i, j) pairs such that fi depends on the block xi,j (and correspondingly

depends on zj). Furthermore, let N (j) = {i|(i, j) ∈ E} denote the set of all the

neighboring workers of server j. Similarly, let N (i) = {j|(i, j) ∈ E}.
Then, the general form consensus problem [2] is described as follows:

min
z,X

N∑
i=1

fi(xi) + h(z),

s.t. xi,j = zj , ∀(i, j) ∈ E ,

xi,j , zj ∈ Xj .

(6.5)

The structure of problem (6.5) can effectively capture the sparsity inherent to

many practical machine learning problems. Since each fi only depends on a few

blocks, the formulation in (6.5) essentially reduces the number of decision variables—

it does not matter what value xi,j will take for any (i, j) /∈ E . For example, when

training a topic model for documents, the feature of each document is represented as

a bag of words, and hence only a subset of all words in the vocabulary will be active

in each document’s feature. In this case, the constraint xi,j = zj only accounts

for those words j that appear in the document i, and therefore only those words

j that appeared in document i should be optimized. Like (6.4), we also define the

Augmented Lagrangian L(X,Y, z) as follows:

L(X,Y, z) =
N∑
i=1

fi(xi) + h(z) +
∑

(i,j)∈E

〈yi,j , xi,j − zj〉

+
∑

(i,j)∈E

ρi
2
‖xi,j − zj‖2.

The formulation in (6.5) perfectly aligns with the latest Parameter Server archi-

tecture (see Fig. 1.1). Here we can let each server node maintain one model block

90

zj , such that worker i updates zj if and only if (i, j) ∈ E . Since all three vectors

xi, yi and z in (6.5) are decomposable into blocks, to achieve a higher efficiency,

we will investigate block-wise algorithms which not only enable different workers to

send their updates asynchronously to the server (like prior work on asynchronous

ADMM does), but also enable different model blocks zj to be updated in parallel and

asynchronously on different servers, removing the locking or atomicity assumption

required for updating the entire z.

6.3 A Block-wise, Asynchronous, and Distributed ADMM
Algorithm

In this section, we present our proposed block-wise, asynchronous and distributed

ADMM algorithm (a.k.a, AsyBADMM) for the general consensus problem. For

ease of presentation, we first describe a synchronous version motivated by the basic

distributed ADMM for nonconvex optimization problems as a starting point.

6.3.1 Block-wise Synchronous ADMM

The update rules presented in Sec. 6.2.1 represent the basic synchronous distributed

ADMM approach [2]. To solve the general form consensus problem, our block-

wise version extends such a synchronous algorithm mainly by 1) approximating the

update rule of xi with a simpler expression under nonconvex objective functions,

and 2) converting the all-vector updates of variables into block-wise updates only

for (i, j) ∈ E .

Generally speaking, in each synchronized iteration t, each worker node i updates

all blocks of its local primal variables xi,j and dual variables yi,j for j ∈ N (i), and

pushes these updates to the corresponding servers. Each server j, when it has

received xi,j and yi,j from all i ∈ N (j), will update zj accordingly, by aggregating

these received blocks.

Specifically, at iteration t, the basic synchronous distributed ADMM will do the

following update for xi:

xt+1
i = arg min

xi
fi(xi) +

∑
j∈N (i)

〈yti,j , xi,j − zjt〉+
∑

j∈N (i)

ρi
2
‖xi,j − ztj‖2.

However, this subproblem is hard, especially when fi is nonconvex. To handle

nonconvex objectives, we adopt an alternative solution [78, 111] to this subproblem

91

through the following first-order approximation of fi at zt:

xt+1
i ≈ arg min

xi
fi(z

t) + 〈∇fi(zt),xi − zt〉

+
∑

j∈N (i)

(
〈yti,j , xi,j − ztj〉+

ρi
2
‖xi,j − ztj‖2

)
= zt − ∇fi(z

t) + yti
ρi

, (6.6)

where (6.6) can be readily obtained by setting the partial derivative w.r.t. xi to

zero.

The above full-vector update on xi is equivalent to the following block-wise

updates on each block xi,j by worker i:

xt+1
i,j = ztj −

∇jfi(zt) + yti,j
ρi

, (6.7)

where ∇jfi(zt+1) is the partial derivative of fi w.r.t. zj . Furthermore, the dual

variable blocks yi,j can also be updated in a block-wise fashion as follows:

yt+1
i,j = yti,j + ρi(x

t+1
i,j − ztj). (6.8)

Note that in fact, each fi only depends on a part of zt and thus each worker i only

needs to pull the relevant blocks zj for j ∈ N (i). Again, we put the full vector z in

fi(·) just to simplify notation.

On the server side, server j will update zj based on the newly updated xt+1
i,j ,

yt+1
i,j received from all workers i such that i ∈ N (j). Again, the z update in the

basic synchronous distributed ADMM can be rewritten into the following block-wise

format (with a regularization term introduced):

zt+1
j = arg min

zj∈Xj
hj(zj) +

γ

2
‖zj − ztj‖2

+
∑

i∈N (j)

(
〈yt+1
i,j , x

t+1
i,j − zj〉+

ρi
2
‖xt+1

i,j − zj‖2
)

= proxµjhj

(
γztj +

∑
i∈N (j)w

t
i,j

γ +
∑

i∈N (j) ρi

)
, (6.9)

where wt+1
i,j is defined as

wt+1
i,j := ρix

t+1
i,j + yt+1

i,j . (6.10)

Furthermore, the regularization term γ
2‖zj − ztj‖2 is introduced to stabilize the re-

sults, which will be helpful in the asynchronous case.

92

When updating zj , the constant µ of the proximal operator is given by:

µj :=
1∑

i∈N (j) ρi
.

Now it is clear that it is sufficient for worker i to send wti,j to server j in iteration t.

6.3.2 Block-wise Asynchronous ADMM

We now take one step further to present a block-wise asynchronous distributed

ADMM algorithm. In the asynchronous algorithm, each worker i will use a local

iteration t to keep track of how many times xi has been updated, although different

workers may be in different iterations, due to random delays in computation and

communication.

Let us first focus on a particular worker i at its local iteration t. Due to potential

communication delay and reading/writing conflict, we do not expect worker i to

download zt, since this requires synchronization among all workers. Instead, worker

i can directly download all blocks from servers without waiting for others or data

consistency checking. Therefore, block zj downloaded from server j may have a

delay and we denote z̃tj as the latest copy of ztj on server j. After that, worker i will

perform the following updates on the latest received z̃tj :

xt+1
i,j = z̃tj −

∇jfi(z̃t) + yti,j
ρi

, (6.11)

yt+1
i,j = yti,j + ρi(x

t+1
i,j − z̃tj), (6.12)

wt+1
i,j = ρxt+1

i,j + yt+1
i,j . (6.13)

At the end of local updating, worker i will send wt+1
i,j to server j as a updating

request, and leave it done by server j. Now we turn to focus on how the server side

process workers’ updating requests. We use w̃ti′,j to denote a server’s copy of wti′,j

for all i′ ∈ N (j). When a worker, say worker i, finishes its updating, server j will

receive wt+1
i,j from worker i, and it will perform the following updates:

w̃t+1
i,j =

{
wt+1
i,j , if received wi,j from worker i,

w̃ti,j , otherwise.
(6.14)

z̃t+1
j =proxµjhj

(
γz̃tj +

∑
i∈N (j) w̃

t+1
i,j

γ +
∑

i∈N (j) ρi

)
, (6.15)

where the regularization coefficient γ > 0 helps to stabilize convergence in the

asynchronous execution with random delays.

93

Algorithm 6 AsyBADMM: Block-wise Asynchronous ADMM

Each worker i asynchronously performs:

1: pull z0 to initialize x0 = z0

2: initialize y0 as the zero vector.
3: for t = 0 to T − 1 do
4: select an index jt ∈ N (i).
5: compute gradient ∇jtfi(z̃t).
6: update xt+1

i,jt
and yt+1

i,jt
by (6.11) and (6.12).

7: push wt+1
i,jt

as defined by (6.10) to server jt.

8: pull the current models z̃t+1 from servers.
9: end for

Each server j asynchronously performs:

1: initialize z̃0
j and w̃0

i,j for all i ∈ N (j).
2: initialize t = 0.
3: while not converge do
4: for i = 1 to N do
5: if worker i finishes its local iteration then
6: receive wti,j from it.

7: update server’s copy w̃t+1
i,j ← wti,j .

8: else
9: w̃t+1

i,j ← w̃ti,j .
10: end if
11: end for
12: update zt+1

j by (6.15)
13: t← t+ 1.
14: end while

94

Algorithm 6 describes the entire block-wise asynchronous distributed ADMM.

Note that in Algorithm 6, the block j is randomly and independently selected from

N (i) according to a uniform distribution, which is common in practice. Due to the

page limit, we only consider the cyclic coordinate selection scheme, and we refer

readers to other options including random selection rule, Gauss-Seidel and Gauss-

Southwell block selection in the literature, e.g ., [103]. In addition, the iteration in

Algorithm 6 is counted on the worker side for implementation purpose. However,

workers may have different local iterations and this makes analysis difficult. In the

next section, we will formally define iterations for convergence analysis and provide

our theoretical convergence guarantees. Finally, updating zj is quite flexible in

Algorithm 6, once server j collects a number of wti,j ’s from workers. This means,

server j can make one update for multiple received updates.

We put a few remarks on implementation issues at the end of this section to

characterize key features of our proposed block-wise asynchronous algorithm, which

differs from full-vector updates in the literature [78]. Firstly, model parameters are

stored in blocks, so different workers can update different blocks asynchronously

in parallel, which takes advantage of the popular Parameter Server architecture.

Secondly, workers can pull z while others are updating some blocks, enhancing con-

currency. Thirdly, in our implementation, workers will compute both gradients and

local variables. In contrast, in the full-vector ADMM [78], workers are only respon-

sible for computing gradients, therefore all previously computed and transmitted

w̃i,j must be cached on servers with non-negligible memory overhead.

6.4 Convergence Analysis

In this section, we provide convergence analysis for our proposed algorithm. To

facilitate the analysis of Algorithm 6, we rewrite it in an equivalent global view

(from the server’s perspective), as described in Algorithm 7. In this algorithm, only

the global counter t is used to keep track of how many times the model z has been

updated. Note that such iteration counter is for analysis purpose only and is not

required by workers to calculate their own variables xi,j and yi,j . Also, we assume

that worker i will select a server j ∈ N (i) in a cyclic round.

95

Algorithm 7 AsyBADMM (analyzed algorithm)

1: initialize z0, split it into M blocks and distribute to servers.
2: initialize w̃0

i,j = z0
j for all (i, j) ∈ E .

3: for t = 0 to T − 1 do
4: for j = 1 to M in parallel do
5: pick a set Ctj ∈ N (j).
6: for i ∈ N (j) do
7: if i ∈ Ctj then
8: pull the current models z̃t from servers.
9: update xt+1

i,j and yt+1
i,j according to (6.11) and (6.12), respectively.

10: calculate wt+1
i,j according to (6.13).

11: w̃t+1
i,j ← wt+1

i,j .
12: else
13: w̃t+1

i,j ← w̃ti,j .
14: end if
15: end for
16: update zt+1

j according to (6.15).
17: end for
18: end for

6.4.1 Assumptions and Metrics

Our convergence analysis is based on the following assumptions, which is similar to

the assumptions made in previous work on the analysis of asynchronous ADMM,

e.g ., [78].

Assumption 6.1 (Block Lipschitz Continuity). For all (i, j) ∈ E, there exists a

positive constant Li,j > 0 such that

‖∇jfi(x)−∇jfi(z)‖ ≤ Li,j‖xj − zj‖, ∀x, z ∈ Rd.

Assumption 6.2 (Bounded from Below). Each function fi(x)is bounded below, i.e.,

there exists a finite number f > −∞ where f denotes the optimal objective value of

problem (6.5).

Assumption 6.3 (Bounded Delay). The total delay of each link (i, j) ∈ E is bounded

with the constant of Ti,j for each pair of worker i and server j. Formally, there is

an integer 0 ≤ τ ≤ T , such that z̃tj = zt−τj for all t > 0. This should also hold for

w̃i,j.

Since the objective is nonconvex and nonsmooth, AsyBADMM may converge

to a critical point. To indicate convergence to stationary points of a nonconvex

96

but smooth objective function, a commonly used metric is the squared norm of

gradients, e.g ., [24, 75]. To handle the nonsmoothness of h(·), we consider another

metric that studied in [111]:

P (Xt,Yt, zt) :=‖zt − ẑt‖2 +
∑

(i,j)∈E

‖∇xi,jL(Xt,Yt, zt)‖2

+
∑

(i,j)∈E

‖xi,j − zj‖2, (6.16)

where ẑt = (ẑt1, . . . , ẑ
t
M) is defined as

ẑtj := proxh(ztj −∇zj (L(Xt,Yt, zt)− h(zt))). (6.17)

The first term in P (Xt,Yt, zt) is the distance between zt and its gradient projection

ẑt. This is in the same spirit of gradient mapping P(zt) defined in (1.4), Chapter 1.

The second term shows the norm of partial gradient w.r.t. xi,j ’s, and the last term

measures how the consensus constraints xi,j = zj are satisfied. It is clear that

when P (Xt,Yt, zt) → 0, the corresponding sequence converges to a critical point.

Therefore, we will focus on ε-accuracy in our convergence analysis by looking at how

many iterations needed to achieve P (Xt,Yt, zt) ≤ ε.

6.4.2 Main Result

The following Theorem 6.4.1 indicates that Algorithm 6 converges to a critical point

under suitable choices of hyper-parameters.

Theorem 6.4.1. Suppose that Assumptions 6.1-6.3 hold. Moreover, for all i and

j, the penalty parameter ρi and γ are chosen to be sufficiently large such that:

∞ > L(X0,Y0, z0)− f ≥ 0 (6.18)

αi,j := (γ + ρi)−
(

7Li,j
2ρ2

i

+
1

ρi
+

1

2

)
L2
i,j(T + 1)2 −

(
(2 + ρi)T

2

2

)
> 0, (6.19)

βi,j :=
ρi
4
− 3Li,j > 0. (6.20)

Then the following is true for Algorithm 6:

1. Algorithm 6 converges in the following sense:

lim
t→∞
‖zt+1
j − ztj‖ = 0, ∀j = 1, . . . ,M, (6.21a)

lim
t→∞
‖xt+1

i,j − xti,j‖ = 0, ∀(i, j) ∈ E , (6.21b)

lim
t→∞
‖yt+1
i,j − yti,j‖ = 0, ∀(i, j) ∈ E . (6.21c)

97

2. For each worker i and server j, denote the limit points of {xti,j}, {yti,j}, and

{ztj} by x∗i,j , y
∗
i,j and z∗j , respectively. Then these limit points satisfy the fol-

lowing conditions:

∇jfi(x∗i) + y∗i,j = 0, ∀(i, j) ∈ E , (6.22a)∑
j∈N (i)

y∗i,j ∈ ∂hj(z∗j), ∀j = 1, . . . ,M, (6.22b)

x∗i,j = z∗j ∈ Xj , ∀(i, j) ∈ E . (6.22c)

When sets Xj are compact, the sequence of iterates generated by Algorithm 6

converges to stationary points.

3. For some ε > 0, let T (ε) denote the iteration that achieves the following:

T (ε) = min{t|P (Xt,Yt, zt) ≤ ε, t ≥ 0}.

Then there exists some constant C > 0 such that

T (ε) ≤
C(L(X0,Y0, z0)− f)

ε
, (6.23)

where f is defined in Assumption 6.2.

Due to the nonconvex objective function fi(xi), no guarantee of global optimality

is possible in general. The parameter ρi acts like the learning rate hyper-parameter

in gradient descent: a large ρi slows down the convergence and a smaller one can

speed it up. The term γ is associated with the delay bound T . In the synchronous

case, we can set γ = 0; otherwise, to guarantee convergence, γ should be increased

as the maximum allowable delay T increases.

6.5 Experiments

We now show how our algorithm can be used to solve the challenging nonconvex

nonsmooth problems in machine learning. We will show how AsyBADMM exhibits

a near-linear speedup as the number of workers increases. We use a cluster of 18

instances of type c4.large on Amazon EC2. This type of instances has 2 CPU

cores and at least 3.75 GB RAM, running 64-bit Ubuntu 16.04 LTS (HVM). Each

server and worker process uses up to 2 cores. In total, our deployment uses 36 CPU

cores and 67.5 GB RAM. Two machines serve as server nodes, while the other 16

98

20 40 60 80 100
Iteration

2.0

2.2

2.4

2.6

Ob
je

ct
iv

e

×103

1 workers
4 workers
8 workers
16 workers
32 workers

(a) iteration vs. objective

0 100 200 300 400
Time (in seconds)

2.0

2.2

2.4

2.6

Ob
je

ct
iv

e

×103

1 workers
4 workers
8 workers
16 workers
32 workers

(b) time vs. objective

Figure 6.1: Convergence of AsyBADMM on the sparse logistic regression problem.

machines serve as worker nodes. Note that we treat one core as a computational

node (either a worker or server node).

Setup: In this experiment, we consider the sparse logistic regression problem:

min
x

N∑
i=1

fi(x) + λ‖x‖1

s.t. fi(x) =
∑
j∈Si

log(1 + exp(−bj〈aj ,x〉))

‖x‖∞ ≤ C.

(6.24)

where the constant C is used to clip out some extremely large values for robustness.

The `1-regularized logistic regression is one of the most popular algorithms used

for large scale risk minimization. We consider a public sparse text dataset KDDa 1.

This dataset has more than 8 million samples, 20 million features, and 305 million

nonzero entries. To show the advantage of parallelism, we set up five experiments

with 1, 4, 8, 16 and 32 nodes, respectively. In each experiment, the whole dataset

will be evenly split into several smaller parts, and each node only has access to its

local dataset Si.
1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

99

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Table 6.1: Running time (in seconds) for iterations k and worker count.

Workers p k = 20 k = 50 k = 100 Speedup

1 1404 3688 6802 1.0
4 363 952 1758 3.87
8 177 466 859 7.92
16 86 226 417 16.31
32 47 124 228 29.83

We implement our algorithm on the ps-lite framework [16], which is a lightweight

implementation of Parameter Server architecture. It supports Parameter Server for

multiple devices in a single machine, and multiple machines in a cluster. This is the

back end of kvstore API of the deep learning framework MXNet [9]. We follow the

rule of cycling coordinate selection through the coordinates of x and updating each

in turns, restarting at a random coordinate after each cycle.

Results: We set the hyper-parameter γ = 0.01 and the clip threshold constant

as C = 104, and the penalty parameter ρi = 100 for all i. Fig. 6.1(a) and Fig. 6.1(b)

show the convergence behavior of our proposed algorithm in terms of objective

function values, which are normalized by the number of total samples in the dataset.

From the figures, we can clearly observe the convergence of our proposed algorithm.

This observation confirms that asynchrony with tolerable delay can still lead to

convergence.

To further analyze the parallelism in AsyBADMM, we measure the speedup by

the relative time for p workers to perform k iterations, i.e., Speedup of p workers

= Tk(1)
Tk(p) , where Tk(p) is the time it takes for p workers to perform k iterations of

optimization. Fig. 6.1(b) illustrates the running time comparison and Table 6.1

shows that AsyBADMM actually achieves near-linear speedup.

6.6 Preliminaries

We denote jt(i) as the block index selected by worker i at iteration t, and jt(i) = ∅
when worker i is not performed. We put all such jt(i) to form a vector Jt :=

(jt(1), . . . , jt(M)). Since selecting a block index is done by randomly selection rule,

Jt here is a random variable.

In the following of this chapter, we use the following additional notations used

100

to bound xi,j , yi,j and zj for a particular worker i and a server j s.t. (i, j) ∈ E :

li(xi, z,yi) := fi(xi) +
∑

j∈N (i)

〈yi,j , xi,j − zj〉+
∑

j∈N (i)

ρi
2
‖xi,j − zj‖2 (6.25)

ui(xi, z̃; z,yi) := fi(z̃) +
∑

j∈N (i)

〈∇jfi(z̃), xi,j − z̃j〉+
∑

j∈N (i)

〈yi,j , xi,j − zj〉

+
∑

j∈N (i)

ρi
2
‖xi,j − zj‖2 (6.26)

ũi(xi, z̃,yi) := fi(z̃) +
∑

j∈N (i)

〈∇jfi(z̃), xi,j − z̃j〉+
∑

j∈N (i)

〈yi,j , xi,j − z̃j〉

+
∑

j∈N (i)

ρi
2
‖xi,j − z̃j‖2 (6.27)

6.6.1 Auxiliary Lemmas

Lemma 6.6.1. Suppose Assumption 6.1-6.3 are satisfied. Then we have

‖yt+1
i,j − yti,j‖2 ≤ L2

i,j(T + 1)
T∑
t′=0

‖zt+1−t′
j − zt−t′j ‖2. (6.28)

Proof. For simplicity, we say (i, j) is performed at iteration t when worker i is

updating block j at iteration t. If the updating (i, j) is not performed at iteration

t, this inequality holds in trivial, as yt+1
i,j = yti,j . So we only consider the case that

(i, j) is performed at iteration t. Note that in this case, we have

∇jfi(z̃t+1) + yti,j + ρi(x
t+1
i,j − z̃t+1

j) = 0. (6.29)

Since yt+1
i,j = yti,j + ρi(x

t+1
i,j − z̃t+1

j), we have

∇jfi(z̃t+1) + yt+1
i,j = 0. (6.30)

Therefore, we have

‖yt+1
i,j − yti,j‖ = ‖∇jfi(z̃t+1)−∇jfi(z̃t)‖

≤ Li,j‖z̃t+1
j − z̃tj‖.

Since the actual updating time for z̃t+1
j should be in {t + 1, t, . . . , t + 1 − T}, and

for z̃tj in {t, . . . , t− T}, then we have

‖yt+1
i,j − yti,j‖2 ≤ L2

i,j(T + 1)
T∑
t′=0

‖zt+1−t′
j − zt−t′j ‖2, (6.31)

which proves the lemma. ut
101

Lemma 6.6.2. At iteration t, we have

∇jfi(z̃t+1) + yti,j + ρi(x
t+1
i,j − zt+1

j) = ρi(z̃
t+1
j − zt+1

j). (6.32)

Proof. Updating xt+1
i,j is performed as follows

xt+1
i,j = arg min

xi,j
fi(z̃

t+1)+〈∇jfi(z̃t+1), xi,j − z̃t+1
j 〉+〈yti,j , xi,j − zt+1

j 〉+
ρi
2
‖xi,j − zt+1

j ‖2.

Thus, we have

∇jfi(z̃t+1) + yti,j + ρi(x
t+1
i,j − z̃t+1

j) = 0,

And therefore

∇jfi(z̃t+1) + yti,j + ρi(x
t+1
i,j − zt+1

j) = ρi(z̃
t+1
j − zt+1

j).

ut

6.7 Proof of Theorem 6.4.1

When trying to bound the gap between two consecutive Augmented Lagrangian

values, we decompose it into three smaller steps, namely, updating X, Y and z:

L(Xt+1,Yt+1, zt+1)− L(Xt,Yt, zt)

= L(Xt+1,Yt, zt)− L(Xt,Yt, zt)︸ ︷︷ ︸
updating Xt

+ L(Xt+1,Yt+1, zt)− L(Xt+1,Yt, zt)︸ ︷︷ ︸
updating Yt

+ L(Xt+1,Yt+1, zt+1)− L(Xt+1,Yt+1, zt)︸ ︷︷ ︸
updating zt

.

(6.33)

The proof of Theorem 6.4.1 relies on the following two key lemmas:

Lemma 6.7.1. Suppose Assumption 6.1-6.3 are satisfied. Then we have

L(Xt+1,Yt+1, zt+1)− L(X1,Y1, z1)

≤ −
t∑

d=1

∑
(i,j)∈E

βi,j‖xt+1
i,j − xti,j‖2 −

t∑
d=1

∑
(i,j)∈E

αi,j‖zt+1
j − ztj‖2, (6.34)

where

αi,j := (γ + ρi)−
(

7Li,j
2ρ2

i

+
1

ρi
+

1

2

)
L2
i,j(T + 1)2 −

(
(2 + ρi)T

2

2

)
, (6.35)

βi,j :=
ρi
4
− 3Li,j . (6.36)

102

Lemma 6.7.2. Suppose that Assumption 6.1-6.3 hold. Then the sequence of solu-

tions {Xt,Yt, zt} satisfies

lim
t→∞

L(Xt,Yt, zt) ≥ f − diam2(X)
∑

(i,j)∈E

Li,j
2

> −∞. (6.37)

Given these two lemmas, we are ready to prove Theorem 6.4.1.

Proof of Theorem 6.4.1. From Lemma 6.7.1, we must have, as t→∞,

‖zt+1
j − ztj‖ → 0, ‖xt+1

i,j − xti,j‖ → 0. (6.38)

Given Lemma 6.6.1, we have yt+1
i,j − yti,j → 0, which proves (6.22c), the first part.

For the second part, we have the following inequality from the optimality con-

dition of (6.15):

0 ∈ ∂hj(zt+1
j)−

∑
i∈N (j)

(
yt+1
i,j + ρi(x

t+1
i,j − zt+1

j) + γ(ztj − zt+1
j)

)
. (6.39)

From (6.21a) and (6.22c), we have

0 ∈ ∂hj(z∗j)−
∑

i∈N (j)

y∗i,j , (6.40)

which proves (6.22b). Finally, from the optimality condition in (6.15), we have

(6.11) which implies (6.22a), the second part of the theorem.

We now turn to prove the last part. Let L′(X,Y, z) := L(X,Y, z)−h(z), which

excludes h(z) from L(X,Y, z). Denote its j-th component as

l′(X,Y, zj) :=
∑

i∈N (j)

(
fi(xi) + 〈yi,j , xi,j − zj〉+

ρi
2
‖xi,j − zj‖2

)
.

Then, we have

zj −∇zj l′(X,Y, zj) = zj −
∑

i∈N (j)

yi,j −
∑

i∈N (j)

ρi(xi,j − zj)

= zj −
∑

i∈N (j)

ρi(zj − xi,j −
yi,j
ρi

).

103

Therefore, we have

‖ztj − proxh(ztj −∇zj l′(Xt,Yt, ztj))‖ (6.41)

≤ ‖ztj − zt+1
j + zt+1

j − proxh(ztj −∇zj l′(Xt,Yt, ztj))‖

≤ ‖ztj − zt+1
j ‖+

∥∥∥∥∥∥zt+1
j − proxh

zj − ∑
i∈N (j)

ρi(z
t
j − xti,j −

yti,j
ρi

)

∥∥∥∥∥∥
≤ ‖ztj − zt+1

j ‖+

∥∥∥∥∥∥proxh

zt+1
j −

∑
i∈N (j)

ρi(z
t+1
j − xt+1

i,j −
yt+1
i,j

ρi
) + γ(zt+1

j − ztj)


− proxh

ztj − ∑
i∈N (j)

ρi(z
t
j − xti,j −

yti,j
ρi

)

∥∥∥∥∥∥ (6.42)

≤

2 + γ +
∑

i∈N (j)

ρi

 ‖ztj − zt+1
j ‖, (6.43)

where (6.42) is from the optimality in (6.15) as

zt+1
j = proxh(zt+1

j −
∑

i∈N (j)

ρi(z
t+1
j − xt+1

i,j −
yt+1
i,j

ρi
) + γ(zt+1

j − ztj)),

and (6.43) is from the firm nonexpansiveness property of proximal operator. Then,

by the update rule of xt+1
i,j , if xi,j is selected to update at iteration t, we have

‖∇xi,jL(Xt,Yt, zt)‖2 = ‖∇jfi(xti) + ρi(x
t
i,j − ztj +

yti,j
ρi

)‖2

= ‖∇jfi(xti)−∇jfi(z̃t) + (yti,j − yt−1
i,j) + ρi(z̃

t
j − ztj)‖2

≤ 3‖∇jfi(xti)−∇jfi(z̃t)‖2 + 3‖yti,j − yt−1
i,j ‖2 + 3‖ρi(z̃tj − ztj)‖2

≤ 3L2
i,j‖xti,j − z̃tj‖2 + 3‖yti,j − yt−1

i,j ‖2 + 3ρ2
i ‖z̃tj − ztj‖2

≤ 3(L2
i,j + ρ2

i)‖xti,j − z̃tj‖2 + 3ρ2
i ‖z̃tj − ztj‖2,

which implies that there must exist two positive constant σ1 > 0 and σ2 > 0 such

that∑
(i,j)∈E

‖∇xi,jL(Xt,Yt, zt)‖2 ≤
∑

(i,j)∈E

σ1‖xti,j − z̃tj‖2 +
∑

(i,j)∈E

σ2

T−1∑
t′=0

‖zt−t′j − zt−t′−1
j ‖.

(6.44)

The last step is to estimate ‖xti,j − ztj‖, which can be done as follows:

‖xti,j − ztj‖2 ≤ ‖xti,j − z̃tj‖2 + ‖z̃tj − ztj‖2 (6.45)∑
(i,j)∈E

‖xti,j − ztj‖2 ≤
∑

(i,j)∈E

(‖xti,j − z̃tj‖2 + ‖z̃tj − ztj‖2) (6.46)

104

Combining (6.43), (6.44) and (6.46), and summing up t = 0, . . . , T − 1, we have

T−1∑
t=0

P (Xt,Yt, zt) ≤
T−1∑
t=0

∑
(i,j)∈E

σ3‖xti,j − z̃tj‖2 + σ4T‖zt+1
j − ztj‖2. (6.47)

From Lemma 6.7.1, we have

L(XT ,YT , zT)− L(X0,Y0, z0) (6.48)

≤ −
T−1∑
t=0

∑
(i,j)∈E

βi(‖xt+1
i,j − z̃t+1

j ‖2 + ‖xti,j − zt+1
j ‖2)−

T−1∑
t=0

∑
(i,j)∈E

αj‖zt+1
j − ztj‖2

(6.49)

≤ −
T−1∑
t=0

∑
(i,j)∈E

δ1‖xt+1
i,j − z̃t+1

j ‖2 + δ2‖zt+1
j − ztj‖2, (6.50)

where δ1 := mini βi and δ2 := minj αj .Now we can find some C > 0, such that the

following equation hold:

T−1∑
t=0

P (Xt,Yt, zt) ≤ C(L(X0,Y0, z0)− L(XT ,YT , zT))

≤ C(L(X0,Y0, z0)− f),

where the last inequality we have used the fact that L(Xt,Yt, zt) is lowered bounded

by f for all t from Lemma 6.7.2. Let T = T (ε) and we have

T (ε) ≤
C(L(X0,Y0, z0)− f)

ε
, (6.51)

which proves the last part of Theorem 6.4.1. ut

6.7.1 Proof of Lemma 6.7.1

We decompose Lemma 6.7.1 into the following three lemmas.

Lemma 6.7.3. For all worker i, we have

li(x
t+1
i , zt,yti)− li(xti, zt,yti)

≤
∑

j∈N (i)

[
−
(
ρi − 12Li,j

4

)
‖xt+1

i,j − xti,j‖2 + ρiT
T−1∑
t′=0

‖zt+1−t′
j − zt−t′j ‖2

]

+
∑

j∈N (i)

7Li,j
2ρ2

i

‖yt+1
i,j − yti,j‖2

(6.52)

Proof. From the block Lipschitz assumption, we have

fi(x
t+1
i) ≤ fi(z̃ti) + 〈∇fi(z̃t),xt+1 − z̃t〉+

∑
j∈N (i)

Li,j
2
‖xt+1

i,j − z̃tj‖2, (6.53)

105

and thus

li(x
t+1
i , zt,yti) ≤ ui(xt+1

i , z̃t; zt,yti) +
∑

j∈N (i)

Li,j
2
‖xt+1

i,j − z̃j‖2. (6.54)

On the right hand side of (6.54), we can see that ui(x
t+1
i , z̃t; zt,yti) is a strongly

convex w.r.t. xt+1
i . Then, we have

ui(x
t+1
i , z̃t; zt,yti)− ui(xti, z̃t; zt,yti)

≤〈∇ui(xt+1
i , z̃t; zt,yti),x

t+1
i − xti〉 −

∑
j∈N (i)

ρi
2
‖xt+1

i,j − xti,j‖2 (6.55)

=
∑

j∈N (i)

〈∇jfi(z̃t) + yi,j + ρi(z̃
t
j − ztj), xt+1

i,j − xti,j〉 −
ρi
2
‖xt+1

i,j − xti,j‖2 (6.56)

(a)
=

∑
j∈N (i)

〈ρi(z̃tj − ztj), xt+1
i,j − xti,j〉 −

ρi
2
‖xt+1

i,j − xti,j‖2 (6.57)

(b)

≤
∑

j∈N (i)

ρi‖z̃tj − ztj‖2 −
ρi
4
‖xt+1

i,j − xti,j‖2, (6.58)

where (a) is from Lemma 6.7.1 and (b) is from the Young’s inequality, i.e.,

〈a, b〉 ≤ 1

2δ
‖a‖2 +

δ

2
‖b‖2,

for all a, b and δ > 0. We will see this inequality in later chapters. Now we turn to

estimate the gap between ui(x
t
i, z̃

t; zt,yti) and li(x
t
i, z

t,yt) as follows:

ui(x
t
i, z̃

t; zt,yti)− li(xti, zt,yt)

=fi(z̃
t) + 〈∇fi(z̃t),xti − z̃t〉 − fi(xt) (6.59)

≤〈∇fi(z̃t)−∇fi(xt),xti − z̃t〉+
∑

j∈N (i)

Li,j
2
‖z̃tj − ztj‖2 (6.60)

≤
∑

j∈N (i)

3Li,j
2
‖z̃tj − xti,j‖2. (6.61)

106

Combining (6.54), (6.58), and (6.61), we have

li(x
t+1
i , zt,yti)− li(xti, zt,yti)

≤ui(xt+1
i , z̃t; zt,yti) +

∑
j∈N (i)

Li,j
2
‖xt+1

i,j − z̃j‖2 (6.62)

≤
(
ui(x

t+1
i , z̃t; zt,yti)− ui(xti, z̃t; zt,yti)

)
+
(
ui(x

t
i, z̃

t; zt,yti)− li(xti, zt,yti)
)

+
∑

j∈N (i)

Li,j
2
‖xt+1

i,j − z̃tj‖2 (6.63)

≤
∑

j∈N (i)

ρi‖z̃tj − ztj‖2 −
ρi
4
‖xt+1

i,j − xti,j‖2

+
∑

j∈N (i)

3Li,j
2
‖z̃tj − xti,j‖2 +

∑
j∈N (i)

Li,j
2
‖xt+1

i,j − z̃j‖2 (6.64)

≤
∑

j∈N (i)

ρi‖z̃tj − ztj‖2 −
(
ρi − 12Li,j

4

)
‖xt+1

i,j − xti,j‖2

+
∑

j∈N (i)

7Li,j
2ρ2

i

‖yt+1
i,j − yti,j‖2 (6.65)

≤
∑

j∈N (i)

[
−
(
ρi − 12Li,j

4

)
‖xt+1

i,j − xti,j‖2 + ρiT
T−1∑
t′=0

‖zt+1−t′
j − zt−t′j ‖2

]

+
∑

j∈N (i)

7Li,j
2ρ2

i

‖yt+1
i,j − yti,j‖2. (6.66)

The desired result then follows. ut

Lemma 6.7.4. When worker i is updating, we have

li(x
t+1
i , zt+1,yt+1

i)− li(xt+1
i , zt+1,yti)

≤
∑

j∈N (i)

(
1

ρi
+

1

2

)
‖yt+1
i,j − yti,j‖2 +

∑
j∈N (i)

T

2

T−1∑
t′=0

‖z̃t+1
i,j − zt+1

i,j ‖2.

Proof. From 6.12 we have

li(x
t+1
i , zt+1,yt+1

i)− li(xt+1
i , zt+1,yti) (6.67)

=
∑

j∈N (i)

〈yt+1
i,j − yti,j , xt+1

i,j − zt+1
i,j 〉 (6.68)

=
∑

j∈N (i)

〈yt+1
i,j − yti,j , xt+1

i,j − z̃t+1
i,j 〉+

∑
j∈N (i)

〈yt+1
i,j − yti,j , z̃t+1

i,j − zt+1
i,j 〉 (6.69)

≤
∑

j∈N (i)

1

ρi
‖yt+1
i,j − yti,j‖2 +

∑
j∈N (i)

1

2
‖yt+1
i,j − yti,j‖2 +

1

2
‖z̃t+1
i,j − zt+1

i,j ‖2 (6.70)

≤
∑

j∈N (i)

(
1

ρi
+

1

2

)
‖yt+1
i,j − yti,j‖2 +

∑
j∈N (i)

T

2

T−1∑
t′=0

‖z̃t+1
i,j − zt+1

i,j ‖2. (6.71)

107

ut

Lemma 6.7.5. After updating zt to zt+1, we have

L(Xt+1,Yt+1, zt+1)− L(Xt+1,Yt+1, zt) ≤ −
∑

(i,j)∈E

(γ + ρi) · ‖zt+1
j − ztj‖2. (6.72)

Proof. Firstly, it is clear that 〈yi,j , xi,j − zj〉+ ρi‖xi,j − zj‖2 is a quadratic function

and thus strongly convex. Then, we have:∑
i∈N (j)

〈yt+1
i,j , x

t+1
i,j − zt+1

j 〉+
ρi
2
‖xt+1

i,j − ztj‖2 −
∑

i∈N (j)

〈yt+1
i,j , x

t+1
i,j − ztj〉 −

ρi
2
‖xt+1

i,j − ztj‖2

≤ 〈−yt+1
i,j − ρi(xt+1

i,j − zt+1
j), zt+1

j − ztj〉 −
∑

i∈N (j)

ρi
2
‖zt+1
j − ztj‖2.

By the optimality in (6.15), we have〈
pt+1
j −

∑
i∈N (j)

yt+1
i,j + ρi(z

t+1
j − xt+1

i,j) + γ(zt+1
j − ztj), zt+1

j − ztj

〉
≤ 0,

where pt+1
j ∈ ∂hj(zt+1

j) is a subgradient. By convexity of hj , we have

hj(z
t+1
j)− hj(ztj) ≤ 〈pt+1

j , zt+1
j − ztj〉

≤
〈 ∑
i∈N (j)

yt+1
i,j − ρi(zt+1

j − xt+1
i,j)− γ(zt+1

j − ztj), zt+1
j − ztj

〉

Therefore we have

L(Xt+1,Yt+1, zt+1) +
γ

2
‖zt+1 − zt‖2 − L(Xt,Yt, zt)

=
M∑
j=1

(
hj(z

t+1
j)− hj(ztj)

)

+
M∑
j=1

∑
i∈N (j)

〈yt+1
i,j , x

t+1
i,j − xti,j〉+

ρi
2

(
‖xt+1

i,j − zt+1
j ‖2 − ‖xt+1

i,j − ztj‖2
)

≤
M∑
j=1

〈
−
∑

i∈N (j)

(yt+1
i,j − ρi(xt+1

i,j − zt+1
j)), zt+1

j − ztj

〉
−
∑

i∈N (j)

ρi
2
‖zt+1
j − ztj‖2

+
M∑
j=1

〈 ∑
i∈N (j)

[yt+1
i,j − ρi(zt+1

j − xt+1
i,j)− γ(zt+1

j − ztj)], zt+1
j − ztj

〉

= −
∑

(i,j)∈E

γ + 2ρi
2

· ‖zt+1
j − ztj‖2.

which proves the lemma. ut
108

Given these three lemmas, we have

L(Xt+1,Yt+1, zt+1)− L(Xt,Yt, zt)

≤−
∑

(i,j)∈E

[
−
(
ρi − 12Li,j

4

)
‖xt+1

i,j − xti,j‖2 +

(
ρi +

1

2

)
T

T−1∑
t′=0

‖zt+1−t′
j − zt−t′j ‖2

]

+
∑

(i,j)∈E

(
7Li,j
2ρ2

i

+
1

ρi
+

1

2

)
‖yt+1
i,j − yti,j‖2 + (γ + ρi)‖zt+1

j − ztj‖2.

From Lemma 6.7.1 we have

L(Xt+1,Yt+1, zt+1)− L(Xt,Yt, zt)

≤−
∑

(i,j)∈E

[
−
(
ρi − 12Li,j

4

)
‖xt+1

i,j − xti,j‖2 +

(
ρi +

1

2

)
T
T−1∑
t′=0

‖zt+1−t′
j − zt−t′j ‖2

]

+
∑

(i,j)∈E

(
7Li,j
2ρ2

i

+
1

ρi
+

1

2

)
L2
i,j(T + 1)

T∑
t′=0

‖zt+1−t′
j − zt−t′j ‖2 + (γ + ρi)‖zt+1

j − ztj‖2.

Then for any t, we take the telescope sum and we have

L(Xt+1,Yt+1, zt+1)− L(X1,Y1, z1) (6.73)

≤−
t∑

d=1

∑
(i,j)∈E

βi,j‖xt+1
i,j − xti,j‖2 −

t∑
d=1

∑
(i,j)∈E

αi,j‖zt+1
j − ztj‖2, (6.74)

where

αi,j := (γ + ρi)−
(

7Li,j
2ρ2

i

+
1

ρi
+

1

2

)
L2
i,j(T + 1)2 −

(
(2 + ρi)T

2

2

)
,

βi,j :=
ρi
4
− 3Li,j ,

which proves Lemma 6.7.1.

6.7.2 Proof of Lemma 6.7.2

Proof. From Lipschitz continuity assumption, we have.

fi(z
t+1) ≤ fi(xt+1

i) +
∑

j∈N (i)

〈∇jfi(xt+1
i), zt+1

j − xt+1
i,j 〉+

∑
j∈N (i)

Li,j
2
‖xt+1

i,j − zt+1
j ‖2

= fi(x
t+1
i) +

∑
j∈N (i)

〈∇jfi(xt+1
i)−∇jfi(zt+1), zt+1

j − xt+1
i,j 〉

+
∑

j∈N (i)

〈∇jfi(zt+1), zt+1
j − xt+1

i,j 〉+
∑

j∈N (i)

Li,j
2
‖xt+1

i,j − zt+1
j ‖2

≤ fi(xt+1
i) +

∑
j∈N (i)

〈∇jfi(zt+1), zt+1
j − xt+1

i,j 〉+
∑

j∈N (i)

3Li,j
2
‖xt+1

i,j − zt+1
j ‖2

109

Now we have

L(Xt+1,Yt+1, zt+1)

=h(zt+1) +
N∑
i=1

fi(x
t+1
i) +

∑
j∈N (i)

〈yt+1
i,j , x

t+1
i,j − zt+1

j 〉+
ρi
2
‖xt+1

i,j − zt+1
j ‖2

≥h(zt+1) +
N∑
i=1

fi(z
t+1) +

∑
(i,j)∈E

〈∇jfi(z̃t+1)−∇jfi(zt+1), zt+1
j − xt+1

i,j 〉

+
∑

(i,j)∈E

ρi − 3Li,j
2

‖xt+1
i,j − zt+1

j ‖2

≥h(zt+1) +
N∑
i=1

fi(z
t+1) +

∑
(i,j)∈E

ρi − 3Li,j
2

‖xt+1
i,j − zt+1

j ‖2

−
∑

(i,j)∈E

Li,j‖z̃t+1 − zt+1‖‖zt+1 − xt+1
i ‖

≥h(zt+1) +
N∑
i=1

fi(z
t+1) +

∑
(i,j)∈E

(
ρi − 4Li,j

2
‖xt+1

i,j − zt+1
j ‖2 −

Li,j
2
‖z̃t+1 − zt+1‖2

)

≥h(zt+1) +
N∑
i=1

fi(z
t+1)−

∑
(i,j)∈E

Li,j
2
‖z̃t+1 − zt+1‖2

≥f − diam2(X)
∑

(i,j)∈E

Li,j
2

> −∞.

ut

110

Chapter 7

Asynchronous Proximal
Stochastic Gradient Descent

7.1 Background

In the previous chapter, we have seen the power of parallel algorithms and the

essence of parallel optimization for large scale machine learning. Another trend to

deal with large volumes of data is the use of stochastic algorithms. As the number of

training samples n increases, the cost of updating the model x taking into account

all error gradients becomes prohibitive. To tackle this issue, stochastic algorithms

make it possible to update x using only a small subset of all training samples at a

time. In this chapter, we consider the following stochastic optimization problem:

min
x

Ψ(x) := Eξ[F (x; ξ)] + h(x), (7.1)

where the stochastic nature comes from the random variable ξ, which in our prob-

lem settings, represents a random index selected from the training set {1, . . . , n}.
Therefore, (7.1) attempts to minimize the expected loss of a random training sample

plus a regularizer h(x). In this work, we assume the function h is proper, closed

and convex, yet not necessarily smooth.

Stochastic gradient descent (SGD) is one of the first algorithms widely imple-

mented in an asynchronous parallel fashion; its convergence rates and speedup prop-

erties have been analyzed for both convex [30, 76] and nonconvex [75] optimization

problems. Nevertheless, SGD is mainly applicable to the case of smooth optimiza-

tion, and yet is not suitable for problems with a nonsmooth term in the objective

function, e.g., an `1 norm regularizer. In fact, such nonsmooth regularizers are com-

monplace in many practical machine learning problems or constrained optimization

111

problems. In these cases, SGD becomes ineffective, as it is hard to obtain gradients

for a nonsmooth objective function.

Many classical deterministic (non-stochastic) algorithms are available to solve

the problem (1.1), including the proximal gradient (ProxGD) method [21] and its

accelerated variants [112] as well as the alternating direction method of multipliers

(ADMM) [111]. These methods leverage the so-called proximal operators [21] to

handle the nonsmoothness in the problem. Although implementing these determin-

istic algorithms in a synchronous parallel fashion is straightforward, extending them

to asynchronous parallel algorithms is much more complicated than it appears. In

fact, existing theory on the convergence of asynchronous proximal gradient (PG)

methods for nonconvex problem (1.1) is quite limited. An asynchronous parallel

proximal gradient method has been presented in [84] and has been shown to con-

verge to stationary points for nonconvex problems. However, [84] has essentially

proposed a non-stochastic algorithm and has not provided its convergence rate.

In this chapter, we propose and analyze an asynchronous parallel proximal

stochastic gradient descent (ProxSGD) method for solving the nonconvex and non-

smooth problem (1.1), with provable convergence and speedup guarantees. The

analysis of ProxSGD has attracted much attention in the community recently. Un-

der the assumption of an increasing minibatch size used in the stochastic algorithm,

the non-asymptotic convergence of ProxSGD to stationary points has been shown in

[68] for problem (1.1) with a convergence rate of O(1/
√
K), K being the times the

model is updated. Moreover, additional variance reduction techniques have been

introduced [25] to guarantee the convergence of ProxSGD, which is different from

the stochastic method we discuss here. The stochastic algorithm considered in this

chapter assumes that each worker selects a minibatch of randomly chosen training

samples to calculate the gradients at a time, which is a scheme widely used in prac-

tice. To the best of our knowledge, the convergence behavior of ProxSGD—under a

constant minibatch size without variance reduction—is still unknown (even for the

synchronous or sequential version).

Notations: We introduce some additional notations for this chapter and Chap-

ter 8 only. We use n to denote the number of total samples, and N to denote the

mini-batch size per iteration. We use g(x) := ∇f(x) to denote the “true” gradient,

and use G(x; ξ) to denote the stochastic gradient ∇F (x; ξ) w.r.t. the random vari-

able ξ. For a random variable or vector X, let E[X|F] be the conditional expectation

112

of X w.r.t. a sigma algebra F .

The results in this chapter have appeared as technical report [6].

Algorithm 8 Asyn-ProxSGD: Asynchronous Proximal Stochastic Gradient Descent

Server executes:

1: Initialize x0.
2: Initialize G← 0. . Gradient accumulator
3: Initialize s← 0. . Request counter
4: loop
5: if Pull Request from worker j is received: then
6: Send x to worker j.
7: end if
8: if Push Request (gradient Gj) from worker j is received: then
9: s← s+ 1.

10: G← G+ 1
N ·Gj .

11: if s = m then
12: x← proxηh(x− ηG).
13: s← 0.
14: G← 0.
15: end if
16: end if
17: end loop

Worker j asynchronously performs:

1: Pull x0 to initialize.
2: for t = 0, 1, . . . do
3: Randomly choose N/m training samples indexed by ξt,1(j), . . . , ξt,N/m(j).

4: Calculate Gtj =
∑N

i=1∇F (xt; ξt,i(j)).
5: Push Gtj to the server.

6: Pull the current model x from the server: xt+1 ← x.
7: end for

7.2 Asynchronous Proximal Gradient Descent

We now present our asynchronous proximal gradient descent (Asyn-ProxSGD) al-

gorithm, which is the main contribution in this chapter. In the asynchronous algo-

rithm, different workers may be in different local iterations due to random delays in

computation and communication.

For ease of presentation, let us first assume each worker uses only one random

sample at a time to compute its stochastic gradient, which naturally generalizes to

using a mini-batch of random samples to compute a stochastic gradient. In this

case, each worker will independently and asynchronously repeat the following steps:

• Pull the latest model x from the server;

113

• Calculate a gradient G̃(x; ξ) based on a random sample ξ locally;

• Push the gradient G̃(x; ξ) to the server.

Here we use G̃ to emphasize that the gradient computed on workers may be delayed.

For example, all workers but worker j have completed their tasks of iteration t, while

worker j still works on iteration t− 1. In this case, the gradient G̃ is not computed

based on the current model xt but from a delayed one xt−1.

In our algorithm, the server will perform an averaging over the received sample

gradients as long as N gradients are received and perform an proximal gradient

descent update on the model x, no matter where these N gradients come from; as

long as N gradients are received, the averaging is performed. This means that it is

possible that the server may have received multiple gradients from one worker while

not receiving any from another worker.

In general, when each mini-batch has N samples, and each worker processes

N/m random samples to calculate a stochastic gradient to be pushed to the server,

the proposed Asyn-ProxSGD algorithm is described in Algorithm 8 leveraging a

parameter server architecture. The server maintains a counter s. Once s reaches m,

the server has received gradients that contain information about N random samples

(no matter where they come from) and will perform a proximal model update.

7.3 Convergence Analysis

7.3.1 Assumptions and Metrics

We make the following assumptions for convergence analysis. We assume that f(·)
is a smooth function with the following properties:

Assumption 7.1 (Lipschitz Gradient). For function f there are Lipschitz constants

L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ Rd.

For nonsmooth regularizer term h(x), we assume it is a proper, closed and

convex yet not necessarily smooth function as same as we assumed throughout this

thesis. If the algorithm has been executed for k iterations, we let Fk denote the

set that consists of all the samples used up to iteration k. Since Fk ⊆ Fk′ for all

114

k ≤ k′, the collection of all such Fk forms a filtration. Under such settings, we can

restrict our attention to those stochastic gradients with an unbiased estimate and

bounded variance, which are common in the analysis of stochastic gradient descent

or stochastic proximal gradient algorithms, e.g., [75, 68].

Assumption 7.2 (Unbiased gradient). For any k, we have E[Gk|Fk] = gk, i.e.,

all stochastic gradients Gk are assumed to be an unbiased estimation of the true

gradient.

Assumption 7.3 (Bounded variance). The variance of the stochastic gradient is

bounded by E[‖G(x; ξ)−∇f(x)‖2] ≤ σ2.

Assumption 7.4 (Bounded delay). All delay variables τ(k, i) are bounded by T :

maxk,i τ(k, i) ≤ T .

Assumption 7.5 (Sample Independence). All random variables including samples

{ξk,i} for all k and i in Algorithm 9 are mutually independent.

7.3.2 Convergence Analysis for Asyn-ProxSGD

To facilitate the analysis of Algorithm 8, we rewrite it in an equivalent global view

(from the server’s perspective), as described in Algorithm 9. In this algorithm,

we use an iteration counter k to keep track of how many times the model x has

been updated on the server; k increments every time a push request (model update

request) is completed. Note that such a counter k is not required by workers to

compute gradients and is different from the counter t in Algorithm 8—t is maintained

by each worker to count how many sample gradients have been computed locally.

In particular, for every N stochastic sample gradients received, the server simply

aggregates them by averaging:

G̃k :=
1

N

N∑
i=1

∇F (xk−τ(k,i); ξk,i), (7.2)

where τ(k, i) indicates that the stochastic gradient ∇F (xk−τ(k,i); ξk,i) received at

iteration k could have been computed based on an older model xk−τ(k,i) due to

communication delay and asynchrony among workers. Then, the server updates xk

to xk+1 using proximal gradient descent.

We present our main convergence theorem as follows:

115

Algorithm 9 Asyn-ProxSGD (from a Global Perspective)

1: Initialize x1.
2: for k = 1, . . . ,K do
3: Randomly select N training samples indexed by ξk,1, . . . , ξk,N .
4: Calculate the averaged gradient G̃k according to (7.2).
5: xk+1 ← proxηkh(xk − ηkG̃k).
6: end for

Theorem 7.3.1. If Assumptions 7.4 and 7.5 hold and the step length sequence {ηk}
in Algorithm 9 satisfies

ηk ≤
1

16L
, 6ηkL

2T
T∑
l=1

ηk+l ≤ 1, (7.3)

for all k = 1, 2, . . . ,K, we have the following ergodic convergence rate for Algorithm

9: ∑K
k=1(ηk − 8Lη2

k)E[‖P(xk)‖2]∑K
k=1(ηk − 8Lη2

k)

≤ 8(Ψ(x1)−Ψ(x∗))∑K
k=1 ηk − 8Lη2

k

+

∑K
k=1

(
8Lη2

k + 12ηkL
2T
∑T

l=1 η
2
k−l

)
σ2

N
∑K

k=1(ηk − 8Lη2
k)

,

(7.4)

where the expectation is taken in terms of all random variables in Algorithm 9.

Taking a closer look at Theorem 7.3.1, we can properly choose the learning rate

ηk as a constant value and derive the following convergence rate:

Corollary 7.3.1. Let the step length be a constant, i.e.,

η :=

√
(Ψ(x1)−Ψ(x∗))N

2KLσ2
. (7.5)

If the delay bound T satisfies

K ≥ 128(Ψ(x1)−Ψ(x∗))NL

σ2
(T + 1)4, (7.6)

then the output of Algorithm 7.3.1 satisfies the following ergodic convergence rate:

min
k=1,...,K

E[‖P(xk)‖2] ≤ 1

K

K∑
k=1

E[‖P(xk)‖2] ≤ 32

√
2 (Ψ(x1)−Ψ(x∗))Lσ2

KN
. (7.7)

Remark 1. (Consistency with ProxSGD) When T = 0, our proposed Asyn-

ProxSGD reduces to the vanilla ProxSGD (e.g., [68]). Thus, the iteration complexity

116

is O(1/ε2) according to (7.7), attaining the same result as that in [68] yet without

assuming increased mini-batch sizes.

Remark 2. (Linear speedup w.r.t. the staleness) From (7.7) we can see that

linear speedup is achievable, as long as the delay T is bounded by O(K1/4) (if other

parameters are constants). The reason is that by (7.6) and (7.7), as long as T is no

more than O(K1/4), the iteration complexity (from a global perspective) to achieve

ε-optimality is O(1/ε2), which is independent from T .

Remark 3. (Linear speedup w.r.t. number of workers) As the iteration com-

plexity is O(1/ε2) to achieve ε-optimality, it is also independent from the number of

workers m if assuming other parameters are constants. It is worth noting that the

delay bound T is roughly proportional to the number of workers. As the iteration

complexity is independent from T , we can conclude that the total iterations will be

shortened to 1/T of a single worker’s iterations if Θ(T) workers work in parallel,

achieving nearly linear speedup.

Remark 4. (Comparison with Asyn-SGD) Compared with asynchronous SGD

[75], in which T or the number of workers should be bounded by O(
√
K/N) to

achieve linear speedup, here Asyn-ProxSGD is more sensitive to delays and more

suitable for a smaller cluster.

7.4 Experiments

We now present experimental results to confirm the capability and efficiency of our

proposed algorithm to solve challenging nonconvex nonsmooth machine learning

problems. We implemented our algorithm on TensorFlow [18], a flexible and efficient

deep learning library. We execute our algorithm on Ray [113], a general-purpose

framework that enables parallel and distributed execution of Python as well as

TensorFlow functions. A key feature of Ray is that it provides a unified task-parallel

abstraction, which can serve as workers, and actor abstraction, which stores some

states and acts like parameter servers.

We use a cluster of 9 instances on Google Cloud. Each instance has one CPU

core with 3.75 GB RAM, running 64-bit Ubuntu 16.04 LTS. Each server or worker

uses only one core, with 9 CPU cores and 60 GB RAM used in total. Only one

instance is the server node, while the other nodes are workers.

Setup: In our experiments, we consider the problem of non-negative principle

component analysis (NN-PCA) [25]. Given a set of n samples {zi}ni=1, NN-PCA

117

Table 7.1: Iteration speedup and time speedup of Asyn-ProxSGD at the subopti-
mality level 10−3. (a9a)

Workers 1 2 4 8

Iteration Speedup 1.000 1.982 3.584 5.973
Time Speedup 1.000 2.219 3.857 5.876

Table 7.2: Description of the two classification datasets used.

datasets dimension sample size

a9a 123 32,561
mnist 780 60,000

solves the following optimization problem

min
‖x‖≤1,x≥0

−1

2
x>

(
n∑
i=1

ziz
>
i

)
x. (7.8)

This NN-PCA problem is NP-hard in general. To apply our algorithm, we can

rewrite it with fi(x) = −(x>zi)
2/2 for all samples i ∈ [n]. Since the feasible

set C = {x ∈ Rd : ‖x‖ ≤ 1,x ≥ 0} is convex, we can replace the optimization

constraint by a regularizer in the form of an indicator function h(x) = IC(x) , such

that h(x) = 0 if x ∈ C and ∞ otherwise.

The hyper-parameters are set as follows. The step size is set using the popular

t-inverse step size choice ηk = η0/(1 + η′(k/k′)), which is the same as the one used

in [25]. Here η0, η
′ > 0 determine how learning rates change, and k′ controls for how

many steps the learning rate would change.

We conduct experiments on two datasets 1, with their information summarized

in Table 7.2. All samples have been normalized, i.e., ‖zi‖ = 1 for all i ∈ [n]. In our

experiments, we use a batch size of N = 8192 in order to evaluate the performance

and speedup behavior of the algorithm under constant batches.

We consider the function suboptimality value as our performance metric. In par-

ticular, we run proximal gradient descent (ProxGD) for a large number of iterations

with multiple random initializations, and obtain a solution x̂. For all experiments,

we evaluate function suboptimality, which is the gap f(x)− f(x̂), against the num-

ber of sample gradients processed by the server (divided by the total number of

samples n), and then against time.

Results: Empirically, Assumption 7.4 (bounded delays) is observed to hold

for this cluster. For our proposed Asyn-ProxSGD algorithm, we are particularly

1Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

118

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

interested in the speedup in terms of iterations and running time. In particular, if

we need T1 iterations (with T1 sample gradients processed by the server) to achieve

a certain suboptimality level using one worker, and Tp iterations (with Tp sample

gradients processed by the server) to achieve the same suboptimality with p workers,

the iteration speedup is defined as p×T1/Tp [75]. Note that all iterations are counted

on the server side, i.e., how many sample gradients are processed by the server.

On the other hand, the running time speedup is defined as the ratio between the

running time of using one worker and that of using p workers to achieve the same

suboptimality.

The iteration and running time speedups on both datasets are shown in Fig. 7.1

and Fig. 7.2, respectively. Such speedups achieved at the suboptimality level of 10−3

are presented in Table 7.1 and 7.3. We observe that nearly linear speedup can be

achieved, although there is a loss of efficiency due to communication as the number

workers increases.

Table 7.3: Iteration speedup and time speedup of Asyn-ProxSGD at the subopti-
mality level 10−3. (mnist)

Workers 1 2 4 8

Iteration Speedup 1.000 2.031 3.783 7.352
Time Speedup 1.000 2.285 4.103 5.714

7.5 Proof of Theorem 7.3.1

Our proof of Theorem 7.3.1 relies on the following milestone lemmas. In this proof,

we denote δk := g̃k − G̃k as the difference between these two differences.

7.5.1 Milestone lemmas

We put some key results of convergence analysis as milestone lemmas listed below,

and the detailed proof is listed in 7.7.

Lemma 7.5.1 (Decent Lemma).

E[Ψ(xk+1) ≤ E[Ψ(xk)|Fk]−
ηk − 4Lη2

k

2
‖P (xk, g̃k, ηk)‖2 +

ηk
2
‖gk − g̃k‖2 +

Lη2
k

N
σ2.

(7.9)

119

Lemma 7.5.2. Suppose we have a sequence {xk} by Algorithm 9, then we have:

E[‖xk − xk−τ‖2] ≤
(

2τ

N

τ∑
l=1

η2
k−l

)
σ2 + 2

∥∥∥∥∥
τ∑
l=1

ηk−lP (xk−l, g̃k−l, ηk−l)

∥∥∥∥∥
2

. (7.10)

for all τ > 0.

Lemma 7.5.3. Suppose we have a sequence {xk} by Algorithm 9, , then we have:

E[‖gk − g̃k‖2] ≤
(

2L2T

N

T∑
l=1

η2
k−l

)
σ2 +2L2T

T∑
l=1

η2
k−l‖P (xk−l, g̃k−l, ηk−l)‖2. (7.11)

We now proceed to prove Theorem 7.3.1.

Proof. From the fact 2‖a‖2 + 2‖b‖2 ≥ ‖a+ b‖2, we have

‖P (xk, g̃k, ηk)‖2 + ‖gk − g̃k‖2 ≥ ‖P (xk, g̃k, ηk)‖2 + ‖P (xk, gk, ηk)− P (xk, g̃k, ηk)‖2

≥ 1

2
‖P (xk, gk, ηk)‖2,

which implies that

‖P (xk, g̃k, ηk)‖2 ≥
1

2
‖P (xk, gk, ηk)‖2 − ‖gk − g̃k‖2.

We start the proof from Lemma 7.5.1. According to our condition of η ≤ 1
16L , we

have 8Lη2
k − η < 0 and therefore

E[Ψ(xk+1)|Fk]

≤ E[Ψ(xk)|Fk] +
ηk
2
‖gk − g̃k‖2 +

4Lη2k − ηk
2

‖P (xk, g̃k, ηk)‖2 +
Lη2k
N

σ2

= E[Ψ(xk)|Fk] +
ηk
2
‖gk − g̃k‖2 +

8Lη2k − ηk
4

‖P (xk, g̃k, ηk)‖2 − ηk
4
‖P (xk, g̃k, ηk)‖2 +

Lη2k
N

σ2

≤ E[Ψ(xk)|Fk] +
ηk
2
‖gk − g̃k‖2 +

Lη2k
N

σ2 +
8Lη2k − ηk

4
(
1

2
‖P (xk, gk, ηk)‖2 − ‖gk − g̃k‖2)

− ηk
4
‖P (xk, g̃k, ηk)‖2

≤ E[Ψ(xk)|Fk]− ηk − 8Lη2k
8

‖P (xk, gk, ηk)‖2 +
3ηk
4
‖gk − g̃k‖2 − ηk

4
‖P (xk, g̃k, ηk)‖2 +

Lη2k
N

σ2.

Apply Lemma 7.5.3 we have

E[Ψ(xk+1)|Fk]

≤ E[Ψ(xk)|Fk]−
ηk − 8Lη2

k

8
‖P (xk, gk, ηk)‖2 +

Lη2
k

N
σ2 − ηk

4
‖P (xk, g̃k, ηk)‖2

+
3ηk
4

(
2L2T

N

T∑
l=1

η2
k−lσ

2 + 2L2T

T∑
l=1

η2
k−l‖P (xk−l, g̃k−l, ηk−l)‖2

)

= E[Ψ(xk)|Fk]−
ηk − 8Lη2

k

8
‖P (xk, gk, ηk)‖2 +

(
Lη2

k

N
+

3ηkL
2T

2N

T∑
l=1

η2
k−l

)
σ2

− ηk
4
‖P (xk, g̃k, ηk)‖2 +

3ηkL
2T

2

T∑
l=1

η2
k−l‖P (xk−l, g̃k−l, ηk−l)‖2.

120

By taking telescope sum, we have

E[Ψ(xK+1)|FK]

≤ Ψ(x1)−
K∑

k=1

ηk − 8Lη2k
8

‖P (xk, gk, ηk)‖2 −
K∑

k=1

(
ηk
4
− 3η2kL

2T

2

lk∑
l=1

ηk+l

)
‖P (xk, g̃k, ηk)‖2

+
K∑

k=1

(
Lη2k
N

+
3ηkL

2T

2N

T∑
l=1

η2k−l

)
σ2

where lk := min(k + T − 1,K), and we have

K∑
k=1

ηk − 8Lη2k
8

‖P (xk, gk, ηk)‖2

≤ Ψ(x1)− E[Ψ(xK+1)|FK]−
K∑

k=1

(
ηk
4
− 3η2kL

2T

2

lk∑
l=1

ηk+l

)
‖P (xk, g̃k, ηk)‖2

+

K∑
k=1

(
Lη2k
N

+
3ηkL

2T

2N

T∑
l=1

η2k−l

)
σ2.

When 6ηkL
2T
∑T

l=1 ηk+l ≤ 1 for all k as the condition of Theorem 7.3.1, we have

K∑
k=1

ηk − 8Lη2
k

8
‖P (xk, gk, ηk)‖2

≤ Ψ(x1)− E[Ψ(xK+1)|FK] +

K∑
k=1

(
Lη2

k

N
+

3ηkL
2T

2N

T∑
l=1

η2
k−l

)
σ2

≤ Ψ(x1)− F ∗ +
K∑
k=1

(
Lη2

k

N
+

3ηkL
2T

2N

T∑
l=1

η2
k−l

)
σ2,

which proves the theorem. ut

7.6 Proof of Corollary 7.3.1

Proof. From the condition of Corollary, we have

η ≤ 1

16L(T + 1)2
.

It is clear that the above inequality also satisfies the condition in Theorem 7.3.1.

By doing so, we can have Furthermore, we have

3LT 2η

2
≤ 3LT 2

2
· 1

16L(T + 1)2
≤ 1,

3L2T 2η3

2
≤ Lη2.

Since η ≤ 1
16L , we have 2− 16Lη2 ≥ 1 and thus

8

η − 8Lη2
=

16

η(2− 16Lη2)
≤ 16

η
.

121

Following Theorem 7.3.1 and the above inequality, we have

1

K

K∑
k=1

E[‖P (xk, gk, ηk)‖2]

≤ 16(Ψ(x1)−Ψ(x∗))

Kη
+ 16

(
Lη2

N
+

3ηL2T

2N

T∑
l=1

η2

)
Kσ2

Kη

=
16(Ψ(x1)−Ψ(x∗)

Kη
+ 16

(
Lη2

N
+

3L2T 2η3

2N

)
σ2

η

≤ 16(Ψ(x1)−Ψ(x∗))

Kη
+

32Lη2

N
· σ

2

η

=
16(Ψ(x1)−Ψ(x∗))

Kη
+

32Lησ2

N

= 32

√
2(Ψ(x1)−Ψ(x∗))Lσ2

KN
,

which proves the corollary. ut

7.7 Proof of Milestone Lemmas

Proof of Lemma 7.5.1. Let x̄k+1 = proxηkh(xk−ηkg̃k) and apply Lemma A.1.4, we

have

Ψ(xk+1) ≤ Ψ(x̄k+1) + 〈xk+1 − x̄k+1,∇f(xk)− G̃k〉+

(
L

2
− 1

2ηk

)
‖xk+1 − xk‖2

+

(
L

2
+

1

2ηk

)
‖x̄k+1 − xk‖2 − 1

2ηk
‖xk+1 − x̄k+1‖2.

(7.12)

Now we turn to bound Ψ(x̄k+1) as follows:

f(x̄k+1) ≤ f(xk) + 〈∇f(xk), x̄k+1 − xk〉+
L

2
‖x̄k+1 − xk‖2

= f(xk) + 〈gk, x̄k+1 − xk〉+
η2
kL

2
‖P (xk, g̃k, ηk)‖2

= f(xk) + 〈g̃k, x̄k+1 − xk〉+ 〈gk − g̃k, x̄k+1 − xk〉+
η2
kL

2
‖P (xk, g̃k, ηk)‖2

= f(xk)− ηk〈g̃k, P (xk, g̃k, ηk)〉+ 〈gk − g̃k, x̄k+1 − xk〉+
η2
kL

2
‖P (xk, g̃k, ηk)‖2

≤ f(xk)− [ηk‖P (xk, g̃k, ηk)‖2 + h(x̄k+1)− h(xk)] + 〈gk − g̃k, x̄k+1 − xk〉

+
η2
kL

2
‖P (xk, g̃k, ηk)‖2,

where the last inequality follows from Lemma A.1.1. By rearranging terms on both

sides, we have

Ψ(x̄k+1) ≤ Ψ(xk)− (ηk −
η2
kL

2
)‖P (xk, g̃k, ηk)‖2 + 〈gk − g̃k, x̄k+1 − xk〉 (7.13)

122

Taking the summation of (7.12) and (7.13), we have

Ψ(xk+1)

≤ Ψ(xk) + 〈xk+1 − x̄k+1,∇f(xk)− G̃k〉

+

(
L

2
− 1

2ηk

)
‖xk+1 − xk‖2 +

(
L

2
+

1

2ηk

)
‖x̄k+1 − xk‖2 − 1

2ηk
‖xk+1 − x̄k+1‖2

− (ηk −
η2
kL

2
)‖P (xk, g̃k, ηk)‖2 + 〈gk − g̃k, x̄k+1 − xk〉

= Ψ(xk) + 〈xk+1 − xk, gk − g̃k〉+ 〈xk+1 − x̄k+1, δk〉

+

(
Lη2

k

2
− ηk

2

)
‖P (xk, G̃k, ηk)‖2 +

(
Lη2

k

2
+
ηk
2

)
‖P (xk, g̃k, ηk)‖2

− 1

2ηk
‖xk+1 − x̄k+1‖2 − (ηk −

η2
kL

2
)‖P (xk, g̃k, ηk)‖2

= Ψ(xk) + 〈xk+1 − xk, gk − g̃k〉+ 〈xk+1 − x̄k+1, δk〉+
Lη2

k − ηk
2

‖P (xk, G̃k, ηk)‖2

+
2Lη2

k − ηk
2

‖P (xk, g̃k, ηk)‖2 −
1

2ηk
‖xk+1 − x̄k+1‖2

By taking the expectation on condition of filtration Fk and according to Assump-

tion 7.2, we have

E[Ψ(xk+1)|Fk]

≤ E[Ψ(xk)|Fk] + E[〈xk+1 − xk, gk − g̃k〉|Fk] +
Lη2

k − ηk
2

E[‖P (xk, G̃k, ηk)‖2|Fk]

+
2Lη2

k − ηk
2

‖P (xk, g̃k, ηk)‖2 −
1

2ηk
‖xk+1 − x̄k+1‖2.

(7.14)

Therefore, we have

E[Ψ(xk+1)|Fk]

≤ E[Ψ(xk)|Fk] + E[〈xk+1 − xk, gk − g̃k〉|Fk] +
Lη2

k − ηk
2

E[‖P (xk, G̃k, ηk)‖2|Fk]

+
2Lη2

k − ηk
2

‖P (xk, g̃k, ηk)‖2 −
1

2ηk
‖xk+1 − x̄k+1‖2

≤ E[Ψ(xk)|Fk] +
ηk
2
‖gk − g̃k‖2 +

Lη2
k

2
E[‖P (xk, G̃k, ηk)‖2|Fk] +

2Lη2
k − ηk
2

‖P (xk, g̃k, ηk)‖2

≤ E[Ψ(xk)|Fk]−
ηk − 4Lη2

k

2
‖P (xk, g̃k, ηk)‖2 +

ηk
2
‖gk − g̃k‖2 +

Lη2
k

N
σ2

ut

123

Proof of Lemma 7.5.2. Following the definition of xk from Algorithm 9, we have

‖xk − xk−τ‖2

=

∥∥∥∥∥
τ∑
l=1

xk−l − xk−l+1

∥∥∥∥∥
2

=

∥∥∥∥∥
τ∑
l=1

ηk−lP (xk−l, G̃k−l, ηk−l)

∥∥∥∥∥
2

= 2

∥∥∥∥∥
τ∑
l=1

ηk−l[P (xk−l, G̃k−l, ηk−l)− P (xk−l, g̃k−l, ηk−l)]

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
τ∑
l=1

ηk−lP (xk−l, g̃k−l, ηk−l)

∥∥∥∥∥
2

≤ 2τ

τ∑
l=1

η2
k−l‖P (xk−l, G̃k−l, ηk−l)− P (xk−l, g̃k−l, ηk−l)‖2 + 2

∥∥∥∥∥
τ∑
l=1

ηk−lP (xk−l, g̃k−l, ηk−l)

∥∥∥∥∥
2

≤ 2τ
τ∑
l=1

η2
k−l‖G̃k−l − g̃k−l‖2 + 2

∥∥∥∥∥
τ∑
l=1

ηk−lP (xk−l, g̃k−l, ηk−l)

∥∥∥∥∥
2

,

where the last inequality is from Lemma A.1.3. By taking the expectation on both

sides, we have

E[‖xk − xk−τ‖2] ≤ 2τ
τ∑
l=1

η2
k−l‖G̃k−l − g̃k−l‖2 + 2

∥∥∥∥∥
τ∑
l=1

ηk−lP (xk−l, g̃k−l, ηk−l)

∥∥∥∥∥
2

≤ 2τ

N
σ2

τ∑
l=1

η2
k−l + 2

∥∥∥∥∥
τ∑
l=1

ηk−lP (xk−l, g̃k−l, ηk−l)

∥∥∥∥∥
2

,

which proves the lemma. ut

Proof of Lemma 7.5.3. From Assumption 7.1 we have

‖gk − g̃k‖2 =

∥∥∥∥∥ 1

N

N∑
i=1

gk − g̃t(k,i)
∥∥∥∥∥

2

≤ L2

N

N∑
i=1

‖xk − xk−τ(k,i)‖2.

By applying Lemma 7.5.2, we have

E[‖xk − xk−τ(k,i)‖2] ≤ 2τ(k, i)

N
σ2

τ(k,i)∑
l=1

η2
k−l + 2

∥∥∥∥∥∥
τ(k,i)∑
l=1

ηk−lP (xk−l, g̃k−l, ηk−l)

∥∥∥∥∥∥
2

.

Therefore, we have

E[‖gk − g̃k‖2] ≤ L2

N

N∑
i=1

‖xk − xk−τ(k,i)‖2

≤ L2

N

N∑
i=1

2τ(k, i)

N
σ2

τ(k,i)∑
l=1

η2
k−l + 2τ(k, i)

τ(k,i)∑
l=1

η2
k−l‖P (xk−l, g̃k−l, ηk−l)‖2


≤
(

2L2T

N

T∑
l=1

η2
k−l

)
σ2 + 2L2T

T∑
l=1

η2
k−l‖P (xk−l, g̃k−l, ηk−l)‖2,

124

where the last inequality follows from and now we prove the lemma. ut

125

0 50 100 150 200
gradients/n

0.00

0.05

0.10

0.15

0.20

f
(x
)
−
f
(x̂
)

Asyn-ProxSGD 1

Asyn-ProxSGD 2

Asyn-ProxSGD 4

Asyn-ProxSGD 8

ProxGD

(a) a9a

0 50 100 150 200
gradients/n

0.00

0.05

0.10

0.15

f
(x

)
−
f

(x̂
)

Asyn-ProxSGD 1

Asyn-ProxSGD 2

Asyn-ProxSGD 4

Asyn-ProxSGD 8

ProxGD

(b) mnist

0 50 100 150 200
gradients/n

10−5

10−4

10−3

10−2

10−1

f
(x

)
−
f

(x̂
)

Asyn-ProxSGD 1

Asyn-ProxSGD 2

Asyn-ProxSGD 4

Asyn-ProxSGD 8

ProxGD

(c) a9a

0 50 100 150 200
gradients/n

10−5

10−4

10−3

10−2

10−1

f
(x

)
−
f

(x̂
)

Asyn-ProxSGD 1

Asyn-ProxSGD 2

Asyn-ProxSGD 4

Asyn-ProxSGD 8

ProxGD

(d) mnist

Figure 7.1: Performance of ProxGD and Async-ProxSGD on a9a (left) and mnist

(right) datasets. Here the x-axis represents how many sample gradients is computed
(divided by n), and the y-axis is the function suboptimality f(x) − f(x̂) where x̂
is obtained by running gradient descent for many iterations with multiple restarts.
Note all values on the y-axis are normalized by n.

126

0 25 50 75 100 125 150
Time (s)

0.00

0.05

0.10

0.15

0.20

f
(x

)
−
f

(x̂
)

Asyn-ProxSGD 1

Asyn-ProxSGD 2

Asyn-ProxSGD 4

Asyn-ProxSGD 8

(a) a9a

0 50 100 150 200
Time (s)

0.00

0.05

0.10

0.15

f
(x

)
−
f

(x̂
)

Asyn-ProxSGD 1

Asyn-ProxSGD 2

Asyn-ProxSGD 4

Asyn-ProxSGD 8

(b) mnist

0 25 50 75 100 125 150
Time (s)

10−5

10−4

10−3

10−2

10−1

f
(x

)
−
f

(x̂
) Asyn-ProxSGD 1

Asyn-ProxSGD 2

Asyn-ProxSGD 4

Asyn-ProxSGD 8

(c) a9a

0 50 100 150 200
Time (s)

10−5

10−4

10−3

10−2

10−1

f
(x

)
−
f

(x̂
)

Asyn-ProxSGD 1

Asyn-ProxSGD 2

Asyn-ProxSGD 4

Asyn-ProxSGD 8

(d) mnist

Figure 7.2: Performance of ProxGD and Async-ProxSGD on a9a (left) and mnist

(right) datasets. Here the x-axis represents the actual running time, and the y-axis
is the function suboptimality. Note all values on the y-axis are normalized by n.

127

Chapter 8

Asynchronous Block Proximal
Stochastic Gradient

8.1 Background

Existing parallel algorithms fall into two categories: data parallelism and model

parallelism. In data parallelism, each worker takes a subset of training samples i

and calculates their loss functions fi’s and/or gradients in parallel. For example,

a typical implementation of parallel SGD is to divide a minibatch with N samples

into several smaller minibatches (each with N ′ samples), and each worker computes

gradients on N ′ samples. This is preferred when the size of data n is large. In model

parallelism, the model parameters x is partitioned into M blocks, where xj ∈ Rdj

with dj ∈ N+ and
∑M

j=1 dj = d.

In the previous chapter, we have seen an example of a data parallel algorithm,

Asyn-ProxSGD, for large scale nonconvex nonsmooth optimization problems. In this

chapter, we propose AsyB-ProxSGD (Asynchronous Block Proximal Stochastic Gra-

dient Descent), an extension of proximal stochastic gradient (ProxSGD) algorithm

to the model parallel paradigm and to the partially asynchronous protocol (PAP)

setting. In AsyB-ProxSGD, workers asynchronously communicate with the param-

eter servers, which collectively store model parameters in blocks. In an iteration,

each worker pulls the latest yet possibly outdated model from servers, calculates

partial gradients for only one block based on stochastic samples, and pushes the

gradients to the corresponding server. As workers can update different blocks in

parallel, AsyB-ProxSGD is different from traditional data parallel ProxSGD can

handle both a large model size d and a large number n of training samples, a case

frequently observed in reality.

128

Theoretical contributions are summarized as follows. We prove that AsyB-

ProxSGD can converge to stationary points of the nonconvex and nonsmooth prob-

lem (1.1) with an ergodic convergence rate of O(1/
√
K), where K is the total number

of times that any block in x is updated. This rate matches the convergence rate

known for asynchronous SGD. The latter, however, is suitable only for smooth prob-

lems. To our best knowledge, this is the first work that provides convergence rate

guarantees for ProxSGD in a model parallel mode, especially in an asynchronous

setting. We also provide a linear speedup guarantee as the number of workers in-

creases, provided that the number of workers is bounded by O(K1/4). This result

has laid down a theoretical ground for the scalability and performance of AsyB-

ProxSGD in practice. Evaluation based on a real-world dataset involving both a

large model and a large dataset has corroborated our theoretical findings on the

convergence and speedup behavior of AsyB-ProxSGD, under a Parameter Server

implementation.

The results in this chapter have appeared as technical report [7].

8.2 AsyB-ProxSGD: Asynchronous Block Proximal
Stochastic Gradient

We now present Asynchronous Block Proximal Stochastic Gradient (AsyB-ProxSGD)

algorithm. Recall that asynchronous algorithm tries to alleviate random delays in

computation and communication in different iterations. When model is big, it is

hard to put the whole model in a single node (a single machine or device), and we

have to split it into M blocks. In this case, no single node maintains all of the

parameters in memory and the nodes can update in parallel. The idea of model

parallelism has been used in many applications, including deep learning [8] and

factorization machine [28].

We now formally introduce how our proposed algorithm works. The main idea

of our proposed algorithm is to update block xj in parallel by different workers.

In Algorithm 10, the first step is to ensure that the staleness is upper bounded by

T , which is essential to ensure convergence. Here we use x̂ to emphasize that the

pulled model parameters x may not be consistent with that stored on parameter

servers. Since blocks are scattered on multiple servers, different blocks may be not

consistent with updates and thus results in different delays. For example, suppose

the server stores model x = (x1, x2), and we have two workers that updates x1

129

and x2 in parallel. Our expectation is that x is updated by them and it becomes

x′ = (x′1, x
′
2). However, in partially asynchronous protocol (PAP) where workers

may skip synchronization, the following case may happen. At time 1, worker 1

pushes x′1 and pulls x2; thus, worker 1 gets (x′1, x2). At time 2, worker 2 pushes

x′2 and pulls x′1; thus, worker 2 gets (x′1, x
′
2). We can see that the next update by

worker 1 is based on (x′1, x2), which has different delays on two blocks.

Let us discuss this in more implementation details for distributed clusters. In

distributed clusters, we split a large model x into M blocks, and one server only

maintains a single block xj to achieve model parallelism. Thus, different block may

be updated at different iterations by different workers. The same phenomenon also

exist in shared memory systems (i.e., a single machine with multiple CPU cores or

GPUs, etc.). In these systems, the model is stored on the main memory and we

can regard it as a “logical” server. In these systems, “reading” and “writing” can

be done simultaneously, thus block xj may be “pulled” while it is being updated.

In summary, model parameters x may be inconsistent with any actual state on the

server side.

In our algorithm, workers can update multiple blocks in parallel, and this is the

spirit of model parallelism here. However, we note that on the server side, push

request is usually more time consuming than pull request since it needs additional

computations of the proximal operator. Therefore, we should let workers gather

more stochastic gradients before pushing to the sever, and that is the reason we

let each worker to compute gradients on all N samples in a minibatch. That is, a

worker iteration t should compute

Ĝtjt :=
1

N

N∑
i=1

Ĝjt(x̂
t; ξi,t),

where jt is the index of block to be updated at iteration t, and Ĝjt(x̂
t; ξi,t) is the

partial gradient w.r.t. block jt at model x̂t pulled at iteration t and on sample ξi,t.

8.3 Convergence Analysis

To facilitate the analysis of Algorithm 10, we rewrite it in an equivalent global view

(from the server’s perspective), as described in Algorithm 11. In this algorithm, we

define one iteration as the time to update any single block of x and to successfully

store it at the corresponding server. We use a counter k to record how many times

130

Algorithm 10 AsyB-ProxSGD: Block PAP Stochastic Gradient

Server j executes:

1: Initialize x0.
2: loop
3: if Pull Request from a worker is received then
4: Send xj to the worker.
5: end if
6: if Push Request (gradient Gj) from a worker is received then
7: xj ← proxηhj (xj − ηGj).
8: end if
9: end loop

Worker asynchronously performs on block j:

1: Pull x0 to initialize.
2: for t = 0, 1, . . . do
3: Wait until all iterations before t− T are finished at all workers.
4: Randomly choose N training samples indexed by ξt,1, . . . , ξt,N .

5: Calculate Gtj = 1
N

∑N
i=1∇jF (xt; ξt,i).

6: Push Gtj to server j.

7: Pull the current model x from servers: xt+1 ← x.
8: end for

the model x has been updated; k increments every time a push request (model

update request) is completed for a single block. Note that such a counter k is not

required by workers to compute gradients and is different from the counter t in

Algorithm 10—t is maintained by each worker to count how many sample gradients

have been computed locally.

In particular, for every worker, it takes N stochastic sample gradients and ag-

gregates them by averaging:

Ĝkjk :=
1

N

N∑
i=1

∇jkF (xk−dk ; ξk,i), (8.1)

where jk is the random index chosen at iteration k, dk = (dk,1, . . . , dk,M) denotes the

delay vector, i.e., the delays of different blocks in x̂k when computing the gradient

for sample ξk,i at iteration k, and dk,j is the delay of a specific block xj . In addition,

we denote x̂ := xk−dk := (x
k−dk,1
1 , . . . , x

k−dk,M
M) as a vector of model parameters

pulled from the server side. Then, the server updates xk to xk+1 using proximal

gradient descent.

131

Algorithm 11 AsyB-ProxSGD (from a Global Perspective)

1: Initialize x1.
2: for k = 1, . . . ,K do
3: Randomly select N training samples indexed by ξk,1, . . . , ξk,N .
4: Randomly select a coordinate index jk from {1, . . . ,M}.
5: Calculate the averaged gradient Ĝkjk according to (8.1).
6: for j = 1, . . . ,M do
7: if j = jk then
8: xk+1

j ← proxηkhj (x
k
j − ηkĜkj).

9: else
10: xk+1

j ← xkj .
11: end if
12: end for
13: end for

8.3.1 Assumptions and Metrics

To analyze Algorithm (11), we make some reasonable assumptions here. We assume

that stochastic gradients are unbiased and with bounded variance, same with As-

sumption 7.2 and 7.3. We further make the following common assumptions on the

delay and independence [32, 73, 114]:

Assumption 8.1 (Bounded delay). There exists an constant T such that for all k,

all values in delay vector dk are upper bounded by T : 0 ≤ dk,j ≤ T for all j.

Assumption 8.2 (Independence). All random variables including selected indices

{jk} and samples {ξk,i} for all k and i in Algorithm 11 are mutually independent.

The assumption of bounded delay is to guarantee that gradients from workers

should not be too old. Note that the maximum delay T is roughly proportional to the

number of workers in practice. We can enforce all workers to wait for others if it runs

too fast, like step 3 of workers in Algorithm 10. This setting is also called partially

synchronous parallel [31, 84, 72] in the literature. Another assumption on indepen-

dence can be met by selecting samples with replacement, which can be implemented

using some distributed file systems like HDFS [115]. These two assumptions are

common in convergence analysis for asynchronous parallel algorithms, e.g., [75, 85].

8.3.2 Theoretical Results

We present our main convergence theorem as follows:

132

Theorem 8.3.1. If the step length sequence {ηk} in Algorithm 10 satisfies

ηk ≤
1

16Lmax
, 6ηkL

2T

T∑
l=1

ηk+l ≤M2, (8.2)

for all k = 1, 2, . . . ,K, we have the following ergodic convergence rate for Algorithm

11: ∑K
k=1(ηk − 8Lmaxη

2
k)E[‖P(xk)‖2]∑K

k=1 ηk − 8Lmaxη2
k

≤ 8M(Ψ(x1)−Ψ(x∗))∑K
k=1 ηk − 8Lmaxη2

k

+

8M
∑K

k=1

(
Lη2k
MN +

3ηkL
2T

∑T
l=1 η

2
k−l

2M3N

)
σ2∑K

k=1 ηk − 8Lmaxη2
k

,

(8.3)

where the expectation is taken in terms of all the random variables in Algorithm 11.

Taking a closer look at Theorem 8.3.1, we can properly choose the step size ηk

as a constant value and obtain the following results on convergence rate:

Corollary 8.3.1. Let the step length be a constant, i.e.,

η :=

√
(Ψ(x1)−Ψ(x∗))MN

LKσ2
. (8.4)

If the delay bound T satisfies

K ≥ 128(Ψ(x1)−Ψ(x∗))NL

M3σ2
(T + 1)4, (8.5)

then the output of Algorithm 11 satisfies the following ergodic convergence rate as

min
k=1,...,K

E[‖P(xk)‖2] ≤ 1

K

K∑
k=1

E[‖P(xk)‖2] ≤ 32

√
2(Ψ(x1)−Ψ(x∗))LMσ2

KN
. (8.6)

Remark 1. (Linear speedup w.r.t. the staleness) When the maximum delay

T is bounded by O(K1/4), we can see that the gradient mapping E[P(x)] decreases

regardless of T , and thus linear speedup is achievable (if other parameters are con-

stants). In other words, we can see that by (8.5) and (8.6), as long as T is no

more than O(K1/4), the iteration complexity (from a global perspective) to achieve

ε-optimality is O(1/ε2), which is independent from T .

133

0 10000 20000 30000 40000 50000
Iterations

0

1

2

3

4

f
(x

)
−
f

(x
∗)

1 worker

2 workers

4 workers

8 workers

(a) Iteration vs. Objective

0 20 40 60 80 100
Time (s)

0

1

2

3

4
f

(x
)
−
f

(x
∗)

1 worker

2 workers

4 workers

8 workers

(b) Time vs. Objective

Figure 8.1: Convergence of AsyB-ProxSGD on the sparse logistic regression problem
under different numbers of workers. In this figure, the number of servers is fixed to
8.

Remark 2. (Linear speedup w.r.t. number of workers) We note that the delay

bound T is roughly proportional to the number of workers, so the total iterations

w.r.t. T can be an indicator of convergence w.r.t. the number of workers. As the

iteration complexity is O(1/ε2) to achieve ε-optimality, and it is independent from

T , we can conclude that the total iterations will be shortened to 1/T of a single

worker’s iterations if Θ(T) workers work in parallel. This shows that our algorithm

nearly achieves linear speedup.

Remark 3. (Consistency with ProxSGD) When T = 0, our proposed AsyB-

ProxSGD reduces to the vanilla proximal stochastic gradient descent (ProxSGD)

(e.g., [68]). Thus, the iteration complexity is O(1/ε2) according to (8.6), attaining

the same result as that in [68] yet without assuming increased minibatch sizes.

8.4 Experiments

We now present numerical results to confirm that our proposed algorithms can be

used to solve the challenging nonconvex nonsmooth problems in machine learning.

134

Setup: In our experiments, we consider the sparse logistic regression problem:

min
x

1

n

n∑
i=1

log(1 + exp(−bi · a>i x)) + λ1‖x‖+
λ2

2
‖x‖2. (8.7)

The `1-regularized logistic regression is widely used for large scale risk minimization.

We consider the Avazu dataset 1, which is used in a click-through rate prediction

competition jointly hosted by Avazu and Kaggle in 2014. In its training dataset

(avazu-app), there are more than 14 million samples, 1 million features, and 4050

million nonzero entries. In other words, both n and d in (8.7) are large.

We use a cluster of 16 instances on Google Cloud. Each server or worker process

uses just one core. Up to 8 instances serve as server nodes, while the other 8

instances serve as worker nodes. To show the advantage of asynchronous parallelism,

we set up four experiments adopting 1, 2, 4, and 8 worker nodes, respectively. For

all experiments, the whole dataset is shuffled and all workers have a copy of this

dataset. When computing a stochastic gradient, each worker takes one minibatch

of random samples from its own copy. This way, each sample is used by a worker

with an equal probability empirically to mimic the scenario of our analysis.

We consider the suboptimality gap as our performance metric, which is defined

as the gap between f(x) and f(x∗). Here we estimate the optimal value x̂ by

performing 5× as many iterations as needed for convergence. The hyper-parameters

are set as follows. For all experiments, the coefficients are set as λ1 = 0.1 and

λ2 = 0.001. We set the minibatch size to 8192. The step size is set according to

ηk := 0.1/
√

1.0 + k at iteration k ≥ 0.

Implementation:

We implemented our algorithm on MXNet [9], a flexible and efficient deep learn-

ing library with support for distributed machine learning. Due to the sparse nature

of the dataset, the model x is stored as a sparse ndarray, and in each iteration, a

worker only pulls those blocks of x that are actively related to its sampled mini-

batch, and then calculates the gradient w.r.t. this minibatch of data, and pushes

the gradients for those activated blocks only.

Results: Empirically, Assumption 8.1 (bounded delays) are observed to hold for

this cluster. In our experiments, the maximum delay does not exceed 100 iterations

unless some worker nodes fail. Fig. 8.1(a) and Fig. 8.1(b) show the convergence

behavior of AsyB-ProxSGD algorithm in terms of objective function values. We

1Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

135

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

0 10000 20000 30000 40000 50000
Iterations

0

1

2

3

4

f
(x

)
−
f

(x
∗)

1 server

2 servers

4 servers

8 servers

(a) Iteration vs. Objective

0 20 40 60 80 100
Time (s)

0

1

2

3

4
f

(x
)
−
f

(x
∗)

1 server

2 servers

4 servers

8 servers

(b) Time vs. Objective

Figure 8.2: Convergence of AsyB-ProxSGD on the sparse logistic regression problem
under different numbers of servers. In this figure, we use 8 workers with different
numbers of servers.

can clearly observe the convergence of our proposed algorithm, confirming that

asynchrony with tolerable delays can still lead to convergence. In addition, the

running time drops in trend when the number of workers increases.

For our proposed AsyB-ProxSGD algorithm, we are particularly interested in

two kinds of speedup, namely, iteration speedup and running time speedup. If

we need T1 iterations (with T1 sample gradients processed by servers) to achieve

a certain suboptimality level using one worker, and Tp iterations to achieve the

same level using p workers, then the iteration speedup is defined as p× T1/Tp [75].

Note that iterations are counted on the server side, which is actually the number

of minibatch gradients are processed by the server. On the other hand, the time

speedup is simply defined as the ratio between the running time of using one worker

and that of using p workers to achieve the same suboptimality level. We summarize

iteration and running time speedup in Table 8.1.

We further evaluate the relationship between the number of servers and the

convergence behavior. Since the model has millions of parameters to be trained,

storing the whole model in a single machine can be ineffective. In fact, from Fig. 8.2

we can even see nearly linear speedup w.r.t. the number of servers. The reason here

136

Table 8.1: Iteration speedup and time speedup of AsyB-ProxSGD at the optimality
level 10−1.

Workers 1 2 4 8

Iteration Speedup 1.000 2.127 3.689 6.748
Time Speedup 1.000 1.973 4.103 8.937

is that, more servers can significantly decrease the length of request queue at the

server side. When we have only one server, the blue dashed curve in Fig. 8.2(b)

looks like a tilt staircase, and further investigation shows that some push requests

take too long time to be processed. Therefore, we have to set more than one servers

to observe parallel speedup in Fig. 8.1 so that servers are not the bottleneck.

8.5 Proof of Theorem 8.3.1

To simplify notations, we use j instead of jk in this section. Since we update one

block only in each iteration, we define an auxiliary function as follows:

Pj(x, g, η) :=
1

η
(xj − proxηhj (xj − ηgj)),

where the variables xj and gj take the j-th coordinate. Our proof of Theorem 8.3.1

relies on the following milestone lemmas.

8.5.1 Milestone Lemmas

Lemma 8.5.1 (Descent Lemma).

Ej [Ψ(xk+1)|Fk] ≤ Ej [Ψ(xk)|Fk]−
ηk − 4Lmaxη

2
k

2M
‖P (xk, ĝk, ηk)‖2+

ηk
2M
‖gk − ĝk‖2+

Lη2
k

MN
σ2.

(8.8)

Lemma 8.5.2. Suppose we have a sequence {xk} by Algorithm 11. Then, we have

E[‖xk − xk−τ‖2] ≤ 2T
∑T

l=1 η
2
k−l

MN
σ2 + 2

∥∥∥∥∥∥
∑

l∈K(τ (k))

ηk−lPjk−l(x
k−l, ĝk−l, ηk−l)

∥∥∥∥∥∥
2

(8.9)

Lemma 8.5.3. Suppose we have a sequence {xk} by Algorithm 11. Then, we have

E[‖gkj − ĝkj ‖2] ≤ 2L2T
∑T

l=1 η
2
k−l

M2N
σ2 +

2L2T

M2

T∑
l=1

η2
k−l‖P (xk−l, ĝk−l, ηk−l)‖2 (8.10)

137

Proof of Theorem 8.3.1. We have

‖Pj(xk, g̃k, ηk)‖2 ≥
1

2
‖Pj(xk, gk, ηk)‖2 − ‖gk − g̃k‖2.

When we have ηk ≤ 1
8Lmax

, we can apply the above equation following Lemma 8.5.1:

Ej [Ψ(xk+1)|Fk]

≤ Ej [Ψ(xk)|Fk]−
ηk − 4Lmaxη

2
k

2M
‖P (xk, ĝk, ηk)‖2 +

ηk
2M
‖gk − ĝk‖2 +

Lη2
k

MN
σ2

≤ Ej [Ψ(xk)|Fk]−
ηk − 8Lmaxη

2
k

4M
‖P (xk, ĝk, ηk)‖2 −

ηk
4M
‖P (xk, ĝk, ηk)‖2

+
ηk

2M
‖gk − ĝk‖2 +

Lη2
k

MN
σ2

≤ Ej [Ψ(xk)|Fk]−
ηk − 8Lmaxη

2
k

8M
‖P (xk, gk, ηk)‖2 +

3ηk
4M
‖gk − ĝk‖2

− ηk
4M
‖P (xk, ĝk, ηk)‖2 +

Lη2
k

MN
σ2

By Lemma 8.5.3, we have

Ej [Ψ(xk+1)|Fk]

≤ Ej [Ψ(xk)|Fk]−
ηk − 8Lmaxη

2
k

8M
‖P (xk, gk, ηk)‖2 −

ηk
4M
‖P (xk, ĝk, ηk)‖2 +

Lη2
k

MN
σ2

+
3ηk
4M

(
2L2T

∑T
l=1 η

2
k−l

M2N
σ2 +

2L2T

M2

T∑
l=1

η2
k−l‖P (xk−l, ĝk−l, ηk−l)‖2

)

≤ Ej [Ψ(xk)|Fk]−
ηk − 8Lmaxη

2
k

8M
‖P (xk, gk, ηk)‖2 +

(
Lη2

k

MN
+

3ηkL
2T
∑T

l=1 η
2
k−l

2M3N

)
σ2

+
3ηkL

2T

2M3

T∑
l=1

η2
k−l‖Pjk−l(xk−l, ĝk−l, ηk−l)‖2 −

ηk
4M
‖P (xk, ĝk, ηk)‖2

By taking telescope sum, we have

K∑
k=1

ηk − 8Lmaxη
2
k

8M
‖P (xk, gk, ηk)‖2

≤ Ψ(x1)−Ψ(x∗) +

K∑
k=1

(
Lη2

k

MN
+

3ηkL
2T
∑T

l=1 η
2
k−l

2M3N

)
σ2

−
K∑
k=1

(
ηk

4M
− 3η2

kL
2

2M3

lk∑
l=1

η2
k+l)‖P (xk, ĝk, ηk)‖2

≤ Ψ(x1)−Ψ(x∗) +

K∑
k=1

(
Lη2

k

MN
+

3ηkL
2T
∑T

l=1 η
2
k−l

2M3N

)
σ2,

where the last inequality follows from the assumption that 6η2
kL

2
∑T

l=1 ηk+l ≤ M2,

and now we prove Theorem 8.3.1.

ut
138

8.6 Proof of Corollary 8.3.1

Proof. Since the learning rate ηk := η is a constant, we apply it to Theorem 8.3.1

and we have:

1

K

K∑
k=1

E[‖P (xk, gk, ηk)‖2] ≤ 16M(Ψ(x1)−Ψ(x∗))

Kη
+

16M

η

(
Lη2

MN
+

3L2T 2η3

2M3N

)
σ2.

(8.11)

Following conditions in Corollary 8.3.1, we have

η ≤ M2

16L(T + 1)2
,

and thus we have

3LT 2η

2M2
≤ 3M2T 2

2M2 · 16(T + 1)2
≤ 1,

3L2T 2η3

2M2
≤ Lη2.

Then, we can estimate (8.11) from the above inequality as follows:

1

K

K∑
k=1

E[‖P (xk, gk, ηk)‖2] ≤ 16M(Ψ(x1)−Ψ(x∗))

Kη
+

16M

η

(
Lη2

MN
+

3L2T 2η3

2M3N

)
σ2

≤ 16M(Ψ(x1)−Ψ(x∗))

Kη
+

32Lη

N
σ2

= 32

√
2(Ψ(x1)−Ψ(x∗))LM(T + 1)σ2

KN
,

which proves the corollary. ut

8.7 Proof of Milestone Lemmas

Proof of Lemma 8.5.1. Recall Corollary A.1.4:

Ψ(xk+1) ≤ Ψ(x̄k+1) + 〈∇jf(xk)− Ĝkj , xk+1
j − x̄k+1

j 〉

+

(
Lj
2
− 1

2η

)
‖yj − xj‖2 +

(
Lj
2

+
1

2η

)
‖zj − xj‖2 −

1

2η
‖yj − xj‖2.

(8.12)

139

Now we turn to bound Ψ(x̄k+1
j) as follows:

f(x̄k+1)

≤ f(xk) + 〈∇jf(xk), x̄k+1
j − xkj 〉+

Lj
2
‖x̄k+1

j − xkj ‖2

= f(xk) + 〈gkj , x̄k+1
j − xkj 〉+

η2
kLj
2
‖Pj(xk, ĝk, ηk)‖2

= f(xk) + 〈ĝkj , x̄k+1
j − xkj 〉+ 〈gkj − ĝkj , x̄k+1

j − xkj 〉+
η2
kLj
2
‖Pj(xk, ĝk, ηk)‖2

= f(xk)− ηk〈ĝkj , Pj(xk, ĝkj , ηk)〉+ 〈gkj − ĝkj , x̄k+1
j − xkj 〉+

η2
kLj
2
‖Pj(xk, ĝk, ηk)‖2

≤ f(xk)− [ηk‖Pj(xk, ĝk, ηk)‖2 + hj(x̄
k+1
j)− hj(xkj)]

+ 〈gkj − ĝkj , x̄k+1
j − xkj 〉+

η2
kLj
2
‖Pj(xk, ĝk, ηk)‖2,

where the last inequality follows from Corollary A.1.1. By rearranging terms on

both sides, we have

Ψ(x̄k+1) ≤ Ψ(xk)− (ηk −
η2
kLj
2

)‖Pj(xk, ĝk, ηk)‖2 + 〈gkj − ĝkj , x̄k+1
j − xkj 〉 (8.13)

Taking the summation of (8.12) and (8.13), we have

Ψ(xk+1)

≤ Ψ(xk) + 〈∇jf(xk)− Ĝkj , xk+1
j − x̄k+1

j 〉

+

(
Lj
2
− 1

2η

)
‖yj − xj‖2 +

(
Lj
2

+
1

2ηk

)
‖zj − xj‖2 −

1

2ηk
‖yj − xj‖2

−
(
ηk −

η2
kLj
2

)
‖Pj(xk, ĝk, ηk)‖2 + 〈gkj − ĝkj , x̄k+1

j − xkj 〉

= Ψ(xk) + 〈∇jf(xk)− ĝkj , xk+1
j − x̄k+1

j 〉+ 〈ĝkj − Ĝkj , xk+1
j − x̄k+1

j 〉

+

(
Ljη

2
k

2
− ηk

2

)
‖Pj(xk, Ĝk, ηk)‖2 +

(
Ljη

2
k

2
+
ηk
2

)
‖Pj(xk, ĝk, ηk)‖2

− 1

2ηk
‖xk+1

j − x̄k+1
j ‖2 − (ηk −

η2
kLj
2

)‖Pj(xk, ĝk, ηk)‖2

= Ψ(xk) + 〈xk+1
j − xkj , gkj − ĝkj 〉+ 〈xk+1

j − x̄k+1
j , δkj 〉+

Ljη
2
k − ηk
2

‖Pj(xk, Ĝk, ηk)‖2

+
2Ljη

2
k − ηk
2

‖Pj(xk, ĝk, ηk)‖2 −
1

2ηk
‖xk+1

j − x̄k+1
j ‖2.

By taking the expectation on condition of filtration Fk and j, we have the following

equation according to Assumption 7.2:

Ej [Ψ(xk+1)|Fk]

≤ Ej [Ψ(xk)|Fk] +
1

M
E[〈xk+1 − xk, gk − ĝk〉|Fk] +

Lmaxη
2
k − ηk

2M
E[‖P (xk, Ĝk, ηk)‖2|Fk]

+
2Lmaxη

2
k − ηk

2M
‖P (xk, ĝk, ηk)‖2 −

1

2Mηk
‖xk+1 − x̄k+1‖2.

(8.14)

140

Therefore, we have

Ej [Ψ(xk+1)|Fk]

≤ Ej [Ψ(xk)|Fk] +
1

M
E[〈xk+1 − xk, gk − ĝk〉|Fk] +

Lmaxη
2
k − ηk

2M
E[‖P (xk, Ĝk, ηk)‖2|Fk]

+
2Lmaxη

2
k − ηk

2M
‖P (xk, ĝk, ηk)‖2 −

1

2Mηk
‖xk+1 − x̄k+1‖2

≤ Ej [Ψ(xk)|Fk] +
ηk

2M
‖gk − ĝk‖2 +

Lmaxη
2
k

2M
E[‖P (xk, Ĝk, ηk)‖2|Fk] +

2Lmaxη
2
k − ηk

2M
‖P (xk, ĝk, ηk)‖2

≤ Ej [Ψ(xk)|Fk]

− ηk − 4Lmaxη
2
k

2M
‖P (xk, ĝk, ηk)‖2 +

ηk
2M
‖gk − ĝk‖2 +

Lη2
k

MN
σ2.

ut

Proof of Lemma 8.5.2.

‖xk − xk−τ‖2 =

∥∥∥∥∥∥
∑

l∈K(τ (k))

xk−l+1 − xk−l

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

l∈K(τ (k))

ηk−lPjk−l(x
k−l, Ĝk−l, ηk−l)

∥∥∥∥∥∥
2

≤ 2

∥∥∥∥∥∥
∑

l∈K(τ (k))

ηk−l(Pjk−l(x
k−l, Ĝk−l, ηk−l)− Pjk−l(xk−l, ĝk−l, ηk−l))

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
∑

l∈K(τ (k))

ηk−lPjk−l(x
k−l, ĝk−l, ηk−l)

∥∥∥∥∥∥
2

≤ 2T
∑

l∈K(τ (k))

η2
k−l

∥∥∥Pjk−l(xk−l, Ĝk−l, ηk−l)− Pjk−l(xk−l, ĝk−l, ηk−l)∥∥∥2

+ 2

∥∥∥∥∥∥
∑

l∈K(τ (k))

ηk−lPjk−l(x
k−l, ĝk−l, ηk−l)

∥∥∥∥∥∥
2

≤ 2T
T∑
l=1

η2
k−l‖Ĝk−l − ĝk−l‖2 + 2

∥∥∥∥∥∥
∑

l∈K(τ (k))

ηk−lPjk−l(x
k−l, ĝk−l, ηk−l)

∥∥∥∥∥∥
2

≤ 2T
∑T

l=1 η
2
k−l

MN
σ2 + 2

∥∥∥∥∥∥
∑

l∈K(τ (k))

ηk−lPjk−l(x
k−l, ĝk−l, ηk−l)

∥∥∥∥∥∥
2

ut

141

Proof of Lemma 8.5.3.

E[‖gkj − ĝkj ‖2] =

∥∥∥∥∥ 1

N

N∑
i=1

gkj − ĝk−τ(k,i)
j

∥∥∥∥∥
2

≤ 1

N

N∑
i=1

‖gkj − ĝk−τ(k,i)
j ‖2

≤ 1

MN

N∑
i=1

‖gk − ĝk−τ(k,i)‖2

≤ L2

MN

N∑
i=1

‖xk − x̂k−τ(k,i)‖2

≤ L2

MN

N∑
i=1

2T
∑T

l=1 η
2
k−l

MN
σ2 + 2

∥∥∥∥∥
T∑
l=1

ηk−lPjk−l(x
k−l, ĝk−l, ηk−l)

∥∥∥∥∥
2


≤ 2L2T
∑T

l=1 η
2
k−l

M2N
σ2 +

2L2T

M2

T∑
l=1

η2
k−l‖P (xk−l, ĝk−l, ηk−l)‖2

ut

142

Chapter 9

Conclusion

This chapter summarizes the main contributions of the previous chapters and discuss

relevant work for each.

In Chapter 3, we propose a robust class of matrix completion algorithms, called

IS-p, to approximate the rank minimization problem with reweighted Schatten-p

norm minimization, and prove that the algorithm can converge for any p between

1 and 2. We further enhance the latency prediction with the help of partially col-

lected historical observations forming a tensor, and extend our IS-p algorithm to the

case of approximate tensor completion. Extensive evaluations based on the Seat-

tle data show that our proposed algorithms outperform state-of-the-art techniques,

including network embedding (e.g., high-dimensional Vivaldi with/without heights)

and matrix factorization (e.g., DMFSGD) by a substantial margin, although they

do not show much improvement on traditional PlanetLab data. This reveals the

fact that our algorithms can better estimate latencies in personal device networks,

for which traditional schemes are insufficient due to triangle inequality violation,

asymmetric latencies and time-varying characteristics. The prediction accuracy is

further significantly improved by exploiting the inherent autocorrelation property in

the data sampled over multiple periods, through the proposed approximate tensor

completion scheme.

In Chapter 4 and Chapter 5, we propose novel matrix factorization approaches

for skewed data, namely, Quantile Matrix Factorization (QMF) and Expectile Ma-

trix Factorization (EMF). Compared with existing popular matrix factorization ap-

proaches, which aim at minimizing the mean squared error and actually estimate

the conditional means of the values, we propose the QMF and EMF which nov-

elly combine the regression techniques and matrix factorization. In particular, we

143

propose an efficient algorithm based on Iterative Reweighted Least Squares (IRLS)

to solve QMF in Chapter 4. In this chapter, extensive evaluations based on a

real-world dataset of web service QoS measurements show that QMF significantly

outperforms several state-of-the-art QoS prediction and recommendation algorithms

based on matrix factorization or collaborative filtering, especially in terms of exclud-

ing services with the highest response times and selecting the best services. Fur-

thermore, the prediction and ranking performance of QMF are particularly robust

to the skewed QoS data.

In Chapter 5, we propose EMF which introduces the “asymmetric least squares”

loss function of expectile regression analysis originated in statistics and econometrics

into matrix factorization for robust matrix estimation. Existing matrix factorization

techniques aim at minimizing the mean squared error and essentially estimate the

conditional means of matrix entries. In contrast, the proposed EMF can yield the

ωth conditional expectile estimates of matrix entries for any ω ∈ (0, 1), accommo-

dating the conventional matrix factorization as a special case of ω = 0.5. We propose

an efficient alternating minimization algorithm to solve EMF and theoretically prove

its convergence to the global optimality in the noiseless case. Through evaluation

based on both synthetic data and a dataset containing real-world web service re-

sponse times, we show that EMF achieves better recovery than conventional matrix

factorization when the data is skewed or contaminated by skewed noise. By using a

flexible ω, EMF is not only more robust to outliers but can also be tuned to obtain

a more comprehensive understanding of data distribution in a matrix, depending on

application requirements.

We study distributed nonconvex nonsmooth optimization problems in Chapter 6

and Chapter 7. In Chapter 6, we propose a block-wise, asynchronous and distributed

ADMM algorithm to solve general nonconvex and nonsmooth optimization problems

in machine learning. Under the bounded delay assumption, we have shown that our

proposed algorithm can converge to stationary points satisfying KKT conditions.

The block-wise updating nature of our algorithm makes it feasible to be implemented

on Parameter Server, take advantage of the ability to update different blocks of all

model parameters in parallel on distributed servers. Experimental results based on

a real-world dataset have demonstrated the convergence and near-linear speedup of

the proposed ADMM algorithm, for training large-scale sparse logistic regression

models in Amazon EC2 clusters.

144

In Chapter 7 and 8, we study asynchronous parallel implementations of stochas-

tic proximal gradient methods for solving nonconvex optimization problems, with

convex yet possibly nonsmooth regularization. Compared to asynchronous parallel

stochastic gradient descent (Asyn-SGD), which is targeting smooth optimization,

the understanding of the convergence and speedup behavior of stochastic algorithms

for the nonsmooth regularized optimization problems is quite limited, especially

when the objective function is nonconvex. To fill this gap, we propose an asyn-

chronous proximal stochastic gradient descent algorithms with convergence rates

provided for nonconvex problems.

In particular, we propose two types of algorithms for different parallelisms. Ex-

isting parallel algorithms fall into two categories, namely, data parallelism and model

parallelism, which focuses on dealing with large scales in data volume and model di-

mension, respectively. In Chapter 7, we propose Asyn-ProxSGD, in which workers

calculate an averaged gradient from a minibatch in parallel, a data parallel algo-

rithm. In Chapter 8, we propose another algorithm AsyB-ProxSGD that allow

workers update different blocks of the model in parallel, which is a model parallel

algorithm. Our theoretical analysis suggests that the same order of convergence

rate can be achieved for asynchronous ProxSGD for nonsmooth problems as for

the asynchronous SGD, under constant minibatch sizes, without making additional

assumptions on variance reduction. And a linear speedup is proven to be achiev-

able for both asynchronous ProxSGD when the number of workers is bounded by

O(K1/4).

145

Bibliography

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed opti-
mization and statistical learning via the alternating direction method of mul-
tipliers,” Foundations and Trends R© in Machine Learning, vol. 3, no. 1, pp.
1–122, 2011.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Prentice Hall, 1989.

[4] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.
Springer series in statistics Springer, Berlin, 2001, vol. 1.

[5] R. Zhu, D. Niu, and Z. Li, “A block-wise, asynchronous and distributed admm
algorithm for general form consensus optimization,” 2018, arXiv:1802.08882.

[6] ——, “Asynchronous stochastic proximal methods for nonconvex nonsmooth
optimization,” 2018, arXiv:1802.08880.

[7] R. Zhu and D. Niu, “A model parallel proximal stochastic gradient algorithm
for partially asynchronous systems,” 2018, submitted to AISTATS 2019.

[8] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep networks,”
in Advances in neural information processing systems, 2012, pp. 1223–1231.

[9] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang,
and Z. Zhang, “Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems,” arXiv preprint arXiv:1512.01274, 2015.

[10] S. Zhang, A. E. Choromanska, and Y. LeCun, “Deep learning with elastic
averaging sgd,” in Advances in Neural Information Processing Systems, 2015,
pp. 685–693.

[11] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and
smoothness via the fused lasso,” Journal of the Royal Statistical Society: Se-
ries B (Statistical Methodology), vol. 67, no. 1, pp. 91–108, 2005.

[12] J. Liu, J. Chen, and J. Ye, “Large-scale sparse logistic regression,” in Pro-
ceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2009, pp. 547–556.

[13] H. Xu, C. Caramanis, and S. Sanghavi, “Robust pca via outlier pursuit,” in
Advances in Neural Information Processing Systems, 2010, pp. 2496–2504.

[14] R. Sun and Z.-Q. Luo, “Guaranteed matrix completion via nonconvex fac-
torization,” in Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on. IEEE, 2015, pp. 270–289.

146

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[16] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine learning
with the parameter server,” in 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14), 2014, pp. 583–598.

[17] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein,
“Distributed graphlab: a framework for machine learning and data mining in
the cloud,” Proceedings of the VLDB Endowment, vol. 5, no. 8, pp. 716–727,
2012.

[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al., “Tensorflow:
A system for large-scale machine learning,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). USENIX Asso-
ciation, 2016, pp. 265–283.

[19] Y. Nesterov, Introductory lectures on convex optimization: A basic course.
Springer Science & Business Media, 2013, vol. 87.

[20] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 2016.

[21] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and Trends R©
in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[22] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms, forward–backward
splitting, and regularized gauss–seidel methods,” Mathematical Programming,
vol. 137, no. 1-2, pp. 91–129, 2013.

[23] K. G. Murty and S. N. Kabadi, “Some np-complete problems in quadratic
and nonlinear programming,” Mathematical programming, vol. 39, no. 2, pp.
117–129, 1987.

[24] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for non-
convex stochastic programming,” SIAM Journal on Optimization, vol. 23,
no. 4, pp. 2341–2368, 2013.

[25] S. J. Reddi, S. Sra, B. Póczos, and A. J. Smola, “Proximal stochastic methods
for nonsmooth nonconvex finite-sum optimization,” in Advances in Neural
Information Processing Systems, 2016, pp. 1145–1153.

[26] D. Garber, E. Hazan, C. Jin, S. M. Kakade, C. Musco, P. Netrapalli, and
A. Sidford, “Faster eigenvector computation via shift-and-invert precondition-
ing.” in ICML, 2016, pp. 2626–2634.

[27] D. P. Bertsekas, Convex optimization theory. Athena Scientific Belmont,
2009.

[28] M. Li, Z. Liu, A. J. Smola, and Y.-X. Wang, “Difacto: Distributed factoriza-
tion machines,” in Proceedings of the Ninth ACM International Conference on
Web Search and Data Mining. ACM, 2016, pp. 377–386.

[29] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J. Smola, “Scal-
able inference in latent variable models,” in Proceedings of the fifth ACM
international conference on Web search and data mining. ACM, 2012, pp.
123–132.

[30] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,”
in Advances in Neural Information Processing Systems, 2011, pp. 873–881.

147

[31] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. Ganger, and E. P. Xing, “More effective distributed ml via a stale syn-
chronous parallel parameter server,” in Advances in neural information pro-
cessing systems, 2013, pp. 1223–1231.

[32] F. Niu, B. Recht, C. Re, and S. Wright, “Hogwild: A lock-free approach to
parallelizing stochastic gradient descent,” in Advances in Neural Information
Processing Systems, 2011, pp. 693–701.

[33] X. Pan, M. Lam, S. Tu, D. Papailiopoulos, C. Zhang, M. I. Jordan, K. Ram-
chandran, and C. Ré, “Cyclades: Conflict-free asynchronous machine learn-
ing,” in Advances in Neural Information Processing Systems, 2016, pp. 2568–
2576.

[34] C. J. Hillar and L.-H. Lim, “Most Tensor Problems Are NP-Hard,” Journal
of the ACM (JACM), vol. 60, no. 6, p. 45, 2013.

[35] M. Fazel, “Matrix rank minimization with applications,” Ph.D. dissertation,
PhD thesis, Stanford University, 2002.

[36] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed Minimum-Rank Solutions
of Linear Matrix Equations via Nuclear Norm Minimization,” SIAM Review,
vol. 52, no. 3, pp. 471–501, 2010.

[37] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding algorithm
for matrix completion,” SIAM Journal on Optimization, vol. 20, no. 4, pp.
1956–1982, 2010.

[38] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating
missing values in visual data,” IEEE transactions on pattern analysis and
machine intelligence, vol. 35, no. 1, pp. 208–220, 2013.

[39] R. Zhu, B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency estimation for
personal devices: A matrix completion approach,” IEEE/ACM Transactions
on Networking, vol. 25, no. 2, pp. 724–737, 2017.

[40] R. Zhu, D. Niu, and Z. Li, “Robust web service recommendation via quantile
matrix factorization,” in Proc. IEEE INFOCOM, Atlanta, GA, USA, May
2017.

[41] R. Zhu, D. Niu, L. Kong, and Z. Li, “Expectile matrix factorization for skewed
data analysis,” in AAAI Conference on Artificial Intelligence, 2017.

[42] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for rec-
ommender systems,” Computer, no. 8, pp. 30–37, 2009.

[43] Y. Liao, W. Du, P. Geurts, and G. Leduc, “DMFSGD: A Decentralized Ma-
trix Factorization Algorithm for Network Distance Prediction,” IEEE/ACM
Trans. Netw. (TON), vol. 21, no. 5, pp. 1511–1524, 2013.

[44] P. Chen and D. Suter, “Recovering the missing components in a large noisy
low-rank matrix: Application to SFM,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 26, no. 8, pp. 1051–1063, 2004.

[45] Z. Liu and L. Vandenberghe, “Interior-point method for nuclear norm approx-
imation with application to system identification,” SIAM Journal on Matrix
Analysis and Applications, vol. 31, no. 3, pp. 1235–1256, 2009.

[46] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,”
Advances in artificial intelligence, vol. 2009, p. 4, 2009.

[47] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback
datasets,” in Proc. IEEE ICDM. Ieee, 2008, pp. 263–272.

148

[48] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR:
Bayesian personalized ranking from implicit feedback,” in Proc. UAI. AUAI
Press, 2009, pp. 452–461.

[49] B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency prediction for per-
sonal devices: Distance-feature decomposition from 3d sampling,” in Com-
puter Communications (INFOCOM), 2015 IEEE Conference on. IEEE, 2015,
pp. 307–315.

[50] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating QoS of real-world web
services,” IEEE Trans. Service Comput., vol. 7, no. 1, pp. 32–39, 2014.

[51] E. J. Candes and T. Tao, “Decoding by linear programming,” Information
Theory, IEEE Transactions on, vol. 51, no. 12, pp. 4203–4215, 2005.

[52] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compres-
sive sensing,” in Acoustics, speech and signal processing, 2008. ICASSP 2008.
IEEE international conference on. IEEE, 2008, pp. 3869–3872.

[53] S. Ma, D. Goldfarb, and L. Chen, “Fixed point and bregman iterative methods
for matrix rank minimization,” Mathematical Programming, vol. 128, no. 1-2,
pp. 321–353, 2011.

[54] K. Mohan and M. Fazel, “Reweighted nuclear norm minimization with ap-
plication to system identification,” in American Control Conference (ACC),
2010. IEEE, 2010, pp. 2953–2959.

[55] A. Mnih and R. Salakhutdinov, “Probabilistic matrix factorization,” in Proc.
Adv. Neural Inf. Process. Syst. (NIPS), 2007, pp. 1257–1264.

[56] Q. Zheng and J. Lafferty, “Convergence analysis for rectangular matrix
completion using burer-monteiro factorization and gradient descent,” arXiv
preprint arXiv:1605.07051, 2016.

[57] T. Zhao, Z. Wang, and H. Liu, “A nonconvex optimization framework for
low rank matrix estimation,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS),
2015, pp. 559–567.

[58] S. Tu, R. Boczar, M. Simchowitz, M. Soltanolkotabi, and B. Recht, “Low-rank
solutions of linear matrix equations via procrustes flow,” in Proc. International
Conference on Machine Learning, 2016.

[59] L. Wang, X. Zhang, and Q. Gu, “A unified computational and statistical
framework for nonconvex low-rank matrix estimation,” in Proc. International
Conference on Artificial Intelligence and Statistics (AISTATS), available:
arXiv:1610.05275, 2017.

[60] D. Park, A. Kyrillidis, C. Caramanis, and S. Sanghavi, “Finding low-rank
solutions via nonconvex matrix factorization, efficiently and provably,” SIAM
Journal on Imaging Sciences, vol. 11, no. 4, pp. 2165–2204, 2018.

[61] H. Robbins and S. Monro, “A stochastic approximation method,” The annals
of mathematical statistics, pp. 400–407, 1951.

[62] L. Bottou, “Stochastic gradient learning in neural networks,” Proceedings of
Neuro-Nımes, vol. 91, no. 8, 1991.

[63] A. Nemirovskii, D. B. Yudin, and E. R. Dawson, “Problem complexity and
method efficiency in optimization,” 1983.

[64] E. Moulines and F. R. Bach, “Non-asymptotic analysis of stochastic approxi-
mation algorithms for machine learning,” in Advances in Neural Information
Processing Systems, 2011, pp. 451–459.

149

[65] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic ap-
proximation approach to stochastic programming,” SIAM Journal on opti-
mization, vol. 19, no. 4, pp. 1574–1609, 2009.

[66] G. Lan, “An optimal method for stochastic composite optimization,” Mathe-
matical Programming, vol. 133, no. 1, pp. 365–397, 2012.

[67] J. Duchi and Y. Singer, “Efficient online and batch learning using forward
backward splitting,” Journal of Machine Learning Research, vol. 10, no. Dec,
pp. 2899–2934, 2009.

[68] S. Ghadimi, G. Lan, and H. Zhang, “Mini-batch stochastic approximation
methods for nonconvex stochastic composite optimization,” Mathematical
Programming, vol. 155, no. 1-2, pp. 267–305, 2016.

[69] P. Tseng, “On the rate of convergence of a partially asynchronous gradient
projection algorithm,” SIAM Journal on Optimization, vol. 1, no. 4, pp. 603–
619, 1991.

[70] M. Razaviyayn, M. Hong, Z.-Q. Luo, and J.-S. Pang, “Parallel successive
convex approximation for nonsmooth nonconvex optimization,” in Advances
in Neural Information Processing Systems, 2014, pp. 1440–1448.

[71] D. Davis, “The asynchronous palm algorithm for nonsmooth nonconvex prob-
lems,” arXiv preprint arXiv:1604.00526, 2016.

[72] Y. Zhou, Y. Yu, W. Dai, Y. Liang, and E. Xing, “On convergence of model
parallel proximal gradient algorithm for stale synchronous parallel system,” in
Artificial Intelligence and Statistics, 2016, pp. 713–722.

[73] J. Liu and S. J. Wright, “Asynchronous stochastic coordinate descent: Paral-
lelism and convergence properties,” SIAM Journal on Optimization, vol. 25,
no. 1, pp. 351–376, 2015.

[74] Y. Xu and W. Yin, “Block stochastic gradient iteration for convex and noncon-
vex optimization,” SIAM Journal on Optimization, vol. 25, no. 3, pp. 1686–
1716, 2015.

[75] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel stochastic gra-
dient for nonconvex optimization,” in Advances in Neural Information Pro-
cessing Systems, 2015, pp. 2737–2745.

[76] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and
M. I. Jordan, “Perturbed iterate analysis for asynchronous stochastic
optimization,” SIAM Journal on Optimization, vol. 27, no. 4, pp. 2202–2229,
jan 2017. [Online]. Available: https://doi.org/10.1137%2F16m1057000

[77] R. Zhang and J. Kwok, “Asynchronous distributed admm for consensus opti-
mization,” in International Conference on Machine Learning, 2014, pp. 1701–
1709.

[78] M. Hong, “A distributed, asynchronous and incremental algorithm for non-
convex optimization: An admm approach,” IEEE Transactions on Control of
Network Systems, vol. PP, no. 99, pp. 1–1, 2017.

[79] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous distributed
admm for large-scale optimization – part i: Algorithm and convergence analy-
sis,” IEEE Transactions on Signal Processing, vol. 64, no. 12, pp. 3118–3130,
2016.

150

https://doi.org/10.1137%2F16m1057000

[80] T.-H. Chang, W.-C. Liao, M. Hong, and X. Wang, “Asynchronous distributed
admm for large-scale optimization – part ii: Linear convergence analysis and
numerical performance,” IEEE Transactions on Signal Processing, vol. 64,
no. 12, pp. 3131–3144, 2016.

[81] E. Wei and A. Ozdaglar, “On the o (1/k) convergence of asynchronous
distributed alternating direction method of multipliers,” arXiv preprint
arXiv:1307.8254, 2013.

[82] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, “D-admm: A
communication-efficient distributed algorithm for separable optimization,”
IEEE Transactions on Signal Processing, vol. 61, no. 10, pp. 2718–2723, 2013.

[83] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson, “An asynchronous mini-
batch algorithm for regularized stochastic optimization,” in Decision and Con-
trol (CDC), 2015 IEEE 54th Annual Conference on. IEEE, 2015, pp. 1384–
1389.

[84] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication efficient dis-
tributed machine learning with the parameter server,” in Advances in Neural
Information Processing Systems, 2014, pp. 19–27.

[85] D. Davis, B. Edmunds, and M. Udell, “The sound of apalm clapping: Faster
nonsmooth nonconvex optimization with stochastic asynchronous palm,” in
Advances in Neural Information Processing Systems, 2016, pp. 226–234.

[86] K. Mohan and M. Fazel, “Iterative Reweighted Algorithms for Matrix Rank
Minimization,” The Journal of Machine Learning Research (JMLR), vol. 13,
no. 1, pp. 3441–3473, 2012.

[87] Y. Zhang and Z. Lu, “Penalty Decomposition Methods for Rank Minimiza-
tion,” in Proc. Advances in Neural Information Processing Systems (NIPS),
2011.

[88] I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk, “Iteratively
Reweighted Least Squares Minimization for Sparse Recovery,” Comm. Pure
Appl. Math, vol. 63, no. 1, pp. 1–38, 2010.

[89] M. S. Lobo, M. Fazel, and S. Boyd, “Portfolio Optimization with Linear and
Fixed Transaction Costs,” Ann. Oper. Res., vol. 152, no. 1, pp. 341–365, 2007.

[90] E. J. Candès and T. Tao, “The Power of Convex Relaxation: Near-optimal
Matrix Completion,” IEEE Trans. Info. Theory (TIT), vol. 56, no. 5, pp.
2053–2080, 2010.

[91] J. Xu, “Reweighted nuclear norm minimization for matrix com-
pletion,” Proceedings available online at https://webspace. utexas.
edu/jx598/www/Reweighted. pdf, 2011.

[92] V. De Silva and L.-H. Lim, “Tensor Rank and the Ill-Posedness of the Best
Low-Rank Approximation Problem,” SIAM J. Matrix Anal. Appl., vol. 30,
no. 3, pp. 1084–1127, 2008.

[93] S. Gandy, B. Recht, and I. Yamada, “Tensor Completion and Low-n-Rank
Tensor Recovery via Convex Optimization,” Inverse Problems, vol. 27, no. 2,
2011.

[94] B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network Latency Prediction for
Personal Devices: Distance-Feature Decomposition from 3D Sampling,” in
Proc. IEEE INFOCOM, 2015.

[95] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized
Network Coordinate System,” in Proc. ACM SIGCOMM, vol. 34, no. 4, 2004.

151

[96] I. Olkin, A. W. Marshall, and B. C. Arnold, Inequalities: Theory of Majoriza-
tion and Its Applications, 2nd ed., ser. Springer Series in Statistics. New
York: Springer, 2011.

[97] X. Chen, Z. Zheng, Q. Yu, and M. R. Lyu, “Web service recommendation
via exploiting location and QoS information,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 7, pp. 1913–1924, 2014.

[98] B. Liu, D. Niu, Z. Li, and H. V. Zhao, “Network latency prediction for personal
devices: Distance-feature decomposition from 3D sampling,” in Proc. IEEE
INFOCOM, 2015, pp. 307–315.

[99] R. Koenker, Quantile regression. Cambridge university press, 2005, no. 38.

[100] C. Chen, “A finite smoothing algorithm for quantile regression,” J. Comp.
Graph. Stat., 2012.

[101] A. Beck, “On the convergence of alternating minimization for convex program-
ming with applications to iteratively reweighted least squares and decompo-
sition schemes,” SIAM Journal on Optimization, vol. 25, no. 1, pp. 185–209,
2015.

[102] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of
block successive minimization methods for nonsmooth optimization,” SIAM
J. Optim., vol. 23, no. 2, pp. 1126–1153, 2013.

[103] M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified algorithmic
framework for block-structured optimization involving big data: With appli-
cations in machine learning and signal processing,” IEEE Signal Processing
Magazine, vol. 33, no. 1, pp. 57–77, 2016.

[104] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Collaborative web service qos
prediction via neighborhood integrated matrix factorization,” IEEE Trans.
Service Comput., vol. 6, no. 3, pp. 289–299, 2013.

[105] C. Eckart and G. Young, “The approximation of one matrix by another of
lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[106] W. K. Newey and J. L. Powell, “Asymmetric least squares estimation and
testing,” Econometrica, pp. 819–847, 1987.

[107] A. P. Singh and G. J. Gordon, “A unified view of matrix factorization models,”
in ECML PKDD. Springer, 2008, pp. 358–373.

[108] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion using
alternating minimization,” in Proceedings of the forty-fifth annual ACM sym-
posium on Theory of computing. ACM, 2013, pp. 665–674.

[109] P. Jain, R. Meka, and I. S. Dhillon, “Guaranteed rank minimization via singu-
lar value projection,” in Advances in Neural Information Processing Systems,
2010, pp. 937–945.

[110] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Goldstein, “Train-
ing neural networks without gradients: A scalable admm approach,” in Inter-
national Conference on Machine Learning, 2016, pp. 2722–2731.

[111] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of alternating
direction method of multipliers for a family of nonconvex problems,” SIAM
Journal on Optimization, vol. 26, no. 1, pp. 337–364, 2016.

[112] H. Li and Z. Lin, “Accelerated proximal gradient methods for nonconvex pro-
gramming,” in Advances in neural information processing systems, 2015, pp.
379–387.

152

[113] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, W. Paul,
M. I. Jordan, and I. Stoica, “Ray: A distributed framework for emerging ai
applications,” arXiv preprint arXiv:1712.05889, 2017.

[114] H. Avron, A. Druinsky, and A. Gupta, “Revisiting asynchronous linear solvers:
Provable convergence rate through randomization,” Journal of the ACM
(JACM), vol. 62, no. 6, p. 51, 2015.

[115] D. Borthakur, “Hdfs architecture guide,” HADOOP APACHE PROJECT
http://hadoop. apache. org/common/docs/current/hdfs design. pdf, 2008.

153

Appendix A

Preliminary Lemmas for
Chapter 7 and 8

A.1 Auxiliary Lemmas

Lemma A.1.1 ([68]). For all y← proxηh(x− ηg), we have:

〈g,y − x〉+ (h(y)− h(x)) ≤ −‖y − x‖22
η

. (A.1)

Due to slightly different notations and definitions in [68], we provide a proof here

for completeness. We refer readers to [68] for more details.

Proof. By the definition of proximal function, there exists a p ∈ ∂h(y) such that:

〈g +
y − x

η
+ p,x− y〉 ≥ 0,

〈g,x− y〉 ≥ 1

η
〈y − x,y − x〉+ 〈p,y − x〉

〈g,x− y〉+ (h(x)− h(y)) ≥ 1

η
‖y − x‖22,

which proves the lemma. ut

The following corollary is used for analyzing updates on a single block:

Corollary A.1.1. For all yj ← proxηhj (xj − ηgj), we have:

〈gj , yj − xj〉+ (hj(yj)− hj(xj)) ≤ −
‖yj − xj‖22

η
. (A.2)

154

Lemma A.1.2 ([68]). For all x,g,G ∈ Rd, if h : Rd → R is a convex function, we

have

‖proxηh(x− ηG)− proxηh(x− ηg)‖ ≤ η‖G− g‖. (A.3)

Proof. Let y denote proxηh(x − ηG) and z denote proxηh(x − ηg). By definition

of the proximal operator, for all u ∈ Rd, we have

〈G +
y − x

η
+ p,u− y〉 ≥ 0,

〈g +
z− x

η
+ q,u− z〉 ≥ 0,

where p ∈ ∂h(y) and q ∈ ∂h(z). Let z substitute u in the first inequality and y in

the second one, we have

〈G +
y − x

η
+ p, z− y〉 ≥ 0,

〈g +
z− x

η
+ q,y − z〉 ≥ 0.

Then, we have

〈G, z− y〉 ≥ 〈y − x

η
,y − z〉+ 〈p,y − z〉, (A.4)

=
1

η
〈y − z,y − z〉+

1

η
〈z− x,y − z〉+ 〈p,y − z〉, (A.5)

≥ ‖y − z‖2
η

+
1

η
〈z− x,y − z〉+ h(y)− h(z), (A.6)

and

〈g,y − z〉 ≥ 〈z− x

η
+ g, z− y〉, (A.7)

=
1

η
〈z− x, z− y〉+ 〈q, z− y〉 (A.8)

≥ 1

η
〈z− x, z− y〉+ h(z)− h(y). (A.9)

By adding (A.6) and (A.9), we obtain

‖G− g‖‖z− y‖ ≥ 〈G− g, z− y〉 ≥ 1

η
‖y − z‖2,

which proves the lemma. ut

Corollary A.1.2. For all xj , gj , Gj ∈ Rdj , we have

‖proxηhj (xj − ηGj)− proxηhj (xj − ηgj)‖ ≤ η‖Gj − gj‖. (A.10)

155

Lemma A.1.3 ([68]). For any g1 and g2, we have

‖P (x,g1, η)− P (x,g2, η)‖ ≤ ‖g1 − g2‖. (A.11)

Proof. It can be obtained by directly applying Lemma A.1.2 and the definition of

gradient mapping. ut

Corollary A.1.3. Let Pj(x,g, η) := 1
η (xj − proxηhj (xj − ηgj)). Then, for any Gj

and gj, we have

‖Pj(x,G, η)− Pj(x,g, η)‖ ≤ ‖Gj − gj‖. (A.12)

Lemma A.1.4 ([25]). Suppose we define y = proxηh(x − ηg) for some g. Then

for y, the following inequality holds:

Ψ(y) ≤ Ψ(z)+〈y − z,∇f(x)− g〉

+

(
L

2
− 1

2η

)
‖y − x‖2 +

(
L

2
+

1

2η

)
‖z− x‖2 − 1

2η
‖y − z‖2,

(A.13)

for all z.

Corollary A.1.4. Suppose we define yj = proxηhj (xj − ηgj) for some gj, and the

index j is chosen among M indices with uniform distribution. For other j′ 6= j, we

assume yj′ = xj′. Then the following inequality holds:

Ψ(y) ≤ Ψ(z) + 〈∇jf(x)− gj , yj − zj〉

+

(
Lj
2
− 1

2η

)
‖yj − xj‖2 +

(
Lj
2

+
1

2η

)
‖zj − xj‖2 −

1

2η
‖yj − xj‖2.

(A.14)

for all z.

Proof. From the definition of proximal operator, we have

hj(yj) + 〈gj , yj − xj〉+
1

2η
‖yj − xj‖2 +

η

2
‖gj‖2

≤ hj(zj) + 〈gj , zj − xj〉+
1

2η
‖zj − xj‖2 +

η

2
‖gj‖2 −

1

2η
‖yj − zj‖2.

By rearranging the above inequality, we have

hj(yj) + 〈gj , yj − zj〉 ≤ hj(zj) +
1

2η
[‖zj − xj‖2 − ‖yj − xj‖2 − ‖yj − zj‖2]. (A.15)

156

Since f is L-Lipschitz, we have

f(y) ≤ f(x) + 〈∇jf(x), yj − xj〉+
Lj
2
‖yj − xj‖2,

f(x) ≤ f(z) + 〈∇jf(x), xj − zj〉+
Lj
2
‖xj − zj‖2.

Adding these two inequality we have

f(y) ≤ f(z) + 〈∇jf(x), yj − zj〉+
L

2
[‖yj − xj‖2 + ‖zj − xj‖2], (A.16)

and therefore

Ψ(y) ≤ Ψ(z) + 〈∇jf(x)− gj , yj − zj〉

+

(
Lj
2
− 1

2η

)
‖yj − xj‖2 +

(
Lj
2

+
1

2η

)
‖zj − xj‖2 −

1

2η
‖yj − xj‖2.

ut

Lemma A.1.5 (Young’s Inequality).

〈a,b〉 ≤ 1

2δ
‖a‖2 +

δ

2
‖b‖2. (A.17)

157

	Introduction
	Nonconvex Optimization
	Convergence Criteria
	Approaches
	Algorithms

	Parallel and Distributed Optimization
	Overview of Thesis & Our Results
	Bibliographic Notes

	Related Work
	Matrix Completion via Rank Minimization
	Matrix Factorization
	Large Scale Optimization Algorithms

	Iterative Reweighted Schatten-p Norm for Matrix and Tensor Estimation
	Background
	Robust Matrix Completion via Schatten-p Norm Minimization
	A Family of Iterative Weighted Algorithms

	Convergence Analysis
	Relationships to Prior Algorithms

	Performance on Synthesized Low-Rank Data
	Extension to Tensor Approximation
	Performance Evaluation
	Single-Frame Matrix Completion
	Multi-Frame Tensor Approximation

	Proof for Lemma 3.3.1

	Quantile Matrix Factorization
	Background
	Problem Description
	From Quantile Regression to Quantile Matrix Factorization

	Algorithms
	Convergence Analysis
	Performance Evaluation
	Experimental Setup
	Ranking performance
	Recovery accuracy
	Impact of the latent feature dimension

	Expectile Matrix Factorization
	Background
	Expectile Matrix Factorization
	Algorithm and Theoretical Results
	Theoretical Results
	Experiments
	Experiments on Skewed Synthetic Data
	Experiments on Web Service Latency Estimation

	Detailed Proofs for Theoretical Results
	Preliminaries
	Proof of Lemma 5.4.2
	Proof of Lemma 5.4.1
	Proof of Lemma 5.4.3
	Proof of Lemma 5.4.4
	Proof of Theorem 5.4.1
	Proofs for auxiliary lemmas

	Asynchronous Blockwise ADMM
	Background
	Preliminaries
	Consensus Optimization and ADMM
	General Form Consensus Optimization

	A Block-wise, Asynchronous, and Distributed ADMM Algorithm
	Block-wise Synchronous ADMM
	Block-wise Asynchronous ADMM

	Convergence Analysis
	Assumptions and Metrics
	Main Result

	Experiments
	Preliminaries
	Auxiliary Lemmas

	Proof of Theorem 6.4.1
	Proof of Lemma 6.7.1
	Proof of Lemma 6.7.2

	Asynchronous Proximal Stochastic Gradient Descent
	Background
	Asynchronous Proximal Gradient Descent
	Convergence Analysis
	Assumptions and Metrics
	Convergence Analysis for Asyn-ProxSGD

	Experiments
	Proof of Theorem 7.3.1
	Milestone lemmas

	Proof of Corollary 7.3.1
	Proof of Milestone Lemmas

	Asynchronous Block Proximal Stochastic Gradient
	Background
	AsyB-ProxSGD: Asynchronous Block Proximal Stochastic Gradient
	Convergence Analysis
	Assumptions and Metrics
	Theoretical Results

	Experiments
	Proof of Theorem 8.3.1
	Milestone Lemmas

	Proof of Corollary 8.3.1
	Proof of Milestone Lemmas

	Conclusion
	Bibliography
	Appendix Preliminary Lemmas for Chapter 7 and 8
	Auxiliary Lemmas

