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ABSTRACT

Phylogenetics is the study of the evolutionary histories, or phylogenies, for 

groups of species. Inferring phylogenies is a difficult estimation problem, and 

Bayesian methods are a relatively new approach. Rather than returning a point 

estimate of the optimal tree, a Bayesian analysis integrates over the distribution of 

branch lengths and model parameters, producing a posterior distribution of 

phylogenies. Given the large sample space and inability to calculate the required 

integrals analytically, Bayesian methods use Markov chain Monte Carlo (MCMC) to 

sample from the posterior distributions of the parameters. A good MCMC 

algorithm finds the regions of high probability quickly and explores these regions 

efficiently. Creating MCMC algorithms is challenging, and the task is further 

complicated by the difficulty of testing the performance of the methods. We must 

ensure tha t the sampled states have reached a stationary distribution and tha t we 

have run the method for a sufficient number of iterations for accurate inference from 

the sampled states.

In this thesis, I develop a new algorithm, BranchSlide, for exploration of the tree 

space, and then test the algorithm against existing methods. I assess the 

performance of the algorithm using a variety of convergence diagnostics, including a 

novel statistic based on the partition probabilities of the tree topology.

Results indicate tha t the BranchSlide proposal algorithm, given an appropriate 

tuning parameter, works very well over a wide range of inference problems. Very 

informative data  sets are robust to changes in the proposal method, while harder 

inference problems are very sensitive to proposal methods. The analyses also 

indicate tha t a very flat posterior distribution of tree topologies still contains a large 

amount of information, leading to the development of a method to extract a 

stronger topology signal from the posterior distribution. I implement these methods 

in BayesTrees, a novel software package for Bayesian phylogenetic inference.
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Chapter 1

Introduction

1.1 Phylogenetics

A phylogeny is a branching tree diagram tha t describes the evolutionary history 
shared by a group of species. The study of phylogenies, or phylogenetics, includes 
the inference of evolutionary histories from empirical data, as well as development of 
inference methods.

Phylogenies are the underpinning of modern systematics, and the ambitious 
Assembling the Tree Of Life (AToL) project aims to infer the phylogeny of all 
biodiversity on the planet. Beyond systematics, though, a large number of other 
research fields routinely use phylogenetic trees. These include conservation biology 
(Purvis et al., 2005), divergence time estimation (Sanderson, 2002; Thorne et ah, 
1998) and anthropology, including linguistics (Gray and Atkinson, 2003) and the 
study of human origins (Garrigan and Hammer, 2006; Torroni et ah, 2006). 
Examples im portant to human medicine are the use of phylogenetic techniques to 
infer the life history and spread of pathogens (Rambaut et ah, 2001; Song et ah,
2005) and to the discovery of regulatory regions (Blanchette and Tompa, 2002;
Wang and Stormo, 2003)). Phylogenies of pathogen species have been offered as 
evidence in legal proceedings (Hillis and Huelsenbeck, 1994; de Oliveira et ah, 2006). 
Even within systematics, phylogenies based on molecular characters have had 
unanticipated impact, leading to the creation of the PhyloCode (de Queiroz and 
Gauthier, 1994), a novel system of nomenclature based on phylogenetic relatedness.

1
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1.2 Inferring phylogenies

1.2.1 A  b rief h istory

A phylogeny includes both a topology and a set of branch lengths. The topology is 
the shape of the tree, describing the pattern of shared history between the species. 
The branch lengths detail the amount of evolutionary change between successive 
speciation events in the topology. A phylogenetic tree was one of the few figures 
included in Darwin’s On the Origin of Species, and for quite some time after the 
publication of this tree, phylogenies were inferred by simply grouping species based 
on some aspect of phenotypic similarity. These early trees represented topologies 
only, as there were no available methods for inferring the length of the branches.

Statistical methods for inferring evolutionary trees required the availability of 
computers. Early work included tha t of Edwards and Cavalli-Sforza, who used 
distance methods, parsimony and maximum likelihood (Edwards and Cavalli-Sforza, 
1963, 1964) as well the parsimony work of Sokal, Sneath and Camin (Sneath and 
Sokal, 1962; Camin and Sokal, 1965). These methods pre-dated the availability of 
molecular sequence data, instead using morphological characters and gene frequency 
data. At this point in the field of phylogenetics, the development of theory advanced 
ahead of both computing capabilities and the widespread availability of genetic 
data. The situation now has reversed. The introduction of molecular data  provided 
the ability to make more sensitive comparisons between species. It allowed for 
development of models of sequence evolution and the introduction of rigorous 
parametric methods for inferring trees. Current method development in 
phylogenetics strives to  keep pace with the increasing quantity of both sequence 
data and computational resources.

Methods for inferring phylogenies require the calculation of an objective 
function tha t is then used to compare the competing phylogenetic hypotheses. One 
such function is the parsimony score, which judges a tree to be a better explanation 
of the data when fewer changes (mutations) are required on the branches. As better 
information about the underlying processes of m utation became available, these 
findings were incorporated into parsimony methods (Sankoff, 1975). This then led 
to the development of likelihood methods, which are based on an explicit model of 
evolution.

1.2.2 E vo lu tion ary  m od els

The likelihood of a phylogeny is the probability of the data given the phylogeny and 
model parameters. In order to calculate the likelihood of a phylogeny, we first need 
a model of evolution. Model-based methods calculate the score for a tree based on

2
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how well the data fit both the tree and the model of evolution. The use of a model 
allows us to infer the tree but also to make inferences about the model itself, leading 
to greater understanding about the evolutionary processes underlying the data.

The models used in phylogenetic inference are Markov processes tha t describe 
the rate of change from one nucleotide (or amino acid) to another. I will limit my 
discussion to nucleotide models. A Markov process is a stochastic (random) process 
with a m atrix tha t describes the probability of change between possible states. An 
im portant property of this type of process is tha t the transition to a new state 
depends only on the current state and not on any of the previous states. In the 
context of evolutionary models, the Markov process can be described using a matrix 
of the instantaneous rates of change between nucleotide states ordered as T, C, A, G 
along rows and columns:

Q  = ( l . i )

(  • ( m e  b i T A  c t t q  \
cittt ■ d f tA  e 7 r G

bitT dire • / 7 T < 3

cttt  e i t c  f i t  A  •

The diagonals axe Qu — — Q i j i  so tha t the rows sum to 0. The 7Tj terms 
are the frequencies of the nucleotides and the parameters a, b, c, d, e, f  are the rate 
parameters. Generally, we scale the rates in m atrix Q so tha t the overall rate of 
substitution per unit time is 1.0. This rate m atrix in Equation 1.1 describes the 
General Time Reversibility (GTR) model, which allows each type of change between 
nucleotides to have its own rate. Simpler models of evolution may combine some of 
the rate parameters, for example, setting a = f  and b = c = d = e so tha t all 
transitions and all transversions have the same rate but the two classes of mutations 
differ.

To calculate the probability of observing nucleotides i and j  a t the start and end 
of a branch of length t, we calculate the Pij elements of the transition probability 
matrix, P(t),  which describes the expected rate of change over a given interval, t, of 
time:

P(t)  =  eQt (1.2)

If the overall rate in Q is 1.0, then the time is measured in units of expected 
substitutions. For some of the simpler models of evolution, the transition 
probabilities can be calculated analytically, but more complex models require the 
matrix exponentiation in Equation 1.2. Noting tha t the exponent contains t , the 
branch length, this calculation must be repeated for each branch length on the 
phylogeny.
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1.2 .3  C alcu latin g  th e  lik elih ood  for a  ph ylogen y

The data is an aligned set of sequences for m  species and n  sites. The likelihood for 
a phylogeny is the product of the conditional probabilities over all sites in the 
sequence, with the assumption tha t each site has evolved independently. If Li is the 
conditional probability of the data at site i, the likelihood is:

n

L = H L i  (1.3)
i = 1

The probabilities for each site can be extremely small, so to avoid underflow 
errors (numbers tha t are too small for a computer to handle) we generally use the 
sum of the log probabilities rather than the product to obtain the log-likelihood:

n

ln(L) = J 2 ln (Li) (L4)
i = 1

For a given site, we calculate the probability of the data by multiplying the 
transition probabilities on each branch of the phylogeny. At internal nodes (where 
the sequence is unknown), we sum over the four nucleotide possibiliites. For the 
simple case of three species shown in Figure 1.1, the probability for this single site is:

Li =  ^ 2  ^ P y A i h )  Pxc(t2) pxr ( t 3 ) pyx(t4) %  (1-5)
x  y

where pij (t ) is the transition probability from nucleotide i to nucleotide j  over the 
branch length t, calculated using the transition probability m atrix from Equation 
1.2. The sums are over the four possible nucleotide states at the internal nodes X 
and Y and iry is the probability of observing the given nucleotide a t the root node. 
For larger trees, we sum over the possible nucleotides at all internal nodes. As the 
number of species increases, this summation over all ancestral states becomes an 
extremely expensive calculation.

The pruning algorithm (Felsenstein, 1981) reduces the computational complexity 
of this calculation by identification of common factors. To use the pruning 
algorithm, we move the summation signs in Equation 1.5 as far to the right as 
possible:

Li = ^ 2  nyPyA(h) I Y ^ P x c ih )  Pxr(t3 ) pyx(U) ) (1.6)
y  \  x  /

Using this formulation, we sum over the ancestral states at node X before 
moving down the tree to node Y. When we calculate the sums at node X, we store 
the values for the four nucleotide states (the conditional probabilities) a t X. Then, 
when we calculate pyx{t^), we use these stored conditional probabilities, rather than

4
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A C T

Y

Figure 1.1: A sample phylogeny to illustrate the likelihood calculation.

repeating the calculations for the descendants of X.
To generalize this calculation for any node in any size tree, define the 

conditional probability, L c(s), as the probability of observing the entire subtree 
above node c, given tha t node c currently has nucleotide state s. Using the 
conditional probabilities, we write the marginal probability as a recursion for node c 
with descendants a and b and branch lengths ta and t b (note tha t I have dropped 
the site subscript, i, but this probability is also for a single site):

^ 2 Pyb(tb)Lb(y) (1.7)T c (s )  — ^   ̂Pxa  ( t g ) L a ( x )
L y

The conditional probability at a node is dependent on the length of the 
descendant branches and the conditional probabilities at the descendant nodes. If 
the descendants are tips, then the conditional probabilities for the four nucleotide 
states are equal to either 1.0 or 0.0, depending on whether the state matches the 
actual observed nucleotide. Finally, at the root of the tree, we sum over the base 
frequencies (from the evolutionary model) of the four nucleotide states.

1.2 .4  Tree search using  M axim um  L ikelihood

The optimal tree is the one tha t maximizes the likelihood function. The general 
strategy is to  search the tree space, comparing the each tree found with the best 
tree discovered so far, and keeping the new tree if it has a better likelihood score. 
The number of possible topologies is very large, so tha t we cannot possibly evaluate 
every one, even for trees with as few as 20 species (where there are 2.22 x 1020 
possible unrooted trees). Generally, we use heuristic search strategies to find the 
optimal trees, although these are not guaranteed to find the global optima. I will 
not go into details about the process (for excellent descriptions, see (Swofford et al., 
1996; Felsenstein, 2004; Yang, 2006)) but I do note tha t this involves searching for
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the best topology while also optimizing values for the model param eters and branch 
lengths.

Given an estimate for the maximum likelihood phylogeny, we would like some 
sort of measure of the quality of tha t phylogeny. The process of searching the tree 
space does not provide any such estimate, so the standard procedure is to use the 
nonparametric bootstrap to  place confidence limits on each internal branch of the 
tree (Felsenstein, 1985). For each bootstrap replicate, we resample a new set of 
characters, with replacement, from the original sequence data and estimate the 
maximum likelihood tree for this new data set. The bootstrap proportion for a 
given partition on the tree is the number of times tha t the partition appears in the 
collection of trees inferred from the bootstrap replicates. Calculation of the 
bootstrap is computationally demanding, because we perform a new tree search for 
each new bootstrap replicate.

Bayesian methods of phylogenetic inference use the likelihood of the phylogeny 
as the optimality criteria, but the process of searching the tree space provides a 
measure of uncertainty through the posterior probabilities for partitions and for 
whole topologies. The application of Bayesian techniques followed more than  a 
decade after the introduction of computationally-feasible maximum likelihood 
methods, and Bayesian methods were published by several groups (Yang and 
Rannala, 1997; Mau et al., 1999; Li et al., 2000). Before describing the specific 
application to phylogenetics, I first introduce the general concept of Bayesian 
inference.

1.3 Bayesian inference

1.3.1 G eneral in trod u ction

Bayesian inference uses conditional probabilities to calculate the probability of a 
hypothesis of interest given the available data. We can define Bayes theorem using 
basic relations of conditional probability:

P r(^ B >  =  d-8)

P r ( i f l F )  =  Pr(A |.B )Pr(B ) (1.9)

and
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P r(£ |A ) ( 1.10)

P r ( A n B )  =  Pr(J9|A) Pr(A) (1 .11)

Noting the common factor Pr(A  D B)  in both Equation 1.9 and 1.11, we can 
combine these two and rearrange:

Equation 1.13 is Bayes theorem, originally proposed by the Reverend Thomas 
Bayes and published posthumously in 1763. The utility of this theorem is in 
situations where we want to know the probability of a hypothesis, A, given some 
data, B, but cannot calculate the probability directly. If we can instead calculate 
the probability of the data  given the hypothesis, P(B \A )  and can assign an a priori 
probability to the hypothesis, P(A),  then we can calculate the relative probabilities 
of competing hypotheses. The term  P(B \A )  is the likelihood of the param eter 
values, or hypothesis. The denominator, P (B )  is a scaling factor tha t is the 
expected probability of the data over all possible hypotheses (as in any probability 
calculation, Bayesian or otherwise).

Bayes theorem in itself is not controversial, since it follows from basic properties 
of conditional probability. In the application of the theory to calculate P(A \B ),  we 
need to calculate both the likelihood, P{B\A)  and a assign a prior probability to the 
hypothesis, P(A).  It is the latter definition which is the source of much controversy.

1.3.2 N u m erica l in tegration

While the theory behind Bayes theorem is extremely simple, determining the 
quantity Pr(A |B ) requires the integration (or summation, in the discrete case) over 
all possible hypotheses:

Pr(A\B) P r (B) = P r(B |A ) Pr(A) ( 1 .12)

(1.13)

P r(A |£ ) = Pr(B |A ) Pr(A)
(1.14)

f A Pr(B \A)Pr(A)dA
or

Pt(B\A)  Pr(A)P r(A |£ )
E i P r ^ l ^ P r ^ )

(1.15)

For many problems, the calculation of the required integrals is intractable.
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Therefore, practical applications of Bayesian methods to problems lacking simple 
analytical expressions for P (B \A )  had to wait for the introduction of numerical 
integration techniques, which sample from a distribution rather than calculating an 
integral directly. Monte Carlo integration, named after the famous gambling locale, 
is an integration technique in which we sample randomly from the distribution of 
interest in order to calculate the integral and summarize the distribution. Monte 
Carlo integration is unbiased, but can be inefficient if the majority of proposed 
samples have very low probability (which often occurs if the to tal sample space is 
very large). An improvement came with Markov chain Monte Carlo (MCMC), 
which allows us to propose samples from regions of the sample space with higher 
probability.

M arkov chain M onte Carlo

MCMC uses a Markov chain to propose the samples for Monte Carlo integration. A 
Markov chain is a stochastic process where the value of any given state in the chain 
is dependent only on the previous state, and not on any of the earlier history of the 
chain. This is the same type of process used to model changes between nucleotide 
states in the evolutionary models described in section 1.2.2. The most common 
implementation of MCMC is the Metropolis-Hastings algorithm (Metropolis et al., 
1953; Hastings, 1970). At each iteration of the algorithm, we propose a new state 
for the chain and then accept or reject the state dependent on the ratio of the 
likelihood x prior probability x proposal probability for the two states. The 
algorithm operates as follows:

1. Given the data, X ,  s tart with an initial state, y, selected in some fashion (for 
example, randomly or from the prior distribution). Calculate the likelihood, 
f ( X\ y ) ,  and the prior probability, f (y) ,  of y.

2. Propose a new state, z, from the current state and calculate the probability of 
this proposal, q(z\y), as well as the reverse proposal, q{y\z).

3. Calculate the likelihood and the prior probability of z, f ( X \ z )  and f ( z) .

4. Using the likelihood, prior and proposal probabilities for the current and 
proposed states, calculate the Metropolis-Hastings ratio:

f ( x \z ) x Z M  x gfol*) (l  16)
f ( X \ y )  f ( y)  q(z\y) (

5. Generate a uniform random number, U (0,1).
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6. Accept the new state, z, by setting y — z if U < a(y, z ), where:

•<■•»—tSi-l-gi)
=  m in(l, likelihood ratio  x prior ratio  x proposal ratio)

Otherwise, discard z.
7. Repeat the process for a large number of iterations until an appropriate 

number of samples have been collected to summarize the distribution f ( y \ X) .

The acceptance of the new state depends on the value of the M-H ratio. If the 
ratio is greater than 1 (if the state is better than the previous state), we always 
accept it. If the M-H ratio is less than 1, then we sometimes accept it (with 
probability a)  and the rate of acceptance is proportional to the value of the M-H 
ratio. We are much more likely to accept a state tha t is only slightly worse than the 
current state than one tha t is much worse. This formulation means tha t the chain 
moves towards regions of higher probability but can also move away from a local 
optima.

The beauty of combining Bayes theorem with MCMC methods is the 
elimination of the normalizing constant, P ( B ) in the denominator of Bayes theorem 
(Equation 1.13). Since P( B)  is a constant, it cancels out in the M-H ratio and we 
need not calculate it directly.

Inference o f the posterio r distribution

The results from a Bayesian MCMC analysis are not simply point estimates of the 
parameters, but an estimate of the full posterior distributions. The states of the 
chain from a properly-designed Metropolis-Hastings algorithm are a set of samples 
from the posterior distribution. If we are interested in the distribution of a 
parameter, we can record the list of sampled states and then use them  to make 
inferences about the underlying distribution. The frequency of each sample value is 
proportional to  its probability, allowing us to assign a posterior probability to  a 
particular value or range of values. A point estimate for a Bayesian posterior 
distribution is the mode, which is the most frequently sampled value. A common 
interval estimate is the highest posterior density (HPD) interval, which is the 
interval containing a given percent, say 95%, of the total probability of the posterior.

Another advantage of Bayesian methods is the ability to deal with nuisance 
parameters - those parameters tha t must be specified in order to calculate the 
likelihood but are not specifically of interest. Bayesian inference allows us to use a 
model tha t incorporates these nuisance parameters without having to estimate the

9
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parameters or assume specific values. We simply integrate over their posterior 
distribution while using the samples to infer the posterior distributions of the 
parameters of interest. The mechanism is the same for all parameters of the model, 
we can simply choose not to  record the sample values for parameters th a t are not of 
interest.

1.4 Bayesian m ethods in phylogenetics

In the context of phylogenetics, Bayes theorem translates to

Pr(TMX)=pr(̂ m£0}im ( 1 . 1 8 )

where X  is the data (DNA, RNA or protein sequence) and Pr(X\r,  0) is the 
likelihood of the data  given the tree topology, r ,  branch lengths, Vj, and model 
parameters, 0. For a given topology the numerator expands to

Pr(X\ri)  — J  J  f { X \ r u e , w1) f { v i ) f { e ) dwlde (1.19)

where Vi are a set of branch lengths on the topology and Qi are a set of model 
parameters. The double integral indicates tha t the likelihood for a given topology is 
evaluated over all possible branch lengths and values for model parameters.

Given the enormous multi-dimensional sample space (topology, branch lengths 
and model parameters), this integral cannot be calculated analytically and we 
instead use MCMC to sample from the stationary distributions of the parameters. 
Iterations of the MCMC modify the topology and branch lengths (often 
simultaneously) as well as model parameters.

1.4.1 A ssign in g  prior d istr ib u tion s

In order to implement a Bayesian method for inferring phylogenies, we must specify 
the prior distributions on the parameters. The specification of priors is one of the 
major technical and philosophical differences between maximum likelihood and 
Bayesian methods. We hope tha t the likelihood function will overwhelm the 
influence of the prior, but this may not be the case if the data  is uninformative or 
the model is overparameterized (Rannala, 2002).

The choice of prior can be based on existing information about the param eter 
(an in form ative  prior) or we can attem pt to choose a prior th a t contains as little 
information as possible (a vague prior). The birth-death prior on branch lengths is 
an example of the former, while a uniform branch length prior is an example of the
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latter. Choosing a vague prior is more complex than it appears, as an uninformative 
prior under one parameterization is not equivalent under a different 
parameterization. A nice example of this is the contradiction created when assigning 
a uniform prior both to  the probability of change along a branch and also to the 
length of the branch (Felsenstein, 2004).

Priors on the branch lengths of the phylogeny depend upon whether we assume 
the molecular clock. Under the clock assumption, rates of evolution are constant 
through the tree so tha t branch lengths are in units of time. Given tha t all of the 
species on the tree are sampled at the present time, this implies tha t the root-to-tip 
path is equal for all tips (such a tree is said to be ultrameric).

A uniform prior on branch lengths can be used for any phylogeny, irrespective of 
whether the branches are constrained by the molecular clock assumption. Although 
an option in many inference packages, the uniform prior is rarely used to due its 
lack of biological justification.

For clock-like trees, the most common prior is the birth-death prior, which 
describes the collection of branches on the tree using a linear birth-death process. 
There are three parameters. The birth rate, A, describes the rate of splitting one 
lineage into two lineages. The death rate, /r, is the rate of extinction of a lineage. 
The final param eter is the species sampling, p, which is the proportion of total 
extant species th a t are represented in the phylogeny. The branch lengths are 
described in terms of the node times, or waiting times between speciation events. 
Since we are only interested in the tree describing currently extant species, we do 
not see the extinction events. This is the reconstructed birth-death process (Nee 
et al., 1994).

For trees with branches tha t are not constrained by the molecular clock, the 
most common prior is the exponential. Each branch length on the tree is assumed 
to be an independent random variable drawn from a single exponential distribution. 
This prior cannot be used on clock-like trees, as the clock constraint means tha t the 
branch lengths are not independent (since the sum of all root-to-tip paths must be 
equal). A exponential prior tha t assigns different rates to external and internal 
branches has also been proposed (Yang and Rannala, 2005), but has not yet been 
implemented into an available software package.

1.4.2 A d van tages o f  B ayesian  m eth od s

A major advantage of Bayesian methods is tha t the result is an estimate of the 
posterior distribution of the parameters, rather than a point estimate. In the 
context of phylogenetics, the result is a posterior distribution of phylogenies. We 
can use the frequency of a specific topology to assign a probability to a phylogeny.
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The posterior probability is an intuitive and well-defined measure of the quality of 
the hypothesis. In addition to the full phylogeny, we can also assign posterior 
probabilities to the individual partitions, or clades, on the tree by taking the 
marginal probability of the given partition over the full distribution.

The second major advantage is the ability to integrate over parameters of the 
model (or other parameters) while performing the phylogenetic inference. This 
allows for the simultaneous inference of model parameters and phylogeny, allowing 
the distribution of each component to be incorporated into the inference of the 
other.

1.4.3 C urrent research and th esis  ob jectives

The choice of evolutionary model is probably the most well-researched area of 
Bayesian phylogenetics. The popular program ModelTest (Posada and Crandall, 
1998; Posada, 2006) uses information criteria and likelihood ratio tests to  help 
researchers choose the most appropriate models for their specific data sets. In the 
Bayesian framework, it is also possible to integrate over the type of model as well as 
the individual model parameters (Huelsenbeck et al., 2004). The effects of 
misspecification are fairly well understood (Bollback, 2002; Lemmon and Moriarty, 
2004; Buckley, 2002; Huelsenbeck and Rannala, 2004). Underparameterization can 
lead to overestimation of branch lengths and also biases in partition probabilities. 
W ith an underparameterized model, high partition probabilities tend to be 
overestimated while low probabilities are underestimated. An overparameterized 
model (relative to the true model, as opposed to overparameterization in the sense 
of non-identifiability) can lead to reduced efficiency, but does not seem to  bias the 
results. In studies tha t have examined model inadequacy, failure to include variable 
rates across sites caused much greater effects than assuming th a t transitions and 
transversions have the same rate or tha t the nucleotide frequencies are equal.

Not unrelated to model misspecification is the question of differences between 
Bayesian posterior probabilities and bootstrap proportions for partitions on the 
phylogeny. There is a tendency for posterior probabilities to be inflated relative to 
the bootstrap proportions, a phenomena tha t was noted even in the early papers on 
Bayesian phylogenetics (Rannala and Yang, 1996; Larget and Simon, 1999). Model 
specification plays a role in the differences between the two measures (Alfaro et al., 
2003; Erixon et al., 2003; Suzuki et al., 2002; Wilcox et al., 2002) as does the prior 
distribution on branch lengths (Yang and Rannala, 2005). Also addressed in these 
studies is the question of whether or not we should expect the partition probabilities 
and bootstrap values to be equal. There are fundamental differences between the 
definition and calculation of the two measures of uncertainty. While we would
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intuitively like to  see agreement, it is unclear under which conditions, if any, the two 
should be equivalent.

There are a number of im portant recent improvements in Bayesian MCMC 
methods. One is the use of Metropolis-coupled Markov chain Monte Carlo 
(MCMCMC or MC3) (Geyer, 1991; Huelsenbeck and Bollback, 2001) to improve 
convergence and mixing. In MCMCMC, we run multiple heated chains alongside 
one cold chain. The posterior distribution of the heated chains is modified to flatten 
peaks and raise valleys, meaning tha t the chains can more easily escape local 
optima. We cannot sample from these heated chains (due to the altered posterior 
distribution), but swapping states between chains can allow the cold chain to 
occasionally jum p to the current state of a heated chain.

The increase in multiple gene or full genome analyses requires methods for 
allowing different parts of the data  to have different evolutionary models (this is also 
possible for different codon positions within a single gene). One such method allows 
for heterogeneity within the data through the use of explicitly partitioned data  sets 
(Nylander et al., 2004). Each partition can have a different model and the model 
parameters in each partition are inferred independently of the other partitions. A 
second approach is to use mixture models (Pagel and Meade, 2004), where the 
different models apply to different regions of the data with varying probability. 
Models are not explicitly assigned to partitions, but rather we allow the data  to 
infer which model(s) most closely explain the observed data a t each site.

Possibly the most promising new development is the simultaneous inference of 
alignment and phylogeny (Redelings and Suchard, 2005; Suchard and Redelings,
2006). The assumption of alignment accuracy has been made by virtually every 
phylogenetic inference method, despite the knowledge tha t sequence alignment is a 
very challenging problem.

The choice and effect of prior distributions, despite being a point of contention 
between Bayesians and non-Bayesians, have received surprisingly little attention. 
Investigations have only recently begun, including studies on the priors for branch 
lengths (Yang and Rannala, 2005), model parameters (Zwickl and Holder, 2004) and 
topology (Pickett and Randle, 2005; Brandley et al., 2006; Steel and Pickett, 2006).

Another area tha t requires further study is the design of MCMC algorithms, 
especially tree proposals and selection of tuning parameters for these proposals. The 
performance of MCMC methods depend on how efficiently we can move around the 
param eter space. The parameter space for phylogenies is complex and not 
well-understood, and there has been little published work on the efficiency of various 
tree rearrangement algorithms in the context of Bayesian MCMC. In Chapter 2, I 
introduce a novel tree proposal and in Chapter 4, I compare its performance with

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



existing methods and examine the effect of different algorithms and tuning 
parameters on MCMC convergence and mixing.

Bayesian methods produce an enormous amount of output in the form of 
sampled states for each parameter. Analysis of the output includes both detection 
of MCMC convergence and also summary methods for the posterior distributions. 
When using MCMC algorithms, we must ensure tha t we have run the chain long 
enough for the samples to be representative of the stationary distribution. Chapter 
3 examines the convergence of Bayesian MCMC algorithms, with particular 
attention paid to  the convergence of the posterior distribution of phylogenies.

Currently, programs such as MrBayes (Ronquist and Huelsenbeck, 2003) or 
BAMBE (Simon and Larget, 2000) summarize the posterior distributions of 
phylogenies using the majority rule consensus tree. One of the advantages of 
Bayesian inference is the generation of a posterior distribution of phylogenies, with a 
posterior probability for each tree. Given this wealth of output, it seems tha t 
additional methods should be explored in order to capture more of the information 
contained in the distribution. Chapter 5 describes a novel method for summarizing 
the posterior distribution of phylogenies using agreement subtrees.

These areas may have remained less well-studied for a longer time for at least 
two reasons. The first is likely due to maximum likelihood (ML) methods pre-dating 
Bayesian methods. Issues of model choice also appear in ML methods of 
phylogenetic reconstruction, so this was not a new subject area introduced by 
Bayesian inference but merely one tha t needed to be re-visited in the Bayesian 
context. The bootstrap proportion /  posterior probability conflict would have been 
immediately apparent to users moving between ML and Bayesian methods, inviting 
study (and critique). In contrast, ML methods do not require prior distributions, 
making this unfamiliar territory. Choosing proper priors is mathematically complex 
and determining the effect of a prior distribution is not a simple task. For choosing 
priors and MCMC tuning parameters, there is no equivalent software package to 
ModelTest, which selects among nested models based on the data. An additional 
challenge is tha t several of the above topics require creation or modification of 
source code for testing purposes, instead of allowing the design of studies using only 
the output from existing software.

1.5 A novel software package

In order to conduct the research described above, I wrote a novel software package 
named BayesTrees. While much of this thesis work could have been done by 
modifying the code from existing software (for example, MrBayes or BAMBE), I
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chose to write the code from scratch. Although time consuming, this exercise 
provided a far better understanding of the code structure and of the underlying 
theory. It precluded the need to understand and modify code written by a different 
researcher. Also, by having my own software, I was not affected by parallel 
development in another laboratory over which I had no control.

The BayesTrees package for phylogenetic inference also includes two other 
related programs, TreeSum and MAPminer. TreeSum calculates the topology-based 
statistics used in Chapter 3 for the assessment of convergence. MAPminer 
summarizes the posterior distribution of phylogenies using output from programs 
such as BayesTrees, MrBayes or BAMBE. The summary method is based upon 
common agreement subtrees present in the distribution of phylogenies and is 
described further in Chapter 5.

Appendix I details the implementation of BayesTrees, TreeSum and MAPminer.
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Chapter 2

Tree Rearrangem ent A lgorithm s

2.1 Introduction

When using Markov chain Monte Carlo methods, at each iteration of the chain we 
propose a new state, compare the new state to the current state and then decide 
whether to accept or reject the proposal. The choice of proposal method is critical 
to the success of the overall algorithm, and the ideal method satisfies certain general 
mathematical requirements, is efficient in proposing new moves and leads to fast 
convergence and good mixing of the MCMC chain.

There are two mathematical requirements for proposing new states - the Markov 
chain defined by the proposal must be both irreducible and aperiodic. The 
irreducibility condition states tha t a given state can be reached from any other state 
in a finite number of moves. This prevents the chain from becoming trapped in a 
region with no probability of moving away. The aperiodic condition requires tha t 
the chain does not visit states in a cyclic manner.

Once these mathematical considerations are satisfied, the selection of a proposal 
algorithm becomes as much art as science. The choice of algorithm greatly affects 
the mixing properties of the chain. If the proposed states are very close to the 
current states, we will almost always accept the new state. Such an algorithm, 
however, is apt to become trapped at local optima, as the moves are not large 
enough to move down from a peak or to cross a valley of low probability. If instead 
the proposed states are very different from the current state, there is an increased 
probability of finding other optima, but the proposed states are more likely be in 
regions of low probability and to  be rejected. Moves tha t are either too small or too 
large cause the chain to mix poorly and can introduce an undesirably high level of 
correlation between the samples. While the size of the move is not easy to monitor, 
the acceptance rates provide a window into the proposal behaviour. A high 
acceptance rate indicates tha t most proposed moves are small and close to the
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current state, while a low acceptance rate is indicative of larger proposals.
There are many well-described methods for proposing new states for continuous 

numeric parameters (reviewed in Yang, 2006), such as the parameters of the 
evolutionary model or a single branch on the phylogeny. Proposing new phylogenies 
is a more complex problem. The proposal generally affects both branch lengths and 
topology of the tree (otherwise, separate topology and branch length moves would 
be required). Proposals can be local, affecting only a small region of the tree, or 
global, affecting either the entire tree or multiple regions. Some methods propose a 
topology change which then may include or induce a branch length change, while 
others propose branch length changes tha t may force topology changes. Constraints 
on the phylogeny, such as a molecular clock assumption, upper bounds on the 
branch length or tree height, and the different structure of internal, tip and root 
nodes, must be incorporated into the proposal.

Many of the methods used to propose new trees for Bayesian inference are also 
used in heuristic tree search with maximum likelihood or maximum parsimony.
Their use in MCMC requires calculation of the probability of the forward and 
reverse moves in order to calculate the Hastings, or proposal, ratio. This can be the 
most challenging aspect of designing a new algorithm, particularly given the 
constraints mentioned above. Choices must be made about whether to design the 
proposal so tha t all moves obey the constraints, to adjust the final state to bring it 
between the upper and lower bounds (and calculate the appropriate correction to 
the Hastings ratio) or to simply reject moves tha t take parameters outside of the 
allowable boundaries.

The behaviour of the proposal algorithm affects the efficiency of the chain, and 
this is a particularly im portant consideration when modifying the phylogeny. There 
is a relationship between the choice of tree rearrangement mechanism and the cost 
of the likelihood calculation for the proposed tree. When calculating likelihood 
using the pruning algorithm, the conditional probability at a given node depends 
upon the conditional probabilities at the descendant nodes but not the ancestral 
nodes (Felsenstein, 1981). If a rearrangement does not change any of the descendent 
nodes of a particular node, then we can simply use the stored conditional 
probabilities rather than re-calculate the transition probabilities. Since calculating 
the likelihood of the tree is the most costly operation in phylogenetic MCMC, we 
aim to minimize the scale of this operation. Rearrangement mechanisms th a t affect 
only a small part of the tree require re-calculation of the conditional probabilities 
for a smaller number of nodes. This, of course, must be balanced against 
appropriate mixing of the MCMC algorithm in terms of tree proposals.

In this chapter, I describe some existing proposal algorithms for phylogenies as
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well as a novel method. Following the descriptions is a comparison of the general 
efficiencies of each method. Then I define the expected distribution of topology and 
branch lengths for a small number of taxa and show tha t all of the methods return 
the expected distributions. A more thorough comparison of the performance of the 
various algorithms is given in Chapter 4.

2.2 Conventions

When discussing evolutionary trees, the terms phylogeny, topology and labelled 
history are common. The topology is the shape of the tree - the branching pattern 
tha t leads from the root to the tips. A labelled history, as the name implies, labels 
all nodes so tha t we can distinguish identical topologies with different branching 
orders. Finally, a phylogeny specifies both the branching pattern and the length of 
the branches.

Computer scientists and biologists often use different orientations when drawing 
and describing trees. In this thesis I use the biological convention, where the root is 
drawn at the bottom  of the tree and the tips (or leaves) are a t the top. Therefore, 
when describing tree rearrangement, I write of moving ‘up’ towards the tips and 
‘down’ towards (or past) the root.

All of the algorithms described in this chapter operate on topologies either 
under the molecular clock assumption or with unconstrained branch lengths. For 
non-clock trees, the algorithms use an unrooted representation. While the biological 
meaning of the terms ‘rooted’ and ‘unrooted’ is clear, the distinction with respect to 
the computer programming implementation is slightly different. Coded tree 
representations utilizing a binary tree structure always include a root node, which is 
used to access the tree structure and as a starting point for tree traversals. Due to 
the ubiquitous presence of a root node, the ‘unrooted’ forms of the algorithms 
simply ignore the root node, treating the left and right branches of the root as one 
single branch.

As a final note, in the following descriptions of algorithms, all randomly selected 
nodes, branches or other parameter values are chosen based on a uniform 
distribution, unless specified otherwise.

2.3 Description of algorithms

2.3.1 Local

An early paper on Bayesian phylogenetics (Larget and Simon, 1999) described two 
algorithms, Local and Global. As suggested by their names, the Global algorithm
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changes the entire tree in a single move, while the Local algorithm changes only a 
small portion of the tree. They were initially designed to work together, using 
Global at the start of an MCMC chain to find a rough estimate of the tree and 
Local after the burnin period in order to fine-tune the estimate. Both algorithms 
have a molecular clock and a non-clock version.

The Global algorithm has not been used for Bayesian phylogenetics outside of 
the software package described in the original paper. This is most likely due to the 
fact tha t it changes all branch lengths on the tree in every move, causing 
re-calculation of every conditional probability, making it a very expensive operation. 
Also, the Global method without the molecular clock assumption treats the left and 
right root branches as two separate branches in the tree, in contrast to the other 
algorithms described in this chapter. It is unclear what the effect of this would be 
when switching between Global and another algorithm during the course of a single 
MCMC chain. For these reasons, I chose to implement only the Local method.

Local without the molecular clock

The Local algorithm changes the branch lengths, and possibly the topology, but 
only in a small region of the tree. Application of the Local algorithm without the 
molecular clock is as follows:

1. Randomly select one of the s — 3 internal branches of the tree. The internal 
nodes at the ends of the branch are X and Y. Refer to Figure 2.1 for labelling 
of the nodes.

2. Randomly select one of the other two nodes neighbouring X (node A in the 
illustration) and one of the nodes neighbouring Y (node C). There are three 
adjoining branches between A and C. The unselected children are nodes B and 
D.

3. Multiply the lengths of these three branches by a common scaling factor, 
s — es(u~0-5), where U ~ U ( 0,1) and <5 is a tuning parameter.

4. Randomly select either X or Y and move it, along with its attached subtree, to 
a random point along the three branches. Nodes A and C remained unaffected 
by this last step.

The tree topology changes if the new insertion point for X or Y causes these two 
nodes to change position relative to nodes A and C. In either case, the Hastings 
ratio is s3 because we multiply the three branches by the same scaling factor s. The 
original paper by Larget and Simon stated the Hastings ratio as s2, which was later 
corrected (Holder et al., 2005). If the scaling factor s would take one or more of the 
proposed branch lengths out of range, we simply set the proposal ratio equal to zero
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Figure 2.1: An example of a Local move without the molecular clock. The three 
branches AX, XY and YC are multiplied by a common scaling factor. Then, X is ran­
domly selected to move to a new location chosen randomly between A and C. The Hast­
ings ratio is s3, where s is the scaling factor.

and abort the move (which is mathematically equivalent to calculating the 
Metropolis Hasting ratio with a prior probability of zero for the set of branch 
lengths).

Local with the molecular clock

In Local with the molecular clock, node X is always the child of node Y. The 
neighbour nodes of X are its two children (nodes A and B), while for node Y, one of 
the neighbours is a child (node D) and one is the ancestor (node C). The move 
changes the height of nodes X and Y and the links to the nodes (A,B,D). If node Y 
is the root of the tree, then node D does not exist and the move proceeds slightly 
differently. Both subtypes are detailed below:

1. Calculate the heights of the child nodes A, B and D, relative to node C (or to 
node Y, if Y is the root): hj\, fig and hjj.

2. If Y is not the root of the tree select new heights for X and Y as follows:

(a) Select the two smallest of these three heights: hi and /i2 -

(b) Calculate the heights of X and Y relative to node C: h x  and hy.
(c) Choose two values uniformly on [0,hi] and [0,/i2] and set h*x  to the larger 

value and h y  to the smaller. This means tha t the relative heights of X 
and Y do not change.

3. Otherwise, if Y is the root of the tree, select a new height for X as follows:

(a) Modify the smallest of Ha , hg and ho  using a multiplier proposal: 
h\ =  hi x es(u ~0-5\

(b) Change the other heights deterministically based on the h i adjustment: 
h* = hi + hi — hi for i = 2,3. The relative heights do not change.
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(c) Choose a new height for X, h*x  ~  [0, h^\.

4. Link the children (A,B,D) to X and Y: If h*x  >  h \ ) then the lowest child is 
below node X and must therefore be the child of Y. Otherwise, randomly 
choose one of (A,B,D) to  be the child of Y and the others are children of X.

When Y is the root, the Hastings ratio is r  x (h*/hi)  and when Y is not the 
root, the Hastings ratio is simply r. The value of r depends on the initial and final 
height of internal node X relative to the lowest of the three child nodes A, B and D 
(which affects whether there is a choice about the final topology in step 4, above). 
Let D be the lowest node after the rearrangement. If X starts higher than D and 
ends lower, then there are three options for the forward move but only one for the 
reverse move and r  =  3/1 =  3. Similarly, if X starts lower and ends higher, then 
r = 1/3. If the relative heights of X and D do not change, r  =  1. MrBayes v. 3.1.2 
(Ronquist and Huelsenbeck, 2003) states tha t there is an error in the originally 
published Hastings ratio for the case where Y is the root of the tree, and does not 
implement this aspect of the algorithm (requiring Local to be used in conjunction 
with another algorithm tha t can change the height of the tree). There is no 
published report detailing this issue.

2.3.2 Su b tree  P ru n in g  and R egrafting

The Subtree Pruning and Regrafting (SPR) algorithm is a graph-theoretic operation 
tha t has been commonly applied to phylogenetic trees. It operates by removing a 
branch (and the attached subtree) from the tree and then reattaching the branch in 
a new location on the tree. This location can be an existing branch or, in the rooted 
form of the algorithm, it can be a new root location. The root option is required to 
allow any given move to be reversed in one step (Bordewich and Semple, 2005). The 
topology changes in the area surrounding the start and end attachm ent points, 
which may be in very different parts of the tree, so this is a global rearrangement. 
Since the branch to move and the branch containing the new location are chosen 
randomly, the Hastings ratio for the topology change involves only the probabilities 
of choosing the specific locations on the branch in the forward and reverse moves:

g(*is*) =  m h )  = h  (21)
q{x*\x) U(0,l2) h

where l2 is the length of the branch containing the new insertion point of the moved 
subtree and l\ is the length of the branch containing the original location (Jow 
et al., 2002). Refer to Figure 2.2 for details.

In the rooted form, the branch lengths of the moved subtree are re-scaled in 
order to obey the molecular clock assumption and we multiply the Hastings ratio by
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Figure 2.2: An example of a SPR move. The branch ending with node X  is moved to 
a new location, chosen randomly from the remaining branches on the tree. The branch 
lengths l\ and I2 are used in the calculation of the Hastings ratio.

(h '/h)171, where h! is the height of the subtree after the final scaling, h is the original 
height of the subtree and m is the number of internal nodes scaled (Rannala and 
Yang, 2003). The height of the tree changes if we select the root branch to move the 
root or if we place the selected branch in the root location.

In the unrooted form, the left and right root branches are considered as a single 
branch and there are no moves down past the root. I also propose a change in 
length to the moved branch using multiplier proposal with scaling factor 
s =  e<ix([/-o.5) where (5 is a tuning param eter and U ~  (0,1). The Hastings ratio in 

Equation 2.1 is then multiplied by the scaling factor, s.

2.3 .3  B ranchSlide

In this thesis, I present the BranchSlide algorithm, which is an extension of the SPR 
algorithm tha t allows greater control over the size of the rearrangement. The SPR 
move chooses the new location of the moved subtree at random, and this location 
may be very close to the original location, or may be in a completely different part 
of the topology. The BranchSlide method chooses a new location for the subtree 
which is a distance, d ~  N(0, a 2), from the original location. The use of the normal 
distribution to choose the distance means tha t most moves are small (close to the 
mean of zero), while the occasional move can be larger. The tuning param eter for 
the algorithm is the variance of the normal distribution.

BranchSlide with the molecular clock

When using the molecular clock assumption, the procedure for proposing a new tree 
with s taxa is as follows:

1. Randomly choose one of the 2s — 2 branches on the tree.
2. Disconnect this branch from the tree. This can produce a single branch to 

move (if the descendant node is a tip) or a subtree (if the descendant is an 
internal node).
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3. Choose a distance to  move, d ~  IV (0, a), where N  is the normal distribution 
with mean 0 and the variance, a  is a tuning parameter. The sign of the 
distance indicates the initial direction: if d < 0, the destination node is the 
ancestral node, otherwise, it is the descendant node. Once the direction is 
determined, d — |d|.

4. Move the branch to a new location which is distance d away from the current 
location. There are three possibilities as the branch moves towards the new 
location:

(a) The destination node is a tip  and we reflect the unused distance over the 
tip, moving back down towards the root.

(b) The destination node is the root and we choose uniformly between 
moving up towards the other child or down past the root (creating a new 
root). If we choose to move down, we reflect over an upper bound on the 
tree height.

(c) The destination node is an internal node, and we choose to move in one 
of the two possible directions with an equal probability.

5. As we move through the tree, we subtract the traversed branch lengths from 
the initial distance until no distance remains. Then we reattach the branch at 
the new location.

6. Adjust the branch lengths of the move branch (or subtree) so tha t all tips are 
the same height. If we moved a subtree, rather than a single branch, the 
change in height must be scaled over the subtree.

The probability of the move is the probability of choosing the branch, times the 
probability of the chosen distance, times probability of choosing a direction at each 
internal node crossed:

change, so the first term  is symmetric. The length of the tree (excluding the moved 
branch) does not change, so the reverse move would use the same distance. The 
only term in the Hastings ratio, then, comes from the final scaling of the subtree to 
obey the molecular clock:

(2 .2)

where n is the number of internal nodes crossed. The number of branches does not

(2.3)

where h! is the height of the subtree after the final scaling, h is the original height of 
the subtree and m  is the number of internal nodes scaled.
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Figure 2.3: An example of a BranchSlide move with the molecular clock. Branch 7 
(show in bold) is moved to a new location, with the distance D (dotted line) separating 
the old and new locations. After moving the branch, we pull nodes 3 and 4 up to the 
same height as the other tips, scaling the change in height over the branches above and 
below node 7.

The proposal causes a change in tree topology if the chosen distance is greater 
than the branch length from the insertion point of the selected branch to the 
destination node. The height of the tree changes if the root branch was moved or if 
the selected branch was moved down past the root. An example of a BranchSlide 
move causing a topology change is shown in Figure 2.3. After a BranchSlide move, 
the conditional probabilities must be recalculated for all nodes below the old and 
new insertion points.

B ra n ch S lid e  w ith  u ncons tra ined  branch lengths

W ithout the molecular clock constraint, I make the following changes to the 
BranchSlide algorithm:

1. Choose one of the 2s — 3 branches on the tree, treating the two branches on 
either side of the root as a single branch. Disconnect the selected branch from 
the tree, which joins the child and ancestral branches of the target node.

2. When moving the selected branch, if we encounter the root, we simply ignore 
the root and move through to the other child, rather than allowing a move 
down past the root.

3. After reattaching the moved branch (or subtree) at the new location, propose 
a new length for the moved branch using multiplier proposal with scaling 
factor s =  eSx(u ~0-5) where S is a tuning param eter and U ~  (0,1). The 
Hastings ratio is then simply the scaling factor, s.
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2.3 .4  O ther a lgorith m s

I briefly mention several other algorithms not used in this thesis. The Tree Bisection 
and Reconnection (TBR) method is an SPR move where there is a new attachm ent 
point on the both the moved subtree and the remaining tree. The 
Nearest-Neighbour Interchange (NNI) proposal swaps two of the four subtrees on 
either side of an internal branch. This can also be thought of as an SPR move where 
the new location for the moved subtree is restricted to one of the branches tha t is a 
neighbour of the branch tha t contained the starting point (Bordewich and Semple, 
2005). The Local algorithm can behave as an NNI move, given a choice of distances 
tha t cause a topology change.

Perusal of the source code of MrBayes v 3.1.2 reveals a number of new 
algorithms. Released after my development of BranchSlide, this version includes 
ExtendingTBR and SPR moves, which choose a new location for a branch using a 
probability tha t decreases as the branch moves farther from the originating point. 
The Subtree Swapper algorithm chooses two branches (or subtrees) and exchanges 
their position on the tree. There are no published reports detailing these methods or 
comparing their performance with existing move strategies, save for a single brief 
mention of the Subtree Swapper (Ronquist et al., 2006).

The NodeSlider algorithm (Ronquist and Huelsenbeck, 2003; Lartillot and 
Philippe, 2004) is similar to the Local method, but results in a smaller move.
Rather than scaling the change in branch length over three branches, the change is 
only over two branches. The intervening node is re-located to a position tha t is 
chosen uniformly over the sum of the new length of the two scaled branches.

Noting the frequent use of the word ‘similar’ in the preceding paragraphs, many 
of the available algorithms are perturbations of the SPR /  TBR /  NNI class of 
methods, which move a branch or subtree to a new location on the tree. This basic 
strategy offers many options for making the rearrangements larger or smaller, 
depending on restrictions and tuning parameters.

2.3.5 T uning param eters

Most of these algorithms include a tuning param eter tha t affects the size of the 
move. The effect of the tuning parameter differs for each method.

W ith Local and the molecular clock, the tuning parameter only comes into play 
when we select a branch adjacent to the root, in which case the proposed height for 
the child node depends on the tuning param eter of a multiplier move. Moves not 
involving the root have no tuning parameter. W ithout the molecular clock, the 
proposed branch lengths depend on a tuning param eter for the scaling factor. The 
tuning parameters for Local, then, have a small effect, both because only a small
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region of the tree is changed and because some types of moves do not use a tuning 
parameter at all.

The Subtree Pruning and Regrafting move does not use a tuning param eter in 
the molecular clock version. The tuning param eter in the non-clock version affects 
only the proposed length of the new branch. In both versions, the choice of new 
location for the moved branch is completely random. Therefore, this can be a rather 
large move, and the size of the move is not controlled by the tuning parameter.

Finally, the BranchSlide method uses a tuning param eter for the width of the 
Normal distribution used to propose a new location for the moved subtree. The 
effect of the distance tuning parameter can be adjusted to make very large moves 
(moving the subtree to a very different location on the tree) or very small moves 
(which would generally change branch lengths only). Therefore, BranchSlide can 
behave either as a local or global move, depending on the tuning parameter. The 
effect of the param eter depends heavily on the length of the tree. If the tuning 
parameter is very large, the BranchSlide algorithm would behave similarly to a 
general SPR rearrangement (reflections at the tips and root would cause the 
destination branch to be chosen almost randomly). For the non-clock version, there 
is also a tuning param eter for the multiplier move used to  scale the branch lengths 
in the region of the rearrangement, but the effect of this param eter is minimal 
compared to the variance of the Normal distribution.

At the start of the MCMC run, it may be preferable to choose a tuning 
param eter th a t allows larger moves so tha t the chain explores a large area of the tree 
space. Then, a smaller tuning parameter can fine-tune the estimate in the latter 
stages of the chain. The choice of optimal tuning param eter is rarely known prior to 
starting the MCMC run, so it is tempting to change the tuning param eter based on 
the acceptance rate. Unfortunately, altering the chain based on its past behaviour 
violates the basic principle of a Markov chain tha t new states are based only on the 
previous state. Samples taken from such a chain may not provide reliable inference 
about the posterior distribution (Gilks et al., 1998). It is possible, however, to 
adjust the tuning based on the acceptance rate in the burn-in stage and start sample 
collection after the tuning param eter has stabilized (Gelfand and Sahu, 1994).

Chapter 4 examines the practical aspects of choosing tuning parameters and 
algorithms for tree rearrangements in phylogenetic MCMC.

2.4 Testing performance

W ithout data, there is no likelihood term in the M-H ratio and the behaviour of the 
MCMC is affected only by the proposal ratio and the prior ratio. Given a prior
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distribution on a param eter and a well-behaved proposal algorithm, running the 
method without data should return the prior distribution as the inferred posterior 
distribution for each param eter of interest. If the method does not return the prior 
distribution, the proposal is likely biased and not being corrected by the appropriate 
Hastings ratio. The only other explanation is tha t the definition of the prior is 
incorrect (or is not what we think it is).

This sort of test is particularly im portant for tree proposal algorithms. As 
previously mentioned, these methods are much more complex than  the proposal 
methods for simple numerical parameters. The rearrangement is a combination of 
many steps, which must be correct both conceptually and in the programming 
implementation. W ithout the constraint of data, we can more easily ensure tha t the 
algorithms behave correctly at the boundaries of the parameter space (at values 
tha t would only rarely, if ever, be proposed with input data). This testing also 
ensures correctness of the Hastings ratio, which can have very subtle effects when 
erroneous, as exemplified by the elapsed time between the publication of the original 
Local algorithm (Larget and Simon, 1999) and the correction of its Hastings ratio 
(Holder et al., 2005).

For each of the algorithms described above, I ran the MCMC algorithm without 
data to look for return of the prior distribution on topologies and branch lenghts. 
Used a maximum branch length of 1.0, which allows the chain to converge to the 
true distribution of phylogenies in a reasonable number of iterations (less than 
1000000). W ith a larger maximum branch length, the parameters space of the 
branch lengths is larger, changing the topology requires larger moves and 
exploration of the full tree space requires more iterations.

2.4.1 D istr ib u tio n  o f top o log ies

Given a model of cladogenesis as a prior, we can derive the theoretical distribution 
of phylogenies and ensure tha t the algorithms return the expected prior 
distribution. For four and five taxa, the number of topologies is small enough tha t 
we expect the chain to visit all possible states and we can compare the predicted 
distribution with the distribution realized from the MCMC.

W ith 4 taxa, there are 15 possible rooted labelled histories and two possible 
topologies under the molecular clock: ((X,X),(X,X)) and ((X,X),X),X). Under the 
Yule or Equal-Rate Markov (ERM) model of cladogenesis (Yule, 1925), speciation 
events occur with equal probability on any given branch. For 4-taxon rooted trees, 
this model produces a distribution of topologies where asymmetric topologies are 
twice as likely as symmetric topologies. I confirmed tha t the algorithms were 
returning the correct distribution of topologies using a y 2 test (see Table 2.1).
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Table 2.1: Results of x 2 test for distribution of 4-taxon rooted topologies. Results for 
each algorithm are the average of three runs of 1100000 iterations, sampling every 100 
and discarding the first 100000 as burn in (for 10000 total samples). The tabulated x 2 
value (a  =  0.05, df =  1), used as the lower limit for statistical significance, is 5.99.

Algorithm Symmetric Asymmetric X2
BranchSlide 20043 9957 0.2774
Local 20014 9986 0.0294
SPR 19955 10045 0.3038

Table 2.2: Results of x 2 test for distribution of 4-taxon unrooted topologies. Results 
for each algorithm are the average of three runs with a total of 10000 samples per run). 
The tabulated x 2 value (a =  0.05, df =  2) is 7.81.

Algorithm Tree 1 Tree 2 Tree 3 x 2
BranchSlide 9909 10061 10030 1.2902
Local 9951 10096 9953 1.3826
SPR 9880 10185 9937 5.2965

For non-clock topologies, the position of the root is ignored and there is only one 
possible topology, but three possible labelled histories: (W,X,(Y,Z)), (W,(X,Y),Z) 
and ((W,Y),X,Z). We expect each one to be equally likely, so tha t ratio is 1:1:1. 
Table 2.2 details results from x 2 test showing tha t all three algorithms return the 
correct distribution of trees.

2.4 .2  D istr ib u tio n  o f branch len gth s

For trees constrained by the molecular clock assumption, I test the branch lengths 
returned under a uniform and birth-death prior. The branch lengths are defined 
with respect to  the node times, or heights, of the branching points on the tree. In 
all cases, there is also an upper limit on the branch lengths. The upper bound on 
branches is also the upper limit for the tree height, since the ancestral branch of a 
one-taxon outgroup also represents the full height of the tree under the molecular 
clock assumption.

For a birth-death prior, the expected distribution of node times for a linear 
birth-death process can be generated by simulating the order statistics. I generated 
the expected distribution of node times using M athematica (Wolfram Research, 
2003) by simulating two random variables using the inverse transformation method 
described in (Yang and Rannala, 1997). This is a two-step process for each node 
time. First, generate a uniform(0,l) random deviate. Then, a node time, y, is:
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T able 2.3: Mean and 95% confidence intervals for expected and obtained node times
for the birth death process (A, p , p )  — (1.63,0.5,1-0).

Method Rep t2 t3
Simulated 1 0.215 (0.212, 0.219) 0.524 (0.519, 0.529)
Simulated 2 0.214 (0.210, 0.218) 0.521 (0.515, 0.526)
Simulated 3 0.215 (0.211, 0.219) 0.523 (0.518, 0.528)
BranchSlide 1 0.212 (0.208, 0.215) 0.518 (0.513, 0.523)
BranchSlide 2 0.216 (0.212, 0.219) 0.520 (0.515, 0.525)
BranchSlide 3 0.213 (0.209, 0.217) 0.517 (0.512, 0.522)
Local 1 0.211 (0.207, 0.215) 0.521 (0.516, 0.527)
Local 2 0.212 (0.208, 0.215) 0.520 (0.515, 0.525)
Local 3 0.210 (0.207, 0.214) 0.517 (0.512, 0.522)

. log{<J> -  UpX} -  log{<f> -  UpX + U(X -  p)}y  _  _ _  l2.4j

where A is the speciation rate, p  is the extinction rate, p is the species sampling and

=  - fD +  ~

^  e ( / / - A )  _  1  v >

Ordering these simulated values gives the expected node times for the 
phylogeny, conditional on the number of taxa. I repeated this sequence for two 
different birth-death processes for four extant taxa: A =  1.63, p  =  0.5 and p =  1.0 
and A =  2.23, p  = 0.5 and p =  0.5. The lower sampling frequency gives trees with 
internal branches tha t are shorter, on average, than external branches, which is 
more biologically realistic. In each case, the speciation time was calculated based on 
the given values of p  and p , a root time (t l)  of 1.0 and four extant taxa. Table 2.3 
and Table 2.4 summarize the simulated and observed node times for these two 
birth-death processes. In each case, there are (3 x 10000) simulated node times from 
M athematica and (3 x 10000) observed node times from each algorithm. For the 
birth-death prior, each algorithm returns node times with confidence intervals tha t 
overlap those for the simulated data.

For rooted, clock-like trees with a uniform prior on branch lengths (and the 
same uniform prior on the tree height), the node times are the order statistics of a 
uniform distribution. Similar to testing the branch lengths under a birth-death 
process, we check the scaled node times against the expected values for a root time 
of 1.0. For n order statistics of a uniform(O,0) distribution, the expected value of of 
the kth order statistic is:
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T able 2.4: Mean and 95% confidence intervals for expected and obtained node times
for the birth death process ( \ , p , p )  =  (2.23,0.5,0.5).

Method Rep t2 t3
Simulated 1 0.257 (0.253, 0.261) 0.573 (0.569, 0.578)
Simulated 2 0.261 (0.257, 0.265) 0.579 (0.574, 0.584)
Simulated 3 0.256 (0.252, 0.260) 0.571 (0.566, 0.576)

BranchSlide 1 0.260 (0.256, 0.264) 0.572 (0.567, 0.577)
BranchSlide 2 0.256 (0.252, 0.260) 0.569 (0.564, 0.574)
BranchSlide 3 0.257 (0.253, 0.261) 0.572 (0.567, 0.577)

Local 1 0.260 (0.256, 0.264) 0.576 (0.571, 0.581)
Local 2 0.256 (0.252, 0.260) 0.572 (0.567, 0.577)
Local 3 0.258 (0.254, 0.262) 0.576 (0.571, 0.581)

Table 2.5: Mean and 95% confidence intervals for inferred node times using the molec­
ular clock assumption and a U(0,1) prior on branch lengths.

Method t2 t3
BranchSlide 0.333 (0.328, 0.337) 0.667 (0.662, 0.671)

Local 0.335 (0.330, 0.340) 0.669 (0.665, 0.674)
SPR 0.332 (0.327, 0.336) 0.665 (0.660, 0.670)

kQ
E (*<*)) =  (2-6)

with variance

~  ( » " w  n  +  2) <2'7)

For 9 — 1 and n — 2, E(X(i ) )  = 1/3 and E ( X ^ )  = 2/3, each with a variance of 
0.056. Table 2.5 shows the distribution of node times for each of the algorithms. All 
confidence intervals contain the true mean. All tests were done in triplicate, but 
since all results were essentially identical, I have included only one sample result for 
each method in the table.

For unconstrained (unrooted) trees, the root to tip distance is not constant for 
all tips, so the node times cannot be described as the order statistics of the prior 
distribution. We can instead look explicitly at the branch lengths on the tree. The
most widely used prior for unconstrained trees is the exponential, as the birth-death
prior requires the molecular clock assumption and the uniform prior is biologically 
unrealistic. Table 2.6 shows the distribution of branch lengths for the Local and
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Table 2.6: Mean and variance for two branch lengths and the tree length for 4 and 5 
taxon trees inferred without molecular clock constraint and using an exponential prior 
with rate A =  10. Expected value of the mean is 1/A =  0.1 and variance is 1/A2 =  0.01. 
Expected value of the tree length is (2n — 3) x 0.1

Method n Internal External 1 Tree Length
BS 4 0.0997 (0.0010) 0.1010 (0.0103) 0.503 (0.0514)

Local 4 0.0991 (0.0095) 0.1010 (0.0104) 0.499 (0.0510)
SPR 4 0.0993 (0.0102) 0.1010 (0.0102) 0.499 (0.0502)
BS 5 0.1090 (0.0114) 0.0996 (0.0098) 0.696 (0.0688)

Local 5 0.1010 (0.0102) 0.1020 (0.0103) 0.705 (0.0717)
SPR 5 0.1090 (0.0110) 0.0991 (0.0010) 0.695 (0.0697)

BranchSlide algorithms.

2.5 Conclusions

I have described a number of existing algorithms for rearranging the tree topology 
and branch lengths, as well as the BranchSlide method, which is an extension of 
subtree pruning and regrafting (SPR). The BranchSlide method could easily be 
extended to include other types of moves within the same framework. W ith a 
certain probability, we could choose a new attachm ent point on the moved subtree, 
making this similar to a TBR move. It is also be possible to use a distribution other 
than Normal to produce new values for the distance moved. For example, distances 
chosen from a bimodal distribution could produce larger moves (if the modes were 
farther from zero), or both small and large moves (with one mode at zero and one 
farther from zero).

Choosing the move distance based on the branch lengths of the tree means tha t 
in well-resolved areas, small distances would translate to branch length adjustments 
only. Since poor resolution is associated with shorter branch lengths, small distances 
in areas of poor resolution would more be more likely to produce moves tha t change 
both the topology and branch lengths. MrBayes implements an ExtendingSPR 
move tha t chooses the new location for the moved branch based on an extension 
probability tha t decreases with every branch crossed. I expect th a t this would 
produce less dramatic moves than BranchSlide, as the probability of crossing a 
branch does not depend on the length of the branch.

Each of the described algorithms have been implemented into BayesTrees. I 
show tha t running the MCMC without data returns a prior distribution of the tree 
topology consistent with a Yule process. For rooted trees, the methods return node
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times consistent with the order statistics of the birth-death or uniform branching 
process chosen as a prior. For unrooted trees, the methods return the expected 
exponentially distributed branch lengths given a exponential prior on branch 
lengths.

I note tha t there are models other than the Yule, or ERM, process for the 
distribution of topologies, and these have been recently examined by Matsen 
(Matsen, 2006). The different models describe different branching patterns and 
therefore produce distributions of topologies tha t differ from those using the ERM 
model. There was early evidence tha t reconstructed phylogenies do not follow the 
ERM model (Heard, 1992; Guyer and Slowinski, 1993), and a recent study furthered 
this hypothesis using a large sample of trees from an online database (Blum and 
Francois, 2006).

The algorithms described in this thesis implicitly use the ERM process as the 
prior distribution. Rearrangements are performed by randomly choosing branches 
and moving them within the tree, which is consistent with the idea of a random 
branching model. Changing this underlying distribution for tree topologies could be 
done by explicitly applying a prior probability term for each proposed tree topology, 
something tha t would be possible only for relatively small numbers of taxa. Since 
some of the discrepancy between actual and theoretical tree shapes seems to  be due 
to changes in speciation and extinction events (Mooers and Heard, 1997), it may be 
possible to use a birth-death prior with lineage-specific speciation and extinction 
rates in order to reconcile the differences. Current formulations of the birth-death 
prior require the molecular clock assumption, which is violated for most 
phylogenetic analyses. Separation of rate and time on the phylogenies would allow 
for the use of varying rates of speciation and extinction while also inferring a 
phylogeny with unconstrained branch lengths. More information about the effect of 
the ERM prior on our inference of phylogenies is needed before these, or other, 
strategies are taken to alter the prior.

Most of the described algorithms include a tuning parameter tha t affects the size 
of the move. The magnitude of the effect depends on the particular algorithm.
Given the lack of discussion in the literature about tuning parameters for 
phylogenetic rearrangement methods, it is likely tha t most users do not alter the 
default values when performing a Bayesian phylogenetic analysis. One strategy, 
then, is to develop proposal methods with tuning parameters tha t have a small (or 
no) effect on MCMC mixing and convergence. A negative consequence of this 
strategy is tha t choosing relatively ‘untunable’ algorithms leaves us with little 
ability to improve a poorly performing MCMC chain. Another option is to develop 
methods with strong tuning parameters which can be optimized for better
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performance given a specific data set. A tuning parameter with a dram atic effect 
may cause great difficulty with convergence if not changed from an inappropriate 
default value. Users should then be encouraged to examine the MCMC output 
carefully and make changes to  the algorithm if convergence seems to be a problem.

The goal in developing proposal algorithms is to find methods th a t lead to  faster 
convergence of the MCMC to the true posterior distribution and better mixing 
during the sampling phase. In Chapter 4, I compare these described algorithms for 
a number of different data sets. In order to compare the speed of convergence and 
quality of mixing, we need one or more diagnostic tools for measuring convergence 
of the MCMC algorithms. In Chapter 3, I introduce and test a number of 
convergence diagnostics for Bayesian phylogenetics before returning to the question 
of choosing and tuning tree rearrangement methods in Chapter 4.
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Chapter 3

D etecting M CM C convergence 
in Bayesian phylogenetics

3.1 Introduction

When we use MCMC as a numerical integration technique, the samples produced by 
the chain act as our estimate of the true underlying distribution. When converged, a 
properly constructed MCMC chain samples from the stationary distribution and the 
resulting output can be safely used to make inferences about various properties of 
the distribution. There are two aspects to convergence - the chain must both find 
the region(s) of highest probability and also sample sufficiently in these regions.

At the beginning of the MCMC analysis, samples from the chain are overly 
influenced by the starting point, which is usually chosen at random and located in a 
region of low probability. We should not begin using samples from the chain for 
inference until the effect of the starting values of the parameters is not longer 
evident. This ensures tha t samples are representative of the underlying distribution 
rather than being unduly influenced by the random starting values. These first 
samples are known as the initial transient, or more commonly, the burn-in phase.

Once we have chosen to begin sampling, the subsequent concerns are when to 
stop sampling and how frequently to save sampled states from the chain. The choice 
of total run length, or when to stop sampling, has received less attention in 
phylogenetics than the length of the burn-in period. A longer sampling phase more 
thoroughly explores the sample space, giving more accurate estimates of the 
properties of the distribution, particularly in terms of the variance. A longer chain 
will improve estimates of the stationary distribution, but requires more computing 
time. The optimal length will depend on the behaviour of the chain, the 
requirements of the study and the available resources.
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The path th a t the chain takes while exploring the sample space greatly affects 
the number of iterations required for the chain to converge. Due to the nature of the 
MCMC, a sampled state is always dependent on the previous state, and this 
autocorrelation may extend across many subsequent states. A high level of 
autocorrelation means tha t the chain is moving around the parameter space slowly 
and requires more iterations to get a proper view of the distribution than if the 
samples were less correlated. We can reduce autocorrelation by modifying how the 
MCMC proposes new states. If the moves are too small, we accept most moves but 
the distance between states is small. Also, if moves are too large, then very few will 
be accepted and the chain becomes stuck in a single state for many iterations. A 
common technique to reduce autocorrelation th a t is not dependent upon modifying 
the MCMC sampler is to simply sample the chain at a frequency of less than  one, so 
th a t the number of samples is less than the number of iterations. This has the 
additional benefit of reducing the amount of MCMC output.

A determination of convergence depends upon identifying the burn-in stage, 
checking th a t the chain is at stationarity and allowing the chain to run long enough 
tha t the samples collected can be used to estimate functions of the distribution with 
an appropriate level of accuracy and precision.

3.1.1 B asic  stra teg ies for d iagn osing convergence

Research on MCMC convergence can be broadly grouped into two areas. First, 
there has been some effort to  calculate the rate of convergence (or at least the 
bounds on the rate of convergence) and the required number of samples directly 
from what we know a prioi about the distribution and the Markov transition kernel 
(Rosenthal, 2002, 1995). These approaches are specific for a given implementation, 
and changes to the distribution or MCMC implementation require a new set of 
calculations. The required calculations are complex, and the bounds on convergence 
tend to be very loose.

The second, and much more common, research area focuses on diagnosing 
convergence from the output of the MCMC (reviewed in Cowles, 1996; Brooks and 
Roberts, 1998). The pattern of sampled states contains information about the 
behaviour of the chain, including autocorrelation, initial transient stages and 
mixing. The goal of convergence diagnostics is to detect aspects of the sampled 
states tha t indicate non-convergence. Methods can be graphical or numerical. The 
disadvantage of this approach is tha t there may be a substantial time committment 
to running an MCMC analysis only to find problems with convergence tha t require 
a new MCMC analysis with different parameters. However, post-run diagnostics are 
currently the only feasible method for problems as complex as phylogenetic
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inference (and for most other problems where we would use MCMC m ethods).
These diagnostics include graphical methods, such as plotting the output 

parameters against iteration number, and numerical methods, such as the PSRF 
and Raftery-Lewis tests discussed later in this chapter. Some tests merely look for 
stability of the sampled states, while others also attem pt to  estimate the 
appropriate length of the sampling phase.

Why is diagnosing convergence such a hard problem? Given th a t we are using 
MCMC because we cannot analytically determine the shape of the distribution, it is 
simply impossible to say for certain when our sampled states match the stationary 
distribution. Even in the case of simulated data, we can know the true generating 
model and the true tree, but this information does not allow us to  know the 
posterior distribution of phylogenies.

Rather than  examine convergence to the true distribution, the various diagnostic 
methods look for stationarity, or stability, of the chain and infer convergence at this 
point. Diagnostics can help to identify the burn-in period, estimate stationarity of 
the output parameters after the burn-in and identify poor mixing. A very slowly 
mixing chain may look as if it were converged, especially if examined over a 
relatively short number of iterations. A chain trapped at a local optima can pass all 
tests for convergence if other optima have never been visited. Even once the mean 
appears to be stable, there may be reduction in the variance th a t occurs when we 
continue to run the chains. Autocorrelation between the sampled states biases 
traditional measures of variance, so most convergence diagnostics use alternate 
methods to estimate variance and determine optimal run length.

In most applications of MCMC methods, the param eter space is 
multidimensional and is usually difficult to visualize. Each chain produces many 
different output parameters, and the number of sampled states per param eter may 
be in the thousands or millions. Each parameter will have its own rate of 
convergence and these rates may vary greatly between parameters. Correlation 
between parameters can cause problems with convergence, and this can be difficult 
to diagnose when multidimensionality is high. It is simply not possible to examine 
every output parameter, particularly if we are using multiple diagnostic methods. A 
decision about convergence often requires a subjective decision about what is a 
stable enough mean, small enough variance or a flat enough plot.

3.1.2 S ingle versus m u ltip le  M C M C  chains

One of the ongoing debates with respect to MCMC is whether a single long chain is 
preferable to  multiple shorter chains (for example, see (Gelman and Rubin, 1992; 
Geyer, 1992), with discussion). Due to the naming conventions in MrBayes, the
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phrase “multiple chains” in phylogenetics often refers to the coupled chains of 
Metropolis-coupled MCMC (MCMCMC), but here I use the more general definition, 
meaning more than one independent MCMC chain.

The biggest disadvantage of multiple chain methods is the number of samples 
discarded as burn-in. For the same data and MCMC implementation, the burn-in 
stage is constant, no m atter the total run length. If the burn-in comprises x  
iterations, when using one long chain, we discard x  iterations, but with m chains, we 
lose m  x x  iterations as burn-in. As the burn in fraction increases, the problem 
becomes more severe.

There are two major advantages of multiple MCMC chains. The first is their 
value in diagnosing convergence. Given th a t we can never say with absolute 
certainty tha t a chain has converged, if two independent chains converge to the 
same distribution, we have higher confidence tha t this is the correct distribution. If 
the posterior distribution contains multiple optima, it may be quite likely th a t one 
chain becomes trapped, but the probability of all chains being trapped in the same 
optima decreases with the number of chains.

The second advantage is a result of increased availability of computer resources, 
where multiple chains can be run in parallel on a cluster of computers. Given the 
advantages of multiple chains and the speed of current computers, the time spent on 
the burn-in portion of the chain is rarely a concern, except in analyses with very 
long burn-in times. Running multiple chains in parallel can decrease the run time 
over tha t of a single chain with the same number of total iterations.

3.1 .3  H istory  o f  m eth od s in  B ayesian  p h y logen etics

The task of diagnosing convergence in Bayesian phylogenetic inference is further 
complicated by the tree topology parameter. It is a categorical variable, making it 
unsuitable as input for the common convergence diagnostics. At the same time, it is 
normally the param eter tha t is of greatest interest in phylogenetic analysis. One 
strategy in phylogenetics is to assume convergence with respect to the tree topology 
when other parameters of the MCMC have converged (such as log likelihood of the 
tree or parameters of the evolutionary model). In order to explicitly monitor the 
convergence of the distribution of topologies, we can use numerical summary 
statistics based on the tree topology.

Users of Bayesian phylogenetic inference software have relied heavily on plots of 
log-likelihood versus iteration number to diagnose convergence, ending the burn in 
phase when the log likelihood stabilizes. This is despite the early introduction of 
alternate multiple-chain diagnostics, such as 2-dimensional scatterplots of the 
partition probabilities (Huelsenbeck and Bollback, 2001). The scatterplots compare
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the partition probabilities from two independent chains by plotting probabilities 
from chain 1 on the x-axis and chain 2 on the y-axis. Points tha t depart from the 
line x  — y  indicate partitions tha t do not agree between the two chains, indicating a 
lack of convergence. The lack of adoption of these other diagnostic tools may be due 
to a lack of knowledge about MCMC methods for early users of Bayesian methods, 
and also due to settings in initial versions of MrBayes, which ran only a single 
independent MCMC chain by default (noting tha t coupled MCMCMC chains are 
equivalent to only a single MCMC chain in terms of the output available for 
inference).

Over time, users have become more aware of the issues surrounding MCMC 
convergence, aided by several software tools. The current version of MrBayes 
includes some convergence diagnostics, and runs two independent analyses by 
default. The program Tracer (Rambaut and Drummond, 2005) plots time series and 
posterior densities, calculates autocorrelation within chains, the correlation between 
pairs of parameters and estimates effective sample size (based on the 
autocorrelation). The web-based tool AWTY (Are We There Yet?) (Wilgenbusch 
et al., 2004) creates a variety of plots tracking individual partition probabilies in a 
MCMC sample of trees.

Examples of convergence diagnostic techniques in recent empirical systematics 
papers include checking stabilization of partition probabilties (Brandley et al.,
2005), comparing the shape of the posterior distribution of model parameters 
between chains and against the prior (Castoe and Parkinson, 2006) and checking for 
overlap of credible sets for model parameters (Zwickl and Holder, 2004). An 
increasing number of users are comparing results over multiple MCMC analyses to 
help diagnose convergence. This is by no means an exhaustive list of techniques, but 
it does exemplify the increasing sophistication of users of Bayesian phylogenetic 
methods.

Specifically addressing the issue of MCMC convergence in Bayesian 
phylogenetics was a recent paper by Beiko et al (Beiko et al., 2006). The group used 
two statistics: S and e. The first is the sum of the differences between a set of 
bipartitions from two independent MCMC chains. This statistic is bounded between 
0 (when all partitions have the same probability in both chains) and 2(n — 3) (when 
all partitions in the first chain are absent from the second chain). The second 
statistic, e, is the average standard deviation across all partitions across a number of 
MCMC chains. MrBayes by default calculates mean standard deviation (SD) when 
running more than one MCMCMC analysis (i.e. setting param eter nruns  to more 
than 1). One of the key results in this paper is tha t the burn-in period is short and 
easily identified, and it is increased sampling tha t is im portant to Bayesian MCMC
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phylogenetic methods. This result was obtained by comparing multiple short 
independent chains to very long single chains (by breaking the long chain into 
smaller segments and comparing to  the independent chains).

3.2 Num erical convergence diagnostics

There are a number of diagnostics tha t have been developed to test for various 
aspects of convergence. In this section, I describe three of the more common tests 
tha t can be applied to a list of MCMC sampled states. These are not specific to 
phylogenetics and can be used with the output from any MCMC analysis. All three 
are implemented in the CODA (Convergence diagnosis and output analysis software 
for Gibbs sampling output) (Best et al., 1995) and BOA (Bayesian O utput 
Analysis) (Smith, 2005) packages for R. The three methods are each based on 
different underyling theory and therefore detect different potential problems with 
the chain output.

3.2.1 B rook s, G elm an  and R u b in  d iagn ostic

The Brooks, Gelman and Rubin diagnostic (Gelman and Rubin, 1992; Brooks and 
Gelman, 1998), known as the potential scale reduction factor (PSRF), is the most 
well-known of the three. It is the only multi-chain diagnostic, using data  from any 
number of independent MCMC chains to diagnose convergence. The PSRF uses an 
analysis-of-variance technique, comparing the variance within the chains to the 
variance between all chains. Given m  chains with n  samples per chain, the 
within-chain variance is:

m  n

(3.1)

The between chain variance is:

m

i= 1

(3.2)

The weighted mean of the two variance measures is:

(3.3)n n

and the PSRF is then calculated as:

(3.4)
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Gelman and Rubin suggest tha t the two measures of variance (between and 
within chains) should be equal and therefore the PSRF should be approximately 
equal to 1.0. If the chains have not yet converged to the same distribution, W  will 
underestimate the variance and the PSRF will be greater than 1. In this case, we 
can potentially reduce the variance by continuing to run the MCMC for additional 
iterations. Brooks and Gelman (Brooks and Gelman, 1998) improved the method by 
adjusting for the sampling variability in the variance estimates, producing the 
corrected scale reduction factor (CSRF). The authors recommend th a t the 0.975 
quantile of the CSRF should be less than 1.2.

The PSRF has been implemented in MrBayes for model parameters and branch 
lengths. The software correctly emphasizes tha t one of the assumptions of this test 
is tha t the sampled states are normally distributed, which may not be the case for 
all output parameters in Bayesian phylogenetics.

3.2 .2  R aftery  and L ew is d iagn ostic

Based on the input of a single MCMC chain, the Raftery and Lewis (RL) 
diagnostic (Raftery and Lewis, 1992a,b) detects convergence based on two-state 
Markov chain theory. Raftery and Lewis propose tha t non-convergent behaviour 
may be more commonly due to poor mixing (due to high correlation between 
samples) rather than to an insufficient burn-in period (Raftery and Lewis, 1992b). 
The authors deal with autocorrelation between the sampled states by thinning the 
samples until the chain behave as an approximate first-order Markov chain (so tha t 
there is no dependence of a sample on more than the immediately previous sample). 
Then, based upon the transition probabilities for this first-order chain, it calculates 
a burn-in factor and number of iterations required to give a user-defined accuracy 
for a quantile of interest. The output of the test includes the following statistics:

k Thinning factor
M Number of samples to discard as burn-in
N Total number of iterations required to estimate the quantile to the de­

sired accuracy

Nmin Total number of iterations required if the samples were independent
I Dependence factor, I  = (M  +  N ) / N min

This test fails when either the estimated number of required iterations is greater 
than the to tal number of available iterations or the dependence factor, I ,  is too high 
(the authors suggest tha t I  >  5.0 is cause for concern).
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3.2 .3  H eid elberger and W elch d iagnostic

The Heidelberger and Welch (HW) test (Heidelberger and Welch, 1981, 1983) tests 
both for the length of the burn-in period and the accuracy of our estimate of the 
mean. Due to the presence of autocorrelation in the MCMC samples, the authors 
choose to  work in the frequency domain, rather than the time domain, by using the 
spectral density of the sampled states.

The test proceeds by checking if the process is distributed as a Brownian bridge 
(roughly speaking, as Brownian motion with a fixed start and end value). The test 
uses the Cramer von Mises statistic (which is commonly used in goodness-of-fit 
tests). If the test fails, a block of samples is deleted from the s ta rt of the (time 
series) process and the test is repeated. This continues until the test passes or we 
have discarded more than half of the samples. The remaining samples are assumed 
to be at stationarity.

Once the burn-in period is eliminated, the second phase of the test determines if 
the remaining samples are sufficient to estimate the mean of the parameter. We 
then construct a confidence interval for the mean, using the variance estimates from 
the spectral density rather than traditional variance estimates (again, due to 
autocorrelation). If the halfwidth of the confidence interval is less than a 
user-defined accuracy, the test passes. If the test fails, we can attem pt to remove 
another sample block from the start of the run and repeat.

The assumption made in this test is tha t the process has indeed converged to a 
stationary state by the end point of the run.

3 .2 .4  A u tocorrela tion

In addition to these named tests, we can also directly calculate the autocorrelation 
of the time series. Given a sequence of variables, X ,  th a t are some function of the 
MCMC output, the autocorrelation at lag k is

p{k) =  (3.5)

Rather than calculating the autocorrelation separately for a number of different lag 
intervals, Geyer discusses methods to sum over autocorrelation for a reasonable 
number of different lags (Geyer, 1992). This has been applied to an MCMC method 
for estimating population parameters under the coalescent (Drummond et al., 2002) 
and implemented into the Tracer software tool (Rambaut and Drummond, 2005) as 
the Autocorrelation Time (ACT).
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3.3 Applying convergence diagnostics in phylogenetics

Since the primary param eter of interest in Bayesian phylogenetics is the phytogeny, 
it would be useful to  know which diagnostic methods were most sensitive to changes 
in the distribution of topologies. As already mentioned, the tree topology does not 
lend itself well to standard diagnostic methods. We must then use numerical proxies 
in order to examine the tree topology indirectly. In this study, I apply a number of 
different convergence diagnostics to a variety of traditional and non-traditional 
Bayesian phylogenetic output parameters. These are compared to  each other and 
also to statistics describing the distribution of topologies (the mode and the size of 
the credible sets).

3.3.1 D e tec tin g  convergence usin g  num erical o u tp u t

There are a number of available output variables from a Bayesian phylogenetic 
analysis. Traditionally, these include log-likelihood, tree length and model 
parameters. I used two additional statistics, calculated from the samples 
phylogenies, the Branch Score and 7  statistic. The Branch Score is a measure of the 
squared distance between two trees (Kuhner and Felsenstein, 1994), using the 
difference in branch length, 6 , for all N partitions tha t appear in either tree:

N

B s {B ,B ' )  = Y J { b i - b ' i f  (3.6)
i=i

If a branch exists in one tree but not the second tree, a branch length of zero is 
used for the second tree to indicate its absence. For simulated data, the two trees 
are the tree sampled in a given MCMC iteration and the true tree.

The 7  statistic (Pybus et al., 2002), is a function of the branch lengths on the 
tree tha t is based on the relative position of internal nodes. It was originally 
developed to test hypotheses about the birth-death process underlying the 
phylogeny. Given the internode distances, gi, for a phylogeny of n  taxa:

(h±5 EE,1 (E U  *®)) -  ©  „ f r -  \
7 = ±------------  \  , --------- , T =  (3.7)

1 y  12(n—2) V =2 /

We can apply any of the aforementioned numerical convergence diagnostics to 
these output parameters.
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3.3 .2  D e tec tin g  convergence using  th e  tree  to p o lo g y

W ith most phylogenetic inference methods, we can test the accuracy of the method 
by comparing the inferred tree with the true tree. In Bayesian phylogenetics, we are 
inferring the distribution of topologies, rather than a point estimate, and even if we 
know the true tree and true evolutionary model, we do not know the true posterior 
distribution of phylogenies.

For a distribution of phylogenies, the equivalent to the mode and variance are 
the MAP tree and the size of the credible set of trees. The posterior probability of 
the MAP tree, Pm a pi  measures the height of the mode. These are statistics th a t we 
can use to help infer whether we have converged upon a stable distribution of 
topologies (which we hope is the correct posterior distribution of phylogenies). Two 
additional statistics are described in the following sections.

M ean Square E rror o f Topology

Given tha t the tree topology is both a very interesting and complex param eter in 
phylogenetics (complex in the sense tha t it is a combination of a number of different 
parameters), we looked for a statistic tha t might capture the type of information 
contained in the two-dimensional partition probability plots. Ideally, this measure 
would summarize all of the partitions on the tree and also allow for comparison of 
multiple chains. W ith these goals, I developed a novel statistic tha t uses these tree 
partition probabilities to numerically represent the changing tree topology, the Root 
Mean Square Error of Topology (RMSET).

In standard statistical analysis, the RMSE is the distance, on average, of a data 
point from the fitted line. In this application, we will use the distance between the 
partition probabilities in multiple independent MCMC chains as the data  points and 
the mean value of the probabilities as the fitted line.

Given m chains from a MCMC analysis of a data set describing a evolutionary 
tree with k partitions, an combined chain tha t contains the samples from all m  
chains from the full MCMC analysis and the MAP tree for whole run, RMSET 
statistic compares the probability of each partition on the MAP tree in the 
combined chain and each of the sample chains:

where pij is the probability of partition i in random chain j  and p*. is the 
probability of partition i in the combined chain. This statistic can be considered a 
numerical version of the two-dimensional partition probability plot, although it is an

R M S E T (3.8)
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greatly improved version of tha t diagnostic. The improvement comes from the 
ability to easily view changes in the statistic over the course of an MCMC sampling 
run, in simultaneously including information from all of the partitions on the tree 
and in combining the results from any number of MCMC chains. It also provides a 
numerical measure, making it possible to plot the statistic as well as to calculate 
further statistics and determine the theoretical distribution.

The expected distribution of this statistic can be determined by simulation. 
Ideally, we would like to know the value of the RMSET when all chains are sampling 
from the true distribution. Since the true distribution is unknown, we instead use 
the combined distribution of the chains. At stationarity, each of the chains should 
be sampling from the same distribution.

The RMSET statistic is based on differences between partition probabilities, 
which cannot be simulated directly. It is possible, however, to simulate distributions 
of topologies in order to calculate partition probabilities. Using the set of topologies 
present in the combined chain, I generate a pseudo replicate using bootstrapping. 
The general simulation procedure is as follows:

1. Using non-parametric bootstrapping, generate a new combined chain using the 
list of sampled trees in the starting combined chain.

2. Generate m  new sample chains by subsampling the new combined chain.

3. Calculate the RMSET statistic using the new sample chains against the new 
combined chain.

4. Repeat steps 1, 2 and 3 to obtain 1000 replicates in total

5. Calculate a 95% confidence interval for the mean of the RMSET statistic for 
the given data set.

6 . Determine if the calculated RMSET statistic for the original set of 
randomly-started MCMC chains falls within the confidence interval.

W hat this procedure determines is the expected distribution of the RMSET 
when all three chains are sampling from the same distribution (the distribution 
represented by the sum of all of the chains). There is no assumption th a t the 
combined chain represents the true posterior distribution of phylogenies, so this 
procedure does not tell us if the chains have converged to the true distribution. This 
is similar to any multi-chain MCMC diagnostic, which can only compare the 
distributions and detect whether there are differences between the chains. I should 
note that if the sampled trees are not independent (due to significant 
autocorrelation in the MCMC sampling), then comparing the simulated value of the 
RMSET with the calculated value is a conservative test for convergence.
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M ean Standard D evia tion  o f P artition s

Recent versions of MrBayes include a convergence diagnostic which is the average 
standard deviation of partition probabilities across chains. Given m chains and k 
to tal partitions in the sample of trees, the statistic is:

1 k (  1 ™ \
M e a n S D  =  -  £  I _  £ > .  -  P i j ) 2 I (3.9)

where pij is the probability of partition i in chain j  and p*. is the average 
probability of partition i over the three chains at this point in the chain. The 
software includes an option to include only those partitions whose probability is 
greater than a specified minimum value in at least one of the chains. This prevents 
the summation over a large number of very poorly supporting partitions.

There are several notable differences between the MeanSD and the RMSET. 
First, the MeanSD can be calculated while the MCMC analysis is ongoing, as the 
average probability, pj., is only based on those samples already collected. Contrast 
this to the RMSET, which uses p*. as the average in the combined chain, using the 
combined samples from the full analysis. As implemented in MrBayes, the MeanSD 
is calculated over the set of partitions with probability greater than a minimum 
value, so tha t the value of k used to calculate the statistic can change as the 
analysis progresses. W ith the RMSET, I use only the set of partitions th a t exist on 
the MAP tree so tha t k  is constant over the course of the MCMC.

3.4 M ethods

In order to test various methods of detecting convergence, I used simulated data for 
phylogenies of various sizes and then applied the diagnostics to the results of the 
phylogenetic inference. I took the approach of using a smaller number of to tal data 
sets and looking at a larger range of diagnostics. This is in contrast to the recent 
study on MCMC convergence in phylogenetics (Beiko et al., 2006), which examined 
two diagnostics over a large number of data sets. Both approaches have merits. A 
large number of data sets increases the possibility of finding aspects of the data or 
phylogeny tha t affect convergence. In this study, I am more interested in the merits 
of different diagnostic tools, so using a larger number of tests against a smaller 
number of data sets seemed more appropriate. The ideal of course, would be a large 
number in both dimensions, but constraints of time and computational resources do 
eventually come into play.
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3.4 .1  D a ta  sim u lation

I simulated ten birth-death topologies for each of 10, 30 and 50 taxa, using two 
different sampling frequencies for the birth-death process: five trees with sampling 
frequency p = 1.0 and five with p =  0.01. The lower sampling frequency gives 
phylogenies a smaller ratio of internahexternal branch lengths. Shorter internal 
branch lengths make the phylogeny more difficult to infer. The expected number of 
species, n, for a birth-death process with species sampling is given by (Nee et al., 
1994):

exp[(A - p ) t ] P { t , T )
71 ~  m f )

where p  is the extinction rate, T  is the tree height, A is the speciation rate and:

P ( i ’T) = pA +  (A(l -  p) -  p) exp(—(A -  p)(T  -  t)) (3'U )

is the probability tha t tha t a single lineage alive at time t  has not gone extinct at 
time T.  Setting p — 1.0, T  =  1.0 and n  equal to 10, 30 or 50, I calculate the 
expected speciation rates for each tree size by solving equation 3.10 for A using 
Mathematica.

Topologies and branch lengths were generated using BayesTrees, and sequences 
generated on these trees using the evolver package of PAML (Yang, 1997) under a 
Jukes-Cantor model of evolution.

The 10 taxon trees were used as a control set of analyses. D ata sets of this size 
should converge to the true posterior distribution with respect to  both numerical 
MCMC output parameters and also topologies.

3.4 .2  B ayesian  Inference

The analysis was performed under the Jukes-Cantor model, using a uniform prior on 
topologies and a birth-death prior on branch lengths with parameters consistent 
with those used to simulate the phylogenies. For each of the 60 data  sets, I ran 
three independent MCMC chains, starting from randomly chosen trees, for 1 x 105 

iterations ( 1  x 1 0 6 for the 1 0  taxon trees), sampling every 1 0 0  iterations for a total 
of 5000 (10000) data  points. All analyses used the BranchSlide algorithm to propose 
new topologies for the MCMC using a tuning parameter of 0.01.

For each data set, I collected the tree topology, log likelihood and tree length, as 
well as the Branch Score and 7  statistic (described in section 3.3.1). The purpose of 
collecting these two additional variables was not to  make any inferences about their 
specific values. Instead, I wish to  expand the number of output param eters beyond
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the standard tree length and log likelihood measures to determine if different 
variables are more sensitive to the various convergence diagnostics.

3.4 .3  A n  em pirical d ata  set

Since real data  is much less clean than simulated data, I wanted to also test the 
methods on an empricial data set. I selected a phylogenetic analysis of Hylid frogs 
(treefrogs) tha t contained 85 taxa (Wiens et al., 2005). The data  set contained both 
molecular and morphological characters and the authors noted a slow rate of 
convergence, particularly for the morphological partitions. Since BayesTrees does 
not implement models for morphological data or partitioned analysis, I performed 
the phylogenetic analysis with MrBayes version 3.1.2 using the same parameters 
described in the paper. I ran 2 chains of 4.4 x 106 iterations, sampling every 1000 
(the original study used 2  chains of 2  x 1 0 6 after running a single exploratory chain 
of 4 x 106).

3 .4 .4  C alcu latin g  num erical d iagn ostics

The three numerical convergence diagnostics (PSRF, RL and HW) are implemented 
in the Bayesian O utput Analysis (BOA) package for R (Smith, 2005). The program 
takes as input a whitespace delimited file for each MCMC chain, with parameter 
values in separate columns. I used Perl to create scripts for R tha t allowed the 
analyses to proceed using batch mode. This involved a modification to the BOA 
source code in order to prevent the package from waiting for a user signal from the 
keyboard after each summary method.

The BOA analysis produced one output file per data  set containing results for 
the three convergence diagnostics for each of the four output parameters (log 
likelihood, tree length, distance and 7 ). I again used Perl scripts to extract the 
results of the three tests from the BOA output.

3.4 .5  T opology-b ased  m easures

For each data set, I calculated the RMSET, the mean standard deviation (MeanSD) 
of the partitions, and simulated the expected value of the RMSET. I also tracked 
the probability of the MAP tree in each chain and the size of the 95% credible set of 
topologies. Ideally, the credible sets should increase at the beginning of the analysis 
and then stabilize at a constant size. If we are continuing to add significant numbers 
of topologies to the credible set, the chain has not sufficiently explored the sample 
space to be considered truly converged with respect to  the distribution of topologies 
(although our estimates of the partition probabilities may be stable even with
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increasing size of the credible sets).
Given tha t the MeanSD uses a lower probability limit for the inclusion of a 

partition in the analysis, I tested a range of probability limits. For the RMSET, 
which uses a fixed number of partitions, I calculated the value after every 500 
samples, using both the cumulative list of sampled trees and only the trees sampled 
in tha t batch.

3.5 Results

I separate the results into two sections, one for the 10 taxon trees and one for the 30 
and 50 taxon trees. The 10-taxon trees were included, not because I felt these would 
pose a challenge to  the Bayesian inference method, but because I can be confident 
tha t these analyses had converged to a stable distribution of phylogenies. Therefore, 
results for these data sets provide a baseline measure of what to  expect from the 
various convergence diagnostics in an ideal case.

3.5 .1  A n alysis o f  10 ta x o n  trees  

Sum m ary o f phylogenetic inference

For each data set, I summarize the phylogenetic inference using the probability of 
the MAP tree, the to tal number of unique trees sampled and the number of trees in 
the 90%, 95% and 99% credible sets of trees. These statistics give a rough idea of 
the underlying distribution. Table 3.1 lists these results. I note tha t for all data 
sets, the results for the three independent chains are very consistent. The MAP tree 
is the same topology in the three chains, and is equal to the true topology in all 
cases. The credible sets overlap completely (if the credible sets are the same size, 
they contain identical topologies, otherwise the larger set contains the smaller set 
plus an additional topology).

D ata sets 6  through 10 (simulated under a lower sampling frequency of the 
birth-death process) have larger credible sets of trees, on average, than data sets 1 

through 5. This is as expected, since the shorter internal branch lengths should be a 
a more challenging inference problem. Acceptance rates were between 2 1 % and 26% 
for all analyses.

To get a sense of the distribution of topologies, I also examined the change in 
size of credible set and value P m a p  over the course of the analysis. If the analysis 
had indeed converged to a stable distribution of topologies, the credible sets should 
maintain a constant size and the P m a p  should be stable and the equal over the 
three chains. For all chains, the sizes of the credible sets differed by no more than a 
single tree over the course of the MCMC (post burn-in). In Figure 3.1, I show the

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.1: Summary of phylogenetic inference for 10 taxon trees. For each simulated 
data set, we report the probability of the MAP tree, the number of unique trees sampled 
and the size of the 90%, 95% and 99% credible sets for each of the three independent 
MCMC chains (all calculated after removal of the first 500 samples as burn-in). Data 
sets 1 through 5 are those simulated with sampling frequency, p ,  equal 1.0 and 6 through 
10 have p=0.01.

D ata set Chain P m a p Unique trees Credible sets
1 1 0.5847 1 2 (3, 3, 3)

2 0.5784 13 (3, 3, 3)
3 0.5726 13 (3, 3, 3)

2 1 0.9988 1 0 (1 , 1 , 1 )
2 0.9983 1 0 (1 , 1 , 1 )
3 0.9982 15 (1 , 1 , 1 )

3 1 0.9989 5 (1 , 1 , 1 )
2 0.9982 9 (1 , 1 , 1 )
3 0.9982 13 (1 , 1 , 1 )

4 1 0.9991 9 (1 , 1 , 1 )
2 0.9986 1 0 (1 , 1 , 1 )
3 0.9986 1 0 (1 , 1 , 1 )

5 1 0.9985 1 1 (1 , 1 , 1 )
2 0.9978 13 (1 , 1 , 1 )
3 0.9975 17 (1 , 1 , 1 )

6 1 0.6051 2 0 (3, 3, 3)
2 0.5976 2 0 (3, 3, 3)
3 0.6097 15 (3, 3, 3)

7 1 0.9483 14 (1, 2, 3)
2 0.9444 16 (1, 2, 3)
3 0.9413 17 (1, 2, 3)

8 1 0.9977 1 1 (1 > 1 , 1 )
2 0.9979 15 (1 , 1 , !)
3 0.9978 14 (!> 1 , !)

9 1 0.6389 28 (4, 4, 7)
2 0.6129 24 (4, 5, 8 )
3 0.6126 2 0 (4, 5, 5)

1 0 1 0.9612 19 (1, 1, 3)
2 0.9551 17 (1, 1, 3)
3 0.9537 19 (1, 1, 3)

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.7
0.68
0.66
0.64
0.62
0.6

0.58
0.56
0.54
0.52

0.5

Chain 1 
Chain 2 
Chain 3

_i l_ _i_
3 4 5 6 7 8 9  10

S am ples (x 1000)

Chain 2
Chain 3

S am ples (x 1000)

Run 7 Run 9

1
0.98
0 .96
0.94
0 .92

0.9
0.88
0.86
0.84
0 .82
0.8

Chain 1 
Chain 2 
Chain 3_j i__

0 1  2 3 4 5 6 7 8 9  10

S am ples (x 1000)

Chain 2
Chain 3

8 9 10

Sam ples (x 1000)

F igure 3.1: Probability of the MAP tree for four of the 10 taxon data sets.

changing probability of the MAP tree in four of the analyses (the other six are more 
stable than these four, with data sets 2, 3, 4 and 8  having a M A P  tree with 
probability of nearly 1 .0 ).

Tim e series p lots

Table 3.2 gives the estimated burn-in evaluated by visual examination of the time 
series plots. The results are consistent across parameters. None of the plots 
indicated any other problems with the inference - parameters were visually stable 
following elimination of the burn-in stage.

N um erical diagnostics

In this section, I detail the results of the numerical convergence diagnostics. Note 
tha t all results here axe based on the list of samples, not total iterations, so results 
for x  iterations (samples) are equivalent to lOOx MCMC iterations (where 100 is the 
sampling frequency used for the Bayesian inference).

The first diagnostic, the Potential Scale Reduction Factor (PSRF) was less than
1.00 for each of the 10 data sets for all four parameters. This is well below the 1.20 
upper limit recommended by the authors of the test.

The Raftery and Lewis test outputs four results (thinning, burn-in, total
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Table 3.2: Estimated burn-in from visual inspection of time series plots. Results are in 
terms of samples, not iterations. Sampling frequency was every 100 iterations. Estimates 
are rounded up to the nearest 1000 iterations.

D ata set LnL TreeLen Distance 7 Mean
1 2 0 2 0 2 0 2 0 2 0 .0

2 2 0 1 0 2 0 2 0 17.5
3 2 0 2 0 2 0 2 0 2 0 .0

4 2 0 2 0 2 0 2 0 2 0 .0

5 2 0 2 0 1 0 2 0 17.5
6 40 40 40 40 40.0
7 50 50 50 50 50.0
8 40 40 40 40 40.0
9 40 40 40 40 40.0

1 0 50 50 50 40 47.5

iterations and dependence factor) for each chain and each parameter. Table 3.4 tha t 
follows summarizes the results using mean values across chains and parameters.
D ata is not shown for individual chains, but I note tha t the results were very similar 
for the three chains for a given analysis.

Thinning factors are relatively small, which is not surprising given the size of the 
tree and the fact tha t this chain has already been subsampled at a frequency of 1 0 0  

iterations. A thinning factor of 1.0 suggest tha t a smaller sampling frequency would 
have been possible (at a sampling frequency of 1 0 0 , the samples appear 
independent).

Except for the log-likelihood, the burn-in values in Table 3.4 are surprisingly 
low, even after taking into account tha t these are burn-in samples, not iterations. A 
burn-in of 2  translates to eliminating 200 MCMC iterations, which is an order of 
magnitude lower than what we estimate from the time series plots (or from the HW 
test, see below).

The total iterations is an estimate of the number of iterations required to 
measure the 0.025 quantile of the given parameter to an accuracy of 0.05. This 
statistic is not particularly interesting in this context, as we are not actually 
interested in the values of these parameters, but instead on the estimates of the 
underlying tree topology.

The final set of RL results are the dependence factors, which are a measure of 
autocorrelation across the samples. The authors recommend tha t dependence 
factors should be close to 1.0 and tha t a result greater than 5.0 is cause for concern. 
Dependence factors for tree length and distance are well below this limit, while
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Table 3.3: The suggested number of samples to eliminate as burn-in, from the HW test 
of the 10-taxon trees. All chains not reported in this table had a result of 1000 for all 
four parameters.

D ata set Chain LnL TreeLen Distance 7
1 1 1 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0

1 2 1 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0

2 2 2 0 0 0 1 0 0 0 2 0 0 0 1 0 0 0

4 1 2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

8 2 1 0 0 0 2 0 0 0 1 0 0 0 3000

many of the log likelihood and 7  statistic values are above the limit (with some log 
likelihood values greater than 1 0 .0 ).

Overall, I note the distinct difference between these four output parameters, 
even in this relatively simple phylogenetic inference problem. The log likelihood and 
7  parameters seem to have higher autocorrelation, causing higher thinning factors 
and longer burn-in times. Differences between the data sets is far less dram atic than 
between parameters.

For the HW tests, all chains for all analyses passed both the stationarity test 
and the halfwidth test (the output from BOA is simply the result “passed”). Nearly 
all of the analyses had a suggested number of burn-in samples equal to 1000. Since 
the HW tests performs the stationarity test by checking blocks tha t comprise 10% of 
the total samples, the result 1 0 0 0  means tha t only the first block (1 0 % of the total 
10000 samples) was detected as an initial transient. In Table 3.3, I report only the 
chains with a result other than 1 0 0 0 .
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C lo

Data set LnL TreeLen
T h in n in g

Distance 7 Mean LnL
D ep en d en ce  fac to rs

TreeLen Distance 7 Mean
1 3.3 1 .0 1 .0 1.7 1 .8 3.7 1 .0 1 .0 2 .0 1.9
2 3.7 1 .0 1 .0 3.3 2.3 4.0 1 .0 1 .0 4.1 2.5
3 4.0 1 .0 1 .0 3.7 2.4 4.6 1 .0 1 .0 3.6 2 .6

4 3.3 1 .0 1 .0 2.7 2 .0 3.7 1 .0 1 .0 2 .8 2 .1

5 4.3 1 .0 1 .0 3.0 2.3 5.4 1 .0 1 .0 3.3 2.7
6 5.0 1.7 1 .0 1 .0 2 .2 6 .0 1.7 1 .0 1 .1 2.4
7 5.0 1 .0 1 .0 1 .0 2 .0 5.5 1 .1 1 .0 1 .1 2 .2

8 4.3 1.3 1 .0 1.3 2 .0 4.7 1.4 1 .0 1.4 2 .1

9 5.0 2 .0 1 .0 1 .0 2.3 5.5 2 .0 1 .0 1 .1 2.4
1 0 4.7 1 .0 1 .0 1 .0 1.9 4.9 1 .1 1 .0 1 .0 2 .2

Mean 4.3 1 .2 1 .0 2 .0 4.9 1 .2 1 .0 2 .1

T o ta l I te ra tio n s B u rn  in
D ata set LnL TreeLen Distance 7 Mean LnL TreeLen Distance 7 Mean

1 13954 3825 3782 7418 7245 10.3 2 .0 2 .0 4.0 4.6
2 15146 3898 3751 15188 9496 9.3 2 .0 2 .0 1 0 .0 5.8
3 17300 3908 3855 13618 9670 1 2 .0 2 .0 2 .0 1 1 .0 6 .8

4 13922 3782 3741 10601 8011 9.0 2 .0 2 .0 6.7 4.9
5 20374 3731 3897 12218 10055 11.7 2 .0 2 .0 8.7 6 .1

6 22289 6344 3930 4018 9145 15.0 4.3 2 .0 2.7 6 .0

7 20715 4084 3909 4045 8188 15.0 3.0 2.3 2.7 5.8
8 17649 5249 3823 5252 7993 14.7 3.3 2 .0 2.7 5.7
9 20625 7639 3866 4022 9038 15.0 4.7 2 .0 2.7 6 .1

1 0 21063 4006 3876 3928 8218 14.0 2.3 2 .0 2.3 5.1
Mean 18304 4647 3842 8031 1 2 .6 2 .8 2 .0 5.3

Table 3.4: Results from the Raftery and Lewis test for convergence for the 10 taxon trees. Output includes a thinning factor, burn in, total 
number of iterations and dependence factors. Each cell is the average over three chains. I note that there was very good agreement between 
the results for each individual chain (data not shown).



Table 3.5: The RMSET and average standard deviation calculated across the three 
chains for the 10 taxon trees. For the MeanSD calculations, report results using different 
lower probability limits for including partitions in the calculation.

D ata set RMSET Limit 0
MeanSD 

Limit 0.10 Limit 0.20
1 1.776E-03 5.446E-04 1.547E-03 1.329E-03
2 4.007E-04 3.077E-04 4.512E-04 4.512E-04
3 4.610E-04 4.019E-04 5.280E-04 5.280E-04
4 2.828E-04 2.855E-04 3.255E-04 3.255E-04
5 3.578E-04 3.149E-04 4.267E-04 4.267E-04
6 1.745E-03 5.795E-04 1.564E-03 1.619E-03
7 9.828E-04 5.457E-04 9.834E-04 9.834E-04
8 3.723E-04 4.039E-04 3.955E-04 3.955E-04
9 5.689E-03 1.465E-03 4.572E-03 4.986E-03

1 0 1.113E-03 4.665E-04 1.010E-03 1.010E-03

Topology-based measures

Table 3.5 lists the final values of the RMSET and MeanSD statistics for all analyses. 
For the MeanSD, there are multiple values for different lower probability limits. 
Figure 3.2 is a graphical version of these results, more clearly showing the 
differences between the data  sets and the statistics. For the five analyses with a 
single well-supported tree, the statistics have the lowest values and there is little 
difference between the RMSET and various MeanSD values. For the other five 
analyses, the RMSET (using the partitions present on the MAP tree) is consistently 
larger than any of the MeanSD values. This is a result of averaging over a smaller 
number of total partitions. The largest values are for data  set 9, which also has the 
largest credible set of trees and greatest variation in the probability of the MAP tree 
over the three chains.

The lowest values are for the MeanSD with a lower limit of 0, meaning tha t all 
partitions are included and the calculation averages over a large number of very low 
probability partitions. This illustrates how the choice of partition limit can affect 
the calculation of the topology statistics. The inclusion of a greater number of 
partitions lowers the value of the statistic, and this lower value is primarily due to 
the number of low probability partitions rather than low variability between 
partition probabilities across the chains.

It is also possible to plot the changing value of the topology statistics over the 
course of the MCMC analysis. I calculated the RMSET and the MeanSD after each 
block of 500 sampled trees (50000 iterations). In this first calculation, blocks are 
additive, so tha t the statistics include a larger sample of trees after each block. The
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Figure 3.2: A comparison of topology-based convergence diagnostics. Each result is 
the final value recorded at the end of the MCMC. The value in brackets for the MeanSD 
result is the probability limit for inclusion of partitions.

plots in Figure 3.3 show the topology statistics for a selected number of the ten data 
sets - the three with the highest RMSET values (1, 6  and 9) as well as data set 2 
(the lowest) for comparison. The plots show a large reduction in the topology 
variance at the start of the run and then a gradual reduction as the run progresses. 
The shape of the RMSET and the MeanSD are very similar. The rough shape of the 
plots for data  sets 1, 6  and 9 is due to the chains moving between the different 
topologies present in the posterior distribution.

The RMSET is a measure of the variance between the distribution of topologies 
in the three chains. To help distinguish between the effect of increasing sample size 
and of the changing distributions of topologies, I calculated the RMSET using 
constant-sized batches of sampled trees. Figure 3.4 illustrates plots of this 
calculation for selected data  sets. The batch size is 500 trees. In these plots, the 
initial transient is now very easy to identify and we can see th a t for most data  sets 
it does not extend outside of the first batch. The decreasing RMSET appears to be 
primarily due to increasing sample size, since the RMSET in each batch does not, 
on average, decrease relative to the previous batch. Instead, we see much more 
random behaviour of the batched RMSET values. This technique allows us to 
visualize the amount of noise in the changing distribution of topologies.

Finally, I plot the mean of 1000 simulated values of the RMSET (R M S E T g ) 
against the calculated values in Figure 3.5. As R M S E T s  is the expected value with
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Figure 3.3: RMSET and MeanSD for selected 10-taxon data sets. The MeanSD is 
calculated using partitions with probability greater than 10%. The two plots in each row 
are the same analysis, differing only in the scale of the x-axis (in order to show additional 
detail). Scale of the y-axis scale in constant in each column.
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Figure 3.4: RMSET for the 10-taxon data sets. The statistic is calculated using constant 
batch size and increasing batch size. Left plots are selected from data sets 1 through 5, 
right plots from 6 through 10.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Selected from data sets 1-5 Selected from data sets 6-10
Run 1 Run 6

0.035

0.025

0.015

0.005

0 .035

0.03

0.025

0.02
0.015

0.01
0.005

0

0.035

0.03

0.025

0.02
0.015

0.01
0.005

0

RMSET —  
Simulated —

2 4 6  8

S am ples (x 1000)

Run 2

10

0.035
RMSET

Simulated
0.025

0.015

0.005

2  4  6  8
Sam ples (x 1000)

Run 7

2  4 6  8
Sam ples (x 1000)

Run 3

10 2 4  6
Sam ples (x 1000)

Run 9

T
RMSET

Simulated

2  4 6 8
S am ples (x 1000)

Run 5

10 2 4  6
Sam ples (x 1000)

Run 50

RMSET
Simulated

2 4 6 8
S am ples (x 1000)

10 2 4  6 8

Sam ples (x 1000)

0.035 0.035
RMSET — RMSET —

0.03 ■ Simulated — 0.03 ■ \ Simulated — —  -

0 .025 - - 0.025 - \ -

0.02 -\ - 0.02 -  \ -

0.015 - \ - 0 .015 - V -

0.01 - \ - 0.01 - V -

0.005

0

- 0.005

0
— T -

-

10

0.035 I------ 1-------1
RMSET 

Simulated
0.025

0.015

0.005

0.035
RMSET

Simulated
0.025

0.015

0.005

Figure 3.5: Comparison of simulated and calculated RMSET values for the 10-taxon 
data sets. Left plots are selected from data sets 1 through 5, right plots from 6 through 
10 .

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.6: Simulated values of the RMSET (R M S E T s ) for the 10 taxon trees, with 
bounds for 95% confidence interval. Also includes calculated value, R M S E T C , and the 
difference ( R M S E T c  — R M S E T s ) for comparison. Rows are sorted from largest to 
smallest difference.

D ata set R M S E T s LCI UCI R M S E T c Difference
9 1.559E-03 1.521E-03 1.596E-03 2.936E-03 1.377E-03
6 1.275E-03 1.239E-03 1.312E-03 1.944E-03 6.691E-04
7 6.755E-04 6.613E-04 6.898E-04 9.334E-04 2.578E-04

1 0 6.209E-04 6.080E-04 6.339E-04 8.368E-04 2.158E-04
8 3.602E-04 3.502E-04 3.702E-04 5.540E-04 1.938E-04
1 1.248E-03 1.209E-03 1.287E-03 1.356E-03 1.079E-04
5 2.021E-04 1.976E-04 2.065E-04 2.826E-04 8.057E-05
4 1.899E-04 1.850E-04 1.948E-04 2.288E-04 3.887E-05
2 1.785E-04 1.741E-04 1.829E-04 2.137E-04 3.524E-05
3 2.119E-04 2.065E-04 2.173E-04 2.391E-04 2.716E-05

all chains sampling from the same distribution, the plot of this statistic illustrates 
the reduction in variance due to increasing sample size (without any of the time 
series structure from the MCMC analysis). The confidence intervals for the 
simulated statistic are extremely narrow, such tha t including the trace for the upper 
and lower limits simply makes the trace for the mean appear as a slightly thicker 
line. The narrow width of the confidence intervals is given in Table 3.6, which also 
compares the calculated and simulated values for the RMSET.

Sum m ary

Application of these diagnostics to the 10 taxon trees illustrates their variable 
sensitivity. The PSRF and HW stationarity tests did not indicate any problems, nor 
did the time series plots. The Raftery and Lewis diagnostics indicate fairly high 
autocorrelation for some output parameters. The topology statistics are very small 
for all data  sets, indicating good estimation of the partition probabilities (although 
they come to a stable value much later than the numerical output parameters). 
Despite the low RMSET and MeanSD values, it is still very easy to see differences 
between the data sets.

3.5 .2  A n alysis  o f  30 and 50 ta x o n  trees  

Sum m ary o f inference

The phylogenetic inference results are presented in Tables 3.7 and 3.8. As expected, 
the larger trees generally have smaller P m a p  values and larger credible sets of trees.
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W ith the 50 taxon trees, there is great variability between the data  sets. Compare 
data set 3 with P m a p  ~  0.97 and a single tree in the 95% credible set with data sets 
9 and 1 0 , with P m a p  <  0.05 and hundreds of trees in the credible sets. Again, all 
chains appear very similar with respect to these measures.

Acceptance rates were between 17% and 22% for the 30 taxon trees, and 
between 12% and 20% for the 50 taxon trees.

The two tests for stationarity did not indicate any problems with the analyses. 
PSRF values were less than 1.01 for all analyses (which is slightly larger than the
1.00 limit for the 10 taxon trees), and the HW stationarity test passed in all cases.

B u m -in  tim es

Table 3.9 gives the mean burn-in times, averaged over the four output parameters 
and three chains. The RL test estimates a slightly shorter burn-in than what is 
indicated by the time series plots, although this average result masks the fact tha t 
the results are extremely variable across parameters (but consistent across chains). 
Burn-in values for the tree length and branch score were consistently less than 10.0 
for the 30 taxon trees (and less than 15 for the larger trees), while values for the log 
likelihood and 7  statistic were nearly an order of magnitude higher. The HW 
estimates are expected to be higher due to the block-based nature of the test, but 
the fact tha t some chains had burn-in values greater than 500 samples (1 block) 
means th a t this test is the most conservative.

Autocorrelation

The dependence factors from the RL test for all 30 and 50 taxon data sets are 
summarized in Table 3.10. On average, the dependence factors increase with 
increasing size of the phylogeny, and while many factors are below the 5.0 upper 
limit, there is at least one param eter above this limit for each of the data  sets. 
Similar to  the burn-in estimates, there is also a significant difference between the 
different input parameters. The dependence factors for the log-likelihood are 
consistently higher, while 7  is wildly variable (compare 7  for the 50 taxon data  sets 
1 through 5 with data  sets 6  through 10). In contrast to the 10 taxon trees, there is 
also noticeable variability between the chains for a given analysis. The 
between-chain variance is larger for larger values of the dependence factors and this 
trend is more significant for the 50 taxon trees than for the 30 taxon trees.

As the measures of autocorrelation from the RL test seem to vary significantly 
across chains and parameters, I also calculated the autocorrelation time (ACT) 
using Tracer. The measures are not expected to be identical, but trends should be 
the same. Table 3.11 compares the mean and variance across chains for the two
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Table 3.7: Summary of phylogenetic inference for 30 taxon trees. For each simulated 
data set, I report the probability of the MAP tree, the total number of unique trees 
sampled, the size of the 90%, 95% and 99% credible sets for each of the three independent 
MCMC chains (all calculated after removal of the first 500 samples as burn-in). Data 
sets 1 through 5 are the data sets simulated with sampling frequency, p, equal 1.0 and 6 

through 1 0  have p=0 .0 1 .

D ata set Chain P m a p Unique trees Credible sets
1 1 0.318444 2 2 (6 , 8 , 13)
1 2 0.288 28 (6 , 8 , 14)
1 3 0.303778 30 (6 , 8 , 13)
2 1 0.428222 1 0 (3, 3, 5)
2 2 0.409556 9 (3, 3, 6 )
2 3 0.400222 1 1 (3, 3, 6 )
3 1 0.327778 45 (12, 17, 29)
3 2 0.349778 40 (1 2 , 16, 28)
3 3 0.312 41 (12, 17, 27)
4 1 0.620889 4 (3, 3, 3)
4 2 0.636444 5 (3, 3, 3)
4 3 0.606 3 (3, 3, 3)
5 1 0.536 9 (3, 3, 3)
5 2 0.526889 7 (3, 3, 3)
5 3 0.520889 9 (3, 3, 3)
6 1 0.170222 1 0 (8 , 8 , 9)
6 2 0.172667 1 1 (8 , 8 , 9)
6 3 0.180667 9 (8 , 8 , 9)
7 1 0.316444 35 (1 2 , 16, 26)
7 2 0.308444 33 (13, 17, 26)
7 3 0.294889 33 (12, 15, 25)
8 1 0.347556 26 (6 , 9, 17)
8 2 0.350444 25 (6 , 9, 15)
8 3 0.370667 2 2 (6 , 9, 16)
9 1 0.295778 27 (11, 14, 21)
9 2 0.274889 31 (11, 14, 22)
9 3 0.265556 30 (10, 14, 21)

1 0 1 0.370444 17 (5, 6 , 9)
1 0 2 0.358 18 (5, 6 , 11)
1 0 3 0.355333 2 1 (5, 6 , 11)
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Table 3.8: Summary of phylogenetic inference for 50 taxon trees. For each simulated 
data set, we report the probability of the MAP tree, the number of unique trees sampled 
and the size of the 90%, 95% and 99% credible sets for each of the three independent 
MCMC chains (all calculated after removal of the first 500 samples as burn-in). Data 
sets 1 through 5 are the data sets simulated with sampling frequency, p, equal 1.0 and 6 

through 1 0  have p=0 .0 1 .

D ata set Chain Pm a p Unique trees Credible sets
1 1 0.5967 8 (3, 3, 5)
1 2 0.5900 8 (3, 3, 5)
1 3 0.5489 9 (3, 4, 5)
2 1 0.3502 49 (10, 15, 27)
2 2 0.3660 48 (11, 16, 29)
2 3 0.4100 42 (10, 15, 28)
3 1 0.9764 5 (1 , 1 , 2 )
3 2 0.9640 6 (1, 1, 3)
3 3 0.9727 5 (1 , 1 , 2 )
4 1 0.0967 228 (8 6 , 122, 185)
4 2 0.0984 197 (84, 110, 157)
4 3 0.0982 225 (83, 116, 180)
5 1 0.1271 217 (62, 98, 172)
5 2 0.1409 224 (63, 103, 179)
5 3 0.1687 2 2 0 (58, 97, 175)
6 1 0.4278 45 (11, 15, 27)
6 2 0.4453 53 (11, 16, 29)
6 3 0.4467 44 (1 1 , 16, 26)
7 1 0.2240 159 (48, 70, 122)
7 2 0.2178 161 (50, 77, 125)
7 3 0.2071 161 (54, 80, 127)
8 1 0.4296 43 (4, 8 , 22)
8 2 0.4411 31 (3, 7, 17)
8 3 0.3873 52 (7, 14, 31)
9 1 0.0393 472 (204, 289, 427)
9 2 0.0347 451 (203, 282, 406)
9 3 0.0324 498 (217, 308, 453)

1 0 1 0.0331 882 (516, 657, 837)
1 0 2 0.0431 822 (465, 597, 777)
1 0 3 0.0362 835 (483, 610, 790)
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Table 3.9: Estimated burn-in from various diagnostics for 30 and 50 taxon trees. Results 
are in terms of samples, not iterations and are an average over the four parameters and 
three chains. For times series, estimates were rounded up to the nearest 10 samples (30 
taxa) or 100 samples (50 taxa) before averaging.

Taxa D ata set Raftery Lewis Time Series Heidelberger Welch
30 1 70.0 44.8 500.0
30 2 72.5 42.7 500.0
30 3 70.0 41.4 541.7
30 4 70.0 96.8 500.0
30 5 67.5 50.4 541.7
30 6 70.0 28.8 500.0
30 7 72.5 36.2 500.0
30 8 70.0 26.5 500.0
30 9 75.0 32.8 500.0
30 1 0 70.0 37.8 500.0
50 1 293.3 127.5 500.0
50 2 255.0 130.0 500.0
50 3 188.8 125.0 500.0
50 4 227.1 130.0 500.0
50 5 185.3 115.0 500.0
50 6 190.3 152.5 541.7
50 7 175.0 150.0 541.7
50 8 135.0 150.0 875.0
50 9 130.5 135.0 625.0
50 1 0 151.9 130.0 500.0
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Table 3.10: The RL dependence factors for the 30 and 50 taxon trees. The value 
for each analysis is averaged over the three independent chains. This is a measure of 
autocorrelation.

Taxa D ata set LogL TreeLen Distance 7 Mean
30 1 19.3 2 .2 2 .0 15.1 9.6
30 2 25.6 1 .8 2 .1 17.5 11.7
30 3 2 1 .8 2 .2 2 .1 19.3 11.4
30 4 14.3 2.7 1 .6 2 1 .2 9.9
30 5 19.7 1.7 1.7 19.8 10.7

Mean 2 0 .1 2 .1 1.9 18.6
30 6 20.4 2.7 2 .2 3.2 7.1
30 7 23.1 3.5 2.7 3.4 8 .2

30 8 19.6 2 .8 2.3 5.4 7.5
30 9 25.1 3.5 2.4 2.9 8.5
30 1 0 24.2 2.7 2.3 2 .8 8 .0

Mean 22.5 3.0 2.4 3.5
50 1 19.7 2.7 3.3 45.7 17.9
50 2 21.7 2 .2 4.1 57.1 21.3
50 3 29.0 2 .6 2 .8 80.9 28.8
50 4 29.1 2 .6 3.9 28.9 16.1
50 5 47.2 2.7 3.6 42.6 24.0

Mean 29.4 2.5 3.5 51.0
50 6 2 0 .1 3.9 3.7 6 .0 8.4
50 7 39.3 3.5 3.2 6 .2 13.0
50 8 35.4 4.0 3.4 6 .8 12.4
50 9 38.0 4.0 3.5 6 .1 12.9
50 1 0 17.4 4.0 2.4 7.8 7.9

Mean 28.0 3.7 3.3 15.5
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Table 3.11: Comparison of RL dependence factors and autocorrelation time as a mea­
sure of autocorrelation within the MCMC chains. Mean and variance are calculated 
across the three independent chains for each data set.

RL Dependence factors Autocorrelation time
Taxa D ata set Param eter Mean Variance Mean Variance

30 1 LogL 19.32 9.02 3.36 0.05
30 1 TreeLen 2 .2 1 0.13 2 .1 0 0.05
30 1 Distance 1.95 0.03 2.55 0 .0 1

30 1 7 15.11 62.78 3.36 0 .0 2

30 1 0 LogL 24.22 0.06 3.55 0.13
30 1 0 TreeLen 2 .6 8 0.43 3.40 0.13
30 1 0 Distance 2.32 0.07 3.24 0.08
30 1 0 7 2.75 0 .1 0 5.06 0.53
50 1 LogL 19.70 1138.01 5.86 0.57
50 1 TreeLen 2 .6 6 0.27 3.18 0.18
50 1 Distance 3.31 1.98 5.18 0.14
50 1 7 45.74 1843.05 7.13 0.04
50 1 0 LogL 17.41 884.67 10.92 4.40
50 1 0 TreeLen 3.98 0.08 5.55 0.44
50 1 0 Distance 2.42 0 .0 0 7.80 0.05
50 1 0 7 7.77 32.52 16.43 3.38

autocorrelation measures for selected analyses. For both the RL dependence factors 
and the ACT, values are higher for log likelihood and 7  statistic than  for tree length 
and distance, particularly for the 50 taxon trees. Results for both statistics show 
tha t the variance between chains tends to increase with an increasing mean 
autocorrelation value. The variance values for the RL dependence factors are orders 
of magnitude greater than the ACT in the larger trees (see particularly the results 
for the log likelihood and 7  statistic for the 50 taxon trees).

Topology-based m easures

Calculated and simulated values of the topology-based measures, RMSET and 
MeanSD, are given in Tables 3.12 and 3.13. On average, the value of the statistics 
increases with increasing tree size. Again, confidence intervals for the simulated 
R M S E T s  are extremely narrow, such tha t no calculated value falls within the 
interval.

Figures 3.6 and 3.7 illustrates the different topology measures for four of the 30 
taxon data sets. Analyses include calculated and simulated values of the RMSET 
and the changing P m a p  and credible set size. These data sets are converging on a
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Table 3.12: Difference between simulated and calculated RMSET values for 30 taxon 
trees. Rows are sorted from largest to smallest difference.

D ata set R M S E T s LCI UCI R M S E T c Difference
9 0.00192 0.00188 0.00197 0.00561 0.00369
2 0.00141 0.00137 0.00145 0.00487 0.00347
3 0.00194 0.00190 0.00199 0.00538 0.00343
1 0.00176 0.00172 0.00180 0.00402 0.00226
6 0.00179 0.00174 0.00183 0.00363 0.00184
8 0.00184 0.00180 0.00188 0.00366 0.00182
4 0.00145 0.00141 0.00149 0.00306 0.00161
5 0.00143 0.00139 0.00147 0.00282 0.00139

1 0 0.00166 0.00162 0.00170 0.00278 0 .0 0 1 1 2

7 0 .0 0 2 0 1 0.00196 0.00206 0.00302 0 .0 0 1 0 1

Table 3.13: Difference between simulated and calculate RMSET values for 50 taxon 
trees. Rows are sorted from largest to smallest difference.

D ata set R M S E T s LCI UCI R M S E T c Difference
8 0.00182 0.00179 0.00186 0.00952 0.00770

1 0 0.00258 0.00255 0.00261 0.00872 0.00614
5 0.00204 0 .0 0 2 0 1 0.00206 0.00774 0.00570
7 0.00215 0 .0 0 2 1 2 0.00218 0.00679 0.00464
4 0.00219 0.00216 0 .0 0 2 2 2 0.00634 0.00415
2 0.00185 0.00182 0.00188 0.00587 0.00402
3 0.00137 0.00133 0.00140 0.00484 0.00347
6 0.00193 0.00189 0.00196 0.00512 0.00320
9 0.00238 0.00235 0.00241 0.00534 0.00296
1 0.00161 0.00158 0.00165 0.00431 0.00270
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fairly stable distribution of topologies, seen by the stable sizes of the credible sets. 
There is still some variability between the chains, seen in the decreasing RMSET 
statistic and changing probability of the MAP tree. The initial batch of RMSET 
values are quite large, then the statistic drops off smoothly after the first 500 
samples. The RMSET statistic approaches the simulated value at the end of the 
MCMC. I note that, while these plots appear much smoother than the 10-taxon 
plots, this is due to a very different y-axis scale.

Figures 3.5.2 and 3.5.2 illustrates the same set of topology diagnostic plots for 
four of the 50 taxa data sets - the two first and two last listed in Table 3.13. The 
first figure, data sets 1 and 8 , show fairly narrow credible sets and relatively high 
P m a p  values. The high value of RMSET difference for data set 8  appears to be due 
to a change in the distribution of chain 3 near the end of the analysis - note the 
shift in credible set. The second sets of plots, data sets 9 and 10, contrast two 
analyses with very wide credible sets and low P m a p  values. The shape of the 
RMSET plot is not particularly sensitive to the increasing size of the credible sets in 
these analyses, indicating tha t these additional trees are not increasing the variation 
in the of the partition probabilities.

3.5 .3  A n alysis  o f  treefrog phylogen y

To illustrate the ability of these convergence diagnostics to detect serious 
non-convergence, I examined the MCMC results from the empirical data set of 
Hylid frogs. In this analysis, the probability of the MAP tree is low (0.0030 in chain 
1 and 0.0025 in chain 2) and the credible sets are large. The 95% credible sets 
contains approximately 2600 trees and the 99% credible sets are nearly identical to 
the total number of unique sampled trees. There is no discernible difference between 
the chains.

Numerical diagnostics for this analysis do indicate some problems with 
convergence. The PSRF values were 1.001 for the log-likelihood and 1.041 for the 
tree length. Neither result is considered a failure based on the upper limit of 1.20 
for the test. Despite thus result, visual inspection of the time series plots indicates 
tha t the two sample chains for the tree length have visually different traces (Figure 
3.10). The log-likelihood plot does not look unusual (not shown). This is the only 
data  set examined in this study where the time series plot of one param eter is 
dramatically different than tha t of a different output parameter.

Results of the Raftery and Lewis test are shown in Table 3.14. This test does 
not indicate any significant difference between the two output parameters, although 
the results between the two chains do show a greater than two-fold difference with 
respect to the autocorrelation measure.
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Figure 3.6: 30 taxon topology measures. Row 1: Calculated RMSET with increasing 
and constant-sized batches of samples. Row 2: Calculated and simulated RMSET. Row 
3: Probability of the MAP tree over the course of the MCMC for the three chains. Row 
4: Size of 95% credible set for the three chains.
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Figure 3.7: 30 taxon topology measures. Row 1: Calculated RMSET with increasing 
and constant-sized batches of samples. Row 2: Calculated and simulated RMSET. Row 
3: Probability of the MAP tree over the course of the MCMC for the three chains. Row 
4: Size of 95% credible set for the three chains.
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F igure 3.8: 50 taxon topology measures. Row 1: Calculated RMSET with increasing 
and constant-sized batches of samples. Row 2: Calculated and simulated RMSET. Note 
altered range on x-axis to show additional detail due to very high value at start of analysis. 
Row 3: Probability of the MAP tree over the course of the MCMC for the three chains. 
Row 4: Size (number of topologies) of the 95% credible set for the three chains.
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Figure 3.9: 50 taxon topology measures. Row 1: Calculated RMSET with increasing 
and constant-sized batches of samples. Row 2: Calculated and simulated RMSET. Row 
3: Probability of the MAP tree over the course of the MCMC for the three chains. Row 
4: Size (number of topologies) of the 95% credible set for the three chains.
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Figure 3.10: The tree length plot for the treefrog phylogeny. The first 500 samples are 
not shown, although inclusion of this burn-in period only increases the y-axis range by 3 
units.

Table 3.14: Results of the RL test for the frog phylogeny.

Chain Parameter Thinning Burn-in Dependence factor
1 LnL 8 56 14.56
1 TreeLen 1 0 130 15.69
2 LnL 8 208 38.67
2 TreeLen 14 168 41.44
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T ab le  3 .15: Results of the HW test for the frog phylogeny.

Chain Param eter Stationarity test Burn-in Halfwidth Test
1 LnL passed 440 passed
1 TreeLen failed 2640 failed
2 LnL passed 440 passed
2 TreeLen failed 2640 failed

The HW test results are in Table 3.15. Again, the tree length samples are 
problematic, failing the stationarity test (and, by default, the halfwidth test). In 
contrast to the RL results, the HW test varies dramatically between the two output 
parameters but is identical for the two independent chains.

Figure 3.11 illustrates the topology measures and the shape of the distribution. 
The difference between the calculated and simulated value of the RMSET indicates 
tha t there are still large differences between the chains in terms of partition 
probabilities. This is confirmed by plots of the MAP tree probability and credible 
set size, which have not yet stabilized after 4.4 million iterations.

For this data set, the single chain diagnostics indicate a problem with 
convergence, but the multiple chain diagnostic does not. The differences between 
diagnostics illustrate the utility of both multiple diagnostics and of monitoring 
multiple output parameters.

3.6 Discussion

3.6.1 Id en tify in g  burn-in  period

The analyses converged quickly to the stationary distribution, as judged by the 
numerical output parameters. This is consistent with previous expectations for 
general MCMC methods (Raftery and Lewis, 1992a) and for Bayesian phylogenetics 
(Beiko et al., 2006). Visual analysis of time series plots, which is the most common 
method for detecting the burn-in period, was generally consistent with the numerical 
diagnostics. For all of the data sets, the burn-in estimated from the log-likelihood 
plot did not differ from tha t estimated using plots of the other output parameters.

The Raftery and Lewis test underestimated the burn-in for the small trees 
(when autocorrelation is very low), but was very similar to the graphical estimates 
for the larger trees. The Heidelberger and Welch test seemed to overestimate 
burn-in. Given the short length of the burn-in period relative to the full length of 
the chain, an overestimate of burn-in is not critical (and much preferred to an 
underestimate). For studies involving a large number of analyses, numerical
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Figure 3.11: Topology measures for treefrog phylogeny. Top Left: Calculated RMSET 
with increasing and constant-sized batches of samples. Top Right: Calculated and simu­
lated RMSET. Bottom left: Probability of the MAP tree over the course of the MCMC 
for the two chains. Bottom right: Size (number of topologies) of the 95% credible set for 
the two chains.
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measures are a suitable alternative to visually inspecting each analysis. I also note 
tha t I used a mean burn-in over chains and parameters in the tables of values, but 
selecting the maximum value over all results would be a more conservative strategy.

I note tha t when judging the different diagnostics, it is im portant to consider 
the structure of the test. W ith the Raftery-Lewis test, calculating the number of 
burn-in iterations is based on properties of the thinned first-order Markov process, 
rather than being based on direct examination of the sampled states. W ith HW, the 
burn-in is dependent on the stationarity of the samples collected at the end of the 
MCMC. Although the HW test results indicate higher burn-in values than RL or 
time series plots, this is partially due to batching of results. If the size of the HW 
batch is 500, then a burn-in value of 1000 is consistent with a value between 500 and 
1 0 0 0  from the other tests.

For the simulated data  sets, none of the tests for stationarity (time series plots, 
HW stationarity test and the PSRF statistic) indicated any problems, although 
some of these diagnostics were able to detect convergence problems in the empirical 
data set. The differences between the results for different diagnostics illustrates the 
need for multiple tests for convergence.

3.6 .2  A u tocorre la tion  and m ixing

While convergence to the stationary distribution was not a problem for the 
simulated data  sets, the analysis of mixing behaviour was more interesting.

Autocorrelation is a measure of how well the chain is mixing. One measure of 
autocorrelation are the dependence factors from the Raftery and Lewis test, which 
are based on the the subsampling tha t would be required to have the chain behave 
as a first-order Markov process. Figure 3.12 shows the dependence factors with 
increasing tree size for the three tree sizes and four output parameters. Both the 
mean and the variance of the dependence factors increases with tree size. A certain 
amount of autocorrelation is to be expected in phylogenetic MCMC analysis, given 
the topology parameter. Most proposals of new states modify only a portion of the 
tree, so tha t output parameters based on the topology will be affected in the 
location of the topology or branch length change but not in the remaining parts of 
the tree. This effect will be greater with increasing numbers of taxa, so tha t more 
sparse MCMC sampling may be required for analyses of larger phylogenies, along 
with a longer total chain length.

There was great variability in the RL dependence factors across parameters and 
chains, particularly for the larger trees when autocorrelation was high. For some of 
the 50 taxon trees, the dependence factors were so large (and variable across chains) 
tha t this test seemed unreliable. Due to these results for the RL test,
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Figure 3.12: Increasing autocorrelation with tree size (number of taxa), as measured 
by the Raftery and Lewis dependence factors. Note that y-axis is logarithmic.

autocorrelation was also examined using the autocorrelation time (ACT), which is a 
sum of the autocorrelation function over various lag intervals. The trends were the 
same with both measures, although the ACT did not show the huge variation 
between chains tha t appeared in the RL dependence factors for the larger trees. The 
Raftery and Lewis test is based upon a first-order Markov chain constructed from 
the original sampled states, and this construction may be more problematic when 
autocorrelation is very high. W ith these data sets, some autocorrelation values were 
an order of magnitude greater than the upper limit defined by the test authors as 
cause for concern.

The larger trees had greater autocorrelation, and results for the log likelihood 
and 7  statistic were greater than tha t for the Branch Score (distance) and tree 
length. The result for tree size (number taxa) is not unexpected. We only modify a 
portion of the tree topology and branch lengths at each iteration, and the fraction of 
the tree left unchanged will tend to be larger as the number of taxa increases, 
leading to increased autocorrelation in measures based on the tree topology.

3.6.3 U tility of topology-based measures

The final set of diagnostic were those based on the partition probabilities. W hat are 
these measures telling us? As a starting point, their decreasing value even after
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other parameters have stabilized indicates tha t the standard output parameters of 
an MCMC analysis are not very sensitive to changes in the tree topology. The 
RMSET comes to a stable value only in the smallest trees examined. For the larger 
trees, the RMSET continues to decline right to the end of the analysis, despite the 
stability of all other output parameters within the first five thousand iterations.

The topology-based measures give an estimate of the total variance of partition 
probabilities over the course of the MCMC analysis. A higher value is correlated 
with greater uncertainty about the distribution of topologies and other parameters. 
A lower value for the RMSET (or MeanSD) indicates less variability in the results, 
but a higher value does not indicate tha t the analysis has not converged. A 
less-informative data  set may have a broad credible set as the true distribution of 
phylogenies, and in this case, the RMSET would be relatively large at convergence. 
For this reason, comparison of simple RMSET magnitudes across different data  sets 
should not be used to rank the convergence of the analyses. A better way of 
thinking about these diagnostics would be tha t a lower RMSET value for the same 
data set analyzed under a different set of MCMC parameters would indicate an 
improvement in the phylogenetic inference with respect to the distribution of trees.

Simulating the distribution of the RMSET provides a more objective measure 
for a single analysis. As the independent chains converge on the same distribution, 
the calculated value approaches the simulated value. This does not prove tha t we 
are sampling from the true posterior distribution, but having multiple chains with 
the same distribution increases our confidence tha t we are close to the true 
distribution. The difference between the calculated and simulated values of the 
RMSET can then be used as a comparison across different data sets.

Comparison of the RMSET or MeanSD with the changing probability of the 
MAP tree and the size of the credible sets allows us to  see tha t stability of partition 
probabilities does not indicate tha t we have converged to a stable posterior 
distribution of topologies. Both statistics can have a very small value and be 
decreasing even as the credible set of topologies increases in size. This is a positive 
result, as is indicates tha t our estimate of the phylogeny can be very good even 
without convergence to  the posterior distribution of phylogenies.

Finally, a note about the differences between the RMSET and the MeanSD. The 
two diagnostics can be close in value with the correct choice of probability limit for 
the MeanSD. If this limit is set too low, the result for the MeanSD can be artificially 
low value due to the inclusion of many low probability partitions (a false positive 
result). The RMSET measure does not depend on a user-defined limit, which makes 
it more robust. However, it does not lend itself to calculation as the analysis 
progresses (due to the comparison with the overall mean across chains for the entire
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MCMC analysis).

3 .6 .4  C onclusions

To diagnose convergence, we can monitor numerical output parameters, partition 
probabilities and the posterior distribution of trees. The rate of convergence of the 
three types of output is in this same order, and the posterior distribution of 
phylogenies may not converge in a satisfactory number of iterations. Numerical 
parameters can be monitored for stationarity and mixing using the diagnostics 
examine in this study. Stationarity for the various output parameters, however, does 
not indicate convergence of the distribution of topologies or of the partition 
probabilities.

W hat are the goals of Bayesian phylogenetic methods? Generally, when using 
MCMC we hope th a t the parameters of interest converge to their stationary 
distribution. Therefore, convergence of the posterior probability distribution of trees 
seems to be the obvious answer to this question. Unfortunately, with data sets of 
reasonable size, this is an unreasonable hope. There are examples of analyses tha t 
show convergence to a distribution of phylogenies for relatively small numbers of 
taxa (Rokas et al., 2003; Pagel et al., 2004), but most studies axe satisfied with 
convergence of the numerical parameters. The failure of Bayesian phylogenetic 
methods to converge to a stable distribution of phylogenies has been recognized 
previously (Hillis et al., 2005; Beiko et al., 2006). This is due to the sheer size of the 
tree space and, for many data sets, the large number of reasonably good trees. 
Therefore, we look to convergence of the partition probabilities and use these as a 
method of summarizing the information in the distribution of phylogenies.

As has been stated in many previous studies of convergence diagnosis, there is 
no simple answer and there will never be a single test or statistic th a t can reliably 
signal convergence of an MCMC chain to the stationary distribution. I propose a 
three stage process for checking output from phylogenetic inference:

1. Identify the burn-in stage and eliminate samples collected during this phase of 
the MCMC. Visual inspection of the time series plots seems to work as well as 
any of the other methods tested, although numerical tests are more efficient 
for large number of analyses.

2. Test for stationarity using output parameters such as the log likelihood and 
tree length. Again, time series plots can be of assistance here, as can 
numerical methods such as the PSRF and the HW test. How does the 
distribution of topologies and the probability of the MAP tree change over the 
course of the MCMC?

3. Examine mixing behaviour. Calculating autocorrelation values (and again,
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examination of time series) can identify poorly mixing chains. If the chain 
appears stable but mixing is poor, then we need more samples or we need to 
adjust proposal algorithms.

4. Verify precise estimation of the partition probabilities. Multiple chains should 
give similar estimates of the partition probabilities, verified with low values of 
the RMSET or MeanSD. The values of the statistics should decrease over the 
course of the MCMC, but may not reach a stable value.

I note the repetition about utility of time series plots in the preceding list. As stated 
in a classic text on time series analysis, “the first, and most im portant, step in any 
time-series analysis is to plot the observations against time” (Chatfield, 1989). 
Plotting against the full scale of x and y-axis can identify the burn-in period, and 
then a change in scale can detect more subtle problems with stationarity or mixing.

It is possible to have truly objective criteria for diagnosing convergence?
Stability of the MCMC chains is the general aim, and the definition of “stable” is 
far from clear. Numerical diganostics such as the RL, HW and PSRF tests have 
tried to address this issue by defining an additional criteria, such as determining the 
number of samples required to calculate a given statistic to a given level of accuracy. 
This is, of course, assuming tha t we are interested in the value of tha t particular 
statistic. W ith phylogenetics, it is unclear what statistic and what level of accuracy 
we should use. An accurate value of the tree length does not necessarily indicate 
tha t the current number of topology samples are sufficient for calculation of 
partition probabiliites. For the partition-based MeanSD, MrBayes suggests a fixed 
cut-off of 0.10. The value of topology-based diagnostics like the MeanSD and 
RMSET are dependent on the particular data set. The same value for different data 
sets, while quantifying the variance in the same way, is not guaranteed to be 
diagnostic for convergence of the analyses.

The choice of convergence diagnostics will depend on the scope of individual 
study. When performing a single analysis (such as the case of a systematist inferring 
the phylogeny of a single data set) the optimal diagnostics may be different than a 
study tha t involves hundreds of data sets. The former user may prefer graphical 
methods, while the la tter study is more amenable to numerical methods, which are 
more easily autom ated and summarized.

The output from even a relatively simple Bayesian inference of a single gene tree 
will have a topology parameter, plus 2s-2 (or 2s-3) branch lengths, 2-6 model 
parameters of the rate m atrix and parameters describing rate variability. The 
advent of partitioned analyses (Nylander et al., 2004) can dramatically increase this 
count, multiplying the number of parameters mentioned above by the number of 
partitions (genes and codon positions). Param eter output files for this type of
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analysis can have hundreds of columns, making close inspection quite unrealistic.
Software tools such as BOA and CODA and the phylogenetic-specific Tracer and 

AWTY are useful for the analysis of convergence in Bayesian phylogenetic MCMC 
methods. Most of these methods require the user to manually input each individual 
MCMC chain into the software in order to perform diagnostics (I modified the BOA 
code in order to run in batch mode, but this is a non-standard application). There 
is need, though, for additional methods with an increased level of automation in 
order to deal with analyses with large numbers of output parameters or with studies 
th a t involve a large number of data sets. This will involve a trade-off between 
efficiency of the output analysis and loss of information from detailed examination 
of time series plots and other graphical methods.
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Chapter 4

Selection and tuning of tree  
proposal algorithm s

4.1 Introduction

The algorithms used to propose new states in an MCMC analysis can greatly 
influence the rate of convergence and quality of mixing. In Bayesian phylogenetic 
MCMC methods, the choice of tree proposal algorithms is likely to have a large 
effect on convergence to the posterior distribution of phylogenies. Some tree 
proposal algorithms only propose states close to the current state by perturbing a 
small region of the tree (local moves), while others can propose much more drastic 
changes th a t affect multiple regions in the tree (global moves). M ethods with tuning 
parameters allow adjustment of the move size, and powerful tuning parameters can 
allow a single algorithm to function both as a local and global method.

There are several ways to choose the tuning parameters for an MCMC analysis. 
We can simply select a param eter (or set of parameters) and perform the analysis, 
knowing tha t the choice may not be optimal for the data set. We can perform 
several exploratory runs to determine the best tuning parameters before starting a 
full analysis, or we can develop automated methods for choosing the parameters. 
The choice of method is generally based on the acceptance rate of the chain. If the 
acceptance rates are too large, then the proposals should be smaller (and larger 
when acceptance rates are too high).

One of the difficulties with automated methods of choosing algorithms and 
tuning parameters is the fact tha t the underlying process is a Markov chain. The 
proposal mechanisms define the transition kernel, or the probability of moving 
between states in the chain. A Markov chain requires tha t the proposal of a given 
state depends only on the immediately previous state and not on the earlier history
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of the chain. If we change the transition kernel based on the samples we have 
already collected, the process is no longer a Markov chain because the samples are 
dependent on the earlier history. This means tha t functions based on the sampled 
states are not guaranteed to be consistent (Gilks et al., 1998).

It is possible to change the transition kernel during sample collection, but only 
in a way tha t does not depend on the collected samples. We can insert a smaller or 
larger move (by altering a tuning parameter, changing the type of move or by 
swapping chains in MCMCMC), but the choice of proposal strategy must be either 
fixed before we start the analysis or determined in a stochastic fashion during the 
analysis.

Another strategy is to alter the proposals during the burn-in stage using the 
existing sampled states. After a specified number of iterations, or once the 
acceptance rate is within a given range, we then stop updating the kernel and start 
collecting samples (Gelfand and Sahu, 1994). Adjusting the transition kernel using 
the sampled states is valid during the burn-in stage (when we do not retain the 
samples for inference about the posterior distribution). The kernel remains fixed 
during the sampling phase. In the context of Bayesian phylogenetics, BAMBE 
(Larget and Simon, 1999) used this strategy, but MrBayes does not.

The choice of algorithm and of tuning parameter is an area tha t deserves further 
study. How should we choose between the tree proposal algorithms described in 
Chapter 2  and what are the optimal tuning parameters for a given algorithm? At 
the start of an MCMC analysis, we want a method tha t converges quickly to the 
stationary distribution. This will likely involve large proposals. However, the 
method tha t gives fastest convergence may not provide optimal mixing once we are 
at stationarity. An even more fundamental question is how to compare the 
performance of different algorithms or tuning parameters. The effect of a slow rate 
of convergence is straightforward, causing a longer burn-in period. Slow convergence 
is inefficient, as we are required to discard a larger fraction of the to tal samples.
The effect of poor mixing in Bayesian phylogenetic inference is less understood.
How does poor mixing affect our estimates of the tree topology? How do we 
diagnose poor mixing? How robust are Bayesian phylogenetic MCMC methods to 
changes in tuning parameters?

There were two goals in this study. The first was to investigate the effect of 
algorithm choice and tuning parameters on MCMC convergence and mixing. This 
was accomplished by analyzing a number of data sets under a variety of algorithms 
and tuning param eter and applying convergence diagnostics discussed in Chapter 3 
to the MCMC output. The second goal was to further test the convergence 
diagnostics against a wider range of MCMC conditions than those seen in Chapter
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Table 4.1: Taxa and characters in data sets used in this chapter. Runs 1, 3, 6  and 8 

are simulated data sets, and the remaining are empirical.

D ata Taxa Characters
Runs 1,3,6 ,8 30 5000
Baldwin 35 452
Winkworth 35 610
McCracken 39 1116
Yuan 42 1167
101_SC 1 0 1 1858

3. I also briefly explore the idea of dynamically modifying tuning parameters during 
burn-in, but this is a difficult problem tha t warrants further study.

4.2 M ethods

4.2 .1  D a ta

This study used both simulated and empirical data. The simulated data is taken 
from Chapter 3 and includes four 30 taxon data sets, two simulated under the low 
sampling frequency and two under a high sampling frequency.

Empirical data  poses a more challenging inference problem than simulated data. 
Research on fast maximum likelihood (ML) methods has begun to compile and test 
benchmark data sets (Stamatakis et al., 2005; Hordijk and Gascuel, 2005). In this 
chapter, I use several data sets tested in these papers, including a large 101 taxon 
fungal tree and three smaller data sets from the Hordijk study on SPR moves (Yuan 
et al., 2005; McCracken and Sorenson, 2005; Winkworth et al., 2005), noting tha t 
the Winkworth paper describes two different data  sets - I have included both. 
Details of the data  sets are given in Table 4.1. The large fungal tree (data set 
101.SC) is noted to be a difficult convergence problem, with several rogue taxa tha t 
are not strongly supported in a single location on the tree. Using data  sets tha t 
have previously been used in method testing allows for verification of results and 
comparisons between methods.

The combination of simulated and empirical data allows for the comparison of 
algorithms and tuning parameters under a variety of inference conditions.

4.2 .2  B ayesian  inference

The simulated data sets were inferred as described in Chapter 3. For the empirical 
data sets, inference was under the HKY model (Hasegawa et al., 1985). This model
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was used for two reasons. First, it is the same model used in the ML studies tha t 
also used these data  sets. This allowed comparison of likelihoods (to ensure tha t 
BayesTrees had not simply converged to a non-optimal mode). Second, I wanted to 
focus on integration of the tree topology and branch lengths and eliminate the issue 
of convergence of the model parameters.

The range of algorithms and tuning parameters for each data set is described in 
Table 4.2.

For the Local and SPR algorithms, the tuning param eter affects the multiplier 
proposal used to propose new branch lengths. Given a current value, x, and a 
tuning parameter, b, the new length, x' is generated using Larget and Simon’s 
multiplier proposal x' =  x  x eXp2*n(b)x(0-5-t9 (Larget and Simon, 1999). I describe 
the tuning param eter in terms of b rather than A =  2ln(b) because it is conceptually 
simpler: b is the largest possible multiplier (i.e. if U =  1.0, then x' =  bx). The 
smallest possible multipler, when U =  0, is 1/b.

For BranchSlide, the tuning parameter is the variance of the Normal 
distribution used to propose distances between the old and new location of moved 
subtrees. W ith this algorithm, a much larger range of tuning parameters is available 
than for Local and SPR.

I performed the Bayesian analysis using BayesTrees, setting kappa to the mean 
value estimated from a million iterations of a single MCMC chain and estimating the 
base frequencies from the data. The model parameters were identical for all runs for 
a given data set. The prior on branch length was exponential (A =  10, // =  0.1) with 
branches unconstrained by the molecular clock. The simulated analyses were run for 
50000 iterations, and the empirical for 1000000 iterations. Sampling was every 100. 
Some analyses were extended to a larger number of iterations (details in Results).

During the MCMC, I collected the log likelihood and tree length parameters. 
The gamma statistic used in Chapter 3 assumes tha t the trees are ultrameric, which 
is not true for the empirical data sets. The distance measure (BranchScore) requires 
a use of a reference tree for comparison, and while the true tree is available for 
simulated data, this is not the case for the empirical data sets (it would be possible, 
although computationally expensive, to compute the Branch Score against all of the 
previously sampled trees). The results from Chapter 3 indicate th a t all four of these 
output parameters give similar results for burn-in analysis, and for mixing, the log 
likelihood and gamma statistic were similar (with higher autocorrelation), as were 
the distance and tree length.
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Table 4.2: Algorithms and tuning parameters used for phylogenetic inference. The 
small empirical data sets are the Baldwin, McCracken, Winkworth and Yuan data sets, 
while 101.SC is the large benchmark data set. Each analysis consisted of 3 independent 
MCMC chains.

D ata Algorithm Analyses Tuning
simulated BranchSlide 4 0.005, 0.01, 0.02, 0.05
small empirical BranchSlide 5 0.005, 0.01, 0.02, 0.05, 0.1

Local 2 1 .1 , 2 .0

SPR 2

OCNi—1

101_SC BranchSlide 4 0.01, 0.1, 0.5, 1.0, 2.0
Local 2 1 .1 , 2 .0

SPR 2 1 .1 , 2 .0

4.2 .3  C onvergence analysis

As a starting point, I examined time series plots of log likelihood and tree length for 
departures from stationarity and to determine the burn-in period. Results from this 
visual analysis were confirmed using the PSRF and HW tests.

For runs tha t had reached stationarity, I then check mixing using autocorrelation 
of the tree length and log likelihood and acceptance rates for the topology 
proposals. Autocorrelation was measured by the sum of lag autocorrelations (ACT 
statistic implemented in Tracer (Rambaut and Drummond, 2005)), which gave more 
consistent results than the RL autocorrelation estimates in Chapter 3.

I assessed convergence of the posterior distribution of phylogenies using the 
RMSET statistic and the size of the credible sets. These topology measures were 
compared to the stationarity and autocorrelation results for the log likelihood and 
tree length to determine the effect of rate of convergence and mixing on the 
inference of the posterior distribution of phylogenies.

4.3 Results

4.3 .1  R a te  o f convergence

Not surprisingly, there were no problems with reaching stationarity for the simulated 
data sets. The acceptance rates were negatively correlated with the tuning 
parameter, and runs with higher acceptance rates had longer burn-in periods (due to 
smaller proposals). Burn in periods and acceptance rates were very consistent across 
the runs for the same tuning parameter. Table 4.3 lists the results. The numerical 
diagnostics (PSRF and HW stationarity test) indicated a pass for all runs.

For the small empirical data  sets, examination of the time series plots after one
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Table 4.3: Average burn in iterations and acceptance rates for simulated data sets under 
various tuning parameters of the BranchSlide algorithm. Burn-in determined from visual 
inspected of time series plots.

Tuning Burn in Acceptance rate
0.005 12250 0.35
0 .0 1 6250 0 .2 1

0 .0 2 5750 0 .1 1

0.05 2750 0.05

million iterations indicated some problems with convergence. The Local algorithm 
was insufficient for convergence for almost all of the data sets. Although most 
chains had stabilized, comparison of independent chains showed tha t many of chains 
were stuck in local optima. Application of the SPR algorithm alone also caused 
poor convergence, but the problem was instead a very slow rate of convergence.
Most chains had not reached a stable value by the end of the analysis, although the 
likelihood continued to rise smoothly, without becoming stuck in a local optima. 
Convergence of the BranchSlide runs depended on the tuning parameter, although 
most runs converged quickly.

All of these results were confirmed using the HW stationary test and the PSRF. 
Any analysis th a t displayed a problem with the time series plots also failed the 
numerical convergence diagnostic tests. W ith the single-chain HW stationarity test, 
two of the runs with multiple modes visible on the time series plot passed the 
stationarity test, while the multiple chain PSRF diagnostic was able to detect this 
problem. The PSRF also diagnosed problems in some runs th a t appeared to have 
converged with respect to  the time series plots. These contradictory results were 
generally in cases with large move parameters and small acceptance rates.

Table 4.4 gives the number of burn in iterations, acceptance rates and PSRF 
results for the various algorithms and tuning parameters for the small empirical 
trees. As expected, acceptance rates decreased with increasing move sizes (larger 
tuning parameters).

For runs th a t had converged, the log likelihood was close to tha t described in 
the fast ML study (Hordijk and Gascuel, 2005). We don’t expect exact agreement 
due to differences in model parameters (the exact values of n and base frequencies 
used for the HKY model is not specified in their study), as well as the fact tha t the 
Bayesian method produces a posterior distribution of likelihood values rather 
seeking the single best likelihood score.
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Table 4.4: Acceptance rate and burn in times for the initial 1 million MCMC iterations for each data set. Burn in times are estimated from 
time series plots of log likelihood and tree length. Algorithms are in the first row (BS =  BranchSlide), with tuning parameters below. Results 
are in terms of iterations, not samples. MM =  multiple modes and NC =  not converged. An ’X’ as a result for the PSRF indicates a value 
above the 1 .2  upper limit.

BS BS BS BS BS Local Local SPR SPR
D ata set Parameter 0.005 0 .0 1 0 .0 2 0.05 0 .1 1 .1 2 .0 1 .1 2 .0

Baldwin LogL 7000 5000 5000 4000 6000 MM 2 0 0 0 0 0 NC 70000
Baldwin TreeLen 7000 5000 5000 4000 6000 MM 2 0 0 0 0 0 NC 70000
Baldwin Acceptance Rate 0.58 0.45 0.35 0.25 0.17 0.57 0.44 0.05 0.05
Baldwin PSRF X X X X
McCracken LogL 9000 1 2 0 0 0 5000 5000 5000 MM 150000 NC 150000
McCracken TreeLen MM 150000 180000 180000 40000 MM MM NC 1 0 0 0 0 0

McCracken Acceptance Rate 0.42 0.31 0.23 0.14 0.09 0.45 0.37 0.04 0.03
McCracken PSRF X X X X X X X X X
Winkworth LogL 6000 4000 4000 4000 4000 MM MM NC 50000
Winkworth TreeLen 6000 4000 4000 4000 4000 MM MM NC 50000
Winkworth Acceptance Rate 0.46 0.34 0.23 0.15 0 .1 0 0.4 0.3 0.05 0.05
Winkworth PSRF X X X
Yuan LogL 16000 5000 5000 7000 8000 MM MM NC 80000
Yuan TreeLen 8000 5000 6000 7000 1 2 0 0 0 MM MM NC 150000
Yuan Acceptance Rate 0.30 0 .2 0 0.13 0.07 0.05 0.27 0.15 0 .0 1 0.009
Yuan PSRF X X X X X



Table 4.5: Results for stationarity tests of the 101-SC data set. Each run was started 
from the a final tree of the initial analysis with BranchSlide tuning parameter 2.0 (which 
appeared to have converged, based on time series analysis). The HW results indicate 
passed (’P ’) or failed (’F ’) for each of the three chains.

Algorithm Tuning PSRF HW logL HW treelen
BS 0 .0 1 1.023 (P, P, P) (P, P, P)
BS 0 .1 1.089 (P, P, P) (P, P, P)
BS 0.5 1.671 (P, P, P) (P, F, P)
BS 1 .0 1.982 (F, F, F) (P, P, P)
BS 2 .0 4.075 (F, F, F) (F, F, F)

Local 1 .1 1.229 (P, P, P) (P, P, P)
Local 2 .0 1.133 (P, P, P) (P, F, P)
SPR 1 .1 2.408 (F, F, F) (F, F, F)
SPR 2 .0 2.050 (F, F, F) (F, F, F)

The general result was tha t Local and SPR runs were not yet converged but 
tha t most of the BranchSlide runs appeared to be a t stationarity (the exception was 
the set of McCracken runs, which seemed to have problems reaching stationarity for 
all MCMC proposals, particularly with respect to the tree length). To ensure 
sufficient iterations to study mixing properties, I extended the BranchSlide runs for 
an additional 0.5 million iterations. For these extended analyses, two of the 
McCracken data sets still failed the PSRF stationarity test, while the HW test and 
times series plots did not detect any problems with any of the runs.

For the 101 taxon tree, reaching stationarity was difficult. Figure 4.1 displays 
the log likelihood plots for several different algorithms and tuning parameters. The 
only run th a t converged quickly used BranchSlide with a tuning param eter of 2.0 
(the tree length is approximately 12). Neither of the Local runs converged. One of 
the SPR runs did appear to reach stationarity at the end of the run, but the rate of 
convergence was extremely slow. Figure 4.1 also includes plots from the same data 
set run using MrBayes with two different MCMCMC tem perature parameters. Even 
using MCMCMC, there was a lack of convergence across all three independent 
chains.

As many of the original 101-SC runs did not converge, I repeated each one using 
the algorithms and tuning parameters specified in M ethods , but starting from the 
last state of one of the runs tha t did appear to reach stationarity (from the time 
series plots). This provided a constant number of iterations for each algorithm and 
tuning parameter. Testing of these repeated analysis indicated tha t the analyses 
were not at stationarity. Time series plots are given in Figure 4.2. Results for the 
PRSF and HW stationarity tests are given in Table 4.5.
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One point to emphasize here is the utility of multiple chains for diagnosing 
convergence. W ithout the other chains as a comparison, some of these traces would 
appear converged, particularly in a shorter window of iterations. This was also true 
for the small empirical data sets (although time series plots of these runs are not 
shown). Comparison of the numerical diagnostics also illustrate this point. All 
chains of an analysis can pass the HW stationarity test individually but fail when 
combined together and analyzed with the PSRF test.

4.3 .2  A u tocorre la tion  and m ixing

Figure 4.3 shows the ACT of the log likelihood against tuning param eter and 
acceptance rate for the four smaller empirical data sets. Autocorrelation declines 
with decreasing move size (and higher acceptance rates). The stacked points in the 
upper graph (corresponding to the set tuning parameters) shift in the second graph 
when we substitute acceptance rates for tuning parameters. An identical tuning 
parameter operates differently on each data set, giving a different acceptance rate 
(although the trend is the same). Plots of the tree length autocorrelation display 
the same trend as the log likelihood. These results confirm that, for the BranchSlide 
algorithm, we should be able to set tuning parameters and control autocorrelation 
through the acceptance rate, but show tha t there will be some variation between 
data sets.

Results for the Local and SPR algorithms are not included on this plot. 
Autocorrelation for those methods was extremely high (higher than any of the 
BranchSlide runs) with the exception of Local with a tuning param eter of 2.0, which 
had autocorrelation values lower than any of the BranchSlide runs. The SPR moves 
had acceptance rates th a t were approximately one-half tha t of the largest 
BranchSlide tuning param eter (see Table 4.4). Acceptance rates for Local, however, 
were in the same range as the smaller BranchSlide tuning parameters, so acceptance 
rate alone does not explain differences in autocorrelation values.

We expect tha t autocorrelation would be a problem with moves th a t are too 
large and those tha t are too small. For BranchSlide, none of the tuning parameters 
tested were small enough to show an increase in autocorrelation a t the lower end. 
The Local algorithm did display this phenomena, with the small tuning parameter 
giving very high autocorrelation, although the acceptance rates were in the same 
range as the small BranchSlide moves.

For the simulated data  sets, autocorrelation again decreases with increasing 
acceptance rates, although the range of autocorrelation values is smaller than for 
the empirical data (despite a similar number of taxa). Figure 4.4 shows 
autocorrelation for both output parameters in simulated and empirical data. W ith
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Figure 4.1: Convergence of the 101-SC data set when analyzed using different algo­
rithms and tuning parameters. The top four plots are different tuning parameters for the 
BranchSlide algorithm. The third row is two runs using Local and SPR with tuning=2.0 
and the bottom plots are three independent MCMCMC chains from MrBayes with two 
temperature (T) values (left is T=0.2, right is T=0.05).
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Figure 4.2: Mixing behaviour of the 101_SC data set when analyzed using different 
algorithms and tuning parameters but starting from the same topology and set of branch 
lengths. The top four plots are different tuning parameters for the BranchSlide algorithm, 
and the bottom two are Local and SPR.
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Figure 4.3: Relationship between autocorrelation, tuning parameters and acceptance 
rate. Each point is an average over three independent chains.
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simulated data, autocorrelation for the two parameter is similar for larger 
acceptance rates, but the values for the log likelihood are greater for lower 
acceptance rates. W ith the empirical data, there is no clear trend with the two 
parameters. This is true even if we separate the points in Figure 4.4 by data  set. 
The highest posterior density (HPD) intervals for the tree length are much narrower 
for the simulated data than for the empirical data, which may be one cause of the 
differences seen between the two types of data.

4.3 .3  Tree to p o lo g y  m easures

W hat is effect of different tree proposals on our estimates of the tree topology? For 
the simulated data, the MCMC does converge on a fairly stable set of topologies. 
The analyses seems robust to changes in the proposal methods (see Table 4.6). The 
to tal number of unique trees sampled, the size of the credible sets and the 
probability of the MAP tree did not display any systemic change across tuning 
parameters. Overlap between the three sample chains and the combined chain 
appears to be good based on size (credible sets for the combined chain have the 
same number of trees as each of the sample chains).

There is no trend for the value of the RMSET calculated at the end of the run 
as compared to the tuning parameter. However, Figure 4.5 illustrates tha t while the 
value at the end of the run is very similar, there is variation in the shape of the plot. 
This is consistent with results from previous sections, where all runs appeared to 
have reached stationarity, but burn-in periods and mixing behaviour differs across 
the tuning parameters.

For the small empirical data sets, while numerical output parameters appear to 
have converged, the number of unique sampled trees is approximately equal to the 
total number of sampled trees for most of the runs, meaning tha t we have not yet 
converged to a stable posterior distribution of trees.

Table 4.7 lists the final calculated values of the RMSET and MeanSD. All values 
are below 0.01 except for the McCracken data sets (which are an order of magnitude 
higher than the other runs). The McCracken runs are also those tha t displayed the 
longest burn-in periods and had failures with the stationarity tests. The probability 
of the MAP tree is very low for all of these data sets, so tha t the MeanSD statistic 
is calculated over a larger number of partitions tha t the RMSET and has a lower 
value (noting the single exception with the smallest tuning parameter and the 
Baldwin data set).

Figure 4.6 illustrated the differences in RMSET traces over the course of the run 
for different tuning parameters and the same data set. For the Baldwin and 
McCracken data sets, where almost every sampled tree was unique, there is no
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Figure 4.4: Differences in autocorrelation in the two output parameters. With simulated 
data, the two parameters are similar when autocorrelation is low, but the increase in ACT 
for the log likelihood is greater as acceptance rates decrease. With empirical data, there 
is no difference between the two parameters, and overall, autocorrelation values are larger 
and more variable.
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Table 4.6: Effect of MCMC mixing on size and overlap of credible sets for simulated 
data as well as calculation of the RMSET statistic. Total trees is the total number of 
unique sampled trees in all three chains. Combined column is the 95% credible set for 
all three combined chains. If the chains are sampling from the same distribution, the 
credible sets will be the same size in all four cases (chains 1 through 3 and the combined 
chain).

Total 95% credible sets, chain
D ata set Tuning P m a p trees 1 2 3 Combined RMSET

0.005 0.280 35 8 8 8 8 0.00430
1 0 .0 1 0.293 32 8 8 8 8 0.00402
1

0 .0 2 0.300 28 8 8 8 8 0.00313
0.05 0.300 2 2 8 8 8 8 0.00307

0.005 0.313 44 16 17 17 17 0.00466
O 0 .0 1 0.326 46 17 16 17 17 0.00538
0

0 .0 2 0.321 45 18 17 16 17 0.00388
0.05 0.320 44 16 16 17 17 0.00498

0.005 0.176 14 8 8 8 8 0.00470
a 0 .0 1 0.170 1 2 8 8 8 8 0.00362
0

0 .0 2 0.170 18 9 8 8 8 0.00313
0.05 0.169 25 9 8 8 8 0.00846

0.005 0.358 26 8 9 8 9 0.00544
Q 0 .0 1 0.354 27 9 9 9 9 0.00366
O

0 .0 2 0.364 26 8 8 7 8 0.00538
0.05 0.358 26 8 9 9 8 0.00252

Table 4.7: RMSET and MeanSD for the small empirical data sets.

Tuning
Bale

RMSET
iwin

MeanSD
McCr

RMSET
acken
MeanSD

0.005
0 .0 1

0 .0 2

0.05
0 .1

0.0028
0.0056
0.0033
0.0037
0.0043

0.0032
0.0039
0.0035
0.0034
0.0039

0.0344
0.0108
0.0218
0.0421
0 .0 2 0 1

0.0186
0.0066
0.0115
0.0206
0.0126

Tuning
Wink

RMSET
worth

MeanSD
Yu

RMSET
an
MeanSD

0.005
0 .0 1

0 .0 2

0.05
0 .1

0.0029
0.0023
0.0027
0.0044
0.0063

0.0005
0.0004
0.0005
0.0005
0.0007

0.0045
0.0047
0.0039
0.0065
0.0065

0.0023
0 .0 0 2 0

0 .0 0 2 2

0.0031
0.0028
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Figure 4.5: RMSET traces for the simulated data sets. All tuning parameters converge 
to a very similar RMSET value, but the shape of the plot differs between tuning param­
eters. The first 500 sampled trees were removed as burn-in, which is conservative based 
on the burn-in judged from the time series plots.
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apparent correlation between tuning parameters /  acceptance rates and the RMSET 
value. W ith the other two data sets, larger values of RMSET are associated with 
higher tuning parameters (and therefore lower acceptance rates and more 
autocorrelation). The Winkworth and Yuan data sets did show some shape in the 
posterior distribution of phylogenies. Table 4.8 details the results for credible sets 
and probability of the MAP tree. As the tuning parameters increase, the total 
number of trees explored decreases (as does the size of the credible sets).

The Yuan data was the most informative, and there in an interesting trend over 
the different tuning parameters. W ith higher tuning parameters, the estimates from 
a single chain appear to be more precise, but comparisons between the chains 
indicate tha t the overlap between the chains is minimal. The larger tuning 
parameters produce lower acceptance rates and higher autocorrelation, and the 
chains explore the tree space less thoroughly. The other data sets did not show this 
trend, which may simply be due to a lack of information in the data.

Again, these result confirms the need for comparisons across multiple chains. 
W ith a single chain analysis, the results would simply look more precise with larger 
tuning parameters (and the acceptance rates are not low enough to indicate a 
serious problem).
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Figure 4.6: RMSET under various tuning parameters for the extended MCMC analyses 
of the Baldwin, McCracken, Winkworth and Yuan data sets. Note difference in y-axis 
scale for the McCracken results.
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Table 4.8: Effect of MCMC mixing on size and overlap of credible sets for empirical data. Total trees is the total number of unique sampled 
trees in all three chains (out of a total of 5000 total samples). Combined column is the 95% credible set for all three combined chains. If the 
chains are sampling from the same distribution, the credible sets will be the same size in all four cases (chains 1 through 3 and the combined 
chain). Difference is the difference between the sum of the three chains and the combined chain (measuring the amount of overlap between 
the chains.

oto

Total 95% credible sets, chain
Run Tuning P m a p trees 1 2 3 Combined Difference

0.005 2.38E-05 41998 13300 13300 13300 39900 0

Baldwin 0 .0 1 2.38E-05 41998 13300 13300 13300 39900 0

0 .0 2 2.38E-05 41998 13300 13300 13300 39900 0

0.05 2.38E-05 41998 13300 13300 13300 39900 0

0 .1 0 4.76E-05 41988 13297 13297 13297 39889 0

0.005 2.38E-05 41998 13300 13300 13300 39900 0

McCracken 0 .0 1 2.38E-05 41998 13300 13300 13300 39900 0

0 .0 2 2.38E-05 41998 13300 13300 13300 39900 0

0.05 7.14E-05 41935 13280 13278 13279 39836 1

0 .1 0 7.14E-05 41421 13116 13088 13119 39322 1

0.005 7.14E-05 40222 13066 13090 13058 38121 1093

Winkworth 0 .0 1 9.52E-05 40180 13072 13075 13080 38081 1146
0 .0 2 9.52E-05 40125 13033 13057 13091 38026 1155
0.05 1.10E-04 39654 12904 12952 12902 37555 1203
0 .1 0 9.52E-05 39126 12680 12719 12647 37027 1019

0.005 7.69E-03 6341 2471 2769 2666 4242 3644

Yuan 0 .0 1 7.11E-03 5819 2397 2272 2498 3720 3447
0 .0 2 8.41E-03 5700 2154 2326 2344 3601 3223
0.05 7.33E-03 5356 1980 2053 2114 3257 2890
0 .1 0 7.95E-03 4669 1699 1681 1655 2814 2 2 2 1



4.4 Discussion

4.4 .1  E ffect o f  proposal m eth od  on convergence and m ix in g

When the data was very informative, as in the case of the simulated data, the 
Bayesian inference was robust to changes in the proposal method. The burn-in 
period was shorter for larger moves, but autocorrelation was higher (indicating 
poorer mixing). Smaller moves had longer burn-in and lower autocorrelation. 
However, while changes in rate of convergence and mixing behaviour were apparent, 
they did not have an effect on the size of the credible set, the probability of the 
MAP tree or the estimation of partition probabilities (as measured by the RMSET 
statistic).

W ith the empirical data, which was a more challenging inference problem, the 
differences between proposals became more apparent. Very small moves (such as 
those produced by the Local algorithm or BranchSlide with a small tuning 
parameter) took a long time to converge and were apt to be trapped in local 
optima. Very large moves (using SPR) converged very slowly but avoided local 
optima. For the small empirical trees, the range of values of the BranchSlide 
param eter tested gave similar results for the rate of convergence.

For the large fungal data set (101-SC), the effect of proposal method greatly 
affected the rate of convergence. Only the largest tuning parameter for the 
BranchSlide algorithm quickly reached a stable value for the log likelihood over all 
three chains. However, when all proposal methods started from the same tree, 
detailed analysis of the results indicated tha t none of the analyses were at 
stationarity, and those tha t displayed the best mixing behaviour used proposal 
methods with the smallest moves.

As the smaller trees did reach stationarity, I was able to study the effect of 
proposal methods on MCMC mixing and also the effect of mixing behaviour on 
inference of the posterior distribution of phylogenies. As with the simulated data, 
smaller moves were correlated with higher acceptance rates, although the variability 
in acceptance rates across data sets for a given tuning parameter was larger than for 
simulated data. Autocorrelation of the log likelihood and tree length were 
negatively correlated with acceptance rate (although the Local algorithm with small 
tuning param eter did show the expected high autocorrelation with very small 
moves), and again, there was more variability in the empirical data than simulated.

When examining the convergence of the partition probabilities and tree 
topology, it is challenging to see any effect of MCMC mixing when the distribution 
of topologies is very flat. In the Baldwin and McCracken data sets, nearly every 
sampled tree is unique and there is no trend when comparing the RMSET or
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credible sets against acceptance rates or autocorrelation. When the data  are more 
informative (as in the Winkworth and Yuan data sets), the RMSET increases with 
increasing autocorrelation and the credible sets of tree decrease in size. This 
indicates tha t poor mixing does have a negative effect on our ability to infer the tree 
topology. The Yuan data set was the most informative, and comparison of the 
credible sets across the three chains indicates tha t high autocorrelation causes the 
MCMC chain to explore the tree space inefficiently, reducing the size of credible set 
for each chain and reducing the overlap in sampled trees across the chains. This was 
reflected in higher values for the RMSET and MeanSD for higher autocorrelation 
and lower acceptance rates. It would be interesting to look for other empirical data 
sets that also displayed this trend.

I want to  emphasize tha t in most of these analyses, the value of the RMSET and 
MeanSD statistics were very low (less than 0.01, which is the upper limit suggested 
by MrBayes). Even when mixing was poor, causing increased variability of the 
partition probabilities between chains, the differences between the different proposal 
methods were small. Unless the problems with convergence are serious (as for the 
McCracken and 101-SC data sets) our estimates of the partition probabilities are 
fairly robust to changes in convergence and mixing of the MCMC.

4.4 .2  D ifferences b etw een  algorithm s

Roughly speaking, SPR always proposes a large move, and Local always proposes 
small moves. BranchSlide can propose both small and large moves, even with a 
single tuning parameter. Not surprisingly, then, the effect of tuning parameters 
varied considerably across algorithms. W ith BranchSlide, the different tuning 
parameters produced very difference acceptance rates and autocorrelation values. 
Even with the largest tuning parameters tested, the behaviour of BranchSlide was 
significantly different than SPR, and with small tuning parameters, it differed from 
Local.

The effect of tuning parameters for SPR was limited, and this algorithm has very 
low acceptance rates with both the large and small tuning parameters. The effect of 
tuning parameters for the Local algorithm was larger than expected. W ith a small 
tuning parameter, Local had very high autocorrelation, and was the only method to 
show high autocorrelation with small moves. Local proposes changes to the branch 
length, which may also induce a change in topology. A change in topology is more 
likely with a larger change in branch lengths, so the very small tuning parameter 
will rarely change the topology. Compare this behaviour to SPR, which changes the 
tree topology with nearly every move, and also proposes a change in branch length. 
Only the branch length change is dependent on the tuning parameter.
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The differences in convergence and mixing behaviour is not entirely dependent 
on tuning parameters. Certain parameterizations give similar acceptance rates 
between the different algorithms and yet the MCMC convergence and mixing was 
not equivalent.

4 .4 .3  A u tocorrela tion

Even with small moves and high acceptance rates (and a sampling frequency of 
100), there is still fairly high autocorrelation in phylogenetic MCMC. This is due to 
the structure of the tree topology parameter. Our proposals alter only a portion of 
the tree at each iteration, and output parameters calculated from the tree will be 
identical in regions of the tree tha t have not changed. Autocorrelation appears to 
increase as the data  becomes less informative. The simulated data had much lower 
autocorrelation than the empirical data, despite similar number of taxa. The Yuan 
and Winkworth data also had lower autocorrelation than the Baldwin and 
McCracken data sets.

Given the structure of phylogeny parameter, it is unlikely tha t autocorrelation 
can be greatly reduced through changes in the transition kernel. One method of 
dealing with high autocorrelation is to increase the sampling frequency to reduce 
dependence between subsequent sampled states. The increase in sampling frequency 
should also be accompanied by an increase in total run length, to ensure a sufficient 
number of sampled states. The increase in run length is a more im portant 
component than the increased sampling frequency. High autocorrelation does not 
mean tha t inferences based on every sampled state are inaccurate, just tha t we need 
a larger total number samples than if they were independent. Some authors suggest 
tha t subsampling an MCMC chain is not justified except to reduce storage 
requirements (MacEachern and Berliner, 1994). Storage is a concern with 
phylogenetics, as the tree topology and branch lengthes are stored as a string, and 
this string increases in size as the number of taxa increases. For example, 10000 
samples from a single chain with 35 taxa required 8.5 MB of storage, while the same 
number of trees with 101 taxa required 24 MB of storage.

4 .4 .4  M u ltip le  chains

If mixing is poor, a single chain can give false results, both in terms of accuracy and 
precision. The analysis may appear to be a t stationarity while simply trapped in a 
local optima tha t is not the global optima. I found many examples of this behaviour 
in the empirical data  sets, and this would be impossible to detect with only one 
chain. As confirmation, the test for stationarity across multiple chains (the PSRF) 
was more sensitive than the single chain diagnostic (the HW test).
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W ith respect to the inference of the tree topology, a poorly mixing chain does 
not as thoroughly explore the tree space. This results in a smaller credible set which 
appears to be a more precise result unless compared to a one or more additional 
independent chains. Statistics to detect this behaviour compare partition 
probabilities across chains and cannot be calculated with a single chain.

4.4 .5  O ptim al proposals

When comparing the BranchSlide, Local and SPR algorithms, results indicate that 
neither Local or SPR when used on their own provide fast convergence or good 
mixing. The advantage of the BranchSlide algorithm is that a single tuning 
parameter can provide a range of move sizes, due to selection of the distance to 
move the subtree from a Normal distribution. If we set the tuning parameter for 
BranchSlide to produce fast convergence, however, the proposal is not optimal for 
the mixing phase. For informative data, the results are robust to the choice of 
proposal, so a single tuning parameter can be used throughout the analysis. W ith 
more challenging data sets, this may not be sufficient.

The strategy used by MrBayes is to use a combination of algorithms. For 
example, for the analysis of the 101-SC data, 75% of the iterations used an 
algorithm tha t proposes larger moves and the remaining iterations used the Local 
algorithm. During the burn-in phase, the Local moves are not very useful, but 
during mixing, they likely increase the overall acceptance rate and improve mixing 
over solely using the larger proposals.

MrBayes also uses MCMCMC, which can allow for the injection of large moves 
into the MCMC chain when we swap between heated and cold chains (Altekar et al., 
2004). A similar idea is tha t of using small world networks as a proposal (Guan 
et al., 2006), where most of the moves are local but we include an occasional random 
draw. These types of proposal strategies are designed to deal with multiple regions 
of high probability. This occurs often in problems such as image analysis, and can 
also be a problem in phylogenetics with multiple modes for topology (Mossel and 
Vigoda, 2005) or branch lengths (Chor et al., 2000; Stefankovic and Vigoda, 2006).

MCMCMC methods are expensive, as each single independent chain requires 
one cold chain plus x  heated chains, and the cost increases dramatically if we want 
to run multiple independent chains. For the large difficult data set analyzed in this 
study, MCMCMC did not converge as fast as simple MCMC with a large proposal 
strategy. Recent papers have suggested tha t MCMCMC may not be justified for 
phylogenetics (Pagel et al., 2004; Beiko et al., 2006). Results in these studies 
indicate tha t the method can be helpful in reaching stationarity, but then swaps 
between chains are very infrequent during the mixing phase. If we can use different
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tuning parameters with simple MCMC to get the same rate of convergence, then 
MCMCMC is inefficient. Completely random moves, as used in small world 
proposals, are probably not recommended for phylogenetics, given the immense size 
of the tree space, but the injection of larger moves into an MCMC analysis should 
be further studied.

4.5 Conclusions

The choice of proposal algorithm and tuning parameter can dramatically affect the 
rate of convergence and quality of mixing in Bayesian phylogenetic MCMC 
methods. Generally, larger proposals are associated with shorter burn-in periods, 
lower acceptance rates and higher levels of autocorrelation. As the size of the 
proposal decreased, the burn-in period is longer but mixing is better, with lower 
autocorrelation between the sampled states.

For each of the data sets, the optimal method for fast convergence does not give 
the best results in terms of mixing. If the data  is informative, however, then 
Bayesian phylogenetic MCMC is robust to changes in proposal methods and we can 
use the same proposal for both the convergence and mixing phases without any 
noticeable effect on inference of the phylogeny. This was the case with the simulated 
data.

The empirical data displayed a greater range of results than the simulated data. 
The variability of acceptance rates for a given tuning parameter was larger across 
data sets. Autocorrelation was higher and was more variable, even though the trees 
had similar numbers of taxa. Increased autocorrelation decreased the ability of the 
MCMC to explore the tree space, as judged by narrower credible sets of topologies. 
Despite the higher autocorrelation and visible differences in the posterior 
distributions, estimates of the partition probabilities was still very good as judged 
by the low values of the RMSET statistic (the exception was a single data set with 
high values of the RMSET but also failures with numerical convergence diagnostics).

Analysis of a large fungal data set known to be a hard problem indicated tha t 
convergence can be very sensitive to proposal algorithms and tha t MCMC with 
large proposals can outperform MCMCMC in difficult inference problems. It also 
illustrated tha t the difference between optimal algorithms for the mixing and 
convergence phases can be very large for hard problems.

The analysis of several of the data  sets with tuning parameters dynamically 
adjusted based on acceptance rate indicated tha t this strategy was not 
straightforward (data not shown). The acceptance rate is slow to stabilize after 
adjusting the tuning parameter, causing a large delay between successive
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adjustments and a very long setup stage. There are a number of parameters 
required for this strategy, including an initial tuning parameter, the number of 
iterations between adjustments and the optimal acceptance rates for the setup and 
sampling phases. Automated methods for selecting tuning parameters may simply 
require too many other parameters to be justified over simply setting the tuning 
parameters to static values based on short preliminary analyses.

If setting parameters dynamically is hard, and the optimal tuning parameters 
for convergence and mixing are quite different, perhaps one solution is to initialize 
Bayesian analyses with partially optimized starting trees. The increase in fast ML 
methods (for example, the programs PHYML, RAxML and Garli (Guindon and 
Gascuel, 2003; Stamatakis et al., 2005; Zwickl, 2006)) provides one source for 
starting trees. Currently, we seem to be optimizing Bayesian methods for fast 
convergence rather than optimal mixing, and this strategy would allow Bayesian 
methods to focus on optimal exploration of the stationary distribution near the 
global optima. I note tha t using a ML starting tree may bias the Bayesian inference 
if the ML tree happens to be in a local, rather than a global, optima.

In this study, I fixed the model parameters and integrated only over topology 
and branch lengths. This was done intentionally to isolate the issue of convergence 
of the posterior distribution of phylogenies. Of course, phylogenetic inference is 
greatly influenced by the choice of model parameters. Further studies should infer 
both model parameters and phylogeny and determine the effect of convergence of 
model parameters on the inference of the posterior distribution of phylogenies.

For some analyses tha t use a phylogeny as input (such as calculation of 
divergence times or detection of residues undergoing selection), it is im portant to 
have accurate estimates of the branch lengths on the tree. The topology statistics 
examined here are based on partition probabilities, not branch lengths, and while I 
do examine the tree length, this is not very informative with respect to individual 
branches on the tree. It should be possible to develop statistics tha t incorporate the 
branch lengths in order to have a more sensitive picture about convergence of the 
branches than we can get from the tree length alone.

Future work with choosing proposal mechanisms should examine combinations 
of proposals and continue to judge the relative utility of MCMC versus MCMCMC. 
If we can improve basic MCMC methods so tha t MCMCMC is not required, this 
would increase the efficiency of Bayesian phylogenetic methods. Finally, differences 
between optimal algorithms for speed of convergence and optimal mixing indicate 
tha t further exploration of dynamically-set tuning parameters is justified to allow 
for tuning of algorithms in each of these phases.
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Chapter 5

Summarizing a posterior 
distribution of phylogenies

5.1 Introduction

When we use Bayesian phylogenetic inference to generated a posterior distribution 
of phylogenies, we generally need a method to summarize the information in the 
distribution. In a systematics study, a summary method may be needed to 
graphically portray the relationships between species on a tree. An evolutionary 
study may require one or more trees in order to study such topics as divergence 
times (Sanderson, 2002; Thorne et al., 1998), selection (Yang et al., 2005) or 
phylogeography (Knowles and Maddison, 2002; Hewitt, 2001). In either case, the 
information in the full posterior distribution of trees must be sufficiently reduced for 
the required purpose.

While the complexity of the phylogeny as a param eter makes traditional 
statistical methods problematic, this is certainly not due to a lack of information 
contained in the phylogenies, leading us to develop creative ways of summarizing 
and comparing an input list of trees. In Chapters 3 and 4, results indicate tha t 
there is significant signal with respect to the topology and partition probabilities, 
even when the posterior distribution of phylogenies is quite broad.

A common starting point for summarizing any distribution is to report summary 
statistics th a t include such concepts as the mean, mode and variance. For a 
posterior distribution of phylogenies, a natural point estimate is the mode of the 
distribution, or the maximum a posteriori, or MAP, tree. An interval estimator is 
the credible set of trees. In an ideal situation, the credible set would be small and 
there would be a significant proportion of the posterior probability assigned to the

°A version of this chapter has been submitted for publication. Cranston and Rannala 2006. 
Systematic Biology.
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MAP tree.
We rarely see this sort of reporting in the phylogenetics literature. Why is this 

the case? First, the probability of the MAP tree may be quite low, even if the 
marginal posterior probabilities on most of the internal nodes are high. This can 
happen if the posterior distribution is broad, giving credible sets with a large 
number of trees. A large credible set is unlikely to produce a single MAP tree with 
high probability. In this case, the distribution of trees is relatively flat and the 
probability of the single best tree may not be much greater than any number of 
other trees.

The second reason may be tha t reporting a credible sets of trees is not as 
intuitive as a credible set for a continuous numerical parameter. The credible set of 
trees defines the number of trees contained in the set, giving a measure of the 
overall spread of the distribution. However, there is no information about the 
relationship between the trees or how widely they differ from one another. Contrast 
this to a posterior distribution of a continuous param eter with a single mode, where 
the credible set contains a range of values tha t fall between a well-defined minimum 
and maximum point.

Instead, the most common method for reporting a posterior distribution of 
phylogenies is the majority rule consensus (MRC) tree as a point estimate with 
partition probabilities at each internal node as a measure of the uncertainty. The 
MRC tree is constructed by combining all partitions with probability greater than
0.5 from the list of partition probabilities. This often results in multifurcations 
being introduced into the tree in order to combine low probability binary partitions 
into a single well-supported multifurcating node. Since the MRC is a combination of 
sampled partitions, it is possible (although unlikely) tha t the entire tree was never 
actually sampled during the MCMC, meaning tha t we cannot assign a posterior 
probability to the whole tree. If construction of the MRC involves collapsing nodes 
to produce multifurcations, then it is certain tha t we did not sample the tree and 
there is no probability for the MRC tree. Given tha t one of the advantages of a 
Bayesian analysis is the ability to assign probabilities to trees, it is preferable to 
retain this measure of support for the tree when presenting the results.

W hether we use the MAP tree, the MRC tree or a different consensus method, 
reducing the distribution to a single tree fails to adequately describe the full 
distribution. Although providing marginal probabilities for a tree, or a single clade, 
can improve the information content, other summary methods can describe aspects 
of the distribution not captured by such point estimates.

If the credible set of trees is large and the probability of the MAP tree is small, 
what information can we obtain from the distribution? This situation may occur if
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there is a lack of information, conflicting signals or possibly due to a lack of 
convergence of the MCMC. If we can eliminate the issue of convergence (which I 
note is a non-trivial process for many data sets), then either there is simply not 
enough information in the data to infer a single strongly supported tree or there is 
an underlying evolutionary process tha t does not support a single tree for the full 
set of taxa. In any case, additional types of analysis can elucidate information about 
the support for various parts of the evolutionary history even if we cannot place a 
high probability value on a single tree.

5.2 Summary using tree pruning

One way to extract additional information from the distribution of phylogenies is to 
simplify the distribution until we find a well-supported MAP tree. This is akin to 
finding an underlying well-supported ‘skeleton tree’ within the full posterior 
distribution of trees. While sampling trees using MCMC, we expect tha t portions of 
the tree will remain nearly fixed while integrating over the uncertainty. We can find 
this constant tree by removing uncertain taxa and leaving those taxa tha t are 
well-supported by a large percentage of the input trees. This type of approach is 
similar to the so-called maximum agreement subtree (MAST) methods (Finden and 
Gordon, 1985). Given a list of trees, the maximum agreement subtree is the largest 
subtree tha t is contained in all of the input trees. This subtree (or set of subtrees) is 
generally found using heuristic search and even for three input trees, the problem is 
NP-complete (Amir and Keselman, 1997), meaning tha t a polynomial-time solution 
is not available.

The MAST tree, by definition, must agree with each of the input trees. This 
means tha t any taxa with ambiguous relationships are stripped from the input trees, 
irrespective of the support values for the ancestral nodes. When requiring strict 
agreement, the resulting subtree may contain only a very small subset of the taxa in 
the starting dataset, or the a MAST tree may not exist at all.

Rather than look for a strict MAST tree contained in every one of the input 
trees, I instead propose a method tha t searches for agreement subtrees tha t may be 
present in only some of the input trees. This is similar to the body of literature 
describing frequent subtree mining (reviewed in Chi et al., 2005). There are two 
properties tha t differentiate phylogenies from other many of the types of trees and 
networks used in the subtree mining algorithms. The first is tha t phylogenies are 
unordered, tha t is, there is no information in the left-right orientation of nodes. 
W hether we draw a given taxa as a left or the right descendant of an ancestral node 
does not affect the uniqueness of the tree. The second, more im portant, property is
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tha t ancestral nodes are only interesting when they have descendant nodes. If we 
remove two sister taxa from a phylogeny, then the ancestral node is no longer of 
interest, and we no longer include it on the tree. This differs from situations in 
non-phylogenetic applications where we are interested in properties of lower-level 
nodes even if there are no higher-level descendents. Frequency subtree mining has 
been addressed specifically in the context of phylogenies (Shasha et al., 2004) but 
only to look for common pairs of taxa in trees with different sets of taxon labels. 
The problem addressed in this study uses a posterior distribution of phylogenies as 
input, which always contain the same set of taxon label in each tree.

To search for agreement subtrees in a posterior distribution, we can use the 
posterior probabilities to score the various subtrees. The posterior distribution of 
trees contains a count of each tree in proportion to its probability, so we prefer 
agreement subtrees tha t are present in a larger proportion of the original sampled 
trees. In effect, we are weighting the agreement subtrees using the sum of the 
posterior probabilities of the input trees tha t agree with the subtree. An example of 
this strategy is shown in Figure 5.1.

Summarizing the set of trees using pruned subtrees, in addition to producing 
estimates of the best-supported subtrees, also helps to identify so-called rogue taxa. 
These are species tha t appear in multiple relationships with other taxa in the trees, 
and are of particular concern when more than one relationship has non-negligible 
probability. Removing these taxa from the posterior distribution will have a greater 
effect on the MAP tree probability than taxa tha t have well-supported relationships 
on the input trees. For example, given the posterior distribution of trees in Table 
5.1, we can prune off different taxa from the trees and compare the resulting 
distributions. The original distributions and those resulting from pruning taxon 2, 6  

or 16, are shown in Figure 5.2. Although pruning any of these taxa improves the 
probability of the MAP tree and decreases the width of the credible sets, taxon 6  

gives the greatest improvement, therefore we prefer removal of taxon 6  over the 
other two taxa. This result indicates tha t the placement of taxon 6  on the tree is 
less well-supported than the placement of taxon 2  or 16, which is not immediately 
obvious from studying the posterior distribution of phylogenies.

This can then be extended to greater numbers of pruned taxa. For a more 
complex distribution of trees (with more starting taxa or greater initial spread), 
removing a single taxa may not be sufficient to produce a subtree with high 
probability. If this is the case, pruning additional taxa will further collapse the 
input trees until a well-supported skeleton is discovered.
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Figure 5.1: Example of how the pruning method can increase the probability of the 
MAP tree. The original posterior distribution is shown as the top of the figure, with the 
MAP probability labeled in bold. We can increase the P m a p  be pruning off any single 
taxon. In this example, we prefer to prune taxon X rather than taxon B due to the 
higher probability of the resulting subtree.
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T ab le  5.1: A sample posterior distribution of phylogenies.

Probability Tree
0.6029 ((((((2,(6,(16,27)) ,(7,(48,(43,44))))
0.1637 (((((((2,6),(16,27) ,(7,(48,(43,44))))
0.0832 ((((((6,(2,(16,27)) ,(7,(48,(43,44))))
0.0646 ((((((2,(16,(6,27)) ,(7,(48,(43,44))))
0.0254 (((((((2,16),(6,27) ,(7,(48,(43,44))))
0.0194 ((((((2,(27,(6,16)) ,(7,(48,(43,44))))
0.0123 ((((((2,(6,(16,27)) ,(7,(44,(43,48))))
0.0045 ((((((16,(6,(2,27)) ,(7,(48,(43,44))))
0.0040 ((((((6,(27,(2,16)) ,(7,(48,(43,44))))
0.0040 ((((((16,(2,(6,27)) ,(7,(48,(43,44))))
0.0030 ((((((6,(16,(2,27)) ,(7,(48,(43,44))))
0.0024 ((((((16,(27,(2,6)) ,(7,(48,(43,44))))
0 .0 0 2 1 (((((((2,6),(16,27) ,(7,(44,(43,48))))
0 .0 0 2 0 (((((((6,16),(2,27) ,(7,(48,(43,44))))
0.0015 (((((((2,6),(16,27) ,(7,(43,(44,48))))
0.0015 ((((((2,(16,(6,27)) ,(7,(43,(44,48))))
0 .0 0 1 2 ((((((27,(6,(2,16)) ,(7,(48,(43,44))))
0.0005 ((((((6,(2,(16,27)) ,(7,(43,(44,48))))

1.00

■ No pruning 
B Taxa 2
□ Taxa 16
■ Taxa 6

Trees

Figure 5.2: Posterior distribution changes after pruning. I show only the ten most 
probable trees (others have negligible probability). The three patterned series show the 
effects of pruning off a single taxa from the posterior distribution. In this particular case, 
pruning taxa 6 gives a MAP tree with the highest probability, 0.95.
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5.3  T h eory

Assume the existence of a vector of R  tree topologies, f  =  {rj}, i — 1,2, ...R, 
generated by a Bayesian MCMC phylogenetic inference algorithm. The probability 
of the MAP tree, M ,  can be calculated as follows:

The objective is to identify k taxa (from a total of S  taxa) that, when 
eliminated from each tree in f ,  improve the support for a single best tree. I set a 
target posterior probability for a MAP tree based on S  — k taxa and then attem pt 
to minimize k.

included in the phylogenetic analysis. A potential subset of taxa is Sk =  ...,ik
where ij E {1,..., 5} and i j .  I then prune each of the taxa in this subset from

the subtree obtained by removing the set of taxa Sk from tree, r,.
Once I have the pruned list of trees, which is a sample from the distribution of 

subtrees, I can find the mode of the distribution:

I start with a small value for k, prune various combinations Sk and see which 
sets most improve the MAP tree probability. For even a moderate number of taxa, 
the number of distinct sets is enormous - equivalent to the number of combinations

but as k increase, the number of possible combinations is far too large, especially as 
S,  the number of taxa in the input trees, increases. Therefore, I developed two 
stochastic search algorithms to search for sets of taxa that, when pruned, improve 
the probability of the MAP subtree. One of the algorithms is an MCMC search and 
the other uses Threshold Accepting. Both use the same general strategy of selecting 
a set of k taxa, Sk, to  prune from the tree, perturbing the set to create S'k, and 
determining if this new set improves the probability of the MAP tree as compared 
to the original set. If removing a particular set of taxa improves Pm a p , then I keep 
this set for the next iteration. If not, then I sometimes keep the new set, according

(5.1)

where
if Ti — M  
otherwise

(5.2)

Let the taxa indices be S  — (1 ,..., 51}, where S  is the total number of taxa

each of the input trees to obtain a new set of trees, r[5*.] =  {Tj[<Sfc]}, where T{[Sk] is

(5.3)

of k items chosen from S  items. An exhaustive search is possible for a t least k < 3

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to a set of rules tha t differs between the two algorithms. I describe the details of 
each method below.

5.3.1 MCMC algorithm

The MCMC algorithm uses the relative probability of the new MAP tree against the 
former MAP probability as an objective function for a Metropolis-Hastings proposal 
ratio.

The MCMC algorithm is implemented as follows:
1. Set number of species removed =  k
2. Choose a subset of k  species, Sk, from the total list of S  species (number of 

possible subsets =  (^))

3. For each unique tree in the sampled set, remove the species in S from the tree

4. Calculate the initial probability of the map tree, PMAp(p[Sk])
5. Choose number of iterations, i, based on total number of possible subsets

6 . S tart the MCMC loop and run for i iterations:

(a) Create a new list of k species =  Sk, by removing one or more species from 
Sk and replacing them with an equal number of species from the 
remaining list of n  taxa

(b) Remove the species in S'k from the original list of trees

(c) Calculate Pm a p {t \S'\S)
(d) If ( p^p(r[gfc|))  ^  uniform(0,l) then accept the new list; else discard and 

keep the old list

7. If max(PMAp) < l imi t , then k  — k +  1 and repeat from 1; else quit

Proposing the new list of k species to remove, S k, involves moving a number of 
taxa from the current list, Sk, into a holding vector of unremoved taxa and then 
moving an equivalent number of taxa from the holding vector into S'k. The number 
of taxa moved in each step is chosen from a Poisson distribution with rate 0.5(k — 1).

The prior probability of removing a given set of taxa is uniform. The proposal 
ratio is symmetric, as I randomly choose taxa to remove and to replace. W ithin a 
single MCMC loop, the size of the sets (k) does not change. Therefore, the 
Metropolis-Hastings (M-H) ratio consists only of comparing the objective function, 
which is the probability of the MAP tree for the given sets of taxa: Pm Ap{i~[Sk\)■ 
The probability of accepting a ‘worse’ taxa set is then proportional to the M-H ratio.

When the algorithm discovers a new optimum, I discard any saved results and 
store the new subtree as well as the list of pruned taxa. I keep all of the sets of taxa 
(and the resulting pruned subtrees) tha t have the a P m a p  equal to the optimum 
value.
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5.3.2 T hreshold  A ccep tin g

In Threshold Accepting (Dueck and Scheuer, 1990), a new state is always accepted 
if it is within a certain distance, or threshold, of the current state. The threshold is 
relatively large at the start of the algorithm, allowing exploration in a large region 
of the sample space and movement between local optima. As the algorithm 
progresses, the threshold is progressively lowered until the method only accepts 
solutions tha t are extremely close to the current solution. Threshold Accepting is 
related to the Simulated Annealing (SA) algorithm (Kirkpatrick et al., 1983). In 
SA, acceptance is based on the function eA£7T, where A E  is the different in 
objective functions between the two states and T  is a tem perature parameter. TA 
simplifies the SA strategy by always accepting if A E  is within a certain threshold. 
In this method, I accept a new set of taxa if the difference [P'M a p  — P m a p ] is less 
than the set threshold. For my purposes, this strategy works well because the P m a p  

values are constrained to the range [0 ,1] and the threshold can be set to a 
well-defined difference in probability. TA also eliminates the cost of exponentiation 
in SA and random number generation present in SA and MCMC.

The TA algorithm is implemented as follows:
1. Set number of species removed =  k

2. Choose a subset of k species, Sk, from the total list of S  species (number of 
possible subsets =  (^))

3. For each unique tree in the sampled set, remove the species in Sk from the tree

4. Calculate the initial probability of the map tree, Pm Ap(j[Sk])
5. Choose number of iterations, i, based on total number of possible subsets

6 . S tart TA loop for i iterations:

(a) Set threshold =  t and increment =  i
(b) Start loop for this threshold:

i. Create a new list of k species =  S'k, by removing one or more species 
from Sk and replacing them with an equal number of species from 
the remaining list of n  taxa

ii. Remove the species in S'k from the original list of trees

iii. Calculate P m a p {t [S'^\)

iv. If l(PMAp(p[S'k]) — Pm Ap{T[Sk])] > —t  then accept the new list; else 
discard and keep the old list

(c) t  — t — i (if t  = 0 , exit loop)

7. If max(PMAp) < limit,  then k — k + 1 and repeat from 1; else quit

Changing the threshold sequence allows for fine-tuning of the algorithm to the 
particular data set being analyzed. Depending on the starting P m a p  and the
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breadth of the distribution, different initial threshold and decrement values will be 
appropriate. The starting threshold should be chosen so tha t the initial acceptance 
rate is approximately 80% (Dueck and Scheuer, 1990). The acceptance rate should 
then decrease as the threshold decreases. If the acceptance rate is too high, then we 
accept too many moves and the procedure behaves more like a random search, 
without moving towards an optimum. If the acceptance rate is too low, the 
likelihood of getting trapped in a local optimum increases.

5.3.3 Im p lem en tation  and ou tp u t

The method is implemented as MAPminer, a C + +  program tha t takes as input 
either a Nexus tree block containing a posterior distribution of phylogenies (such as 
the *.trprobs summary file from MrBayes) or any file containing a list of unweighted 
phylogenetic trees in newick format (such as the *.t output file from MrBayes). In 
the latter case, the program will calculate the posterior distribution of trees from 
the unweighted list before beginning the pruning algorithm. The trees can be rooted 
or unrooted. It is also possible to pool samples from multiple runs. The user 
specifies the probability limit for the MAP tree (prlimit) and the maximum number 
of taxa to remove (m axk ). The program exits when it reaches prlimit  or maxk,  
whichever comes first. The number of iterations and the length of the burn-in can 
also be adjusted, and specific taxa can be excluded from pruning (in cases where 
you are interested in the most well-supported subtree tha t contains a particular taxa 
or group of taxa).

For each value of k (number of taxa removed), the program outputs the list of 
subtrees with maximal P m a p - There may be more than one subtree with the same 
maximum value for P m a p  if more than one set of taxa can be pruned to give the 
same probability for the MAP tree. For each taxon, the method summarizes the 
frequency tha t the taxon is removed from each of the best subtrees. For example, if 
half of the best subtrees lack a given taxon, then the frequency for tha t taxon is 0.50.

The running time of the algorithm depends on the number of taxa in the input 
trees, the number of unique input trees and the shape of the distribution. A more 
disperse distribution contains a larger number of unique trees to search and will also 
likely require a larger number of taxa to be pruned, meaning tha t the runtime will 
be longer than for a more sharply peaked distribution. Although I did not study 
this explicitly, the analysis time for the pruning algorithm is likely to be positively 
correlated with the amount of time required for the initial phylogenetic inference.
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5.4 M ethods

To illustrate use of the method, I analyzed the posterior distribution of trees from 
analysis of both simulated and empirical data. For simulated data, I generated five 
different phylogenies of 50 taxa using a birth-death process (speciation rate =  8.5, 
extinction rate =  0.5 and sampling frequency =  0.01). For each phylogeny, I 
simulated 5000 sites under the Jukes Cantor model of evolution using the evolver 
package of PAML (Yang, 1997). Phylogenetic inference was performed with 
MrBayes v. 3.1.2 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck,
2003) using the known evolutionary model and a birth-death prior on branch 
lengths. I note tha t in this study, the details of the phylogenetic inference method 
are not critical, as the goal is simply to produce a distribution of trees for the 
post-run analysis, rather than infer the phylogenies themselves.

Using the output from the phylogenetic inference, I ran MAPminer using both 
algorithms in order to summarize the posterior distribution. The limit on number of 
taxa to prune was set at 1 0  (2 0 % of the total taxa) and the desired limit for the 
probability of the MAP tree was 95%. For small numbers of removed taxa (k = 3 
and k =  4), I also performed an exhaustive search in order to compare the true 
frequent subtrees with those found by the stochastic searches.

The empirical data was the posterior distribution of phylogenies for a data set of 
85 Carnivore species (Fulton and Strobeck, 2006). I note tha t I did not perform the 
phylogenetic analysis, instead obtaining the MrBayes output files directly from the 
authors of the original paper and using these files as input for the MAPminer 
program.

5.4.1 M C M C  settin g s

Initial testing using the MCMC algorithm with posterior distributions from the 
simulated data displayed an extremely high acceptance rate (greater than 90%). In 
light of the data, this high acceptance rate is expected. The objective function uses 
the posterior probabilities, which are proportional to the likelihood of the trees. We 
know a priori th a t the list of input trees only contains trees selected as reasonable 
by the original phylogenetic inference. The range of likelihood values for these trees 
is much smaller than for the full tree space, so comparing the posterior probilities 
based on these likelihoods should very often accept a proposed state. However, this 
makes the algorithm inefficient, as the search becomes more like a random Monte 
Carlo search than a directed MCMC search. In order to increase the sensitivity of 
the method, I altered the acceptance procedure so tha t I accept if:
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f PMAp{r[S'k])\ X
\P M Ap{r[Sk} )  > ^  >

where a; is a small integer. This has the effect of exaggerating the differences 
between P m a p  values and reducing the acceptance rate. In a standard MCMC 
application, altering the posterior distribution in such a way would prevent 
sampling from the chain (similar to the inability to sample from a heated chain in 
Metropolis-coupled MCMC (Geyer, 1991)). In this application, however, the goal of 
the MCMC algorithm is to search for optimal subtrees, not to sample from the 
space of subtrees, so the modification simply has the effect of making the search 
more efficient.

5.4 .2  TA  settin g s

The TA algorithm requires an initial choice of threshold and a decrement value. I 
tested starting threshold values of 0.1 and 0.2, with decreases of 0.05, 0.025 and 
0.02. Either starting value produced acceptance rates in an appropriate range. The 
number of iterations was 4000 to 5000 per threshold decrement so tha t the total 
number of iterations was 20000 (equivalent to the number used for the MCMC 
method, so tha t the two algorithms could be fairly compared).

5.5 Results

5.5.1 P h y lo g en etic  inference

The phylogenetic inference results from the five runs are summarized in Table 5.2. 
Each posterior distribution contained 10000 total trees, with the first 1000 discarded 
as burn-in based on plots of the log-likelihood and tree length. Changing the 
burn-in to 5000 did not significantly alter the size of the credible set or the 
probability of the MAP tree. For the five posterior distributions, the probability of 
the MAP trees ranged from 0.055 to 0.887 and the size of the 95% credible set from 
11 to 434 trees. Run 3 is a narrow, peaked distribution, while Runs 4 and 5 are 
much more dispersed with a very low probability on the MAP tree. The other two 
runs fall in between these extremes. The majority rule consensus trees for each run 
contain at least 4 nodes with uncertain resolution (posterior probability of the clade 
is less than 100%), and all but Run 3 contain a multifurcation in the MRC tree. 
These results give a sufficiently variable set of posterior distributions for testing the 
tree pruning algorithms.
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Table 5.2: Summary of phylogenetic inference. For each simulated data set, I report 
the probability of the MAP tree, the size of the 50%, 90% and 95% credible sets, the 
total number of unique sampled trees and the number of nodes in the MRC tree with 
less than 100% posterior probability.

Run P m a p Size of credible 
sets (50,90,95)%

Nodes < 100% Multifurcations

1 0.206 (23, 34, 58) 4 1

2 0.136 (42, 59, 89) 5 1

3 0.887 (2, 4, 11) 5 0

4 0.055 (131, 178, 267) 6 1

5 0.072 (204, 286, 434) 9 1

Table 5.3: Summary of pruning results from the five posterior distributions of phyloge­
nies.

run starting P m a p final P m a p Taxa removed Equivalent subtrees
1 0.206 0.9726 5 2

2 0.136 0.6604 15 1

3 0.887 0.9575 4 2

4 0.055 0.6964 15 1

5 0.072 0.9334 15 4

5.5.2 P ru n in g  trees for sim u lated  data

I first present pruning results for the five distributions using the TA algorithm with 
starting threshold 0.1 and threshold decrement 0.02. For each of the input posterior 
distributions, the number of best subtrees for a given number of taxa ranges from 1 

to 18 (see Table 5.3). Subtrees with P m a p  > 0.95 were found in only two of the five 
distributions. Figure 5.3 illustrates detailed results for Run 1, one of the two 
distributions where the method discovered well-supported subtrees.

It is possible to summarize the taxa present in the subtrees. If the method finds 
a single subtree, then the output includes tha t subtree and the list of taxa removed 
from the tree. If there is more than one equivalent subtree, the output lists the 
subtrees and the taxa removed to produce each subtree. For multiple subtrees, the 
output also includes the fraction of subtrees tha t do not contain tha t taxa. If a taxa 
is always absent, then it has lower overall support in the original distribution of 
phylogenies.

Multiple equivalent subtrees result when different combinations of taxa produce 
subtrees with the same probability. This is the case when multiple taxa have the
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Subtree 1 
P(MAP) = 0.973

Subtree 2 
P(MAP) = 0.973

Majority-rule consensus tree

Posterior distribution:
P(MAP) = 0.206
95% credible set = 58 trees

Subtree taxon frequencies:
8

40
6
2

46
21

1.00
1.00
1.00
1.00
0.50
0.50

Figure 5.3: Majority rule consensus tree and best agreement subtrees for Run 1. Nodes 
without explicit posterior probabilities on the MRC tree have probability 1.00. Note the 
low probability on the original MAP tree (P=0.206), despite relatively high posterior 
probabilities on the MRC tree. The taxon frequencies indicate the frequency that the 
taxon is pruned to produce the subtrees.
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Figure 5.4: Pre-processing step that compresses nodes with posterior probability of

same resolution within the tree (in terms of the marginal posterior probabilities of 
clades). This can happen with distantly related taxa, or it can happen for taxa in 
the same clade when the poor resolution is on the ancestral node. To separate these 
two issues, I added an optional pre-processing step to the algorithm. Before starting 
the pruning, this step identifies all internal nodes tha t have 1 0 0 % posterior 
probability on both the node itself and on all descendent internal nodes. Then, it 
collapses these nodes (and all descendent nodes), replacing them with a single 
marker node. This is justified because removing a taxon descendent to one of these 
internal nodes has no effect on the probability of the MAP tree (removing such a 
taxon cannot collapse any of the input trees, since 1 0 0 % of the input trees contain 
the same pattern). An example of this strategy is shown in Figure 5.4. The 
pre-processing step also greatly increases the speed of the algorithm, since it 
excludes taxa from the search tha t cannot improve P m a p • The disadvantage is tha t 
this makes the results more difficult to summarize, as the marker nodes are treated 
as one taxa, while we are in reality removing the entire clade (such tha t the output 
trees may not be the same size). Weighting the nodes seems like a possible solution, 
but this makes the proposal strategy more complicated.

I suggest performing an initial search with a relatively small number of 
iterations and a large upper limit on k, the number of taxa removed. From these

100%.
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Table 5.4: Comparison of MCMC and TA algorithms for five posterior distributions 
of trees. The k value is the largest number of taxa removed for that run. For each 
algorithm, the table lists the optimum P m a p  found by each algorithm. The number in 
brackets is the number of subtrees with the given probability. The best result is the one 
that first maximizes P m a p  and then the number of subtrees. The last row summarizes 
the number of times that algorithm gave the best results. Details about settings for each 
algorithm are in the text.

run k MCMC1 MCMC2 MCMC3 TA1 TA2 TA3
1 5 0.919 (1) 0.963 (1) 0.973 (1) 0.973 (2) 0.973 (3) 0.973 (2)
2 1 0 0.557 (1) 0.623 (1) 0.623 (1) 0.623 (18) 0.623 (1) 0.628 (4)
3 5 0.955 (1) 0.945 (3) 0.955 (1) 0.955 (2) 0.955 (2) 0.958 (1)
4 1 0 0.489 (1) 0.489 (1) 0.528 (1) 0.586 (3) 0.525 (1) 0.571 (1)
5 1 0 0.698 (1) 0.698 (1) 0.639 (1) 0.862 (1 ) 0.682 (1 ) 0.782 (1)

all 0 0 0 2 1 2

results, determine a smaller range of k values tha t give probabilities near the desired 
range. Then, perform an intensive search, with a larger number of iterations in the 
smaller range of k values. The algorithm should run until no further changes are 
observed in the optimal P m a p  or the number of equivalent subtrees.

5.5.3 C om parison o f  a lgorithm s

I compared the performance of the MCMC and TA algorithms, using each posterior 
distribution of trees and the described range of implementation parameters for each 
method. Performance was judged based on three nested criteria: 1. the maximum 
P m a p  tree found; 2 . the number of subtrees with this probability; and 3. the 
number of iterations required to find the optimal solution. The best method found 
subtrees with the highest P m a p  and the largest number of equivalent subtrees in 
the smallest number of iterations. The results are summarized in Table 5.4. The TA 
algorithm was far more consistent in both finding an optimal P m a p  and finding the 
largest number of subtrees with tha t P m a p ■ Of the five runs, the TA algorithm 
found the optimal solution in all five cases. The time requirement for each of the 
algorithms was very similar (data not shown).

For k = 3 and k = 4 (where k =  number of removed taxa), I also compared the 
two algorithms with the results from an exhaustive search. This gave 5 runs * 2 
values k = 10 comparisons. In 9 out of 10 comparisons, both stochastic search 
methods found an optimal P m a p  equal to tha t from the exhaustive search, 
measured to 4 significant digits. In these 9 comparisons, MCMC found all of the 
equivalent subtrees in 8  comparisons, while TA found all of the equivalent subtrees 
in all comparisons. Table 5.5 details these results.
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Table 5.5: Com parison o f stochastic and exhaustive search strategies for th e five pos­
terior d istributions o f trees. Similar to  Table 5.4, each cell contains th e optim al P m a p  

and th e number o f equivalent subtrees in brackets. For each algorithm , th e table lists  
the optim um  P m a p  found by each algorithm .

run k Exhaustive MCMC TA
1 3 0.7000 (1) 0.7000 (1) 0.7000 (1)
1 4 0.9143 (2) 0.9143 (2) 0.9143 (2)

2 3 0.3946 (4) 0.3946 (4) 0.3946 (4)
2 4 0.5154 (2) 0.5154 (2) 0.5154 (2)

3 3 0.9405 (2) 0.9405 (2) 0.9405 (2)
3 4 0.9454 (2) 0.9452 (1) 0.9435 (2)

4 3 0.2987 (2) 0.2987 (2) 0.2987 (2)
4 4 0.3883 (4) 0.3883 (4) 0.3883 (4)

5 3 0.2578 (8) 0.2578 (8) 0.2578 (8)
5 4 0.3303 (8) 0.3303 (6) 0.3303 (8)

5.5.4 Empirical data

The original phylogenetic analysis of the Carnivora data  set produced a consensus 
tree with good resolution between most of the major groups but with a lack of 
resolution within groups (Fulton and Strobeck, 2006). Figure 5.5 shows the 
well-resolved relationship between the family-level groups. The posterior 
distribution of phylogenies contained 20000 total sampled trees from 2 MCMC 
chains, with the first half of each run discarded as burn-in. The MRC tree contains 
5 multifurcations and 13 nodes with marginal posterior probability less than 0.95. 

The posterior distribution of phylogenies was very flat, with a probability of the 
MAP tree equal to  0.001 and the 50, 90 and 95% credible sets containing 3471, 7472 

and 7972 trees each.
Exploratory pruning analysis (with various threshold annealing parameters and 

a small number of iterations) indicated tha t subtrees with probablities near 50% 

could be found by pruning approximately 30 taxa from the tree. This is a large 
percentage of the total taxa, but is to be expected given the very broad initial 
distribution. I  then performed a more extensive analysis, with total number of 
pruned taxa ranging from 25 to 35 and a larger number of iterations. This data set 
was much more sensitive to the TA settings for initial threshold and increment than 
were the simulated data sets. W ith an initial P m a p  of 0.0006, the starting threshold 
needed to be 0.01 or lower for reasonable results. I  performed eight separate analysis 
with starting thresholds ranging from 0.005 to 0.02 and increments th a t were 0.1% 

of the starting threshold.
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F ig u r e  5 .5 : Fam ily-level subtree for th e 85-taxa Carnivora phylogeny. T he second  
number above each branch is th e posterior probability for the full data  set (the first 
number if th e bootstrap  proportion from ML analysis, and below th e branches are the  
support values for a second analysis w ith  fewer genes). Reproduced from Fulton and  
Strobeck (2006).

The best result was a subtree with P m a p  =  0.9558 after the removal of 28 taxa 
(leaving a tree with 57 taxa). In three independent runs, MAPminer found seven 
unique subtrees of size 57 with probabilities greater than 0.95. The original tree and 
the subtrees are shown in Figure 5.6. Of the 85 original taxa, there were 19 tha t 
were always absent from the subtrees and 50 tha t were present in all of the high 
probability subtrees. The 16 remaining taxa were present in some but not all of the 
seven subtrees. The 19 ‘always absent’ taxa are definite candidates for further 
sequencing efforts or for removal from the data  set before additional phylogenetic 
inference.

This empirical data  set illustrates an extreme case. The starting posterior 
distribution of phylogenies was extremely flat, with very low probability on the 
MAP tree and several thousand trees in the 90% credible set. As could be expected, 
the discovery of a well-supported skeleton tree within the distribution required the 
removal of a relatively large number of taxa compared to the results I saw in the 
simulated data sets. However, the algorithm was still able to discover several very 
well-supported subtrees containing 2/3 of the original taxa in the data set.
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Figure 5.6: MRC tree of the Carnivora Solid arrows mark taxa that are removed in all 
57-taxon subtrees with probability greater than 0.95. Dashed arrows mark taxa marked 
that are removed from some, but not all of the subtrees. Joined arrows indicate groups 
with 100% posterior probability, but uncertain position of the group as a whole on the 
tree.
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5.6 Discussion

One of the advantages of Bayesian inference is tha t it produces, not just a point 
estimate, but a full posterior distribution for the parameters of interest. The 
posterior probability of particular param eter value (or particular phylogeny) gives a 
mathematically well-defined and intuitive measure of the support for tha t value.
One obvious summary statistic for a distribution trees is then the most probable 
tree, the MAP tree. Another commonly used summary is the majority-rule 
consensus tree. In either case, relying solely on the a single point estimate does not 
adequately describe the full posterior distribution. The MAP tree often has low 
overall probability. When reporting a MRC tree, high partition probabilities on a 
majority of internal nodes in the MRC tree do not imply tha t there is a strongly 
supported MAP tree and a narrow distribution of trees. Even with most partition 
probabilities approaching 1 0 0 %, there may still be a very large number of unique 
trees in the credible set.

The ideal result for a Bayesian phylogenetic inference would be a single 
well-supported tree, defined by a high posterior probablity. In reality, many data 
sets return a large credible set of trees and no single tree with high probability. The 
tree pruning method provides a list of the largest well-supported subtrees tha t exist 
within the posterior distribution of phylogenies. The quality of the subtrees is 
determined by the sum of the posterior probabilities of the input trees tha t agree 
with a given subtree. By pruning taxa from the input trees, we can search for 
optimal agreement subtrees and produce a modified posterior distribution of 
phylogenies with narrower credible sets and higher probabilities on the MAP trees. 
The MAP tree (the most probable tree) is the most natural point estimate for 
summarizing a posterior distribution and is more natural in a Bayesian context than 
using consensus trees. Bayesian methods provide us with probabilities for entire 
trees, while the use of consensus techniques causes the whole-tree probabilty to be 
unreported, or lost.

I implement and compare two different algorithms for the subtree search. The 
MCMC methodology is likely familiar to most users of Bayesian inference, with 
proposed solutions accepted in proportion to a Metropolis-Hastings ratio of the 
proposed and current objective functions. The second algorithm is the threshold 
accepting (TA) algorithm, which accepts proposed solutions tha t are within a 
certain threshold of the current solution, and then progressively lowers the threshold 
until it searches only in the region of the optimal solution. It too uses a Metropolis 
acceptance step, but with a different objective function and probability of 
acceptance. TA is strictly an optimization algorithm, rather than a sampling 
algorithm tha t can provide a picture of the underlying distribution. The
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performance of the TA algorithm was superior, both when compared directly to the 
MCMC algorithm and when both methods were compared to an exhaustive search 
(the ’’true” result).

The possible outcomes of this type of analysis are threefold. First, the method 
can produce a single subtree with the specified probability, meaning tha t the 
posterior distribution of trees contains one well-supported skeleton tree and a 
unique set of taxa to  prune. Second, there may be multiple subtrees with the same 
probability (or very similar probabilities). This result can occur when resolving 
multifurcations, or when removing taxa from a clade where the unresolved nodes are 
deeper in the tree, so tha t resolution involves removing entire clades of taxa rather 
than individual taxa. A pre-processing node compression step can simplify the 
pruning in such situations. Finally, the method may reach the upper limit on the 
number of taxa to remove and exit without finding any well-supported subtrees. 
There can be two reasons for this result. The data may simply not be informative 
enough to support even a subtree within the distribution, in which case a 
re-evaluation of the input data may be required. The other possibility is 
non-convergence of the Markov chain Monte Carlo in the original phylogenetic 
inference. I encourage users to ensure tha t the phylogenetic inference method has 
converged with respect to the log likelihood, model parameters and other output.

Rather than use the probability of the MAP tree as an end point, it would also 
be possible to use the size of the credible set. We would then run the analysis until 
the number of trees in the 95% credible set was less than a specified limit (or until 
we reached the maximum number of allowed pruned taxa). This may be a more 
useful strategy if the results from the Bayesian phylogenetic inference are being used 
in a program tha t takes a set of trees as input.

This pruning method shares some properties with the Reduced Consensus 
methods (Wilkinson, 1994, 1996) for improving bootstrap values on trees. The 
Reduced Consensus methods create a profile of subtrees based on common n-taxon 
statements (rooted trees) or partitions (unrooted trees) in the original set of trees. 
The original method (Wilkinson, 1994) was strict, requiring agreement between all 
input trees, but a later majority-rule method (Wilkinson, 1996) allowed less than 
100% bootstrap support on the subtrees. In contrast, my tree pruning method 
operates with entire subtrees, which are more informative than n-taxon statements 
or partitions. This was previously recognized as a better solution (Sanderson and 
Schaffer, 2002). Using entire subtrees means tha t we can place support values both 
on the full tree and on partitions within the tree. In addition, the methods proposed 
by Wilkinson have “quite severe limitations on the numbers of taxa and numbers of 
trees tha t can be analyzed” (Wilkinson, 1996). MAPminer can accept thousands of
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input trees with at least 100 taxa. Also, by limiting the output to the largest 
agreement subtrees, we avoid the problem of exponential growth of the number of 
trees in the Reduced Consensus profile with increasing number of taxa in the input 
trees (Bryant, 1997).

I want to emphasize the im portant distinction between performing a 
phylogenetic analysis without a given taxon and the post-analysis pruning method 
described here. The addition of taxa to a phylogenetic inference problem is known 
to improve accuracy of the inference (Rannala et al., 1998; Greybeal, 1998; Zwickl 
and Hillis, 2002). Studies by (Rosenberg and Kumar, 2001) and (Pollock et al.,
2 0 0 2 ) explicitly compare the accuracy of trees inferred from a subset of taxa with 
pruned trees derived from the inference of the full set of taxa. Although the 
magnitude of the effect is disputed (Rosenberg and Kumar, 2003; Hillis et al., 2003), 
the studies do indicate tha t the pruned trees have lower error rates than trees 
analyzed with only a subset of the data.

While there is information gained from each taxon in the original phylogenetic 
inference, the inclusion of some taxa may disproportionately complicate the 
post-run analysis. This may be particularly worrisome if the added taxa are not the 
ones of greatest interest to the study. For example, taxa may have been added in an 
attem pt to break up long branches, or simply because the sequences were available. 
As the number of sequences in public databases continues to grow, it is ever easier 
to use larger taxon sets to infer trees. This type of post-inference summary allows 
all available taxa to be included in the original analysis. The summary method can 
then identify problematic taxa and rank these taxa according to their instability on 
the input trees. Information about specific taxa can be used to direct future efforts, 
for example, obtaining additional sequence for the most unstable taxa.

My aim in this study is to present a novel method for summarizing the posterior 
distribution of phylogenies and to encourage developers and users of Bayesian 
phylogenetic inference to investigate a variety of methods. A summary method may 
simply involve reducing the distribution to one single tree as a point estimate, such 
as the MAP tree or the MRC tree. In contrast, we can summarize the entire 
distribution in a network structure, which retains every partition relationship 
present in the full distribution at the expense of a more complex interpretation (for 
example, Huson and Bryant, 2006). Between these two extremes, there is great 
potential for other methods which balance simplicity of interpretation with maximal 
information content in ways tha t are appropriate to the desired application of the 
phylogenetic results.

The MAPminer method, based on frequent agreement subtrees within the 
posterior distribution, provides individual well-supported binary trees than can be
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easily reported or input into other software packages for secondary analyses. A 
posterior distribution with wide credible sets requires a larger number of taxa to be 
pruned from the trees in order to discover a well-supported agreement subtree 
within the distribution. The absence of well-supported subtrees indicates a lack of 
information in the posterior distribution of phylogenies. One benefit of this 
particular post-run analysis is tha t it allows the original inference of the phylogeny 
to proceed with all of the available data, yet allows the summary to contain only the 
results tha t describe well-supported binary trees.
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Chapter 6

Conclusions and future 
directions

This thesis introduces a novel algorithm for proposing trees in Bayesian 
phylogenetic Markov chain Monte Carlo (MCMC), tests this algorithm against 
existing methods, assesses the utility of various convergence diagnostics for MCMC 
output and finally, develops a novel method to summarize the phylogenies sampled 
during an MCMC analysis.

When assessing convergence of Bayesian phylogenetic MCMC methods, 
numerical output parameters converge faster than partition probabilities, which 
converge faster than the distribution of phylogenies. For many data sets, the 
phylogenies are not likely to converge to a stable posterior distribution, due to the 
sheer size of the sample space of reasonable trees. Our estimates of the topology, as 
measured through variability of partition probabilities between chains, do not seem 
to be overly sensitive to a lack of convergence of the full posterior with respect to 
entire trees.

Numerical convergence diagnostics, such as the Potential Scale Reduction 
Factor, Raftery-Lewis and Heidelberger-Welch tests (Gelman and Rubin, 1992; 
Raftery and Lewis, 1992; Heidelberger and Welch, 1981), are useful to detect 
burn-in, confirm stationarity and examine mixing. Estimation of the burn-in phase 
using these diagnostics generally gives results tha t are consistent with the common 
practice of using the log likelihood time series plot to judge the length of the 
burn-in. It is prudent to also check diagnostics calculated using the tree length, as 
these can be significantly different than the log likelihood results for some data sets. 
Stationarity testing using numerical diagnostics was more sensitive than time series 
analysis, and tests based on multiple chains were more sensitive than those based on 
a single MCMC chain.
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The partition-based statistics (RMSET and MeanSD) are much more sensitive 
to the convergence of the topology and branch lengths than are the standard 
MCMC output parameters (log likelihood and tree length). The values of these 
statistics continue to decline long after the whole-tree parameters have reached their 
stationary distribution, indicating tha t a long sampling phase is required after 
burn-in of the MCMC chains.

The quality of the sampling phase is dependent on the mixing behaviour of the 
chain, and autocorrelation between samples is one measure of this behaviour. 
Autocorrelation in phylogenetic MCMC is significant, likely due to  the size of the 
phylogeny param eter and the fact tha t only a portion of this param eter is modified 
at each iteration of the chain. Larger trees displayed higher autocorrelation, which 
is consistent with an increasing portion of the tree remaining unchanged between 
iterations. Smaller moves sizes and higher acceptance rates were associated with 
lower levels of autocorrelation.

The BranchSlide algorithm introduced here is an extremely tunable proposal 
algorithm tha t can be parameterized to behave as either a local or global proposal 
method. The choice of move size from the Normal distribution means tha t the 
algorithm can generate both small and large moves without any change in the 
tuning parameter, which explains the improved mixing over solely large or small 
proposals. The move size is also dependent on the branch lengths of the tree, so a 
small distance may still induce a topology move in regions of poor resolution (with 
short branch lengths). The challenge with an algorithm such as BranchSlide is the 
choice of tuning parameter, which is dependent on both the tree length and the 
difficulty of the inference problem. This algorithm could easily be extended through 
a change to  the distribution used to select the move size. For example, we could use 
a mixture of Normal distributions, with the mean of one distribution closer to zero 
and one farther away (the second distribution giving larger moves, on average).

For informative data  sets, Bayesian phylogenetic MCMC methods are very 
robust to changes in the methods for proposing new trees. For more challenging 
inference problems, however, the proposal strategy can greatly affect both 
convergence and mixing. The best algorithm for fast convergence is not the same as 
the method for optimal mixing, and the difference between the optimal methods 
seems to increase with the difficulty of the inference problem. One strategy used to 
improve mixing and convergence in phylogenetics is Metropolis-coupled Markov 
Chain Monte Carlo (MCMCMC, or MC3) (Geyer, 1991; Huelsenbeck and Bollback, 
2001). In this study, however, simple MCMC with large proposals was more effective 
than MCMCMC with the most challenging data set. Although a larger number of 
examples are required, this result does agree with recent papers tha t question the
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efficiency of MCMCMC methods (Beiko et ah, 2006; Pagel et al., 2004).
The lack of convergence of the posterior distribution of phylogenies does not 

indicate an absence of information in the distribution, as evidenced by good 
estimates of the partition probabilities, even with an extremely flat posterior 
distribution of topologies. This lead to the development of a novel summary 
methods for the posterior distribution of phylogenies tha t aimed to extract one or 
more well-supported subtrees from within the distribution. By relaxing the 
requirement of strict agreement for maximum agreement subtrees, I was able to 
extract entire topologies with very high posterior probability from a starting 
distribution tha t did not contain any trees with high probability. This method is 
useful for the presentation of results from a Bayesian analysis, and also helps to 
identify taxa as candidates for further sequencing efforts.

A large component of the research described in this thesis was the development 
of a novel software package for Bayesian phylogenetic inference. Appendix A 
describes the implementation of this software. Despite the popularity of MrBayes, 
the existence of this and other software packages for Bayesian inference (see Table 
6 .1 ) points to a need for tools to enable scientists to develop their own software 
implementations. While it is possible to modify the source code of another package, 
a better solution would be to collaborate on the development of programming 
classes for the basic functionality of phylogenetic inference (refer to Appendix A for 
a description of object-oriented programming and the class structure). There are 
two advantages to this sort of collection. Classes can be easily combined to create 
new functionality without the need to write code for the basic structure of the 
program. For example, there are certainly hundreds, if not thousands, of different 
programming implementations for the set of common evolutionary models. This is 
time tha t could be better spent developing software for novel theoretical 
developments. The second advantage would be higher confidence in the 
mathematical and programming accuracy if there were multiple authors and users 
contributing to the development. The PAL Java library (Drummond and Strimmer., 
2 0 0 1 ) is one step in this direction, and the forthcoming release of the object-oriented 
MrBayes 4.0 is another.

The advent of very fast maximum likelihood methods such as PHYML, RAxML 
and Garli (Guindon and Gascuel, 2003; Stamatakis et al., 2005; Zwickl, 2006) may 
have an effect on the future use of Bayesian methods. While the performance of 
Bayesian methods is good for smaller trees (Williams and Moret, 2003), for large 
trees, these ML methods greatly outperform in terms of speed (measuring inference 
of 100-200 taxon trees in terms of seconds). This makes them very attractive for 
systematists who simply want to infer a single tree for large data sets. In contrast,
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T able 6.1: A list of available software packages for Bayesian inference of phylogenies.

Name Reference
BAli-Phy
BAMBE
BayesPhylogenies
MrBayes
mcmctree
PhyBayes

Suchard and Redelings (2006) 
Simon and Larget (2000)
Pagel and Meade (2004)
Ronquist and Huelsenbeck (2003) 
Yang (2002)
Aris-Brosou and Yang (2002)

Bayesian methods are not ideally suited to simply finding a point estimate of the 
phylogeny (although they have often been used for this purpose). The advantages of 
integrating over the posterior distribution of phylogenies are the ability to quantify 
the uncertainty using the posterior probabilities and the ability to  simultaneously 
infer other evolutionary parameters. This allows uncertainly in the phylogeny to be 
incorporated into our estimates of other parameters (and, conversely, allows the 
uncertainty in their distribution to inform the inference of the phylogeny). Bayesian 
phylogenetic methods are likely to become increasingly im portant in areas involving 
the application of distributions of trees to other questions about evolution. For 
example, concurrent inference of alignment and phylogeny is well-suited to Bayesian 
methods (Redelings and Suchard, 2005), as is the estimation of divergence times 
(Drummond et al., 2006; Rannala and Yang, 2003).

As novel applications in phylogenetics continue to proliferate and the size of 
data  sets increases, it is imperative tha t we continue research on the basic 
functionality of Bayesian methods, including choice of prior distributions, proposal 
algorithms, MCMC convergence analysis, effect and detection of mixture models 
and optimization of partitioning schemes.
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A ppendix A

A Bayesian phylogenetic 
inference package

This Appendix gives a brief description of BayesTrees, the Bayesian phylogenetics 
inference package used throughout this thesis. The BayesTrees package includes 
three programs. The first is BayesTrees itself, which performs Bayesian phylogenetic 
inference. The second is TreeSum, which calculates the topology-based diagnostics 
used in Chapter 3. Finally, MAPminer implements the frequent subtree mining 
method described in Chapter 5. The entire package is written using object-oriented 
C + + , so I first introduce the object-oriented programming concept.

A .l  O bject-oriented programming

BayesTrees is written in C + + , using an object-oriented programming (OOP) 
approach. In this style of programming, the code is compartmentalized into classes 
which contain groups of related variables and methods (functions). For example, the 
M o d el class contains all of the variables and methods for defining the evolutionary 
model, proposing new states for model parameters and calculating transition 
probabilities. To use a class, you create an object of tha t class. Upon creation of the 
object, a constructor method initializes all of the variables in the class and a 
destructor deletes any used memory when the object is no longer needed. Objects 
can come in and out of memory as they are needed and not needed during run-time. 
Compartmentalization of the code makes sharing code easier, makes the code more 
readable and reduces duplication.

The class can contain both private and public member variables and methods. 
This allows the programmer to isolate aspects of the class from the user (where the 
user can be another class). For example, the N o d e  class contains pointers to the 
left, right and ancestral nodes as well as the branch lengths between these nodes.
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These variables are private  and can be accessed only through public methods. If we 
try  to set an illegal branch length or change a branch between two nodes tha t are 
not connected, the public changeLength method performs error checking and deals 
with any illegal conditions, rather than allowing the user of the class to directly set 
the Node pointers or branch length field. There is no need to remember to perform 
the error checking when writing new code tha t changes a branch on the tree - the 
only way to perform this operation is through the public method in Node.

A class can be completely independent, or can contain other objects (classes 
tha t contain other classes are an example of composition). For example, the Tree 
class includes a collection of Node objects, and the Phylogeny class contains a 
Tree, a M odel and a Data object. Figure A .l describes the classes in BayesTrees 
and their relationships.

OOP also includes the idea of inheritance, where we create a new class using an 
existing class as a template. If there is a class whose methods you want to use, but 
you want additional functionality, you can create a new class tha t is derived from 
the base class. The derived class can use all of the functions of the base class, and 
the code added to the derived class does not affect the base class. Examples in 
BayesTrees include the Tip and Internal classes, which are derived classes of 
Node, and each of the tree rearrangement classes, which are derived from a generic 
Proposal class. This allows much greater efficiency when writing new 
implementations. Inheritance keeps the base class clean, which is particularly 
im portant if there are multiple developers on a project. The same base class can be 
used for multiple, unrelated projects through the creation of different derived classes.

There are a number of other standard relationships available to link classes 
together and improve their interaction, known as Design Patterns (Gamma et al., 
1995). For example, I utilize a Factory pattern for generating tree rearrangement 
algorithms. The Phylogeny class simply requests an algorithm, and the 
AlgorithmFactory class returns the appropriate proposal method based on the 
specified type and the prior on branch lengths. The Phylogeny class simply 
receives a generic Proposal and can call the generic methods rearrange or 
changeTuning without having to know about the specific implementation. This 
makes it simple to add an additional tree proposal - there are no changes to the 
code in the Proposal, Tree, Phylogeny or MCMC classes.
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f  g e tD a ta  ():vo id  
•g e tT o k e n  ():void 
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A lgo rithm F acto ry
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h e x p o n e n tia lR V  ( ) :d o u b le  
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P h y lo g e n y T re e N o d e

• m o lecu la rC lo ck  : b o o le a n o ---------- - ro o t In te r n a l - left :N o d e

• t r e e  :T re e - r ig h t  iN o d e

-m o d e l  :M odel +  p r in tT re e  ():void - a n c e s to r  :N o d e

• d a ta  :D a ta +  s u m B ra n c h e s  ():vo id - c o n d i t io n a ls  :V ec to r
+  g e tN o d e  0 :v o id

+  ca lcL ik e lih o o d  ():d o u b le +  c re a te R a n d o m  0 -v o id
+  c a lc B ra n c h P rio r  { ):doub le +  c re a te B ir th D e a th  0 ;void
+  p ro p o s e T re e  ():void + im portN ew ick  ():vo id +  c h a n g e B ra n c h  ():void

In te rn a l Tip

- ta x o n N u m b e r  :int

+  linkLeft ():vo id  
+  linkR ight ():vo id  

+  flipC hildren  ():void

+  g e tT a x o n  ():vo id

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure A .l: The BayesTrees classes and their relationships. Each box is a class with the class name, list of sample variables and list of sample 
methods. Not all variables and methods are included, simply a few to give an idea of the function of the class. Arrows indicate relationships 
between the classes. Open triangles indicate inheritance, while diamonds indicate composition. The other arrows simply indicate that the 
classes communicate with each other. The Math class is a utility class that is called by nearly every other method (but adding these arrows 
would have made the diagram unwieldy).



Another common pattern is the Singleton, which ensures tha t only a single 
object of the class is in existance at any one time. This is useful for the M ath class, 
since we can initialize the seed for random number generated once, then not worry 
tha t it is reset every time we try  to create a new M ath object. Singletons can also 
reduce memory consumption, since we create one instance of a class and reuse tha t 
instance rather than creating multiple instances. M odel, M ath, D ata and all of 
the tree rearrangement classes are all Singletons.

An good example of object-oriented techniques is the Nexus Class Library 
(NCL) (Lewis, 2003), widely used to read data from Nexus files in BayesTrees, 
MrBayes, BEAST and others. Another is the PAL library (Drummond and 
Strimmer., 2001), which is a collection of classes for phylogenetics and evolutionary 
biology written in the Java programming language.

A .2 BayesTrees

BayesTrees reads data in Nexus format (Maddison et al., 1997). It currently accepts 
only nucleotide data. Missing characters and gaps are treated equivalently (as the 
unknown character ‘N’ with conditional likelihoods of 1.0 for all four nucleotide 
states). Avaiable tree proposal methods include the BranchSlide, Local and SPR 
algorithms described in Chapter 2. Currently, only a small number of evolutionary 
models are implemented, including Jukes-Cantor, F81, K2P and HKY85.

The program runs from the command line and is non-interactive. It reads 
analysis parameters from a BayesTrees block located in a parameter file provided at 
startup. The package includes a Perl script tha t prompts the user for options and 
creates the parameter file containing the BayesTrees block in the appropriate 
format. A sample block is as follows:
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begin BayesTrees; 
iterations 1 0 0 0 0 0 0

sampling 1 0 0

setup 0

displayRate 1000

numberchains
seed
algorithm
tuning
sites
model
kappa
baseFreqs
laststate
prior
extension
importtree
startingtree
end BayesTrees;

1

random 
b 
1 

0 0 
4 
2
empirical
false
exponential 1 0

none
true
tree.txt

Number of MCMC iterations 
Sampling frequency
Number of setup iterations, when setting 
tuning parameters dynamically 
Frequency to display current state to stan­
dard output
Number of independent M CMC chains
Seed for random number generation
Proposal algorithm (branchslide,local,spr)
Tuning parameter for proposal
Start and end sites
Model type
Fixed value of kappa
Estimate base frequencies from data
Start from where a previous run left off?
Branch length prior
File extension for output files
Import at starting tree?
File containing start tree

To run BayesTrees, type the following at the command line:

./B ayesT rees d a t a f i l e  p a ra m e te rf i le

The input files do not have to be in the current directory, but if they are not, 
you must provide either the full or relative path to the files. While running, 
BayesTrees creates a set of output file. For each chain, there are two files for MCMC 
output, one for the phylogenies (* . t r e e s )  and one for the other sampled states, 
such as log likelihood, tree length, model parameters, as well as the acceptance rates 
(*param .tx t). Other output includes a * lo g . tx t  file with the name of the data file 
and the analysis parameters, which is useful for future reference. A * l a s t S t a t e . t x t  
file stores the last state for all analysis parameters, so tha t the run can be restarted 
(for example, if additional iterations are judged to be needed due to a lack of 
convergence).

The BayesTrees package utilizes the GNU Scientific Library (GSL) (Galassi, 
2006) for mathematical functions such as random number generators, probability 
density functions, floating point comparisons and factorials. It uses the NCL to read 
Nexus files. Both of these libraries are licensed under the GNU General Public 
License (GNU GPL), meaning tha t the code for BayesTrees is also open source.
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A .3 TreeSum

The TreeSum program includes methods for summarizing the posterior distribution 
of phylogenies, including calculation of tree probabilities and partition probabiliites. 
It calculates the RMSET and MeanSD and simulates the RMSET statistic. Finally, 
it can output the to tal unique trees sampled, the size of the credible set and the 
probability of the MAP tree at various points throughout the MCMC analysis.

TreeSum uses the P o s tp ro c e ss , D a ta , N ex u s, T ree  and N o d e  classes from 
BayesTrees. The input data  are the sampled phylogenies from an MCMC analysis 
(for example, the *.t or *.trees files). To run TreeSum, type the following at the 
command line:

./TreeSum chainlfile chain2file chain3file ...

If you start TreeSum without the filenames, the program will prompt for the 
number of chains and the location of the files.

A .4 M APm iner

The MAPminer program implements the frequent subtree mining method detailed 
in Chapter 5. It uses many of the same classes tha t are part of the BayesTrees 
package, including P o s tp ro c e ss , D a ta , N ex u s, T ree  and N ode. It implements a 
separate P ru n in g  class and a separate m ain  method.

The input data is either a raw output file of trees from an MCMC analysis (for 
example, the *.t file from MrBayes or BayesTrees) or a posterior distribution of 
phylogenies (the .trprobs file from MrBayes or BayesTrees). It requires the file to be 
in Nexus format and the trees in Newick format. Trees can be rooted or unrooted.

Again, the program is non-interactive and retrieves input parameters from a file. 
A Perl script is included to create this file. The input parameters are as follows:

To run MAPminer, type the following at the command line:

./MAPminer datafile parameterfile

If you omit either of the input file names, MAPminer will prompt for the 
location of the files.

The method outputs the best trees found for each number of pruned taxa and 
the posterior probability of each of the trees.
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