
Bidirectional Search That Is Guaranteed to Meet in the Middle: Extended Version

Robert C. Holte
Computing Science Department

University of Alberta
Edmonton, Canada T6G 2E8

(rholte@ualberta.ca)

Ariel Felner
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel
(felner@bgu.ac.il)

Guni Sharon
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel

(gunisharon@gmail.com)

Nathan R. Sturtevant
Computer Science Department

University of Denver
(sturtevant@cs.du.edu)

Abstract

We present MM, the first bidirectional heuristic search algo-
rithm whose forward and backward searches are guaranteed
to “meet in the middle”, i.e. never expand a node beyond
the solution midpoint. We also present a novel framework
for comparing MM, A*, and brute-force search, and identify
conditions favoring each algorithm. Finally, we present ex-
perimental results that support our theoretical analysis.

1 Introduction
Bidirectional search algorithms interleave two separate
searches, a normal search forward from the start state, and
a search backward (i.e. using reverse operators) from the
goal. Barker and Korf (2015)’s comparison of unidirectional
heuristic search (Uni-HS, e.g. A*), bidirectional heuristic
search (Bi-HS), and bidirectional brute-force search (Bi-BS)
has two main conclusions (for caveats, see their Section 3):

BK1: Uni-HS will expand fewer nodes than Bi-HS if
more than half of the nodes expanded by Uni-HS have
g ≤ C∗/2, where C∗ is the optimal solution cost.

BK2: If fewer than half of the nodes expanded by Uni-HS
using heuristic h have g ≤ C∗/2, then adding h to Bi-BS
will not decrease the number of nodes it expands.

A central assumption made by Barker and Korf is that the
forward and backward searches comprising the bidirectional
search never expand a node whose g-value (in the given di-
rection) exceeds C∗/2. We say that a bidirectional search
“meets in the middle” if it has this property. This assump-
tion raises a difficulty in applying their theory, because no
known Bi-HS algorithm is guaranteed to meet in the mid-
dle under all circumstances (see Section 2). For example, in
Barker and Korf’s Towers of Hanoi experiment BS* (Kwa
1989) often expanded nodes at depth 13 in each direction
even though the solution lengths C∗ were at most 16.

To remedy this we present a new front-to-end Bi-HS al-
gorithm, MM, that is guaranteed to meet in the middle. MM0

is the brute-force (h(s) = 0 ∀s) version of MM. We also
present a new framework for comparing MM0, unidirectional
brute-force search (Uni-BS), MM, and A* that allows a pre-
cise characterization of the regions of the state space that
will be expanded by one method but not another. We use
this to identify conditions under which one method will ex-
pand fewer nodes than another, and conditions guaranteeing

BK1’s correctness. We also show that, unlike unidirectional
search, adding a non-zero heuristic (6= 0 for every non-goal
node) to Bi-BS can cause it to expand more nodes. For ex-
ample, MM expands 4 times more nodes than MM0 in one of
our Pancake Puzzle experiments. Overall, our experiments
on the Pancake Puzzle and Rubik’s Cube show that the al-
gorithm expanding the fewest nodes could be any one of
Uni-HS, MM0 or MM, depending on the heuristic used.

Although we introduce a new algorithm (MM), we do not
present an experimental comparison of MM to existing Bi-HS
algorithms, and we do not claim that MM0 and MM are the best
bidirectional search algorithms in terms of minimizing run
time or the number of nodes expanded. These issues are out-
side the scope of this paper. Like the Barker and Korf paper,
this paper is theoretical. MM’s significance is that it is the
only Bi-HS algorithm to which our analysis, and Barker and
Korf’s, applies. These theories give strong justification for
bidirectional search algorithms that meet in the middle. As
the first of its breed, MM represents a new direction for de-
veloping highly competitive Bi-HS algorithms. A thorough
empirical evaluation of MM is an important study that we will
undertake in the future.

This technical report is an extended version of a
AAAI’2016 paper by the same authors entitled “Bidirec-
tional Search That Is Guaranteed to Meet in the Middle”.
The main additional material is the detailed proofs of all the
claims in the AAAI paper.

2 Discussion of Previous Work
MM is the very first bidirectional heuristic search algorithm
that is guaranteed to meet in the middle. Papers on tra-
ditional front-to-front1 bidirectional heuristic search typi-

1In bidirectional heuristic search, there are two different ways
to define the heuristic function (Kaindl and Kainz 1997). A “front-
to-end” heuristic—hF (n) for the forward search and hB(n) for
the backward search—directly estimates the distance from node
n to the target of the search (the target for the forward search is
the goal, the target for the backward search is the start state). By
contrast a “front-to-front” heuristic estimates the distance from n
to the search target indirectly. For forward search it is defined as
hF (n) = min

m∈OpenB
{h(n,m) + gB(m)} where OpenB is

the backward search’s open list, h(n,m) is a function estimating
the distance between any two nodes, and gB(m) is the g-value of
node m in the backward search. A front-to-front heuristic for the

cally claim their searches meet in the middle, but none of
them has a theorem to this effect (Arefin and Saha 2010; de
Champeaux and Sint 1977; de Champeaux 1983; Davis, Pol-
lack, and Sudkamp 1984; Eckerle 1994; Politowski and Pohl
1984). Perimeter-style front-to-front bidirectional searches
with a fixed perimeter size (Dillenburg and Nelson 1994;
Kaindl and Kainz 1997; Linares López and Junghanns 2002;
Manzini 1995) will only meet in the middle if the middle
is known a priori and the perimeter size is chosen accord-
ingly. Wilt and Ruml (2013) describe a perimeter search in
which the perimeter size can increase as search progresses,
but their aim is to minimize the total number of nodes ex-
panded, not to have the searches meet in the middle.

The only theorem we have found asserting that a bidirec-
tional search meets in the middle is Theorem 5 in an unpub-
lished working paper by Mahanti et al. (2011), but no proof
is given and the subsequent publication (Sadhukhan 2012)
based on the ideas in this working paper does not include
any such theorem.

The only previous paper on front-to-end bidirectional
heuristic search with the explicit goal of having the
searches meet in the middle describes an algorithm called
2PBS* (Pulido, Mandow, and Pérez de la Cruz 2012). Build-
ing on the idea of Kaindl et al. (1999), 2PBS* proceeds in
two phases. In the first, a normal front-to-end bidirectional
search is executed, but if a state is generated in both direc-
tions it is removed from both Open lists and put into a special
“frontier” list. This phase ends when one of the Open lists is
empty. The second phase then conducts a normal unidirec-
tional heuristic search from the states in the frontier list in
order to find an optimal path and prove its optimality. There
is no theoretical or experimental evidence given for the two
searches in the first phase meeting in the middle and it would
fail to do so on the example in Figure 1.

Standard front-to-end bidirectional heuristic searches use
a variety of rules to decide which direction to expand next.
The simplest (Ikeda et al. 1994; Sadhukhan 2012) is to
strictly alternate between the directions so that the num-
ber of nodes expanded in the two directions is the same
(within one). More commonly, the search direction is cho-
sen based on Pohl’s “cardinality” criterion, which expands
a node in the direction whose Open list is smaller (Auer
and Kaindl 2004; Kaindl and Khorsand 1994; Kwa 1989;

backward search is defined analogously.

start

goal

solution midpoint

Figure 1: Figure 3.2 in (Pohl 1969). All edges cost 1,
h(n) = 0 for all nodes.

Figure 2: Diagrammatic depiction of the different regions.

Pohl 1969). Barker and Korf (2012) use a variation of this
idea, expanding an entire f -level in one direction and then
choosing the search direction that expanded fewer nodes the
most recent time it was used. Pulido et al. (2012) use the car-
dinality criterion until the two searches first meet, at which
point the search direction is whichever has the larger mini-
mum f -value in its Open list. All of these methods will fail
to meet in the middle (node n) on the graph in Figure 1. Auer
and Kaindl (2004)’s BiMax-BS∗F method alternates search
direction after completing an entire f -level in one direction.
This will meet in the middle when h(n) = 0 for all nodes,
but it will not do so when nodes with large g-values can have
relatively small f -values.

3 Definitions and terminology
A problem instance is a pair (start, goal) of states in a state-
space in which all edge weights are non-negative. The aim
of search is to find a least-cost path from start to goal.
d(u, v) is the distance (cost of a least-cost path) from state
u to state v. C∗ = d(start, goal) is the cost of an optimal
solution.

We use the usual notation—f, g,Open, etc.—and use
gmin and fmin for the minimum g- and f -value on Open.
We have separate copies of these variables for the two search
directions, with a subscript (F or B) indicating the direction:
Forward search: fF , gF , hF , OpenF , ClosedF , etc.
Backward search: fB , gB , hB , OpenB , ClosedB , etc.

We assume that each search direction uses an admissible
front-to-end heuristic.

We say state s is “near to goal” if d(s, goal) ≤ C∗/2,
and “far from goal” otherwise. For start, we make a 3-way
distinction: s is “near to start” if d(start, s) ≤ C∗/2, “far
from start” if C∗/2 < d(start, s) ≤ C∗, and “remote” if
d(start, s) > C∗. These categories divide the state-space
into 6 disjoint regions shown in Figure 2. We denote these
regions by two letter acronyms. The first letter indicates the
distance from start (N=near, F=far, R=remote) and the sec-
ond letter indicates the distance from goal (N=near, F=far).
For example, FN is the set of states that are far from start
and near to goal. NN includes only those states at the ex-
act midpoint of optimal solutions. None of the search algo-
rithms in this paper expands a state in RF.

In Sections 6–9 we compare MM0, MM, Uni-BS, and A*
based mainly on the nodes they expand in each region. A re-
gion’s name denotes both the set of states and the number of

states in the region. We will use the names in equations and
inequalities. An inequality involving two algorithms, e.g.
A* < MM, indicates that one algorithm (A* in this example)
expands fewer nodes than the other.

3.1 Nodes vs. States
States and nodes are different kinds of entities. A state is
an immutable element of a state-space, with a fixed distance
to start and goal. A node, by contrast, is a mutable entity,
created and updated by a search algorithm, representing a
path (or set of paths) in the state-space. At a minimum, node
n stores the path’s cost (g(n)) and the last state on the path,
which we call the state associated with n.

Rarely, if ever, is there ambiguity about which term
should be used in a given context. Nodes are expanded, not
states, because the process of expansion requires a g-value
and states do not have g-values, only nodes do. Similarly,
the regions we define (NN, FF, etc.) are regions of a state-
space—sets of states—because they are defined in terms of
distances to start and goal and only states have such dis-
tances (nodes have g-values).

However, there are a few situations where the correct
wording would be awkward. For example, it is technically
incorrect to write “how many nodes are expanded in region
FF?” The correct way to say this is “how many nodes are
expanded whose associated state is in FF”. We prefer the
simpler expression even though it is not technically correct.
Using “node” in a context that requires “state” is harmless
because there is a unique state associated with each node.
On the other hand, property P4 (below) has the technically
incorrect wording “no state is expanded twice”. What is
meant is that among all the nodes expanded, no two have
the same associated state. Likewise, if we say a state s is
open (or closed), we mean there is an open (or closed) node
whose associated state is s.

4 MM: A Novel Bi-HS Algorithm
MM runs an A*-like search in both directions, except that MM
orders nodes on the Open list in a novel way. The priority of
node n on OpenF , prF (n), is defined to be:

prF (n) = max(fF (n), 2gF (n)).
prB(n) is defined analogously. We use prminF and
prminB for the minimum priority on OpenF and OpenB ,
respectively, and C = min(prminF , prminB). On each
iteration MM expands a node with priority C. U is the cost
of the cheapest solution found so far. Initially infinite, U is
updated whenever a better solution is found. MM stops when

U ≤ max(C, fminF , fminB , gminF + gminB + ε)
where ε is the cost of the cheapest edge in the state-space.

Each of the last three terms inside the max is a lower
bound on the cost of any solution that might be found by
continuing to search. Therefore, if U is smaller than or equal
to any of them, its optimality is guaranteed and MM can safely
stop. It is safe to stop when U ≤ C because C ≤ C∗ until
all optimal solutions have been found (Theorem 10 below).
Therefore, U ≤ C implies U = C∗.
MM has the following properties:

Algorithm 1: Pseudocode for MM
1 gF (start) := gB(goal) := 0;OpenF := {start};
OpenB := {goal}; U :=∞

2 while (OpenF 6= ∅) and (OpenB 6= ∅) do
3 C := min(prminF , prminB)
4 if U ≤ max(C, fminF , fminB , gminF + gminB + ε)

then
5 return U
6 if C = prminF then
7 // Expand in the forward direction
8 choose n ∈ OpenF for which prF (n) = prminF

and gF (n) is minimum
9 move n from OpenF to ClosedF

10 for each child c of n do
11 if c ∈ OpenF ∪ ClosedF and

gF (c) ≤ gF (n) + cost(n, c) then
12 continue

13 if c ∈ OpenF ∪ ClosedF then
14 remove c from OpenF ∪ ClosedF
15 gF (c) := gF (n) + cost(n, c)
16 add c to OpenF

17 if c ∈ OpenB then
18 U := min(U, gF (c) + gB(c))

19 else
20 // Expand in the backward direction, analogously

21 return∞

(P1) MM’s forward and backward searches meet in the mid-
dle, i.e. neither search expands a node whose distance
from the search’s origin (gF (n) for forward search, gB(n)
for backward search) is larger than C∗/2 (Corollary 14
below).

(P2) MM never expands a node whose f -value exceeds C∗
(Corollary 14 below).

(P3) MM returnsC∗ (Lemma 4 below if there is no path from
start to goal, Theorem 16 if there is).

(P4) If there exists a path from start to goal and MM’s
heuristics are consistent MM never expands a state twice
(Theorem 23 below).

Section 5 gives complete proofs that MM has these prop-
erties. Here we provide a sketch of the proof of P1, MM’s
distinctive property. 2g(n) is larger than f(n) when g(n) >
h(n). If n is remote or far from start (goal) this makes
prF (n) > C∗ (prB(n) > C∗). If m is near to start (goal)
on any optimal path, prF (m) ≤ C∗ (prB(m) ≤ C∗). Thus,
an optimal solution will be found before MM expands any
node that is remote or far from start and far from goal. The
2g(n) term also guarantees that a node that is remote or far
from start (goal) but near to goal (start) will be expanded
by MM’s backward (forward) search (if it is expanded at all).
The 2g(n) term in pr(n) therefore guarantees property P1.

Algorithm 1 gives pseudocode for MM. Lines 2–20 are
the usual best-first search expansion cycle. Duplicate detec-
tion is in line 11. U is updated in line 18 and checked in
line 4. Note that to determine if a better solution path has

been found, MM only checks (line 17) if a newly generated
node is in the Open list of the opposite search direction. That
is all that is required by our proofs; it is not necessary to also
check if a newly generated node is in the Closed list of the
opposite search direction. As presented, only the cost of the
optimal path is returned (line 5). It is straightforward to add
code to get an actual solution path.

When prminF = prminB any rule could be used to
break the tie (e.g. Pohl (1969)’s cardinality criterion). How-
ever, to exploit the gminF + gminB + ε stopping condi-
tion, it is advantageous to continue to expand nodes in the
same direction (in line 6 ties are broken in favor of forward
search) until there is no longer a tie or gmin in that direction
has increased, and to break ties among nodes with the same
priority in the chosen search direction in favor of small g.

4.1 MM0
MM0 is the brute-force version of MM, i.e. MM when h(n) =
0 ∀n. Thus for MM0: prF (n) = 2gF (n) and prB(n) =
2gB(n). MM0 is identical to Nicholson’s (1966) algorithm
except that Nicholson’s stops when U ≤ gminF + gminB ,
whereas MM0 stops when U ≤ gminF + gminB + ε.

5 Proofs of MM’s Properties
In this section we prove that MM has properties P1–P4. We
assume that all edge weights are non-negative (zero-cost
edges are allowed), that start 6= goal, and that the heuris-
tic used by MM in each search direction is admissible. For
our analysis in this section we will use the pseudocode in
Algorithm 2, which differs from Algorithm 1 in two details.

(1) stopping condition (line 4): For the moment, we will
use a weak stopping condition: MM will terminate search
as soon as U ≤ C. This simplifies the proofs of MM’s key
properties. In Section 5.2 we will replace this stopping
condition with the stronger stopping condition used in Al-
gorithm 1 and show that MM maintains all its key proper-
ties when the stronger stopping condition is used.

(2) tie-breaking (line 8): To emphasize that the proofs do
not depend on how ties among nodes with minimum pri-
ority are broken, we have omitted the tie-breaking rule
used in Algorithm 1.

The following definition and Lemmas 1–3 are very
closely based on Lemma 1 and its proof (for A*) in (Hart,
Nilsson, and Raphael 1968).

Definition 1. Node n is “permanently closed” in the for-
ward search direction if n ∈ ClosedF and gF (n) =
d(start, n). Likewise, n is permanently closed in the back-
ward search direction if n ∈ ClosedB and gB(n) =
d(n, goal).

The name “permanently closed” is based on the following
lemma.

Lemma 1. If node n is permanently closed in a particu-
lar search direction at the start of some iteration, it will be
permanently closed in that direction at the start of all sub-
sequent iterations.

Algorithm 2: Pseudocode for MM
1 gF (start) := gB(goal) := 0;OpenF := {start};
OpenB := {goal}; U :=∞

2 while (OpenF 6= ∅) and (OpenB 6= ∅) do
3 C := min(prminF , prminB)
4 if U ≤ C then
5 return U
6 if C = prminF then
7 // Expand in the forward direction
8 choose n ∈ OpenF for which prF (n) = prminF

9 move n from OpenF to ClosedF
10 for each child c of n do
11 if c ∈ OpenF ∪ ClosedF and

gF (c) ≤ gF (n) + cost(n, c) then
12 continue

13 if c ∈ OpenF ∪ ClosedF then
14 remove c from OpenF ∪ ClosedF
15 gF (c) := gF (n) + cost(n, c)
16 add c to OpenF

17 if c ∈ OpenB then
18 U := min(U, gF (c) + gB(c))

19 else
20 // Expand in the backward direction, analogously

21 return∞

Proof. This proof is for the forward search, the proof for
the backward search is analogous. There is no code in Al-
gorithm 2 to directly change gF (n) while n ∈ ClosedF ,
so n can only stop being permanently closed by being re-
moved from ClosedF . This is possible (line 14) but only if
a strictly cheaper path to n is found (line 11). This is not
possible since gF (n) = d(start, n) for a node permanently
closed in the forward direction. Therefore, once n is perma-
nently closed in the forward direction it will remain so.
Lemma 2. Let P = s0, s1, . . . sn be an optimal path from
start (s0) to any state sn. If sn is not permanently closed
in the forward direction and either n = 0 or n > 0 and
sn−1 is permanently closed in the forward direction, then
sn ∈ OpenF and gF (sn) = d(start, sn). Analogously, let
P = s0, s1, . . . sn be an optimal path from any state s0 to
goal = sn. If s0 is not permanently closed in the backward
direction and either n = 0 or n > 0 and s1 is permanently
closed in the backward direction, then s0 ∈ OpenB and
gB(s0) = d(s0, goal).
Proof. This proof is for the forward search, the proof for the
backward search is analogous. If n = 0, s0 = start has
not been closed in the forward direction and the lemma is
true because line 1 puts start ∈ OpenF with gF (start) =
d(start, start) = 0. Suppose n > 0. When sn−1 was ex-
panded to become permanently closed in the forward direc-
tion sn was generated via an optimal path (in lines 11 and 15,
gF (n) + cost(n, c) = d(start, sn−1) + cost(sn−1, sn) =
d(start, sn)). sn cannot have been permanently closed
in the forward direction at that time because if it was, it
still would be (Lemma 1). If sn ∈ ClosedF ∪ OpenF
at that time with a suboptimal g-value, then it would have

been removed from ClosedF ∪OpenF (line 14) and added
to OpenF (line 16) with gF = d(start, sn). If sn /∈
ClosedF ∪OpenF at that time, it would likewise have been
added to OpenF with gF = d(start, sn) (line 16). Finally,
if sn ∈ OpenF at that time with gF (sn) = d(start, sn)
it would have remained so. Therefore, no matter what sn’s
status was at the time sn−1 was expanded to become per-
manently closed in the forward direction, at the end of that
iteration sn ∈ OpenF and gF (sn) = d(start, sn). In
subsequent iterations gF (sn) cannot have changed, since
that only happens if a strictly cheaper path to sn is found
(lines 11 and 12), which is impossible. It also cannot have
been closed, since if that had happened it would now be per-
manently closed.

Lemma 3. Let P = s0, s1, . . . sn be an optimal path from
start (s0) to any state sn. If sn is not permanently closed
in the forward direction then there exists an i (0 ≤ i ≤ n)
such that si ∈ OpenF and gF (si) = d(start, si). Define
nF (for path P) to be the smallest such i. Analogously, let
P = s0, s1, . . . sn be an optimal path from any state s0 to
goal = sn. If s0 is not permanently closed in the backward
direction then there exists an i (0 ≤ i ≤ n) such that si ∈
OpenB and gB(si) = d(si, goal). Define nB (for path P)
to be the largest such i.

Proof. This proof is for the forward search, the proof for the
backward search is analogous. If s0 = start /∈ ClosedF
then i = 0 has the required properties (start ∈ OpenF
and gF (start) = d(start, start) = 0, because of line 1).
Suppose start ∈ ClosedF . Let j (0 ≤ j < n) be the largest
index such that sj is permanently closed. Such a j must exist
because start (j = 0) is permanently closed. By Lemma 2
sj+1 ∈ OpenF and g(sj+1) = d(start, sj+1). Therefore
i = j + 1 has the required properties.

Much of the following proof is closely based on Pearl’s
proof that A* always terminates on finite graphs (Sec-
tion 3.1.2 (Pearl 1984)).

Lemma 4. For any finite state-space S with non-negative
edge weights MM halts for any start and goal states in S. If
there is no path from start to goal, MM returns∞.

Proof. If the condition in line 4 is satisfied on some iteration,
MM will halt immediately. Suppose the condition in line 4 is
never satisfied. Lines 11 and 12 ensure that MM never ex-
pands a node via the same path twice and, because there are
no negative-cost cycles2 (non-negative edge weights guaran-
tee this), they also ensure that MM never expands a node via
a path containing a cycle. In a finite space there are a finite
number of acyclic paths to each state. Therefore each state
can only be expanded a finite number of times in each search
direction before it becomes permanently closed in that direc-
tion, and once it becomes permanently closed in a direction
it remains so (Lemma 1). Since each iteration expands a
node in one of the search directions, after a finite number
of iterations MM will have permanently closed all the nodes

2The observation that the proof only requires that there be no
negative-cost cycles, as opposed to requiring all edge costs to be
non-negative (or positive, as Pearl requires), is due to Gaojian Fan
(University of Alberta).

reachable in one of the search directions, the Open list for
that search direction will be empty, the condition in line 2
for continuing to iterate will not be satisfied, and MM will
halt (line 21).

If there is no path from start to goal the condition in
line 17 will never be satisfied, so U will always have its ini-
tial value of ∞. If C becomes infinite—for example be-
cause all n ∈ OpenF have hF (n) = ∞ indicating that
goal cannot be reached from them and all n ∈ OpenB have
hB(n) = ∞ indicating that they cannot be reached from
start—then the condition in line 4 will be satisfied and MM
will return U = ∞. If C never becomes infinite, we have
shown in the previous paragraph that, after a finite number
of iterations, the condition in line 2 for continuing to iterate
will not be satisfied, and MM will return∞ (line 21).
Definition 2. If s 6= start and s ∈ OpenF ∪ClosedF at the
start of iteration t with gF (s) = g then parentF (〈s, t, g〉) is
defined to be the triple 〈s′, t′, g′〉 such that on iteration t′, s
was added toOpenF with gF (s) = g as a consequence of s′
being expanded in the forward direction with gF (s′) = g −
cost(s′, s). parentF (〈start, t, g〉) is undefined. Similarly,
if s 6= goal and s ∈ OpenB ∪ ClosedB at the start of
iteration t with gB(s) = g then parentB(〈s, t, g〉) is defined
to be the triple 〈s′, t′, g′〉 such that on iteration t′, s was
added to OpenB with gB(s) = g as a consequence of s′
being expanded in the backward direction with gB(s

′) =
g − cost(s, s′). parentB(〈goal, t, g〉) is undefined.
Lemma 5. Suppose s 6= start and s ∈ OpenF ∪ ClosedF
at the start of iteration t with gF (s) = g. Then:
(a) parentF (〈s, t, g〉) exists,
(b) parentF (〈s, t, g〉) is unique, and
(c) If parentF (〈s, t, g〉) = 〈s′, t′, g′〉 then t′ < t.
Likewise, suppose s 6= goal and s ∈ OpenB ∪ ClosedB at
the start of iteration t with gB(s) = g. Then:
(a) parentB(〈s, t, g〉) exists,
(b) parentB(〈s, t, g〉) is unique, and
(c) If parentB(〈s, t, g〉) = 〈s′, t′, g′〉 then t′ < t.
Proof. This proof is for the forward direction, the proof for
the backward direction is analogous.

(a) If s 6= start, the only way it can be added to OpenF
is by having been generated by some other node being ex-
panded, and the only way it can be added to ClosedF is to
have first been added to OpenF .

(b) If a state is added to OpenF multiple times, it must
be with a different g-value each time. Therefore s and g
together uniquely identify the state (s′) that caused s to be
added to OpenF with gF (s) = g.

(c) A state cannot be on OpenF or ClosedF with
gF (s) = g until after it has been added to OpenF with
gF (s) = g.
Lemma 6. Suppose s 6= start and s ∈ OpenF ∪ ClosedF
at the start of iteration t with gF (s) = d(start, s). If
parentF (〈s, t, g〉) = 〈s′, t′, g′〉, then s′ is permanently
closed in the forward direction.
Likewise, Suppose s 6= goal and s ∈ OpenB ∪ ClosedB
at the start of iteration t with gB(s) = d(s, goal). If
parentB(〈s, t, g〉) = 〈s′, t′, g′〉, then s′ is permanently
closed in the backward direction.

Proof. This proof is for the forward direction, the proof
for the backward direction is analogous. d(start, s) =
gF (s) = g′ + cost(s′, s) ≥ d(start, s′) + cost(s′, s) ≥
d(start, s). Therefore all these terms are equal. In par-
ticular g′ + cost(s′, s) = d(start, s′) + cost(s′, s), i.e.
g′ = d(start, s′). Hence, s′ became permanently closed
on iteration t′ and will remain so for all future iterations
(Lemma 1).

Definition 3. If s 6= start and s ∈ OpenF ∪ClosedF at the
start of iteration t with gF (s) = g then the forward generat-
ing path for 〈s, t, g〉, GenPathF (〈s, t, g〉), is defined recur-
sively:
GenPathF (〈start, t, g〉) = ∅
if s 6= start, GenPathF (〈s, t, g〉) =

GenPathF (parentF (〈s, t, g〉)) :: parentF (〈s, t, g〉),
where X :: Y adds element Y to the end of a sequence X .
Likewise, if s 6= goal and s ∈ OpenB∪ClosedB at the start
of iteration t with gB(s) = g then the backward generat-
ing path for 〈s, t, g〉, GenPathB(〈s, t, g〉), is defined anal-
ogously.

The forward (backward) generating path for 〈s, t, g〉
is well-defined because the recursion must terminate (t
strictly decreases as each recursive call is made, and t
cannot be negative) and it cannot terminate at any state
other than start (goal for the backward direction) because
parentF (〈s, t, g〉) (parentF (〈s, t, g〉) for the backward di-
rection) exists for all the 〈s, t, g〉 generated in this sequence
of recursive calls unless s = start.

Lemma 7. Suppose s 6= start and s ∈ OpenF ∪ ClosedF
at the start of iteration t with gF (s) = d(start, s). Then all
the states inGenPathF (〈s, t, g〉) are permanently closed in
the forward direction.
Likewise, suppose s 6= goal and s ∈ OpenB ∪ ClosedB
at the start of iteration t with gB(s) = d(start, s). Then all
the states inGenPathB(〈s, t, g〉) are permanently closed in
the backward direction.

Proof. This proof is for the forward direction, the proof
for the backward direction is analogous. By Lemma 6,
if parentF (〈s, t, g〉) = 〈s′, t′, g′〉 then s′ is permanently
closed in the forward direction. The same lemma can there-
fore be applied to 〈s′, t′, g′〉 to show that s′′ is permanently
closed, where 〈s′′, t′′, g′′〉 = parentF (s

′, t′, g′). This pro-
cess can be repeated backwards through the entire chain,
showing that all states in GenPathF (〈s, t, g〉) are perma-
nently closed in the forward direction.

Definition 4. If P = s0, s1, . . . sn is an optimal path from
start (s0) to goal (sn), let i be the largest index such that
sk ∈ ClosedF ∀k ∈ [0, i − 1], and let j be the smallest
index such that sk ∈ ClosedB ∀k ∈ [j + 1, n]. We say
that P “has not been found” if i < j and that P “has been
found” otherwise (i ≥ j).
Lemma 8. Let P = s0, s1, . . . sn be an optimal path from
start(s0) to goal(sn) that has not been found. Then nF
and nB , as defined in Lemma 3, both exist for P . Moreover,
nF = si and nB = sj , where si and sj are as defined in
Definition 4.

Proof. Let i and j be as in Definition 4. For the forward
search, s0, s1, . . . si is an optimal path from start to si and
si 6∈ ClosedF and therefore is not permanently closed in the
forward direction. Therefore, s0, s1, . . . si satisfies the con-
ditions of Lemma 3 for the forward direction and nF = si′
exists for path s0, s1, . . . si. Because s0, s1, . . . si−1 are
all in ClosedF , it must be that i′ = i. Since i′ is the
smallest index between 0 and i such that si′ ∈ OpenF and
gF (si′) = d(start, si′), it is also the smallest index be-
tween 0 and n with these properties, so si′ is also nF for
path P . For the backward search, the reasoning is analo-
gous. sj , sj+1, . . . sn is an optimal path from sj to goal
and sj 6∈ ClosedB and therefore is not permanently closed
in the backward direction. Therefore, sj , sj+1, . . . sn sat-
isfies the conditions of Lemma 3 for the backward direc-
tion and nB = sj′ exists for path sj , sj+1, . . . sn. Be-
cause sj+1, sj+2, . . . sn are all in ClosedB , it must be that
j′ = j. Since j′ is the largest index between j and n such
that sj′ ∈ OpenB and gB(sj′) = d(sj′ , goal), it is also the
largest index between 0 and n with these properties, so sj′
is also nB for path P .

Lemma 9. If P = s0, s1, . . . sn is an optimal path from
start(s0) to goal(sn) that has not been found, let nF = si
and nB = sj be as defined in Lemma 3. Then gF (nF) +
gB(nB) ≤ C∗.
Proof. Lemma 8 guarantees that nF and nB exist for
P . Because edge weights are non-negative and i < j,
d(start, si) + d(sj , goal) ≤ C∗, the cost of the whole path
P . The lemma follows because gF (nF) = d(start, si) and
gB(nB) = d(sj , goal).

Theorem 10. If, at the beginning of an MM iteration, there
exists an optimal path P from start to goal that has not
been found, then C ≤ C∗.
Proof. Let nF and nB on path P be as defined in Lemma 3.
By Lemma 9, gF (nF) + gB(nB) ≤ C∗, and therefore at
least one of gF (nF) and gB(nB) must be less than or equal
toC∗/2. Suppose, without loss of generality, that gF (nF) ≤
C∗/2. Then prF (nF) ≤ C∗ because fF (nF) ≤ C∗ (be-
cause the heuristic hF is admissible and gF (n) is optimal)
and gF (nF) ≤ C∗/2. Since C is the minimum priority of
all the nodes in both Open lists and nF ∈ OpenF , C cannot
be larger than prF (nF) and therefore C ≤ C∗.
Lemma 11. If there exists a path from start to goal, MM
will not terminate until at least one optimal path from start
to goal has been found.

Proof. Lemma 8 guarantees that OpenF and OpenB are
both non-empty as long as there is any optimal path from
start to goal that has not been found, so the termination
condition in Line 2 cannot be satisfied until all optimal paths
from start to goal have been found. The only other termi-
nation condition is U ≤ C (line 4). Assume (for the purpose
of contradiction) that this termination condition is satisfied
before any optimal path from start to goal has been found.
Theorem 10 shows that C ≤ C∗ until all optimal paths from
start to goal have been found, so for U ≤ C to hold if no
optimal paths from start to goal have been found, U must
be equal to C∗. We will now show that U = C∗ implies

an optimal path from start to goal has been found, contra-
dicting our assumption, thereby proving the lemma. U is
set in line 18. On the iteration in which U was set to C∗,
there must have been a child node generated, c that satis-
fied the conditions of line 17, i.e. c ∈ OpenF ∩OpenB and
gF (c)+gB(c) = C∗. The latter implies gF (c) = d(start, c)
and gB(c) = d(c, goal), i.e. c is on an optimal path from
from start to goal with optimal g-values in both directions.
This means Lemma 7 applies to c in both directions, i.e. that
all the nodes on the forward and backward generating paths
for c are permanently closed. The concatenation of these
two paths, with c in between, is an optimal path from start
to goal that was found on the iteration when U was set to
C∗.

Lemma 12. If there exists a path from start to goal, let
P = s0, s1, . . . sn be the first optimal path from start(s0) to
goal(sn) that is found during MM’s execution, and let nF =
si and nB = sj be as defined in Lemma 3 at the beginning of
the iteration on which P is found. Then during that iteration
U will be set to C∗ in line 18.

Proof. Lemma 11 guarantees that P exists, and Lemma 8
guarantees that nF and nB exist for P at the beginning of the
iteration on which it becomes found. One of them must be
expanded on this iteration because P ’s status will not change
from “not found” to “found” if nF remains on OpenF and
nB remains on OpenB . We will complete the proof assum-
ing that nF is expanded. The proof in the case that nB is
expanded is analogous. We will prove the following before
proving the lemma:
(a) When nF is expanded, nB will be generated as one of its
children;
(b) When the test in Line 11 is applied to nB (nB ∈
OpenF ∪ClosedF and gF (nB) ≤ gF (nF)+cost(nF , nB))
it will fail.

Proof of (a): Suppose nB is not generated as a child of
nF when it is expanded in the forward direction. Then
there must exist one or more nodes between them, i.e. P =
start . . . nF t1 . . . tk nB . . . goal(k ≥ 1). In order for P to
be “found” at the end of this iteration, it must be the case that
ti ∈ ClosedF ∀1 ≤ i ≤ k. Since the path start . . . nF t1 is
an optimal path from start to t1, t1 ∈ ClosedF after being
generated by nF means that it had previously been generated
via a different optimal path, which implies an optimal path
had previously been found from start to all the ti and, in-
deed, to nB . Combining this previously found optimal path
from start to nB with the optimal path found by the back-
wards search from nB to goal creates an optimal path from
start to goal that had been found prior to P . This contra-
dicts the premise that P is the first optimal path found from
start to goal.

Proof of (b): The path start . . . nF nB is optimal, i.e.
gF (nF)+cost(nF , nB) = d(start, nB). The test in line 11
can therefore only succeed if an optimal path from start
to nB had previously been found, which contradicts the
premise that P is the first optimal path found from start
to goal.

Proof of the lemma: Because of (b), the test in line 17
succeeds because nB is a child of nF (by (a)) and nB ∈

OpenB by definition. Because of (b), gF (nB) + gB(nB) =
d(start, nB)+d(nB , goal) = C∗, so U will be set to C∗ in
line 18.

Lemma 13. If there exists a path from start to goal and MM
begins an iteration with C > C∗ it will terminate immedi-
ately (i.e. without expanding a node on this iteration) and
return U = C∗.

Proof. By Theorem 10, C > C∗ implies that all optimal
solutions have been found, which implies (Lemma 12) U =
C∗ so the termination criterion in line 4 is satisfied (and it
is tested before a node is expanded).

The following establishes MM’s properties P1 and P2.
Corollary 14. MM’s forward search never expands a node
n with fF (n) > C∗ or gF (n) > C∗/2, and MM’s back-
ward search never expands a node n with fB(n) > C∗ or
gB(n) > C∗/2.

Proof. If there does not exist a path from start to goal,
C∗ = ∞ and nothing can be strictly larger than C∗. If
there exists a path from start to goal, the proof for the
forward search is as follows. The proof for the backward
search is analogous. By Lemma 13, MM’s forward search
never expands a node when C > C∗, so if n was expanded
in the forward search prF (n) ≤ C∗. Since prF (n) =
max(fF (n), 2 · gF (n)) this means both fF (n) and 2 · gF (n)
are less than or equal to C∗.
Lemma 15. If there exists a path P from start to goal,
OpenF and OpenB are never empty.

Proof. This is the proof for the forward direction. The proof
for the backward direction is analogous. By Lemma 3, for
OpenF to be empty all states reachable from start must
be permanently closed in the forward direction. This is im-
possible because goal is reachable from start but, as we
will now show, it will never be closed in the forward di-
rection. There are two cases to consider: (1) C∗ > 0 and
(2)C∗ = 0. Both cases use the fact that for goal to be closed
in the forward direction it would first have to be open in the
forward direction. Suppose C∗ > 0. If goal ∈ OpenF ,
gF (goal) ≥ dist(start, goal) = C∗ > C∗/2 so, by Corol-
lary 14, it would not be expanded (closed). Alternatively,
suppose C∗ = 0. In this case, prF (s) = 0 for all states
s ∈ P and therefore C = 0 on all iterations, so all the states
x expanded in the forward direction will have gF (x) = 0.
In particular, for goal to be expanded (closed) in the for-
ward direction, it must first have been added to OpenF with
gF (goal) = 0. At the beginning of the iteration that added
goal to OpenF with gF (goal) = 0 as a result of expanding
node s on path P , path P cannot yet have been “found”, for
it if had previously been found, U would be 0 and MM would
not have executed that iteration because the stopping condi-
tion in line 4 would have been satisfied (U = C = 0). Since
P has not yet been found, goal must still be on OpenBwith
gB(goal) = 0 (line 1) so the test in line 17 will be satis-
fied and U will be set to 0 in line 18. MM will then termi-
nate (line 4) at the beginning of the next iteration (because
U = C = 0) without having expanded goal in the forward
direction.

The following establishes MM’s property P3.

Theorem 16. If there exists a path from start to goal MM
returns U = C∗.

Proof. Lemma 15 has shown that MM will never terminate,
if there is a path from start to goal, by OpenF or OpenB
becoming empty, and MM cannot terminate if C < C∗, be-
cause U cannot be smaller than C∗. Therefore, MM is certain
to reach an iteration where C ≥ C∗. If MM reaches an iter-
ation where C > C∗, Lemma 13 guarantees MM will return
U = C∗. The only reason it might not reach an iteration
with C > C∗ is that it might terminate on an iteration with
C = C∗. If termination occurs on such an iteration then we
have U ≤ C = C∗ and therefore U = C∗ is returned.

5.1 MM With Consistent Heuristics
In this section we consider additional properties of MM if its
heuristics are consistent.

The following trivial lemma will be used in the proofs of
Lemmas 18 and 22.

Lemma 17. If a1 > a2 and b1 > b2 then max(a1, b1) >
max(a2, b2).

Proof. Suppose max(a1, b1) = a1. Then a1 ≥ b1 > b2. In
addition, a1 > a2 is a premise of the lemma. Together these
imply a1 > max(a2, b2). Combining this with the symmet-
ric argument when max(a1, b1) = b1 we have proven the
lemma.

Lemma 18. If MM’s heuristics are consistent and c is a child
of n in the forward search then prF (c) ≥ prF (n). Likewise
if MM’s heuristics are consistent and c is a child of n in the
backward search then prB(c) ≥ prB(n).
Proof. This proof is for the forward search, the proof for
the backward search is analogous. fF (c) ≥ fF (n) because
the heuristic is consistent, and gF (c) ≥ gF (n) because edge
costs are non-negative. Therefore, by Lemma 17, prF (c) =
max(fF (c), 2 ·gF (c)) ≥ prF (n) = max(fF (n), 2 ·gF (n)).

The proof of Lemma 2 requires the ability to re-open
closed nodes, and virtually all the results of the previous
section depend on that lemma. With consistent heuristics
we wish to remove the re-opening of closed nodes from
the algorithm, so we now must re-prove the equivalent of
Lemma 2 without re-opening closed nodes.

Lemma 19. If MM’s heuristics are consistent then C never
decreases from one iteration (n − 1 ≥ 1) of MM to the next
(n).

Proof. Let n ≥ 2 be any iteration that MM executed beyond
line 5 in solving a given problem, let sn be the node cho-
sen for expansion on iteration n, and X the search direction
(forward or backward) used for expanding sn, i.e. on it-
eration n sn was moved from OpenX to ClosedX and its
children added to OpenX with no changes being made to
the open and closed lists in the other direction. Finally, let
Cn = prX(sn) be MM’s C value as set in line 3 on iteration
n.

If sn 6= start and sn 6= goal then sn was added to
OpenX with priority prX(sn) on one or more previous it-
erations. Let p < n (p for “parent”) be the iteration that

mostly recently (prior to n) added sn to OpenX with prior-
ity prX(sn). If p = n− 1 then Cn = prX(sn) ≥ prX(p) =
prX(sn−1) = Cn−1 follows directly from Lemma 18. If
p < n−1, then sn has been onOpenX with its current prX -
value ever since iteration p + 1, so it has been available for
expansion, but not selected, on all iterations from p+1 up to
and including n− 1. In particular, it was on OpenX with its
current prX -value in the most recent iteration n − 1, where
MM chose to expand a different node sn−1 in a possibly dif-
ferent direction Y , instead of expanding sn in direction X .
Since MM chooses a node with the smallest priority on either
open list Cn = prX(sn) ≥ Cn−1 = prY (sn−1).

Now consider start and goal. Before the first iter-
ation begins OpenF is initialized to contain start and
OpenB is initialized to contain goal. Because gF (start) =
gB(goal) = 0, once these are expanded they will never
be added to the open list in that direction again, since 0 is
the shortest possible path to them. One of these was ex-
panded on MM’s first iteration (n = 1). Suppose it was
start (analogous reasoning applies if goal was expanded
on the first iteration). If goal was never expanded then our
proof is complete since it plays no role in determining a
C value for any of MM’s iterations. If goal was first ex-
panded in the backwards direction on the very next itera-
tion (n = 2) then, because MM chooses the node with the
smallest priority on either open list we must have C2 =
prB(goal) ≥ prF (start) = C1. If goal was first ex-
panded in the backwards direction on a subsequent itera-
tion, n > 2, then similar reasoning to p < n − 1 case
(above) applies, as follows. goal has been on OpenB with
its current prB value ever since the first iteration (n = 1),
so it has been available for expansion, but not selected, on
all iterations up to and including n − 1. In particular, it
was on OpenB with its initial prB value in the most re-
cent iteration n − 1, where MM chose to expand a differ-
ent node sn−1 in a possibly different direction Y , instead
of expanding goal in the backwards direction. Since MM
chooses a node with the smallest priority on either open list
Cn = prB(goal) ≥ Cn−1 = prY (sn−1).

Lemma 20. Suppose MM’s heuristics are consistent. Let
P = s0, s1, . . . sn be an optimal path from start (s0) to
any state sn. If sn is not permanently closed in the forward
direction and either n = 0 or n > 0 and sn−1 is perma-
nently closed in the forward direction, then sn /∈ ClosedF
with gF (sn) > d(start, sn) on any iteration. Analogously,
let P = s0, s1, . . . sn be an optimal path from any state s0 to
goal = sn. If s0 is not permanently closed in the backward
direction and either n = 0 or n > 0 and s1 is permanently
closed in the backward direction, then s0 /∈ ClosedB and
gB(s0) > d(s0, goal) on any iteration.

Proof. This proof is for the forward search, the proof for
the backward search is analogous. If n = 0, s0 = start
has not been closed in the forward direction and the lemma
is true because ClosedF is initially empty and remains so
until start is closed in the forward direction.

Suppose n > 0 and let t1 be the iteration on which sn−1
was expanded to become permanently closed in the forward
direction. The value of C = Ct1 during that iteration was

prt1F (sn−1). Because sn is a child of sn−1, when it was gen-
erated on that iteration its priority prt1F (sn) ≥ prt1(sn−1)
(by Lemma 18). If sn had been on ClosedF with a sub-
optimal gF -value prior to iteration t1 it must have been
expanded on an earlier iteration t0 < t1. The value of
C = Ct0 = prt0F (sn) on that iteration, because sn had only
been reached via a suboptimal path, would be strictly greater
than prt1F (sn). Hence Ct0 > Ct1 even though t0 < t1, con-
tradicting Lemma 19. So sn cannot have been on ClosedF
with a suboptimal gF -value prior to iteration t1. On itera-
tion t1 it was added to OpenF (if it was not already there)
with an optimal gF -value, so it will never subsequently be
added to OpenF with a suboptimal gF -value, hence it will
never subsequently be on ClosedF with a suboptimal gF -
value.

The following is the equivalent of Lemma 2 when MM has
consistent heuristics but does not have the ability to re-open
closed nodes.
Corollary 21. Suppose MM’s heuristics are consistent and
MM does not re-open closed nodes (“∪ClosedF ” is removed
from lines 13 and 14). Let P = s0, s1, . . . sn be an optimal
path from start (s0) to any state sn. If sn is not perma-
nently closed in the forward direction and either n = 0 or
n > 0 and sn−1 is permanently closed in the forward direc-
tion, then sn ∈ OpenF and gF (sn) = d(start, sn). Anal-
ogously, let P = s0, s1, . . . sn be an optimal path from any
state s0 to goal = sn. If s0 is not permanently closed in
the backward direction and either n = 0 or n > 0 and
s1 is permanently closed in the backward direction, then
s0 ∈ OpenB and gB(s0) = d(s0, goal).
Proof. The proof of Lemma 2 applies directly since, by
Lemma 20, there is no need to test if a newly generated node
is on Closed with a suboptimal value.

Since the proofs of the other lemmas and theorems in
the previous section are all based on Lemma 2, because
of Corollary 21 they continue to hold when MM has consis-
tent heuristics but does not have the ability to re-open closed
nodes.
Lemma 22. If MM’s heuristics are consistent and MM does
not re-open closed nodes (“∪ ClosedF ” is removed from
lines 13 and 14), then when MM expands a node its g-value
is optimal.
Proof. This is the proof for nodes expanded in MM’s for-
ward search. The proof for its backward search is anal-
ogous. Suppose node n has just been added to OpenF
(line 16) with a suboptimal cost c, i.e. n ∈ OpenF with
gF (n) = c > d(start, n). Let P be an optimal path from
start to n. Since n 6∈ ClosedF , P satisfies the condi-
tions of Lemma 3 and there exists a node m = nF ∈
OpenF on P with gF (m) = d(start,m). To prove the
lemma, all that we need to show is that m will be ex-
panded before n, i.e. that prF (m) < prF (n). By defini-
tion, prF (m) = max(d(start,m)+hF (m), 2·d(start,m))
and prF (n) = max(c + hF (n), 2 · c). By Lemma 17, to
show that prF (m) < prF (n) we only have to show that
d(start,m)+hF (m) < c+hF (n) and that 2·d(start,m) <
2 · c. The latter follows because edge weights are non-
negative, so d(start,m) ≤ d(start, n) < c. The former

follows because the heuristic hF is consistent, i.e. hF (m) ≤
d(m,n) + hF (n). This implies d(start,m) + hF (m) ≤
d(start,m) + d(m,n) + hF (n) = d(start, n) + hF (n) <
c+ hF (n).

The following establishes MM’s property P4.

Theorem 23. Suppose MM’s heuristics are consistent and
MM does not re-open closed nodes (“∪ClosedF ” is removed
from lines 13 and 14). Then if there exists a path from start
to goal and , then MM never expands a state twice.

Proof. MM will not expand a state twice in the same search
direction because Lemma 22 guarantees that the first time a
state becomes closed it becomes permanently closed. The
only remaining possibility for a state to be expanded twice
is that it is expanded once in the forward direction and once
in the backward direction. If there is such a state, n, by
Corollary 14, gF (n) ≤ C∗/2 and gB(n) ≤ C∗/2. Because
C∗ is finite and optimal, this implies gF (n) = C∗/2 and
gB(n) = C∗/2, i.e. n is a state on an optimal solution path
P and prF (n) = prB(n) = C∗. Without loss of general-
ity, suppose n is first expanded in the backward direction.
C = prB(n) = C∗ at the time of this expansion and it can-
not decrease as search continues (Lemma 19). By the time
n is about to be expanded in the forward direction path P
has been found since at that point n has been added to both
Open lists. Therefore U = C∗, the cost of path P . Thus we
have that U ≤ C before n is expanded for the second time
and therefore MM will terminate before expanding n for the
second time. Therefore no state is expanded in both direc-
tions.

5.2 Using A Stronger Stopping Condition
We will now show that MM maintains its four key properties
(P1–P4) if it stops as soon as any of the following conditions
is true:

1. U ≤ C (the stopping condition used above)

2. U ≤ fminF
3. U ≤ fminB
4. U ≤ gminF + gminB + ε

i.e. U ≤ max(C, fminF , fminB , gminF + gminB + ε).
P3 continues to hold because fminF , fminB , and

gminF +gminB+ ε are all lower bounds on the cost of any
solution that might be found by continuing to search. The
other properties continue to hold when MM uses the stronger
stopping condition because with a stronger stopping condi-
tion MM will execute a subset of the iterations it executed
with the stopping condition used to prove MM’s properties.
Since those properties were true of every iteration done with
MM’s original stopping condition, they are true of every iter-
ation done with the stronger stopping condition.

6 MM0 compared to Uni-BS
We will now use the region-based framework introduced in
Section 3 to analyze under what conditions one type of al-
gorithm will expand more nodes than another. The analysis
will be made on a region-by-region basis, since, as we will

Figure 3: MM0 need not expand all nodes with gF (n) <
C∗/2 or gB(n) < C∗/2.

see, in all cases except Uni-HS vs. Uni-BS no algorithm-
type is superior to any other in all regions. We will summa-
rize these analyses with three general rules (GR1, GR2, and
GR3). These are general expectations, not iron-clad guar-
antees. There are many factors in play in a given situa-
tion, some favoring one algorithm-type, some favoring an-
other. It is the net sum of these factors that ultimately deter-
mines which algorithm-type outperforms another. Our gen-
eral rules state what we expect will usually be the dominant
forces.

We begin by analyzing the brute-force algorithms since
this lays the foundation for the subsequent comparisons.

Uni-BS only expands nodes that are near to or far from
start. We write this as the equation:

(Eq. 1) Uni-BS = NF + NN + F′N + F′F
F′ indicates that Uni-BS might not expand all the nodes that
are far from start. For example, Uni-BS will usually not
expand all nodes that are exactly distance C∗ from start.
By contrast, Uni-BS must expand all nodes near to start.
MM0 only expands nodes that are near to start or to goal:

(Eq. 2) MM0 = N′F + N′N′ + FN′ + RN′.
N′ indicates that MM0 might not expand all the nodes that
are near to start or goal. For example, in unit-cost spaces
when C∗ is even, MM0 will not expand any node in NN be-
cause an optimal path will be known by the time all the
nodes distance C∗/2 − 1 from start and goal have been
expanded. The ε in the gminF + gminB + ε termina-
tion condition means that MM0 can terminate before some
nodes with gF (n) < C∗/2 or gB(n) < C∗/2 have been
expanded. This is illustrated in Figure 3; the numbers in the
nodes are discussed in Sections 7 and 9, they may be ig-
nored for now. Si (Gi) is the layer of nodes at depth i in
the tree rooted at start (goal). After MM0 expands start and
goal, A and S1 will be in OpenF , and C and G1 will be
in OpenB , all with g = 1. Since ties are broken in favor
of the forward direction, MM0 will next expand A and S1,
generating B and S2 with gF = 2. It will then switch di-
rections and expand C and G1 in some order. As soon as
C is expanded a solution costing U = 4 is found. Since
gminF + gminB +1 = 2+1+1 ≥ U , MM0 can stop. This
may happen before some nodes in G1 are expanded even
though they are distance 1 from goal and C∗/2 = 2.

Uni-BS expands more nodes than MM0 iff (Eq. 1 > Eq. 2)
(Eq. 3) NF + NN + F′N + F′F > N′F + N′N′ + FN′ + RN′

To identify the core differences between the algorithms, i.e.
regions explored by one algorithm but not the other, we ig-

Figure 4: State space in which NN is large.

nore the difference between N and N′ and between F and F′,
which simplifies Eq. 3 to:

(Eq. 4) FF > RN
We have identified two conditions that guarantee FF > RN:
(1) When C∗ = D, the diameter of the space, there are no
remote states, by definition, so RN is empty.
(2) When the number of states far from start is larger than
the number of states near to goal, i.e. if FF + FN> FN + NN
+ RN, or equivalently, FF > RN + NN. We say a problem
(start, goal) is bi-friendly if it has this property.

A special case of bi-friendly problems occurs when the
number of states distance d from start is the same as the
number of states distance d from goal, for all d ≤ C∗. This
occurs often in standard heuristic search testbeds, e.g. the
Pancake Puzzle, Rubik’s Cube, and the Sliding Tile Puzzle
when the blank is in the same location type (e.g. a corner) in
both start and goal. In such cases, a problem is bi-friendly
if the number of states near to start is less than the number
of states far from start, i.e. more than half the states at
depths d ≤ C∗ occur after the solution midpoint. This is
similar to the condition in BK1 with h(s) = 0∀s. In many
testbeds this occurs because the number of states distance
d from any state continues to grow as d increases until d is
well past D/2. For example, Rubik’s Cube has D = 20 and
the number of states at distance d only begins to decrease
when d = 19 (Table 5.1, (Rokicki et al. 2013)).

Non-core differences (NF, NN, FN) can sometimes cause
large performance differences. The example in Figure 4 ex-
ploits the fact that Uni-BS always expands all nodes in NN
but MM0 sometimes does not. All edges cost 1. start and
goal each have one neighbor (s and g respectively) that are
roots of depth d binary trees that share leaves (the middle
layer, which is NN). C∗ = 2d + 2 and all paths from start
to goal are optimal. FF and RN are empty. The values on the
figure’s left may be ignored for now, they are used in Sec-
tion 7. MM0 expands all the nodes except those in the middle
layer, for a total of 2 · 2d nodes expanded. Uni-BS will ex-
pand all the nodes except goal, for a total of 3 ·2d – 1 nodes,
1.5 times as many as MM0. This ratio can be made arbitrarily
large by increasing the branching factor of the trees.

The general rule based on the core differences is:
GR1: FF and RN usually determine whether MM0 will

expand fewer nodes than Uni-BS (FF > RN) or more.

7 MM0 compared to A*
A heuristic, h, splits each region into two parts, the states in
the region that are pruned by h, and the states that are not
pruned. For example, FNU is the unpruned part of FN. The
set of states expanded by A* is therefore (modified Eq. 1):

(Eq. 5) A* = NFU + NNU + FNU + FFU
We first compare the first three terms to the corresponding
terms in Eq. 2 for MM0 and then compare FFU and RN′.
Region NF: We expect A* to expand many nodes in NF.
These nodes have gF (n) ≤ C∗/2 so A* would prune
them only if hF (n) > C∗/2. One might expect MM0’s
N′F to be larger than A*’s NFU because A* prunes NF
with a heuristic. This underestimates the power of the
gminF +gminB+ε termination condition, which can cause
N′F to be much smaller than NFU. In Figure 3, a number
with a right-pointing arrow over it inside node n is hF (n).
Not shown are hF (C) = 1 and hF (s) = 1 ∀s ∈ S3. Re-
gion NF contains start, A, S1 and S2. The heuristic does
no pruning in this region so these are all expanded by A*.
MM0 will not expand any node n with gF (n) = C∗/2 (e.g.
S2) so N′F is half the size of NFU. As a second example, on
Rubik’s Cube instances with C∗ = 20, MM0 only expands
nodes with gF (n) ≤ 9 because of this termination condi-
tion. Korf (1997)’s heuristic has a maximum value of 11, so
A* with this heuristic will not prune any nodes in N′F. In
general, we do not expect A* to have a large advantage over
MM0 in NF unless its heuristic is very accurate.3

Region NN: As discussed above, MM0 might expand no
nodes in NN (i.e. N′N′ is empty). Nodes in NN have
gF (n) = gB(n) = C∗/2, so A*’s f(s) cannot exceed
C∗. Therefore, even with an extremely accurate heuristic,
A* may do little pruning in NN. For example, the heuristic
values shown on the left side of Figure 4 are consistent and
“almost perfect” (Helmert and Röger 2008) yet they produce
no pruning at all. A* behaves exactly the same as Uni-BS
and expands 1.5 times as many nodes as MM0.
Region FN: We expect A* to expand far fewer nodes than
MM0 in FN. These nodes have gF (n) > C∗/2 and, being
relatively close to goal, we expect the heuristic values for
these nodes to be very accurate.
FFU vs RN′: RN′ certainly can be much smaller than FFU.
In Figure 3, RN (G1 + G2) is about the same size as FF
(S3), which is the same as FFU in this example. However,
because MM0 will not expand any nodes with gB(n) = C∗/2
in this example, RN′ is half the size of RN (RN′ containsG1

but not G2), so MM0 expands many fewer nodes in RN than
A* does in FF. On the other hand, FFU will certainly be the
same size as or smaller than RN′ with a sufficiently accurate
heuristic. In the extreme case, when RN′ is empty, this re-
quires a heuristic that prunes every node in FF. This is not
impossible, since no optimal path passes through FF, but it

3We recognize the imprecision in terms like “very accurate”,
“inaccurate” etc. We use these qualitative gradations to highlight
that as the heuristic’s accuracy increases or decreases, the advan-
tage shifts from one algorithm to another.

does require an extremely accurate heuristic. Moreover, FF
without any pruning can be much smaller than RN′. Delet-
ing S3 from Figure 3 makes FF empty, while RN′ can be
made arbitrarily large.

The general rule based on the core differences is:
GR2: When FF > RN, A* will expand more nodes in
FF than MM0 expands in RN unless A*’s heuristic is very
accurate.

8 MM compared to A*
Modifying Eq. 2, the equation for MM is:

(Eq. 6) MM = N′FU + N′N′U + FN′B + RN′B.
B has the same meaning as U, but is based on hB , the heuris-
tic of MM’s backwards search. For example, FNB is the part
of FN that is not pruned by hB . In general, FNB will be
different than FNU, the part that is not pruned by hF , the
heuristic used by A*. By definition, N′FU ≤ NFU and
N′N′U ≤ NN, so MM has an advantage over A* in NF and
NN.
Region FN: FNU is almost certainly smaller than FN′B be-
cause in forward search, nodes in FN have gF (n) > C∗/2
and hF is estimating a small distance (at most C∗/2).
By contrast, for the backwards search, nodes in FN have
gB(n) ≤ C∗/2 and hB would need to accurately estimate
a distance larger than C∗/2 to prune them. So, A* has an
advantage over MM’s backward search in FN.
FFU vs RNB: Not much pruning will usually occur dur-
ing MM’s backward search in RN because RN’s gB-values
are small and the distances being estimated by hB are large.
However, if RN is much smaller than FF but hF is accurate
enough to make FFU smaller than MM0’s RN′ (see the dis-
cussion of FFU vs RN′ in Section 7), then we expect that hB
will be accurate enough to do some pruning in RN. Thus, we
expect FFU > RNB whenever RN is much smaller than FF.

The general rule based on this section’s analysis is the
same as GR2 with MM0 replaced by MM.

8.1 The Correctness of BK1
In our notation BK1 (page 1) is written as:

FNU + FFU < NNU + NFU =⇒ Uni-HS < MM.
Here FNU + FFU is the number of nodes expanded by Uni-
HS beyond the solution midpoint, NNU + NFU is the num-
ber expanded at or before the solution midpoint.

Combining Eqs. 5 and 6 gives the exact expression:
(Eq. 7) Uni-HS < MM ⇐⇒ NFU + NNU + FNU + FFU

< N′FU + N′N′U + FN′B + RN′B.
Differences between Eq. 7 and BK1 represent situations in
which BK1 will be incorrect. For example, BK1 ignores
region RN, but it can be the decisive factor determining
whether MM expands more nodes than Uni-HS.

We now show that if all of the following conditions hold,
BK1’s prediction is correct.

(C1) NN, FNU, and FFU are all negligible in size compared
to NFU

(C2) FN′B + RN′B ≈ N′FU

(C3) N′FU > NFU/2.

Dropping the negligible terms from the equations above,
BK1 becomes

0 < NFU =⇒ Uni-HS < MM
i.e. BK1 predicts that Uni-HS < MM always holds under
these conditions. The exact analysis simplifies to

Uni-HS < MM ⇐⇒ NFU < N′FU + FN′B + RN′B.
C2 says the difference between N′FU and FN′B + RN′B is
negligible, so this can be rewritten as

Uni-HS < MM ⇐⇒ NFU < N′FU + N′FU
This inequality is C3, so BK1 is always correct under con-
ditions C1–C3.
C1–C3 hold in our experiment on the Pancake Puzzle with
the GAP heuristic (see the GAP rows for A* and MM near the
bottom of Table 1) and we conjecture they held in Barker and
Korf’s experiments.

9 MM0 compared to MM: an anomaly
If h1 and h2 are admissible heuristics and h1(s) > h2(s)
for all non-goal nodes, then every node expanded by A* us-
ing h1 will also be expanded by A* using h2 (RESULT 6,
p. 81 (Nilsson 1982)). In particular, A* with a non-zero
heuristic cannot expand more distinct nodes than Uni-BS.4

This is not necessarily true for MM or most Bi-HS algo-
rithms. In Figure 3 the value in a node is its h-value in
the direction indicated by the arrow. All nodes in layer S3

(G3) have hF (s) = 1 (hB(s) = 1). MM expands all the
nodes in S1 and G1 because they have pr(s) = 3 while
prF (A) = prB(C) = 4. MM might then expand any number
of nodes in S2 or G2 since they too have pr(s) = 4.5 By
contrast, we saw (Section 6) that MM0 could stop before ex-
panding all the nodes in S1 and G1 and would never expand
a node in S2 orG2. Thus we see that MM0 can expand strictly
fewer nodes than MM with a consistent, non-zero heuristic.

This example mimics behavior we saw with the GAP-2
and GAP-3 heuristics in the Pancake puzzle experiments be-
low. We believe it occurs commonly with heuristics that are
very accurate near the goal but inaccurate elsewhere. This
example reveals a fundamental dilemma for Bi-HS caused
by a tension between its two main stopping conditions:

S1: U ≤ max(fminF , fminB)
S2: U ≤ gminF + gminB + ε.

To satisfy S1 as quickly as possible, a node with minimum
f -value should be expanded, but to satisfy S2 as quickly as
possible a node with minimum g-value should be expanded.
These two node-selection rules will disagree if none of the
nodes with the smallest f -value also have the smallest g-
value. Breaking ties among nodes with the same f -value in
favor of large g-values also causes the two selection rules to
make different choices. When the two selection rules dis-
agree, a choice has to be made as to which stopping condi-
tion to favor. MM and all previous Bi-HS methods are hard-

4If the non-zero heuristic is inconsistent, A* may have to re-
expand the same nodes many times and, as a result, do more node
expansions than Uni-BS even though it expands a subset of the
nodes expanded by Uni-BS.

5Bi-HS algorithms that strictly alternate search direction or use
the cardinality criterion to choose the direction will expand all the
nodes in S2 and G2.

Total NF NN FF FN RN
Reg. Size 3,555,955 27,390 55 3,501,120 27,003 387

Brute-force searches
Uni-BS 1,743,548 27,390 55 1,704,027 12,077 0
MM0 5,551 4,620 0 0 917 14

GAP-3
A* 97,644 17,346 55 75,431 4,812 0
MM 7,507 4,095 0 0 3,402 11

MM-2g 106,539 17,446 55 78,738 10,289 11
GAP-2

A* 27,162 9,964 55 14,191 2,952 0
MM 6,723 3,311 0 0 3,402 11

MM-2g 39,453 10,255 55 19,542 9,590 11
GAP-1

A* 4,280 2,611 55 852 761 0
MM 2,448 1,350 0 0 1,097 1

MM-2g 5,967 2,668 55 1,131 2,113 1
GAP

A* 117 91 12 1 13 0
MM 165 88 0 0 77 0

MM-2g 165 88 0 0 77 0

Table 1: 10 pancake results: average nodes expansions by
region for instances with C∗ = 10.

coded to favor S1. Bi-BS methods must favor S2, since
they have no heuristic. In situations like Figure 3, where
S2 can be satisfied more quickly than S1, Bi-BS will outper-
form Bi-HS. Identifying conditions under which S2 is more
quickly satisfied than S1 is an important direction for future
research. For now, we offer the following conjecture:
GR3: With an inaccurate heuristic, Bi-HS will expand
more nodes than Bi-BS.

10 Experiments
The purpose of the experiments in this section is to verify
the correctness our general rules (GR1–GR3). Since some
rules refer to the sizes of certain regions, they could only
be tested in domains small enough to be fully enumerated.
Likewise, since some rules refer to a heuristic’s relative ac-
curacy, we used at least two heuristics of different accuracy
in each domain. All heuristic used in these experiments were
consistent, not just admissible. The two domains used in our
study are the 10-Pancake Puzzle and Rubik’s Cube. In both
domains all problems are bi-friendly. Because GR1–GR3
make predictions about the number of nodes expanded, that
is the only quantity we measure in our experiments.

10.1 10-Pancake Puzzle
We ran MM0, MM, Uni-BS, and A* on 30 random instances
for each possible value of C∗ (1 ≤ C∗ ≤ 11). We used
the GAP heuristic (Helmert 2010) and derived less accurate
heuristics from it, referred to as GAP-X, by not counting the
gaps involving any of the X smallest pancakes. For example,
GAP-2 does not count the gaps involving pancakes 0 or 1.

The trends reported below were similar for all values of
C∗. In addition, similar trends were obtained using a pattern
database (PDB) based on 6-X pancakes. Table 1 shows the

number of nodes expanded in each region for each algorithm
using each heuristic for C∗ = 10.6 Row “Reg. Size” shows
the number of states in each region. Column “Total” is the
total of all the columns to its right. The total for Region Size
does not include region RF (it is not in the table because
none of the algorithms expand nodes in RF).

We see that RN is small and FF is very large. Although we
regard GAP-3 as a inaccurate heuristic it does prune almost
all the nodes in FF. NF is identical in size to FN+RN because
of the symmetry in this space. The asymmetry of MM0’s ex-
pansions in NF and FN+RN is because, for C∗ = 10, MM0

must expand all the nodes with g(s) = 4 in one direction
but not the other. MM’s expansions in these regions are much
more balanced. A*’s total is largely determined by NF with
the more accurate heuristics, but is determined by FF with
the less accurate heuristics. The bold results show that de-
pending on h the algorithm expanding the fewest nodes is
A* (GAP), MM (GAP-1), or MM0 (GAP-2, GAP-3).

To examine the effect of the 2g term in MM’s definition
of a node’s priority, we ran an altered version of MM, called
MM-2g, omitting the 2g term in the definition of pr(n), so
node n’s priority is the usual f(n). We also added code
to prevent MM-2g from expanding the same node in both
directions. Although not identical to any existing Bi-HS al-
gorithm, we believe MM-2g’s results are representative of
bidirectional search algorithms that do not meet in the mid-
dle. For all of the heuristics, MM-2g expands many nodes in
FF and many more nodes than MM in NF, NN, and FN.

GR1, GR2, and GR3 are all confirmed by this experiment.
GR1: For every instance for every value of C∗, FF > RN

and MM0 expanded fewer nodes than Uni-BS.
GR2: A* expands more and more nodes in FF as the

heuristic becomes less accurate, while MM and MM0 always
expand less than half the nodes in RN. This trend holds for
individual instances, not just for averages. On all 30 in-
stances A* with the GAP heuristic does not expand more
nodes in FF than MM0 expands in RN, and the opposite is
true for all instances when A* uses the other heuristics. MM
is similar – with all heuristics MM expands fewer nodes in
RN than A* does in FF on all instances.

GR3: With the best heuristic, GAP, MM expands many
fewer nodes than MM0. As the heuristic becomes less accu-
rate, the difference between MM and MM0 steadily diminishes
and eventually (GAP-2) turns into a steadily growing advan-
tage for MM0. This trend holds for individual instances too.

10.2 Rubik’s Cube
We use two heuristics in this study: h888 is the more accu-
rate, using two 8-edge PDBs and the 8-corner PDB. h1997 is
the heuristic used to first optimally solve random instances
of Rubik’s Cube (Korf 1997). It is based on two 6-edge
PDBs and the 8-corner PDB.

The Uni-HS algorithm is IDA* with the standard opera-
tor pruning rules for Rubik’s Cube (Korf 1997). Our im-

6We present results for C∗ = 10 because the trends reported
below were valid for all 30 instances with C∗ = 10. There were a
few instances for C∗ ∈ {6, 7, 9} that were exceptions. But, most
trends were clearly seen for these values of C∗ too.

h1997 h888

d MM0 MM IDA* MM IDA*
1 16 218M 166M 260M 96.0M 18.7M
2 17 1.55B 1.00B 1.51B 1.01B 114M
3 17 1.55B 1.14B 8.13B 1.02B 676M
4 17 1.55B 0.96B 6.56B 387M 467M
5 18 2.88B 4.71B 29.7B 3.58B 2.49B
6 18 2.88B 4.84B 15.4B 3.51B 1.10B
7 18 2.88B 5.89B 41.6B 4.01B 3.16B
8 18 2.88B 4.84B 45.9B 3.67B 3.77B
9 18 2.88B 3.01B 58.4B 2.87B 5.13B
10 18 2.88B 4.25B 70.3B 3.29B 4.82B

Table 2: Rubik’s Cube results. M=million, B=billion.

plementations of MM and MM0 both use external memory. A
full description of these implementations is outside of the
scope of this paper, but both algorithms are based on de-
layed duplicate detection (Korf 2004). Our MM0 implemen-
tation expands a full g-layer in one direction, and then re-
moves duplicates and checks for a solution. As a result, it
always expands the maximum number of states in a layer be-
fore completing. Our MM implementation has priority-based
open- and closed-lists stored across two 500GB SSD disks.
States with the same priority are found in the same file; be-
fore a set of states is expanded, duplicate detection against
the closed list is performed. Then, solution detection is per-
formed in parallel to expanding states in the file. Because
we only check for solutions when expanding a file, there
can be a significant delay between when the full solution
is generated and detected. Improving this is an issue for fu-
ture work. Because operator pruning is, in general, unsafe to
use in conjunction with duplicate detection (Holte and Burch
2014), MM and MM0 did no operator pruning.

Table 2 shows the results on each of the ten standard test
instances (Korf 1997). MM0 expands fewer nodes than IDA*
with h1997 on all instances except for instance #2 where
there was a very small gap. Due to tie-breaking within the
last iteration of IDA*, the differences on instances #1 and
#2 are not meaningful for either algorithm. This is consis-
tent with GR2 because h1997 is not especially accurate.

With h1997 MM always expands fewer nodes than IDA*.
In fact, MM with h1997 expands fewer nodes than IDA* with
the superior h888 on instances #9 and #10. MM expands fewer
nodes than MM0 on the easier instances (d = 17) but more
on the harder ones (d = 18). There are two possible expla-
nations for this. The first is the anomaly phenomenon de-
scribed in Section 9. A heuristic that is sufficiently accurate
for MM to expand fewer nodes than MM0 on easier instances
might not be sufficiently accurate on harder instances. The
second is related to the delayed duplicate (and solution) de-
tection. If we performed solution detection earlier MM would
have certainly improved. But earlier solution detection in
MM0 could also improve its performance. Future work will
study termination conditions in external memory search. For
instance, an in-memory version of MM expanded only 75M
nodes on problem #1, while tie-breaking in the order of file
expansion for external-memory MM can significantly worsen
its performance. The IDA* code expands more nodes per

second than MM, but for instances #3–#10 MM found solu-
tions in less time than IDA*.
h888 is accurate enough (as is GAP on the Pancake puz-

zle) for IDA* to outperform the MM variants for the easier in-
stances #1 (d = 16) but the MM variants expand fewer nodes
on the harder instances because h888 is not sufficiently ac-
curate on them.

11 Conclusions and future work
In this paper we introduced MM, the first Bi-HS algorithm
guaranteed to meet in the middle. We also introduced a
framework that divides the state-space into disjoint regions
and allows a careful analysis of the behavior of the differ-
ent algorithms in each of the regions. We studied the vari-
ous types of algorithms and provided some general rules that
were confirmed by our experiments.

This paper initiated this direction. Future work will con-
tinue as follows: (1) A deeper analysis on current and new
MM variants may further deepen our knowledge in this is-
sue. (2) A thorough experimental comparison should be
done on more domains and with more bidirectional search
algorithms. (3) Heuristics that are specifically designed for
MM, i.e., that only return values larger than C∗/2 are needed.

12 Acknowledgements
Thanks to Joseph Barker for answering questions and pro-
viding extra data related to (Barker and Korf 2015) and to
Sandra Zilles and André Grahl Pereira for suggesting im-
provements in the theoretical analysis of MM. Financial sup-
port for this research was in part provided by Canada’s Nat-
ural Science and Engineering Research Council (NSERC)
and by Israel Science Foundation (ISF) grant #417/13. Com-
putational facilities for some of our experiments were pro-
vided by Compute Canada. This material is based upon
work supported by the National Science Foundation under
Grant No. 1551406.

References
Arefin, K. S., and Saha, A. K. 2010. A new approach of iter-
ative deepening bi-directional heuristic front-to-front algo-
rithm (IDBHFFA). International Journal of Electrical and
Computer Sciences (IJECS-IJENS) 10(2).
Auer, A., and Kaindl, H. 2004. A case study of revisit-
ing best-first vs. depth-first search. In Proc. 16th European
Conference on Artificial Intelligence (ECAI), 141–145.
Barker, J. K., and Korf, R. E. 2012. Solving peg solitaire
with bidirectional BFIDA*. In Proc. 26th AAAI Conference
on Artificial Intelligence, 420–426.
Barker, J. K., and Korf, R. E. 2015. Limitations of front-
to-end bidirectional heuristic search. In Proc. 29th AAAI
Conference on Artificial Intelligence, 1086–1092.
Davis, H. W.; Pollack, R. B.; and Sudkamp, T. 1984. To-
wards a better understanding of bidirectional search. In
Proc. National Conference on Artificial Intelligence (AAAI),
68–72.
de Champeaux, D., and Sint, L. 1977. An improved bidirec-
tional heuristic search algorithm. J. ACM 24(2):177–191.

de Champeaux, D. 1983. Bidirectional heuristic search
again. J. ACM 30(1):22–32.
Dillenburg, J. F., and Nelson, P. C. 1994. Perimeter search.
Artificial Intelligence 65(1):165–178.
Eckerle, J. 1994. An optimal bidirectional search algorithm.
In Proc. KI-94: Advances in Artificial Intelligence, 18th An-
nual German Conference on Artificial Intelligence, 394.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE Trans. Systems Science and Cybernetics 4(2):100–
107.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In Proc. 23rd AAAI Conference on Artificial Intel-
ligence, 944–949.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Proc. 3rd Annual Symposium on Combinatorial
Search, (SoCS).
Holte, R. C., and Burch, N. 2014. Automatic move pruning
for single-agent search. AI Communications 27(4):363–383.
Ikeda, T.; Hsu, M.-Y.; Imai, H.; Nishimura, S.; Shimoura,
H.; Hashimoto, T.; Tenmoku, K.; and Mitoh, K. 1994. A fast
algorithm for finding better routes by AI search techniques.
In Proc. Vehicle Navigation and Information Systems Con-
ference, 291–296.
Kaindl, H., and Kainz, G. 1997. Bidirectional heuristic
search reconsidered. J. Artificial Intelligence Resesearch
(JAIR) 7:283–317.
Kaindl, H., and Khorsand, A. 1994. Memory-bounded bidi-
rectional search. In Proc. 12th National Conference on Ar-
tificial Intelligence (AAAI), 1359–1364.
Kaindl, H.; Kainz, G.; Steiner, R.; Auer, A.; and Radda, K.
1999. Switching from bidirectional to unidirectional search.
In Proc. 16th International Joint Conference on Artificial
Intelligence (IJCAI), 1178–1183.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s Cube
using pattern databases. In Proc. 14th National Conference
on Artificial Intelligence (AAAI), 700–705.
Korf, R. E. 2004. Best-first frontier search with delayed
duplicate detection. In Proc. 19th National Conference on
Artificial Intelligence (AAAI), 650–657.
Kwa, J. B. H. 1989. BS*: An admissible bidirectional staged
heuristic search algorithm. Artificial Intelligence 38(1):95–
109.
Linares López, C., and Junghanns, A. 2002. Perimeter
search performance. In Proc. 3rd International Conference
on Computers and Games (CG), 345–359.
Mahanti, A.; Sadhukan, S. K.; and Ghosh, S. 2011. A tale
of two searches: Bidirectional search algorithm that meets
in the middle. Technical Report WPS 678, IIM Calcutta.
Manzini, G. 1995. BIDA: an improved perimeter search
algorithm. Artificial Intelligence 75(2):347–360.
Nicholson, T. A. J. 1966. Finding the shortest route between
two points in a network. The Computer Journal 9(3):275–
280.

Nilsson, N. J. 1982. Principles of Artificial Intelligence.
Springer.
Pearl, J. 1984. Heuristics – Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pohl, I. 1969. Bi-directional and heuristic search in path
problems. Technical Report 104, Stanford Linear Accelera-
tor Center.
Politowski, G., and Pohl, I. 1984. D-node retargeting in
bidirectional heuristic search. In Proc. National Conference
on Artificial Intelligence (AAAI), 274–277.
Pulido, F. J.; Mandow, L.; and Pérez de la Cruz, J. 2012. A
two-phase bidirectional heuristic search algorithm. In Proc.
6th Starting AI Researchers Symposium (STAIRS), 240–251.
Rokicki, T.; Kociemba, H.; Davidson, M.; and Dethridge, J.
2013. The diameter of the Rubik’s Cube group is twenty.
SIAM J. Discrete Math. 27(2):1082–1105.
Sadhukhan, S. K. 2012. A new approach to bidirectional
heuristic search using error functions. In Proc. 1st Interna-
tional Conference on Intelligent Infrastructure at the 47th
Annual National Convention COMPUTER SOCIETY of IN-
DIA (CSI-2012).
Wilt, C. M., and Ruml, W. 2013. Robust bidirectional search
via heuristic improvement. In Proc. 27th AAAI Conference
on Artificial Intelligence, 954–961.

