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ABSTRACT

For coupled systems of differential equations on networks, a graph-theoretic

approach to the construction of Lyapunov functions is systematically devel-

oped in this thesis. Kirchhoff’s Matrix-Tree Theorem in graph theory plays

an essential role in the approach’s development. The approach is successfully

applied to several coupled systems well-known in the literature to demonstrate

its applicability and effectiveness.
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Chapter 1. Introduction

The method of Lyapunov functions or the directed method of Lyapunov,

named after Russian mathematician A. M. Lyapunov [85], is a standard tool in

the stability theory of nonlinear differential equations. A difficulty in applying

the method of Lyapunov functions is the ad hoc nature of the construction of a

suitable Lyapunov function for the investigation; there is no general principle

to guide such construction. In this thesis, for a large class of coupled systems

of differential equations, we are able to develop a systematic approach that

guides the construction of Lyapunov functions.

We start with a brief introduction to the method of Lyapunov functions.

Let D be an open set in Rm and t0 ∈ R. Consider a nonautonomous system

x′ = f(t, x), (1.1)

where f : [t0,∞)×D → Rm is continuous. In the direct method of Lyapunov,

real-valued functions V with the same domain as f , V : [t0,∞)×D → R, are

considered. From properties such as the sign of these functions and knowledge

of the manner in which they evolve along solutions of (1.1), inferences are

drawn about the qualitative behavior of the solutions. If x(t) satisfies (1.1)

and v(t) = V (t, x(t)) is continuously differentiable and satisfies, for all t in its

domain, a differential inequality of the form

v′(t) ≤ F (t, v(t)), (1.2)
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with F continuous, then v(t) ≤ u∗(t), where u∗(t) is the maximal solution of

the differential equation u′ = F (t, u), for t ≥ t0 as long as both x(t) and u∗(t)

exist. An example of this is found when x is a state variable associated with a

physical system whose behavior in time t is governed by a differential equation

of the form (1.1) and V (t, x) is the energy in the state x at time t. Then

V (t, x(t)) ≤ V (t0, x(t0)), t ≥ t0 as long as x(t) exists if it is known that energy

dissipates so that V (t, x(t)) is non-increasing. In this example F (t, v) = 0 and

u∗(t) = u∗(t0) = V (t0, x(t0)). In particular, the system never achieves a state

in which the energy is greater than that in the initial configuration.

We assume that a unique solution x(t; t0, x0) of (1.1) through (t0, x0) exists

for all t ≥ t0 and x0 ∈ D. If V : [t0,∞)×D → R is continuously differentiable

on its domain and define the derivative
•
V along the solutions of (1.1) as

•
V (t, x) :=

∂V (t, x)

∂t
+

∂V (t, x)

∂x
f(t, x), (1.3)

then, with v(t) = V (t, x(t)),

v′(t) =
•
V (t, x(t)) (1.4)

when x(t) is a solution of (1.1).

The term Lyapunov function is not used with great consistency in the

standard texts in differential equations. For instance the broadest use is in

[61, page 80 et seq] where it denotes any real-valued function V with the same

domain as f and enough smoothness to allow differentiation along solutions.

For a given choice of V , a function F is sought such that

•
V (t, x) ≤ F (t, V (t, x))

for all (t, x) and thus an inequality (1.2) is satisfied by v(t) = V (t, x(t)).

Depending on the qualitative property being investigated, various restrictions

on V and F are required. This approach is then used to investigate questions

2



such as global existence, boundedness, and stability. For example, for stability

of an equilibrium, various sign requirements on V and F (t, v) near equilibrium

are imposed. Lyapunov functions that are not necessarily sign definite may be

used to establish instability of an equilibrium by a method of Chetaev [21] (or

see Theorem 5.1 in [39]). Necessary and sufficient conditions for the existence

of a nontrivial exponential dichotomy for linear systems are expressed in terms

of Lyapunov functions which are specifically not sign definite, see [26, Chapter

7]. This approach may also be used to establish hyperbolic behavior near an

equilibrium of a nonlinear system. Consistent with the usage of [104, page

77] and [100, page 274], the term will be used throughout the thesis as in the

following definition.

Definition 1.1. A continuously differentiable function function V : [t0,∞) ×
D → R is a Lyapunov function for (1.1) if

•
V (t, x) ≤ 0 for all (t, x) ∈ [t0,∞)×D.

The main objective of the thesis is to investigate the construction of Lya-

punov functions for the following class of coupled systems of differential equa-

tions

u′
i = fi(t, ui) +

n∑
j=1

gij(t, ui, uj), i = 1, 2, . . . , n. (1.5)

Here ui ∈ Rmi , fi : R×Rmi → Rmi , and gij : R×Rmi ×Rmj → Rmi . The class

of coupled system (1.5) is an abstraction of a wide variety of physical, natural,

and artificial complex dynamical systems: from biological and artificial neural

networks [3, 17, 23, 55], coupled systems of nonlinear oscillators on lattices

[8, 22], to complex ecosystems [92, 107] and the transmission models of infec-

tious diseases in heterogeneous populations [18, 112]. We look for Lyapunov

functions in the form

V (t, u1, · · · , un) =
n∑

i=1

ciVi(t, ui), (1.6)

with constants ci ≥ 0 and functions Vi : R × Rmi → R. In practice, functions

3



Vi are commonly chosen as Lyapunov functions for the uncoupled system

u′
i = fi(t, ui), 1 ≤ i ≤ n. (1.7)

The uncoupled system (1.7) is often of low dimension whose Lyapunov func-

tions Vi are relatively easy to construct. The goal of our investigation is to

select coefficients ci so that V becomes a Lyapunov function for the coupled

system (1.5). Due to the complexity and large scale of system (1.5), this is a

very challenging task.

In the thesis, utilizing results from graph theory, we are able to develop a

uniform and systematic approach of selecting coefficients ci. The determina-

tion of ci in our approach is given explicitly in terms of the coupling structure

of system (1.5). Our approach is sufficiently general that it is applicable to

systems with arbitrary coupling structure.

We have chosen several well-known classes of mathematical models in

Chapters 3-5 to demonstrate the applicability and effectiveness of our graph-

theoretic approach. These examples are chosen from different areas of science

and engineering and include coupled mechanical or electrical oscillators, spa-

tial ecological models of interacting species, and models of infectious diseases

in heterogeneous populations. These models represent a variety of differen-

tial equations: ordinary differential equations, differential equations with time

delays, and stochastic differential equations. These examples also include sev-

eral different types of coupling structure: physical coupling in mechanical and

electrical engineering, spatial interaction through species dispersal in ecology,

and nonlinear coupling through cross-infection in the spread and transmission

of infectious diseases. Our approach applies to both coupling with instanta-

neous connections and those with time-delayed connections. Our approach

also works for different types of Lyapunov functions.

For all of the examples in Chapters 3-5, our graph-theoretic approach al-

lows us to significantly improve the best known results in the literature. In
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particular, our global-stability result for a multi-group epidemic model (The-

orem 3.9) contains a complete resolution of a 30-year old open problem in

mathematical epidemiology.
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Chapter 2. A Graph-Theoretic

Approach to the Construction

of Lyapunov Functions

In this chapter we develop a general and systematic approach to the con-

struction of Lyapunov functions for coupled systems on networks. Concepts

from graph theory related to our development are reviewed in Section 2.1. In

Section 2.2 we apply Kirchhoff’s Matrix-Tree Theorem to prove several combi-

natorial identities, which will be used in our development. The mathematical

framework of coupled systems on networks along with several examples is given

in Section 2.3. The graph-theoretic approach, the key result of my thesis, is

systematically developed in Section 2.4. We apply the approach to establish

several stability results in Section 2.5. Related discussion are given in Sec-

tion 2.6.

2.1 Definitions and Notations from Graph

Theory

A directed graph or digraph G = (V, E) is a pair of two sets: a set V =

{1, 2, . . . , n} of vertices and a set E of arcs (i, j) leading from initial vertex i

to terminal vertex j. A subgraph H of G is said to be spanning if H and G
have the same vertex set. A digraph and a spanning subgraph are depicted
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in Figure 2.1. A digraph G is weighted if each arc (j, i) is assigned a positive

weight aij. In our convention, aij > 0 if and only if there exists an arc from

vertex j to vertex i in G. The weight w(H) of a subgraph H is the product of

the weights on all its arcs.

(a)

1

2

34

5

(b)

1

2

34

5

Figure 2.1: (a) A digraph G. (b) A spanning subgraph of G

A directed path P in G is a subgraph with distinct vertices {i1, i2, · · · , im}
such that its set of arcs is {(ik, ik+1) : k = 1, 2, . . . , m − 1}. If im = i1, we call

P a directed cycle. A subgraph T in G is a rooted tree if it contains no directed

cycles, and there is one vertex called the root that is not a terminal vertex of

any arcs while each of the remaining vertices is a terminal vertex of exactly

one arc. A subgraph Q is unicyclic if it contains one directed cycle and every

vertex of Q is a terminal vertex of exactly one arc. A unicyclic graph has also

been called a contra-functional digraph [44, page 201]. A rooted tree and a

unicyclic graph are depicted in Figure 2.2. We refer the reader to [44, 120] for

general theory on graphs.

(a) (b)

Figure 2.2: (a) A rooted tree. (b) A unicyclic graph
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2.2 Matrix-Tree Theorem and Combinatorial

Identities

Given a weighted digraph G with n vertices, define the weight matrix as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where aij is defined as the weight of arc (j, i) if it exists and 0 otherwise. For

our purpose, we denote a weighted digraph as (G, A). A digraph G is strongly

connected if, for any pair of distinct vertices, there exists a directed path from

each vertex to the other. A nonnegative matrix is a matrix in which all the

elements are nonnegative. A nonnegative matrix A is reducible if, for some

permutation matrix P ,

PAP T =
[ A1 0

A2 A3

]
,

and A1, A3 are square matrices. Otherwise, A is irreducible. A weighted

digraph (G, A) is strongly connected if and only if the weight matrix A is

irreducible [15]. The Laplacian matrix of (G, A) is defined as

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
k �=1 a1k −a12 · · · −a1n

−a21

∑
k �=2 a2k · · · −a2n

...
...

. . .
...

−an1 −an2 · · · ∑
k �=n ank

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.1)

Let ci denote the cofactor of the i-th diagonal element of L. The following

result is standard in graph theory, and customarily called Kirchhoff’s Matrix-

Tree Theorem. We refer the reader to [64, 95] for its proof.

8



Proposition 2.1 (Kirchhoff’s Matrix-Tree Theorem). Assume n ≥ 2. Then

ci =
∑
T ∈Ti

w(T ), i = 1, 2, . . . , n, (2.2)

where Ti is the set of all spanning trees T of (G, A) that are rooted at vertex

i, and w(T ) is the weight of T . In particular, if (G, A) is strongly connected,

then ci > 0 for all 1 ≤ i ≤ n.

Using Proposition 2.1 we can prove the following combinatorial identity,

which is the key step in the development of graph-theoretic approach in Section

2.4.

Theorem 2.2. Let (G, A) be a weighted digraph with n ≥ 2 vertices, and ci the

cofactor of the i-th diagonal element of the associated Laplacian matrix (2.1).

Then the following identity holds for arbitrary functions Fij : Rmi × Rmj → R

and all xi ∈ Rmi, 1 ≤ i, j ≤ n:

n∑
i,j=1

ci aij Fij(xi, xj) =
∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

Frs(xr, xs). (2.3)

Here Q is the set of all spanning unicyclic graphs of (G, A), w(Q) is the weight

of Q, CQ denotes the directed cycle of Q, and E(CQ) is the arc set of CQ.

Proof. For every spanning tree T rooted at vertex i,

w(T ) aij = w(Q),

where Q is the unicyclic graph obtained from T by adding an arc (j, i) from

vertex j to the root vertex i, see Figure 2.3. As a consequence,

w(T ) aij Fij(xi, xj) = w(Q) Fij(xi, xj), and (j, i) ∈ E(CQ).

When we perform this operation in all possible ways to all rooted trees in G,

we obtain all unicyclic graphs in G, and each unicyclic graph Q is created as

9



i

j

Figure 2.3: A unicyclic graph is formed by adding
a directed arc (j, i) to a tree rooted at i.

many times as the number of arcs in its cycle CQ (see Theorem 16.5 in [44,

page 201]). The identity (2.3) follows from (2.2) if we reorganize the double

sum on the left hand side as a sum over all unicyclic graphs in G.

Corollary 2.3. Let (G, A) and ci be as in Theorem 2.2. Then the following

identity holds for arbitrary functions Gi : Rmi → R and all xi ∈ Rmi, 1 ≤ i ≤
n:

n∑
i,j=1

ci aij Gi(xi) =
n∑

i,j=1

ci aij Gj(xj). (2.4)

Proof. Using Theorem 2.2, we know that both sides of (2.4) are equal to

∑
Q∈Q

w(Q)
∑

k∈V (CQ)

Gk(xk),

where V (CQ) is the vertex set of CQ.

A weighted digraph (G, A) is said to be balanced if for any directed cycle

C in G, the reverse −C is also in G, and w(C) = w(−C) (see [99]). Here, −C
denotes the reverse of C and is constructed by reversing the direction of all arcs

in C. If the weight matrix A is symmetric, then (G, A) is balanced. However,

the weight matrix of a balanced digraph is not necessarily symmetric. For

a unicyclic graph Q with cycle CQ, let Q̃ be the unicyclic graph obtained by

replacing CQ with −CQ. Suppose that (G, A) is balanced. Then w(Q) = w(Q̃).

10



In the right hand side of identity (2.3), we can further pair Q with Q̃ and obtain

n∑
i,j=1

ciaijFij(xi, xj) =
1

2

∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

[Frs(xr, xs) + Fsr(xs, xr)], (2.5)

for all (x1, x2, . . . , xn) ∈ Rm1 × Rm2 × · · · × Rmn . We thus have the following

result.

Theorem 2.4. Assume (G, A) is balanced and n ≥ 2. Let ci be as in Theo-

rem 2.2. Then identity (2.5) holds for arbitrary functions Fij : Rmi × Rmj →
R, 1 ≤ i, j ≤ n.

Using Theorem 2.4 and the same proof as for Corollary 2.3, we obtain the

following result.

Corollary 2.5. Assume (G, A) is balanced and n ≥ 2. Let ci be as in The-

orem 2.2. Then the following identity holds for arbitrary functions Fij :

Rmi × Rmj → R and all xi ∈ Rmi, 1 ≤ i, j ≤ n:

n∑
i,j=1

ci aij Fij(xi, xj) =
n∑

i,j=1

ci aij Fji(xj, xi). (2.6)

2.3 Coupled Systems on Networks

Given a network represented by digraph G with n vertices, n ≥ 2, a coupled

system can be built on G by assigning each vertex its own internal dynamics

and then coupling these vertex dynamics based on directed arcs in G. Assume

that each vertex dynamics is described by a system of differential equations

u′
i = fi(t, ui), (2.7)

where ui ∈ Rmi and fi : R × Rmi → Rmi . Let gij : R × Rmi × Rmj → Rmi

represent the influence of uj from vertex j on ui from vertex i, and gij ≡ 0

if there exists no arc from j to i in G. See Figure 2.4. Then we obtain the

11



following coupled system on digraph G

u′
i = fi(t, ui) +

n∑
j=1

gij(t, ui, uj), i = 1, 2, . . . , n. (2.8)

Many large-scale dynamical systems from science and engineering can be rep-

resented as coupled systems on networks in the form of (2.8). Several examples

are illustrated below. More examples are considered in Chapters 3-5.

u′
i = fi(t, ui) u′

j = fj(t, uj)
�

�

gji(t, uj , ui)

gij(t, ui, uj)

�

�

�

�

�

�

�

�
Figure 2.4: A coupled system on a network

Example 1 (Coupled Oscillators). A coupled system of nonlinear oscilla-

tors on G can be built as follows: each vertex i is assigned a nonlinear oscillator

described by

x′′
i + αix

′
i + fi(xi) = 0, (2.9)

where αi ≥ 0 is the damping coefficient, fi : R → R is the nonlinear restoring

force, and the influence from vertex j to vertex i is provided in the form

aij(x
′
i − x′

j) [29, 42]. Here weight constants aij ≥ 0, and aij = 0 if and only if

no arc exists from j to i in G. See Figure 2.5. We arrive at a coupled system

x′′
i + αix

′
i + fi(xi) = 0

x′′
j + αjx

′
j + fj(xj) = 0

�

�

aij(x′
i − x′

j) aji(x′
j − x′

i)

�� ��

�� ��

Figure 2.5: Coupled oscillators on a network
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of second order differential equations on G

x′′
i + αix

′
i + fi(xi) +

n∑
j=1

aij(x
′
i − x′

j) = 0, i = 1, 2, . . . , n,

or in the form of first order systems

xi
′ = yi,

yi
′ = −αiyi − fi(xi) −

n∑
j=1

aij(yi − yj).
(2.10)

We will study the global dynamics of (2.10) in Section 3.1.

Example 2 (System Coupled via Dispersal). Assume that the vertex

dynamics at each vertex is described by an m-dimensional differential equation

u′
i = fi(t, ui), ui ∈ Rm, i = 1, 2, . . . , n. (2.11)

Let K = diag{k1, k2, · · · , km} be a diagonal matrix with ki ≥ 0 for all 1 ≤
i ≤ m. A class of coupled systems of differential equations (2.11) on G can be

given as

u′
i = fi(t, ui) +

n∑
j=1

aijK(uj − ui), i = 1, 2, . . . , n. (2.12)

The underlying network is described in Figure 2.6. Several mathematical mod-

els in the form of (2.12) are investigated in Chapters 3-5.

2.4 Construction of Lyapunov Functions for

Coupled Systems

In this section we develop a systematic approach to the construction of Lya-

punov function for coupled systems on networks. Our approach allows us to

13



u′
i = fi(t, ui)

u′
j = fj(t, uj)

�

�

aijK(uj − ui) ajiK(ui − uj)

�� ��

�� ��

Figure 2.6: System coupled via dispersal

resolve global-stability problems (Chapters 3-5) for many complex systems in-

cluding coupled oscillators (2.10) and dispersal coupled systems in the form of

(2.12).

Consider a coupled system on a digraph G

u′
i = fi(t, ui) +

n∑
j=1

gij(t, ui, uj), i = 1, 2, . . . , n. (2.13)

The vertex systems after removing all couplings are given as

u′
i = fi(t, ui), i = 1, 2, . . . , n. (2.14)

Our objective is to investigate if a Lyapunov function V can be constructed for

system (2.13). Such an investigation is significant for the stability and control

of large-scale dynamical systems.

Let Ui ⊂ Rmi be an open set. For each continuously differentiable function

Vi : R × Ui → R, 1 ≤ i ≤ n, the derivative
•
Vi along the solutions of (2.13), as

defined in (1.3), is given as follows

•
Vi(t, ui) =

∂Vi(t, ui)

∂t
+

∂Vi(t, ui)

∂ui

(
fi(t, ui) +

n∑
j=1

gij(t, ui, uj)
)
. (2.15)

In practice, Vi is often chosen as a Lyapunov function for each vertex system

(2.14). Let U = U1 × U2 × · · · × Un ⊂ Rm,m = m1 + m2 + · · · + mn, and
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u = (u1, u2, · · · , un). For a continuously differentiable function V : R×U → R,

the derivative
•
V along the solutions of (2.13) is given as follows

•
V (t, u) =

∂V (t, u)

∂t
+

n∑
i=1

∂V (t, u)

∂ui

(
fi(t, ui) +

n∑
j=1

gij(t, ui, uj)
)
. (2.16)

We are particularly interested in constructing Lyapunov functions V for cou-

pled system (2.13) of the form

V (t, u) =
n∑

i=1

ciVi(t, ui), (2.17)

where ci ≥ 0 are constants. The following result gives a general and systematic

approach for selecting suitable coefficients ci such that V as defined in (2.17)

is a Lyapunov function for (2.13).

Theorem 2.6. Suppose that the following assumptions are satisfied.

(1) There exist functions Vi : R × Ui → R, Fij : R × Ui × Uj → R, and

constants aij ≥ 0 such that, for every 1 ≤ i ≤ n,

•
V i(t, ui) ≤

n∑
j=1

aijFij(t, ui, uj), ∀ t > 0, u = (u1, . . . , un) ∈ U. (2.18)

(2) For each directed cycle C of the weighted digraph (G, A), A = (aij),

∑
(s,r)∈E(C)

Frs(t, ur, us) ≤ 0, ∀ t > 0, u = (u1, . . . , un) ∈ U. (2.19)

(3) The weighed digraph (G, A) is strongly connected.

Then, the constants ci given by Proposition 2.1 satisfy ci > 0 for all i and the

function

V (t, u) =
n∑

i=1

ciVi(t, ui), (2.20)
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satisfies
•
V (t, u) ≤ 0 for all t > 0 and u ∈ U , i.e., V is a Lyapunov function

for (2.13).

Proof. Using (2.15), (2.16), and assumption (1), we obtain

•
V (t, u) =

n∑
i=1

ci

•
Vi(t, ui) ≤

n∑
i,j=1

ciaijFij(t, ui, uj).

Applying Theorem 2.2 to the weighted digraph (G, A), we obtain

n∑
i,j=1

ciaijFij(t, ui, uj) =
∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

Frs(t, ur, us). (2.21)

Since w(Q) > 0 and ∑
(s,r)∈E(CQ)

Frs(t, ur, us) ≤ 0,

by assumption (2), we arrive at
•
V (t, u) ≤ 0, completing the proof of Theo-

rem 2.6.

If the underlying network (G, A) has special properties, then Theorem 2.6

holds under a weaker assumption than (2). Suppose that (G, A) is balanced, as

defined in Section 2.2. Using Theorem 2.4, we can further organize the terms

on the right hand side of (2.21) and obtain

n∑
i,j=1

ciaijFij(t, ui, uj) =
1

2

∑
Q∈Q

w(Q)
∑

(s,r)∈E(CQ)

[Frs(t, ur, us) + Fsr(t, us, ur)].

(2.22)

The same proof shows that the conclusion of Theorem 2.6 holds if the assump-

tion (2) is replaced by the following.

(2’) Along each directed cycle C

∑
(s,r)∈E(C)

(
Frs(t, ur, us) + Fsr(t, us, ur)

)
≤ 0, ∀ t > 0, u ∈ U. (2.23)
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We thus have the following result.

Theorem 2.7. Suppose that (G, A) is balanced. Then the conclusion of The-

orem 2.6 holds if condition (2.19) is replaced by (2.23).

Conditions (2.19) of Theorem 2.6 and (2.23) of Theorem 2.7 can be readily

verified if there exist functions Gi : R × Ui → R, i = 1, 2, . . . , n, such that

Fij(t, ui, uj) ≤ Gi(t, ui) − Gj(t, uj), ∀ 1 ≤ i, j ≤ n, t > 0, u ∈ U. (2.24)

Hence the following corollary holds.

Corollary 2.8. The conclusion of Theorem 2.6 and Theorem 2.7 holds if

condition (2.19) and (2.23), respectively, are replaced by (2.24).

If Vi satisfies a more restrictive condition

•
Vi(t, ui) ≤ −bi Vi(t, ui) +

n∑
j=1

aijFij(t, ui, uj), ∀ t > 0, u ∈ U, 1 ≤ i ≤ n,

(2.25)

for constants bi ≥ 0, then a stronger conclusion can be drawn for V . The

following result can be proved the same way as Theorem 2.6 and Theorem 2.7.

Theorem 2.9. Suppose that the following assumptions hold.

(1) There exist Vi : R × Ui → R, Fij : R × Ui × Uj → R, aij ≥ 0, and bi > 0

such that (2.25) holds.

(2) Either (2.19) or (2.24) holds, or (2.23) holds provided that (G, A) is

balanced.

(3) The weighted digraph (G, A) is strongly connected.

Then, constants ci given by Proposition 2.1 satisfy ci > 0 for all i and the

function V in (2.20) satisfies

•
V (t, u) ≤ −bV (t, u) for all t > 0, u ∈ U ,
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where b = min{b1, b2, · · · , bn} > 0.

2.5 An Application to Stability Problems

In this section we use the graph-theoretic approach developed in Section 2.4 to

obtain stability results for coupled systems of nonautonomous differential equa-

tions, while in Chapters 3-5 we investigate stability problems for autonomous

systems.

Let D be an open set in Rm. Consider a nonautonomous system

x′ = f(t, x), (2.26)

where f : [0,∞) × D → D is continuous. We assume that the solution

x(t; t0, x0) of (1.1) through (t0, x0) with x0 ∈ D exists for all t ≥ t0 and is

unique. We say that the origin x = 0 ∈ D is an equilibrium of (2.26) at t = t0

if f(t, 0) = 0 for all t ≥ t0. The origin x = 0 is uniformly stable if for any given

ε > 0 there exists δ = δ(ε) > 0 such that |x0| < δ implies |x(t; t0, x0)| < ε for

all t ≥ t0 > 0. The origin is uniformly asymptotically stable if it is uniformly

stable and there exists η > 0 independent of t0 such that |x0| < η implies

x(t; t0, x0) → 0 as t → ∞. The origin is globally uniformly asymptotically

stable if it is uniformly asymptotically stable and for any x0 ∈ D we have

x(t; t0, x0) → 0 as t → ∞.

Consider the coupled system (2.13) with Ui = Rmi , i = 1, 2, . . . , n, that is

u′
i = fi(t, ui) +

n∑
j=1

gij(t, ui, uj), i = 1, 2, . . . , n, (2.27)

where ui ∈ Rmi , fi : R×Rmi → Rmi , and gij : R×Rmi ×Rmj → Rmi . Suppose

that the origin is an equilibrium of (2.27). Using the graph-theoretic approach

developed in Section 2.4, we have the following stability result.

Theorem 2.10. Suppose that there exist functions Vi : R × Rmi → R, Fij :
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R×Rmi×Rmj and constants aij ≥ 0, bi > 0, 1 ≤ i, j ≤ n such that assumptions

(1)-(3) in Theorem 2.9 are satisfied. In addition, assume that the following

conditions hold for every function Vi.

(1) (positive definite) Vi(t, ui) = 0 for all t > 0 if and only if ui = 0; and

there exists function Φi : Rmi → [0,∞) with Φi(ui) = 0 iff ui = 0 such

that Φi(ui) ≤ Vi(t, ui) for all t > 0 and ui ∈ Rmi.

(2) (decrescent) There exists function Ψi : Rmi → [0,∞) with Ψi(ui) = 0 iff

ui = 0 such that |Vi(t, ui)| ≤ Ψi(ui) for all t > 0 and ui ∈ Rmi.

(3) (radially unbounded) Vi(t, ui) → ∞ uniformly on t as |ui| → ∞.

Then the origin is a globally uniformly asymptotically stable equilibrium for

system (2.27).

Proof. Applying Theorem 2.9, we find that the function

V (t, u) =
n∑

i=1

ciVi(t, ui),

with ci > 0 given by Proposition 2.1, is a Lyapunov function for system (2.27),

and
•
V (t, u) ≤ −bV (t, u), for all (t, u) ∈ [0,∞) × U,

where b = min{b1, b2, . . . , bn} > 0. Since V is a linear combination of functions

Vi that satisfy conditions (1)-(3), V also satisfies conditions (1)-(3). Therefore,

by Theorem 4.3 in [39] (also see [102, Theorem 6.2] or [122, Theorem 9.8]), we

conclude that the origin is globally uniformly asymptotically stable.

Example 3. Consider the following coupled system of nonautonomous differ-

ential equations

x′
i = αi(t)xi +

n∑
j=1

aij(xj − xi), i = 1, 2, . . . , n, (2.28)
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where xi ∈ R, αi : R → R, and the nonnegative matrix A = (aij) is irreducible.

Assume that αi(t) ≤ −βi < 0 for all i and t ≥ 0. Set Vi(t, xi) = x2
i . It can

easily be verified that Vi satisfies conditions (1)-(3) in Theorem 2.10. We also

have

•
Vi(t, xi) = 2αi(t)x

2
i +

n∑
j=1

aij(2xixj − 2x2
i ) ≤ −2βix

2
i +

n∑
j=1

aij(x
2
j − x2

i ).

Let Fij(xi, xj) = Vj(xj) − Vi(xi) = x2
j − x2

i and bi = 2βi > 0. Hence all as-

sumptions of Theorem 2.9 and Theorem 2.10 can be verified. Therefore, by

Theorem 2.10, we conclude that the origin is a globally uniformly asymptoti-

cally stable equilibrium.

2.6 Discussion

To demonstrate that mere existence of Lyapunov functions Vi for each vertex

system is not sufficient for the existence of V , we consider the following exam-

ple, which shows that two asymptotically stable linear systems can be linearly

coupled as in (2.12) to form an unstable system.

Example 4. Let

B =

⎛
⎝ −2 3

−1 1

⎞
⎠ ,

ui = (xi, yi) ∈ R2, and fi(ui) = Bui. The vertex systems (2.11) become

⎛
⎝ x′

i

y′
i

⎞
⎠ = B

⎛
⎝ xi

yi

⎞
⎠ , i = 1, 2. (2.29)

Since the two eigenvalues of B are −1
2
±

√
3

2
i, the zero solution of the vertex

systems (2.29) is globally asymptotically stable in R2. Moreover, there exists

a 2 × 2 matrix C such that Vi = uT
i Cui is a Lyapunov function for the vertex

20



system (2.29) [41, page 295]. Let

A =

⎛
⎝ 0 1

1 0

⎞
⎠

denote the weight matrix associated with a digraph G and K = diag{1, 0}.
The dispersal coupled system (2.12), interpreted as in Figure 2.7, becomes

⎛
⎝ x′

1

y′
1

⎞
⎠ = B

⎛
⎝ x1

y1

⎞
⎠ +

⎛
⎝ x2 − x1

0

⎞
⎠ ,

⎛
⎝ x′

2

y′
2

⎞
⎠ = B

⎛
⎝ x2

y2

⎞
⎠ +

⎛
⎝ x1 − x2

0

⎞
⎠ ,

(2.30)

whose coefficient matrix

⎛
⎜⎜⎜⎜⎜⎜⎝

−3 3 1 0

−1 1 0 0

1 0 −3 3

0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

has a positive eigenvalue
√

13−3
2

, and thus the zero solution of the coupled

system (2.30) is unstable.

In the rest of the thesis, to demonstrate the applicability and effective-

ness of the approach described in Section 2.4, we consider the global-stability

problem for various coupled systems. For these coupled systems, the types

of vertex systems are ranging from ordinary differential equations, delay dif-

ferential equations, to stochastic differential equations; the couplings among

vertices can be linear or nonlinear, or have delay. We show that Lyapunov

functions for these coupled systems can be systematically constructed by our

approach.
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Chapter 3. Applications to

Ordinary Differential Equation

Models

In this chapter we choose several well-known mathematical models to demon-

strate the applicability and effectiveness of our graph-theoretic approach de-

veloped in Chapter 2. These models include coupled oscillators (Section 3.1),

spatial ecological models of single species (Section 3.2) and predator-prey (Sec-

tion 3.4), and heterogeneous epidemic models (Sections 3.5-3.6). These exam-

ples have different types of networks, such as mechanical and electrical net-

works for coupled oscillators, dispersal networks for spatial ecological models,

and interaction networks for multi-group epidemic models. Vertex Lyapunov

functions for these models are also different, from energy-type functions for

coupled oscillators to Volterra-type functions for ecological and epidemiologi-

cal models. Our graph-theoretic approach allows a unified solution regarding

the construction of global Lyapunov functions for all these different type of

complex systems.

The graph-theoretic approach also allows us to significantly improve the

best-known results in the literature. In particular, the global stability of the

endemic equilibrium for multi-group epidemic models has been an open prob-

lem for more than thirty years. Our approach resolves this long-standing open

problem for a large class of multi-group epidemic models (Theorem 3.9).
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3.1 A Model for Coupled Oscillators

Many mechanical, electrical, chemical, and biological systems can be modelled

as coupled oscillators. Their dynamical behaviors can be very complicated;

bifurcation and chaos have been observed in various model systems (see [8]

and references therein). It is also interesting to investigate when and how

these coupled oscillators can eventually stop oscillations. In this section we

apply the graph-theoretic approach developed in Chapter 2 to investigate the

global-stability problem for a class of coupled oscillators. Our approach allows

us to construct a global Lyapunov function for coupled oscillators using the

well-known energy function for each individual oscillator.

We consider the model of coupled oscillators as constructed in Section 2.3.

Recall that, for a given weighted digraph (G, A) with n vertices, A = (aij),

n ≥ 2, a coupled system of nonlinear oscillators on (G, A) is

x′
i = yi,

y′
i = −αiyi − fi(xi) −

n∑
j=1

aij(yi − yj).
(3.1)

The vertex system at each vertex is described by a nonlinear oscillator as

x′′
i + αix

′
i + fi(xi) = 0. (3.2)

Here αi ≥ 0 is the damping coefficient, fi : R → R is the nonlinear restoring

force.

For each vertex system, we assume that there exists x∗
i such that fi(xi) = 0

iff xi = x∗
i . We also assume that the potential energy Fi(xi) =

∫ xi

x∗
i

fi(s)ds has

a global minimum at xi = x∗
i and limxi→∞ Fi(xi) = ∞ for all i. Then it is

standard that, if αi > 0, the total energy

Vi(xi, yi) =
y2

i

2
+ Fi(xi) (3.3)
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is a global Lyapunov function for the global asymptotic stability of xi = x∗
i

for vertex system (3.2).

It can be verified that E∗ = (x∗
1, 0, x

∗
2, 0, · · · , x∗

n, 0) is an equilibrium of

coupled system (3.1). In the following, we apply the graph-theoretic approach

to construct a global Lyapunov function for coupled system (3.1), and then

establish the global stability of E∗.

Theorem 3.1. Assume (G, A) is strongly connected. Suppose that αi ≥ 0 for

all i and there exists k such that αk > 0. Then equilibrium E∗ is globally

asymptotically stable in R2n.

Proof. To apply the graph-theoretic approach, we want to verify that Vi(xi, yi)

in (3.3) satisfies the assumptions of Theorem 2.6. Differentiating Vi along (3.1)

gives
•
Vi = −αiy

2
i −

n∑
j=1

aij(yi − yj)yi

= −αiy
2
i +

n∑
j=1

aij

(
− 1

2
(yi − yj)

2 +
1

2
y2

j −
1

2
y2

i

)

≤
n∑

j=1

aij

(1

2
y2

j −
1

2
y2

i

)
.

Let

Fij(yi, yj) =
1

2
y2

j −
1

2
y2

i .

We have
•
Vi ≤

n∑
j=1

aijFij(yi, yj),

and along every directed cycle C of the weighted digraph (G, A),

∑
(s,r)∈E(C)

Frs(yr, ys) =
∑

(s,r)∈E(C)

(1

2
y2

s −
1

2
y2

r

)
= 0.

Assumptions (1) and (2) of Theorem 2.6 are satisfied. Let ci be the cofactor

of the i-th diagonal element in the Laplacian matrix of (G, A), as given in
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Proposition 2.1. Then, by Theorem 2.6,

V (x1, y1, · · · , xn, yn) =
n∑

i=1

ciVi(xi, yi)

is a Lyapunov function for (3.1), in fact,

•
V (x1, y1, · · · , xn, yn) =

n∑
i=1

ci

•
Vi(xi, yi)

≤
n∑

i=1

ci

n∑
j=1

aijFij(yi, yj)

= 0

for all (x1, y1, · · · , xn, yn) ∈ R2n.

To show E∗ is globally asymptotically stable, we examine the largest in-

variant set where
•
V = 0. Since (G, A) is strongly connected, ci > 0 for all

1 ≤ i ≤ n. Therefore,
•
V = 0 implies that αiy

2
i = 0 and aij(yi − yj)

2 = 0 for

all 1 ≤ i, j ≤ n. As a consequence, yi = 0 if αi > 0; and yi = yj if aij > 0, or

if there exists an arc from j to i in (G, A). By our assumption, there exists k

such that αk > 0, thus yk = 0. Let l 
= k denote any vertex of (G, A). Then,

by the strong connectivity of (G, A), there exists a directed path P from l

to k. Applying the relation yi = yj to each arc (j, i) of P , we obtain that

yl = yk = 0. Hence,
•
V = 0 implies yi = 0 for all i. From the second equation

of (3.1), we have 0 = y′
i = −fi(xi), and thus xi = x∗

i for all i. This implies

that the largest invariant subset of

{(x1, y1, · · · , xn, yn) ∈ R2n |
•
V = 0}

is the singleton {E∗}. Note that V is radially unbounded, namely,

V (x1, y1, · · · , xn, yn) → ∞ as |(x1, y1, · · · , xn, yn)| → ∞.

Therefore, by the LaSalle Invariance Principle [75], E∗ is globally asymptoti-
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cally stable in R2n.

Theorem 3.1 shows that in a strongly connected network, the existence of

damping in a single oscillator is sufficient to eventually wipe out all oscillations

in coupled system (3.1).

3.2 A Single-Species Model in a Patchy Envi-

ronment

Spatial heterogeneity exists in the natural world and can influence population

dynamics [77]. Both continuous reaction-diffusion systems and discrete patchy

models are used to study the effect of spatial heterogeneity in the literature

(see [98] and references therein). While reaction-diffusion systems are suitable

for random spatial dispersal, patchy models are often used to describe directed

movement among patches [51, 76].

In this section we consider a general model that describes the dispersal of

a single species among n patches (n ≥ 2)

x′
i = xifi(xi) +

n∑
j=1

dij(xj − αijxi), i = 1, 2, . . . , n. (3.4)

Here xi ∈ R+ represents population density of the species in patch i, fi ∈
C1(R+, R) represents the intrinsic growth rate in patch i, the constant dij ≥ 0

is the dispersal rate from patch j to patch i, and the constant αij ≥ 0 can be

selected to represent different boundary conditions in the continuous diffusion

case [1, 86]. We remark that growth functions of patches can be very different;

that is, system (3.4) allows patch-specific population dynamics [2]. To model

this specification using continuous space model, one needs to deal with partial

differential equations with spatially varying coefficients, which are particularly

challenging in stability analysis.

Stability problems for system (3.4) have been investigated by different au-

26



thors. For example, Hastings [48] studied the local stability of a positive

equilibrium of (3.4). Sufficient conditions for uniqueness and global stability

of the positive equilibrium were first derived in Beretta and Takeuchi [13] and

further generalized in Lu and Takeuchi [86]. In the following, we interpret (3.4)

as a coupled system on a network. Using our graph-theoretic approach devel-

oped in Chapter 2, we prove a global stability result under weaker restrictions

then ones in [13] and [86].

A digraph G with n vertices can be constructed for system (3.4) as follows:

each vertex represents a patch, a directed arc (j, i) is assigned if the dispersal

rate dij from patch j to patch i is positive, and no such arc exists if dij = 0. The

dynamics at each vertex are defined by the scalar ordinary differential equation

x′
i = xifi(xi). The coupling among vertices are provided by the dispersal

among patches. See Figure 3.1. We remark that the dispersal network G is

strongly connected if and only if the dispersal matrix (dij) is irreducible.

x′
i = xifi(xi) x′

j = xjfj(xj)
�

�

dji(xi − αjixj)

dij(xj − αijxi)

�

�

�

�

�

�

�

�
Figure 3.1: A coupled single-species system on a network

Let Φ : (0,∞) → [0,∞) be such that

Φ(x) = x − 1 − ln x, ∀x > 0. (3.5)

It can be easily verified that Φ(x) ≥ 0 for all x > 0 and Φ(x) = 0 if and only

if x = 1. Denote R+ = [0,∞) and Rn
+ = {(x1, x2, . . . , xn) ∈ Rn | xi ∈ R+, i =

1, 2, . . . , n}. Now we are in a position to establish the global stability result for

system (3.4). Biologically, our result implies that populations in all patches

persist at the unique positive equilibrium level if it exists, irrespective of the

initial conditions.

Theorem 3.2. Suppose that the following assumptions hold:
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(1) The dispersal matrix (dij) of (3.4) is irreducible.

(2) f ′
i(xi) ≤ 0, for all xi > 0, i = 1, 2, . . . , n, and there exists k such that

f ′
k(u) 
≡ 0 in any open interval of R+.

Then, whenever a positive equilibrium E∗ = (x∗
1, x

∗
2, · · · , x∗

n) with x∗
i > 0 for

all 1 ≤ i ≤ n exists for system (3.4), it is unique and globally asymptotically

stable in the positive cone of Rn
+.

Proof. Let E∗ = (x∗
1, x

∗
2, · · · , x∗

n), x∗
i > 0, i = 1, 2, . . . , n, denote a positive

equilibrium of (3.4). Then x∗
i satisfies

fi(x
∗
i ) = −

n∑
j=1

dij

(x∗
j

x∗
i

− αij

)
. (3.6)

We show that E∗ is globally asymptotically stable in the positive cone of Rn
+,

and thus is unique.

Set

Vi(xi) = x∗
i Φ

(xi

x∗
i

)
= xi − x∗

i − x∗
i ln

xi

x∗
i

.

From the properties of function Φ as defined in (3.5), we obtain that Vi(xi) > 0

for all xi > 0 and Vi(xi) = 0 if and only if xi = x∗
i . Direct calculation and

(3.6) yield

•
Vi = (xi − x∗

i )
[
fi(xi) +

n∑
j=1

dij

(xj

xi

− αij

)]

= (xi − x∗
i )

[
−

n∑
j=1

dij

(x∗
j

x∗
i

− αij

)
+ fi(xi) − fi(x

∗
i ) +

n∑
j=1

dij

(xj

xi

− αij

)]

= (xi − x∗
i )(fi(xi) − fi(x

∗
i )) +

n∑
j=1

dijx
∗
j

(xj

x∗
j

− xi

x∗
i

+ 1 − x∗
i xj

xix∗
j

)
.

(3.7)

Let

aij = dijx
∗
j ≥ 0,

Fij(xi, xj) =
xj

x∗
j

− xi

x∗
i

+ 1 − x∗
i xj

xix∗
j

,
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and

Gi(xi) = −Φ
(xi

x∗
i

)
= 1 − xi

x∗
i

+ ln
xi

x∗
i

.

Using the fact (xi − x∗
i )(fi(xi) − fi(x

∗
i )) ≤ 0 for all xi > 0 and all i, we have

•
Vi ≤

n∑
j=1

aijFij(xi, xj).

On the other hand,

Fij(xi, xj) =
xj

x∗
j

− xi

x∗
i

+ 1 − x∗
i xj

xix∗
j

= Gi(xi) − Gj(xj) + 1 − x∗
i xj

xix∗
j

+ ln
x∗

i xj

xix∗
j

= Gi(xi) − Gj(xj) − Φ
(x∗

i xj

xix∗
j

)

≤ Gi(xi) − Gj(xj).

We have shown that Vi, Fij, Gi, and aij satisfy the assumptions of Theorem 2.6

and Corollary 2.8. Let ci be the cofactor of the i-th diagonal element in the

Laplacian matrix of (G, A), as given in Proposition 2.1. Therefore,

V (x1, · · · , xn) =
n∑

i=1

ciVi(xi)

as defined in Theorem 2.6 is a Lyapunov function for (3.4), namely,

•
V ≤ 0 for all (x1, · · · , xn) ∈ Rn

+.

Using the strong connectivity of (G, A) and a similar argument as in Sec-

tion 3.1, we can show that
•
V = 0 if and only if xi = x∗

i for all i. Note that V

is radially unbounded and V (x1, · · · , xn) → ∞ as xi → 0+ for any i. By the

classical Lyapunov stability theory, E∗ is globally asymptotically stable in the

positive cone of Rn
+. This completes the proof of Theorem 3.2.

The existence requirement for E∗ can be satisfied through boundedness
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and persistence analysis, which only involves dynamics on the boundary of

Rn
+. Theorem 3.2 contains an earlier result, as a special case, in Lu and

Takeuchi [86], in which the global stability of E∗ was proved by the theory of

monotone dynamical system under the stricter conditions that f ′
i(xi) < 0 in

(0, +∞) for all i. Before our Theorem 3.2, the result of Lu and Takeuchi [86]

was the best-known global stability result for system (3.4).

3.3 A Volterra Food Web

Stability and complexity of ecosystems have been studied in the field of math-

ematical ecology and biology, see [91] and references therein. The interactions

of many species within biological communities and/or inter communities re-

sult in different complex systems. Global-stability problems for these complex

ecosystems can be very challenging due to complexity of ecosystems. In this

section and Section 3.4 we demonstrate that our graph-theoretic approach

is applicable to different types of complex ecosystems, from food webs (this

section) to patchy predator-prey models (Section 3.4).

Food webs [24, 121] are complex ecosystems describing the predator-prey

relationships between species. Global-stability problems on food webs can

be used to describe the coexistence of species, and thus are interesting and

important [31, 46, 99]. In this section, we apply our graph-theoretic approach

to investigate the global stability of a Volterra food web

x′
i = xi

(
ei +

n∑
j=1

pijxj

)
, i = 1, 2, . . . , n. (3.8)

Here xi ∈ R+ represents the population density of the i-th species, ei ∈ R,

pii ≤ 0, and pijpji < 0 if pij 
= 0, i 
= j. Biologically, pij > 0 means that xi is

predator and xj is prey. We describe (3.8) as a coupled system on a network.

Let G be a digraph with n vertices, in which each vertex represents one species.

An arc (j, i) exists if and only if pij 
= 0, i 
= j. The dynamics at each vertex
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are defined by the scalar ordinary differential equation

x′
i = eixi + piix

2
i .

The coupling among vertices are provided by the interaction among species,

in the bilinear form of pijxixj, i 
= j. System (3.8) thus can be regarded as a

coupled system on G. See Figure 3.2.

x′
i = eixi + piix

2
i

x′
j = ejxj + pjjx

2
j

�

�

pijxixj pjixixj

�� ��

�� ��

Figure 3.2: A Volterra food web

Suppose that (3.8) admits a positive equilibrium E∗ = (x∗
1, x

∗
2, · · · , x∗

n),

where x∗
i > 0, i = 1, 2, . . . , n, satisfy the equilibrium equations

ei +
n∑

j=1

pijx
∗
j = 0, ∀ i = 1, 2, . . . , n. (3.9)

Let

Vi(xi) = x∗
i Φ

(xi

x∗
i

)
= xi − x∗

i − x∗
i ln

xi

x∗
i

.

Differentiating Vi along with (3.9) gives

•
Vi = eixi +

n∑
j=1

pijxixj − eix
∗
i −

n∑
j=1

pijx
∗
i xj =

n∑
j=1

pij(xi − x∗
i )(xj − x∗

j)

= pii(xi − x∗
i )

2 +
n∑

j=1

aijFij(xi, xj),

where aij = |pij| when i 
= j, aii = 0, and Fij(xi, xj) = sgn(pij)(xi−x∗
i )(xj−x∗

j).

Let (G, A) denote the weighted digraph with the weight matrix (aij). Suppose
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that (G, A) is balanced. Thus condition (2.23) of Theorem 2.7 is satisfied since

Fij(xi, xj) = −Fji(xj, xi), i 
= j. Let ci be the cofactor of the i-th diagonal

element in the Laplacian matrix of (G, A), as given in Proposition 2.1. Then,

by Theorem 2.7,

V (x1, x2, · · · , xn) =
n∑

i=1

ciVi(xi) (3.10)

is a Lyapunov function for (3.8) provided that (G, A) is balanced. In particular,

we have
•
V =

n∑
i=1

cipii(xi − x∗
i )

2 ≤ 0. (3.11)

Therefore, we have the following result that extends an earlier result on global

Lyapunov functions for (3.8) in [99].

Theorem 3.3. Suppose that system (3.8) admits a positive equilibrium E∗.

Assume that (G, A) is balanced with weights aij = |pij| if pij 
= 0 and 0 oth-

erwise. Then V as given in (3.10) is a Lyapunov function for (3.8). Fur-

thermore, if pii < 0 for all i, then E∗ is globally asymptotically stable in the

positive cone of Rn
+.

3.4 A Patchy Predator-Prey Model

Patchy predator-prey models can be used to model complex ecosystems of

predator-prey interactions in a heterogeneous environment. Assume that the

heterogeneous environment can be divided into several homogeneous regions,

called patches, prey and predator populations interact in each patch, and only

prey population can dispersal among patches. Then we obtain the following

predator-prey model in which prey disperse among n patches (n ≥ 2).

x′
i = xi(ri − bixi − eiyi) +

n∑
j=1

dij(xj − αijxi),

y′
i = yi(−γi − µiyi + εixi), i = 1, 2, . . . , n.

(3.12)
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Here, xi, yi denote the densities of preys and predators on the patch i, respec-

tively. The parameters in the model are nonnegative constants, and ei, εi are

positive. The dispersal constants dij, αij are similarly defined as in Section 3.2.

We refer the reader to [30, 71] for detailed interpretations of predator-prey

models and parameters.

In this section we interpret (3.12) as a coupled system on a network. Uti-

lizing a well-known Lyapunov function for single-patch predator-prey models

[56] as Vi and using our graph-theoretic approach, we establish that a positive

equilibrium of the n-patch model (3.12) is globally asymptotically stable in

R2n
+ as long as it exists. We remark that, for a special case of system (3.12)

when patch number n = 2, Kuang and Takeuchi [71] proved the global sta-

bility of the positive equilibrium by constructing a Lyapunov function. Our

graph-theoretic approach allows us to extend such a construction of Lyapunov

functions for a two-patchy model to an arbitrarily n-patch model.

x′
i = xi(ri − bixi − eiyi)

y′i = yi(−γi − µiyi + εixi)

x′
j = xj(rj − bjxj − ejyj)

y′j = yj(−γj − µjyj + εjxj)

dji(xi − αjixj) dij(xj − αijxi)

��

��

�

�

Figure 3.3: A coupled predator-prey system on a network

A digraph G with n vertices for system (3.12) can be constructed similarly

as in Section 3.2. Each vertex represents a patch and (j, i) ∈ E(G) if and only

if dij > 0. At each vertex of G, the vertex dynamics is described by a predator-

prey system. See Figure 3.3. The coupling among these predator-prey systems

are provided by dispersal among prey populations.
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Now we are ready to establish the global stability of system (3.12).

Theorem 3.4. Suppose that the dispersal matrix (dij) is irreducible. Assume

that there exists k such that bk > 0 or µk > 0. Then, whenever a positive

equilibrium E∗ exists, it is unique and globally asymptotically stable in the

positive cone of R2n
+ .

Proof. Let E∗ = (x∗
1, y

∗
1, · · · , x∗

n, y
∗
n), with x∗

i , y
∗
i > 0 for all 1 ≤ i ≤ n, denote

the positive equilibrium. Here x∗, y∗ satisfy the equilibrium equations

ri = bix
∗
i + eiy

∗
i −

n∑
j=1

dij

(x∗
j

x∗
i

− αij

)
,

γi = −µiy
∗
i + εix

∗
i .

(3.13)

Consider a vertex Lyapunov function in [56] for a single-patch predator-prey

model,

Vi(xi, yi) = εix
∗
i Φ

(xi

x∗
i

)
+eiy

∗
i Φ

( yi

y∗
i

)
= εi

(
xi−x∗

i−x∗
i ln

xi

x∗
i

)
+ei

(
yi−y∗

i −y∗
i ln

yi

y∗
i

)
.

We show that Vi satisfies assumptions of Theorem 2.6. Following similar steps

as in (3.7), and using (3.13), we can verify that

•
Vi = εi(xi − x∗

i )(ri − bixi − eiyi) +
n∑

j=1

εidij
xi − x∗

i

xi

(xj − αijxi)

+ei(yi − y∗
i )(−γi − µiyi + εixi)

= εi(xi − x∗
i )

(
bix

∗
i + eiy

∗
i −

n∑
j=1

dij

(x∗
j

x∗
i

− αij

)
− bixi − eiyi

)

+
n∑

j=1

εidij
xi − x∗

i

xi

(xj − αijxi) + ei(yi − y∗
i )(µiy

∗
i − εix

∗
i − µiyi + εixi)

= −εibi(xi − x∗
i )

2 − eiµi(yi − y∗
i )

2 +
n∑

j=1

dijεix
∗
j

(xj

x∗
j

− xi

x∗
i

+ 1 − xjx
∗
i

x∗
jxi

)
.

Set

aij = dijεix
∗
j , Fij(xi, xj) =

xj

x∗
j

− xi

x∗
i

+ 1 − x∗
i xj

xix∗
j

,
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and

Gi(xi) = −xi

x∗
i

+ ln
xi

x∗
i

.

Then, as in Section 3.2, Vi, Fij, Gi, and aij satisfy the assumptions of Theo-

rem 2.6 and Corollary 2.8. Let ci be the cofactor of the i-th diagonal element

in the Laplacian matrix of (G, A), as given in Proposition 2.1. Therefore, the

function

V (x1, y1, · · · , xn, yn) =
n∑

i=1

ciVi(xi, yi)

as defined in Theorem 2.6 is a Lyapunov function for (3.12), and

•
V ≤ 0 for all (x1, y1, · · · , xn, yn) ∈ R2n

+ .

Using a similar argument as in Section 3.1, we can show that the largest

invariant set on which
•
V = 0 is the singleton {E∗}. Notice that V is radially

unbounded and for all i we have

V (x1, y1, · · · , xn, yn) → ∞ as xi → 0+ or yi → 0+.

The LaSalle Invariance Principle [75] implies that E∗ is globally asymptoti-

cally stable in the positive cone of R2n
+ . This also implies that E∗ is unique,

completing the proof of Theorem 3.4.

Theorem 3.4 generalizes a global-stability result in [71] from 2 patches

to any number of patches. Biologically, our result indicates that arbitrary

prey dispersal among patches never changes the global stability as long as the

system persists.
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3.5 An SIR Epidemic Model in a Patchy En-

vironment

Heterogeneity exists in many aspects of disease transmission processes [20, 84]:

heterogeneous spatial distribution of host populations, heterogeneous suscep-

tibility among age groups, heterogeneous social behaviors among groups for

sexually transmitted diseases, multi-hosts for many diseases such as West Nile

virus and Avian flu. Heterogeneity produces complexity in disease transmis-

sion. Due to extremely large scales of the resulting models, rigorously es-

tablishing their global dynamics poses a great mathematical challenge. In this

section (spatial heterogeneity) and Section 3.6 (host heterogeneity), our graph-

theoretic approach allows us to completely determine the global dynamics of

several classes of heterogeneous epidemiological models.

Discrete spatial epidemic models in patchy environments have been pro-

posed in the literature to model the spread of infectious disease in spatially

heterogeneous host populations [7, 116]. In the proposed models, a patch

can be a city or a country; and directed movement can be migration among

countries and regions or travel among cities. Arino and van den Driessche [6]

formulated n-city epidemic models to investigate the effects of inter-city travel

on the spatial spread of infectious diseases among cities. The basic reproduc-

tion number R0 was derived and numerical simulations were carried out to

show that R0 determines whether the disease dies out (R0 < 1) or becomes

endemic (R0 > 1). Wang and Zhao [117] studied an n-patch SIS model with

bilinear incidence. In the case that both susceptible and infectious individuals

on each patch have the same dispersal rates, they proved that the disease-

free equilibrium is globally asymptotically stable if R0 < 1. They also proved

that the system is uniformly persistent and admits an endemic equilibrium if

R0 > 1. Under the same assumption that the dispersal rates of susceptible

and infectious individuals are the same, Jin and Wang [60] showed that the

n-patch SIS model can be reduced to a monotone system. Using the theory of
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monotone dynamical systems, they proved the uniqueness and global stability

of the endemic equilibrium when R0 > 1. Salmani and van den Driessche [103]

studied an SEIRS model with standard incidence in a patchy environment and

proved that, if R0 < 1, the disease-free equilibrium is globally asymptotically

stable, regardless of travel rates. Uniqueness and global stability of endemic

equilibria when R0 > 1 is unresolved for many patchy epidemic models.

In this section, we consider an SIR epidemic model in a patchy environment

in which the couplings are provided by individual travel among patches

S ′
i = Λi − βiSiIi − µS

i Si +
n∑

j=1

aijSj −
n∑

j=1

ajiSi,

I ′
i = βiSiIi − (µI

i + γi)Ii +
n∑

j=1

bijIj −
n∑

j=1

bjiIi,

R′
i = γiIi − µR

i Ri +
n∑

j=1

cijRj −
n∑

j=1

cjiRi, i = 1, 2, . . . , n.

(3.14)

Here Si, Ii, Ri represent the susceptible, infectious, and removed populations

in the i-th patch, respectively, Λi is the influx of individuals into the i-th

patch, βi is the transmission coefficient between susceptible and infectious

individuals in the i-th patch, µS
i , µI

i , and µR
i represent death rates of S, I, R

populations in the i-th patch, respectively, and γi represents the recovery rate

of infectious individuals in the i-th patch. The travel rates of susceptible,

infectious, and removed individuals from the j-th patch to the i-th patch

are given by aij, bij, cij, respectively. All parameter values are assumed to be

nonnegative and Λi, βi, µ
S
i , µI

i > 0 for all i. The travel matrices A = (aij),

B = (bij), and C = (cij) are not required to be symmetric, namely, the travel

rate from the i-th patch to the j-th patch may not be the same as that from

the j-th to the i-th. A typical assumption we impose on these matrices is

that they are irreducible. In biological terms, this means individuals in each

compartment can travel between any two patches directly or indirectly through

other patches. For detailed discussions of epidemic model with patches, we

refer the reader to the articles [7, 116] and the references therein. Model
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(3.14) includes as special cases several earlier models in the literature. A two-

patch SIS model [115] and a two-patch SIRS model [19] become special cases

of model (3.14) if we assume that the disease has permanent immunity. An

n-patch model similar to (3.14) was proposed in [87] without global-stability

analysis. We remark that model (3.14) differs from those in [103] in that

bilinear incidence is used in (3.14) while standard incidences are assumed in

[103].

Since the variable Ri does not appear in the first two equations of (3.14),

we can first study the reduced system

S ′
i = Λi − βiSiIi − µS

i Si +
n∑

j=1

aijSj −
n∑

j=1

ajiSi,

I ′
i = βiSiIi − (µI

i + γi)Ii +
n∑

j=1

bijIj −
n∑

j=1

bjiIi, i = 1, 2, . . . , n,

(3.15)

with initial conditions Si(0) ≥ 0 and Ii(0) ≥ 0. The behavior of Ri can then

be determined from the last equation of (3.14). Our results will be stated for

system (3.15) and can be translated straightforwardly to system (3.14).

S′
i = Λi − βiSiIi − µS

i Si

I ′i = βiSiIi − (µI
i + γi)Ii

S′
j = Λj − βjSjIj − µS

j Sj

I ′j = βjSjIj − (µI
j + γj)Ij

��

��

�

�

aijSj − ajiSi bijIj − bjiIiajiSi − aijSj bjiIi − bijIj

�

�

Figure 3.4: A coupled SIR model on a network

System (3.15) can be regarded as a coupled system on a digraph G. See

Figure 3.4. For G, each vertex represents a patch and (j, i) ∈ E(G) if either
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aij > 0 or bij > 0. At each vertex, the vertex dynamics is described by a

standard epidemic model. The coupling among patches are provided by travel

of individuals.

To find the disease-free equilibrium of (3.15), we consider the following

linear system

Λi − µS
i Si +

n∑
j=1

aijSj −
n∑

j=1

ajiSi = 0, i = 1, 2, . . . , n, (3.16)

or in the form of matrix system

DS = Λ,

where

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

µS
1 +

∑
j �=1 aj1 −a12 · · · −a1n

−a21 µS
2 +

∑
j �=2 aj2 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · µS
n +

∑
j �=n ajn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.17)

S = (S1, S2, · · · , Sn)T , and Λ = (Λ1, Λ2, · · · , Λn)T . Since all off-diagonal en-

tries of D are nonpositive and the sum of the entries in each column of D is

positive, D is a non-singular M -matrix and D−1 ≥ 0 [15, p.137]. A square

matrix is said to be an M-matrix if all off-diagonal entries are nonpositive and

all eigenvalues have positive real parts. Hence, the linear system (3.16) has

a unique positive solution S0 = (S0
1 , S

0
2 , · · · , S0

n)T = D−1Λ, with S0
i > 0 for

all i. As a consequence, system (3.15) has a unique disease-free equilibrium

P0 = (S0
1 , 0, S

0
2 , 0, · · · , S0

n, 0). We thus have the following result.

Proposition 3.5. System (3.15) always has a unique disease-free equilibrium

P0.
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Let

Λ̄ =
n∑

i=1

Λi,

µ∗ = min{µS
i , µI

i + γi | i = 1, 2, . . . , n},

and

N =
n∑

i=1

(Si + Ii).

Adding all equations of (3.15) gives N ′ ≤ Λ̄ − µ∗N , which implies that

lim supt→∞ N ≤ Λ̄
µ∗ . Since all off-diagonal entries of D are nonpositive, it

follows from the first equation of (3.15) that

S ′
i ≤ Λi − µS

i Si +
n∑

j=1

aijSj −
n∑

j=1

ajiSi = (DS0 − DS)i ≤ 0,

when Si = S0
i and Sj ≤ S0

j for j 
= i. Thus a feasible region of (3.15) can be

chosen as

Γ =
{

(S1, I1, · · · , Sn, In) ∈ R2n
+

∣∣ N =
n∑

i=1

(Si+Ii) ≤
Λ̄

µ∗ , Si ≤ S0
i , 1 ≤ i ≤ n

}
.

It can be verified that Γ is positively invariant with respect to (3.15). Let
◦
Γ

denote the interior of Γ, and ∂Γ the boundary of Γ.

An endemic equilibrium P ∗ = (S∗
1 , I

∗
1 , S

∗
2 , I

∗
2 , . . . , S

∗
n, I

∗
n) of (3.15) belongs

to
◦
Γ, namely, S∗

i > 0, I∗
i > 0 for all i = 1, 2, . . . , n. System (3.15) is said to be

uniformly persistent [16, 114] in
◦
Γ if there exists constant c > 0 such that

lim inf
t→∞

Si(t) > c and lim inf
t→∞

Ii(t) > c, i = 1, . . . , n,

provided (S1(0), I1(0), . . . , Sn(0), In(0)) ∈
◦
Γ.
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Define

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

β1S
0
1 0 · · · 0

0 β2S
0
2 · · · 0

...
...

. . .
...

0 0 · · · βnS
0
n

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.18)

and

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µI
1 + γ1 +

∑
j �=i

bj1 −b12 · · · −b1n

−b21 µI
2 + γ2 +

∑
j �=2

bj2 · · · −b2n

...
...

. . .
...

−bn1 −bn2 · · · µI
n + γn +

∑
j �=n

bjn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.19)

Using the method of van den Driessche and Watmough [113], the basic repro-

duction number can be calculated as

R0 = ρ(FV −1), (3.20)

where ρ represents the spectral radius and FV −1 is the so called next gener-

ation matrix. The following result for system (3.15) can be proved the same

way as in [19, 103].

Proposition 3.6. Suppose that B = (bij) is either irreducible or equal to 0.

(1) If R0 ≤ 1, then the disease-free equilibrium P0 is globally asymptotically

stable in Γ.

(2) If R0 > 1, then P0 is unstable.

(3) If R0 > 1 and B = (bij) is irreducible, then system (3.15) is uniformly

persistent and there exists an endemic equilibrium P ∗ in
◦
Γ.

We remark that when the travel matrix B = (bij) is reducible, system

(3.15) can have multiple boundary equilibria and the dynamics of (3.15) can
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be complicated. In fact, when B = 0, system (3.15) can have an asymptotically

stable boundary equilibrium when R0 > 1 and thus is not persistent [19, 115].

It is also possible that, if B = 0, no endemic equilibrium exists when R0 > 1

[19]. We refer the reader to [5, 6, 19, 115] for discussions on this issue.

The uniqueness and global stability of the endemic equilibrium, if it exists,

are established in the following result.

Theorem 3.7. Assume that R0 > 1 and an endemic equilibrium P ∗ = (S∗
1 , I

∗
1 ,

· · · , S∗
n, I

∗
n) exists. Suppose that one of the following assumptions is satisfied.

(1) A = 0 and B is irreducible;

(2) B = 0 and A is irreducible;

(3) A and B are irreducible, and there exists λ > 0 such that aijS
∗
j = λbijI

∗
j

for all 1 ≤ i, j ≤ n.

Then P ∗ is unique and globally asymptotically stable in
◦
Γ.

Proof. We prove the result when assumption (3) is satisfied. The other two

cases can be proved similarly. Under assumption (3) we show that P ∗ is

globally asymptotically stable in
◦
Γ. In particular, this implies that P ∗ is

necessarily unique. Set

Vi(Si, Ii) = S∗
i Φ

( Si

S∗
i

)
+ I∗

i Φ
( Ii

I∗
i

)
= Si − S∗

i − S∗
i ln

Si

S∗
i

+ Ii − I∗
i − I∗

i ln
Ii

I∗
i

,

which is a Lyapunov function for a one-patch SIR model [67, 69]. From the

equilibrium equations of (3.15), we obtain

µS
i S∗

i = Λi − βiS
∗
i I

∗
i +

n∑
j=1

aijS
∗
j −

n∑
j=1

ajiS
∗
i , (3.21)

and

(µI
i + γi)I

∗
i = βiS

∗
i I

∗
i +

n∑
j=1

bijI
∗
j −

n∑
j=1

bjiI
∗
i . (3.22)
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Recall that Φ(x) = x − 1 − ln x ≥ 0 for all x > 0 and Φ(x) = 0 if and only if

x = 1. Differentiating Vi along the solution of system (3.15), and using (3.21),

(3.22), we obtain

•
Vi = Λi − µS

i Si +
n∑

j=1

aijSj −
n∑

j=1

ajiSi − Λi
S∗

i

Si

+ βiS
∗
i Ii + µS

i S∗
i

−
n∑

j=1

aijSj
S∗

i

Si

+
n∑

j=1

ajiS
∗
i − (µI

i + γi)Ii +
n∑

j=1

bijIj −
n∑

j=1

bjiIi

−βiSiI
∗
i + (µI

i + γi)I
∗
i −

n∑
j=1

bijIj
I∗
i

Ii

+
n∑

j=1

bjiI
∗
i

= Λi

(
2 − Si

S∗
i

− S∗
i

Si

)
+

n∑
j=1

aijS
∗
j

(
1 − S∗

i Sj

SiS∗
j

+
Sj

S∗
j

− Si

S∗
i

)

+
n∑

j=1

bijI
∗
j

(
1 − I∗

i Ij

IiI∗
j

+
Ij

I∗
j

− Ii

I∗
i

)

= −ΛiΦ
( Si

S∗
i

)
− ΛiΦ

(S∗
i

Si

)
−

n∑
j=1

aijS
∗
j Φ

(S∗
i Sj

SiS∗
j

)
−

n∑
j=1

bijI
∗
j Φ

(I∗
i Ij

IiI∗
j

)

+
n∑

j=1

aijS
∗
j

(Sj

S∗
j

+ ln
S∗

j

Sj

− Si

S∗
i

− ln
S∗

i

Si

)
+

n∑
j=1

bijI
∗
j

( Ij

I∗
j

+ ln
I∗
j

Ij

− Ii

I∗
i

− ln
I∗
i

Ii

)

≤
n∑

j=1

aijS
∗
j

(Sj

S∗
j

+ ln
S∗

j

Sj

− Si

S∗
i

− ln
S∗

i

Si

)
+

n∑
j=1

bijI
∗
j

( Ij

I∗
j

+ ln
I∗
j

Ij

− Ii

I∗
i

− ln
I∗
i

Ii

)

=
n∑

j=1

bijI
∗
j

[(
λ

Sj

S∗
j

+ λ ln
S∗

j

Sj

+
Ij

I∗
j

+ ln
I∗
j

Ij

)
−

(
λ

Si

S∗
i

+ λ ln
S∗

i

Si

+
Ii

I∗
i

+ ln
I∗
i

Ii

)]
.

(3.23)

Let ωij = bijI
∗
j and

Gi(Si, Ii) = −
(
λ

Si

S∗
i

+ λ ln
S∗

i

Si

+
Ii

I∗
i

+ ln
I∗
i

Ii

)
.

Then we have
•
Vi ≤

n∑
j=1

ωij[Gi(Si, Ii) − Gj(Sj, Ij)],

namely, Vi, Gi and ωij satisfy the assumptions of Theorem 2.6 and Corol-

lary 2.8. Hence,

V =
n∑

i=1

ciVi(Si, Ii)
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as defined in Theorem 2.6, is a Lyapunov function for system (3.15). Since

B is irreducible, we know that ci > 0 for all i (see Proposition 2.1), and thus
•
V = 0 implies that Si = S∗

i for all i. From the first equation of (3.15), we

obtain

0 = (S∗
i )

′ = Λi − βiS
∗
i Ii − µS

i S∗
i +

n∑
j=1

aijS
∗
j −

n∑
j=1

ajiS
∗
i , i = 1, 2, . . . , n,

which implies that Ii = I∗
i for all i. We have verified that the largest invariant

set on which
•
V = 0 is the singleton {P ∗}. Note that

◦
Γ is positively invariant

and system (3.15) is uniformly persistent. Therefore, by the LaSalle Invariance

Principle [75], P ∗ is globally asymptotically stable in
◦
Γ.

Theorem 3.7 can be readily applied to the n-patch epidemic model in [87]

and yield global-stability analysis. When the disease has permanent immunity,

the global stability of the endemic equilibrium for two-patch epidemic models

in [19, 115] is resolved as a special case of Theorem 3.7.

3.6 A Multi-Group SEIR Epidemic Model

Multi-group epidemic models have been proposed in the literature to describe

the transmission dynamics of infectious diseases in heterogeneous host popu-

lations. Heterogeneity in host population can result from many factors. Indi-

vidual hosts can be divided into groups according to different contact patterns

such as those among children and adults for Measles and Mumps, or to distinct

number of sexual partners for sexually transmitted diseases and HIV/AIDS.

Groups can be geographical such as communities, cities, and countries, or epi-

demiological, to incorporate differential infectivity or co-infection of multiple

strains of the disease agent. Multi-group models can also be used to investi-

gate infectious diseases with multiple hosts such as West-Nile virus and vector

borne diseases such as Malaria.

In this section, we consider a multi-group SEIR epidemic model in which
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inter-group cross infections are described by nonlinear functions. The model

S ′
i = Λi − µS

i Si −
n∑

j=1

βijfij(Si, Ij),

E ′
i =

n∑
j=1

βijfij(Si, Ij) − (µE
i + εi)Ei,

I ′
i = εiEi − (µI

i + γi)Ii, i = 1, 2, · · · , n,

(3.24)

describes the spread of an infectious disease in a heterogeneous population,

which is partitioned into n homogeneous groups. Each group i is further com-

partmentalized into Si, Ei, and Ii, which denote the subpopulations that are

susceptible to the disease, infected but non-infectious, and infectious, respec-

tively. The nonlinear coupling term βijfij(Si, Ij) represents the cross infection

from group j to group i. The parameter εi represents the rate of becoming in-

fectious after latent period in the i-th group. All other parameters in (3.24) are

similarly defined as in Section 3.5. For detailed discussions of the multi-group

model and interpretations of parameters, we refer the reader to [37, 112].

Assume that εi > 0 and µ∗
i > 0, where µ∗

i = min{µS
i , µE

i , µI
i + γi}. Based

on biological considerations, we assume that fij(0, Ij) = 0, fij(Si, 0) = 0, and

fij(Si, Ij) > 0 for Si > 0, Ij > 0. We also assume that fij is sufficiently smooth.

For each i, adding the three equations in (3.24) gives

(Si + Ei + Ii)
′ ≤ Λi − µ∗

i (Si + Ei + Ii).

Hence

lim sup
t→∞

(Si + Ei + Ii) ≤ Λi/µ
∗
i .

Similarly, from the Si equation we obtain

lim sup
t→∞

Si ≤ Λi/µ
S
i .

Therefore, all ω-limit sets of system (3.24) are contained in the following
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bounded region in the nonnegative cone of R3n,

Γ =
{

(S1, E1, I1, · · · , Sn, En, In) ∈ R3n
+ | Si ≤

Λi

µS
i

, Si+Ei+Ii ≤
Λi

µ∗
i

, 1 ≤ i ≤ n
}

.

(3.25)

It can be verified that region Γ is positively invariant. System (3.24) always

has the disease-free equilibrium P0 = (S0
1 , 0, 0, · · · , S0

n, 0, 0), on the boundary

of Γ, where S0
i = Λi/µ

S
i . An equilibrium P ∗ = (S∗

1 , E
∗
1 , I

∗
1 , · · · , S∗

n, E
∗
n, I

∗
n)

in the interior
◦
Γ of Γ is called an endemic equilibrium, where S∗

i , E
∗
i , I

∗
i > 0

satisfy the equilibrium equations

Λi = µS
i S∗

i +
n∑

j=1

βijfij(S
∗
i , I

∗
j ), (3.26)

(µE
i + εi)E

∗
i =

n∑
j=1

βijfij(S
∗
i , I

∗
j ), (3.27)

εiE
∗
i = (µI

i + γi)I
∗
i . (3.28)

One of the earliest results on multi-group models is by Lajmanovich and

Yorke [73] on a class of n-group SIS models for gonorrhea. The global stability

of the unique endemic equilibrium is proved using a quadratic global Lyapunov

function. Global stability results also exist for other types of multi-group mod-

els; see e.g., [10, 49, 50, 83, 111]. Results in the opposite direction also exist

in the literature. For a class of n-group SIR models with proportionate inci-

dence, uniqueness of endemic equilibria may not hold when R0 > 1 [58, 112].

Due to the large scale and complexity of multi-group models, the global sta-

bility of the endemic equilibrium of (3.24) has been a 30-year open problem in

epidemiology until Guo, Li, and Shuai in [36, 37] applied the graph-theoretic

approach to construct a global Lyapunov function for (3.24) with bilinear in-

cidence fij(Si, Ij) = IjSi. For general nonlinear incidence, the global stability

of the endemic equilibrium remains unsolved.

Let G be a digraph with n vertices, in which each vertex represents a

group. An arc (j, i) exists if and only if βij > 0, namely, if the disease can be

46



transmitted from group j to group i. System (3.24) can thus be regarded as a

coupled system on G. See Figure 3.5. We note that G is strongly connected if

and only if transmission matrix (βij) is irreducible.

S′
i = Λi − µS

i Si − βiifii(Si, Ii)

E′
i = βiifii(Si, Ii) − (µE

i + εi)Ei

I ′i = εiEi − (µI
i + γi)Ii

S′
j = Λj − µS

j Sj − βjjfjj(Sj , Ij)

E′
j = βjjfjj(Sj , Ij) − (µE

j + εj)Ej

I ′
j = εjEj − (µI

j + γj)Ij

�

�

�

�

��

��

−βijfij(Si, Ij) βijfij(Si, Ij)−βjifji(Sj , Ii) βjifji(Sj , Ii)

Figure 3.5: A multi-group SEIR model on a network

In the rest of this section we consider the following basic assumptions on

functions fij(Si, Ij):

(H1) 0 < lim
Ij→ 0+

fij(Si,Ij)

Ij
=: Cij(Si) ≤ +∞ for all 0 < Si ≤ S0

i ;

(H2) fij(Si, Ij) ≤ Cij(Si)Ij for sufficiently small Ij;

(H3) fij(Si, Ij) ≤ Cij(Si)Ij for all Ij > 0;

(H4) Cij(Si) < Cij(S
0
i ) for all 0 < Si < S0

i .

Classes of fij(Si, Ij) satisfying some assumptions of (H1)-(H4) include many

common incidence functions such as the bilinear function fij(Si, Ij) = IjSi, the

nonlinear function fij(Si, Ij) = I
pj

j Sqi

i , and the saturated incidence fij(Si, Ij) =
I

pj
j

Ij+Aj

S
qi
i

Si+Bi
.

Assume that fij(Si, Ij) satisfies (H1), and let

R0 = ρ(M0) (3.29)
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denote the spectral radius of the matrix

M0 = M(S0
1 , S

0
2 , . . . , S

0
n) =

(
βij εi Cij(S

0
i )

(µE
i + εi)(µI

i + γi)

)
1≤i,j≤n

.

If Cij(S
0
i ) = +∞ for some i and j, we set R0 = +∞. The parameter R0 is

referred to as the basic reproduction number. Its biological significance is that

if R0 < 1 the disease dies out while if R0 > 1 the disease becomes endemic

[27, 113]. The following results for system (3.24) can be proved the same way

as in [10, 36, 49, 50, 83, 111, 112].

Proposition 3.8. Assume that B = (βij) is irreducible and fij(Si, Ij) satisfies

(H1) for all i, j.

(1) If R0 ≤ 1 and assumptions (H2) and (H4) hold, then for system (3.24),

P0 is locally asymptotically stable.

(2) If R0 ≤ 1 and assumptions (H3) and (H4) hold, then P0 is the unique

equilibrium and it is globally asymptotically stable in Γ.

(3) If R0 > 1, then P0 is unstable and system (3.24) is uniformly persistent.

Furthermore, there exists an endemic equilibrium P ∗ for system (3.24).

When R0 > 1, an endemic equilibrium P ∗ exists by Proposition 3.8. A long-

standing open question in mathematical epidemiology is whether a multi-group

epidemic model such as (3.24) had a unique endemic equilibrium P ∗ when

R0 > 1, and whether P ∗ is globally asymptotically stable when it is unique

[112]. We prove the following theorem, which answers this open problems for

system (3.24).

Theorem 3.9. Suppose that R0 > 1 and thus an endemic equilibrium P ∗ =

(S∗
1 , E

∗
1 , I

∗
1 , · · · , S∗

n, E
∗
n, I

∗
n) exists. Assume that B = (βij) is irreducible and all

fij satisfy (H1). If fij satisfy, for every 1 ≤ i, j ≤ n, the following conditions

(Si − S∗
i )(fii(Si, I

∗
i ) − fii(S

∗
i , I

∗
i )) > 0, ∀ Si 
= S∗

i , (3.30)
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(
fij(Si, Ij)fii(S

∗
i , I

∗
i ) − fij(S

∗
i , I

∗
j )fii(Si, I

∗
i )

)
·(fij(Si, Ij)fii(S

∗
i , I

∗
i )

Ij

− fij(S
∗
i , I

∗
j )fii(Si, I

∗
i )

I∗
j

)
≤ 0, ∀ Si, Ij > 0,

(3.31)

then P ∗ is unique and globally asymptotically stable in
◦
Γ.

Proof. The case n = 1 is proved in [66]. We only consider n ≥ 2. Let

P ∗ = (S∗
1 , E

∗
1 , I

∗
1 , · · · , S∗

n, E
∗
n, I

∗
n), where all S∗

i , E
∗
i , I

∗
i > 0 for all 1 ≤ i ≤ n,

denote an endemic equilibrium which exists from Proposition 3.8-(3). We

prove that P ∗ is globally asymptotically stable in
◦
Γ. In particular, this implies

that the endemic equilibrium is unique. Let

Vi(Si, Ei, Ii) =

∫ Si

S∗
i

fii(ξ, I
∗
i ) − fii(S

∗
i , I

∗
i )

fii(ξ, I∗
i )

dξ + E∗
i Φ

( Ei

E∗
i

)
+

µE
i + εi

εi

I∗
i Φ

( Ii

I∗
i

)
,

be the Lyapunov function for a single-group model as considered in [66]. We

verify that Vi satisfies the assumptions of Theorem 2.6. Using the equilibrium

equations (3.26)-(3.28), we obtain

•
Vi =

(
1 − fii(S

∗
i , I

∗
i )

fii(Si, I∗
i )

)(
Λi − µS

i Si −
n∑

j=1

βijfij(Si, Ij)
)

+
( n∑

j=1

βijfij(Si, Ij)

−(µE
i + εi)Ei

)(
1 − E∗

i

Ei

)
+

µE
i + εi

εi

(
1 − I∗

i

Ii

)(
εiEi − (µI

i + γi)Ii

)

=
(
1 − fii(S

∗
i , I

∗
i )

fii(Si, I∗
i )

)(
µS

i S∗
i +

n∑
j=1

βijfij(S
∗
i , I

∗
j ) − µS

i Si −
n∑

j=1

βijfij(Si, Ij)
)

+
(
1 − E∗

i

Ei

)( n∑
j=1

βijfij(Si, Ij) −
n∑

j=1

βijfij(S
∗
i , I

∗
j )

Ei

E∗
i

)

+
n∑

j=1

βij

fij(S
∗
i , I

∗
j )

εiE∗
i

(
1 − I∗

i

Ii

)(
εiEi −

εiE
∗
i Ii

I∗
i

)

= − µS
i

fii(Si, I∗
i )

(Si − S∗
i )(fii(Si, I

∗
i ) − fii(S

∗
i , I

∗
i )) +

n∑
j=1

βijfij(S
∗
i , I

∗
j ) ·

(
3 − fii(S

∗
i , I

∗
i )

fii(Si, I∗
i )

+
fij(Si, Ij)fii(S

∗
i , I

∗
i )

fij(S∗
i , I

∗
j )fii(Si, I∗

i )
− fij(Si, Ij)E

∗
i

fij(S∗
i , I

∗
j )Ei

− Ii

I∗
i

− EiI
∗
i

E∗
i Ii

)
.

(3.32)

Let

aij = βijfij(S
∗
i , I

∗
j ),
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Gi(Ii) = −Φ
( Ii

I∗
i

)
= 1 − Ii

I∗
i

+ ln
Ii

I∗
i

,

and

Fij(Si, Ei, Ii, Ij) = 3−fii(S
∗
i , I

∗
i )

fii(Si, I∗
i )

+
fij(Si, Ij)fii(S

∗
i , I

∗
i )

fij(S∗
i , I

∗
j )fii(Si, I∗

i )
− fij(Si, Ij)E

∗
i

fij(S∗
i , I

∗
j )Ei

− Ii

I∗
i

−EiI
∗
i

E∗
i Ii

.

Then, using condition (3.30) and above notations, we have

•
Vi ≤

n∑
i,j=1

aijFij(Si, Ei, Ii, Ij).

Recall that Φ(x) = 1−x+ln x ≤ 0 for x > 0 and equality holds only at x = 1.

Furthermore,

Fij = Gi(xi) − Gj(xj) + Φ
(fii(S

∗
i , I

∗
i )

fii(Si, I∗
i )

)
+ Φ

(Ijfij(S
∗
i , I

∗
j )fii(Si, I

∗
i )

I∗
j fij(Si, Ij)fii(S∗

i , I
∗
i )

)

+Φ
(EiI

∗
i

E∗
i Ii

)
+ Φ

( fij(Si, Ij)E
∗
i

fij(S∗
i , I

∗
j )Ei

)
+

( fij(Si, Ij)fii(S
∗
i , I

∗
i )

fij(S∗
i , I

∗
j )fii(Si, I∗

i )
− 1

)
·

(
1 − Ijfij(S

∗
i , I

∗
j )fii(Si, I

∗
i )

I∗
j fij(Si, Ij)fii(S∗

i , I
∗
i )

)

≤ Gi(xi) − Gj(xj) +
( fij(Si, Ij)fii(S

∗
i , I

∗
i )

fij(S∗
i , I

∗
j )fii(Si, I∗

i )
− 1

)
·

(
1 − Ijfij(S

∗
i , I

∗
j )fii(Si, I

∗
i )

I∗
j fij(Si, Ij)fii(S∗

i , I
∗
i )

)
,

Under condition (3.31), we can show that Vi, Fij, Gi, aij satisfy the assumptions

of Theorem 2.6 and Corollary 2.8. Therefore, the function

V =
n∑

i=1

ciVi(Si, Ei, Ii)

as defined in Theorem 2.6 is a Lyapunov function for (3.24), namely,

•
V ≤ 0 for all (S1, E1, I1, · · · , Sn, En, In) ∈

◦
Γ.

It can be verified similarly as in Section 3.1 that the largest invariant set where
•
V = 0 is the singleton {P ∗}. Since

◦
Γ is positively invariant and system (3.24)
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is uniformly persistent, by the LaSalle Invariance Principle [75], P ∗ is globally

asymptotically stable in
◦
Γ. This completes the proof of Theorem 3.9.

Remarks

1. Condition (3.30) holds if fii(Si, I
∗
i ) is strictly monotonically increasing

with respect to Si.

2. In the special case fij(Si, Ij) = hi(Si)gj(Ij), condition (3.31) becomes

(gj(Ij) − gj(I
∗
j ))

(gj(Ij)

Ij

− gj(I
∗
j )

I∗
j

)
≤ 0. (3.33)

If gj(Ij) is C1 for Ij > 0, then a sufficient condition for (3.33) is

0 ≤ g′
j(Ij) ≤

gj(Ij)

Ij

, ∀ Ij > 0. (3.34)

Furthermore, if gj(Ij) is monotonically increasing and concave down,

then (3.34) holds, and so does (3.33).

3. In the special case fij(Si, Ij) = SiIj, system (3.24) becomes the stan-

dard multi-group SEIR model studied in [37]. Theorem 3.9 generalizes

Theorem 1.1 in [37], which contains a complete resolution of a well-

known open problem on the global-stability of the endemic equilibrium

for multi-group epidemic models [112].

4. When n = 1, Theorem 3.9 contains earlier results on single-group SEIR

models, see [65, 66, 67, 68, 78, 82] and references therein.
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Chapter 4. Applications to

Delay Differential Equation

Models

In this chapter we demonstrate that the graph-theoretic approach developed

in Chapter 2 can be also applied to complex systems with time delays. An

ecological model on a time-delayed spatial dispersal network is studied in Sec-

tion 4.1. The delay occurs in connections of the network. We investigate a

multi-group epidemic model with age structure in Section 4.2. The delay is of

distributed type and occurs in both the network connections and the vertex

systems. Our approach allows us to prove global stability for these complex

systems.

4.1 A Patchy Single-Species Model with Fi-

nite Delays

In Chapter 3 we have applied the graph-theoretic approach to several spatial

heterogeneous models in ecology and epidemiology. We assume that dispersal

and travel among different patches happen instantaneously. A time delay, how-

ever, is natural to include in these models to incorporate the travel time from

one patch to the other. The resulting models are systems of delay differential

equations. Various complicated dynamical behaviors have been observed for
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these delay systems [70], such as delay induced instability and oscillations. In

this section we demonstrate that our graph-theoretic approach can be applied

to establish the global stability of these delay systems. As an example, a patchy

single-species model with dispersal delay is investigated in the following.

In Section 3.2 we have studied the patchy single-species model

x′
i = xifi(xi) +

n∑
j=1

dij(xj − αijxi), i = 1, 2, . . . , n. (4.1)

The couplings in system (4.1) are provided by dispersal among different patches

and the dispersal is assumed to happen instantaneously. That is, the influence

from patch j to patch i takes the form:

dijxj − dijαijxi.

In this section, we assume that the populations require some time to travel

among patches and thus the influence from patch j to patch i is given as

follows:

dije
−λijτijxj(t − τij) − δijxi(t).

Here τij ≥ 0 is the time which population takes to travel from patch j to patch

i, λij ≥ 0 represents the death rate during the travel, and δij ≥ 0 is the rate

of population in patch i traveling to patch j. Therefore, system (4.1) can be

generalized to the following coupled system on a network given by Figure 4.1:

x′
i = xifi(xi) +

n∑
j=1

dije
−λijτijxj(t − τij) −

n∑
j=1

δijxi, i = 1, 2, . . . , n. (4.2)

Takeuchi et al. [110] studied a special case of system (4.2) when fi(xi) =

ai − bixi and proved the global stability of a positive equilibrium. Using the

method of Lyapunov functionals and our graph-theoretic approach, we prove

the global stability for system (4.2) with general functions fi.

Denote τ = max{τij : i, j = 1, 2, . . . , n}. Let C be the Banach space of
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x′
i = xifi(xi) x′

j = xjfj(xj)
�

�

djie
−λjiτjixi(t − τji) − δjixj

dije
−λijτijxj(t − τij) − δijxi

�

�

�

�

�

�

�

�
Figure 4.1: A coupled single-species system with delays

continuous functions on [−τ, 0] with uniform norm. We consider system (4.2)

in the phase space

X =
n∏

i=1

C. (4.3)

We consider positive initial conditions for system (4.2)

xi 0 = φi, i = 1, 2, . . . , n, (4.4)

where φi ∈ C satisfies φi(s) > 0 for −τ ≤ s ≤ 0. Let

∆ = {(φ1(·), φ2(·), . . . , φn(·)) ∈ X | φi(s) > 0,∀s ∈ [−τ, 0], i = 1, 2, . . . , n}.

It can be verified that ∆ is positively invariant. We have the following global-

stability result.

Theorem 4.1. Suppose that the following assumptions hold.

(1) The dispersal matrix (dij) of (4.2) is irreducible.

(2) f ′
i(xi) ≤ 0 for all xi > 0, i = 1, 2, . . . , n, and there exists k such that

f ′
k(u) 
≡ 0 in any open interval of R+.

Then, whenever a positive equilibrium E∗ exists, it is unique and globally

asymptotically stable in ∆.

Proof. Let E∗ = (x∗
1, x

∗
2, · · · , x∗

n), x∗
i > 0, i = 1, 2, . . . , n, denote a positive

equilibrium of (4.2). Then x∗
i satisfies

n∑
j=1

δij = fi(x
∗
i ) +

n∑
j=1

dije
−λijτij

x∗
j

x∗
i

. (4.5)
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We show that E∗ is globally asymptotically stable in ∆, and thus is unique.

Set Vi : X → R+ defined as

Vi(φ) :=
n∑

j=1

dije
−λijτij

∫ τij

0

x∗
jΦ

(φj(−r)

x∗
j

)
dr + x∗

i Φ
(φi(0)

x∗
i

)

=
n∑

j=1

dije
−λijτij

∫ τij

0

(
φj(−r) − x∗

j − x∗
j ln

φj(−r)

x∗
j

)
dr

+φi(0) − x∗
i − x∗

i ln
φi(0)

x∗
i

.

Recall that Φ(x) = x − 1 − ln x ≥ 0 for all x > 0 and Φ(x) = 0 if and only if

x = 1. Using integration by parts, we have

∫ τij

0

∂

∂t

(
xj(t − r) − x∗

j − x∗
j ln

xj(t − r)

x∗
j

)
dr

= −
∫ τij

0

∂

∂r

(
xj(t − r) − x∗

j − x∗
j ln

xj(t − r)

x∗
j

)
dr

= −
(
xj(t − τij) − xj(t) + x∗

j ln
xj(t)

xj(t − τij)

)
.

(4.6)

Direct calculation along with (4.5) and (4.6) yields

•
Vi =

d

dt
Vi(x(t + s)s∈[−τ,0])

= (xi − x∗
i )

[
fi(xi) +

n∑
j=1

dije
−λijτij

xj(· − τij)

xi

−
n∑

j=1

δij

]

−
n∑

j=1

dije
−λijτij

(
xj(· − τij) − xj + x∗

j ln
xj

xj(· − τij)

)

= (xi − x∗
i )(f(xi) − f(x∗

i ))

+
n∑

j=1

dije
−λijτijx∗

j

(
Φ

(xj

x∗
j

)
− Φ

(xi

x∗
i

)
− Φ

(x∗
i xj(· − τij)

xix∗
j

))
.

(4.7)

Let

aij = dije
−λijτijx∗

j ,

Fij(xi, xj) = Φ
(xj

x∗
j

)
− Φ

(xi

x∗
i

)
− Φ

(x∗
i xj(· − τij)

xix∗
j

)
,
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and

Gi(xi) = −Φ
(xi

x∗
i

)
.

Then we have
•
Vi ≤

n∑
j=1

aijFij(xi, xj),

and

Fij(xi, xj) = Gi(xi) − Gj(xj) − Φ
(x∗

i xj(· − τij)

xix∗
j

)

≤ Gi(xi) − Gj(xj).

Here we use the fact: (xi − x∗
i )(f(xi) − f(x∗

i )) ≤ 0. We have shown that Vi,

Fij, Gi, and aij satisfy the assumptions of Theorem 2.6 and Corollary 2.8.

Therefore,

V (x1(·), · · · , xn(·)) =
n∑

i=1

ciVi(xi(·))

as defined in Theorem 2.6 is a Lyapunov functional for (4.2), namely,

•
V ≤ 0 for all (x1(·), · · · , xn(·)) ∈ ∆.

Using a similar argument as in Section 3.1, we can show that
•
V = 0 if and

only if xi = x∗
i for all i. By the LaSalle-Lyapunov Theorem (see [75, Theorem

3.4.7] or [43, Theorem 5.3.1]), we conclude that E∗ is globally attractive in ∆.

Furthermore, it can be verified that E∗ is locally stable using the same proof

as one for Corollary 5.3.1 in [43]. Therefore, E∗ is globally asymptotically

stable in ∆. This completes the proof of Theorem 4.1.

When fi(xi) = ai − bixi for all i, Theorem 4.1 contains an earlier result

in [110] where the global stability of E∗ was proved under the condition that

bi > 0 for all i while Theorem 4.1 only requires bk > 0 for some k.

When dispersal delays are incorporated into ordinary differential equation

models (3.12) and (3.14), we obtain a patchy predator-prey model with dis-

persal delays and a patchy SIR epidemic model with dispersal delays. We
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remark that the same proof of Theorem 4.1 can be carried out to prove the

global-stability of these delay systems.

4.2 A Multi-Group Epidemic Model with In-

finite Distributed Delay

In this section, we consider a multi-group epidemic model that describes the

disease spread in a heterogeneous host population with general age-structure

and varying infectivity. The host population is divided into several homoge-

neous groups. Let Si, Ei, Ii and Ri denote the susceptible, infected but non-

infectious, infectious, and recovered populations in the i-th group, respectively.

Let ai(t, r) denote the population of infectious individuals in the i-th group

with respect to the age of infection r at time t, and Ii(t) =
∫ ∞

r=0
ai(t, r)dr. Let

hi(r) ≥ 0 be a continuous kernel function that represents the infectivity at the

age of infection r. The disease incidence in the i-th group, assuming a bilinear

incidence form, can be calculated as

n∑
j=1

βijSi(t)

∫ ∞

r=0

hj(r)aj(t, r)dr, (4.8)

where the sum takes into account of cross-infections from all groups. In the spe-

cial case hi(r) ≡ 1, the incidence in (4.8) becomes
∑n

j=1 βijSi(t)Ij(t). There-

fore, we consider the following system of differential equations

S ′
i = Λi −

n∑
j=1

βijSi

∫ ∞

r=0

hj(r)aj(t, r)dr − µS
i Si,

E ′
i =

n∑
j=1

βijSi

∫ ∞

r=0

hj(r)aj(t, r)dr − (µE
i + εi)Ei,

I ′
i = εiEi − (µI

i + γi)Ii,

R′
i = γiIi − µR

i Ri, i = 1, 2, · · · , n.

(4.9)

57



Here all parameter values are assumed to be nonnegative and Λi, µ
S
i , µE

i > 0

for all i. For detailed discussions of the model, we refer the reader to [37, 101]

and references therein. Note that

( ∂

∂t
+

∂

∂r

)
ai(t, r) = −(µI

i + γi)ai(t, r),

ai(t, 0) = εiEi(t),

whose solution is

ai(t, r) = ai(t − r, 0)e−(µI
i +γi)r = εiEi(t − r)e−(µI

i +γi)r. (4.10)

Substituting (4.10) into (4.9) we obtain

S ′
i = Λi −

n∑
j=1

βijSi

∫ ∞

r=0

hj(r)εjEj(t − r)e−(µI
j+γj)rdr − µS

i Si,

E ′
i =

n∑
j=1

βijSi

∫ ∞

r=0

hj(r)εjEj(t − r)e−(µI
j+γj)rdr − (µE

i + εi)Ei,

I ′
i = εiEi − (µI

i + γi)Ii,

R′
i = γiIi − µR

i Ri, i = 1, 2, · · · , n.

(4.11)

Since the variables Ii and Ri do not appear in the first two equations of (4.11),

we can consider the following reduced system with distributed time delays and

general kernel functions

S ′
i = Λi −

n∑
j=1

βijSi

∫ ∞

r=0

fj(r)Ej(t − r)dr − µS
i Si,

E ′
i =

n∑
j=1

βijSi

∫ ∞

r=0

fj(r)Ej(t − r)dr − (µE
i + εi)Ei, i = 1, 2, · · · , n.

(4.12)

Here the kernel function fi(r) ≥ 0 is continuous and
∫ ∞

r=0
fi(r)dr = ξi > 0.

While this system is derived from a general age-structured model (4.9), it can

also be interpreted as a multi-group model for an infectious disease whose

latent period r in hosts has a general probability density function 1
ξi

fi(r), for
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the i-th group.

System (4.12) can be regarded as a coupled system of delay differential

equations on a network; see Figure 4.2 for more details. We will establish the

global dynamics of system (4.12).

S′
i = Λi − βiiSi

∫ ∞
r=0 fi(r)Ei(t − r)dr − µS

i Si

E′
i = βiiSi

∫ ∞
r=0 fi(r)Ei(t − r)dr − (µE

i + εi)Ei

S′
j = Λj − βjjSj

∫ ∞
r=0 fj(r)Ej(t − r)dr − µS

j Sj

E′
j = βjjSj

∫ ∞
r=0 fj(r)Ej(t − r)dr − (µE

j + εj)Ej

��

��

�

�

−βijSi
∫ ∞
r=0 fj(r)Ej(t − r)dr βijSi

∫ ∞
r=0 fj(r)Ej(t − r)dr−βjiSj

∫ ∞
r=0 fi(r)Ei(t − r)dr βjiSj

∫ ∞
r=0 fi(r)Ei(t − r)dr

�

�

Figure 4.2: A multi-group model with delays

The basic reproduction number R0 is defined as the expected number of

secondary cases produced in an entirely susceptible population by a typical

infected individual during its entire infectious period [27]. Intuitively, if R0 <

1, the disease dies out from the host population, and if R0 > 1, the disease

will persist. Let S0
i = Λi

µS
i

for all i. The next generation matrix for system

(4.12) is

M0 =
(βijS

0
i ξj

µE
i + εi

)
n×n

. (4.13)

Motivated by [27, 113, 118], we define the basic reproduction number as the

spectral radius of M0,

R0 = ρ(M0). (4.14)

We make the following assumption on the kernel function fi in (4.12)

∫ ∞

r=0

fi(r)e
λirdr < ∞, (4.15)

where λi is a positive number, i = 1, 2, . . . , n. Define the following Banach
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space of fading memory type (see e.g. [9] and references therein)

Ci =
{

φ ∈ C((−∞, 0], R) | s �→ φ(s)eλis is uniformly continuous on (−∞, 0],

and sup
s≤0

|φ(s)|eλis < ∞
}

,

(4.16)

with norm ||φ||i = sups≤0 |φ(s)|eλis. For ψ ∈ C(R, R), let ψt ∈ Ci be such that

ψt(s) = ψ(t + s), s ∈ (−∞, 0]. Let Si,0 ∈ R+ and φi ∈ Ci such that φi(s) ≥
0, s ∈ (−∞, 0]. We consider solutions of system (4.12), (S1(t), E1 t, · · · , Sn(t),

En t) with initial conditions

Si(0) = Si,0, Ei 0 = φi, i = 1, 2, . . . , n. (4.17)

Standard results of functional differential equations (see [9, Theorem 2.1])

imply that Ei t ∈ Ci for all t > 0. We consider system (4.12) in the phase

space

X =
n∏

i=1

(
R × Ci

)
. (4.18)

It can be verified that solutions of (4.12) in X with initial conditions (4.17)

remain nonnegative. In particular, Si(t) > 0 for all t > 0. From the first

equation of (4.12), we obtain

S ′
i(t) ≤ Λi − µS

i Si(t).

Hence,

lim sup
t→∞

Si(t) ≤
Λi

µS
i

.

For each i, adding the two equations in (4.12) gives

(Si(t) + Ei t(0))′ ≤ Λi − µ∗
i (Si(t) + Ei t(0)),
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where µ∗
i = min{µS

i , µE
i + εi}. Hence, we have

lim sup
t→∞

(Si(t) + Ei t(0)) ≤ Λi

µ∗
i

.

Therefore, the following set is positively invariant for system (4.12).

Θ =
{

(S1, E1(·), · · · , Sn, En(·)) ∈ X
∣∣∣ 0 ≤ Si ≤

Λi

µS
i

, 0 ≤ Si + Ei(0) ≤ Λi

µ∗
i

,

Ei(s) ≥ 0,∀s ∈ (−∞, 0], i = 1, . . . , n
}

.

(4.19)

Let

◦
Θ =

{
(S1, E1(·), · · · , Sn, En(·)) ∈ X

∣∣∣ 0 < Si <
Λi

µS
i

, 0 < Si + Ei(0) <
Λi

µ∗
i

,

Ei(s) > 0,∀s ∈ (−∞, 0], i = 1, . . . , n
}

.

(4.20)

It can be shown that
◦
Θ is the interior of Θ.

The equilibria of (4.12) are the same as those of the associated ODE system

S ′
i = Λi −

n∑
j=1

βijξjSiEj − µS
i Si,

E ′
i =

n∑
j=1

βijξjSiEj − (µE
i + εi)Ei, i = 1, 2, . . . , n.

(4.21)

System (4.21) is similar to a multi-group SIR model considered in [36] with

Ei relabeled as Ii. Results established in [36] can be readily applied to system

(4.21). In the positively invariant region

Γ =
{

(S1, E1, · · · , Sn, En) ∈ R2n
+

∣∣∣ Si ≤
Λi

µS
i

, Si + Ei ≤
Λi

µ∗
i

, 1 ≤ i ≤ n
}

,

(4.22)

system (4.21) has two possible equilibria: the disease-free equilibrium P0 =

(S0
1 , 0, · · · , S0

n, 0), where S0
i = Λi

µS
i
, and the endemic equilibrium P ∗ = (S∗

1 , E
∗
1 ,
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· · · , S∗
n, E

∗
n), where S∗

i , E
∗
i > 0 and satisfy

Λi =
n∑

j=1

βijξjS
∗
i E

∗
j + µS

i S∗
i , (4.23)

n∑
j=1

βijξjS
∗
i E

∗
j = (µE

i + εi)E
∗
i , i = 1, 2, . . . , n. (4.24)

We assume that the transmission matrix B = (βij) is irreducible. This is

equivalent to assuming that for any two distinct groups i and j, individuals in

Ej can infect those in Si directly or indirectly. The following result is proved

in [36].

Proposition 4.2 (Guo, Li, Shuai [36]). Assume that B = (βij) is irreducible.

(1) If R0 ≤ 1, then P0 is the only equilibrium for system (4.21) and it is

globally asymptotically stable in Γ.

(2) If R0 > 1, then P0 is unstable and there exists a unique endemic equilib-

rium P ∗ for system (4.21). Furthermore, P ∗ is globally asymptotically

stable in the interior of Γ.

Since the delay system (4.12) and the ODE system (4.21) share the same

equilibria, the following result follows from Proposition 4.2.

Proposition 4.3. Assume that B = (βij) is irreducible.

(1) If R0 ≤ 1, then P0 is the only equilibrium for system (4.12) in Θ.

(2) If R0 > 1, then there exist two equilibria for system (4.12) in Θ: the

disease-free equilibrium P0 and a unique endemic equilibrium P ∗ defined

by equations (4.23) and (4.24).

The global dynamics of system (4.12) are completely established in the

following result.

Theorem 4.4. Assume that B = (βij) is irreducible.
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(1) If R0 ≤ 1, then the disease-free equilibrium P0 of system (4.12) is globally

asymptotically stable in Θ. If R0 > 1, then P0 is unstable.

(2) If R0 > 1, then the endemic equilibrium P ∗ of system (4.12) is globally

asymptotically stable in
◦
Θ.

Biologically, Theorem 4.4 implies that, if the basic reproduction number

R0 ≤ 1, then the disease always dies out from all groups; if R0 > 1, then the

disease always persists in all groups at the unique endemic equilibrium level,

irrespective of the initial conditions.

Theorem 4.4 includes several previous results. Choose the kernel function

as

fi(r) = εie
−(µI

i +γi)r

and let Ĩi =
∫ ∞

r=0
fi(r)Ei(t − r)dr. Then (4.12) takes the form

S ′
i = Λi −

n∑
j=1

βijSiĨj − µS
i Si,

E ′
i =

n∑
j=1

βijSiĨj − (µE
i + εi)Ei.

Using integration by parts we obtain

Ĩ ′
i =

∫ ∞

r=0

fi(r)
∂Ei(t − r)

∂t
dr = −

∫ ∞

r=0

fi(r)
∂Ei(t − r)

∂r
dr = εiEi − (µI

i + γi)Ĩi.

System (4.12) is thus reduced to a multi-group SEIR model governed by the

system of ordinary differential equations considered in [37]. Note that

∫ ∞

r=0

fi(r)dr =
εi

µI
i + γi

,

and the basic reproduction number in (4.14) becomes

R0 = ρ
( βijεiΛi

(µE
i + εi)(µI

i + γi)µS
i

)
1≤i,j≤n

,
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which agrees with that given in [36, 37]. Thus the global stability results in

[36, 37] are special cases of Theorem 4.4.

In the case n = 1, system (4.12) reduces to a single-group SEIR or SIR

model with distributed delays studied in [11, 12, 14, 88, 93, 94, 101]. Theo-

rem 4.4 generalizes the global stability results in [93, 94] to multi-group models.

Proof of Theorem 4.4-(1):

Since B is irreducible, we know that M0, as defined in (4.13), is also irre-

ducible, and has a positive left eigenvector (ω1, ω2, · · · , ωn) corresponding to

the spectral radius ρ(M0) > 0. Let

ai =
ωi

µE
i + εi

and αi(r) =

∫ ∞

σ=r

fi(σ)dσ.

Consider a Lyapunov functional

L =
n∑

i=1

ai

(
S0

i Φ
( Si

S0
i

)
+ Ei +

n∑
j=1

βijS
0
i

∫ ∞

r=0

αj(r)Ej(· − r)dr
)
. (4.25)

Note that Λi = µS
i S0

i , αi(0) =
∫ ∞

σ=0
fi(σ)dσ = ξi, and Φ(x) ≥ 0 for all x > 0

with equality holding if and only if x = 1. Differentiating L along the solution
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of system (4.12) and using integration by parts, we obtain

•
L =

n∑
i=1

ai

(
Λi − µS

i Si − Λi
S0

i

Si

+
n∑

j=1

βijS
0
i

∫ ∞

r=0

fj(r)Ej(t − r) dr + µS
i S0

i

−(µE
i + εi)Ei +

n∑
j=1

βijS
0
i

∫ ∞

r=0

αj(r)
∂Ej(t − r)

∂t
dr

)

=
n∑

i=1

ai

[
µS

i S0
i

(
2 − Si

S0
i

− S0
i

Si

)
+

n∑
j=1

βijS
0
i

∫ ∞

r=0

fj(r)Ej(t − r) dr

−(µE
i + εi)Ei +

n∑
j=1

βijS
0
i

∫ ∞

r=0

αj(r)
(
− ∂Ej(t − r)

∂r

)
dr

]

=
n∑

i=1

ai

[
µS

i S0
i

(
2 − Si

S0
i

− S0
i

Si

)
+

n∑
j=1

βijS
0
i

∫ ∞

r=0

fj(r)Ej(t − r) dr

−(µE
i + εi)Ei +

n∑
j=1

βijS
0
i

(
ξj Ej −

∫ ∞

r=0

fj(r)Ej(t − r) dr
)]

≤
n∑

i=1

ωi

µE
i + εi

( n∑
j=1

βijξjS
0
i Ej − (µE

i + εi)Ei

)

= (ω1, ω2, · · · , ωn)(M0E − E)

= (ρ(M0) − 1)(ω1, ω2, · · · , ωn)E ≤ 0, if R0 ≤ 1.

(4.26)

Here E(t) = (E1(t), E2(t), · · · , En(t))T . Denote

Y = {(S1, E1(·), · · · , Sn, En(·)) ∈ Θ |
•
L = 0},

and Z be the largest compact invariant set in Y . We will show Z = {P0}.
From (4.26),

•
L = 0 implies Si(t) ≡ S0

i = Λi

µS
i

for each i. Hence, from the first

equation of (4.12), we obtain

n∑
j=1

βij

∫ ∞

r=0

fj(r)Ej(t − r)dr = 0,

and thus

βij

∫ ∞

r=0

fj(r)Ej(t − r)dr = 0,

for all t > 0 and 1 ≤ i, j ≤ n. Then, by irreducibility of B, for each j, there
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exists i 
= j such that βij 
= 0, thus for all t > 0

∫ ∞

r=0

fj(r)Ej(t − r)dr = 0.

This implies that in Z, Ej t(s) = 0 for all s ∈ (−∞, 0], j = 1, 2, . . . , n. There-

fore, Z = {P0}.
Using the LaSalle-Lyapunov Theorem [38, 43, 75] and a similar argument

as in Section 4.1, we conclude that P0 is globally asymptotically stable in Θ

if R0 ≤ 1. On the other hand, if R0 > 1, then −L serves as a Lyapunov

functional for system (4.12). The same proof as in Theorem 5.3.3 of [43] can

be used to show that P0 is unstable. This establishes Theorem 4.4-(1).

Proof of Theorem 4.4-(2):

The global stability of the endemic equilibrium of the single-group model

with delays has been proved in [93, 94]. In the following, we consider the case

n ≥ 2. Let P ∗ = (S∗
1 , E

∗
1 , · · · , S∗

n, E
∗
n) denote the unique endemic equilibrium

of system (4.12). Set Vi : X → R+ defined as

Vi(S1, φ1, · · · , Sn, φn) =
n∑

j=1

βijS
∗
i

∫ ∞

r=0

αj(r)E
∗
j Φ

(φj(−r)

E∗
j

)
dr

+S∗
i Φ

( Si

S∗
i

)
+ E∗

i Φ
(φi(0)

E∗
i

)

=
n∑

j=1

βijS
∗
i

∫ ∞

r=0

αj(r)
(
φj(−r) − E∗

j − E∗
j ln

φj(−r)

E∗
j

)
dr

+Si − S∗
i − S∗

i ln
Si

S∗
i

+ φi(0) − E∗
i − E∗

i ln
φi(0)

E∗
i

,

(4.27)

and

αj(r) =

∫ ∞

σ=r

fj(σ)dσ.

Differentiating Vi along the solution of system (4.12), and using the equilibrium
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equations (4.23), (4.24) and integration by parts, we obtain

•
Vi =µS

i S∗
i

(
2 − S∗

i

Si

− Si

S∗
i

)
+

n∑
j=1

βijS
∗
i E

∗
j

[
aj

(
2 − S∗

i

Si

− Ei

E∗
i

+
Ej

E∗
j

)

− SiE
∗
i

S∗
i EiE∗

j

∫ ∞

r=0

fj(r)Ej(t − r)dr −
∫ ∞

r=0

fj(r) ln
Ej(t)

Ej(t − r)
dr

]

=µS
i S∗

i

(
2 − S∗

i

Si

− Si

S∗
i

)
+

n∑
j=1

βijS
∗
i E

∗
j

∫ ∞

r=0

fj(r)
[
Φ

(Ej

E∗
j

)
− Φ

( Ei

E∗
i

)

− Φ
(S∗

i

Si

)
− Φ

(SiE
∗
i Ej(t − r)

S∗
i EiE∗

j

)]
dr

≤
n∑

j=1

βijS
∗
i E

∗
j

(
Φ

(Ej

E∗
j

)
− Φ

( Ei

E∗
i

))
.

(4.28)

In the above derivation, we have used two facts:
S∗

i

Si
+ Si

S∗
i
≥ 2 with equality

holding if and only if Si = S∗
i , and 1− x + ln x ≤ 0 for all x > 0 with equality

holding if and only if x = 1. Let

aij = βijS
∗
i E

∗
j

and

Gi(Ii) = −Φ
( Ei

E∗
i

)
.

Then
•
Vi ≤

n∑
j=1

aj(Gi(Ii) − Gj(Ij)).

Therefore, Vi, Gi, aij satisfy the assumptions of Corollary 2.8, and the func-

tional

V =
n∑

i=1

ciVi(Si, Ei(·))

as defined in Theorem 2.6 is a Lyapunov functional for (4.12), namely,

•
V ≤ 0 for all (S1, I1(·), · · · , Sn, In(·)) ∈

◦
Θ.

Using a similar argument as in Section 3.1, we can show that the only compact
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invariant set where
•
V = 0 is the singleton {P ∗}. By the LaSalle-Lyapunov

Theorem for delayed systems [38, 43, 75] and a similar argument as in Sec-

tion 4.1, we conclude that P ∗ is globally asymptotically stable in
◦
Θ if R0 > 1.

This establishes Theorem 4.4-(2).
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Chapter 5. Applications to

Stochastic Differential Equation

Models

In this chapter we show that the graph-theoretic approach is applicable to com-

plex systems that incorporate stochastic disturbances. Stochastic differential

equations are used to describe vertex dynamics under stochastic perturba-

tions. The network is kept as deterministic. The resulting models are coupled

systems of stochastic differential equations on deterministic networks. We in-

vestigate how large random perturbations can be allowed in a stable system

so that the perturbed system remains stable.

5.1 Preliminaries

In this section, we recall some results from basic theory of stochastic differential

equations which we will use in later sections. For more detailed discussions,

we refer to [4, 32, 33, 62, 72, 89, 97].

Consider an autonomous n-dimensional stochastic differential equation

dx(t) = f(x(t))dt + g(x(t))dW (t) (5.1)

on t ≥ 0 with initial value x(0) = x0 ∈ Rm. Here both f : Rm → Rm

and g : Rm → Rm×d are locally Lipschitz continuous functions and W is
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a d-dimensional Wiener process defined on the probability space (Ω,F , P ).

Customarily, dW (t)
dt

is called white noise. It is known that system (5.1) always

has a unique continuous solution x(t; x0), 0 ≤ t ≤ T , for some T > 0 (see [33,

page 76], [89, pages 56 and 58], or [109, Theorem 1]).

Assume that for some x∗ ∈ Rm we have f(x∗) = 0 and g(x∗) = 0 so that

x = x∗ is an equilibrium or a trivial solution of (5.1). The equilibrium x = x∗

is called stochastically stable if for each pair of ε > 0 and r > 0, there exists a

δ > 0 such that |x0 − x∗| < δ implies

P {|x(t; x0)| < r for all t ≥ 0} ≥ 1 − ε. (5.2)

The equilibrium x = x∗ is called stochastically globally asymptotically stable

in Rm if it is stochastically stable and for x0 ∈ Rm, the solution x(t; x0) → x∗

a.s. as t → ∞, namely, P{limt→∞ x(t; x0) = x∗} = 1.

The method of Lyapunov functions has been developed to establish stabil-

ity for stochastic differential equations. Let V : Rm → R+ be a continuously

twice differentiable function. Define an operator associated with system (5.1)

as

LV (x) = Vx(x)f(x) +
1

2
trace[gT (x)Vxx(x)g(x)]. (5.3)

Then Itô’s formula [59] states

dV (x(t)) = LV (x(t))dt + Vx(x(t))g(x(t))dW (t). (5.4)

Theorem 5.1. Suppose that V (x) ≥ 0 for all x ∈ Rm, V (x) = 0 if and only

if x = x∗, and V (x) → ∞ as |x| → ∞. If LV (x) ≤ 0 for all x ∈ Rn and

LV (x) = 0 if and only if x = x∗, then the equilibrium x = x∗ is stochastically

globally asymptotically stable in Rm.

Theorem 5.1 is a special case of Theorem 4.4 in [62] and Theorem 11.2.8

in [89]. We refer the reader to [62, 89] for its proof.

70



5.2 A Patchy Predator-Prey Model with Ran-

dom Perturbations

In this section, we investigate the effect of the random perturbations to the sta-

bility of the positive equilibrium of the following patchy predator-prey model

x′
i = (ri − bixi − eiyi)xi +

n∑
j=1

dijxj −
n∑

j=1

δijxi,

y′
i = (−γi − µiyi + εixi)yi, i = 1, 2, . . . , n.

(5.5)

System (5.5) has been investigated in Section 3.4. Here ri, bi, ei, γi, µi, εi, dij, δij

are nonnegative parameters. Suppose that there exists a positive equilibrium

E∗ = (x∗
1, y

∗
1, . . . , x

∗
n, y

∗
n) to system (5.5), where x∗

i , y
∗
i , 1 ≤ i ≤ n, satisfy the

equilibrium equations

ri − bix
∗
i − eiy

∗
i +

n∑
j=1

dij

x∗
j

x∗
i

−
n∑

j=1

δij = 0,

−γi − µiy
∗
i + εix

∗
i = 0, i = 1, 2, . . . , n.

(5.6)

By Theorem 3.4, E∗ is globally asymptotically stable provided that (dij) is

irreducible and for some k either bk > 0 or µk > 0. Assume that system (5.5)

endures the random perturbations in the form of

σixi(xi − x∗
i )

dWi(t)

dt
, i = 1, 2, . . . , n, (5.7)

and

ηiyi(yi − y∗
i )

dZi(t)

dt
, i = 1, 2, . . . , n. (5.8)

Here Wi, Zi, 1 ≤ i ≤ n, are independent 1-dimensional Wiener processes. The

perturbation terms (5.7), (5.8), are chosen such that random perturbations

disappear at the positive equilibrium E∗ as we are particularly interested in

the randomly perturbed dynamical behavior near E∗. Thus the perturbed
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dxi = xi(ri − bixi − eiyi)dt + σixi(xi − x∗
i )dWi(t)

dyi = yi(−γi − µiyi + εixi)dt + ηiyi(yi − y∗i )dZi(t)

dxj = xj(rj − bjxj − ejyj)dt + σjxj(xj − x∗
j )dWj(t)

dyj = yj(−γj − µjyj + εjxj)dt + ηjyj(yj − y∗j )dZj(t)

djixi − δjixj dijxj − δijxi

��

��

�

�

Figure 5.1: A coupled predator-prey system with random perturbations

system can be written as follows

dxi =
(
(ri − bixi − eiyi)xi +

n∑
j=1

dijxj −
n∑

j=1

δijxi

)
dt + σixi(xi − x∗

i )dWi(t),

dyi = (−γi − µiyi + εixi)yidt + ηiyi(yi − y∗
i )dZi(t), i = 1, 2, . . . , n,

(5.9)

For any given initial conditions (x1(0), y1(0), · · · , xn(0), yn(0)) ∈ R2n
+ to system

(5.9), there is a unique solution (x1(t), y1(t), · · · , xn(t), yn(t)), 0 < t < T , for

some T > 0. Note that E∗ is also an equilibrium of (5.9).

System (5.9) can be regarded as a coupled system of stochastic differential

equations on a network; see Figure 5.1. Each vertex represents one patch,

vertex dynamics is given by a scalar stochastic differential equation, and the

couplings among vertices are provided by the travel among patches. In the

following result, using the graph-theoretic approach developed in Chapter 2,

we are able to build a Lyapunov function for system (5.9). We prove that the

solution to system (5.9) exists for all t > 0 and the positive equilibrium is

stochastically globally asymptotically stable.

Theorem 5.2. Assume that (dij) is irreducible and bi > 1
2
σ2

i x
∗
i and µi > 1

2
η2

i y
∗
i

for all i = 1, 2, . . . , n. Then E∗ is stochastically globally asymptotically stable

in R2n
+ .

72



Proof. We first show that for any initial value problem to system (5.9) with ini-

tial value (x1(0), y1(0), · · · , xn(0), yn(0)) ∈ R2n
+ , the unique solution (x1(t), y1(t),

· · · , xn(t), yn(t)) remains in R2n
+ for all t ≥ 0 with probability 1. The following

proof is based on the combination of the graph-theoretic approach developed

in Chapter 2 and a stopping time method conducted by Mao and etc [90].

Let τe denote the explosion time [32] of the solution (x1(t), y1(t), · · · , xn(t),

yn(t)). We are going to show that τe = ∞ with probability 1. Without loss of

generality, assume that xi(0), yi(0) ∈ [1/m0,m0], for all 1 ≤ i ≤ n, for some

given positive integer m0. For each integer m > m0, define the stopping time

[32]

τm = inf{t ∈ [0, τe] | min
i
{xi(t), yi(t)} ≤ 1

m
or max

i
{xi(t), yi(t)} ≥ m}.

For the empty set ∅, we use the convention that inf ∅ = ∞. Note that τm is

an increasing function of m, set τ∞ = limm→∞ τm and τ∞ ≤ τe. We are going

to show that τ∞ = ∞ with probability 1, which consequently implies that

τe = ∞ with probability 1 and thus the solution (x1(t), y1(t), · · · , xn(t), yn(t))

stays in R2n
+ for all t ≥ 0 with probability 1.

Suppose there exist T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Since

τm ≤ τ∞, we obtain

P{τm ≤ T} ≥ P{τ∞ ≤ T} > ε,

for all m > m0. Let τ ∗
m = min{T, τm}. For t ∈ [0, τ ∗

m], define

Vi(xi, yi) = εix
∗
i Φ

(xi

x∗
i

)
+eiy

∗
i Φ

( yi

y∗
i

)
= εi

(
xi−x∗

i−x∗
i ln

xi

x∗
i

)
+ei

(
yi−y∗

i −y∗
i ln

yi

y∗
i

)
.
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By Itô’s formula, we obtain

dVi = εi

(
1 − x∗

i

xi

)
dxi + εi

x∗
i

2x2
i

(dxi)
2 + ei

(
1 − y∗

i

yi

)
dyi + ei

y∗
i

2y2
i

(dyi)
2

=
[
− εi(bi −

1

2
σ2

i x
∗
i )(xi − x∗

i )
2 − ei(µi −

1

2
η2

i y
∗
i )(yi − y∗

i )
2

+
n∑

j=1

dijεix
∗
j

(xj

x∗
j

− xi

x∗
i

+ 1 − x∗
i xj

xix∗
j

)]
dt

+εiσi(xi − x∗
i )

2dWi(t) + eiηi(yi − y∗
i )

2dZi(t).

(5.10)

Let

aij = dijx
∗
j , Fij(xi, xj) =

xj

x∗
j

− xi

x∗
i

+ 1 − x∗
i xj

xix∗
j

,

and

Gi(xi) = −Φ
(xi

x∗
i

)
.

Recall that Φ(x) = x − 1 − ln x ≥ 0 for all x > 0 and Φ(x) = 0 if and only if

x = 1. It can be easily verified that Fij and Gi satisfy the following relation:

Fij(xi, xj) = Gi(xi) − Gj(xj) − Φ
(x∗

i xj

xix∗
j

)
≤ Gi(xi) − Gj(xj).

Let ci be the cofactor of the i-th diagonal element in the Laplacian matrix of

(G, A), as given in Proposition 2.1. Then, by Theorem 2.3, we have

n∑
i,j=1

ciaijFij(xi, xj) ≤
n∑

i,j=1

ciaij(Gi(xi) − Gj(xj)) = 0. (5.11)

Consider a Lyapunov function

V =
n∑

i=1

ciVi(xi(t), yi(t)).
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Using (5.11) and Itô’s formula, we obtain

dV =
n∑

i=1

cidVi

=
n∑

i=1

ci

[
− εi(bi −

1

2
σ2

i x
∗
i )(xi − x∗

i )
2 − ei(µi −

1

2
η2

i y
∗
i )(yi − y∗

i )
2

+
n∑

j=1

dijx
∗
j

(xj

x∗
j

− xi

x∗
i

+ 1 − x∗
i xj

xix∗
j

)
+

1

2
εiσ

2
i (xi − x∗

i )
2

+
1

2
eiη

2
i (yi − y∗

i )
2
]
dt +

n∑
i=1

ciεiσi(xi − x∗
i )

2dWi(t)

+
n∑

i=1

cieiηi(yi − y∗
i )

2dZi(t)

≤ −
n∑

i=1

ciεi(bi −
1

2
σ2

i x
∗
i )(xi − x∗

i )
2dt −

n∑
i=1

ciei(µi −
1

2
η2

i y
∗
i )(yi − y∗

i )
2dt

+
n∑

i=1

ciεiσi(xi − x∗
i )

2dWi(t) +
n∑

i=1

cieiηi(yi − y∗
i )

2dZi(t).

(5.12)

Since bi > 1
2
σ2

i x
∗
i and µi > 1

2
η2

i y
∗
i , we have

dV ≤
n∑

i=1

ciεiσi(xi − x∗
i )

2dWi(t) +
n∑

i=1

cieiηi(yi − y∗
i )

2dZi(t).

Integration from 0 to τ ∗
m yields

V (x1(τ
∗
m), y1(τ

∗
m), · · · , xn(τ ∗

m), yn(τ ∗
m)) − V (x1(0), y1(0), · · · , xn(0), yn(0))

≤
n∑

i=1

ciεiσi

∫ τ∗
m

0

(xi − x∗
i )

2dWi(t) +
n∑

i=1

cieiηi

∫ τ∗
m

0

(yi − y∗
i )

2dZi(t),

and thus

E{V (x1(τ
∗
m), y1(τ

∗
m), · · · , xn(τ ∗

m), yn(τ ∗
m))} ≤ V (x1(0), y1(0), · · · , xn(0), yn(0)).

(5.13)
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Since P{τm ≤ T} > ε and τ ∗
m = min{T, τm},

E{V (x1(τ
∗
m), y1(τ

∗
m), · · · , xn(τ ∗

m), yn(τ ∗
m))}

≥ P{τm ≤ T}E{V (x1(τm), y1(τm), · · · , xn(τm), yn(τm))}
> εE{V (x1(τm), y1(τm), · · · , xn(τm), yn(τm))}.

(5.14)

Notice that from the definition of τm, there exists k such that one of following

identities holds:

xk(τm) = m, xk(τm) =
1

m
, yk(τm) = m, yk(τm) =

1

m
.

Hence, we have

E{V (x1(τm), y1(τm), · · · , xn(τm), yn(τm))}
≥ min

{
ckekVk(m), ckεkVk(m), ckekVk

( 1

m

)
, ckεkVk

( 1

m

)}
.

(5.15)

Combining (5.13), (5.14), and (5.15) yields

V (x1(0), y1(0), · · · , xn(0), yn(0))

≥ E{V (x1(τ
∗
m), y1(τ

∗
m), · · · , xn(τ ∗

m), yn(τ ∗
m))}

> ε min
{

ckekVk(m), ckεkVk(m), ckekVk

(
1
m

)
, ckεkVk

(
1
m

)}
.

Letting m → ∞, we obtain

V (x1(0), y1(0), · · · , xn(0), yn(0)) > ∞

since Vk(m) → ∞ and Vk(
1
m

) → ∞. This is a contradiction. Therefore,

P{τe < ∞} = 0, and the solution (x1(t), y1(t), · · · , xn(t), yn(t)) stays in R2n
+

for all t ≥ 0 with probability 1.

From (5.3), (5.4), and (5.12), we obtain

LV ≤ −
n∑

i=1

ciε(bi −
1

2
σ2

i x
∗
i )(xi − x∗

i )
2 −

n∑
i=1

ciei(µi −
1

2
η2

i y
∗
i )(yi − y∗

i )
2 ≤ 0
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and LV = 0 if and only if xi = x∗
i , yi = y∗

i for all i. Therefore, by Theorem 5.1,

E∗ is stochastically globally asymptotically stable in R2n
+ ..

When σi = ηi = 0 for all i, the noisy system (5.9) becomes system (3.12)

discussed in Section 3.4. Biologically, our result indicates that the global-

stability result holds as long as the noise is small.

5.3 A Multi-Group SIR Epidemic Model with

Random Perturbations

In this section, we apply our graph-theoretic approach to a randomly perturbed

multi-group epidemic model. We regard such a model as a coupled system

of stochastic differential equations on a deterministic network. Each vertex

represents a particular group of individuals, the vertex dynamics is given by

a stochastic SIR model, and the coupling among vertices is provided by cross

infections. See Figure 5.2. The resulting coupled system is given as follows:

dSi =
(
Λi −

n∑
j=1

βijSiIj − µS
i Si

)
dt + σi

√
Si(Si − S∗

i )dWi(t),

dIi = (Πi +
n∑

j=1

βijSiIj − (µI
i + γi)Ii)dt + ηi

√
Ii(Ii − I∗

i )dZi(t),

i = 1, 2, . . . , n.

(5.16)

When ignoring the random perturbations, i.e., σi = ηi = 0 for all i, the noisy

system (5.16) reduces to the deterministic multi-group SIR model

S ′
i = Λi −

n∑
j=1

βijSiIj − µS
i Si,

I ′
i = Πi +

n∑
j=1

βijSiIj − (µI
i + γi)Ii, i = 1, 2, . . . , n.

(5.17)
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Suppose that there exists an endemic equilibrium P ∗ = (S∗
1 , I

∗
1 , . . . , S

∗
n, I

∗
n) to

system (5.17), where S∗
i , I

∗
i , 1 ≤ i ≤ n, satisfy the equilibrium equations

Λi −
n∑

j=1

βijS
∗
i I

∗
j − µS

i S∗
i = 0,

Πi +
n∑

j=1

βijS
∗
i I

∗
j − (µI

i + γi)I
∗
i = 0, i = 1, 2, . . . , n.

(5.18)

Using the same method as in Section 3.6 and Section 4.2, we can prove that

P ∗ is globally asymptotically stable as long as it exists. Note that P ∗ is also

an equilibrium of (5.16).

dSi = (Λi − βiiSiIi − µS
i Si)dt + σi

√
Si(Si − S∗

i )dWi(t)

dIi = (βiiSiIi − (µI
i + γi)Ii)dt + ηi

√
Ii(Ii − I∗i )dZi(t)

dSj = (Λj − βjjSjIj − µS
j Sj)dt + σj

√
Sj(Sj − S∗

j )dWj(t)

dIj = (βjjSjIj − (µI
j + γj)Ij)dt + ηj

√
Ij(Ij − I∗j )dZj(t)

��

��

�

�

−βijSiIj βijSiIj−βjiSjIi βjiSjIi

�

�

Figure 5.2: A multi-group SIR model with random perturbations

In this section, using the graph-theoretic approach developed in Chapter 2,

we are able to build a Lyapunov function for system (5.16) and thus establish

global stability of system (5.16).

Theorem 5.3. Assume that (βij) is irreducible and µS
i > 1

2
σ2

i S
∗
i , Πi > 1

2
η2

i (I
∗
i )2,

i = 1, 2, . . . , n. Then P ∗ is stochastically globally asymptotically stable in R2n
+ .

Proof. Set

Vi = S∗
i Φ

( Si

S∗
i

)
+ I∗

i Φ
( Ii

I∗
i

)
= Si − S∗

i − S∗
i ln

Si

S∗
i

+ Ii − I∗
i − I∗

i ln
Ii

I∗
i

.
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By Itô’s formula, we obtain

dVi =
(
1 − S∗

i

Si

)
dSi +

S∗
i

2S2
i

(dSi)
2 +

(
1 − I∗

i

Ii

)
dIi +

I∗
i

2I2
i

(dIi)
2

=
[
− (µS

i − 1

2
σ2

i S
∗
i )

(Si − S∗
i )

2

Si

− (Πi −
1

2
η2

i (I
∗
i )2)

(Ii − I∗
i )2

I∗
i Ii

+
n∑

j=1

βijS
∗
i I

∗
j

(
2 − Si

S∗
i

− SiIjI
∗
i

S∗
i I

∗
j Ii

+
Ij

I∗
j

− Ii

I∗
i

)]
dt+

+σi
(Si − S∗

i )
2

√
Si

dWi(t) + ηi
(Ii − I∗

i )2

√
Ii

dZi(t).

(5.19)

Let

aij = βijS
∗
I I

∗
j ,

Fij(Si, Ii, Ij) = 2 − Si

S∗
i

− SiIjI
∗
i

S∗
i I

∗
j Ii

+
Ij

I∗
j

− Ii

I∗
i

,

and

Gi(Ii) = −Φ
( Ii

I∗
i

)
.

Then we have

Fij(Si, Ii, Ij) = Gi(Ii) − Gj(Ij) − Φ
(S∗

i

Si

)
− Φ

(SiIjI
∗
i

S∗
i I

∗
j Ii

)

≤ Gi(Ii) − Gj(Ij).

Let ci be the cofactor of the i-th diagonal element in the Laplacian matrix of

(G, A), as given in Proposition 2.1. Then, by Theorem 2.3, we have

n∑
i,j=1

ciaijFij(Si, Sj) ≤
n∑

i,j=1

ciaij(Gi(Si) − Gj(Sj)) = 0.

Let

V =
n∑

i=1

ciVi(Si, Ii). (5.20)
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We thus have

dV =
n∑

i=1

cidVi

≤ −
n∑

i=1

ci(µ
S
i − 1

2
σ2

i S
∗
i )

(Si − S∗
i )

2

Si

dt

−
n∑

i=1

ci(Πi −
1

2
η2

i (I
∗
i )2)

(Ii − I∗
i )2

I∗
i Ii

dt

+
n∑

i=1

ciσi
(Si − S∗

i )
2

√
Si

dWi(t) +
n∑

i=1

ciηi
(Ii − I∗

i )2

√
Ii

dXi(t).

(5.21)

Since µS
i > 1

2
σ2

i S
∗
i and Πi > 1

2
η2

i (I
∗
i )2 for all i, we have

dV ≤
n∑

i=1

ciσi
(Si − S∗

i )
2

√
Si

dWi(t) +
n∑

i=1

ciηi
(Ii − I∗

i )2

√
Ii

dXi(t).

By similar arguments as in Section 5.2, we can show that for any initial value

problem to system (5.16) with initial value (S1(0), I1(0), · · · , Sn(0), In(0)) ∈
R2n

+ , there is a unique solution (S1(t), I1(t), · · · , Sn(t), In(t)) which almost

surely remains in R2n
+ for all t ≥ 0. Moreover, we know

LV ≤ −
n∑

i=1

ci(µ
S
i − 1

2
σ2

i S
∗
i )

(Si − S∗
i )

2

Si

−
n∑

i=1

ci(Πi −
1

2
η2

i (I
∗
i )2)

(Ii − I∗
i )2

I∗
i Ii

≤ 0

and LV = 0 if and only if Si = S∗
i , Ii = I∗

i for all i. Therefore, by Theorem 5.1,

P ∗ is stochastically globally asymptotically stable in R2n
+ .
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Chapter 6. Future Research

Directions

Our graph-theoretic approach to the construction of Lyapunov functions for

coupled systems on networks has several advantages.

1. Our approach is independent of specific forms of the vertex sys-

tem. We have shown that our approach is applicable to vertex systems

including second-order differential equations for mechanical or electri-

cal oscillators, multi-species interacting models in ecology, and epidemic

models for the spread and transmission of infectious diseases.

2. Our approach is independent of special structures of networks

and specific forms of interactions. We show that our approach

is applicable to mechanical or electrical networks in engineering, spa-

tial dispersal networks in ecology, and disease-transmission and spatial

spread networks in epidemiology. We have also shown that our approach

is applicable to different forms of coupling including physical or electri-

cal connections among oscillators, dispersal of species among patches or

communities, and cross infections among different host groups in disease

transmission.

3. Our approach is independent of particular forms of vertex Lya-

punov functions. We show that our approach can work with vertex

Lyapunov functions that are energy-type functions for electrical or me-
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chanical oscillators or Volterra-type functions for ecological and epidemi-

ological models.

We expect that our graph-theoretic approach can be further applied to

much wider classes of mathematical models from many other areas of science

and engineering.

Many mathematical questions regarding coupled systems on networks can

be further investigated. As future research, I plan to investigate the following

questions:

• Apply the graph-theoretic approach to investigate the global-stability

problem in neural networks, chemical reaction networks, and control

theory.

• Apply our approach to study synchronization problems for coupled os-

cillators.

• Extend our approach to coupled systems on multiple graphs.

• Investigate stability and bifurcation problems for coupled systems on

random networks.
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