TR

T e R,

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

BT AT T 8T

University of Alberta

ERROR IDENTIFICATION AND DATA RECOVERY
IN MISR-BASED DATA COMPACTION

Wes A. Tutak @

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-

ment of the requirements for the degree of Master of Science.

Department of Electrical and Computer Engineering

Edmonton, Alberta
Fall 1997

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliotheque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
Our fle Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette theése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

il

Canadia

0-612-22683-2

- eHE T RV mimt S

A o e

University of Alberta

Library Release Form

Name of Author: Wes A. Tutak

Title of Thesis: Error Identification and Data Recovery in MISR-based Data Com-

paction
Degree: Master of Science

Year this Degree Granted: 1997

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material

form whatever without the author’s prior written permission.

Wes A. Tutak
16207 56 Street
Edmonton. AB
Canada. T5Y 2V1

Date: Aug. 29, (297

W s

20 L sg p bl

ARPRGAY 4,340 8 TV

b ———

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance. a thesis entitled Error Identification
and Data Recovery in MISR-based Data Compaction submitted by Wes A.

Tutak in partial fulfillment of the requirements for the degree of Master of Science.

faoling Suwt

Dr. Bruce Cockburn

t. Jonathan Schaeffer

BN et [UL S

ERVTR e o - e ————— S Yot T ot b |

Abstract

This thesis presents a new data recovery scheme for use in fault diagnosis in a
STUMPS-based testing environment. The proposed scheme transfers partially com-
pacted data from the CUT to the tester and uses analytical methods off-line to recover
the information lost during signature compaction. Our proposed data recovery scheme
significantly reduces the amount of data transferred from the CUT to the tester and
can reduce the tester time used for data retrieval.

Two alternatives to the primary data recovery scheme are presented. The first
alternative enhances the error identification resolutions by increasing the amount of
partially compacted information obtained from the CUT. The second alternative sig-
nificantly reduces the testing time and tester complexity by eliminating intermediate
signature comparison.

Extensive computer simulations are described that illustrate the merits and fea-
sibility of the new data recovery schemes using pseudorandomly generated circuit

responses and ISCAS85 benchmark circuits.

& oI AN B A, T T, e N LN

Acknowledgements

I would like to thank my supervisor, Dr. Xiaoling Sun. for her guidance and patience
throughout this research project. Her investment of extra time and effort on my behalf
is gratefully acknowledged. My thanks also go to the members of my supervisory
committee, Dr. Bruce Cockburn and Dr. Jonathan Schaeffer. for their valuable
comments. Most importantly, [would like to thank my wife, Darlene. for her support

and understanding during the course of my studies.

A Meaag BT

o T T TR AR AR AT W TR e A e AT AT A S TR T T T

Contents

1 Introduction 1
2 Background and Literature Review 8
2.1 Signature Analysis L. S
2.1.1 Serial Data Compaction and Pseudorandom Test Generation . 9

2.1.2 Parallel Data Compaction 10

2.2 The STUMPS Testing Environment L1
2.3 Existing Diagnosis Methods 13
2.3.1 Simulation-based Methods 13

2.3.2 Signature Analysis-based Methods 14

2.3.3 Error Control Code Method 53

2.4 Fault Diagnosis in a STUMPS Environment 16

3 Data Recovery Schemes 20
3.1 New Data Recovery Scheme 20
3.1.1 Modelling of Parallel Data Compaction 21

3.1.2 Construction of Space Compaction Sequences 22

3.1.3 The Primary Data Recovery Scheme 25

3.2 Definitions and Declarations 26
3.3 Two-known-stream Error Identification Algorithm 30
3.3.1 Algorithm L 33

3.3.2 Error Identification Example 37

3.3.3 Complexity Analysis 39

i

2 bt

Rand TR 2 L Y i ol S AL VLT e sl aai L Bl Lo AR

e

3.4 Two-unknown-stream Error Identification Algorithm
341 Algorithm L
3.4.2 Error Identification Example
3.43 Complexity Analysis

3.5 Alternative Data Recovery Schemes
3.5.1 With Non-overlapping Response Vectors
3.5.2 With Simplified Testing Procedure

4 Experimental Results
4.1 System Overview e
4.2 Data Recovery in Pseudorandomly Generated Response Vectors
4.2.1 Simulation Environment
4.2.2 Results for Overlapping Vectors
4.2.3 Results for Non-overlapping Vectors
4.3 Data Recovery in Benchmark Circuits

4.3.1 Simulation Environment

5 Conclusion
Bibliography
Appendices

A DR User Reference Manual

82

85

85

R R

R L WO P

PR iR T IRy

List of Figures

1.1

(8
.
—

o
o

gv
w

3.2
3.4

4.1
4.2
4.3
44
4.5
4.6
4.7

General testing environment

Signature analysis testing environment

An LFSR with P(z) =23 +z2+1
AMISRwith P(z) =23+ 22+ 1
The STUMPS architecture

Modified STUMPS architecture
Modelling MISR as concurrent compactions
Data construction system

Data recovery scheme

Software system block diagram
Graphical results for vector size 1024 x 16. 1 block
Nodeobject
Gate class hierarchy L.
Gateobject L,
A sample SparseMatrix A[J[]

The DynamicArray structure

6

1T s

List of Tables

3.1
3.2
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Left shifting MISR space compaction

Right shifting MISR space compaction
Equations derived for vector (v=1)
Equations derived for vector (v =2)
Equations derived for vector (v=3)

Error cancellations in the left compaction stream
Error cancellations in the right compaction stream

Non-overlapping left shifting MISR space compaction

Results for vector size 12816, 1 block (overlapped vectors)
Results for vector size 128x 16, 2 blocks (overlapped vectors)
Results for vector size 256x 16, 1 block (overlapped vectors)
Results for vector size 256x 16, 2 blocks (overlapped vectors)
Results for vector size 512x16, 1 block (overlapped vectors)
Results for vector size 512x16, 2 blocks (overlapped vectors)
Results for vector size 1024x 16, 1 block (overlapped vectors)

Results for vector size 102416, 2 blocks (overlapped vectors)

Results for vector size 128x16, | block (nonoverlapped vectors)
Results for vector size 128x16. 2 blocks (nonoverlapped vectors)
Results for vector size 236x 16, 1 block (nonoverlapped vectors)
Results for vector size 256x 16. 2 blocks (nonoverlapped vectors)
Results for vector size 512x16. 1 block (nonoverlapped vectors)

Results for vector size 512x16. 2 blocks (nonoverlapped vectors)

vi

64
6-4
65
65
66
66

4.15 Results for vector size 1024x 16, 1 block (nonoverlapped vectors)

4.16
4.17
4.18

Results for vector size 1024 x 16, 2 blocks (nonoverlapped vectors)

Characteristics of ISCAS85 benchmark circuits

Results of data recovery in standard benchmark circuits

67
67
69

TSNS T A e e

Chapter 1

Introduction

The economic problems of digital testing and fault diagnosis are some of the main
concerns in designing and manufacturing digital systems. Digital testing seeks to de-
termine whether a system is functioning correctly. Fault diagnosis attempts to locate
the failing components or silicon areas responsible for the malfunction if the system
has failed a test [2]. With integrated circuits (ICs) rapidly increasing in complexity
and decreasing in size, fault diagnosis is essential for IC manufacturing. It is used
in the early production phase to identify design and process errors in order to ef-
fect design corrections and yield improvements. In addition. it is used to analvze
devices that subsequently fail in the field to improve quality and minimize future
failures. Improvements to the fault diagnosis methods can impact the overall testing
and production cost.

Testing can be broadly categorized into voltage testing and parametric testing.
Voltage testing is concerned with the logic values of circuit outputs (voltage levels)
generated by input stimuli as compared with the logic values generated by a reference
circuit for the same stimuli. Parametric testing is concerned with the measured values
of circuit parameters, such as current. propagation delay or power consumption. and
whether they fall within predetermined thresholds. This thesis focuses strictly on
voltage testing and henceforth. the term testing shall mean voltage testing.

Testing can be either external or internal. External testing relies exclusively on
an external tester to supply stimuli to the circuit under test (CUT). and to capture

and evaluate the circuit responses. Its chief drawbacks are the expense of the com-

- -

R P

L T P ey P g ¢ ¥ A Ay <l

A A

plex. high-speed testing equipment (multi-million dollars): and the large volume of
data managed by the tester, resulting in long testing times. Internal testing. such
as built-in self-test (BIST), reduces the need for complex, expensive testing equip-
ment by including testing circuitry on-chip. As circuit packing density doubles every
18 months, an increasing amount of silicon area (normally < 10%) can be used for
BIST. By staying on-chip, BIST can proceed at higher internal circuit speeds making
effective testing of larger, more dense [Cs practical. Internal testing has become an
indispensable technique for testing deep sub-micron ICs.

The last distinction between testing methods is off-line versus on-line testing. A
test is characterized as off-line when the CUT must be taken out of normal operation
to be tested. On-line testing methods perform board-level or chip-level testing during
normal system operation. On-line testing is necessarily internal as a tester cannot
be utilized during the normal system operation. Due to design complexity and high
cost, on-line testing is mainly found in safety-critical systems.

Figure 1.1 shows a typical off-line testing environment. The testing process in this
environment consists of: (1) applying many stimuli to the CUT: (2) capturing the
generated circuit responses; and (3) comparing the responses from the CUT to ref-
erence good circuit values to render a “pass/fail” judgement. Two basic components
are needed for testing, whether external or internal: a mechanism to provide input
stimuli to the CUT, and a mechanism to evaluate the generated circuit responses. In
external testing these mechanisms are wholly contained within the tester. while in
BIST some mechanisms are implemented on-chip.

In an ideal testing environment, every CUT would be exposed to all possible input
stimuli during testing, termed ezhaustive testing. Due to time and storage constraints.
exhaustive testing is only practical for small circuits. For example. to exhaustively
test a 100-input circuit with a test system able to apply 1 billion test patterns per
second would require approximately 4 x 1013 years, i.e. several orders of magnitude
greater than the age of the universe. To keep testing costs low. the test of a single [
should be accomplished in mere seconds. A practical solution to this problem is the
random test [6]. A random test consists of a large, random selection of test patterns
used to expose the CUT to a sample of its input space. A truly random selection of test

patterns is undesirable for testing purposes since it is not repeatable (unless stored).

S A

v AT e Gy

et b SENER DU LN

Stimuli

Good Reference

Responses

Pass / Fail
Figure 1.1: General testing environment

Repeatability is necessary to simplify the comparison of circuit responses. Instead.
a pseudorandom test is used to approximate a random test. It has the properties of
a random test but is fully repeatable. A pseudorandom pattern generator (PRPG)
is a mechanism for generating repeatable sequences of pseudorandom test patterns.
PRPGs can be realized directly in hardware for BIST applications.

After applying an input stimulus, randomly generated or otherwise. it is neces-
sary to compare the circuit response with a good reference. The obvious approach
would be a direct bit-by-bit comparison of each response with its reference. This
is impractical, however, due to the time required to compare numerous circuit re-
sponses in the test and the high storage demands of many reference responses. A
more practical approach. suitable for BIST, is data compaction. Data compaction is
destructive data compression with the primary objective of distinguishing different
data streams. Data compaction is performed on the sequence of responses generated
by the CUT. The final result is termed the signature of the CUT. This signature is
compared to a precomputed good circuit signature to render a judgment on the CUT.
Thus, only a single comparison is performed involving a small quantity of data (typ-
ically 16 - 32 bits) permitting short testing times. minimal storage needs. and high
test quality. Several data compaction methods exist. including parity checking. tran-
sition counting and ones counting [6]. In practice. the mostly commonly used data

compaction method is signature analysis [6]. Figure 1.2 presents a general signature

analysis-based testing environment.

Stimulii
CcuT
Reference
Compactor R
Signature

Pass / Fail
Figure 1.2: Signature analysis testing environment

This thesis addresses issues in BIST employing PRPGs and signature analvsis.
Specifically, the problem of performing fault diagnosis in this testing environment is
investigated. Pass/fail testing is an integral part of IC manufacturing: each fabricated
part is placed on a tester for several seconds to determine whether it is functioning
correctly. Those [Cs that fail the test may require further tester time to gather
diagnostic information to identify the defect(s) responsible. Economic constraints
only allow mere seconds of tester time per IC. Thus improved methods of performing
fault diagnosis can impact the total manufacturing cost of ICs. This thesis explores
alternative diagnosis methods for [Cs.

When the test of a CUT produces a “fail” result, post-testing diagnosis attempts
to identify the physical defect or defects responsible. A very large scale integrated
(VLSI) circuit may contain millions of transistors. A “fail” in a pass/fail test of
an [C does not reveal which of the millions of transistors is defective. Therefore.
no design corrections/improvements can be made to eliminate the failure causing
problem: hence there is a need for post-testing diagnosis. Diagnosis of a CUT starts
from errors observed during testing and attempts to identify the faults responsible.

Errors are circuit responses inconsistent with reference responses. Faults are models

(Al d olobiiiachail albrth Lo inih Mt At e nentnl

IR AR th e I 1S T L b DL A S

of physical defects within a circuit that may manifest as errors under specific input
stimuli. While knowledge of circuit errors reveals the presence of defects in the CUT.
knowledge of the faults reveals the location of potential defects in the circuit. This
knowledge can be used to correct design problems or make design improvements to
enhance fabrication yield.

Signature analysis, while a boon to pass/fail testing, presents unique challenges
for fault diagnosis. Diagnosis requires a knowledge of the specific errors produced
in the circuit responses. Signature analysis, however, loses this information during
compaction toward the final signature of the CUT (typically 16 - 32 bits). Never-
theless, it is a widely used testing method due to advantages in testing speed and
ready application in BIST systems. Instead, to fulfill the needs of fault diagnosis.
special methods are needed to overcome the extreme data loss and obtain the lost
stimulus/faulty response pairs. Ideally, this should be done with restricted built-in
hardware. at-speed testing and least possible dependence on an external tester.

STUMPS! is a BIST architecture utilizing signature analysis first proposed by
Bardell and McAnney [5] (STUMPS is introduced in detail in chapter 2). Although
originally proposed for board-level testing, STUMPS has gained in popularity for
[C-level testing [12]. It consists of a PRPG to provide test patterns and a paral-
lel compactor to compact internal circuit responses. Test pattern generation and
response compaction occur internal to the STUMPS-equipped device. The tester ini-
tiates the test and at its completion obtains and evaluates the final signature from
the CUT. All circuit responses are lost during compaction and the final signature
contains very little information for diagnosis.

A fault diagnosis scheme for use in a STUMPS environment is given by Waicukauski
and Lindbloom [20]. This method partitions long circuit response sequences into short
blocks (256 test vectors), and compares the intermediate signatures of each block with
precomputed fault-free counterparts to identify blocks of responses that contain er-
rors. If a discrepancy occurs, the circuit responses in the faulty block are scanned
out in serial and stored for use in fault diagnosis. This method retrieves the uncom-

pacted erroneous circuit responses in the CUT and stores them on the tester. It has

!Self-Test Using MISR/Parallel SRSG (shift-register sequence generator)

I LTI AN

o # o e o v L

been shown that often only a few faulty blocks of circuit responses are necessary for
successful fault diagnosis.

Following data retrieval, actual fault diagnosis is a two-step process. Structural
analysis of the CUT and subsequent fault simulation are used to derive the fault(s)
responsible for the observed responses. First, structural analysis of the CUT is per-
formed to create a list of faults that may cause the erroneous circuit responses ob-
tained from the CUT. Each fault in the list is then simulated and the resulting
responses are compared with the retrieved responses. If they are equal. the fault is
considered as a possible explanation of the observed erroneous behavior. otherwise
it is rejected. The final result of the fault diagnosis process is one or more faults
modelling potential defects within the CUT.

The objective of this thesis is to explore alternative solutions to the data retrieval
method used in Waicukauski’s diagnosis scheme [19, 20]. The subsequent fault diag-
nosis procedures remain unchanged. In our solution. we propose to transfer partially
compacted data from the CUT to the tester. and to use analytical methods off-line
to recover the information lost during signature compaction.

Our proposed data recovery scheme significantly reduces the amount of data trans-
ferred from the CUT to the tester (typically by a factor of 8). and can eliminate the
need for decision making by the tester on every intermediate signature. As a result.
the tester time used for data retrieval for fault diagnosis can be significantly decreased.
while employing a less expensive tester to perform the task. Since a state-of-the-art
tester costs millions of dollars, our methods allow significant savings in the overall
testing and production cost.

Our simulation results show that we can achieve comparable fault diagnostic res-
olution as that of Waicukauski. It further validates the feasibility of our proposed
data recovery schemes. The remainder of this thesis is organized as follows.

Chapter 2 provides background information and literature review. Data com-
paction theory is discussed as a basis for the proposed data recovery scheme. The
STUMPS testing architecture is then presented in detail. Past diagnosis efforts are
reviewed. And lastly, fault diagnosis in the STUMPS environment is treated sepa-
rately.

Chapter 3 presents the new data recovery scheme. Two error identification algo-

R L

g

W TR R T s s

rithms used in the scheme are explained and stated with detailed examples of their
operation. Complexity analysis of the two algorithms is given. Lastly. alternatives of
the primary data recovery scheme are proposed with their advantages and disadvan-
tages.

Chapter 4 describes the experiments performed to test the performance and fea-
sibility of the data recovery schemes. The details of the simulation environments and
justifications are given. The experimental results are presented along with analysis.
Lastly, the software system used to perform the simulations is described.

Chapter 5 draws conclusions about the achieved results and summarizes the thesis.

Chapter 2

Background and Literature Review

This chapter presents the background topics relating to testing and diagnosis. Sec-
tion 2.1 reviews the signature analysis-based data compaction technique. Section 2.2
discusses the STUMPS testing architecture. which is the basis of our new data recov-
ery schemes. Section 2.3 presents a literature review of existing fault diagnosis meth-
ods, including simulation-based methods, signature analysis-based methods. and the

recent error control code method. Lastly, section 2.4 presents the current STUMPS

fault diagnosis scheme.

2.1 Signature Analysis

As introduced in chapter 1. signature analysis is a widely used data compaction
technique for the purposes of testing complex VLSI circuits [2]. It transforms the
generated response of a CUT into a compact signature (typically 16 - 32 bits). The
evaluation of the CUT is then simply the comparison of the obtained signature with a
precomputed reference signature; if the two are equal the CUT is judged “good™. oth-
erwise it is judged “faulty”. The compaction process can be automated and realized
in hardware as a linear feedback shift register (LFSR) to perform serial compaction or
a multiple-input shift register (MISR) to perform parallel compaction. This section

deals in detail with the operation of these two compactors.

v

AR LR SATEIS e Al it dl e T Th T o AR U

LERARNY L LSRN S

AR oA e g A

T RSN R VR AN

2.1.1 Serial Data Compaction and Pseudorandom Test Gen-
eration

Signature analysis is based on the concept of cyclic redundancy checking (CRC).
and is implemented in hardware with an LFSR [6]. A shift register is a collection
of connected storage elements such that the state of each element is shifted to the
next in response to a clock signal. An LFSR is a shift register with a linear feedback
network of XOR gates feeding certain storage elements. The next state of a storage
element is determined by its source network of XOR gates. To function as a data
compactor, the input of the LFSR is supplied the response of the CUT in serial. This
perturbs the state of the LFSR according to the feedback network. The signature is
the final state of the LFSR following the completion of the test.

The data compaction process performed by an LFSR is equivalent to polynomial
division over GF(2) [14]. A binary bit stream can be represented as a polynomial by
associating each bit of the stream with the coefficient of a unique power of a dummy
variable of the polynomial. For example. the bit stream b,b,,_; - - - bg is represented by
the polynomial b,z" +b,_1z" ! +--- +b9z°. The LFSR itself can be represented by a
polynomial, P(z), with the feedback connections indicated by non-zero terms of the

polynomial [6]. Figure 2.1 shows a sample LFSR with polynomial P(r) = z* +r* + 1.

i |

Input @] st —=(H— $2 ——l— Output

Figure 2.1: An LFSR with P(z) =2®+ 1% +1

The compaction process viewed as polynomial division is as follows. The serial
input sequence to be compacted is the numerator polynomial. M (z); the LFSR per-
forming the division is the denominator or divisor polynomial. P(r): the serial output
of the LFSR is the quotient polynomial, @Q(z); and the final state of the LESR is the
remainder polynomial or signature, S(z). Mathematically, signature compaction is
formulated as:

_ M(x)

Q(r) = (7] + S(r).

To perform the polynomial division, the LFSR is initialized to an all-zero state and
the serial input sequence, M(z), is presented to the LESR input, high-order bit first.
The quotient bit sequence, @Q(z), is shifted out of the LF'SR output. high-order bit
first, and the final state of the LFSR following compaction is the signature, S(r).

As well as serving as data compactors, LFSRs can be used for test pattern gener-
ation. An LFSR, initialized to a non-zero state, will cycle through a pseudorandom
sequence of states with successive applications of a clock signal. The sequence of
states is determined by the polynomial of the LFSR. An LFSR that generates the
maximum length sequence of non-repeating states is termed a primitive LFSR. A
primitive m-bit LFSR will generate all states corresponding to the possible combina-
tion of m bits but for the all-zero state. The maximum length sequence of states of

an m-bit primitive LFSR is thus (2™ — 1) states.

2.1.2 Parallel Data Compaction

A drawback of employing LFSRs for data compaction is the single data input which
only permits the compaction of a serial data stream. To compact multiple data
streams in parallel, an LFSR can be modified into a MISR [6] by adding an input and
an XOR gate between every two adjacent register cells. retaining the same feedback
connections as the original LFSR. An m-bit MISR is able to compact m bits of data

per clock cycle. Figure 2.2 shows an example MISR with P(r) = r® + r? + 1.

(«P—— S0 St | P s2 —l— Ourput

[nput 0 [nput 1 Input 2

Figure 2.2: A MISR with P(z) =3+ 22+ 1

For notational convenience, a polynomial can be represented by a binary sequence
where each non-zero coefficient corresponds to a “17. and “07. otherwise. As an
example. the polynomial. P(z) = z® + r? + . can be represented by the binary

sequence. 1101.

10

B T ST Y

e T e

LR T T Tt

2.2 The STUMPS Testing Environment

Many off-line BIST architectures employ signature analysis along with other tech-
niques such as scan testing and partitioning [2] to increase the testability of a circuit.
The goal of scan testing is to transform a sequential circuit into a purely combina-
tional circuit for testing purposes. The response of the circuit is then solely dependent
on the current stimulus, not past stimuli. To achieve this goal requires access to the
internal circuit storage elements where normally no such outside access exists. To that
end. scan testing replaces all memory elements with special scan registers connected
to form scan chains. A scan register is a dual-mode memory element: in normal mode
data is loaded from the data input line; in scan-mode data is loaded from a separate
scan-in port. The scan-in and scan-out ports of a scan chain are made externally
accessible, permitting data to be serially scanned in or out of the internal memory
elements. The other testing technique of circuit partitioning attempts to divide a cir-
cuit into many sub-circuits that can be tested separately. Partitioning can be realized
with scan testing by creating many separate scan chains to divide a circuit.

An off-line BIST architecture incorporating scan testing and partitioning is the
self-test using MISR/parallel SRSG' (STUMPS) testing architecture [5]. It was orig-
inally proposed to test multichip modules at the board-level. A special testing chip
implements the SRSG and MISR components of STUMPS which. respectively. gen-
erate test patterns for the other chips on the board and compact in parallel their
output responses.

Each chip to be tested must utilize scan-based flip-flops [5]. configured into scan
chains (or data streams). A number of scan chains, per board. are formed by directly
connecting the scan-in and scan-out ports of individual chips. The scan chains are
supplied pseudorandom test patterns in parallel from the SRSG. By scanning in
known test patterns into the scan chains, a sequential circuit is converted into a
combinational circuit during testing. Combinational circuits are easier to test as
their response depends only upon the current input vector. not on past inputs.

The scan chains provide the inputs to the combinational logic blocks and capture

the generated responses. Normal circuit operation is governed by a system clock or

LAcronym of shift-register sequence generator.

11

WY RSeETE TS AT Y

S T T TR TR e TR I e

clocks. Scan testing also introduces a separate test clock to govern the serial flow
of data within scan chains. With multiple applications of the test clock. data from
the SRSG is scanned into the scan chains, loading test patterns into the chips to be
tested. The regular system clock is then asserted once to capture the responses from
the chips back into the scan chains. The subsequent test patterns are then scanned
in, while simultaneously, the circuit responses are being scanned out to the test chip
where they are compacted by the MISR. After the application of many test patterns.
the final signature is scanned out of the test chip and compared with a error-free
signature to determine whether response errors were detected.

STUMPS has since become a standard [C-level BIST architecture [12]. Memory
elements are realized as scan registers connected to form scan chains. The functions
of the test chip are implemented directly within the IC as dedicated BIST resources.
Figure 2.3 shows the [C-level STUMPS architecture showing the configuration of scan
chains, SRSG and MISR.

SRSG

Combinational L Scan
Chain

Combinational

Logic

Logic L]

MISR

Figure 2.3: The STUMPS architecture

2.3 Existing Diagnosis Methods

Testing and diagnosis have different purposes and conflicting requirements. Testing
should be fast, comprehensive and inexpensive since it is performed on every device
manufactured. Techniques used to speed testing, such as signature analysis. severely
hamper fault diagnosis by compacting, and losing, the circuit responses necessary for
diagnosis. Diagnosis is only performed on devices that fail testing, thus the primary
requirements are of diagnostic accuracy and detail. The results of diagnosis must be
accurate and specific to focus attention on the location of the defect so that it can be
quickly corrected. To reduce cost, it is desirable to perform diagnosis with existing
testing methods and with minimal tester support.

A circuit may have countless possible physical defects that can produce faulty
behavior. Diagnosis employs fault models to systematically characterize the majority
of the potential defects. A fault model is a set of rules and assumptions which describe
the effects that defects have on digital circuits [2]. The results of fault diagnosis are
one or more faults (or fault classes) in the adopted fault model. Many fault models
have been proposed to describe various defects, including: briding faults. transition
faults, delay faults, and stuck-open faults. The most common is the stuck-at fault
model. it assumes fault-free logic gates with defects causing signal lines between gates
to be permanently stuck at either logic 1 or logic 0, regardless of stimulus [2]. Much
of the early work in fault diagnosis has been based on the assumption of the stuck-at

fault model. This section reviews published literature as a history of fault diagnosis.

2.3.1 Simulation-based Methods

Early diagnosis approaches attempt to enumerate the behavior of faults in the as-
sumed fault model [1]. A fault dictionary is compiled by simulating the CUT with
every fault and recording the corresponding circuit response. Diagnosis then consists
of the simple task of locating the observed response of the CUT in the fault dictionary
and noting the corresponding fault(s). Disadvantages of this technique are set by the

limits of the adopted fault model and the inability to diagnose multiple faults.

13

B R LV \ LT

2.3.2 Signature Analysis-based Methods

Signature analysis based methods attempt to solve the problem of response data
loss inherent with data compaction. Considerable effort has been made in identifying
and locating errors in the uncompacted circuit responses based on the observed signa-
ture [6, 8, 9, 11, 13, 19, 20, 21]. There are three types of signature analysis-based fault

location techniques: fault dictionary, algebraic analysis and intermediate signatures.

Fault Dictionary

The fault dictionary-based method constructs a look-up table containing the modeled
faults and their corresponding faulty signatures [6]. Diagnosis consists of locating the
observed faulty signature in the dictionary. The small size of a signature makes this
method limited at discriminating individual faults as many faults may produce the

same signature.

Algebraic Analysis

Algebraic analysis methods attempt to compute the erroneous circuit response from
the faulty signature obtained from testing.

The first such method was given by McAnney and Savir [11]. It uses an LFSR
that is the reciprocal of the LFSR used for compaction. The reciprocal LFSR is
initialized with the faulty signature obtained from the CUT then clocked to reverse
the compaction and compute where the error was introduced. This method constrains
the test length to be no greater than the state space of the LESR. At most two errors
in the test sequence can then be identified.

A similar method by Chan and Abraham [8] is applicable to both serial and parallel
compactors. [t uses state transition matrices to describe the compaction process. An
analytical formulation is given to calculate the error location in the test sequence.
The method is limited to identifving which compaction step introduced the errors or
the channel(s) containing the errors.

A method employing a number of cyclic registers to perform compaction was
presented by Savir and McAnney [13]. Utilizing multiple cycling registers. the errors

in the test sequence are computed from the signatures remaining in the registers. The

14

o

s ar

P MR e s P g e PV

number of errors that can be effectively identified is approximately half the length of
the shortest register. Three cycling registers of relatively prime lengths (i.e. sharing
no common divisors) can identify up to 50 errors in a sequence of 2%° bits using a
300-bit signature. Disadvantages include the physical size of the long cycling registers
and the added storage for a fault dictionary of 300-bit signatures.

In {9], a partitioning scheme to decompose a final error signature into partial error
signatures is presented. Existing methods are then used to derive the error sequence
for each partial error signature. The final error sequence is given as the product
of the partial error sequences. Although this scheme can identify multiple errors. a
particular disadvantage is the time and space complexity of the partitioning algorithm

for significant numbers of errors.

Intermediate Signatures

Intermediate signature methods are based on signatures obtained at regular intervals
during testing. For diagnostic purposes, circuit responses are partitioned into short
blocks. An intermediate signature is obtained after the compaction of each block of
responses. The intermediate signatures are compared with error-free counterparts to
target failing blocks for diagnosis.

Waicukauski's intermediate signature method [19, 20] is described in chapter | on
page 5. Intermediate signatures are computed every block of 256 test vectors. Blocks
with faulty signatures are targeted for data retrieval and subsequent fault diagnosis.
This method is treated further in section 2.4.

An alternative approach is employed at Northern Telecom [21]. In this method
intermediate signatures are computed after every test vector. Data retrieval is not
performed. Instead. fault simulation is used to locate the fault or faults that produce

the observed intermediate signatures.

2.3.3 Error Control Code Method

The diagnosis method in [22] uses a special programmable MISR (PMISR) to perform
compaction. A set of equation based on Reed-Solomon codes [10] are obtained from

the faulty signatures and solved to identify the error-capturing frames. Each scan

15

ST oy R S EREEERL T T

chain is then retested to locate the actual erroneous flip-flops. Drawbacks of this
method include the need to retest the CUT with different configurations of the PMISR

and the computational expense necessary to solve the system of equations.

2.4 Fault Diagnosis in a STUMPS Environment

Fault diagnosis is an important process in the design of IC chips with sub-micron
technologies. As well as helping to correct design errors, it can be used to improve
vield and increase circuit reliability. Fault diagnosis is the opposite of fault simulation:
it starts with a stimulus and observed faulty circuit response. and then determines
the fault set that can produce the faulty response given the same stimulus. To reduce
the fault set, many stimulus/faulty response pairs must be considered. Knowledge
of the fault(s) potentially responsible for the observed behavior is then used by the
designer to correct design problems or improve yield.

Fault diagnosis requires that many stimulus/faulty response pairs be obtained
from a CUT. However, this is at odds with current internal testing methods. The
necessity of testing increasingly dense ICs has led to the innovation of BIST. One
form of BIST is STUMPS which is both an aid and a hindrance to fault diagnosis.
It is an aid since it permits the observation of many internal circuit nodes. aiding
diagnostic resolution. However, it is a hindrance, as during testing these observation
points are inaccessible from off-chip. Additional, post-testing time must be expended
to scan out this internal circuit information where it can be used for fault diagnosis.

Once initialized, the testing of a STUMPS equipped IC occurs mainly on-chip.
The result obtained is a final signature (typically 16 - 32 bits long) which is the com-
pacted response of the CUT for the entire test set. This signature is then compared
off-chip by the tester with the good signature (obtained through logic simulation
of the good circuit) to produce a pass/fail judgment of the IC. By staying mainly
on-chip, testing can proceed at much higher speeds.

The final signature is suitable for rendering a pass/fail judgment of a CUT. how-
ever on its own it is grossly inadequate for fault diagnosis. Consider a STUMPS
implementation consisting of 16 data streams, each of 1024 bits and a test length

of 100.000 patterns. Each circuit response consists of (16 x 1024) bits or 2 Kbvtes

16

of information; while the entire test consists of 200 Mbytes of information. The cir-
cuit response information lost during data compaction is unrecoverable from a final
signature of several bytes. This makes [C-level fault diagnosis a difficult and costly
task.

Data retrieval is one method for obtaining the lost circuit response informa-
tion [20]. Recall that in STUMPS, access to all data streams is only available through
two ports, a scan-in port for input and a scan-out port for output. Data retrieval in
STUMPS is the process of scanning out in serial the contents of all data streams to
obtain the response of the CUT.

To perform fault diagnosis, many stimulus/faulty response pairs must be scanned
out from the CUT. However, scanning out the entire circuit response for every stimu-
lus in the test set is time-consuming and unnecessary. Not every circuit response will
be faulty, certain stimuli may not induce errors in circuit responses. producing the
same responses as the good circuit. Fault-free circuit responses can be determined
through circuit simulation, thus it is desirable to only scan out the faulty circuit
responses.

For the purposes of data retrieval, the test set is divided into discrete intervals
of one or more test patterns. Each interval has an intermediate signature computed
by logic simulation of the good circuit. This is the intermediate result of compacting
all responses up to and including the responses from the current testing interval.
All such signatures are compiled into a dictionary of intermediate signatures. During
data retrieval, the intermediate signatures obtained from the CUT are compared with
their counterparts in the dictionary. A discrepancy indicates that the preceding test
interval must contain at least one faulty response, whereupon all responses in the
present interval are scanned out to be used for fault diagnosis.

Consider a system with intervals consisting of 100 test patterns. the specific steps

of the data retrieval process are [6]:

Step 1: Initialize the BIST circuitry in the CUT to the beginning of the test se-

quence.
Step 2: Apply the next 100 test patterns to the CUT.
Step 3: Scan out the intermediate signature from the CUT.

17

B e

B Ll e RRC ST

Step 4: Compare the signature with the counterpart in the dictionary. If the sig-
natures are the same, the state of the BIST circuitry in the CUT is restored
to the state before the signature was scanned out. Otherwise, if the signatures
differ, the BIST circuitry in the CUT is restored to the state at the start of the
current interval. The 100 test patterns are then re-applied. but instead of being
compacted each response is scanned out and stored for further fault diagnosis.
Once all responses in the interval have been scanned out. the BIST circuitry in
the CUT is restored to that of the good circuit at the end of the current test

interval.
Step 5: If there are more intervals in the test set. go to Step 2.

Step 6: The stored responses are transferred from the tester to a workstation where

fault diagnosis can proceed off-line.

After data retrieval is complete, fault diagnosis [20] is performed to determine the
fault class(es) responsible for the observed faulty responses. In addition to the faulty
responses, the following data and systems are necessary to perform fault diagnosis:
(1) a structural description of the CUT, (2) a fault simulator. and (3) a PRPG to
generate the test patterns in the test. The first step of fault diagnosis involves the
structural analysis of the circuit to create a minimal fault list. Subsequently. each
fault in the list is simulated with the generated stimuli and the resulting responses
are compared with the retrieved responses. If the simulated responses match all
retrieved responses, the fault is accepted. Otherwise, the fault is rejected as it does
not reproduce all observed responses. The final result of fault diagnosis is a set
of faults that can reproduce the observed faulty behavior and thus are potentially
responsible for the defect(s) in the CUT.

As can be seen from the previous steps, data retrieval is a complex. lengthy process
as compared with pass/fail testing. A pass/fail judgment of a CUT involves a single.
uninterrupted application of the test set followed by the scan-out and comparison of
the final signature. The only tester-CUT interaction is at the start to initiate the
test. and at the end to scan-out the final signature. Data retrieval. on the other

hand. demands many more interactions between the tester and the CUT. Each test

.._.
(v

interval is initiated and halted. the intermediate signatures are scanned out. the BIST
circuitry is reset, and ultimately the circuit responses are scanned out. Data retrieval
occupies an expensive testing system for an extended length of time that can otherwise
be used to verify many more newly fabricated ICs. It transfers more data from the
CUT than may be necessary to accomplish fault diagnosis.

The data recovery schemes presented in the following chapter attempt to ad-
dress these shortcomings. The new schemes obtain the faulty circuit responses from
partially compacted information transferred from the CUT and exploit analvtical

methods implemented off-line.

SYTRET rEETTe T L T ATy R T

ST TR A oIt AR

Chapter 3

Data Recovery Schemes

In this chapter we present a new scheme for data recovery in MISR-based data com-
paction. The primary data recovery scheme [16] is introduced in section 3.1. New
terms with examples, are defined in section 3.2. Two new error identification algo-
rithms, central to the data recovery scheme, are presented in sections 3.3 and 3.4.
respectively, along with detailed examples of their operation and analysis of their
computational complexity. The first algorithm is able to perfectly identify all errors
confined to any two known data streams. The second algorithm generalizes this ap-
proach to unknown data streams, permitting the identification of errors in any two
data streams. Lastly, alternatives to the primary data recovery scheme are proposed
in section 3.5. The alternatives enhance the primary scheme by increasing the amount
of information available for error identification and by significantly reducing testing

time.

3.1 New Data Recovery Scheme

The proposed data recovery scheme consists of both a hardware and software compo-
nent. The hardware component is an additional BIST resource in the form of a second
MISR added to the STUMPS architecture. The software component implements error
identification algorithms that compute the erroneous data bits in the uncompacted
circuit responses. The erroneous data bits are combined with the good circuit re-

sponses obtained by simulation to produce the uncompacted circuit responses. The

20

new scheme replaces the data retrieval method presented in chapter 2. [t requires
additional BIST hardware and off-line computation in exchange for the elimination
of extra tester-CUT interactions and reduction of the volume of data transferred
between tester and CUT.

Recall from chapter 2 that the traditional STUMPS architecture has a single MISR
that compacts the circuit response. The necessary hardware support for the data
recovery scheme consists of the standard STUMPS architecture with the addition
of a left shifting MISR and a corresponding scan-out port. as shown in figure 3.1.
With two MISRs, one shifting left and another shifting right. two different quotient
sequences, @1, and Qr, can be obtained from the MISRs. The quotient sequences
are the only information obtained from the CUT for data recovery. The proposed
data recovery scheme uses analytical techniques to compute the circuit responses lost

during the data compaction based on the quotient sequences.

PRPG

y '3

QL(X) - LEFT MISR

v vy y

RIGHT MISR — QR(x)

Figure 3.1: Modified STUMPS architecture

3.1.1 Modelling of Parallel Data Compaction

The signature compaction process in a MISR can be considered as two concurrent
compaction processes [23]. The first process is space compaction which transforms

n. m-bit words into a serial stream of (n + m — 1) bits. which is termed the space

21

Bt e Ta i LN

N

B e e s e T

compaction sequence. The second process is time compaction which performs poly-
nomial division of the space-compacted stream by an LEFSR with the same feedback
polynomial as the MISR. An example of the two processes is shown in figure 3.2.
This dual view of MISR-based data compaction permits the construction of the space
compaction sequence from the quotient sequence and the signature. The space com-
paction sequence can then be used to identify errors in the uncompacted circuit re-
sponse. In figure 3.2 it can be seen that each bit of the space compaction sequence is
the modulo-2 sum of at most three response bits. Thus. errors in these response bits
are localized to this one bit of the space compaction sequence. No such localization
of errors exists in the quotient sequences, however: the first introduced error bit will

perturb many subsequent bits in the quotient sequence.

Circuit
Time Responses
5 111 T
4 1o ©110
3 101 |n = : 101
2 110 1o :
1 101 : :
:6') IOI:M(X)r L Q)
m RA LR XL R LFSR

-
v m+n-1
- Qx) Space Time
-MISR Compaction Compacrion

Figure 3.2: Modelling MISR as concurrent compactions

3.1.2 Counstruction of Space Compaction Sequences

We term the reverse of signature compaction data construction. Thus. equation
M(z) = P(z)Q(z) + S(z)

can be considered as the process of constructing the input sequence. M(x). from the
given quotient sequence, Q(r), divisor polynomial. P(z), and signature. S(r).
Consider a data block of (n x m) bits. where n and m are the numbers of rows and
columns of the data block, respectively. Let M () be the (n+m — 1)-bit serial stream
space compacted by an m-bit MISR. We assume that the bits which made up Q(r)

are collected during the data compaction. By linearity. the process of constructing

) .)

R MR i AL e TV e S LW P e

M(z) from the given P(z), Q(z) and S(z) can be considered as:
M(z) = My(z)+ Ma(z)+ --- + Mu(z) + S(z),

where Mi(z) = Q(z)P(z), and Qk(z) equals the quotient, Q(z), with all bits except
the k-th bit set to 0. During compaction, a Q(z) bit is shifted out of the MISR at
each clock cycle. This bit can then be used to build one subsequence, M} (r). and to

complete the construction of one bit of M(z).

Example 3.1 Consider the MISR in figure 2.2, with P(z)=1101. and the data block
and the space compaction stream, M (z)=1011101, in figure 3.2. The Q(z) collected
during time compaction is 11000, and the signature, S(z), is 001. According to the

partial construction method described above, we have:

My(z) = 1101000; M,(z) = 0110100; M;(x) = 0000000; M,(x) = 0000000:
Ms(z) = 0000000. and
M(z) = M (z) + Ma(z) + Ms(z) + My(z) + Ms(z) + S(z) = 1011101.

Data Construction

/ Mechanism \ """""""""""""

0000 1101=P(x)
R

|
T 1
1 1 1 :
| | 0 ‘ 4+ POLYg
'
1 0 1
I ! 0 o
4
I 0 |)
‘ ‘ ‘ TSR p
MISR, -
) 1 1 l
— MlSRL .
L MR
A L AR

Figure 3.3: Data construction system

Figure 3.3 depicts an implementation of the data construction technique developed

by Dr. Sun et al. {I5. 17]. which can be realized in either hardware or software.

23

The system consists of the following components. M[SRg and M [SR; implement
the divisor polynomial, Pr(z)=1101, and its reciprocal, P (z) = LOLl. respectively.
Qc(z) and Qgr(z) are the quotient sequences obtained during the data compaction
in real time. The memory contains the predetermined error-free space compaction
sequences, M;(z) and Mg(z). TSRr and TSRg are (m + 1)-bit left and right shift
registers, respectively. POLY; and POLYg are 2-1 MUXs. Q. and Qg serve as
the MUX Select signals to construct My(z) and Mp(z), respectively. The binary
representations of the polynomials of the MISRs are chosen when Select=1: otherwise

all zeros are chosen. The output of the system is the compaction sequence error masks.
Ar =ML s M|
Ar=Mp & My ,
generated in real-time during testing of the CUT. The proposed data recovery system
then uses the 4, and Ag sequences to recover the information bits lost during data
compaction.
We explain the right shifting operation of the system using the data in figure 3.2.
where m=3, n=5, Mp(r) = Mg(z)=1011101 and Qgr(r)=11000. The operation of

the left shifting process is symmetric.
1. The most significant (m + 1) bits of Mg(z), 1011. are loaded into TS Rr.

2. The first 3-bits of the (3 x 3) circuit response. 101, are fed into and compacted
by the two MISRs simultaneously. The first 1 output bit of Qr(z) from M /S Rp
causes 1101 to be selected by POLYRr. In the case of a 0 output bit of Qg(.r).
0000 is selected.

3. The contents of TSRp are XORed with that of POLYR producing 0110. which
is then stored back to TSRp.

4. The contents of TSRp are shifted 1-bit to the left and 1-bit of the remaining
Mp(x) in memory is simultaneously shifted into TSRg. The bit 0 of TSRg is
shifted out. A O indicates “no error” in the last bit of the space compaction

sequence. and a 1 indicates “an error”.

(1

. Repeat steps 2 to 4 until the end of the data compaction process.

-)\l

3.1.3 The Primary Data Recovery Scheme

The newly proposed data recovery scheme takes as input the left and right quotient se-
quences and produces as output the uncompacted circuit responses. Figure 3.4 shows
a block diagram of the data recovery scheme. The first step entails the construction
of the left and right space compaction sequences, M; and Mpg, from the quotient
sequences, @1 and Qg, obtained from the CUT. The space compaction sequences
with their precomputed error-free counterparts, M} and Mp, are used to compute
the compaction sequence error masks, A7 and Ar. These are used by the error identi-
fication algorithms to compute the errors present in the original uncompacted circuit
responses. Finally. the identified errors are combined with the good circuit responses.

obtained by simulation, to produce the complete uncompacted circuit responses.

0o 11
I 00 /
1 1 o
a 1 0

cuT

QL Data Construction QR ML . MR
M| v
s

Error {dennficanon

)

! Logic
[denufied Enroneous . Simulator
Dana Bits in i

Figure 3.4: Data recovery scheme

The new data recovery process proceeds as follows:

Step 1: Initialize the BIST circuitry in the CUT.

Step 2: Capture the Q; and Qpr sequences from the left and right shifting MISRs

[
It

WWRFE g Dhrggts W A e

after a faulty block is identified by the comparison of intermediate signatures

during a test.

Step 3: Reconstruct the left and right space compaction sequences. M| and Mpg.

from the Q. and Qg sequences, respectively.

Step 4: Invoke the analytical error identification algorithms to compute the set of

erroneous circuit response bits that produced the My and Mp sequences.

Step 5: Combine the results of step 4 with the good circuit responses obtained via

logic simulation to obtain the faulty circuit responses.

Step 6: Proceed with further fault diagnosis to locate defective components/areas

based on the recovered erroneous circuit responses obtained in step 5.

The following section formally defines the terminology used. The subsequent
sections present the error identification algorithms required by the data recovery

process (step 4).

3.2 Definitions and Declarations

The basic entity used in the discussion of the error identification algorithms is the
response vector, which is the response of the CUT to one stimulus. [n a STUMPS
environment, the response vector can be viewed as an (n x m) data block. where n
is the length of each data stream (assuming all data streams are of equal length).
and m is the number of data streams compacted in parallel by the m-bit MISRs.
Further, assume that V' such response vectors were generated by |’ test patterns or
test vectors.

Our data recovery scheme employs two MISRs during data compaction. one shift-
ing to the left and another shifting to the right. In our model of MISR-based com-
paction, the circuit responses can be viewed as both a left and right space compaction

that produce the left and right space compaction sequences. respectively.

Definition 3.1 A response vector is an (n x m) collection of data bits generated by

the CUT from the application of one test pattern.

26

ST AL e .

Bl

Definition 3.2 The left space compaction sequence. denoted as M (r). is the se-
quence of bits resulting from the space compaction performed by the left shifting
MISR. Further, M;(z), denotes the error-free left space compaction sequence ob-
tained by simulation of the good circuit. Analogously, for the right-space compaction.

we have Mp(z) and Mp(z).

Any data bit in a response vector can be identified by the row and columns indices.
t. j respectively. indexing into an (n x m) data block. A test set will consist of some
number V' compacted response vectors. Elements are further discriminated according

to their respective response vector, v.

Definition 3.3 An element is a data bit in one (n x m) response vector. For a test

v

¢;» can be uniquely identified by the tuple

length of V' vectors, any element, written F
(v. 7, j), where v is the vector (1 < v < V), { is the data row (1 < i < n). and J is

the data column or data stream (1 < j < m).

Elements in the left or right compaction are grouped into left and right space
compaction columns, respectively. The left space compaction columns of response
vector v. are labeled from left to right as L}, L3, ..., L%, . _,. Similarly the right
space compaction columns of response vector v, are labeled from right to left as

i Ry, ..o Ry i As with individual elements. space compaction columns are
identified as to their corresponding vector, v. Associated with each space compaction
column is a unique key element which is used to construct all member elements of
the column. Tables 3.1 and 3.2 show the left and right response vector configurations

for (V=3n=4m=4).

Definition 3.4 A space compaction column is the set of data bits whose modulo-2

sum forms one bit of a space compaction sequence.

Tables 3.1 and 3.2 show a three vector configuration. A specific feature of note
is the overlapping compaction columns between individual response vectors. Specifi-
cally. every two consecutive response vectors share (m — 1) compaction columns. A

compaction column can have elements from two consecutive vectors.

E-:i!l E-\;‘Z E:;S Eg%
Eg.l E§.2 Eg." Eg-l
E}, E}, E3, E3,
E{, E, E,; Ei,
E}, Ej, Ej; Ei,
E3, E3, Ei; E3,
Eg.l E§.2 E%,S E;A
E{. Ej. E}, El,
Ei, Ei. El; Ei,
E;, E3;, E3; Ejy
E3. Eix Ei; EBi,
Ei, Ei, Eis Ei,

Ly Ly Ly LY LY L} L}
L2z 2 L2 L2 L2 L2
L L3 ¢ oy L} oL oL

Table 3.1: Left shifting MISR space compaction

Example 3.2 In table 3.1, compaction columns L2, L2. L3 overlap columns L}. L}.
p 1+ L2- L3 P 5

L%, respectively; likewise, columns L3, L3, L3 overlap columns L2, L2, [2.

Definition 3.5 The key elements of the left space compaction columns are E| . E| ,.

1 c ¢ 5 —_— 5 e
coos E{nyand EY, where:=1.2,3,...,nand v=1.2.3..... V.

Definition 3.6 The key elements of the right space compaction are E} . E|,.

E} ., and EY|, wherei =1,2,3,....nand v =1,2,3..... V.

Example 3.3 The key elements of the response vectors in tables 3.1 and 3.2 are
shown in bold. For instance. the key element of column L2 is £2, (table 3.1). and

that of R3 is EZ, (table 3.2).

Definition 3.7 Given a key element, EY;, the column members are the elements in

the corresponding space compaction column.

Example 3.4 For key element £, in table 3.2. the members of the space compaction

column in the right compaction are: { £Z,. EZ,. E2,. E?, }.

[
v

ST TR T T T LA FE IR TV TR AT T e e, e e e 0t

co T T TR T e TR

3 3 3 2
E(,l E-t.2 54,3 E—L-l
3 3 3 3
Ea.l ES,’.’ ES.J 53.4
3 3 3 3
E2,l E2.2 E2.3 E2.-!

3 3 3 3
El,l El,2 El -3 El B

Ei. Ei. El, E,
Eg.l E§.2 Eg.B E§4
EI. El. E3, E,

El. Ef. Ef, Ei,

Bi. El. Bl Ei
Eé,l E§,2 EZ:L! E:i.-i
Ei. Ei. Ei, Ei
Ei, El. Eis Ei,

Rl R, R R, R, R, Rl
RR R R R B R

R R
Table 3.2: Right shifting MISR space compaction

R
mnén
¥
&£ R

R

Definition 3.8 The left and right space compaction sequence error masks. denoted

as Ar(z) and Ag(z) are defined as:

Ar(z) = My(z) 5 M (z)

Ar(x) = Mgr(z) & Mg(z).
Ar(z) and Ag(z) are the left and right space compaction sequence error mask for the
entire test length V'; the subsequences of Af(r) and Agr(z). denoted respectively as

A¥(z) and Ajx(z) (1 < v < V), are the left and right space compaction sequence of
vector v.

An individual subsequences Aj (z) is extracted from Ag(x) by right shifting A (r)
((v — 1) x m) times and considering the least significant (n + m — 1) bits. Likewise.

A%(z) can be extracted from Ag(z).

Having extracted the subsequences, there is a direct relation between bits in a

space compaction subsequences and the value of space compaction columns. as follows:
Ly = AL[a].

t

R = AR[d].

29

S ey T TR Y

Example 3.5 Consider tables 3.1 and 3.2. They depict a scenario with three (4 x 1)
response vectors. If the left and right space compaction sequence error masks are.

respectively, Az(x) = 000111001000101 and Ag(z) = 001100100000010. the corre-

sponding subsequences are:
Al(z) = 1000101, Ag(z) = 0000010

A%(z) = 1100100, A%(z) = 0010000

A3 (z) = 0001110, A}(z) = 0011001.

The following definitions pertain specifically to entities used by the error identifi-

cation algorithms.

Definition 3.9 The Boolean equation set is the set of equations formulated from the
left and right space compaction columns of a response vector. The equations in the

set can be solved simultaneous to establish the values of elements in the vector.

Definition 3.10 The solution set is a set of equations with each equation consisting
of an element equal to a bit value. This set is the result of simultaneously solving a

set of Boolean equations.

Definition 3.11 An inconsistent set of equations is a set with two or more equations

that imply contradictory values for one or more variables.

Example 3.6 Theset B = { E{, =1, E}, &E;, = 0. E;, = 0 } is inconsistent

since both E!, =1 and E}; = 0 are implied.

3.3 Two-known-stream Error Identification Algo-
rithm

The proposed algorithm is able to identify all erroneous bits in a (n x m) response
vector under the following constraints: (a) the m input data streams to the MISRs

are independent. i.e. the errors in one stream do not affect the others. (b) errors are

30

localized in at most two data streams, and (c) the data streams containing errors are
known.

As previously defined, a compaction column is a set of data bits whose modulo-2
sum forms one bit of a space compaction sequence. Thus each column can be written
as a Boolean sum of up to m elements (the unknowns) equal to the respective bit in a
space compaction sequence. For example, in table 3.2, assuming compaction column
R. corresponds to a bit value of 1 in a space compaction sequence. the resulting
equation would be: (E}, ®E}, $E?; ®E}, = 1). Given a set of such equations.
they could be solved simultaneously to obtain the value of each element.

The total number of elements in a response vector. and hence the number of
unknowns, is (n x m). The number of possible equations per (n x m) response vector
is the number of compaction columns in the left and right space compaction. i.e.
(2(n+m—1)). This system of equations cannot uniquely determine (n x m) unknowns.
Thus the larger problem of uniquely determining the entire (n x m) vector is impossible
given only the information contained in the two space compaction sequences. [nstead
we reduce the problem and require that all erroneous data bits occur in at most fuwo
known data streams (assumptions (b) and (c) above).

By limiting the focus to at most two erroneous data streams. the number of
unknown elements is at most (2 x n). The values of the other ((m — 2) x n) elements
can be computed by logic simulation of the good circuit, i.e. the error-free values. The
number of equations per vector remains the same at (2(n + m — 1)). Next. consider

the error masks of the data bits, instead of the actual values. as follows:

Eerror—mask = Eerror—free *Z Lerroneous-

The ((m —2) x n) non-erroneous elements then attain a value of 0 and can be dropped
from the equations. Likewise, the space compaction sequence error masks must be
used in the equations instead of the space compaction sequences. Thus we have a
system of (2(n + m — 1)) equations in (2 x n) unknowns. This system can be solved
simultaneously to uniquely determine the error mask value of each unknown element.

The actual value of each element can then be computed as:
Enctual—ualue = Lerror—mask — Eerror—free-

31

To summarize, for the case (V' = 1). error bits in a (n x m) vector are to be
identified. The vector can be viewed as a left and right space compaction. respectively
divided into left and right space compaction columns.

Each space compaction column has a value provided by a bit in the respective
left or right space compaction error mask. The following points illustrate the error

identification method:

l. There are at most (2 x n) elements in the erroneous data streams.

o

The left and right compaction columns form a set of (2(n + m — 1}) Boolean

equations in (2 x n) unknowns (the elements in the erroneous data streams).

3. The value of each equation is the corresponding bit of the left or right space

compaction sequence error mask.

4. The set of equations can be solved simultaneously to obtain unique error mask

values for each of the (2 x n) elements.

3. The actual value of each element is: E;ctuai—vatve = Eerror—mask = Eerror—free-

The above method holds for one vector in isolation. i.e. (V' = 1). However.
for (VV > 1), a compaction column can have member elements from two adjacent
vectors, see tables 3.1 and 3.2. The number of equations for each vector is always
(2(n + m —1)). However, the number of elements, and thus unknowns. is no longer
(2 x n).

For response vector v where (v = 1 or v = V'), there is one adjacent vector. The
number of elements from vector v is (2 x n). Additionally, the left compaction can
contribute at most (m — 1) elements from the adjacent vector and likewise the right
compaction, for an extra (2(m — 1)) elements. Thus. the total number of elements.
and hence unknowns. is (2 x n +2(m — 1) = 2(n + m — 1)). These can be uniquely
determined by (2(n + m — 1)) equations.

For each vector v where (1 < v < V), there are two adjacent response vectors.
(v—1)and (v+1). The two adjacent vectors can contribute a maximum of (2(m — 1))

elements per space compaction for a total of
2xn+22(m-1))=2(n+2(m - 1))

32

FEmn WRTRL sty -0

st

L AR

elements. These cannot be uniquely determined by only (2(n + m — 1)) equations.
However, if vector (v — 1) was previously solved, the values of all elements in this
vector are established. The solution equations for elements in vector (v — 1) that
appear in the equations for vector v, numbering at most (2(m — 1)), can be added to
the set of (2(n +m — 1)) equations for a total of (2(n 4+ 2(m — 1))) equations. This
enhanced set can uniquely determine the (2(n + 2(m — 1))) elements. Since vector
(v = 1) can be successfully solved on its own, this method has a starting point. and
all subsequent vectors can be solved in succession.

Error identification proceeds one response vector at a time. Although the complete
set of equations for multiple response vectors can be written and solved simultane-
ously. this becomes infeasible with large test lengths consisting of several thousands
of test vectors. Instead, each vector is solved individually. The left and right space
compaction sequence error masks for the entire test length are respectively. A and
Ag. To perform error identification, individual subsequences. A} and A%. for vector
v must be extracted from Ap and Ag, respectively. A} is simply the (n +m — 1} least
significant bits of A, right-shifted ((v — 1) x n) times: A} is likewise obtained from
Ag.

3.3.1 Algorithm

In the following algorithm. ¢, and ¢, are the erroneous data streams with (1 < ¢, <

L and Solution® are the

c2 < m), B is the set of Boolean equations, and Solution®~
solution sets for response vectors (v—1) and v, respectively. The subfunctions. LAEY).
RKE(). LCM() and RCM(), compute the left and right key elements and column

membership, respectively. They are defined following algorithm Identify2Rknown().

Function Identify2hnown(AY, A%, c1. ¢z, Solution' ')

/™ computes the values of elements in data streams c¢; and c; of vector v =/
/* with compaction sequence error masks A} and Aj =/

/= Solution'~! is the solution set for the previous vector */

1

B « extract equations from Solution®~

fork=1to(n+m—1)do

33

adiedenl

ReyElementy < LKE(L})

Columny <« LCM(KeyElementr)

B « B U Equation(Columny, c;, ¢z, Aj[k])

KeyElementp <+ RKE(R})

Columnp «+ RCM(KeyElementp)

B « B U Equation(Columnnp, ¢, c2, A}lk])
Solution” « solve B
/™ an inconsistent set of equations is indicated via a flag */
return Solution” or inconsistent flag

end . /* [dentify2Rnown() */

Function LKE(L})
/™ computes the key element of the left compaction column L} =/
if (v == 1) then
| if (k < m) then
return £,
else

return E¢_ .,

Lol i amane i g

else

if (£ < m) then
return LKE(L:7})

else

return Ey__ ., .

end . /* LKE() =/

Function RKE(RY)

/™ computes the key element of the right compaction column R} =/
if (v == 1) then
if (k < m) then

34

return EY ..,
else

return EY_ ...,

else

if (k < m) then

return RKE(RYS;)
else

return EY__ ..,

end . /* RKE() =/

The quantity, LastVector. in the following two functions. is the number of the

last response vector to be recovered. For example, in a failing block of 256 response

vectors, LastVector = 256.

Function LCM(E};)
/= computes the set of column members of the left compaction */
/* column given by key element E7; ~
se—ite—5C«0
if (v == LastVector) then
while ((s < n) AND (¢t > 1))
C«CUE]
se—s+1
te—t—1
else
while (¢t > 1)
if (s < n) then
C«CUE],
else
3 « smodn

C« CuESH

se—s+1
te—t—1
/* C is the set of column elements */

return C

end . /* LCM() =/

Function RCM(EY ;)
/* computes the set of column members of the right compaction ~/
/* column given by key element E?; =
se—ite5;C«0
if (v == LastVector) then
while ((s < n) AND (t < m))
C+CUFE:,
s s5+1
| te—t+1
else
while (t < m)
if (s < n) then
C «CUE,

, else
3+ smodn
C «CuEZH

s¢—s+1

te—t+1
/= C is the set of column elements */

return C

end . /* RCM() =/

Function Equation(C'. c;. ¢;. value)

36

DAt AL nh et i b b S DU (e Ak

- T

/= formulates the Boolean equation for a compaction column ~/
/= C is a set of member elements of a compaction column ~*/
/* ¢y, ¢, are the erroneous data streams /*
/* value is a bit-value of a space compaction sequence */
/* the function returns the formulated Boolean equation ™/
if (E, € C AND Ey% € C) then
return {E?. & Ep%, = value}
else if (E}*, € C) then
return {E}, = value}
else if (E}%, € C) then
return {E;% = value}
else

return {0 = value}

end . /= Equation() =/

3.3.2 Error Identification Example

Consider the space compactions depicted in tables 3.1 and 3.2 (V' =3.n =4.m =)
with the following data bits in error: E!,, E},, E}, El,. Ef,. E3, Ei, E7,.
E3, and E?,. These errors correspond to the compaction sequence error masks.
A7 = 000111001000101 and Ar = 001100100000010. and the erroneous data streams.
¢ =1 and ¢; = 4.

Since V' = 3, three applications of algorithm Identify2Known() are required to
perform the complete error identification.
Vector 1: (v = 1. A} = 1000101, A% = 0000010. Solution® = 0)

Since (Solution® = @), there are no equations from a previous solution set to
include in B; therefore, initially B = 0.

Table 3.3 details the Boolean equations added to B from the corresponding left
and right space compaction columns. The complete set of Boolean equations is: B =

{ Ell.le- Ezl.1=0- E§.1=1~ E41.1’3E11.4=0- Ef.l”:‘EzlA:O- 522.1555.4:0- E.%.l%E-:A:l'

37

PSS A N

Column | Key Element Members Equation Value
Ly Ei, E}, El, = 1
L; Ell.z E%.x Ell,z E’é.l = 0
Ly Eis Ej, E}2 El; E}, = 1
L; E} Ej, Ej, E‘zs El, | E{ 18El = 0
L; E}a Ef Ei, Ei; E3, E'f_laEzl_,‘: 0
12 E; E% E? E s Biy | B3, 9E5,= O
L 541.4 E; E‘? Eq Eg.leE:.-I: 1
R} E}, E}, El,= 0
R} Ell,:s 511.3 E2l.-1 Ejs= 1
R} Ei, El, E}; B3, Ej, = 0
R} E}, E{, E}, Ej3 E}, | Ey,5E{,= 0
R E}, E;l El, E}, E}, | E},SE] ;= 0
Rg E3, 1 Ed 5? E% Ej ,3E},;= O
R} E{, E? Eg Eg Ej 155§.4= 0

Table 3.3: Equations derived for vector (v = 1)

1,=0, E} =1, E} =0, E} | &E},=0, E; & E} =0, E} &E?,=0. £}, =E35,=0}.
Solving the set of equations B results in Solution' =
{ E1,=1. E3,=0, E5 =1, E;,=0. E};=1. E3,=0. E3,=0. E{,=0. Ej =1. E3,=
1a=1 Ef,4=0~ Ej =l E3,=0}.
Vector 2: (v =2, A2 = 1100100. A% = 0010000)
[nitially, the solution equations for elements from vector 1 that appear in equations
for vector 2 are added to B, i.e.:
B = { E},=0, E},=1. E},=0. Ej ,=1. E5,=0, E{,=1 }.
Table 3.4 details the Boolean equations added to B from the corresponding left
and right compaction columns. The complete set of Boolean equations is B =
{ E3.=0, Ej,=1, E{,=0. E; =1, E5,=0, E{ =1, E} 2 E),=0. £}, = E5,=0.
E\®E}=1. E,9E},=0. E} 5 E7 =0, E3 2EL =1 E§15534=1~ 52.1% 14=0.
El ©E2,=0. E} S E2 =0, E2,3E2,=0, E2,5E3 ,=1. E2,=E3,=0. E,=E2,=0 }.
Solving the set of equations B results in Solution? =
{ E3,=0. Ej,=1, E{,=0, E} =1, E},=0. E3,=0. E3,=0. E},=1. £3,=1. E3,=0.
E},=l. E} =0, E} ,=1, E? =0, E2 =1, E?,=0. E} ,=I. E} ;=1. E£;,=0. E3,=0 }.
Vector 3: (v =3. A3 = 0001110. 4% = 0011001)

[nitially. the solution equations for elements from vector 2 that appear in equations

oo
o

Py

Column | Key Element Members Equation Value
L E;q E}| E{; B3 Ejs | BL15E .= 0
L3 E::.q Eg.l Efz El E:: 4 53,1'5531.4= 0
L3 14 E}, E3, E?; Ej, Ej \SE{ 4= 1
L3 X E, E}, E3, E}, E |3E},= 0
L: E3, E}, B}, B35 B3, | B} 19E3 = o
Ly E3, Ej, B}, E}; B}, | E3,GE}, = t
Lz E3, E3, E3; E3s Ei, E3 \8E;, = 1
R} E;.x E}, Ej; Eis E%A 55.1‘95?.4= o
R3 E§.1 E;.l E E’? 53,4 E§,1$E§.4= 0
R; E-:.l E{, E Eg E E{3E} = 0
R} E%,l E%,l E’% E§ EM 53.1‘55424= 0
R} EZ, Ef, B3, Ef5 Bl | E3u3EL,= 1
RZ E3, E| E}, B35 B3, | B3 3E3,= o
RZ E3, E: E}, s E3s B}, | BT 2ES = 0

Table 3.4: Equations derived for vector (v = 2)

for vector 3 are added to B, i.e.

= { E§,1=0’ E§,1=Ov E3,1=07 E§'4=1, E3 =0, Ef,4=1 }-

Table 3.5 details the Boolean equations added to B from the corresponding left
and right compaction columns. The complete set of Boolean equations is B =
{ E3,=0, E3,=0, E%.=0, E} (=1, E3 =0, E% =L, E} = E},=0, E} TEZ =L
E§J@E§A=1, Eg,leE?A:]" E§‘4=0, E§.4=0- E2.4=0? E3 TEY =1 Eg,l%E'?Azo'
E318E3,=0, E?,IGBE‘?A:]'? E3 =1, E3,=0. £3,=0 }.

Solving the set of equations B results in Solution® =
{ E2,=0, E2,=0, E?,=0, E} =1, E3 =1, E3,=0. E},=0, E? ,=1. E2,=0. £ ,=1.
E} =1, E3 =0, E3,=0. E3.=0}.

The elements equal to 1 within the sets Solution!. Solution?® and Solution® are

the erroneous data bits: E},. E},. E},. E},, E},. E},. E},. E},. E3, and E},.

3.3.3 Complexity Analysis

The computational complexity of an algorithm [4] is proportional to the total number
of basic operations performed for a specific input size. n. Computational complexity

shows how the execution time grows as a function of the input size. In addition to

39

L il E ol o d WIFE TR

halnhaiass sabch o Alag

Column | Key Element Members Equation Value
L3 5%.4 E E E E3, Ef'leEg_,,: 0
L3 E‘?.i E E Ef Eg 53,155§,4= L
L3 E3. Ej, E3, E}s B3, | B3.5E = 1
L3 E%,-l E} Rt Ej, 2 E3 2,3 E} 1.4 E \8Ef = !
L3 E3, E}, E 33 E34 E3 = 0
LE E3, E}, E3, E§'_1= 0
L3 52.4 E;" 4 Ei_4= o
R Eg.l E E Ef E%.er%A: 1
R E3, E§ Ef E}, E E\3E3 .= 0
R3 53.1 E3, E% E} E E \9E3 = 0
R3 E?, E}, E3, E3 3 E, E} | 3E3, = L
R E3, 52,1 53.2 54.3 E3, = L
RE E::z.x Eg.x ER, E3, = 0
RZ ES, E%, E}, = 0

Table 3.53: Equations derived for vector (v = 3)

the input size, the execution time of an algorithm is also dependent on the input data
set itself. Two equal length data sets may have different execution times. To remove
this data dependency. the worst case scenario is assumed. For an input size. n. the
maximum number of operations is considered.

Computational complexity is stated in big-O notation. This gives the asymptotic
growth rate of the algorithm as a function of input size. For example. an O(n*)
algorithm grows in complexity as the square of the input size.

Algorithm 3.3.1 is divided into two stages. The computational complexity of each
stage is first given, then the complexity of the entire algorithm is stated as the sum
of the complexities of the two stages.

The first stage is creating the set of Boolean equations. There are exactly (2(n +
m — 1)) Boolean equations for any response vector. The number of elementary oper-
ations in creating an individual equation, in the worst case. is bounded by the size of
an individual compaction column m. Thus this task takes (2m(n+m —1)) operations.
But since typically n >> m (n = 1024.m = 16 or m = 22). the complexity of this
stage is O(n).

The second stage is solving the system of equations. A standard method for

solving a system of linear equations is Gaussian elimination. The complexity of

40

ke B

Gaussian elimination is O(n®) [3], where n is the order of the system. The typical
system consists of (2(n + m — 1)) equations in (2(n + m — 1)) unknowns. This can
be represented by a (2(n + m — 1) + 1) by (2(n + m — 1)) augmented matrix. If we
again make the observation that n >> m, in the limit the complexity of Gaussian
elimination for a (2n x 2n) system is O(n®).

Thus the complexity of the entire algorithm is O(n) + O(rn®) = O(r®). In other
words, the computation time of algorithm 3.3.1 is proportional to the cube of the
data stream length.

For the recovery of a failing block, consisting of 256 response vectors. algo-
rithm 3.3.1 is invoked 256 times. However, Gaussian elimination. with its high com-
putational complexity, is not required to solve all the Boolean equation sets generated.
It can be seen that aside from the first and last vectors, the intermediate response vec-
tors produce similar equation sets, differing only in the element superscript v. Thus.
this equation set can be solved once using Gaussian elimination. and subsequently.
back-substitution can be used to obtain the other solutions. Back-substitution is
O(n). i.e. linear with the input size. Thus the complexity of the algorithm in the

case of multiple vectors is a one-time cost of O(n*®) and O(n) from then on. i.e. linear.

3.4 Two-unknown-stream Error Identification Al-
gorithm

The second proposed error identification algorithm relaxes the constraint of knowing
which data streams contain errors. Without this knowledge. the problem becomes
one of solving (n x m) unknowns with only (2(n + m — 1)) equations. For a single
response vector this may lead to multiple possible solutions.

The new constraints for the second error identification algorithm are: (a) the m
input data streams to the MISRs are independent, i.e. the errors in one stream do
not affect the others, and (b) errors are localized in at most two data streams. Due to
constraint (b) only solutions involving at most two data streams need be considered.
Thus all potential solutions can be grouped according to the pairs of data streams

they involve. Further. by considering the solutions of multiple response vectors. pairs

41

SAN sy W s emamn e -

of data streams that fail to produce a consistent solution for any one vector can be
eliminated. Algorithm 3.3.1 is used to test each suspect pair of data streams if it
produces a consistent solution for every response vector.

Due to overlap between response vectors, an inconsistent equation set can only
occur in the first or last vector of the test set. Recall, from example 3.3.2. the equa-
tions derived for vector (v = 2). Two types of equations are present: (1) equations
with single elements from vector (v = 1), and (2) equations with exactly two elements
derived from the space compaction columns in vector (v = 2). If the equations in (1)
are consistent the entire set must be consistent. Equations derived for the first and
last vectors may contain two, one or zero elements. Such equations can be inherently
inconsistent (for example the equation “0=1") or they may render the set inconsistent
when combined with equations from the previous solution set.

To quickly reduce the number of solutions produced by the algorithm by eliminat-
ing suspect data streams, a further constraint is added: (c) the number of errors in a
response vector must be strictly less than (2n). Two error-free compaction sequences
can only be produced by an error-free response vector or one with (2n) errors with
specific errors in adjacent vectors. Tables 3.6 and 3.7 illustrated such an example for
the configuration (V' = 3,n = 4,m = 4); shown are the error masks of the response
vectors and compaction sequences, a “1” indicates an error and 0" otherwise. Note
the configuration of errors in data streams one and three that produce the error-free
compaction sequences for response vector (v = 2). The constraint on the number
of errors per response vector eliminates this possibility and permits another test of
solved solutions. A solution indicating erroneous elements based on error-free space
compaction sequences invalidates all solutions corresponding to the given suspect pair

of data streams.

Initially, all ,,C, pairs of data streams are potentially erroneous. Algorithm 3.3.1
is used to test all suspect combinations of data streams with each pair of compaction
sequence error masks in succession. Algorithm 3.3.1 has been modified to return
the solution of the system of equations or a flag indicating an inconsistent system.

Should a solution be returned. it is stored indexed by the respective pair of suspect

42

0o 0 0 o
1 0 0 ©
1 0 1
1 0 1 o0
0o 1 0
o 1 0
1 0 1 0
1 0 1 0
1 0 1 0
i 0 C
1 0 0 O
0o 0 o
o 1 1 1 0 O
0 o o
0 1 0 0 ¢

Table 3.6: Error cancellations in the left compaction stream

data streams. If an inconsistent flag is returned or errors are identified based on
error-free compaction sequences, the suspect pair of data streams is removed from
further considerations and all previous, related solutions are discarded. Thus. at the
start, all pairs of suspect data streams must be tested. but as further response vectors
are solved, more suspect pairs of data streams are eliminated from consideration.
This algorithm may provide multiple solutions which comply with all (2 x 17)
space compaction sequence error masks. Error cancellation occurs when the space
compaction process maps many (n X m) vectors into a single pair of space compaction
sequences. Without additional information, it is then impossible to distinguish the
truly erroneous (n x m) vector among the multiple possibilities returned by the error
identification algorithm. To further narrow down the possibilities. structural analysis

and fault simulation must be attempted.

3.4.1 Algorithm

In the following algorithm, Suspect List is the set of valid combinations of two streams

and S7, , is the solution set for response vector v with erroneous streams ¢, and c..

43

o ————

"y

0 0 0
1 0 0 O
1 0 0
1 0 1 @
1 0 0
I 0o 1 0
1 0 1 O
1 0 1 0O
1 0 1 0
1 0 1 o0
1 0 0 o
0 0 0 o
1 ¢ 0 O
0 0 0

o 1 1 1t 0 0 0

Table 3.7: Error cancellations in the right compaction stream

Function Ildentify2Unknown(Ar, Ar, NumV'ectors)
/™ computes the values of elements determined by the space compaction =/
/™ sequence error masks Az and Ap */
/® NumV'ectors is the number of compacted vectors */
SuspectList «
forc, =1to(m-1)do
for ¢; = (¢; +1) to m do
5o, 0
Suspect List « SuspectList U {c1,c2}
for v =1 to NumVectors do
A} « GetCompactionSequence(AL)
AR & GetCompactionSequence(Ar)
for each {c;.c,} € SuspectList do
St .. « Identify2Known(4y, A%, c1, ¢, S'7L)

C1.C2 C1.C2

if ((S* . == inconsistent) OR

€1.C2

1

(A} == Ak == 0 AND ErrorCount(S!,) > 0))
for k =0 to vdo
discard S¥ _,
Suspect List «— SuspectList — {c,c2}
return solutions for each valid combination of data streams

end . /* Identify2Unknown() ~/

3.4.2 Error Identification Example

Reconsider the example in 3.3.2. The space compactions depicted in tables 3.1 and 3.2
(V =3,n =4, m = 4) are again assumed with the following data bits in error: E} .
Ej,, E34 Efy. ER, EZ,, EZ,, E3, E3, and E},. These errors produce the space
compaction sequence masks Ay = 000111001000101 and Ar = 001100100000010.
However the erroneous data streams are unknown.

Algorithm 3.4.1 starts by initializing the list of suspect pairs of data streams:
SuspectList = { {1.2}, {1.3}, {1.4}, {2.3}, {2.4}. {3.4} }.
Vector 1: (v =1, A} =1000101, 4% = 0000010)

Invoking Identify2Known() for each pair of data streams in Suspect List results

in the following:

{1,2} produces an inconsistent set of equations.

{1.3} produces Solution}, = { E} ,=1. E} =0, E} ,=0. E} =0. £? ,=1. £2,=0.
E3 =1, E{5=1. E}3=0, E35=1. E{3=0. E{3=0, E35=0}.

{1.4} produces Solution; , = { E{ =1. E} =0, E} =I. E} ,=0. £ =1. E2,=0.
E3,=0, E{ ,=0, E} ,=1. E} =0, E} =1, F},=0. E? =1. E2 =0 }.

{2,3} produces an inconsistent set of equations.

{2,4} produces an inconsistent set of equations.

{3.4} produces an inconsistent set of equations.

After error identification in vector 1. SuspectList is equal to { {1.3}. {1.4} }.
Vector 2: (v = 2. A2 = 1100100. A% = 0010000)

\arhing

D L

Invoking Identify2Rnown() for each pair of streams in Suspect List results in the

following potential solutions:

{1,3} produces Solution? ; = { E} =0, E} =0, E{ =0, E? =1, E3 =0, E3,=1.
E} =0, E},=1, E3,=0, E3 =0, E3j5=1, E{3=0, E}3=0, E},=0. E3;=1.
E§‘3=1, Ei"3=l, E%'3=0 }.

{1,4} produces Solution? , = { E} =0, E} =1, E; =0, E? ,=1. E3,=0. E3,=0.
E? =0, E? =1, E},=1, E} =0, E} =1, E},=0, E; ,=1. E} ,=0. E} ;=1.
E§'4=0, E? =1, E'f"4=1, EgA:O, E3,=01}.

After error identification in vector 2, SuspectList is equal to { {1.3}. {L.4} }.
Vector 3: (v =3, A3 = 0001110, 4% = 0011001)
Invoking Identify2Known() for each pair of streams in Suspect List results in the

following potential solutions:

{1,3} produces an inconsistent set of equations. Solution| ; and Solution? ; are discarded.
{1.4} produces Solution?, = { EZ,=0, E} =0, E} =0, E} ,=1. E3,=1. E3 =0.
E$,=0. E3 =1, E3,=0, E%4=1, Ef=1. E3,=0. E3,=0. E3,=0 }.

After error identification in vector 3. SuspectList is equal to { {1. 4} }.
The ultimate result is a single pair of suspect data streams. {1. 4}. which produces
the consistent solution sets Solution} . Solution?,, and Solution},. The elements

equal to 1 within these sets are the erroneous data bits: E!,. E},. El,. E! . E},.

2 2 3 3 3
E2,4: E4.4v El,l’ E3, and EY .

3.4.3 Complexity Analysis

Algorithm 3.4.1 invokes algorithm [dentify2Known() a number of times proportional
to the number of suspect pairs of data streams. In the worst case. for a failing block
of 256 response vectors, if no data streams were eliminated from consideration this
entails (,,Cy x 236) calls of algorithm Identify2Known(). In the case of (m = 16)
data streams. 16C, = 120. In the limit. the worst case complexity of algorithm 3.4.1

is 120 x 256 x O(n®) = O(n®).

3.5 Alternative Data Recovery Schemes

The primary data recovery scheme presented in section 3.1 differs from the diagnosis
scheme in [19, 20] in terms of the data retrieval method used. It is based on the same
data compaction process with an additional MISR, and uses intermediate signature
comparison to locate failing blocks of circuit response. This section explores two
alternatives to the primary data recovery scheme. The first alternative improves the
resolutions of the error identification algorithms presented in sections 3.3.1 and 3.4.1.
The second alternative greatly simplifies the STUMPS testing and data retrieval
procedures by utilizing the merits of our proposed data construction technique. It
has the potential to replace the conventional STUMPS-based testing and diagnosis

procedures in practical applications.

3.5.1 With Non-overlapping Response Vectors

The preceding error identification algorithms are designed to work in a STUMPS
testing environment. The compaction process was unmodified from the standard
architecture but for the addition of a second MISR. Recall the model of MISR-based
compaction described in section 3.1.1. Because data bits from two successive response
vectors may be compacted together, (m — 1) identical compaction columns occur in
both vectors. Example 3.2 lists the overlapping columns in the three response vectors
of table 3.1.

The proposed alternative error identification method employs non-overlapping
response vectors. To completely separate response vectors requires the insertion
of (m — 1) all-zero states between two successive vectors. It can be achieved by
supplying the MISRs with all-zero inputs and clocking them (m — 1) times. Fig-
ure 3.8 shows the resulting non-overlapping left space compaction for the configura-
tion (V' = 2.n =4.m = 4) and the equivalent model.

The proposed modification increases the amount of information available to solve
the system of equations in each circuit response vector. The new left and right
(n + m — 1)-bit space compaction sequences solely represent the data bits in one

response vector. Whereas in the overlapping case. (n —~m + 1) bits of each compaction

47

Bhats gty a4

E}, EI: Ei, E,
E}, EI. Ei, Ej,

=

B, E. E. Ei,
1] 1] 0 0
0 0 0 0
0 0 0 0
E}.l E-:.2 E4l,3 Ek.‘i

1 1 1 L
EB.l ES.2 ES.3 E3,4
1 1 1 1
E2,l 52.2 E2.3 E?A
1 1 1 1
El.l El.2 EI.S EIA

Ly Ly Ly Ly Ly Ly L

E?

2 2 2
E~|.l 5-1.2 E 4.4

12
E3, E§'2 532,3 E3,
E3, E, E}
E}, E}, E}; E{,

E;, E;, E{; Eg,

Ej, E;, Ej; Ej,
Ey, Ej; E;s Ej,
Ei, Ei, Ei; E[,
Ly Ly Ly Ly Ly Ly L}

L2 2 oz L2 oLz L2

Table 3.8: Non-overlapping left shifting MISR space compaction

sequence determine a single vector, and (2(m — 1)) bits are shared with adjacent
vectors. As a result, the non-overlapping scheme significantly improves the error
identification resolutions and reduces the computational time required for further
fault diagnosis.

On the other hand, the non-overlapping scheme lengthens the test process by a
factor of (m — 1). However. since n >> m, (V(m — 1)) has only a slight impact on
the test length. For example, for m = 16, n = 1024, and V" = 100.000. the increase

in the test length is only
Vim = 1) & | 469
Vi xn

which is minimal.

Experimental results comparing the standard and modified error identification
methods are presented in chapter 4. Below are the modified algorithms that imple-
ment the non-overlapping error identification method. The modifications alter how
key elements and column members (defined in section 3.2) are computed. The num-
ber of equations that must be solved simultaneous is unchanged. As the complexity
of the original algorithms depends on the set of equations that must be solved. the

complexity of the modified algorithms is thus unchanged.

Modified Algorithms

Function NonoverlappingLKE(L})
/™ computes the key element of the left compaction column L} =/
if (k < m) then
return £7,
else
return Ef__ .,

end . /™ NonoverlappingLKE() */

Function NonoverlappingRKE(R})
/™ computes the key element of the right compaction column R} */
if (k < m) then
return EY ..,
else
return EY__ .,

end . /* NonoverlappingRKE() */

Function NonoverlappingLCM(EY;)
/™ computes the set of column members of the left compaction =/
/™ column given by key element E}; =/

se—lLitej:C 0

49

R b bl ke ol

while ((s < n) AND (¢t =2 1))
C«CUE],
s—s+1
te—t—1
/= C is the set of column elements */

return C

end . /* NonoverlappingLCM() ™/

Function NonoverlappingRCM(E?;)
/= computes the set of column members of the right compaction */
/™ column given by key element EY; =
seiite—j3;C«0
while ((s < n) AND (¢ £ m))
C«CUE],
s—s+1
te—t+1
/= C is the set of column elements */

return C

end . /* NonoverlappingRCM() =/

3.5.2 With Simplified Testing Procedure

The second alternative abandons intermediate signature testing and simply performs
data recovery on the entire test set. The test set is applied without interruption while
simultaneously capturing the quotient sequences, @ and Qg. from the two MISRs.
The sequences can be stored for further processing off-line or by using the system
given on page 23. the space compaction sequence error masks, i, and Ag. can be
constructed in real-time during the test. Data recovery can then be performed on
any portion of the compaction sequences that contain errors as revealed by A; and

Ar.

Recall the modelling of space compaction sequences in section 3.1.1. A space com-
paction sequence, M(z), does not physically exist in MISR-based data compaction.
Rather, M(z) is constructed from the quotient sequence, Q(z). obtained from the
MISR during testing. The space compaction sequence has the property that individ-
ual bits of M(z) reflect the values of local uncompacted circuit response data bits.
It can thus be used to locate the erroneous responses in the test by comparison with
the error-free space compaction sequence, M=(z). Recall that the space compaction
sequence error mask, A(z) = M(z)& M=(z), is used to locate erroneous bits in M (.r).
A(z) contains a “17 if the corresponding bit in M(z) is erroneous and “07. otherwise.
The quotient sequence, @Q(z), has no such error localization: a bit of Q(.r) is deter-
mined in part by all data bits compacted up to that point. After the compaction of
an erroneous data bit, all subsequent bits of Q(z) from the MISR will be perturbed.
irrespective of upcoming error-free and erroneous data bits.

The advantages of this alternative scheme are simplified testing procedures and
decreased tester usage. Eliminating intermediate signatures has a two-fold saving in
storage and computation time. Tester memory requirements can be reduced along
with the computation that generates the intermediate signatures. More significantly.
because there is no comparison of intermediate signatures. testing can proceed unin-
terrupted from start to finish. The tester-CUT interactions that set and reset BIST
resources during interval testing are eliminated (refer to the data retrieval process on
page 17), simplifying testing and tester hardware complexity. Diagnosis information
can be obtained during normal pass/fail testing, altogether eliminating a separate
test to perform data retrieval. Thus, testing time can be significantly reduced while

utilizing less complex testing equipment.

Chapter 4

Experimental Results

Two different experiments were conducted to evaluate the effectiveness of the data
recovery schemes: data recovery of pseudorandomly generated faulty responses and
data recovery in standard benchmark circuits. The first experiment demonstrates the
feasibility of the data recovery scheme on large circuits responses. while the second
experiment demonstrates resolving multiple solutions produced by the error identifi-
cation algorithms.

In this chapter, section 4.1 presents the software system used to perform the
simulation experiments. Section 4.2 describes and presents the first simulation. Sec-
tion 4.3 describes and presents the second simulation. Lastly. section 4.4 details the

implementation of the custom simulation software developed in this research.

4.1 System Overview

The environment used to carry out the simulation experiments consists of a custom
software package named DataRecovery (DR) and the set of ISCAS85 [7] benchmark
circuits. The software was developed using the GNU C++ complier. g++. under
SunOS and Solaris. All simulations were executed on identical SUN Ultra 1 worksta-
tions each equipped with 128 Mbytes of RAM.

DR is a collection of software modules integrated to perform data recovery of
simulated circuit responses (description of the specific software modules is given in

section 4.4). It implements the primary data recovery scheme presented in section 3.1.

a1}
I~

s e ST TTRERS T

and the alternative recovery scheme described in section 3.3.1. The recovery schemes
are tested by means of two simulations, described below, corresponding to the way

in which faulty responses are generated.

[

Logic
Simulator

lL___‘

!

MISRy MISRg

Nt %

M M

Recovered
Responsets)

... B -Dan Recavery System
Figure 4.1: Software system block diagram

Figure 4.1 is a block diagram of the software system used to perform the two
experiments. Shown are the significant system components and their interactions.
The complete system can be logically divided into two subsystems: subsystem A
generates and compacts circuit response vectors. and subsystem B performs data
recovery on the partially compacted responses. The data exchanged between the
subsystems is the quotient sequences. @ and Qg. The two subsystems model a real
testing environment consisting of the CUT and the tester. modeled by subsystem A.
and the data recovery scheme, modeled by subsystem B.

The circuit response generator consists of the following components. The LFSR
is used to generate pseudorandom sequences. [t serves to create circuit responses and
provide stimuli for the logic simulator. The logic simulator generates faulty responses

by injecting stuck-at faults in the benchmark circuits. The generated responses are

53

then compacted by the M [SRs. The pseudorandom faulty response generator uses
the sequence of states from the LFSR to generate an arbitrary size. pseudorandom
response vector. MISR; and M [SRpg compact the responses vectors from the simu-
lator or pseudorandom faulty response generator to produce the quotient sequences.
Q1 and @R, respectively.

The data recovery subsystem in turn consists of the following components. Data
construction is the software implementation of the data construction technique. It
computes the space compaction sequences, M}, and Mg, from the corresponding quo-
tient sequences, Qr and Qgr. Error identification and data recovery implement the
error identification algorithms and combine the identified errors with the fault-free re-
sponses to produce the recovered responses. The recovered responses are the ultimate
result of the data recovery scheme.

Two additional components exist in the complete system. outside the two defined
subsystems. M|} and My, are precomputed error-free space compaction sequences used
during error identification. Lastly, the benchmark circuits are the ISCAS85 standard
benchmarks that are used by the logic simulator to generate faulty responses.

The goal of the following experiments is to demonstrate the feasibility of the data
recovery schemes presented in chapter 3. Feasibility is judged on the basis of com-
putational time required by the error identification algorithms and the number of
solutions recovered. The experiment assumptions are the constraints of error identi-
fication algorithm 3.4.1; i.e. at most two data streams may contain errors. errors are
independent, and the number of errors per response vector is strictly less than 2n.

where n is the length of a data stream.

4.2 Data Recovery in Pseudorandomly Generated
Response Vectors

The goal of the first simulation is to exercise the data recovery scheme on circuit
responses of industrial sizes. Unfortunately. state-of-the-art V'LSI designs are closely
held company secrets and as such are unavailable for experimentation. Instead. data

recovery is performed on response vectors created from the pseudorandom sequence

54

T T T

of states generated by an LFSR.

4.2.1 Simulation Environment

Referring to figure 4.1, the system components used in this simulation are as follows.
Within subsystem A, response vectors are created by the pseudorandom faulty re-
sponse generator from the sequence of states of the LFSR. The response vectors are
then compacted by M ISRy and MISRp and the @, and @Qr sequences are supplied
to subsystem B. All components of subsystem B are used along with the precomputed
space compaction sequences, M| and MF, to perform data recovery.

A response vector is generated from the sequence of states of an LFSR (discussed
in chapter 2) with errors randomly determined according to specified criteria. To
generate an (n X m) response vector consisting of n rows and m columns. the n
rows are obtained directly from n successive states of an m-bit LFSR initialized
with some non-zero state. By this method an arbitrarily large. good response vector
can be generated. To obtain a corresponding faulty response vector. bit errors are
introduced in the good vector. The sequence of good and faulty responses comprising
a test interval can be generated with successive applications of this technique.

The introduction of errors in a response vector models the behavior of faults in a
real circuit. A fault in a circuit can propagate to some maximum number of outputs
dependent upon location and input stimulus. Any one stimulus may cause all. some.
or none of these outputs to be erroneous. The distribution of errors in response
vectors in a test interval adheres to these observations of fault behavior: (1) a fault
may affect a maximum set of output data bits, and (2) for any stimulus. some subset
of these output data bits may be erroneous.

A single simulation of data recovery of pseudorandomly generated response vectors
is determined by a number of parameters supplied to the program, DR. These include
the length of the test interval, and the size of a single vector. n and m. Errors within
response vectors are randomly determined with the following constraining parameters:
(1) the number of data streams in a vector that may contain errors is s. (2) the
maximum number of errors in a response vector is {. and (3) the number of response

vectors in a test interval containing errors is v.

Ut
it

pome uiiien s i ot

The process of generating a failing block of 256 response vectors is as follows:

Step 1: Generate 256 good response vectors from (256 x n) consecutive states of an

m-bit LFSR.
Step 2: Randomly select s columns to contain errors (s = 2).

Step 3: Randomly select the set T of ¢ data bits equally allocated among the previ-

ously selected columns (1 <t < s x n).

Step 4: Designate v randomly selected response vectors in the block to contain errors

(1 < v <256).

Step 5: For each response vector i in the failing block (1 < ¢ < 256): if it has not
been designated to contain errors, response vector i is the good response vector
i; else, randomly select a non-empty subset T; of T. response vector ¢ is the

good response vector ¢ with the data bits in T; toggled in value.

Once the block of responses is generated. it is compacted by WM [SR; and M[SRp
to produce the quotient sequences, @ and QQr. These are supplied to the data
recovery subsystem, where error identification is performed. Because the responses
were generated pseudorandomly, no faults can be diagnosed and the final simulation
step is not performed. The results obtained from this simulation include the number of
solutions recovered, the average number of faulty responses considered to eliminate a
pair of suspect data streams, and the total time of execution of the error identification
algorithms.

The following subsections present the results of the simulations for both overlap-

ping and non-overlapping vectors.

4.2.2 Results for Overlapping Vectors

Several simulations were performed to obtain results for all possible combinations
of variables. The experiment variables were: response vector size. number of failing
blocks, faulty vectors per block. and percent errors. Four response vector sizes were

considered: (128 x 16). (256 x 16). (512 x 16} and (1024 x 16). For each response

36

size, data recovery is performed on one and two failing blocks of vectors (block =
256 vectors). The number of faulty response vectors per block is: 8. 16. 32. 64. 128.
The percent of bits in error in the failing data streams is: 1.5%. 3%. 6%. 12.5%. 25%
and 50%. Each combination of variables is simulated 100 times to obtain 100 random
configurations of errors.

The following tables, 4.1 through 4.8, detail the simulation results of the four
response vector sizes for one and two failing blocks, respectively. Three quantities
are presented for each combination of variables: the average number of solutions
obtained, the average number of vectors in a failing block required to eliminate a
set of solutions, and the average CPU time required for recovery. Each result is the
average of the 100 trials performed. For example, consider table 4.1. For 8 failing
vectors in a data block and 1.5% errors in two data streams. the average number of
solutions is 21.0, the average number of vectors required to eliminate a set of solutions
is 37.3, and the average CPU time is 4.9 seconds.

The following observations can be made from the tables:

1. The number of recovered solutions ranges from approximately 1 to 23.

[SV]

The greatest number of solutions are produced with the fewest percent er-

rors (1.5%) or with the least failing vectors (8).

3. Conversely, the fewest number of solutions are produced with the largest percent

errors (50%) and with the most failing vectors (128) (see figure 4.2).

4. The number of solutions tends to decrease with increased percent errors or

increased number of failing vectors.

3. Performing recovery on an additional failing block of response vectors produces

fewer recovered solutions.

6. The number of vectors considered to reject a set of solutions ranges from ap-

proximately 3 to 42.

. Computation time for response recovery on a 140 Mhz Ultra | Sparcstation

-1

ranges from approximately 4 seconds for the smallest response size to approxi-

mately 130 seconds for the largest.

SEENRRTT sata T

The simulated response sizes all contained 16 scan chains. therefore the maximum
number of solutions is ;6C2 = 120. The greatest average number of solutions is ap-
proximately 23 (obtained from an examination of the 8 tables). Thus. on average.
nearly 100 possibilities are eliminated, leaving 20 potential solutions. The majority
of solutions are eliminated after considering at most 42 vectors, speeding error identi-
fication in subsequent vectors. The number of solutions is expected to decrease with
the magnitude of the errors: i.e. greater percent errors and numerous failing vectors
produce the fewest recovered solutions.

Figure 4.2 is a graphical representation of the data in table 4.7. The X and Y
axes are the percentage of errors in the failing vectors and the number of solutions of
the recovered data vectors, respectively. Each curve represents the average number of
solutions of the 100 simulation runs for a given number of failing vectors indicated by
the legend. It can be seen that the number of solutions decreases as the percentage
of errors and the number of failing vectors increase.

Although the recovery scheme is relatively inexpensive in terms of computation
time, only requiring approximately 2 minutes for the largest response vector size.
clearly additional processing is required to reduce the number of potential solutions.

The experiment detailed in section 4.3 investigates the feasibility of this approach.

— T L T T

8 vectors -e—
24 - 16 vectors ——-
32 vectors -a--
64 vactors -x-
128 vectors -& -

22 + .
20 | &
18 b

16 -

Number of Solulions

14 .. .

30
Percent Errors

Figure 4.2: Graphical results for vector size 1024 x 16. 1 block

g

(1]
=

4.2.3 Results for Non-overlapping Vectors

The following tables 4.9 through 4.16 detail the simulation results. The general
observations made for the overlapping case in section 4.2.2 hold as well for the non-

overlapping approach, with the following significant differences:

1. The number of recovered solutions produced ranges from approximately | to 7.

[S]

. The number of vectors considered to reject a set of solutions ranges from ap-

proximately 2 to 38.

(L]

. The computation time ranges from 2 seconds for the smallest response vector

up to approximately 117 seconds for the largest.

Comparing the overlapping and non-overlapping results clearly shows the supe-
riority of the non-overlapping approach. It produces fewer recovered solutions. ap-
proaching one solution as the percent errors increases. The computation time is also

reduced as a consequence of more quickly eliminating potential solutions.

e sl e s

A s d

[Fa.iling Vectors | Percent Errors 1.5% | 3% | 6% | 12.5% | 25% | 50%

Ave. Number Solutions 21.0 | 20.6 | 204 20.8 | 20.9 | 20.2
8 Ave. Vectors Considered | 37.3 | 36.4 | 38.9 359 | 27.8 | 31.1
Ave. CPU Time (sec.) 4.9 4.9 5.0 5.0 4.8 5.0

Ave. Number Solutions 21.1 | 2L.2 | 20.0 19.8 | 18.2 | 19.5
16 Ave. Vectors Considered 19.5 | 16.5 | 18.2 15.8 | 24.1 | 194
Ave. CPU Time (sec.) 4.3 4.3 4.3 4.3 4.6 4.7

Ave. Number Solutions 20.7 | 20.5 | 19.6 19.2 | 18.8 | 19.4
32 Ave. Vectors Considered 11.9 | 11.4 | 12.3 12.8 | 14.7 | 144
Ave. CPU Time (sec.) 4.1 4.1 4.2 4.3 4.6 4.8

Ave. Number Solutions 20.3 | 20.1 | 176 17.1 | 16.6 | 14.5
11.7 11.2 12.4 i5.1
4.2 4.4 4.7 4.9

-l

64 Ave. Vectors Considered 6.7
Ave. CPU Time (sec.) 3.9 4.

Ave. Number Solutions 196 | 185 | 16.5 13.5 | 13.0 8.7
128 Ave. Vectors Considered 7.2 80 | LL.1 15.8 | 189 | 18.7
Ave. CPU Time (sec.) 4.0 4.3 4.5 4.7 5.3 5.0

Table 4.1: Results for vector size 128x16. 1 block (overlapped vectors)

ITailing Vectors | Percent Errors II.S% l 3ﬂ 6% l 12.5% l 25% I 50%]
Ave. Number Solutions 20.2 | 19.7 | 20.7 19.6 { 20.1 | 206
8 Ave. Vectors Considered | 29.2 | 35.9 | 41.8 36.4 | 37.2 | 35.2
Ave. CPU Time (sec.) 6.2 6.4 6.8 6.5 6.8 6.8

Ave. Number Solutions 20.2 | 19.7 | 18.4 19.0 | 17.7 | 184

16 Ave. Vectors Considered | 22.1 | 20.2 | 19.6 20.2 | 21.5 | 203
Ave. CPU Time (sec.) 6.0 6.0 5.8 6.0 6.0 6.2
Ave. Number Solutions 19.8 | 19.6 | 19.3 179 | 16.8 | 15.8
32 Ave. Vectors Considered 146 § 12.2 | 10.1 134 | 17.0 | 23.1
Ave. CPU Time (sec.) 5.8 5.8 5.8 5.9 6.1 6.5

Ave. Number Solutions 194 | 19.4 | 16.8 169 | 15.2 | 146
64 Ave. Vectors Considered 8.7 68 | 11.2 13.6 | 22.7 | 21.3

Ave. CPU Time (sec.) 5.7 5.8 5.7 6.2 6.8 7.0
Ave. Number Solutions 18.7 | 16.2 | 16.4 119 | 11.6 8.1
128 Ave. Vectors Considered 7.8 | 134 | 154 23.3 | 28.4 | 27.7
Ave. CPU Time (sec.) 5.8 5.9 6.5 6.4 7.3 6.9

Table 4.2: Results for vector size 128x16. 2 blocks (overlapped vectors)

60

b daladd

Al

Failing Vectors | Percent Errors 15% | 3% | 6% | 12.5% | 25% | 50% |
Ave. Number Solutions 20.4 | 20.5 | 20.2 20.5 { 20.1 | 20.2
8 Ave. Vectors Considered | 31.7 | 36.5 | 36.3 323 | 31.3] 32.1
Ave. CPU Time (sec.) 11.3 | 11.6 | 1L.T 116 | 11.6 | 11.6 |
Ave. Number Solutions 209 | 20.8 | 19.6 19.0 | 19.5 | 19.2
16 Ave. Vectors Considered | 16.3 | 22.4 | 189 17.1 | 186 | 16.4
Ave. CPU Time (sec.) 10.5 | 109 | 10.6 106 | 109 | 10.8
Ave. Number Solutions 189 | 19.1 | 174 183 | 179 | 175
32 Ave. Vectors Considered 10.0 | 10.1 | 12.2 12.3 | 104 | 15.5
Ave. CPU Time (sec.) 99 | 10.0 | 10.0 104 | 10.4 | 11.0
Ave. Number Solutions 186 | 17.7 | 18.0 16.8 | 159 | 16.2
64 Ave. Vectors Considered 7.0 8.0 8.0 99 | 116 39
Ave. CPU Time (sec.) 9.8 9.9 | 10.2 10.5 | 10.9 | 11.1
Ave. Number Solutions 184 | 17.8 | 17.8 15.8 | 109 9.0
128 Ave. Vectors Considered 7.0 7.5 | 1L.2 14.2 | 183 | 17.3
Ave. CPU Time (sec.) 10.0 | 10.2 | 1L.1 11.6 | 11.6 | LL.7

Table 4.3: Results for vector size 256 x 16,

1 block (overlapped vectors)

Failing Vectors | Percent Errors l 1.5% I 3% | 6% | 12.5% T 25% | 50%]
Ave. Number Solutions 220 | 214 | 225 19.6 | 19.4 | 21.4
8 Ave. Vectors Considered | 35.9 | 32.2 | 26.8 37.8 | 41.0 | 30.2
Ave. CPU Time (sec.) 15.2 | 14.9 | 15.1 15.0 | 15.5 | 15.7
Ave. Number Solutions 21.4 | 22.0 | 21.6 20.1 | 19.2 | 193
16 Ave. Vectors Considered 196 | 17.7 | 17.2 23.5 | 224 | 209
Ave. CPU Time (sec.) 14.1 | 143 | 14.4 14.6 | 14.6 | 15.0
Ave. Number Solutions 21.3 | 19.6 | 21.6 20.6 | 19.3 | 18.3
32 Ave. Vectors Considered 8.5 | 13.1 | 12.3 119 | 18.9 | 189
Ave. CPU Time (sec.) 13.6 | 13.5 | 14.4 14.5 | 15.3 | 15.6
Ave. Number Solutions 20.5 | 20.8 | 20.6 17.2 | i5.6 | 13.1
64 Ave. Vectors Considered 6.3 8.5 | 13.3 15.6 | 19.9 | 24.6
Ave. CPU Time (sec.) 13.5 | 14.1 | 14.9 146 | 153 | 15.8
Ave. Number Solutions 19.5 | 17.8 | 16.4 14.6 { L1.1 9.7
128 Ave. Vectors Considered 89 | 10.8 | 16.7 20.5 | 32.0 | 24.4
Ave. CPU Time (sec.) 14.0 | 14.0 | 14.9 156 | 16.7 | 16.5

Table 4.4: Results for vector size 256 x16. 2 blocks (overlapped vectors)

61

Failing Vectors | Percent Errors 1.5% | 3% | 6% | 12.5% | 25% | 50%
Ave. Number Solutions 21.8 | 209 | 210 209 | 20.4 | 19.5

8 Ave. Vectors Considered | 32.0 | 32.8 | 30.3 326 | 303 | 27.2
Ave. CPU Time (sec.) 33.6 | 34.0 | 338 34.3 | 34.0 | 335

Ave. Number Solutions 21.2 | 21.9 | 20.3 19.9 | 20.0 | 189

16 Ave. Vectors Considered | 18.4 | 14.5 | 15.7 19.9 | 203 | 21.3
Ave. CPU Time (sec.) 31.8 | 32.0 | 319 32.6 | 33.0 | 33.1

Ave. Number Solutions 20.3 | 19.3 | 20.0 18.7 | 16.8 | 17.0

32 Ave. Vectors Considered 9.6 | 10.8 | 12.1 13.5 | 15.7 | 134
Ave. CPU Time (sec.) 30.5 | 30.9 | 31.7 31.9 | 32.1 | 32.4

Ave. Number Solutions 21.1 | 20.1 | 18.3 17.2 | 14.8 | 144

64 Ave. Vectors Considered 8.1 8.6 9.4 106 | 14.1 | 149
Ave. CPU Time (sec.) 30.8 | 31.4 | 31.4 32.0 | 325 | 336

Ave. Number Solutions 203 | 20.2 | 14.6 15.5 | 10.6 89

128 Ave. Vectors Considered 6.8 6.4 9.9 17.2 | 181 | 21.8
Ave. CPU Time (sec.) 309 | 31.9 | 31.3 34.5 | 33.7 | 35.8

Table 4.5: Results for vector size 512x16,

1 block (overlapped vectors)

Failing Vectors | Percent Errors I 1.5% I 3% I 6% l 12.5%-[25%E0%_]
Ave. Number Solutions 216 | 20.7 | 21.2 20.8 | 20.5 | 20.8
8 Ave. Vectors Considered | 35.2 | 30.7 | 31.7 33.2 | 303 | 36.2
Ave. CPU Time (sec.) 426 | 40.6 | 41.3 41.5 | 41.2 | 423
Ave. Number Solutions 21.2 | 21.6 | 20.4 216 | 20.2 | 189
16 Ave. Vectors Considered | 17.1 | 17.6 | 17.7 186 | 22.0 { 24.0
Ave. CPU Time (sec.) 40.1 | 39.7 | 39.2 40.6 | 40.6 | 40.9
Ave. Number Solutions 21.53 | 20.4 | 19.6 19.8 | 18.2 | 186
32 Ave. Vectors Considered 89 | 103 | 17.2 12.2 | 16.2 | 156
Ave. CPU Time (sec.) 42.2 | 38.4 | 39.4 39.5 | 40.0 | 416
Ave. Number Solutions 208 | 203 | 18.7 166 | 15.1 | 13.8
64 Ave. Vectors Considered 8.7 9.5 | 12.9 13.7 | 204 | 19.0
Ave. CPU Time (sec.) 39.5 | 39.0 | 39.4 39.2 | 409 | 41.5
Ave. Number Solutions 19.8 | 19.0 | 16.7 14.4 | 12.7 9.3
128 Ave. Vectors Considered 8.6 86 | 11.8 20.2 | 28.1 | 31.2
Ave. CPU Time (sec.) 39.8 | 39.5 | 39.7 41.7 | 44.6 | 45.2

Table 4.6: Results for vector size 512x16, 2 blocks (overlapped vectors)

A LAY

ey

R R Rt)

R Rk

Rl o b T s L L)

Failing Vectors | Percent Errors 1.5% 3% 6% | 12.5% 25% 50%
Ave. Number Solutions 21.7 21.1 21.2 20.5 21.0 19.5

8 Ave. Vectors Considered 30.6 379 31.1 31.3 30.8 36.3
Ave. CPU Time (sec.) 109.5 | 111.5 | 109.5 109.5 111.1 111.5

Ave. Number Solutions 20.4 204 | 21.1 20.8 18.6 19.7

16 Ave. Vectors Considered 16.5 18.7 19.5 22.3 19.1 18.4
Ave. CPU Time (sec.) 105.3 | 105.7 | 106.7 | 108.0 | 106.9 | 108.3

Ave. Number Solutions 20.7 20.1 20.4 18.7 18.3 16.2

32 Ave. Vectors Considered 9.4 9.8 11.3 15.5 14.4 15.2
Ave. CPU Time (sec.) 103.8 | 104.0 | 105.6 106.5 | 107.3 | 109.6

Ave. Number Solutions 20.5 19.6 19.3 18.3 16.3 15.6

64 Ave. Vectors Considered 6.6 7.2 9.6 11.6 14.6 12.1
Ave. CPU Time (sec.) 103.5 | 103.8 | 107.6 107.0 { 108.3 | 109.9

Ave. Number Solutions 20.8 18.4 17.2 15.6 11.8 1.2

128 Ave. Vectors Considered 5.6 8.1 10.6 12.7 18.4 17.8
Ave. CPU Time (sec.) 104.5 | 104.8 | 1066 | 1083 | 112.6 | 119.4

Table 4.7: Results for vector size 1024 x 16, 1 block (overlapped vectors)

l Failing Vectors | Percent Errors | 1.5% r 3% r 6% | 12.5% I 25‘;‘ 50%]
Ave. Number Solutions 20.4 20.8 20.7 20.1 20.5 19.7
8 Ave. Vectors Considered 32.0 26.5 29.6 29.9 25.7 30.9
Ave. CPU Time (sec.) 122.1 123.0 | 123.9 122.4 122.9 | 1249
Ave. Number Solutions 20.9 20.7 20.5 21.1 19.5 19.2
16 Ave. Vectors Considered 18.8 19.2 21.2 18.6 22.7 19.1
Ave. CPU Time (sec.) 119.6 | 120.8 | 120.7 121.8 | 122.1 122.6
Ave. Number Solutions 20.8 21.2 19.8 18.2 18.6 17.3
32 Ave. Vectors Considered 9.8 9.0 13.0 15.4 14.3 18.4
Ave. CPU Time (sec.) 1176 | 118.7 | 119.0 119.0 | 121.4 | 123.5
Ave. Number Solutions 22.3 19.1 19.1 16.3 16.4 13.3
64 Ave. Vectors Considered T4 114 9.8 17.6 17.0 16.7
Ave. CPU Time (sec.) 119.9 | 118.2 | 1195 120.3 | 124.0 | 125.8
Ave. Number Solutions 20.0 17.8 18.3 14.4 11.1 8.6
128 Ave. Vectors Considered 5.2 1.7 14.6 21.8 29.9 23.4
Ave. CPU Time (sec.) 117.9 | 1194 | 124.6 125.2 | 128.0 | 129.6

Table 4.8: Results for vector size 1024 x 16. 2 blocks (overlapped vectors)

63

RLACLT LT PRI

(R ol SRL RS

R AR St e TRTI

Failing Vectors | Percent Errors 1.5% | 3% 6% | 125% | 25% | 50%
Ave. Number Solutions 16.7 | 13.6 8.9 3.8 2.0 1.4

8 Ave. Vectors Considered | 36.2 | 34.2 | 31.5 29.1 | 31.3 | 28.7
Ave. CPU Time (sec.) 4.2 39 3.5 3.1 3.1 3.0

Ave. Number Solutions 154 | 12.3 7.3 4.7 2.7 1.2

16 Ave. Vectors Considered | 16.7 | 17.0 | 18.7 15.1 | 19.1 | 15.3
Ave. CPU Time (sec.) 3.5 3.3 3.0 2.7 2.7 2.5

Ave. Number Solutions 16.4 | 12.4 7.9 .7 2.2 1.3

32 Ave. Vectors Considered | 10.3 8.5 7.9 8.6 9.3 7.7
Ave. CPU Time (sec.} 34 3.0 2.7 .5 2.3 2.2

Ave. Number Solutions 15.5 | 12.0 7.7 5.3 2.2 1.3

64 Ave. Vectors Considered 4.6 4.8 4.4 4.7 4.4 3.3
Ave. CPU Time (sec.) 3.2 2.9 2.5 2.4 2.2 2.1

Ave. Number Solutions 16.1 | 11.9 9.3 1.8 2.3 1.3

128 Ave. Vectors Considered 2.4 2.5 2.2 2.1 2.2 2.4
Ave. CPU Time (sec.) 3.3 29 2.7 2.3 2.2 2.2

Table 4.9: Results for

vector size 128x 16,

1

block (nonoverlapped vectors)

Failing Vectors | Percent Errors | 1.5% —l 3%J 6% T 12.5% 1 25% Tso% I
Ave. Number Solutions 16.6 | 12.1 8.0 1.0 2.3 1.3
8 Ave. Vectors Considered | 30.8 | 33.8 | 37.0 33.2 | 34.8 | 28.7
Ave. CPU Time (sec.) 5.4 4.8 4.2 3.6 3.3 3.2
Ave. Number Solutions 17.5 | 13.0 88 4.6 2.4 1.3
16 Ave. Vectors Considered | 16.2 | 16.5 | 15.0 18.2 | 16.0 | 16.0
Ave. CPU Time (sec.) 5.1 4.4 3.7 3.2 2.9 2.8
Ave. Number Solutions 17.1 { 13.1 8.3 4.7 2.4 1.2
32 Ave. Vectors Considered 8.7 8.7 9.4 9.2 8.2 8.4
Ave. CPU Time (sec.) 4.8 4.2 3.5 3.0 2.6 2.3
Ave. Number Solutions 156 | 12.8 7.8 4.7 2.7 1.3
64 Ave. Vectors Considered 4.4 4.4 5.2 4.4 4.0 3.5
Ave. CPU Time (sec.) 4.5 4.1 3.4 2.9 2.6 2.4
Ave. Number Solutions 16.1 } 13.3 7.2 4.7 2.6 1.4
128 Ave. Vectors Considered 2.5 2.5 5 2.2 2.2 1.8
Ave. CPU Time (sec.) 4.7 4.3 3.3 2.9 2.6 2.5

Table 4.10: Results for

64

vector size 128x16. 2 blocks (nonoverlapped vectors)

o e Ly m 0

e ieme =AY o

vectors)

[Failing Vectors | Percent Errors 1.5% | 3% | 6% | 125% | 25% | 50%
Ave. Number Solutions 158 | 124 7.8 6.0 2.4 1.4
8 Ave. Vectors Considered | 32.0 | 30.4 | 30.8 35.3 | 339 | 28.7
Ave. CPU Time (sec.) 10.6 9.6 9.1 9.2 8.3 8.2
Ave. Number Solutions 16.2 | 13.4 9.5 4.4 1.9 1.2
16 Ave. Vectors Considered i6.1 | 16.0 | 16.2 19.0 | 15.8 | 16.3
Ave. CPU Time (sec.) 9.7 | 8.9 8.4 7.9 7.5 7.4
Ave. Number Solutions 15.8 | 12.6 8.8 5.2 2.1 1.2
32 Ave. Vectors Considered 9.8 9.5 8.6 9.8 9.4 T2
Ave. CPU Time (sec.) 9.3 | 8.4 79 T3 7.1 6.8
Ave. Number Solutions 16.6 | 13.2 8.2 1.6 2.0 1.2
64 Ave. Vectors Considered 4.3 5.0 4.1 4.1 4.6 3.9
Ave. CPU Time (sec.) 9.1 8.3 7.6 7.0 6.8 6.6
Ave. Number Solutions 15.7 | 11.6 9.2 5.0 2.1 1.2
128 Ave. Vectors Considered 2.6 2.2 2.4 2.2 2.2 2.1
Ave. CPU Time (sec.) 9.0 8.0 7.8 7.2 6.7 6.8
Table 4.11: Results for vector size 256 x 16, 1 block (nonoverlapped
Failing Vectors | Percent Errors I 1.5% | 3% l 6% I 12.5% | 25% I 50% I

Ave. Number Solutions 15.2 | 125 8.5 5.3 2.5 1.2
8 Ave. Vectors Considered | 31.7 | 31.6 | 29.6 37.7 | 28.0 | 263
Ave. CPU Time (sec.) 12.5 | 11.6 | 10.4 10.1 8.8 8.6
Ave. Number Solutions 16.2 | 13.2 8.6 4.6 2.2 1.3
16 Ave. Vectors Considered 14.5 | 14.4 | 17.0 15.4 | 18.8 | 14.5
Ave. CPU Time (sec.) 11.8 | 10.7 9.6 8.4 8.2 7.8
Ave. Number Solutions 15.3 | 12.3 8.0 4.0 2.0 1.2
32 Ave. Vectors Considered 8.2 79 9.8 9.7 7.1 7.0

Ave. CPU Time (sec.) 11.2 | 10.2 9.1 7.9 T4 7.
Ave. Number Solutions 156 | 12.6 | 10.0 4.1 2.3 1.1
64 Ave. Vectors Considered 4.0 4.7 4.4 4.6 4.1 3.5
Ave. CPU Time (sec.) 11.2 | 10.2 9.6 .7 T4 T4
Ave. Number Solutions 16.7 | 11.4 6.8 5.2 1.9 1.1
128 Ave. Vectors Considered 2.3 2.5 2.0 2.6 2.5 2.2
Ave. CPU Time (sec.) 11.8 | 10.1 8.6 8.3 T4 .7

Table 4.12: Results for

vector size 256 x 16. 2 blocks (nonoverlapped vectors)

l Failing Vectors | Percent Errors 1.5% 3% 6% | 12.5% | 25% | 50%
Ave. Number Solutions 153 | 12.8 8.8 5.1 2.2 1.1

8 Ave. Vectors Considered | 26.9 | 27.5 | 30.5 33.1 (31.1 | 33.3
Ave. CPU Time (sec.) 30.5 | 29.6 | 29.0 28.4 | 27.3 | 276

Ave. Number Solutions 15.8 | 13.4 9.4 5.0 2.0 1.4

16 Ave. Vectors Considered | 17.3 | 18.7 | 21.5 18.1 | 15.2 | 20.0
Ave. CPU Time (sec.) 29.5 | 28.6 | 279 26.3 | 25.1 | 25.8

Ave. Number Solutions 16.2 | 13.8 8.8 4.9 2.3 1.2

32 Ave. Vectors Considered 8.9 8.6 8.0 7.4 8.8 8.5
Ave. CPU Time (sec.) 28.53 | 27.5 | 259 24.7 | 243 | 245

Ave. Number Solutions 15.1 | 13.0 8.1 4.3 1.5 1.2

64 Ave. Vectors Considered 4.3 4.2 4.0 4.4 4.1 3.7
Ave. CPU Time (sec.) 27.7 | 27.1 | 25.5 246 | 23.9 | 24.1

Ave. Number Solutions 16.3 | 13.0 8.4 4.1 1.9 1.2

128 Ave. Vectors Considered 2.1 2.2 2.2 2.1 2.0 1.9
Ave. CPU Time (sec.) 28.1 | 27.3 | 25.8 24.5 | 24.0 | 245

Table 4.13: Results for vector size 512x16, 1 block (nonoverlapped vectors)

Failing Vectors | Percent Errors 1 1.5% \I 3% l 6% L 12.5%J 25%l 50%J
Ave. Number Solutions 17.1 | 13.4 8.7 5.0 2.3 1.3
8 Ave. Vectors Considered 29.4 | 29.2 | 25.5 30.1 | 25.4 | 35.7
Ave. CPU Time (sec.) 37.6 | 34.8 | 315 299 | 27.7 | 28.8
Ave. Number Solutions 179 | 13.2 8.3 4.7 1.9 1.3
16 Ave. Vectors Considered 15.0 | 13.6 | 17.0 16.3 | 15.5 | 14.4
Ave. CPU Time (sec.) 36.2 | 32.6 | 30.2 27.7 | 26.2 | 26.0
Ave. Number Solutions 16.7 | 14.3 9.2 5.6 2.1 L4
32 Ave. Vectors Considered 8.7 8.2 8.8 9.5 8.7 7.3
Ave. CPU Time (sec.) 34.8 | 32.8 | 29.7 276 | 25.4 | 253
Ave. Number Solutions 16.9 | 13.1 9.5 4.5 2.2 1.3
64 Ave. Vectors Considered 4.0 4.5 4.1 4.3 4.3 4.0
Ave. CPU Time (sec.) 34.6 | 31.9 | 29.7 26.4 | 25.1 25.5
Ave. Number Solutions 174 { 13.3 9.5 4.3 1.9 1.2
128 Ave. Vectors Considered 2.2 2.5 2.1 2.3 1.8 2.2
Ave. CPU Time (sec.) 35.3 | 32.4 | 30.1 26.5 | 24.9 | 26.2

Table 4.14: Results for vector size 512x 16, 2 blocks (nonoverlapped vectors)

66

P ey - s o Ay e SR UMD L R E b S

| Failing Vectors | Percent Errors 1.5% 3% 6% | 12.5% | 25% 50%1

14.0 8.5 4.7 2.3 1.2
8 Ave. Vectors Considered 27, 33.3 32.6 313 | 358 | 276
Ave. CPU Time (sec.) 102.4 | 103.4 | 100.3 98.1 | 98.5 | 96.2

Ave. Number Solutions 14.

-3
-

Ave. Number Solutions 16.6 14.0 8.8 4.3 2.1 1.1
16 Ave. Vectors Considered 15.6 14.3 20.0 135 | 14.8 | 146
Ave. CPU Time (sec.) 1004 | 983 | 968 | 932 | 924 925

Ave. Number Solutions 16.5 12.1 8.7 5.0 1.7 I.1
32 Ave. Vectors Considered 8.0 8.9 9.0 9.6 7.9 8.2
Ave. CPU Time (sec.) 98.4 95.7 93.7 92.0 | 89.7 | 91.3
Ave. Number Solutions 174 12.4 7.2 4.7 2.3 1.2
64 Ave. Vectors Considered 4.4 4.6 4.0 4.0 3.9 4.3
Ave. CPU Time (sec.) 98.4 95.3 92.1 90.7 | 90.0 | 956
Ave. Number Solutions 17.0 12.7 9.2 4.7 2.1 1.2
128 Ave. Vectors Considered 2.3 2.2 2.2 2.3 2.1 1.9
Ave. CPU Time (sec.) 98.1 95.3 93.5 91.6 | 89.9 | 970

Table 4.15: Results for vector size 1024x 16, 1 block (nonoverlapped vectors)

LFa.iling Vectors] Percent Errors I 1.5% I 3% I 6% I 12.5% l 25% I 50%—|
Ave. Number Solutions 174 13.2 9.2 4.5 2.2 1.2
8 Ave. Vectors Considered 329 33.5 338 34.5 | 33.2 | 30.1

Ave. CPU Time (sec.) 1166 | 111.8 | 106.9 1016 | 99.3 | 976

Ave. Number Solutions 17.3 13.0 4.6 2.1 1.3
i6 Ave. Vectors Considered 15.5 14.7 18.7 194 | 14.8 | 14.0
Ave. CPU Time (sec.) 112.0 | 106.1 { 100.0 97.5 | 93.1 | 93.3

ot}
N

Ave. Number Solutions 174 13.2 8.9 4.9 1.7 1.2
32 Ave. Vectors Considered 7.5 8.9 10.1 9.1 8.3 T4
Ave. CPU Time (sec.) 1104 | 105.1 100.0 94.8 | 91.0 | 92.2
Ave. Number Solutions 16.3 13.2 8.3 4.5 1.9 L.l
64 Ave. Vectors Considered 4.6 4.3 3.9 4.5 4.4 3.6

Ave. CPU Time (sec.). 108.9 | 104.5 98.1 93.6 | 90.6 | 93.2

Ave. Number Solutions 17.0 13.7 7.3 4.3 2.6 1.2
128 Ave. Vectors Considered 2.1 1.9 2.2 2.2 2.1 1.9
Ave. CPU Time (sec.) 110.5 | 106.0 97.7 93.6 | 92.1 | 98.3

Table 4.16: Results for vector size 1024x16. 2 blocks (nonoverlapped vectors)

RO URANRR I v

D S o Rttt it P T IVEY

CRE L

4.3 Data Recovery in Benchmark Circuits

The goal of the second set of simulations is to demonstrate that multiple solutions
produced by algorithm 3.4.1 can be further eliminated by structural analysis and fault
simulation of the circuit. To that end, benchmark circuits are used to obtain faulty
responses by fault simulation of stuck-at faults. Data recovery is thus performed on
faulty responses of actual circuit faults. The number of solutions can then be reduced

by structural analysis and fault simulation.

4.3.1 Simulation Environment

Referring again to figure 4.1, the system components used in this simulation are as
follows. Within subsystem A. response vectors are created by the logic simulator.
[t simulates faults within the benchmark circuits, stimulated by pseudorandom test
patterns obtained from the LFSR. As in the first simulation. the generated response
vectors are then compacted by MISR; and M ISRp and the @ and Qg sequences
are supplied to subsystem B. All components of subsystem B are likewise used along
with the precomputed space compaction sequences, M; and Mpy. to perform data
recovery. After data recovery, structural analysis and fault simulation are performed
to reduce any multiple recovered solutions (not shown in figure 4.1).

The circuits used for this simulation are the [ISCAS85 suite of benchmarks [7]. The
[SCAS85 benchmarks have been the standard benchmark circuits used to evaluate.
among other things, testing and simulation algorithms. Table 4.17 provides the details
of the benchmark circuits in the ISCAS85 suite along with the number of stuck-at
fault classes simulated.

In order to simulate a STUMPS-like architecture with small combinational circuits
(to apply the data recovery scheme), circuit outputs are partitioned into distinct data
streams. A circuit with 32 primary outputs can be viewed as (m = 4) data streams
each of length (n = 8). The first data stream consists of outputs (1 - 8). the second
consists of outputs (9 - 16), the third consists of outputs (17 - 24). and the fourth
consists of outputs (25 - 32). Outputs in data streams are arranged and compacted
in numerical order: the data bits from outputs (1. 9. 17. 25) are compacted first.

followed by (2. 10. 18. 26). (3. 11. 19. 27). until lastly (8. 16. 24. 32) are compacted.

6

(V4]

A

G MM AR e VAR A

The data recovery scheme can then be applied without having STUMPS-equipped
benchmark circuits. Table 4.18 provides the partitioning of outputs used for each
benchmark circuit in terms of n and m, along with the simulation results.

Unlike STUMPS for sequential circuits, where the data streams serve as both the
inputs and the outputs of the combinational logic blocks, the benchmark circuits have
an unequal number of inputs and outputs. For simplicity, test patterns are supplied
by an LFSR of length equal to the number of inputs, connected directly to the circuit
inputs. Thus for benchmark circuit c1353, a 41-bit LFSR is used to generate test
patterns, with the least significant bit of the LFSR connected to the first input of the

circuit.

Name Function Inputs | Outputs | Gates
cl1355 ECAT 41 32 546
c1908 ECAT 33 25 830
c432 Priority Decoder 36 7 160
c499 ECAT 41 32 202
c880 | ALU and Control 60 26 383
c2670 | ALU and Control 233 140 1193
¢3540 | ALU and Control 50 22 1669
c3315 | ALU and Selector 178 123 2307
c6288 | 16-bit Multiplier 32 32 2416
¢7552 | ALU and Control | 207 108 3512

Table 4.17: Characteristics of ISCAS85 benchmark circuits

A failing block of responses is obtained by fault simulating single stuck-at faults
in the benchmark circuits. The faults chosen are representative members of fault
classes established by fault collapsing. Further, only faults activated within 64K test
patterns are considered: faults not activated within this test length are removed from
consideration as they do not produce faulty responses within the test length. The
responses in the failing block are then compacted by W /SR, and M [SRpg. according
to the output partitioning scheme described above, to generated @, and Qg. As in
the first simulation. @, and Qg are supplied to the data recovery subsvstem. Addi-

tionally. an equal length good circuit simulation is performed to obtain the reference

69

T TR R ARG T AT ANETTETRY LR e e o

I M e A

space compaction sequences, M} and Mp.

The program parameters that determine a simulation include: the benchmark
circuit to simulate, the partition of the circuit outputs, the list of faults to simulate.
and the test length to consider. The simulation results consist of: the percent of faults
that are recoverable, the percent of data recovery results that are multiple solutions.
the average number of multiple solutions, the percent of fault simulation results that

produce multiple solutions, and the time of execution per fault.

4.3.2 Results

Table 4.18 summarizes the results of the second experiment for one failing block
of 256 response vectors. The rows of the table correspond to the 10 benchmark
circuits in the [ISCAS85 suite. From left to right, each column lists the following.
with the column number indicated in parentheses: the benchmark circuit name (1):
the circuit output partitioning scheme used, in terms of m (2) and n (3): the number
of collapsed stuck-at faults (4); the number of recoverable faults (i.e. faults that affect
at most two scan chains) (5); the percent of total faults that are recoverable (6): the
percent of data recovery results that are multiple solutions (7); the average number of
multiple solutions recovered (8); the percent of fault simulation results that produce
multiple solutions (9); and the average recovery/fault simulation time required per
fault (10). For example, consider table 4.18. Reading across the row corresponding to
circuit c¢1353, the circuit outputs are partitioned into 4 data streams of length 8 (this
corresponds to the 32 outputs given for ¢/355 in table 4.17): the number of faults
considered is 1566; of these faults, 954 or 60.9% of the total faults are recoverable:
96.0% of the results after data recovery are multiple solutions: the average number
of multiple solutions is 2.70; 0% of the results after fault simulation are multiple
solutions; and the average time required per fault is 1.95 seconds.

Three significant observations can be made from the data:

1. A large percent of the simulated faults affect two or fewer scan chains (ranging
from approximately 57% for the smaller circuits up to 90% or more for the

larger circuits).

2. The average number of multiple solutions ranges from approximately 2 to 5
solutions, discounting the two benchmark circuits, c432 and ¢3540. that did

not produce multiple solutions.

3. Nearly all multiple solutions are resolved after fault simulation except for cir-
cuit ¢5315 where only 2.0% of the results after fault simulation were multiple

solutions.

The following conclusions can be drawn from the simulation of the data recovery
scheme on standard benchmark circuits. The data recovery scheme is applicable to a
large percent of the modeled stuck-at faults (90% or more for the larger benchmark
circuits). The data recovery scheme reduces the average number of multiple solutions
by at least 60% of the maximum number possible, ,,C,. And lastly. post-data recovery

fault simulation is a feasible method of further reducing multiple solutions to a single

solution.
1 2 3 4 3 6 T 8 9 10
Percent Multiple Average Multiple Time
Circuit | m | n Total | Recoverable | Recoverable | Recovered | Multiple Solutions after per
Name Faults Faults Faults Solutions | Solutions | Fault Simulation | Fault
cl355 | 4 | 8 1566 954 60.9% 96.0% 2.70 0% 1.95s
c1908 3 9 1884 1332 70.7% 68.2% 2.02 0% 0.91s
c432 2 4 500 500 100% 0% 0 0% 0.14s
c499 4 8 718 408 56.8% 93.1% 2.69 0% 0.65s
<880 4 7 982 981 99.9% 96.3% 2.51 0% 0.74s
2670 | 5 | 28 | 2081 2081 100% 98.4% 1.66 0% 5.98s
€3540 | 2 | 11 | 3304 3304 100% 0%] 0% 0.32s
c5315 5 25 5298 5133 96.9% 97.0% 4.21 2.0% 9.13s
c6288 4 8 7710 7480 97.0% 95.9% 2.73 0% 3.22s
c7352 6 18 7249 6588 90.9% 97.8% 5.09 0% 12.32s

Table 4.18: Results of data recovery in standard benchmark circuits

4.4 Software Implementation

This section discusses specific implementation details of the software system. DR. used

to test and verify the data recovery scheme. DR is a collection of software modules

!

that perform logic simulation, fault simulation. creation of pseudorandomly generated
responses, output response compaction, data construction. error identification and
circuit structural analysis. It functions in two distinct modes: (1) data recovery
of pseudorandomly generated faulty responses, and (2) data recovery in standard
benchmark circuits. To support mode (2), DR contains a two-valued parallel logic
simulator capable of computing the circuit response to 236 test vectors in parallel [19].

The DR software system used to implement the error identification algorithms and
test the data recovery schemes was written in C++. The various modules of the sys-
tem were implemented as C++ objects, or classes. A C++ class is a collection data
and functions that operate on the data. These can be logically divided into three cat-
egories: circuit-related, simulation-related and miscellaneous classes. Circuit-related
classes are responsible for the creation and the representation of a logic circuit from
an external format. Simulation-related classes implement logic and fault simulation.
response compaction, error identification and circuit structural analysis. The miscel-

laneous classes perform low level functions used by other modules.

Circuit-Related Modules

Node Class
The Node class abstracts the interconnections between logic gates in a digital circuit.
All Nodes, but for the primary input and primary output Nodes, must have a source
Gate and at least one fanout Gate. The primary input Nodes have no source Gate.
while the primary output Nodes have no fanout Gate. The member variables of a
Node object are: a unique numerical address, the Node name. the source Gate. the
number of fanout Gates, an array of Gates in the fanout, and an Int256 object (see
below) which represents the 256 logic values of the Node when simulated in parallel.
Figure 4.3 illustrates the basic structure of a Node object.

To allow quick access to any specific Node, all Nodes within the circuit are stored in
a DynamicArray structure (see below), indexed by the Node address. This structure
grows in size as the circuit is being created and new Nodes are added while permitting
direct access to individual Nodes like a standard array.

Gate Class

~1
(8]

Qutput Gate 0

Output Gate 1

Source Gate L Output Gate 2

OutpuE Gate n
Figure 4.3: Node object

The Gate class represents a single logic gate in a circuit. It is an abstract class which
implies that no object of type Gate can exist. Instead. Gate serves as a base class
from which subclasses representing the individual logic gates are derived: figure .-l
illustrates the Gate class hierarchy.

The member variables of the Gate class include the number of inputs. the output
Node, and an array of input Nodes. Each subclass derived from the base has a
specific Evaluate() member function that implements the behavior of the respective
logic gate. All Gate objects in the circuit are stored in a global singly linked-list.

: Figure 4.5 illustrates the basic structure of a Gate object.

Gate

Inv Buf And Nand Or Nor Xor Xnor

Figure 4.4: Gate class hierarchy

Input Node O _______

Input Node I ____ _ |

Input Node 2 GATE Output Node

A gL YR T

Input Node n ————
Figure 4.5: Gate object

Int256 Class
The Int236 class represents the logic values of circuit nodes. The implemented logic

simulator emulates the parallel logic simulator in [19]. It simulates 256 circuit re-

3

L A A B

) bt

sponses concurrently. The Int256 class supports this behavior by representing a col-
lection of 256 logic values in a 256-bit array. Operator overloading is used to define
logic operators on Int256 objects. The standard logic operators are defined. including
AND, OR, NOT and XOR, as well as the assignment operator.

read_iscas85() Function

The read_iscas85() function parses an ISCAS85 net-list file and creates the appropriate
Gate and Node objects to represent the circuit. The net-list file is parsed one line
at a time; the logic gate is extracted and the respective Gate and Node objects are
created. Extensive use of regular expressions in the g+ built-in String class are used
to parse each circuit line. Error-checking is performed on each line read to ensure a

valid ISCASS85 circuit is created.

Simulation-Related Modules

Element Class

The Element class is an elementary structure used to contain information describing
an element of the data recovery scheme. It contains row. column and vector member
variables to uniquely specify an element. Equality and inequality operators are also
defined to facilitate comparison of Element objects.

Fault Class

The Fault class encapsulates an individual stuck-at fault. The member variables
include: the type of stuck-at fault (input or output); the fault location in terms of
a Gate and Node object: and the stuck-at value (either logic 1 or logic 0). Faults
can be contained in FaultList objects, implemented as singly linked-lists. Also. fault
collapsing employing two-way equivalence [2] is implemented as a FaultList member
function.

Register Class

The Register class implements the MISR and LFSR objects used in the simulation.
Register is the base class, and the MISR and LFSR classes are derived from the
base class. To support large registers (more than 32 bits), the actual shift register is
implemented with g+ built-in Integer objects. The Integer class provides multiple

precision integer arithmetic. including logic operations. Thus. effectively any length

of shift register can be realized.

Errorld Class

The Errorld class implements the two error identification algorithms presented in
chapter 3, algorithm 3.3.1 and algorithm 3.4.1. Errorld is utilized by the Sim class
to perform error identification. Solving the generated systems of equations is accom-
plished by Gaussian elimination and back-substitution.

Sim Class

The Sim class implements the two basic simulations performed in DR: error identifi-
cation in pseudorandomly generated responses (section 4.2); and fault simulation in
benchmark circuits (section 4.3). To support these simulations, the Sim class also in-
cludes parallel logic simulation, fault simulation, pseudorandom response generation.

and data construction.

Miscellaneous Modules

SparseMatrix Class

The SparseMatrix class implements sparse matrices [18] and corresponding operations
used to solve systems of Boolean equations. The equations to be solved contain
at most two unknowns, thus the resulting augmented matrix of the system has a
large proportion of zero terms. To decrease memory usage and speed up matrix
operations only the non-zero terms are stored explicitly in the matrix. Further. since
only Boolean equations are considered, the value of the non-zero terms is always |
and is not stored explicitly.

A (n x n) SparseMatrix is represented by n singly linked-lists. one for each row in
the matrix. Each linked-list stores the indices of the non-zero terms in the respective
row, sorted in ascending order. Figure 4.6 illustrates the basic structure of a Sparse-
Matrix object. The multiplication of row elements as part of Gaussian elimination is
optimized to only consider the non-zero matrix elements.

DynamicArray Template
The DynamicArray template is a parameterized container class. [t implements a
generic dynamic array for programmer-specified objects. Using templates permits

the re-use of the same dynamic array code for any object. Thus dynamic arrays of

it

Al0]@— @ NULL
index(

Al @— @ @ @
index0 index! index2

A2 @——— NULL

AR O— o @ NULL
index0 index1

integers, characters or pointers can be easily created. DynamicArrays are used to
contain pointers to Node objects. Nodes are created dynamically as an ISCASS5 net-
list file is parsed, thus occupying an unknown amount of memory. Direct access to
individual Nodes is required to build the interconnections between the new Node and

the partial circuit in memory. Using linked-lists was rejected because of the slower

access to individual list elements.

6

Figure 4.6: A sample SparseMatrix A[][]

NULL

o

W TETRTORY AR T

L Array Segment O

y

o Array Segment 1

Y

) Array Segment 2

| -

|. Array Segment n
NUL.L

Figure 4.7: The DynamicArray structure

ST L TRV SRR T

Chapter 5

Conclusion

Fault diagnosis in a built-in self test (BIST) environment presents unique challenges
not found in external testing. In external testing, the circuit response information is
readily available for capture by the tester. In BIST. however. the circuit responses
are compacted and lost during testing. Methods to retrieve the lost information are
of importance to fault diagnosis. By retrieving the uncompacted circuit responses the
observability of the circuit under test (CUT) is improved. enhancing the diagnostic
resolution and resulting in a more specific analysis of the failure.

A well known BIST architecture used for integrated circuit (IC) testing is self-test
using MISR/parallel SRSG' (STUMPS) [5. 12]. STUMPS presents many internal
circuit observation points from which data is compacted towards a final signature.
The application of test patterns and circuit response compaction occurs completely
on-chip. Only the final signature is extracted from the CUT where it can be compared
by the tester with an error-free reference signature. The original circuit responses are
thus normally unavailable for fault diagnosis.

The diagnosis method used in the STUMPS environment [19. 20] employs data
retrieval to obtain the lost circuit responses from the CUT. Intermediate signatures
are used to target failing blocks of circuit responses. All circuit responses in targeted
blocks are scanned out of the CUT and stored, to be used for fault diagnosis off-line.
The data retrieval process is time consuming and transfers a large volume of data

from the CUT to the tester. Fault diagnosis can be performed almost equally well

! Acronym of shift-register sequence generator.

~1
v 4

Ak 48

fa datios i Biadien A 3 4 4)

based on less data transferred from the CUT. speeding up data retrieval and reducing
tester usage.

This thesis presents a new primary data recovery scheme for diagnosis in a STUMPS
testing environment. We model MISR-based data compaction as separate space and
time compactions, then present a method for constructing a space compaction se-
quence from the quotient sequence and the signature obtained from the MISR. Er-
rors in the circuit response data correspond to specific errors in the space compaction
sequence, whereas no such correspondence exists in the quotient sequence (all bits
following the introduction of the error can be perturbed). Errors in the circuit re-
sponses can then be identified by solving a system of equations based on the space
compaction sequences. The identified errors are combined with the good circuit re-
sponses, obtained by simulation, to produce the uncompacted circuit responses of the
CUT. The new method reduces the volume of data transferred from the CUT to the
tester by a factor of % (where m is the number of scan chains in STUMPS). while
achieving comparable recovery of the lost circuit response data.

Two recommendations are given to improve the effectiveness of the primary data
recovery scheme. The first recommendation uses non-overlapping response vectors to
enhance error identification. It provides more information to perform error identifi-
cation in exchange for a slight increase in testing time (approximately 1.46% longer
for a test length of 100,000 test patterns). The second recommendation dispenses
with intermediate signature testing and constructs the space compaction sequences
for the entire test. Errors in the space compaction sequences can be used to target
data recovery on specific areas of the test set. Diagnosis information is thus obtained
during normal “pass/fail” testing rather than requiring a second test and comparing
intermediate signatures. The attractive features of this approach. including a simpli-
fied testing process and reduced tester usage, make this the most practical proposed
data recovery method.

The primary data recovery scheme is based on the modelling of parallel data
compaction in [23]. The data construction and error identification algorithm for one
erroneous data stream were originally developed by Dr. Sun et al. [15. 17]. The two
alternative data recovery schemes were suggested by Dr. Sun during the course of this

thesis research. The main contributions of this author are: (1) the development and

9

e

Pl SRR o A L T N

implementation of the error identification algorithms used in the three data recovery
schemes; (2) the implementation of the software package. DR: and (3) the validation
of the proposed data recovery schemes by means of computer simulation.

Extensive computer simulation results demonstrate the merits and feasibility of
the proposed schemes. The data recovery schemes are tested with large pseudoran-
domly generated response vectors to gauge performance on realistically large prob-
lems. Further, the primary data recovery scheme is applied to faulty responses gen-
erated by fault simulation of ISCAS85 benchmark circuits [7] to demonstrate the
feasibility of structural analysis and fault simulation to reduce the number of recov-
ered solutions.

The following conclusions are reached from the simulation results:

(1) A failing block of response vectors (block = 256 vectors) can be recovered in
approximately two minutes on a Sun Ultra 1 workstation. This was the maximum
time required for the largest response vector size tested (1024 x 16 bits). Data recovery
of this response size was performed based on 64 Kbytes of information transferred
from the CUT, whereas the data retrieval method in [20] would transfer 512 Kbytes
of data. an 8-fold saving. Fault diagnosis can be accomplished with only a few failing
blocks of vectors [20]. Thus the use of expensive testing equipment can be minimized
in exchange for several minutes of CPU time on less expensive workstations.

(2) The error identification algorithms may produce multiple recovered solutions.
On average, approximately 20 solutions are produced when few response errors occur.
The number of recovered solutions decreases as the percent errors and the number of
failing vectors increase. This is analogous to fault diagnosis where faults that produce
few errors are more difficult to diagnose than those that cause gross failure.

(3) Post-data recovery structural analysis and fault simulation are feasible to
reduce the number of recovered solutions. Multiple responses recovered from bench-
mark circuits were successfully resolved to a single solution with subsequent structural
analysis and fault simulation. Depending on the benchmark circuit. an average of 3 re-
covered solutions were reduced to a single solution after fault simulation. Structural
analysis and fault simulation are already integral parts of fault diagnosis: the only
additional expense for data recovery is the extra computation time needed to consider

multiple recovered solutions.

UJ
[an

a ok i o R I bl ok il

The outcome of this research suggests the feasibility of the proposed data recovery
schemes for VLSI circuits with STUMPS architectures. We are able to recover the
lost circuit responses with a reduced amount of information transferred from the CUT
to the tester which translates to shorter testing times for data retrieval. decreased
tester usage and ultimately, significant savings in the overall testing and production
cost.

The following problems have been identified and merit further investigation:

(1) The error identification algorithms are currently limited to identifving errors
occurring in at most two scan chains. Further research is necessary to expand the
applicability of the algorithms to multiple scan chains. The original scheme in [13]
used the intersections of space compaction columns to identify circuit response errors.
perhaps a variant of this method can be used to expand the error identification
algorithms.

(2) BIST resources are inherently limited as designers are loath to surrender silicon
area and [/O pins. The new data recovery scheme demands an additional scan-
out port for the second MISR. This may be difficult to accommodate in some [(

packaging.

v
—

S T T TR TR TR AT TR AR S T RRTIeE N

Bibliography

[1] Miron Abramovici and Melvin A. Breuer. “Multiple Fault Diagnosis in Com-
binational Circuits Based on an Effect-Cause Analysis™. [EEE Transactions on

Computers, 29(6):451-460, 1980.

[2] Miron Abramovici, Melvin A. Breuer, and Arthur D. Friedman. Digital Systems

Testing and Testable Design. Computer Science Press, 1990.

[3] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley &

Sons, Inc., second edition, 1989.

[4] Sara Baase. Computer Algorithms Introduction to Design and Analysis. Addison

Wesley, second edition, 1988.

[5] P. H. Bardell and W. H. McAnney. “Self-Testing of Multichip Logic Modules™.
In Proceedings of the I[EEE International Test Conference. pages 200-203. 1982.

[6] Paul H. Bardell, William H. McAnney, and Jacob Savir. Built-In Test For VLSI:
Pseudorandom Techniques. John Wiley & Sons. Inc.. 1987.

[7] F. Brglez and H. Fujiwara. “A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in FORTRAN". In Proceedings of the [EEE

International Symposium on Circuits and Systems. 1985.

[8] J. C. Chan and J. A. Abraham. *A Study of Faulty Signatures using a Matrix
Formulation™. In Proceedings of the [EEE International Test Conference. pages
553-561, 1990.

v
N

hasiet e o'

[9]

(10]

[11]

[12]

[13]

[14]

(15]

[16]

[17]

[18]

[19]

Serge Demidenko. Vincenzo Diuri, and Alexander Ivaniukovich. “Error Localiza-
tion in Test Outputs: a Generalized Analysis of Signature Compression”. JJournal

of Microelectronic Systems Integration, pages 317-322, 1993.

Shu Lin and Jr. Daniel J. Costello. FError Control Coding: Fundamental and
Applications. Prentice-Hall, 1983.

W. H. McAnney and J. Savir. “There is [nformation in Faulty Signatures™. In

Proceedings of the IEEE International Test Conference, pages 630-636. 1937.

Benoit Nadeau-Dostie, Dwayne Burek, and Abu S. M. Hassan. “ScanBist: A
Multifrequency Scan-Based BIST Method”. [EEE Design & Test of Computers.
pages 7-16, Spring 1994.

J. Savir and W. H. McAnney. “Identification of Failing tests with Cycling Regis-
ters”. In Proceedings of the IEEE International Test Conference. pages 322-328.
1988.

H. S. Stone. Discrete Mathematical Structures and their Applications. Science

Research Associates, Inc.. 1973.

X. Sun and W. Tutak. “Error Identification and Data Retrieval in Signature
Analysis-based Data Compaction”. In Proceedings of the [EEE I[nternational
Symposium on Defect & Fault Tolerance, pages 177-184. 1996.

X. Sun and W. Tutak. “Error Identification and Data Recovery in MISR-based
Data Compaction”. To appear in Proceedings of the [EEE International Sympo-
stum on Defect & Fault Tolerance, 1997.

X. Sun and D. Yeung. “A Signature Analysis-based Fault Diagnosis Scheme for
STUMPS””. Technical report, Department of Electrical and Computer Engi-

neering, Univeristy of Alberta, 1995.
Reginald P. Tewarson. Sparse Matrices. Academic Press. 1973.

J. A. Waicukauski, V. P. Gupta, and S. T. Patel. *Diagnosis of BIST Failures by
PPSFP Simulation™. In Proceedings of the IEEE International Test Conference.
pages 480-4384. 1987.

V4]
ot

. o1y LD S

[20] J. A. Waicukauski and E. Lindbloom. “Failure Diagnosis of Structured VLSI".
IEEE Design & Test of Computers, 6(4):49-60, August 1989.

[21] Yuejian Wu. Northern Telecom Diagnosis Scheme. Personal communication.

1996.

[22] Yuejian Wu and Saman Adham. “BIST Fault Diagnosis in Scan-Based VLSI
Environments”. In Proceedings of the IEEFE International Test Conference. 1996.

[23] Y. Zorian and A. Ivanov. “EEODM: an Effective BIST Scheme for ROMs™. In
Proceedings of the [EEFE International Test Conference. pages 871-879. 1990.

[04]
—

SR A A PR e el P PIIR T TN WS AR T e Y

Appendix A

DR User Reference Manual

Wes A. Tutak

Department of Electrical and Computer Engineering, University of Alberta

NAME

DataRecovery — A data recovery simulator.

SYNOPSIS
dr [options...] <config-file | S T V>

DESCRIPTION
This program implements the data recovery scheme presented in the author’s
M.Sc. thesis (August 1997). It is able to perform two types of data recovery
simulations. The first is data recovery using faulty responses obtained from
fault simulation of stuck-at faults in [ISCAS85 benchmark circuits. And the

second is data recovery from pseudorandomly generated response vectors.

The first simulation requires the name of a configuration file as the sole param-

eter. The contents of the configuration file are the following variables:

datadir Specifies the directory containing the subsequent data files.
circuit Specifies the name of an ISCASS85 circuit file.
dictionary Specifies the name of the intermediate signature dictionary file.

faults Specifies the name of the file containing the list of faults.

(V9]

3

m Determines the number of scan chains to partition the circuit outputs.

n Determines the length of each scan chain.

The second simulations requires three parameters: S, T. V.

S Specifies the number of scan chains containing errors.

T Specifies the maximum number of errors per vector.

v Specifies the number of failing vectors per block of 256 vectors.
OPTIONS

1. TYPE OF DATA RECOVERY SIMULATION
-iscas Data recovery in [SCAS85 benchmark circuits (default).
-pseudo Data recovery in pseudorandomly generated response vectors.
2. RECOVERY ALGORITHM OPTIONS
-n N Set the length of scan chains (default N = 128).
-m M Set the number of scan chains (default M = 16).
-b blocks Consider the specified number of failing blocks
(default blocks = 1).

-u Use Identify2Unknown() algorithm for error identification
(default).

-k Use Identify2K nown() algorithm for error identification.

-ov Use overlapping response vectors (default).

-nov Use non-overlapping response vectors.

3. OTHER FUNCTIONS

-dict n Create an intermediate signature dictionary of length n.

-collapse Perform fault collapsing on the given circuit.
-p Print the internal circuit nodes and gates of the ISCAS83
benchmark circuit.

-sa Compute the affected scan chain for each fault.

S6

TR

-0a Compute the affected output for each fault.

4. MISCELLANEOUS OPTIONS

-h Print out help summary.

-1 Print the fault list.

-max mb Set the maximum number of blocks to consider during
simulation (default mb = 256).

-r Use time() system call to seed random number generator.

-v Print our progress messages during execution.

-s seed Set seed value of random number generator.

V9]

