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Abstract

Mathematical models of many transport processes are in the forms given by

parabolic partial differential equations (PDEs). There are phenomena which

may cause changes in shape and material properties of the process domain

resulting in a moving boundary parabolic PDE model of the process. The focus

of this thesis is to develop two control methods for parabolic PDE systems with

time-dependent spatial domain.

The first approach uses the PDE backstepping tool for stabilization of a

class of one-dimensional unstable parabolic PDEs. In this method, an integral

transformation maps the PDE system to a suitably selected exponentially

stable target system. The kernel of transformation is defined by the solution

of the kernel PDE that is of higher-order in space. It is shown that the kernel

PDE is well-posed and a numerical solution is provided with the error analysis

to establish the accuracy. The stabilizing control law is shown in the form of

state-feedback with the gain in terms of kernel function.

In addition, the backstepping-based observer design for state estimation

of parabolic PDEs with time-dependent spatial domain is provided for a col-

located boundary measurement and actuation. Specifically, the PDE system

that describes the observation error dynamics is also transformed to the ex-
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ponentially stable target system. The exponential stability of the closed-loop

system with observer-based output-feedback controller is established by the

use of a Lyapunov function. Finally, numerical solutions to the kernel PDEs

and simulations are given to demonstrate successful stabilization of the unsta-

ble system.

Modal decomposition techniques have been extensively used for the order-

reduction of dissipative systems. The second approach is the use of Karhunen-

Loève (KL) decomposition to find the empirical eigenfunctions of the solution

of moving boundary PDE systems. A mapping functional is obtained, which

relates the evolution of the solution of the parabolic PDE with time-varying

domain to a fixed reference configuration, while preserving space invariant

properties of the initial solution ensemble. Subsequently, a low dimensional

set of empirical eigenfunctions on the fixed domain is found and is mapped

on the original time-varying domain resulting in the basis for the construction

of the reduced-order model of the parabolic PDE system with time-varying

domain. These modes are used as the basis set of functions in the Galerkin’s

method to find a reduced-order model for the optimal control design and state

observation.

iii



Preface

Chapter 2 of this thesis has been submitted for publication as M. Izadi, J.

Abdollahi, S. Dubljevic, “PDE backstepping control of one-dimensional heat

equation with time-varying domain,” Automatica, 2013. I was responsible for

the formulation, simulation and analysis as well as the manuscript composition.

J. Abdollahi assisted in the mathematical formulation and S. Dubljevic was the

supervisory author and was involved with concept formation and manuscript

composition.

Chapter 3 of this thesis has been submitted for publication as M. Izadi, S.

Dubljevic, “Backstepping output-feedback control of moving boundary para-

bolic PDEs,” European Journal of Control, 2014. I was responsible for the

formulation, simulation and analysis as well as the manuscript composition.

S. Dubljevic was the supervisory author and was involved with concept for-

mation and manuscript composition.

Chapter 4 of this thesis has been published as M. Izadi, S. Dubljevic,

“Order-reduction of parabolic PDEs with time-varying domain using empir-

ical eigenfunctions,” AIChE Journal, vol. 59, issue 11, 4142-4150, 2013. I

was responsible for the formulation, simulation and analysis as well as the

manuscript composition. S. Dubljevic was the supervisory author and was

iv



involved with concept formation and manuscript composition.

Chapter 5 of this thesis has been submitted for publication as M. Izadi,

S. Dubljevic, “Low-order optimal regulation of parabolic PDEs with time-

dependent domain,” AIChE Journal, 2014. I was responsible for the formula-

tion, simulation and analysis as well as the manuscript composition. S. Dublje-

vic was the supervisory author and was involved with concept formation and

manuscript composition.

v



Acknowledgements

I would like to express my appreciation and thanks to my supervisor Dr. Ste-

van Dubljevic, who encouraged my research and guided me through all stages

of this work. The many inspiring discussions we had over the years played an

important role in shaping this research. I also want to thank my colleagues

at Distributed Parameter Systems (DPS) Lab for their encouragement and

helpful advice.

I acknowledge the continuous support and compassion of my in-laws, es-

pecially my mother in-law who devotedly accompanied us during a difficult

stage of our life here in Canada.

Words cannot express how grateful I am to my parents for all of their en-

couragement, support, prayer, sacrifice and love. Without all of their patience

and empathy, I would not have been able to start and finish this work. I would

also like to thank my brothers for their support, specially Iman and Hossein

who helped me not to feel homesick being thousands of kilometers away from

home.

At the end I would like to express appreciation to my beloved wife Toktam

for her unconditional understanding, love and faith. Her sacrifice, support and

compassion was indeed what made this dissertation possible.

vi



Contents

1 Introduction 1

1.1 Control methods of PDEs . . . . . . . . . . . . . . . . . . . . 2

1.2 Moving boundary parabolic PDEs . . . . . . . . . . . . . . . . 3

1.3 Thesis scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Czochralski crystal growth process . . . . . . . . . . . . . . . 6

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 PDE Backstepping Control of One-Dimensional Heat Equa-

tion with Time-Varying Domain 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The control problem . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Mathematical transformations . . . . . . . . . . . . . . . . . . 17

2.4 Analysis of the kernel PDE . . . . . . . . . . . . . . . . . . . . 19

2.5 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



3 Backstepping Output-Feedback Control of Moving Boundary

Parabolic PDEs 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Backstepping state-feedback controller . . . . . . . . . . . . . 42

3.4 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Output-feedback . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Numerical solution to the kernel PDEs . . . . . . . . . . . . . 51

3.7 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Order-Reduction of Parabolic PDEs with Time-Varying Do-

main Using Empirical Eigenfunctions 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Model Formulation of PDE systems with Time-Dependent

Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Geometry and Data Transformations . . . . . . . . . . 73
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Chapter 1

Introduction

The states of many dynamical systems depend on spatial position in addition

to time. These systems are called distributed parameter systems (DPSs) and

they are mathematically described by partial differential equations (PDEs).

The spatially distributed nature of their state is a distinguishing feature of

process variables in contrast to those modelled by ordinary differential equa-

tions (ODEs) for which the process variables are represented by functions of

time only.

Specifically, the models of transport-reaction processes are given as para-

bolic PDE systems in the science, engineering practice and industry. Examples

of such processes includes tubular and plug-flow reactors in chemical engineer-

ing, fuel cells and modern batteries in energy management and power industry,

phase transitions and thermal treatments in manufacturing, reservoir model-

ing in petroleum engineering and fabrication and processing of materials in

material sciences.
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1.1: Control methods of PDEs 2

1.1 Control methods of PDEs

Recent advancements in computing tools and numerical simulation of processes

along with the available tools of classical and modern mathematical analysis

have attracted many researchers in the control theory and engineering com-

munity to the analysis and control of DPSs.

Methods to control PDE systems fall into two categories (Ray, 1981): one

common approach for control problems involving parabolic PDEs utilizes the

so called early lumping methods through spatial discretization or modal de-

composition to approximate the PDEs by finite-dimensional systems of ODEs,

and subsequently enables the application of well developed finite-dimensional

systems control theory. While this is straightforward to design a controller

and readily implementable in industrial applications, there are limitations of

the early lumping approach. The main disadvantage of early lumping tech-

nique is a mismatch in the dynamical properties of the original PDE and the

approximated system. The reason is the intrinsic distributed nature of the

PDE control problem which could not be completely accounted for through

finite-dimensional approximations of the systems.

In the late lumping approach on the other hand, infinite-dimensional sys-

tems theory provided a viable methodology to capture the complete dynamics

and analyze of the full PDE system for development of practical and imple-

mentable control schemes. It is only at the last stages of implementation or

numerical integration that model equations are discretized. Specifically, the

functional analytic formulation using semigroup theory and also PDE back-

stepping approach and related concepts have proven to be powerful tools for
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system analysis and control design (Curtain and Zwart, 1995; Luo et al., 1999;

Krstic and Smyshlyaev, 2008).

1.2 Moving boundary parabolic PDEs

The synthesis and treatment procedures in many processes such as chemi-

cal, petrochemical and pharmaceutical processes, lead to changes in the shape

and material properties. This change can be characterized by transport phe-

nomena associated with the material deformation, phase change mechanism,

generation and consumption of chemical species through chemical reactions,

heat and mass transfer. Mathematically, a broad collection of these processes

are modelled by application of conservation laws and yield models in the form

of moving boundary parabolic PDEs.

The occurrence of these changes introduce more complexities in the mod-

elling, analysis and control of the process dynamics. It is established that para-

bolic PDE systems with time-varying domains are inherently nonautonomous

(Kloeden et al., 2008) for which an analytic expression for the two-parameter

semigroup describing the nonautonomous system behaviour can not be found

in general. This fact prevents direct analysis and controller synthesis for such

systems.

1.3 Thesis scope

Methods for control of linear parabolic PDEs have been extensively studied in

the past and have mainly focused on process systems with fixed spatial domains



1.3: Thesis scope 4

and boundary and/or distributed actuations. There are several contribu-

tions which formulate the solutions to nonautonomous parabolic PDE systems

with fixed spatial domain, see the works of Lasiecka (1980); Pazy (1983); Ac-

quistapace and Terreni (1987); Krstic and Smyshlyaev (2008); Meurer (2013).

The objective of this research is the development of control method for para-

bolic PDE systems with time-dependent spatial domain. The formulations

within this framework is provided using two general methodologies:

1. Falling in the category of late lumping methods, the first approach is the

backstepping method emerging from nonlinear finite-dimensional control

systems synthesis. In this formulation, a Volterra-type integral transfor-

mation is used to transform the PDE system to a suitably selected stable

target system. The kernel of transformation is defined by the solution

of the kernel PDE that is of higher-order in space, leading to a state-

feedback control law.

2. Dissipative parabolic PDE systems have the property that the eigen-

spectrum of the spatial differential operator can be partitioned into a

finite-dimensional slow subspace and the infinite-dimensional fast and

stable complement. This fact implies that the dynamic behavior of such

processes can be approximately described by finite-dimensional systems.

The second approach in this research is an early lumping method which

utilizes the well-known Karhunen-Loève (KL) decomposition to find the

empirical eigenfunctions (modes) of an ensemble of solutions of the sys-

tem. These modes are used as the basis set of functions in the Galerkin’s

method to find a reduced-order model for the optimal control design and
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state observation.

The focus of this thesis is the feedback control of a class of moving boundary

parabolic PDEs. The classes of problems considered are characterized by a

variety of distinguishing features while the methodologies developed in this

thesis are applicable to a broad number of different processes. In each case,

the problem is formulated mathematically along with the required development

and numerical realization within the following chapters.

Chapter 2 deals with the PDE backstepping boundary control of an unsta-

ble one-dimensional heat equation with time-varying domain. Initially, the sta-

bility of a selected target system is established by invoking a form of Poincaré

inequality. Then, the PDE system is transformed to the target system through

the Volterra-type integral transformation resulting the PDE describing the ker-

nel of transformation. Subsequently, the well-posedness of the kernel PDE is

given following a numerical solution which enables representation of explicit

full state feedback control law. Appropriate simulations are given to demon-

strate successful stabilization of the unstable system.

The formulation in Chapter 2 motivates the observer design of the bound-

ary controlled parabolic PDEs with time-varying domain using backstepping

approach which is the subject of Chapter 3. The PDE system that governs

the observation error dynamics is transformed to an exponentially stable target

system through the Volterra-type integral transformation to obtain the kernel

PDE, which has time-dependent parameters and is defined on the 2D time-

varying domain. Then, the separation principle is validated which provides the

exponential stability of the observer-based output-feedback controller setup.

Finally, numerical solutions to the kernel PDEs and various simulations are
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given to demonstrate successful stabilization of the unstable system.

Chapter 4 provides a systematic approach to obtain a set of empirical eigen-

functions of a set of data given on a nontrivial spatially time-dependent do-

main that captures the most energy of the system’s dynamics while preserving

some physical invariant property. This methodology introduces transforma-

tions that map the time-varying domain of the PDE as well as the solutions to

the PDE to a fixed reference configuration for all times during the evolution of

the system. Then, KL decomposition is applied to extract a low-dimensional

set of eigenfunctions. Different examples are provided in this Chapter to show

the efficiency of the proposed methodology.

This method is extended in Chapter 5 for the boundary actuated PDE sys-

tems to be implementable for more realistic applications. The boundary input

control problem is formulated as finding the appropriate state-space represen-

tation of the PDE system and the reduced order model is used to realize an

observer and synthesize a linear optimal output tracking controller. Finally,

numerical results are prepared for a 2D model of temperature distribution in

the industrially relevant Czochralski (CZ) crystal growth process.

1.4 Czochralski crystal growth process

The prime example of relevant industrial transport process with time-varying

domain is temperature distribution in Czochralski (CZ) crystal growth process

which is the most important method for manufacturing large-scale crystals

such as silicon, gallium arsenide, indium phosphide and cadmium telluride for

use in the semiconductor, electronics and optics industry. In this method, the
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Figure 1.1: Czochralski crystal growth process setup (Sackinger et al. (1989)
used with permission from John Wiley and Sons, Inc.)

crystal rod is pulled out vertically at the rate of a few centimeters per hour

from the surface of a heated pool of melt contained in a crucible, as shown

schematically in 1.1. The variation in thermal field in the grown crystal has

significant effects on the crystalline structure and formation of micro-defects,

which influence the quality and properties of the grown crystal.

The formulations in this research are typically applied to the CZ crystal

temperature stabilization problem as an industrial application to utilize the

theories provided.
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Chapter 2

PDE Backstepping Control of
One-Dimensional Heat Equation
with Time-Varying Domain

2.1 Introduction

The model of a wide variety of transport processes can be described in terms

of partial differential equations (PDEs) based on the use of theoretical first-

principles, experimental studies or system identification. In some applications,

the shape of the PDE domain changes due to the phenomena such as phase

change, generation and consumption of chemical species through the chem-

ical reaction mechanism, heat and mass transfer. In addition to the time-

dependent PDE parameters nature, the occurrence of these changes introduce

more complexities in the modelling, analysis and control of the process dy-

namics. The representative case of theses systems is given by the Czochralski

(CZ) crystal growth problem described by the one-dimensional heat parabolic

PDE characterized by the presence of the grown crystal boundary velocity as a

time-dependent coefficient associated with the first order advective transport

9
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term (Derby et al., 1987).

Methods for control of linear parabolic PDEs with fixed spatial domain

by boundary and/or distributed actuation setting are well established (Katō,

1995; Lasiecka, 1980; Curtain and Zwart, 1995; Krstic and Smyshlyaev, 2008).

In this realm, there are several contributions which consider a time-varying

parabolic PDE with fixed spatial domain (Acquistapace and Terreni, 1987;

Pazy, 1983) where solutions to nonautonomous parabolic systems are formu-

lated by two-parameter semigroups which resemble and inherit the properties

of the standard one-parameter semigroup generated by time-invariant para-

bolic operators.

In a large number of cases an analytic expression for the two-parameter

semigroup describing the nonautonomous system behaviour can not be found

which prevents direct analysis and controller synthesis. In addition, only few

results have been found when it comes to the study of parabolic PDEs with

time-varying domain and these results are mainly centred on establishing ex-

istence and regularity properties of solution including the utilization of trans-

formation, which maps the PDE onto a new time invariant spatial domain

(Baconneau and Lunardi, 2004; Burdzy et al., 2004; Lunardi, 2004). Among

few contributions along this line, Wang (1990) studied the stabilization and

optimal control problem of such systems and later on, synthesized the linear

optimal controller for thermal gradient regulation of crystal growth processes

(Wang, 1995). To obtain a reduced-order model of nonlinear parabolic PDE

systems with time-varying spatial domain, Armaou and Christofides (2001a)

used a mathematical transformation to represent the PDE on a time-invariant

spatial domain and applied Karhunen-Loève decomposition to find the set of
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eigenfunctions on the fixed domain. In application, they used this approach

in nonlinear feedback (Armaou and Christofides, 2001b) and robust (Armaou

and Christofides, 2001c) control of one-dimensional reaction-diffusion systems

based on the use of Galerkin’s method.

In the last decade, the concept of backstepping emerging from nonlinear

finite-dimensional control systems synthesis has been broadened to distributed

parameter systems and provided a systematic approach for the boundary con-

trolled linear parabolic PDEs. In the PDE backstepping methodology, a

Volterra integral transformation is used to transform the PDE into a suit-

ably selected stable target system. However, the kernel of this transformation

is defined by the solution of the kernel PDE that is of a higher-order in space.

Having the solution of the kernel PDE, the state-feedback control law which

embeds desired transformation is obtained (Krstic and Smyshlyaev, 2008).

The form of the hyperbolic kernel PDE is recognized in physics as Klein-

Gordon equation. The powerful technique of backstepping synthesis provides

a framework to handle a large class of distributed parameter systems con-

trolled at the boundary. Namely, the stabilization of parabolic PDEs with

spatially varying coefficients and advection-diffusion type of parabolic PDEs

is easily realized by this method (Smyshlyaev and Krstic, 2004), as well as the

boundary stabilization of the wave equation (Krstic et al., 2008). The intro-

duction of the backstepping approach goes back to the works of Liu (2003)

and Smyshlyaev and Krstic (2004) in the design of stabilizing state-feedback

controllers, the reader is referred to Krstic and Smyshlyaev (2008) for the list.

The time-varying nature of PDE systems with moving boundaries intro-

duces time-dependent parameters in the distributed system description. Along
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this way, Smyshlyaev and Krstic (2005) studied the backstepping control of

one-dimensional unstable heat equation with space-dependent diffusion and

time-dependent reaction parameters. The form of the integral transformation

obtained in the synthesis of an explicit controller that aims to stabilize para-

bolic PDEs with time-varying reaction term leads to the time-varying kernel

PDE which is defined over fixed domain. In addition to this case, another

instance of time-varying kernels incorporated in Volterra-type integral trans-

formations is used in the stability analysis of time-varying input and state

delays for nonlinear systems (Krstic, 2010; Bekiaris-Liberis and Krstic, 2012).

Finally, the works of Meurer and Kugi (2009) on the design of a tracking con-

troller and Meurer (2013) on the extension of Luenberger-type observers for

semilinear PDEs broadened the PDE backstepping approach to the systems

with time-dependent parameters.

The moving boundary aspect of the problem considered here suggests that

not only time-varying parameters are associated with the characterization of

the PDE system, but also the transformation kernel function is described

on the time-varying domain. In the following, the formulation to the PDE

backstepping boundary control of an unstable one-dimensional heat equation

described on a domain with moving boundaries is presented. Initially, the

stability of the target system by invoking a form of Poincaré inequality is es-

tablished. Then, the PDE system is transformed to an exponentially stable

target system through a Volterra-type integral transformation to obtain the

PDE describing the transformation kernel. The time-varying kernel PDE de-

fined on a moving boundary domain is analyzed and subsequently, a numerical

solution is presented. An explicit full state feedback control law is provided
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and appropriate simulations are given to demonstrate successful stabilization

of the unstable system.

2.2 The control problem

Consider the linear one-dimensional parabolic PDE system of the form:

∂tx̄(ξ, t) = α∂2
ξ x̄(ξ, t)− ḣ(t)∂ξx̄(ξ, t) + λ0x̄(ξ, t) (2.1)

where x̄(ξ, t) is the state variable, D(t) = [0, h(t)] ⊂ R is the time-varying

domain of the definition of PDE, ξ ∈ D(t) is the spatial coordinate, h(t) ∈ R+

is the smooth time-dependent function describing the length of the domain,

ḣ(t) is its bounded time derivative, and t ∈ [0,∞) is the time. α > 0 and

λ0 are process parameters and the advection term appearing in (2.1) is due

to the moving boundaries of the PDE domain (Derby et al., 1987; Izadi and

Dubljevic, 2013). The j-th partial derivative of a multivariable function φ

with respect to the variable ζ is denoted by ∂jζφ, for the first derivative the

superscript is dropped for simplicity. The temperature distribution in the

crystal of the Czochralski process or the shrinkage of a catalyst in a chemical

process are two typical examples of the models that can be approximated by

this PDE system. Although this approach can be generalized for standard

types of boundary conditions, the following boundary setting is assumed for

the PDE system which is applicable to the temperature stabilization in the
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Czochralski crystal growth process:

x̄(0, t) = 0

∂ξx̄(h(t), t) = U(t) (2.2)

Here U(t) is the control applied at the boundary ξ = h(t) to stabilize the

system state.

In order to study the stability of the target system and specify bounded-

ness and differentiability of the kernel function, the following assumption is

required.

Assumption 2.1. The function h(t) is analytic, or alternatively, there exists a

real positive constant D̄ such that for every non-negative integer j the following

bound holds:

|∂jth(t)| ≤ D̄j+1j! (2.3)

In the subsequent sections, the plant (2.1-2.2) will be transformed to the

target system:

∂tw(ξ, t) = α∂2
ξw(ξ, t)− cw(ξ, t) (2.4) w(0, t) = 0

∂ξw(h(t), t) = − ḣ(t)
2α
w(h(t), t)

(2.5)

with constant c ≥ 0. The well-posedness of PDEs of this type with any initial

condition w(ξ, 0) = w0(ξ) ∈ L2(D(0)) is shown by Ng and Dubljevic (2012).

To show the stability of this system, first the following Lemma is required.
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Lemma 2.1. The following conservative form of Poincaré inequality holds for

the time-varying space D(t):

∫ h(t)

0

w2(ξ, t)dξ ≤ 2h(t)w2(0, t) + 4h2(t)

∫ h(t)

0

(∂ξw(ξ, t))2 dξ (2.6)

Proof. We start with the following relation:

w2(ξ, t) = −∂ξ[(h(t)− ξ)w2(ξ, t)] + 2(h(t)− ξ)w(ξ, t)∂ξw(ξ, t)

By integrating both sides of this equation with respect to ξ from 0 to h(t) one

obtains:

∫ h(t)

0

w2(ξ, t)dξ = h(t)w2(0, t) + 2

∫ h(t)

0

(h(t)− ξ)w(ξ, t)∂ξw(ξ, t)dξ

≤ h(t)w2(0, t) +

(∫ h(t)

0

w2(ξ, t)dξ

) 1
2
(∫ h(t)

0

4(h(t)− ξ)2 (∂ξw(ξ, t))2 dξ

) 1
2

≤ h(t)w2(0, t) +
1

2

∫ h(t)

0

w2(ξ, t)dξ + 2

∫ h(t)

0

(h(t)− ξ)2 (∂ξw(ξ, t))2 dξ (2.7)

where Cauchy-Schwartz and Young’s inequalities are used, respectively. One

can readily show that these inequalities hold for the case of moving boundary

space. The last integral in (2.7) is majorized by

[
sup
ξ∈D(t)

(h(t)− ξ)2

]∫ h(t)

0

(∂ξw(ξ, t))2 dξ = h2(t)

∫ h(t)

0

(∂ξw(ξ, t))2 dξ

resulting in the inequality (2.6).
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Now define the L2-norm on the time-varying space D(t) as:

‖w(ξ, t)‖ =

(∫ h(t)

0

w2(ξ, t)dξ

) 1
2

(2.8)

The stability of the target system is explored in the following lemma.

Lemma 2.2. The PDE system (2.4-2.5) is exponentially stable in the sense

of the L2-norm.

Proof. Consider the Lyapunov function V (t) = 1
2
‖w(ξ, t)‖2, its time derivative

is:

V̇ (t) =

∫ h(t)

0

w(ξ, t)∂tw(ξ, t)dξ +
1

2
ḣ(t)w2(h(t), t)

=

∫ h(t)

0

(αw(ξ, t)∂2
ξw(ξ, t)− cw2(ξ, t))dξ +

1

2
ḣ(t)w2(h(t), t)

=− αw(0, t)∂ξw(0, t) + αw(h(t), t)∂ξw(h(t), t)

+

∫ h(t)

0

[−α(∂ξw(ξ, t))2 − cw2(ξ, t)]dξ +
1

2
ḣ(t)w2(h(t), t)

The first term vanishes from the first boundary condition in (2.5) and the

second and last terms cancel out from the second boundary condition, leading

to the following:

V̇ (t) = −α
∫ h(t)

0

(∂ξw(ξ, t))2dξ − c
∫ h(t)

0

w2(ξ, t)dξ

Imposing bound h(t) ≤ D̄ from Assumption 2.1 to the Poincaré inequality
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(2.6), one has:

V̇ (t) ≤ −
( α

4D̄2
+ c
)∫ h(t)

0

w2(ξ, t)dξ = −
( α

2D̄2
+ 2c

)
V (t) (2.9)

which implies the exponential stability of the target system in L2-norm.

2.3 Mathematical transformations

To eliminate advection term in (2.1), the transformation

x̄(ξ, t) = x(ξ, t)e
∫ ξ
0
ḣ(t)
2α

dη = x(ξ, t)e
ξḣ(t)
2α (2.10)

is used, which yields to the following plant

∂tx(ξ, t) = α∂2
ξx(ξ, t) + λ(ξ, t)x(ξ, t) (2.11) x(0, t) = 0[

∂ξx(h(t), t) + ḣ(t)
2α
x(h(t), t)

]
e
h(t)ḣ(t)

2α = U(t)
(2.12)

where

λ(ξ, t) = λ0 −
ḣ2(t) + 2ξḧ(t)

4α

Note that the stability of x(ξ, t) in the L2-norm implies the stability of x̄(ξ, t)

since the norm ‖e ξḣ(t)
2α ‖ is bounded for all t.

The moving boundary characteristic of the PDE system imposes the use

of the Volterra integral transformation given as follows:

w(ξ, t) = x(ξ, t)−
∫ ξ

0

k(ξ, η, t)x(η, t)dη (2.13)
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which maps (2.11-2.12) into the stable target system (2.4-2.5) with a free

parameter c to manipulate the system’s response. Substitution of (2.13) into

(2.4-2.5) and use of (2.11-2.12) yields to the following time-varying PDE for

the kernel function k(ξ, η, t):

∂tk(ξ, η, t) = α(∂2
ξk(ξ, η, t)− ∂2

ηk(ξ, η, t))− (λ(η, t) + c)k(ξ, η, t) (2.14) k(ξ, 0, t) = 0

k(ξ, ξ, t) = − 1
2α

∫ ξ
0

(λ(η, t) + c)dη
(2.15)

defined on the time-varying domain S(t) = {(ξ, η)|0 ≤ η ≤ ξ ≤ h(t)} ⊂ R2

shown in Fig. 2.1a. Hence, the control problem (2.1-2.2) is now reduced to

finding the solution of (2.14-2.15). Also, the control action can be found in

the form of a state-feedback as:

U(t) =

(∫ h(t)

0

[
ḣ(t)

2α
k(h(t), η, t) + ∂ξk(h(t), η, t)

]
x(η, t)dη

+ k(h(t), h(t), t)x(h(t), t)

)
e
h(t)ḣ(t)

2α (2.16)

Finding the solution to (2.14-2.15) on the time-dependent domain S(t) is

not straight forward. However, the following transformation will map S(t) to

the fixed domain S̄ = {(ρ, σ)|0 ≤ σ ≤ ρ ≤ 2− σ} ⊂ R2 (see Fig. 2.1b):

ρ =
ξ + η

h(t)
, σ =

ξ − η
h(t)

(2.17)
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ξ

η

ξ
=
η

h(t)

S(t)

(a)

ρ

σ

1

1 2

S̄

(b)

Figure 2.1: (a) Time-dependent domain S(t) of the kernel function k(ξ, η, t)
and (b) fixed domain S̄ of the kernel function k(ρ, σ, t).

Using (2.17), the kernel PDE for k(ρ, σ, t) takes the form:

∂tk(ρ, σ, t) =
4α

h2(t)
∂ρ∂σk(ρ, σ, t) +

ḣ(t)

h(t)
[ρ∂ρk(ρ, σ, t) + σ∂σk(ρ, σ, t)]

− λ̄(ρ, σ, t)k(ρ, σ, t) (2.18) k(ρ, ρ, t) = 0

k(ρ, 0, t) = f(ρ, t)
(2.19)

where

λ̄(ρ, σ, t) = λ((ρ− σ)
h(t)

2
, t) + c = − ḣ

2(t) + (ρ− σ)h(t)ḧ(t)

4α
+ λ0 + c (2.20)

f(ρ, t) =
ρh(t)

4α

[
2ḣ2(t) + ρh(t)ḧ(t)

8α
− (λ0 + c)

]
(2.21)

2.4 Analysis of the kernel PDE

In general, the solution to the kernel PDE (2.18-2.19) is found by means of

successive integration. Although this method is computationally rather expen-
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sive except for special cases, it is a useful tool to analyze the well-posedness of

the kernel PDE. To follow this method, integrate (2.18) with respect to σ from

0 to σ and then with respect to ρ from σ to ρ and use boundary conditions

(2.19) and integration by-parts for the terms with the first-order derivative to

transform the kernel PDE (2.18-2.19) into the following integral equation:

∫ ρ

σ

∫ σ

0

[
∂tk(µ, ν, t) +

(
2
ḣ(t)

h(t)
+ λ̄(µ, ν, t)

)
k(µ, ν, t)

]
dνdµ

− ḣ(t)

h(t)

(
ρ

∫ σ

0

k(ρ, ν, t)dν + σ

∫ ρ

σ

k(µ, σ, t)dµ

)
− 4α

h2(t)
[k(ρ, σ, t)− f(ρ, t) + f(σ, t)] = 0 (2.22)

that is rewritten as:

k(ρ, σ, t) = K1(ρ, σ, t) + Gk(ρ, σ, t) (2.23)

where

K1(ρ, σ, t) =f(ρ, t)− f(σ, t) (2.24)

Gk(ρ, σ, t) =
h2(t)

4α

∫ ρ

σ

∫ σ

0

∂tk(µ, ν, t)dνdµ

+

∫ ρ

σ

∫ σ

0

(
h(t)ḣ(t)

2α
+
h2(t)λ̄(µ, ν, t)

4α

)
k(µ, ν, t)dνdµ

− h(t)ḣ(t)

4α

(
ρ

∫ σ

0

k(ρ, ν, t)dν + σ

∫ ρ

σ

k(µ, σ, t)dµ

)
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The method of successive integration suggests that the solution to the integral

equation (2.22) is given by the series

k(ρ, σ, t) =
∞∑
n=1

Kn(ρ, σ, t) (2.25)

Kn+1(ρ, σ, t) = GKn(ρ, σ, t) (2.26)

with K1(ρ, σ, t) given in (2.24). The convergence of this series and hence, the

existence of a solution for (2.22) is given by the following theorem:

Theorem 2.1. The j-th time-derivative of Kn is bounded by

sup
t

∣∣∂jtKn(ρ, σ, t)
∣∣ ≤ 3n+1γj,nD

j+2n(j + n− 1)!

(n− 1)!(n− 1)!n!
(ρσ)n−1 (2.27)

where D ≥ 1 is a real constant and

γj,n =
Γ(4n+j

3
+ 1)

Γ(n+j
3

+ 1)
(2.28)

with Γ(ζ) being the gamma function. Moreover, the series (2.25) is absolutely

convergent.

Proof. The proof to this theorem follows the same methodology as given by

Meurer and Kugi (2009) along with Assumption 2.1 from which it is concluded

that all the functions h(t)ḣ2(t)
16α2 , h2(t)ḧ(t)

32α2 , h(t)(λ0+c)
4α

, h2(t)
4α

, h(t)ḣ(t)
2α

+ h2(t)λ̄(ρ,σ,t)
4α

are

analytic as well. Hence, there exists real constant D ≥ 1 such that the j-th

time-derivative of these functions is bounded by Dj+1j! for j = 0, 1, 2, · · · .

Because of the appearance of the time-derivative of Kn(ρ, σ, t), the con-

vergence analysis of series (2.25) requires to find a bound for
∣∣∂jtKn(ρ, σ, t)

∣∣,
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which is given in (2.27) and is proved here by induction. For n = 1:

sup
t

∣∣∂jtK1(ρ, σ, t)
∣∣ = sup

t

∣∣∂jt [f(ρ, t)− f(σ, t)]
∣∣

= sup
t

∣∣∣∣∣∂jt
[
h(t)ḣ2(t)

16α2
(ρ− σ) +

h2(t)ḧ(t)

32α2
(ρ2 − σ2)− h(t)(λ0 + c)

4α
(ρ− σ)

]∣∣∣∣∣
≤ Dj+1j!

(
|ρ− σ|+

∣∣ρ2 − σ2
∣∣+ |ρ− σ|

)
≤ 8Dj+1j! ≤ 9γj,1D

j+2j!

which is equal to the right-hand side of (2.27) for n = 1. Assuming (2.27)

holds for all n = 1, 2, · · · , N , the upper bound of
∣∣∂jtKN+1(ρ, σ, t)

∣∣ can be

determined as

sup
t

∣∣∂jtKN+1(ρ, σ, t)
∣∣ ≤ sup

t

∣∣∂jtGKN(ρ, σ, t)
∣∣

≤ sup
t

∣∣∣∣∣
j∑
i=0

(
j

i

)
∂j−it

(
h2(t)

4α

)∫ ρ

σ

∫ σ

0

∂i+1
t KN(µ, ν, t)dνdµ

∣∣∣∣∣+
sup
t

∣∣∣∣∣
j∑
i=0

(
j

i

)∫ ρ

σ

∫ σ

0

∂j−it

(
h(t)ḣ(t)

2α
+
h2(t)λ̄(µ, ν, t)

4α

)
∂itKN(µ, ν, t)dνdµ

∣∣∣∣∣+
sup
t

∣∣∣∣∣
j∑
i=0

(
j

i

)
∂j−it

(
h(t)ḣ(t)

4α

)
ρ

∫ σ

0

∂itKN(ρ, ν, t)dν

∣∣∣∣∣+
sup
t

∣∣∣∣∣
j∑
i=0

(
j

i

)
∂j−it

(
h(t)ḣ(t)

4α

)
σ

∫ ρ

σ

∂itKN(µ, σ, t)dµ

∣∣∣∣∣
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≤
j∑
i=0

(
j

i

)
Dj−i+1(j − i)!3

N+1γi+1,ND
i+2N+1(i+N)!

(N − 1)!(N − 1)!N !

∣∣∣∣∫ ρ

σ

∫ σ

0

(µν)N−1dνdµ

∣∣∣∣+
j∑
i=0

(
j

i

)
Dj−i+1(j − i)!3

N+1γi,ND
i+2N(i+N − 1)!

(N − 1)!(N − 1)!N !

∣∣∣∣∫ ρ

σ

∫ σ

0

(µν)N−1dνdµ

∣∣∣∣+
j∑
i=0

(
j

i

)
Dj−i+1(j − i)!3

N+1γi,ND
i+2N(i+N − 1)!

(N − 1)!(N − 1)!N !

∣∣∣∣ρ ∫ σ

0

(ρν)N−1dν

∣∣∣∣+
j∑
i=0

(
j

i

)
Dj−i+1(j − i)!3

N+1γi,ND
i+2N(i+N − 1)!

(N − 1)!(N − 1)!N !

∣∣∣∣σ ∫ ρ

σ

(µσ)N−1dµ

∣∣∣∣
≤ 3N+1γj+1,ND

j+2N+2

(N − 1)!(N − 1)!N !

(ρσ)N

N2

j∑
i=0

(
j

i

)
(j − i)!(i+N)!+

3N+1γj,ND
j+2N+1

(N − 1)!(N − 1)!N !

(ρσ)N

N2

j∑
i=0

(
j

i

)
(j − i)!(i+N − 1)!+

3N+1γj,ND
j+2N+1

(N − 1)!(N − 1)!N !

(ρσ)N

N

j∑
i=0

(
j

i

)
(j − i)!(i+N − 1)!+

3N+1γj,ND
j+2N+1

(N − 1)!(N − 1)!N !

(ρσ)N

N

j∑
i=0

(
j

i

)
(j − i)!(i+N − 1)!

≤3N+1Dj+2N+2(j +N)!

(N − 1)!N !N !
(ρσ)N

[
γj+1,N(j +N + 1)

N(N + 1)
+
γj,N
N2

+ 2
γj,N
N

]
≤3N+1Dj+2N+2(j +N)!

N !N !N !
(ρσ)N

[
γj+1,N(j +N + 1)

N + 1
+ 3γj+1,N

]
=

3N+1Dj+2N+2(j +N)!

N !N !(N + 1)!
(ρσ)Nγj+1,N(j + 4N + 4)

=
3N+2γj,N+1D

j+2N+2(j +N)!

N !N !(N + 1)!
(ρσ)N

which is identical to right-hand side of (2.27) for n = N + 1. This completes

the proof of (2.27). In this sequence of inequalities, the following relations are
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used for (ρ, σ) ∈ S̄, j = 0, 1, 2, · · · and n = 1, 2, · · · :

|ρ− σ| ≤ 2 and
∣∣ρ2 − σ2

∣∣ ≤ 4∫ ρ

σ

∫ σ

0

(µν)n−1dνdµ =
σn(ρn − σn)

n2
≤ (ρσ)n

n2

ρ

∫ σ

0

(ρν)n−1dν =
(ρσ)n

n

σ

∫ ρ

σ

(µσ)n−1dµ =
σn(ρn − σn)

n
≤ (ρσ)n

n

γj,1 =
j + 1

3
+ 1 ≥ 1

γi,n ≤ γj,n for i ≤ j

γj+1,n(4n+ j + 4) = 3
Γ(4n+j+1

3
+ 1)

Γ(n+j+1
3

+ 1)

(4n+ j + 4)

3
= 3

Γ(4n+j+4
3

+ 1)

Γ(n+j+1
3

+ 1)
= 3γj,n+1

j∑
i=0

(
j

i

)
(j − i)!(i+ n)! =

(j + n+ 1)!

n+ 1

Let j = 0 in (2.27) to find supt |Kn(ρ, σ, t)| ≤ 3
(3D2)

n
γ0,n

(n−1)!n!
(ρσ)n−1 which

provides the following bound for series (2.25):

|k(ρ, σ, t)| ≤
∞∑
n=1

|Kn(ρ, σ, t)| ≤
∞∑
n=1

3an(ρ, σ)

with an(ρ, σ) =
(3D2)

n
γ0,n

(n−1)!n!
(ρσ)n−1. Hence, the ratio |an+1(ρ, σ)/an(ρ, σ)| is

3D2ρσ

n(n+ 1)

γ0,n+1

γ0,n
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Having the limit

lim
n→∞

γ0,n+1

γ0,n

= lim
n→∞

Γ
(

4n
3

+ 7
3

)
Γ
(
n
3

+ 1
)

Γ
(

4n
3

+ 1
)

Γ
(
n
3

+ 4
3

) = lim
n→∞

Γ
(

4n
3

) (
4n
3

) 7
3 Γ
(
n
3

)
n
3

Γ
(

4n
3

)
4n
3

Γ
(
n
3

) (
n
3

) 4
3

= lim
n→∞

(
4n

3

) 4
3 (n

3

)−1
3

= lim
n→∞

4 3
√

4

3
n

the series
∑∞

n=1 an(ρ, σ) is convergent since

lim
n→∞

|an+1(ρ, σ)/an(ρ, σ)| = lim
n→∞

4 3
√

4D2ρσ

n+ 1
= 0 < 1

Therefore the series (2.25) is absolutely convergent by comparison.

Note that Kn(ρ, σ, t) is C2(S̄ × [0,∞)) which follows from (2.24, 2.26).

Therefore, k(ρ, σ, t) and k(ξ, η, t) are also C2(S̄× [0,∞)) and C2(S× [0,∞)),

respectively, the latter is the result of the invertibility of transformation (2.17).

Lemma 2.3. The control (2.16) given by the solution of (2.14-2.15) stabilizes

the PDE system (2.11-2.12) in the L2-norm.

Proof. Consider the inverse backstepping transformation in terms of

x(ξ, t) = w(ξ, t) +

∫ ξ

0

q(ξ, η, t)w(η, t)dη (2.29)

with the kernel q(ξ, η, t). Substitution of (2.29) into (2.11-2.12) and use of
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(2.4-2.5) results in the following PDE for the inverse kernel function:

∂tq(ξ, y, t) = α(∂2
ξ q(ξ, η, t)− ∂2

ηq(ξ, η, t)) + (λ(ξ, t) + c)q(ξ, η, t) (2.30) q(ξ, 0, t) = 0

q(ξ, ξ, t) = − 1
2α

∫ ξ
0

(λ(η, t) + c)dη
(2.31)

This PDE is similar to (2.14-2.15) and Theorem 2.1 shows the existence of

a solution. Hence, the transformation (2.13) is invertible and the stability

of the target system (2.4-2.5) implies the stability of the closed-loop system

(2.11-2.12).

Theorem 2.2. For any initial condition x(ξ, 0) = x0(ξ) ∈ L2(D(0)) that

satisfies (2.12) with U(t) given in (2.16) for t = 0, the PDE system (2.11-

2.12) with boundary control (2.16) has a unique solution.

The proof to this theorem is given by Ng and Dubljevic (2012) where the

closed-loop system (2.11-2.12) is represented as a nonautonomous parabolic

evolution system with solutions given by a two-parameter evolution operator,

following the boundedness and continuity of kernel function k(ξ, η, t).

2.5 Numerical method

To find an approximate solution to the integral equation (2.22), the numeri-

cal method introduced in Jadachowski et al. (2012) is used. This approach is

computationally tractable and is based on the approximation of integrals by

the use of a composite trapezoidal rule. To this end, the triangular spatial

domain is discretized in N2 computational points on an equally-spaced square
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grid as shown in Fig. 2.2. Hence, each continuous function g(ρ, σ, t) is dis-

cretized and denoted by gi,j(t) at the coordinate (ρi, σj) or simply at the point

(i, j) ∈ {(m,n)|1 ≤ n ≤ m ≤ 2N − n} ⊂ N2. Now, the integrals in (2.22)

are approximated by using discrete values of their integrands evaluated at grid

points through the application of the composite trapezoidal rule as:

∫ ρI

σJ

∫ σI

0

gI,J(t)dνdµ ≈ ∆2

4

I−1∑
i=J

J−1∑
j=1

[gi,j(t) + gi+1,j(t) + gi,j+1(t) + gi+1,j+1(t)]

(2.32)

where ∆ = 1/(N − 1). To discretize (2.22), the integrals are replaced by

composite trapezoidal rule as in (2.32) to obtain:

∆2

4

I−1∑
i=J

J−1∑
j=1

(
˙̄ki,j + ˙̄ki+1,j + ˙̄ki,j+1 + ˙̄ki+1,j+1

)
+

∆2

4

(
2
ḣ(t)

h(t)
+ c

)
I−1∑
i=J

J−1∑
j=1

(
k̄i,j + k̄i+1,j + k̄i,j+1 + k̄i+1,j+1

)
+

∆2

4

I−1∑
i=J

J−1∑
j=1

(
λ̄i,j k̄i,j + λ̄i+1,j k̄i+1,j + λ̄i,j+1k̄i,j+1 + λ̄i+1,j+1k̄i+1,j+1

)
− ∆

2

ḣ(t)

h(t)

[
ρI

J−1∑
j=1

(
k̄I,j + k̄I,j+1

)
+ σJ

I−1∑
i=J

(
k̄i,J + k̄i+1,J

)]

− 4α

h2(t)

[
k̄I,J − f(ρI , t) + f(σJ , t)

]
= 0 (2.33)

For each pair (I, J) with unknown k̄I,J (i.e., the points that are not on

the boundaries with known boundary conditions), (2.33) relates the kernel

function and its time derivative of computational points in the form of an

ODE. The new indexing r = (2N − j)(j − 1) + i will vectorize the array k̄i,j

into κr and the set of N2 − 3N + 2 ODE’s can be written as the following
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Figure 2.2: Discretization of the kernel PDE domain.

point-wise equation:

Aκ̇(t) +B(t)κ(t) +H(t) = 0 (2.34)

where Hr(t) is calculated from the values of the kernel function on boundaries

with known boundary conditions as well as the term 4α
h2(t)

[f(ρI , t)− f(σJ , t)].

Note that matrices A and B(t) in (2.34) are in the lower triangular form. The

initial condition κ0 = κ(0) for this equation is chosen as the stationary solution

at t = 0:

κ(0) = −B(0)−1H(0) (2.35)

Equations (2.34-2.35) form an initial-value problem (IVP) as a set of linear

time-varying ordinary differential equations and can be solved efficiently using

available numerical methods. The over bar in k̄i,j(t) indicates the approxi-

mated value of the kernel function.
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2.6 Simulation results

For the special case α = 1, c = 0 and fixed domain h(t) = 1, there is a

closed-form solution for the kernel function (Krstic and Smyshlyaev, 2008) as:

k(ξ, η) = −λ0η
I1(
√
λ0(ξ2 − η2))√
λ0(ξ2 − η2)

(2.36)

where I1(ζ) is the first-order modified Bessel function of the first kind. This

solution can be used to validate and assess the accuracy of the numerical

method used to solve the kernel PDE. Fig. 2.3 shows the approximated kernel

function and associated numerical error of the solution as well as the numerical

approximation of the kernel function k(1, 0.5) and its derivative ∂ξk(1, 0.5) for

λ0 = 20. The differentiation of the kernel function is performed by finite

differencing and since the derivative term appears in the expression for control

(2.16), it is included in the error analysis.

We choose the discretization associated with N = 75 for the error of order

0.01 for the kernel function derivative in the following simulations. The nu-

merical approximation of the time-varying kernel function is used to stabilize

the system given by (2.1-2.2) with α = 1 and λ0 = 20 on the time-varying do-

main D(t) shown in Fig. 2.4a. For these process parameters, the PDE system

is unstable as depicted by the evolution of the norm of the system as given in

Fig. 2.4b.

The evolution of approximate solution to the kernel PDE on the (ρ, σ)-

domain for c = 0 is shown in Fig. 2.5. Figure 2.6a shows a closed-loop

response of the system as the evolution of the state for an arbitrary chosen

initial condition. Finally, control input and evolution of L2-norm of the state
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Figure 2.3: (a) Approximated solution to the kernel PDE for h(t) = 1 and
(b) associated approximation error. (c) Numerical error of the kernel function
and its derivative at (ξ, η) = (1, 0.5) on the actuation boundary for different
discretization levels defined by N .



2.6: Simulation results 31

0 0.5 1 1.5 2
0.4

0.6

0.8

1

t

h

(a)

0 0.5 1 1.5 2

10
0

10
5

10
10

10
15

t

‖x̄
‖

(b)

Figure 2.4: (a) Length h(t) of the time-varying domain of the PDE system.
(b) Norm of the state of the uncontrolled system for the given parameters.
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Figure 2.5: Approximated kernel function k̄(ρ, σ, t) at t = 0, 0.5, 1, 1.5 and 2.

are shown in Fig. 2.6b. The stabilization of the unstable PDE system is well

provided in the simulations.

2.7 Summary

The PDE backstepping boundary control synthesis of one-dimensional heat

equation on a time-varying domain is formulated in this Chapter. The PDE

system is transformed to an exponentially stable target system through the

invertible Volterra-type integral transformation resulting in the two-dimensional

time-varying PDE with time-dependant domain describing the transformation

kernel. Then, a numerical solution to the kernel PDE is provided and sim-

ulated to demonstrate stabilization of the unstable system with time-varying

domain.
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Chapter 3

Backstepping Output-Feedback
Control of Moving Boundary
Parabolic PDEs

3.1 Introduction

In the application of many control strategies, the knowledge of the state of

system is essential, yet, in most cases this information is not fully available due

to many reasons such as variables may not be measurable and using sensors

may not be physically possible or economically beneficial. Herein, a part

of design problem is the synthesis of state estimators (observers) that can

generate an estimation of system states. Standard systematic techniques are

available to design observers for the linear and nonlinear finite-dimensional

systems. However, for infinite-dimensional (or distributed-parameter) systems

governed by partial differential equations (PDEs) the state variables not only

depend on time, but they also depend on another independent variable, usually

spatial coordinate, and this imposes complexities and limitations to analysis

and design.

37
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One can address the observer (or controller) design problem for distributed

parameter systems (DPSs) by using one of the two approaches: in the early-

lumping method, at first the DPS is discretized by the use of suitable approx-

imation techniques such as modal decomposition or Galerkin’s method, into

an approximate finite-dimensional model based on which state estimator is

designed, see, e.g. Orner and Foster (1971); Kobayashi and Hitotsuya (1981).

However, this approximation may change the system properties such as ob-

servability and loses physical features of the problem. Moreover, the stability

of the closed-loop system cannot be established in general and the neglected

dynamics may result in destabilization due to the observer spillover (Balas,

1978). In the late-lumping approach on the other hand, the designer takes

the full advantage of the physical nature of the process and uses available

DPSs theory to design an observer for the PDE model, then the resulting ob-

server is lumped for implementation. The works of Kitamura et al. (1972);

Gressang and Lamont (1975); Sakawa and Matsushita (1975); Nambu (1984);

Curtain and Zwart (1995); Demetriou (2004); Nguyen (2008) are notable in

the generalization of the finite-dimensional systems observer theory to infinite-

dimensional systems, specifically the study of observability and detectability

properties of DPSs. Along this line, several observer design methods are sug-

gested in the literature including extension of the Luenberger-type observer

to PDE systems (El Jai and Amouroux, 1988) and Lyapunov-based methods

(Liu and Lapdus, 1976).

Another state estimation approach introduced by Smyshlyaev and Krstic

(2005) is the use of backstepping concept for boundary observation of PDE

systems. In this methodology, an invertible Volterra integral transformation



3.1: Introduction 39

is used to transform the estimation error dynamics into a suitably selected

stable distributed-parameter target system. The kernel of this transformation

is defined by the solution of the so-called kernel PDE that is of a higher-order

in space in the form of Klein-Gordon equation (Krstic and Smyshlyaev, 2008).

Having the solution of the kernel PDE, the observer gains can be found to be

afforded in the state estimator. From a theoretical point of view, the technique

of PDE backstepping observer design is extended to the state estimation of

unstable hyperbolic equations (Krstic et al., 2008), compensation of sensor

dynamics and/or PDE-ODE cascades (Krstic, 2009b,a; Antonio Susto and

Krstic, 2010), state estimation and output-feedback control for coupled PDE-

ODE systems (Tang and Xie, 2011), linear parabolic PDEs with spatially-

and time-varying reaction parameters (Jadachowski et al., 2012), parabolic

PDEs with nonlinear reactive-convective terms (Jadachowski et al., 2013) and

ultimately, observer design to semilinear parabolic PDEs (Meurer, 2013).

The shape of the domain of PDEs describing dynamics of a wide variety

of transport processes may change due to different phenomena such as phase

change, generation and consumption of chemical species, heat and mass trans-

fer. The occurrence of these changes introduce more complexities in the mod-

elling, analysis and control of these systems. Even if the process parameters

are time-invariant, it is established that parabolic PDE systems with moving

boundaries are inherently nonautonomous (Kloeden et al., 2008). The use of

Galerkin’s method in early-lumping approach of eigenfunctions-based observer

design is studied in Abdollahi et al. (2014) for the boundary control of a 2D

heat equation with time-dependent spatial domain. Considering such prob-

lems as infinite-dimensional systems, direct state estimation is not possible in
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a large number of cases, because analytic expressions for the two-parameter

semigroups describing the nonautonomous behaviour of the system can not be

found.

The formulation of the state-feedback boundary control of parabolic PDEs

with time-varying domain using backstepping approach in Chapter 2 motivates

the observer design by the same method. In this Chapter, the formulation to

the PDE backstepping observer design for an unstable 1D heat equation de-

scribed on a domain with moving boundaries is presented. The PDE system

that governs the observation error dynamics is transformed to an exponen-

tially stable target system through the Volterra-type integral transformation

to obtain the kernel PDE, which has time-dependent parameters and is defined

on the 2D time-varying domain. Then, the separation principle is validated

which provides the exponential stability of the observer-based output-feedback

controller setup. Finally, numerical solutions to the kernel PDEs and various

simulations are given to demonstrate successful stabilization of the unstable

system.

3.2 Problem statement

Consider the linear 1D parabolic PDE system of the form:

∂tx̄(ξ, t) = α∂2
ξ x̄(ξ, t)− ḣ(t)∂ξx̄(ξ, t) + λ0x̄(ξ, t) (3.1)

where x̄(ξ, t) is the state variable, D(t) = [0, h(t)] ⊂ R is the time-varying

domain of the definition of PDE, ξ ∈ D(t) is the spatial coordinate, h(t) ∈ R+
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is the time-dependent length of the domain and ḣ(t) is its time derivative, and

t ∈ [0,∞) is the time. α and λ0 are process parameters and the advection

term appearing in (3.1) is due to the moving boundaries of the PDE domain

(Derby et al., 1987; Izadi and Dubljevic, 2013). The temperature distribution

x̄(ξ, t) in the crystal of the Czochralski process or the shrinkage of a cata-

lyst in a chemical process are two typical examples of the models that can

be approximated by this PDE system. Although this approach can be gener-

alized for any standard type of boundary conditions, the following boundary

setting is assumed for the PDE system which is applicable to the temperature

stabilization in the Czochralski crystal growth process:

x̄(0, t) = 0

∂ξx̄(h(t), t) = U(t) (3.2)

Here U(t) is the control applied at the boundary ξ = h(t) to stabilize the

system state. For the design of the state observer, it is assumed that the

output variable is given by:

ȳ(t) = x̄(h(t), t) (3.3)

which characterizes the collocated measurement and actuation.

For the later analysis regarding the stability of the closed-loop system and

boundedness and differentiability of the solutions the following assumption is

required.

Assumption 3.1. The function h(t) is analytic, i.e., there exists a real positive
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constant D such that for every non-negative integer j,

|∂jth(t)| ≤ Dj+1j! (3.4)

To eliminate advection term in (3.1), the PDE state is transformed as

x̄(ξ, t) = x(ξ, t)eξḣ(t)/2α, which yields to the following PDE plant with associ-

ated boundary conditions:

∂tx(ξ, t) = α∂2
ξx(ξ, t) + λ(ξ, t)x (3.5) x(0, t) = 0[

∂ξx(h(t), t) + ḣ(t)
2α
x(h(t), t)

]
e
h(t)ḣ(t)

2α = U(t)
(3.6)

where λ(ξ, t) = λ0 − (ḣ2(t) + 2ξḧ(t))/4α. The output variable is transformed

as well:

y(t) = x(h(t), t) = ȳ(t)e−
h(t)ḣ(t)

2α (3.7)

Also, for the stability analysis of moving-boundary PDEs, it is essential

to define the L2-norm of function w(ξ, t), ξ ∈ D(t) for the time-varying space

D(t):

‖w(ξ, t)‖ =

(∫ h(t)

0

w2(ξ, t)dξ

) 1
2

(3.8)

3.3 Backstepping state-feedback controller

The backstepping state-feedback results of Chapter 2 are frequently used in

this Chapter and they are briefly given in this section for easy reference.
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The following state-feedback control law stabilizes the PDE system (3.5,3.6):

U(t) =

(∫ h(t)

0

[
ḣ(t)

2α
k(h(t), η, t) + ∂ξk(ξ, η, t)|ξ=h(t)

]
x(η, t)dη+

k(h(t), h(t), t)x(h(t), t)

)
e
h(t)ḣ(t)

2α (3.9)

where the control gain function k(ξ, η, t) is the kernel of the Volterra transfor-

mation

w(ξ, t) = x(ξ, t)−
∫ ξ

0

k(ξ, η, t)x(η, t)dη (3.10)

that transforms (3.5,3.6) to the following exponentially stable (in the sense of

L2-norm) PDE system:

∂tw(ξ, t) = α∂2
ξw(ξ, t)− cw(ξ, t) (3.11) w(0, t) = 0

∂ξw(h(t), t) = − ḣ(t)
2α
w(h(t), t)

(3.12)

Based on the Assumption 3.1, the kernel function is the unique solution of the

following kernel-PDE:

∂tk(ξ, η, t) = α(∂2
ξk(ξ, η, t)− ∂2

ηk(ξ, η, t))− (λ(η, t) + c)k(ξ, η, t) (3.13) k(ξ, 0, t) = 0

k(ξ, ξ, t) = − 1
2α

∫ ξ
0

(λ(η, t) + c)dη
(3.14)

defined on the time-varying domain SC(t) = {(ξ, η)|0 ≤ η ≤ ξ ≤ h(t)} ⊂ R2,

see Fig. 3.1a. Exponential stability of target system (3.11,3.12) implies the

exponential stability of closed-loop plant (3.5,3.6,3.9) since (3.10) is invertible.
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3.4 Observer design

In the following, a distributed-parameter Luenberger-type observer is designed

by modifying the PDE system (3.5,3.6) with corrector terms as:

∂tx̂(ξ, t) = α∂2
ξ x̂(ξ, t) + λ(ξ, t)x̂(ξ, t) + l(ξ, t) [y(t)− x̂(h(t), t)] (3.15) x̂(0, t) = 0[

∂ξx̂(h(t), t) + ḣ(t)
2α
x̂(h(t), t)

]
e
h(t)ḣ(t)

2α = −l0(t) [y(t)− x̂(h(t), t)] + U(t)

(3.16)

where l(x, t) and l0(t) are observer gain functions to be designed. The observer

error e(ξ, t) = x(ξ, t)− x̂(ξ, t) satisfies the following PDE:

∂te(ξ, t) = α∂2
ξ e(ξ, t) + λ(ξ, t)e(ξ, t)− l(ξ, t)e(h(t), t) (3.17) e(0, t) = 0[

∂ξe(h(t), t) + ḣ(t)
2α
e(h(t), t)

]
e
h(t)ḣ(t)

2α = l0(t)e(h(t), t)
(3.18)

In the subsequent sections, we are looking for the integral transformation:

e(ξ, t) = w̃(ξ, t)−
∫ h(t)

ξ

q(ξ, η, t)w̃(η, t)dη (3.19)

that transforms (3.17-3.18) into the following exponentially stable (in the sense
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of the L2-norm) target system:

∂tw̃(ξ, t) = α∂2
ξ w̃(ξ, t)− c̃w̃(ξ, t) (3.20) w̃(0, t) = 0

∂ξw̃(h(t), t) = − ḣ(t)
2α
w̃(h(t), t)

(3.21)

with a free parameter c̃ ≥ 0 to manipulate the observer’s convergence rate.

Taking derivative of (3.19) with respect to space and time and substitution

into (3.17, 3.18) and performing intermediate computations yield to the time-

varying PDE for the kernel function q(ξ, η, t)

∂tq(ξ, η, t) = α(∂2
ξ q(ξ, η, t)− ∂2

ηq(ξ, η, t)) + (λ(ξ, t) + c̃)q(ξ, η, t) (3.22) q(0, η, t) = 0

q(ξ, ξ, t) = − 1
2α

∫ ξ
0

(λ(η, t) + c̃)dη
(3.23)

and observer gains

l(ξ, t) =
ḣ(t)

2
q(ξ, h(t), t)− α∂ηq(ξ, h(t), t)

l0(t) = q(h(t), h(t), t)e
h(t)ḣ(t)

2α (3.24)

The kernel PDE (3.22,3.23) is defined on the time-varying domain SO(t) =

{(ξ, η)|0 ≤ ξ ≤ η ≤ h(t)} ⊂ R2, see Fig. 3.1b. Note that the form of

PDE (3.22,3.23) is similar to (3.13,3.14) and in Chapter 2 the existence of the

bounded solution to this PDE is proven.
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The inverse backstepping transformation of (3.19) in terms of

w̃(ξ, t) = e(ξ, t) +

∫ h(t)

ξ

q1(ξ, η, t)e(η, t)dη (3.25)

with the kernel q1(ξ, η, t) maps (3.20,3.21) to (3.17,3.18) and it is straight-

forward to show that the PDE for the inverse kernel function is similar to

(3.22,3.23) with a unique solution. Therefore, the invertibility of transforma-

tion (3.19) implies the exponential stability of the error dynamics (3.17,3.18).

3.5 Output-feedback

The development of the exponentially convergent state estimator in previous

section is independent of the control input. In this section the observer is

combined with the backstepping control to explore the output-feedback con-

troller and establish separation principle, i.e., the incorporation of a separately

designed state-feedback controller and observer results in a stabilizing output-

feedback controller.

Consider the PDE plant (3.5,3.6) controlled by the following input based

on the state observer (3.15,3.16):

U(t) =

(∫ h(t)

0

[
ḣ(t)

2α
k(h(t), η, t) + ∂ξk(ξ, η, t)|ξ=h(t)

]
x̂(η, t)dη+

k(h(t), h(t), t)x̂(h(t), t)

)
e
h(t)ḣ(t)

2α (3.26)
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Transformations

ŵ(ξ, t) = x̂(ξ, t)−
∫ ξ

0

k(ξ, η, t)x̂(η, t)dη (3.27)

and (3.19) map the closed-loop system consisting of the observer PDE (3.15,3.16)

and observation error PDE (3.17,3.18) into target systems

∂tŵ(ξ, t) = α∂2
ξ ŵ(ξ, t)− ĉŵ(ξ, t) +

[
l(ξ, t)−

∫ ξ

0

k(ξ, η, t)l(η, t)dη

]
w̃(h(t), t)

(3.28) ŵ(0, t) = 0

∂ξŵ(h(t), t) + ḣ(t)
2α
ŵ(h(t), t) = −l0(t)w̃(h(t), t)e−

h(t)ḣ(t)
2α

(3.29)

and (3.20,3.21), respectively.

Theorem 3.1. The system (ŵ, w̃) is exponentially stable in the sense of L2-

norm.

Proof. Consider the following Lyapunov function candidate:

V (t) =
1

2

(
‖ŵ(ξ, t)‖2 + β‖w̃(ξ, t)‖2

)
(3.30)

where β = γ2
0 + γ2D with

γ0 = α sup
t

(
l0(t)e−

h(t)ḣ(t)
2α

)
γ = sup

(ξ,t)

(
l(ξ, t)−

∫ ξ

0

k(ξ, η, t)l(η, t)dη

)
(3.31)

The fact that these functions are majorized by real constants γ and γ0 is due
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to the boundedness of the solution to (3.22,3.23). Taking the time derivative

of (3.30) and replacing from (3.28,3.20) yields:

V̇ (t) =

∫ h(t)

0

ŵ(ξ, t)

[
α∂2

ξ ŵ(ξ, t)− ĉŵ(ξ, t)

+

(
l(ξ, t)−

∫ ξ

0

k(ξ, η, t)l(η, t)dη

)
w̃(h(t), t)

]
dξ +

ḣ(t)

2
ŵ2(h(t), t)

+ β

∫ h(t)

0

w̃(ξ, t)
[
α∂2

ξ w̃(ξ, t)− c̃w̃(ξ, t)
]
dξ + β

ḣ(t)

2
w̃2(h(t), t)

Using integration by parts, applying boundary conditions (3.29,3.21) and im-

posing (3.31) results

V̇ (t) ≤− α
∫ h(t)

0

[∂ξŵ(ξ, t)]2 dξ − ĉ
∫ h(t)

0

ŵ2(ξ, t)dξ

− γ0ŵ(h(t), t)w̃(h(t), t) + γ

∫ h(t)

0

ŵ(ξ, t)w̃(h(t), t)dξ

− βα
∫ h(t)

0

[∂ξw̃(ξ, t)]2 dξ − βc̃
∫ h(t)

0

w̃2(ξ, t)dξ

Note that Poincaré inequality takes the following forms for any function v(ξ, t)

defined on the time-varying space D(t):

∫ h(t)

0

v2(ξ, t)dξ ≤ 2h(t)v2(0, t) + 4h2(t)

∫ h(t)

0

(∂ξv(ξ, t))2 dξ∫ h(t)

0

v2(ξ, t)dξ ≤ 2h(t)v2(h(t), t) + 4h2(t)

∫ h(t)

0

(∂ξv(ξ, t))2 dξ

and one can show the following inequalities hold by the use of Young’s, Poincaré
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and Cauchy-Schwartz inequalities for ŵ(0, t) = 0 and w̃(0, t) = 0:

−γ0ŵ(h(t), t)w̃(h(t), t) ≤ 1

4

∫ h(t)

0

ŵ2(ξ, t)dξ + γ2
0D

∫ h(t)

0

[∂ξw̃(ξ, t)]2 dξ

γ

∫ h(t)

0

ŵ(ξ, t)w̃(h(t), t)dξ ≤ 1

4

∫ h(t)

0

ŵ2(ξ, t)dξ + γ2D2

∫ h(t)

0

[∂ξw̃(ξ, t)]2 dξ

Therefore,

V̇ (t) ≤− α
∫ h(t)

0

[∂ξŵ(ξ, t)]2 dξ −
(
ĉ− 1

2

)∫ h(t)

0

ŵ2(ξ, t)dξ

−
(
βα− γ2

0D − γ2D2
) ∫ h(t)

0

[∂ξw̃(ξ, t)]2 dξ − βc̃
∫ h(t)

0

w̃2(ξ, t)dξ

≤−
(
ĉ− 1

2
+

α

4D2

)∫ h(t)

0

ŵ2(ξ, t)dξ

−
(
βc̃+

βα− γ2
0D − γ2D2

4D2

)∫ h(t)

0

w̃2(ξ, t)dξ

Now choose ĉ ≥ 1− α/4D2 and c̃ ≥ 1/2− (α−D)/4D2, hence

V̇ (t) ≤ −1

2

∫ h(t)

0

ŵ2(ξ, t)dξ − β

2

∫ h(t)

0

w̃2(ξ, t)dξ = −V (t)

Hence, the system (ŵ, w̃) is exponentially stable.

The system (x̂, e) is also exponentially stable since it is related to (ŵ, w̃)

by the invertible backstepping transformations (3.27) and (3.19). This proves

that the closed-loop system consisting of the plant with backstepping controller

and observer is exponentially stable.
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Figure 3.1: (a) Time-dependent domain SC(t) of the kernel function k(ξ, η, t),
(b) time-dependent domain SO(t) of the kernel function q(ξ, η, t) and (c) fixed
domain S of functions k(ρ, σ, t) and q(ρ, σ, t).
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3.6 Numerical solution to the kernel PDEs

To apply the control (3.26), one should know control and observer gains given

in terms of kernels k(ξ, η, t) and q(ξ, η, t) that are described by associated

PDEs (3.13,3.14) and (3.22,3.23), respectively. However, finding the solution

to these equations on the time-dependent domains SC(t) and SO(t) is not

straight forward. In this section, these PDEs are transformed to fixed spatial

domains and then they are solved numerically.

Consider the space S = {(ρ, σ)|0 ≤ σ ≤ ρ ≤ 2 − σ} ⊂ R2 given in Fig.

3.1c. The transformations TC(t) : (ξ, η) ∈ SC 7→ (ρ, σ) ∈ S given by

ρ =
ξ + η

h(t)
, σ =

ξ − η
h(t)

(3.32)

and TO(t) : (ξ, η) ∈ SO 7→ (ρ, σ) ∈ S given by

ρ =
ξ + η

h(t)
, σ =

−ξ + η

h(t)
(3.33)

map time-dependent domains SC(t) and SO(t) to the time-invariant space S,

respectively. Using TC(t) and TO(t), the kernel PDEs for k(ρ, σ, t) and q(ρ, σ, t)

take the form:

∂tg(ρ, σ, t) = δ
4α

h2(t)
∂ρ∂σg(ρ, σ, t) +

ḣ(t)

h(t)
(ρ∂ρg(ρ, σ, t) + σ∂σg(ρ, σ, t))

− δ
(
λ((ρ− σ)

h(t)

2
, t) + č

)
g(ρ, σ, t) (3.34) g(ρ, ρ, t) = 0

g(ρ, 0, t) = f(ρ, t; č)
(3.35)
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where g(ρ, σ, t) = k(ρ, σ, t), δ = 1 and č = ĉ for (3.13,3.14) and g(ρ, σ, t) =

q(ρ, σ, t), δ = −1 and č = c̃ for (3.22,3.23). Also,

f(ρ, t; č) =
ρh(t)

4α

[
2ḣ2(t) + ρh(t)ḧ(t)

8α
− (λ0 + č)

]
(3.36)

To numerically realize the solution to (3.34,3.35), the method of successive

integration is utilized followed by numerical integration (Jadachowski et al.,

2012). To this end, integrate (3.34) with respect to σ from 0 to σ and then with

respect to ρ from σ to ρ and use boundary conditions (3.35) and integration

by-parts for the terms with the first-order derivative to deduce (3.34,3.35) to

the following integral equation:

∫ ρ

σ

∫ σ

0

[
∂tg(µ, ν, t) +

[
2
ḣ(t)

h(t)
+ δ

(
λ((µ− ν)

h(t)

2
, t) + č

)]
g(µ, ν, t)

]
dνdµ

− ḣ(t)

h(t)

(
ρ

∫ σ

0

g(ρ, ν, t)dν + σ

∫ ρ

σ

g(µ, σ, t)dµ

)
− δ 4α

h2(t)
[g(ρ, σ, t)− f(ρ, t; č) + f(σ, t; č)] = 0 (3.37)

To find an approximate solution to (3.37), the integrals are approximated

by the use of a composite trapezoidal rule. The triangular spatial domain S

is discretized in N2 computational points on an equally-spaced square grid

as shown in Fig. 3.2. Hence, the continuous function g(ρ, σ, t) is spatially

discretized and denoted by gi,j(t) at the coordinate (ρi, σj) or simply at the

point (i, j) ∈ {(m,n)|1 ≤ n ≤ m ≤ 2N−n} ⊂ N2. Now, the integrals in (3.37)

are approximated by using discrete values of their integrands evaluated at grid



3.6: Numerical solution to the kernel PDEs 53

points through the application of the composite trapezoidal rule to obtain:

∆2

4

I−1∑
i=J

J−1∑
j=1

[ġi,j + ġi+1,j + ġi,j+1 + ġi+1,j+1]

+
∆2

4

(
2
ḣ(t)

h(t)
+ δč

)
I−1∑
i=J

J−1∑
j=1

[gi,j + gi+1,j + gi,j+1 + gi+1,j+1]

+ δ
∆2

4

I−1∑
i=J

J−1∑
j=1

[
λ̄i,jgi,j + λ̄i+1,jgi+1,j + λ̄i,j+1gi,j+1 + λ̄i+1,j+1gi+1,j+1

]
− ∆

2

ḣ(t)

h(t)

(
ρI

J−1∑
j=1

[gI,j + gI,j+1] + σJ

I−1∑
i=J

[gi,J + gi+1,J ]

)
(3.38)

− δ 4α

h2(t)
[gI,J − f(ρI , t; č) + f(σJ , t; č)] = 0

where ∆ = 1/(N − 1) and λ̄i,j(t) = λ((ρi − σj)h(t)/2, t). For each pair (I, J)

with unknown gI,J(t) (i.e., the points that are not on the boundaries with

known boundary conditions), (3.38) relates the kernel function and its time

derivative at computational points in the form of an ordinary differential equa-

tion (ODE). The new indexing r = (2N−j)(j−1)+ i will bijectively vectorize

the array gi,j(t) into κr and the set of (N2 − 3N + 2) ODEs can be written in

the following point-wise equation:

Aκ̇(t) +B(t)κ(t) +H(t) = 0 (3.39)

The initial condition κ0 = κ(0) for (3.39) is chosen as the stationary solution

at t = 0:

κ(0) = −B(0)−1H(0) (3.40)

Equations (3.39,3.40) can be considered as an initial-value problem in the
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Figure 3.2: Spatial discretization of the domain S of transformed kernel PDEs.

form of a set of linear time-varying ODEs and can be solved efficiently using

available numerical methods. Note that, the definition of the new index r

results in matrices A and B(t) being in the lower triangular form.

3.7 Simulation results

The given approach to output-feedback control of PDE system (3.5,3.6) is

simulated and some results are shown in this section. Particularly, system

parameters are α = 1 and λ0 = 10 and the change in the domain h(t) is

depicted in Fig. 3.3. The numerical discretization for the following simulations

is obtained for N = 80. The set of ODE’s (3.39) are numerically realized using

a first-order implicit integration scheme with dt = 10−4.

Figure 3.4 shows the numerical approximation of the time-varying observer

kernel function q(ρ, σ, t) on the computational domain S for ĉ = c̃ = 20.

The control gain kernel function k(ρ, σ, t) has a very similar evolution profile.

Observer gains l(ξ, t) and l0(t) are computed numerically as given in (3.24)



3.7: Simulation results 55

0 0.5 1 1.5 2
0.4

0.6

0.8

1

t

h

Figure 3.3: Length h(t) of the time-varying domain D(t) of the PDE system.

and are shown in Fig. 3.5. The solution of plant and observer PDE’s are

obtained by application of finite-difference method for the same discretization

level N . Figure 3.6 shows the norms of the PDE system state x(ξ, t) and

estimation error e(ξ, t) for the open-loop system (U(t) = 0) with arbitrary

different initial conditions for state x(ξ, 0) and observer x̂(ξ, 0). It is seen that

for the given parameters the open-loop system is unstable, however, observer

converges exponentially to the plant.

The output-feedback control law (3.26) for the stabilization of the unstable

PDE plant is shown in Fig. 3.7 where observer initial state is zero. The spike in

the control close to t = 0 is due to the rather large estimation error at the initial

time instances. Figure 3.8 shows the closed-loop evolution of the system state

and L2-norms of the state and estimation error. The exponentially convergence

of the observer as well as the stabilization of the unstable PDE system is well

provided in the simulation results.

In previous results, it is assumed that continuous measurements are avail-

able during the process evolution. This assumption does not hold in many

applications and sensors generate discrete measurements with noise. Figure
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Figure 3.4: Evolution to the observer kernel function q(ρ, σ, t) on the compu-
tational domain S.

3.9 shows system evolution when measurement is available every 20 time steps

of simulation and it is hold during this period. In this case, control action is

highly sensitive to noisy measurement because of the collocated measurement

and actuation. However, the stabilization of the unstable plant is achieved by

using the observer-based output-feedback controller.

Finally, the simulation results of a reduced-order observer is presented,

which will effectively reduce the computational cost. The low-order observer

is designed by discretizing the observer PDE into the middle point at ξ = h(t)
2

and boundary points ξ = 0 and ξ = h(t) at each time t. Then the estimated

state x̂(ξ, t) is constructed by a quadratic function passing through the three

computational points and evaluated at the original N grid points. Figure 3.10

shows the plant stabilization based on the reduced-order observer design and

evolution of the system state and L2-norms of the state and estimation error.

The observer error exponentially approaches zero, but with a slower rate in
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Figure 3.5: (a) Observer gains l(ξ, t) (the thick grey line shows domain evolu-
tion) and (b) l0(t).
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Figure 3.8: (a) Closed-loop PDE system state evolution. (b) Norms of the
state and estimation error for the closed-loop system.
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Figure 3.9: Noisy measurements and the resulting closed-loop PDE system
evolution.
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Figure 3.10: (a) Closed-loop PDE system state evolution with reduced-order
observer and (b) norms of the resulting state and estimation error.

comparison to the higher-order observer given in Fig. 3.8 and the stabilization

of the unstable PDE is accomplished.

3.8 Summary

The observer design of 1D unstable heat equation on a time-varying domain is

formulated in this Chapter, where the observer gains are determined by the use

of backstepping methodology. This includes a Volterra integral transformation
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to transform the estimation error PDE to a prescribed exponentially stable

target system. The kernel function of this transformation is described by a 2D

time-varying PDE on a moving boundary domain. Then, the designed observer

is incorporated with the backstepping control in an output-feedback controller

and the exponential stability of the closed-loop system is shown by Lyapunov

theorem. Finally, numerical solutions to the kernel PDEs are provided and the

output-feedback boundary stabilization of the unstable system is simulated to

demonstrate the successful performance of the state estimator.
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Chapter 4

Order-Reduction of Parabolic
PDEs with Time-Varying
Domain Using Empirical
Eigenfunctions

4.1 Introduction

The modeling of a transport process is the most important issue in the pro-

cess analysis and control design. It is currently addressed by phenomenological

modeling arising from theoretical first-principles, experimental studies and/or

with the help of the system identification theory. In many industries includ-

ing chemical, petrochemical and pharmaceutical plants, model-based control

has been very successful; in majority of them, the underlying plant model is

low-dimensional and linear. In general, mathematical models of many indus-

trial relevant transport processes are obtained from conservation laws, such

as mass, momentum and/or energy, and yield the forms given by nonlinear

partial differential equations (PDEs). In addition, many of these processes

involve a change in shape and material properties which can be characterized

65



4.1: Introduction 66

by phenomena associated with the phase change, generation and consumption

of chemical species through the chemical reaction mechanism, heat and mass

transfer.

In the past, dynamical analysis and control of parabolic PDEs with fixed

spatial domain have been studied extensively, though, few investigations are

available for the systems with time-dependent spatial domains. From the

control point of view, main contributions include the works of Wang (1990,

1995) on the stabilization and optimal control problem of such systems and

application in the synthesis of linear optimal controller for thermal gradient

regulation in crystal growth processes, and the study of Ray and Seinfeld

(1975) on the design of nonlinear distributed state estimators using stochastic

methods. More recently, Ng and Dubljevic posed the time-varying optimal

control problem (Ng and Dubljevic, 2011) and boundary control formulation

(Ng and Dubljevic, 2012) for regulation of a parabolic PDE with time-varying

domain by representing the PDE as an abstract evolution equation on an

infinite-dimensional function space with non-autonomous parabolic operator

which generates a two-parameter semigroup.

Low-dimensional model identification of distributed parameter systems

governed by nonlinear PDEs attracted attention of a significant number of

researchers in recent years. Among many, the most notable contributions

came from Gay and Ray (1995); Chakravarti and Ray (1999); Park and Cho

(1996); Christofides (2001); Armaou and Christofides (2002); Zheng and Hoo

(2002, 2004). In these contributions, the common interpretation is that the

dissipative distributed parameter systems could be modeled and reduced to

a low finite-dimensional system representation which captures the dominant
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dynamics, while the infinite-dimensional complement associated with the fast

and stable dynamics can be neglected. The similar conceptual representation

appears in the hydrodynamics where “coherent structures” are associated with

the most dominant modes (Park and Lee, 1998, 2000).

In general, the model order-reduction can be achieved through the Galerkin’s

method which assumes the exact knowledge of the model and requires an ana-

lytic solution for the eigenvalue problem associated with the nonlinear spatial

operator of a parabolic PDE. However, there is no general analytic solution to

the operator eigenvalue problem, examples are the nonlinear spatial operator

or problems with non-trivial geometric domain. In such cases, the exact de-

scription of the underlying distributed parameter system is not known, so the

input-output model order-reduction approach has been proposed and explored

(Gay and Ray, 1995). A well-known approach in the extraction of spatial char-

acteristics (modes) of distributed parameter systems is the use of Karhunen-

Loève (KL) expansion on an ensemble of solutions obtained from numerical

or experimental resolution of the system (Park and Cho, 1996). These modes,

known as empirical eigenfunctions, are used as the basis set of functions in

the Galerkin’s method. This approach is widely used in the derivation of ac-

curate reduced-order approximations of many diffusion-reaction systems and

fluid flows.

Bangia et al. (1997) used KL to find the eigenfunctions of accurate nu-

merical solutions of the Navier-Stokes equations to study the bifurcation of

incompressible flow in a model complex geometry. Park and Cho (1996) ap-

plied KL decomposition to a nonlinear two-dimensional heat conduction prob-

lem with a nontrivial domain to obtain the reduced-order model. In other
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contributions, Park and coworkers used KL method to find basis functions for

Galerkin’s method to solve the inverse forced (Park and Lee, 1998) and natu-

ral (Park and Jung, 2001) convection problems. In the works of Shvartsman

and Kevrekidis (1998); Theodoropoulou et al. (1999); Baker and Christofides

(2000), low-dimensional models for specific diffusion-reaction systems are ob-

tained using empirical eigenfunctions as basis functions in Galerkin’s method,

which is used to synthesize linear and nonlinear feedback controllers.

Other applications include, but are not limited to, the order-reduction of

the sheet-forming processes (Arkun and Kayihan, 1998), order-reduction and

control of multi-scale model of microstructure of materials during epitaxial

growth (Raimondeau and Vlachos, 2000), optimal control of batch electro-

chemical reactor (Zhou et al., 2001), order-reduction of the nonlinear model

of molten carbonate fuel cell (MCFC) (Mangold and Sheng, 2004), order-

reduction and regulation of thermal transients in a microsystem models (Bleris

and Kothare, 2005), order-reduction of multi-scale thermal model for electronic

cabinets (Nie and Joshi, 2008), ground-water flow model reduction (McPhee

and Yeh, 2008), order-reduction of low-voltage cascade electro-osmotic micro-

pump model (Park and Lim, 2009).

Compared to the aforementioned extensive research efforts towards iden-

tification and model reduction of distributed parameter systems modeled by

parabolic PDEs, there are only few studies to address order-reduction of para-

bolic PDE systems with spatial time-varying domain. In a series of works,

Armaou and Christofides (2001a,b,c) used a mathematical transformation to

represent the nonlinear parabolic PDE on a time-invariant spatial domain and

applied KL decomposition to obtain the set of eigenfunctions on the fixed do-
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main. In application, they used this method in the nonlinear feedback and

robust control of one-dimensional reaction-diffusion systems. This approach

cannot be used in general, since the mathematical transformation does not

always have the analytical form, e.g. for nontrivial geometry. To obtain a

reduced-order approximation of systems governed by PDEs that have a trav-

eling wave solution, Glavaski et al. (1998) processed the available data set using

a “centering” procedure prior to performing KL. This procedure involves giving

an appropriate definition of the centre of a wave and moving it to a standard

position. In the contribution by Fogleman et al. (2004) the proper orthogonal

decomposition (POD) is applied to obtain the “phase invariant POD modes”

of internal combustion engine flows. In their contribution, the velocity fields

are stretched in one dimension to obtain data on a fixed grid such that the

divergence-free (continuity) property of the original velocity field is preserved.

Following these ideas, a systematic approach is proposed in this Chapter

to obtain a set of empirical eigenfunctions of a set of data given on an spa-

tially time-dependent domain that captures the most energy of the system’s

dynamics while preserving some physical invariant property. We propose the

following methodology which will be discussed in detail in the consecutive

sections:

1. The solution to the parabolic PDE can be found as raw data by the

experiments or high fidelity numerical simulations which describe the

time evolution of dissipative distributed parameter system on a time-

varying domain.

2. Geometrically, a mapping can be found by which the time-varying do-
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main of the PDE is transformed to a fixed reference configuration for all

times during the evolution of the solutions.

3. Having the set of solutions, the main idea is to transform them to the

reference configuration and then use them with the KL decomposition.

Among all transformations, the one that preserves the space-invariant

property of the PDE solutions is selected. While this mapping transforms

data, the mapping introduced in step 2 transforms geometry of the PDE

domain.

4. Then, KL decomposition is applied on the mapped solutions to extract

a low-dimensional set of eigenfunctions that contains most of the energy

of the system on the fixed domain.

5. Using the inverse of the transformation found in step 3, these eigen-

functions are mapped on the time-varying domain. As a result, a set of

time-varying empirical eigenfunctions are obtained and can be used as a

tool for the reduced-order representation of the initially given distributed

parameter system.

The focus of this Chapter is to explore this methodology and apply it to more

realistic problems, and the examples provided here show the efficiency of the

proposed methodology.

4.2 Mathematical Formulation

In this section, the mathematical aspects of the proposed method are reviewed.

In particular, the mapping that transforms data from time-varying domain to
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the reference geometry and preserves the properties of the data is derived. A

brief essence of the Karhunen-Loève decomposition as the representation of a

set of stochastic data with minimum number of degrees of freedom is given,

as well.

4.2.1 Model Formulation of PDE systems with Time-

Dependent Domain

This section is devoted to formulate the dynamics of a diffusion-reaction pro-

cess with time-varying domain using continuum mechanics tools. In particular,

we are interested in the model dynamics of an extensive property:

G(t) =

∫
Ω(t)

ρ(ξ, t)Cx(ξ, t)dΩ

given by the intensive property x(ξ, t) at each point ξ ∈ Ω(t) ⊂ Rn, where

ρ(ξ, t) is density and C is a constant.

Theorem 4.1. Consider a continuous body Ω(t) that has the velocity v(ξ, t).

In addition, the boundary Γ(t) of the body has the velocity vs(ξ|Γ(t) , t) (see

Fig.4.1). The differential form of a diffusion-reaction process dynamics in

terms of the property x(ξ, t) in the time-varying domain Ω(t) is given by

ρC
∂x

∂t
= ∇ · (κ∇x)− ρCv · ∇x+ h+ bu

where κ is diffusivity and h(x(ξ, t), t) and b(ξ, t) are smooth functions describ-

ing internal reaction/generation and distribution of the control action u(t).
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Ω(t)

v(ξ, t)

vs( ξ|Γ(t) , t)

Γ(t)

Figure 4.1: The control volume Ω(t) is a part of the body with velocity v(ξ, t).
The boundary Γ(t) of the control volume has the velocity vs.

Proof. The total change of G(t) in the domain Ω(t) is given by the Leibniz

integral rule for multi dimensions (Deen, 1998) as follows:

d

dt

∫
Ω

ρCxdΩ =

∫
Ω

∂

∂t
(ρCx) dΩ +

∫
Γ

n · vsρCxdΓ (4.1)

where n is the normal outward vector at each point on the Γ. On the other

hand, conservation of the property G(t) yields:

d

dt

∫
Ω

ρCxdΩ =

∫
Γ

n · κ∇xdΓ−
∫

Γ

n · (v − vs) ρCxdΓ +

∫
Ω

(h+ bu)dΩ (4.2)

This equation states that the total change in the property G(t) is given by

the difference in the diffusive flux and mass transport from the boundary, in

addition to internal generation and external input. Substituting Eq. (4.1) on

the left-side of Eq. (4.2) and using divergence theorem leads to the following
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differential form of the governing equation:

∂

∂t
(ρCx) = ∇ · (κ∇x− vρCx) + h+ bu

For x = C = 1 and the assumption of constant density, this equation reduces

to the continuity as ∇ · v = 0. Then, the differential form becomes:

ρC
∂x

∂t
= ∇ · (κ∇x)− ρCv · ∇x+ h+ bu

Furthermore, it can be shown that the solution to this parabolic PDE is

unique and sufficiently smooth for given boundary and initial conditions.

4.2.2 Geometry and Data Transformations

For later analysis and extraction of empirical eigenfunctions, the following

Assumption is also required.

Assumption 4.1. Evolution of the domain Ω(t) is smooth and known a priori.

Note that the evolution of the time-varying domain can be easily measured

in many process systems (e.g., phase change in the crystal growth processes).

In this section, it is intended to obtain a set of time-varying empirical

eigenfunctions {φj(ξ, t)}, j = 1, 2, · · · ,M that capture the most energy of the

ensemble of solutions (snapshots) {x(ξ, ti)}, i = 1, 2, · · · , N �M , of the para-

bolic PDE under consideration. The fact that eigenfunctions are inherently

time-varying is due to their spatially time-dependent domain.
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Ω(ti)

ξ2

ξ3

ξ1

Ω̄

ξ̄2

ξ̄3

ξ̄1

T (ti)

ξ ξ̄

x x̄S(ti)

Figure 4.2: At each time instance ti, T (ti) maps time-varying domain Ω to
fixed domain Ω̄. Also, the transformation S(ti) maps the state x(ξ, ti) from
time-varying domain to x̄i(ξ) on the fixed domain

Lemma 4.1. There exists invertible mapping T (t) which is smooth and pre-

serves orientation of the coordinate system, that maps the domain Ω(t) to a

fixed reference configuration Ω̄ as T (t) : ξ ∈ Ω(t) 7→ ξ̄ ∈ Ω̄ at each time t

as shown in Fig.4.2, with the coordinate transformation ξ̄ = ξ̄(ξ, t) and the

Jacobian matrix [J(t)] = ∂ξ̄
∂ξ

.

Consider the extensive property:

G(t) =

∫
Ω(t)

g(x(ξ, t))dΩ (4.3)

Since the Karhunen-Loève decomposition deals with the ensemble of snapshots

of solutions of the PDE, we restrict our derivation on the solutions x(ξ, ti) at

time instances t = ti, i = 1, 2, · · · , N . In addition, the spatial integral in

Eq. (4.3) allows to parameterize the independent variable time t and associate

differential elements dΩ = J−1
i dΩ̄ at t = ti, where J−1

i is the determinant of the

inverse of [J(ti)]. Given the state x(ξ, ti), we are interested in a transformation

thorough which the property g(x) (e.g., thermal energy or density) is invariant
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when transforming domain Ω(t) to Ω̄. This is given in the following Lemma.

Lemma 4.2. The transformation S(ti) that maps the state x(ξ, ti) on the

time-varying domain to the state x̄i(ξ̄) on the fixed reference domain given by

x̄i(ξ̄) = g−1(g(x(ξ, ti))J
−1
i ) (4.4)

preserves the property g(x) by the following relation:

g(x(ξ, ti))dΩ = g(x̄i(ξ̄))dΩ̄ (4.5)

Proof. Using the Jacobian of transformation,

g(x(ξ, ti))dΩ = g(x(ξ, ti))J
−1
i dΩ̄ (4.6)

and comparing Eqs. (4.5) and (4.6):

g(x(ξ, ti))J
−1
i = g(x̄i(ξ̄))

which results in (4.4).

Therefore, (4.4) can be regarded as the transformation S(ti) that maps

the state x(ξ, ti) on the time-varying domain to the state x̄i(ξ̄) on the fixed

reference domain preserving the invariant property g(x). Note that, T (ti)

maps the domain (geometry) of interest at t = ti, while S(ti) maps the state

(see Fig.4.2).

Remark 4.1. The mapping transformation T (ti) is required to be non-singular

for all ξ ∈ Ω(ti), that is, the Jacobian being non-zero. This notion comes from
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the topological characteristics of continuous transformation of domain from

one configuration to another. If the transformation preserves the topology of

the time-varying domain, the same approach can be used and numerically re-

alized, see section 4.3.3. In the most general case when the time-varying do-

main contains holes, that is the case of a not simply connected domain, which

is mapped into similar topological fixed domain with the holes, the expression

given in Eqs. (4.6-4.4) holds. On the contrary, if the time-varying domain un-

dergoes topological transformation which implies the change from non-simply

connected to more complex connected region (the generation of holes within the

domain by continuous transformation), the mapping into the fixed domain con-

figuration will induce additional terms to be accounted for in Eqs. (4.6-4.4).

In this Chapter we do not explore these complex cases, since the physical ex-

amples explored in our study do not show this type of the time-varying domain

transformation.

4.2.3 Karhunen-Loève Decomposition

The Karhunen-Loève (KL) decomposition is a procedure for representation

of an stochastic field with a minimum number of degrees of freedom (Loève,

1955; Sirovich and Park, 1990). In this subsection we briefly outline the KL

procedure which is used to calculate the empirical eigenfunctions from the

data on the fixed domain.

Consider the space of square integrable real-valued functions x̄(ξ̄) with

inner product 〈x̄, ȳ〉. Given an ensemble of states {x̄i(ξ̄)}, i = 1, 2, · · · , N ,
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whose ensemble average is denoted by:

̂̄xi(ξ̄) =
1

N

N∑
i=1

x̄i(ξ̄)

it is intended to obtain a function φ̄(ξ̄) that maximizes
̂〈
φ̄, x̄i

〉2
, i.e., φ̄(ξ̄) is

closest to all x̄i(ξ̄). This problem can be expressed as finding maxφ̄(ξ̄) λ where:

λ =

̂〈
φ̄, x̄i

〉2〈
φ̄, φ̄

〉 (4.7)

Defining the two-point correlation function K(ξ̄, η̄) = ̂x̄i(ξ̄)x̄i(η̄) for ξ̄, η̄ ∈ Ω̄

and the linear operator R as:

Rφ̄ =
〈
K(ξ̄, η̄), φ̄(η̄)

〉
equation (4.7) reduces to the following operator eigenvalue problem:

Rφ̄ = λφ̄ (4.8)

Equation (4.8) can be solved using the Schmidt-Hilbert technique or the method

of snapshots (Sirovich, 1987). In this method, the eigenfunction φ̄(ξ̄) is as-

sumed to be a linear combination of ensemble elements as:

φ̄(ξ̄) =
N∑
i=1

αix̄i(ξ̄) (4.9)

Replacing 4.9 and introducing Pij = 1
N
〈x̄i(η̄), x̄j(η̄)〉, Eq. (4.8) takes the
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following form:
N∑
i=1

N∑
j=1

x̄i(ξ̄)Pijαj = λ
N∑
i=1

αix̄i(ξ̄)

For this to hold, the coefficient of xi(ξ̄) on the left and right hand sides of this

equation should be equal for all i = 1, 2, · · · , N , that is:

N∑
j=1

Pijαj = λαi

which is the eigenvalue problem of the matrix with elements Pij. Finally,

the set of eigenfunctions φ̄i(ξ̄), i = 1, 2, · · · ,M associated with the M largest

eigenvalues of R forms an optimal basis in the sense of x̄(ξ̄) representation in

terms of φ̄i(ξ̄) with minimum error.

Remark 4.2. The size of matrix P is as large as the number of snapshots of

the PDE solution. On the other hand, for a set of eigenfunctions to be able to

approximate the solutions accurately, the ensemble of solutions should contain

adequate number of snapshots. Therefore, one faces the issue of a large matrix

eigenvalue problem and numerical methods suitable for these problems should

be chosen. In this Chapter, Arnoldi algorithm is used to solve the large matrix

eigenvalue problem to reduce computational costs.

4.2.4 Time-Varying Empirical Eigenfunctions

Once the set of M eigenfunctions φ̄(ξ̄) are found, they can be transformed to

the time-varying domain Ω at each time ti using the inverse of S(ti) (see Eq.

(4.4)). Therefore, we have the basis of M time-varying eigenfunctions φ(ξ, t)

which can be used to represent the state x(ξ, t) on the time-varying domain
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Ω(t).

4.3 Numerical Simulations

In this section, the proposed methodology is applied to three different PDE

systems. For the first two process examples, the evolution of the systems

is obtained as a solution of nonlinear parabolic PDEs by using the Galerkin’s

method, whereas for the third system, a moving-mesh finite element realization

is developed. It is emphasized that domain evolution is known a priori in these

simulation studies. In the subsequent numerical procedure, the eigenfunctions

φ̄i(ξ̄) obtained from the method of snapshots are orthogonal and they are

normalized to generate an orthonormal basis.

4.3.1 One-dimensional nonlinear reaction-diffusion sys-

tem

Consider the one-dimensional reaction-diffusion system described by the fol-

lowing parabolic PDE:

∂x(ξ, t)

∂t
= k

∂2x(ξ, t)

∂ξ2
− l̇(t)∂x(ξ, t)

∂ξ
+ h(x(ξ, t)) (4.10)

on the time-varying domain l(t) = π(1.4− 0.4e−0.74t), l̇(t) = dl(t)/dt, subject

to Dirichlet boundary conditions:

x(0, t) = 0, x(l(t), t) = 0
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and initial condition x(ξ, 0) = x0(ξ). The process can be considered as the

one-dimensional approximation of temperature evolution x(ξ, t) in a catalytic

rod. The reaction term is given by:

h(x) = β1(e−
γ

1+x − e−γ)− β2x (4.11)

This example is adopted from Armaou and Christofides (2001b) where non-

dimensional process parameters k and β2 are functions of space ξ. For sim-

plicity we averaged these parameters over domain and used k = 0.4 , β1 = 45,

β2 = 2 and γ = 4, however, the approach can be generalized for parameters

depending on spatial coordinates.

To obtain an ensemble of solutions of (4.10), the Galerkin’s method with

the set of orthonormal basis functions:

ψi(ξ, t) =

√
2

l(t)
sin(

iπξ

l(t)
)

is used. An explicit Euler integration scheme is utilized to construct a higher-

order resolution of the problem. Fig.4.3 shows the evolution of state of one-

dimensional PDE using 10 modes of the Galerkin’s method.

For this example, the reference configuration is simply a one-dimensional

domain with constant length L0 and the mapping T (ti) is given by:

ξ̄ =
L0

l(ti)
ξ

If the state x(ξ, t) represents the temperature at ξ ∈ Ω, the invariant property

of interest can be interpreted to be thermal energy g(x(ξ, ti)) = ρcpx(ξ, ti) and
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Figure 4.3: Evolution of the state of one-dimensional PDE given by Eqs. (4.10-
4.11) obtained from Galerkin’s method using 10th-order sinusoidal model.
Thick black line shows domain evolution.

from Eq. (4.4), the mapping S(ti) associated with is given as:

x̄i(ξ̄) =
1

ρcp

(
ρcpx(ξ, ti)J

−1
i

)
=
l(ti)

L0

x(ξ, ti)

Having the temperature distribution x̄i(ξ̄) on the fixed domain Ω̄, one can

perform KL decomposition to extract empirical eigenfunctions φ̄j(ξ̄), j =

1, 2, · · · ,M of the data with inner product 〈x̄, ȳ〉 =
∫ L0

0
x̄ȳdξ̄. Fig.4.4a shows

the first three eigenfunctions on the fixed domain. Time-varying eigenfunc-

tions are obtained by using the inverse mapping S−1 and the first two of them

are shown in Fig.4.4b.

The set of time-varying eigenfunctions are used in the Galerkin’s method

to obtain the reduced-order model by replacing x(ξ, t) =
∑M

i=1 ai(t)φi(ξ, t) in
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Figure 4.4: (a) The first three eigenfunctions extracted from the data mapped
to the fixed domain. (b) The first two time-varying eigenfunctions.
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(4.10) to get:

M∑
i=1

(
ȧiφi + aiφ̇i

)
=

M∑
i=1

(
kaiφ

′′
i − l̇aiφ′i

)
+ h

(
M∑
i=1

aiφi

)

where over dot and prime represent derivatives with respect to time and space,

respectively. Projecting on the basis φj yields:

ȧ(t) = A(t)a(t) + h̄(a(t), t) (4.12)

where a(t) = [a1(t) a2(t) · · · aM(t)]T , Aij(t) =
〈kφ′′i −l̇φ′i−φ̇i,φj〉

c(t)
, h̄j(ai(t), t) =

〈h(∑M
i=1 aiφi),φj〉
c(t)

, and c(t) = [L0/l(t)]
2.

Equation (4.12) represents the reduced-order model of the (4.10). Fig.4.5

compares the evolution of the norm of the states ‖x‖ = 〈x, x〉1/2 for recon-

struction of Fig.4.3 with three time-varying eigenfunctions used in (4.12). As

it can be seen from Fig.4.5, the reduced-order model almost perfectly matches

the profile obtained from the high-order fidelity simulation.

Remark 4.3. The set of eigenfunctions φi in this example are orthogonal and

〈φi(ξ, t), φj(ξ, t)〉 = c(t)δij with δij being Kronecker’s delta. This is because the

determinant of the Jacobian is not spatial-dependent. For general transforma-

tion in multi dimensions, this condition does not hold (see section 4.3.3).



4.3: Numerical Simulations 84

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

t

||
x
||

 

 

higher−order

reduced−order

Figure 4.5: Comparison of the norm of the state for higher-order and reduced-
order resolutions of the one-dimensional PDE.

4.3.2 Two-dimensional nonlinear reaction-diffusion sys-

tem

The second example is the two-dimensional reaction-diffusion system governed

by the nonlinear parabolic PDE given by:

∂x(ξ1, ξ2, t)

∂t
= k∇2x(ξ1, ξ2, t) + h (x(ξ1, ξ2, t)) + u(t) (4.13)

on the time-varying rectangular domain L1(t)×L2(t) ∈ R2 subject to Dirichlet

boundary conditions:

x(0, ξ2, t) = x(L1(t), ξ2, t) = x(ξ1, 0, t) = x(ξ1, L2(t), t) = 0

and initial condition x(ξ1, ξ2, 0) = x0(ξ1, ξ2), see Fig.4.6. The reaction term

and process parameters are the same as in the previous example and u(t) is
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Figure 4.6: Two-dimensional time-varying domain of the nonlinear diffusion-
reaction system.

the input. The ensemble of solutions of (4.13) subjected to the input shown

in Fig.4.8a is obtained using the Galerkin’s method with the set of orthogonal

basis functions:

ψij(ξ1, ξ2, t) = sin(
iπξ1

l1(t)
) sin(

jπξ2

l2(t)
)

The reference fixed configuration Ω̄ on which the solutions of (4.13) are

mapped is considered to be a square with lengths L0 = 4, then the Jacobian

matrix of transformation T (ti) is:

J(ti) =

 L0

L1(ti)
0

0 L0

L2(ti)


Using the same energy function g(x) = ρcpx as in the previous example, from

(4.4) the ensemble of solutions is mapped to the fixed domain to obtain the

data set for the KL decomposition. The first three extracted empirical eigen-
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Figure 4.7: The first three eigenfunctions extracted from the data mapped to
the fixed domain for the two-dimensional nonlinear PDE.

functions are shown in Fig.4.7.

These eigenfunctions are mapped on the time-varying domain at each time

instance ti to obtain the set of time-varying empirical eigenfunctions. Using

this set in the Galerkin’s method, the state evolution can be reconstructed.

Fig.4.8b shows the evolution of the norm of states for simulations based on 25

sinusoidal function space basis and 3 empirical eigenfunctions.

4.3.3 Two-dimensional linear diffusive system with non-

trivial geometry

In this section, the proposed methodology is applied to a diffusive process

where the geometry of the time-varying domain is non-trivial. The Jacobian

matrix of transformation in this case is not only time-dependent, but also

it is space dependent, which implies that the Jacobian matrix needs to be

computationally determined for each point within the deformable domain.

We consider the two-dimensional axisymmetric diffusive system described
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Figure 4.8: (a) Input to the two-dimensional reaction diffusion system. (b)
Comparison of the norm of the state for higher-order and reduced-order reso-
lutions of the two-dimensional PDE.
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by the following parabolic PDE:

∂x

∂t
= k

[
1

r

∂

∂r

(
r
∂x

∂r

)
+
∂2x

∂z2

]
− L̇∂x

∂z
+ u (4.14)

for x(r, z, t) in the time-varying domain Ω(t) shown in Fig.4.9a, subject to

boundary conditions:

x(r, 0, t) = x(r, L(t), t) = 0

[kn · ∇x(r, z, t)]r=0 = [kn · ∇x(r, z, t)]r=R̄(z) = 0 (4.15)

with non-dimensional process parameter k = 0.25 and L̇(t) represents deriva-

tive of the length function L(t) with respect to time. This system is a model

that describes the non-dimensionalized crystal temperature distribution in the

Czochralski crystal growth process. In this method, the crystal rod is pulled

out vertically from the surface (z = 0) of a heated pool of melt contained in

a crucible. A simplified radius control strategy arising from geometric model

provides the domain evolution in terms of L(t) and R(t) as shown in Fig.4.9a,

and u(t) is the heat input to the parabolic PDE system.

The ensemble of solution of (4.14) is obtained using the finite element

method. Since the geometry of domain is time-varying, a mesh moving scheme

is used. Due to the fact that the evolution of the domain is not coupled with the

PDE system (4.14) and is known, the Arbitrary Lagrangian Eulerian (ALE)

method (Reddy and Gartling, 2010) is used to spatially discretize domain of

interest as shown in Fig.4.10. The finite element mesh consists of 14 × 20

two-dimensional linear 4-node elements which discretizes spatial geometry to
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Figure 4.9: (a) Schematic representation of crystal growth in the 2D Czochral-
ski process given by Eqs. (4.14, 4.15). L(t) and R(t) are the length and radius
of crystal at time t. (b) The heat input to the Czochralski system.
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Figure 4.10: Finite element moving mesh at t = 1, 3.5, and, 6.

285 degrees of freedom. The evolution of the time-dependent set of ordinary

differential equations obtained from the finite element discretization is realized

by first-order implicit time integration with the time step dt = 0.025, while

the heat input u(t) is an arbitrary constructed function shown in Fig.4.9b.

To apply the proposed methodology, the reference configuration Ω̄ on which

the solutions of (4.14) are mapped is considered to be a rectangular with

dimensions R̄ = 0.8 and L̄ = 1.5. The mapping T (ti) can be numerically

constructed by introducing sets of computational grid points on both time-

varying and fixed domains, as shown in Fig.4.11. Associating each grid point

of the time-varying domain with one and only one grid point on the fixed-

domain defines the one-to-one and onto (and hence invertible) mapping T (ti).

Note that, the coarse grid of 10×18 points is shown in Fig.4.11 for illustration

and a 40×80 computational grid is used for calculation of the Jacobian. Also,

it is important to emphasize that the Jacobian matrix of transformation in

this case is space-dependant.
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Figure 4.11: The sets of 10 × 18 grid points in time-varying domain at t = 5
(left panel) and in the fixed domain (middle panel). These computational grid
points define the mapping T (ti) by associating each point of the time-varying
domain with one point in the fixed domain. Right panel shows J−1

i (r, z) at
ti = 5.

Considering the state x(r, z, t) as temperature at (r, z) ∈ Ω(t), the invariant

property g(x(ξ, ti)) can be considered to be thermal energy as in previous

examples and from (4.4), the map S(ti) found as:

x̄i(r̄, z̄) = J−1
i x(r, z, ti)

Having the temperature distribution x̄i(r̄, z̄) on the fixed domain Ω̄, one can

perform KL decomposition to extract empirical eigenfunctions φ̄j(r̄, z̄), j =

1, 2, · · · ,M of the data with inner product defined as:

〈x̄, ȳ〉 =

∫
Ω̄

r̄x̄ȳdr̄dz̄

Figure 4.12a shows the first 30 eigenvalues of the KL decomposition (see

Eq. (4.8)), the first mode captures 99.2% of the energy solutions. Fig.4.12b
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Figure 4.12: (a) The first 30 eigenvalues of the KL decomposition. (b) The
first five eigenfunctions extracted from the data mapped to the fixed domain.

shows the first five eigenfunctions on the fixed domain.

The use of S−1 on eigenfunctions extracted from the data mapped to the

reference configuration results in the time-varying eigenfunctions. Then, the

Galerkin’s method is used to obtain the reduced-order model by replacing

x(r, z, t) =
∑M

i=1 ai(t)φi(r, z, t) in (4.14) and projecting on the basis φj to get:

ȧ(t) = A(t)a(t) +B(t)u(t) (4.16)



4.4: Summary 93

where

a(t) = [a1(t) a2(t) · · · aM(t)]T

A(t) = C(t)−1K(t), B(t) = C(t)−1F (t)

Cij(t) = 〈φi, φj〉

Kij(t) =

〈
k

[
1

r

∂

∂r

(
r
∂φi
∂r

)
+
∂2φi
∂z2

]
− L̇∂φi

∂z
− ∂φi

∂t
, φj

〉
Fi(t) = 〈1, φi〉

Equation (4.16) represents the reduced-order form of (4.14).

Figure 4.13 compares the evolution of the norm of the states for recon-

struction of the solutions of (4.14) with the same input with two time-varying

eigenfunctions used in (4.16). As it can be seen the reduced-order model per-

fectly matches the profile obtained from the high-order simulation, the finite

element model with order of 285 is reduced to a second-order system. Recon-

structed states resulting from the reduced-order model are shown in Fig.4.14

against the finite element solutions.

4.4 Summary

In this Chapter, we proposed a method to obtain a set of time-varying em-

pirical eigenfunctions of a set of data given on the spatially time-dependent

domain. In this method the solutions of the PDE system on the time-varying

domain are mapped to a fixed reference configuration in such a way that invari-

ant properties of the data are preserved. Then, KL decomposition is applied

on the mapped solutions to extract a small set of eigenfunctions that contains
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Figure 4.13: Comparison of the norm of the state for the higher-order finite el-
ement and reduced-order Galerkin’s method resolutions of the parabolic PDE.

most of the energy of system on the fixed domain. These eigenfunctions are

mapped back on the time-varying domain yielding a set of time-varying em-

pirical eigenfunctions which are used to find the reduced-order representation

of the main PDE system.

In the simulation part, the procedure is applied to two nonlinear reaction-

diffusion systems with trivial domain, as well as a two-dimensional axisym-

metric problem of temperature distribution of the Czochralski crystal growth

process governed by parabolic PDE which represents time-varying domain

with non-trivial geometry. The results show the capability of the method as

a useful and efficient tool in representations of the reduced-order system with

the time-varying domain.
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Deen, W.M., 1998. Analysis of transport phenomena. Oxford University Press,
New York.



References 97

Fogleman, M., Lumley, J., Rempfer, D., Haworth, D., 2004. Application of the
proper orthogonal decomposition to datasets of internal combustion engine
flows. Journal of Turbulence 5, 023.

Gay, D.H., Ray, W.H., 1995. Identification and control of distributed pa-
rameter systems by means of the singular value decomposition. Chemical
Engineering Science 50, 1519–1539.

Glavaski, S., Marsden, J.E., Murray, R.M., 1998. Model reduction, center-
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Chapter 5

Low-order Optimal Regulation
of Parabolic PDEs with
Time-dependent Domain

5.1 Introduction

The synthesis and treatment procedures in many industrial plants including

chemical, petrochemical and pharmaceutical processes, lead to changes in the

shape and material properties. This change in material can be character-

ized by transport phenomena associated with the material deformation, phase

change mechanism, generation and consumption of chemical species through

chemical reactions, heat and mass transfer. Mathematically, a broad collection

of these processes are modelled by application of conservation laws and yield

models in the form of moving boundary parabolic partial differential equations

(PDEs). Methods for control of linear parabolic PDEs have been extensively

studied in the past and have mainly focused on process systems with fixed

spatial domains and boundary and/or distributed actuations. Specifically,

the functional analytic formulation using semigroup theory and related con-

100
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cepts have proven to be a powerful tool for system analysis and control design

(Curtain and Zwart, 1995; Luo et al., 1999). Regarding process models with

moving boundaries, it is established that parabolic PDE systems with time-

varying domains are inherently nonautonomous (Kloeden et al., 2008). In

this context, there are several contributions which formulate the solutions to

nonautonomous parabolic PDE systems with fixed spatial domain in terms of

two-parameter semigroups which resemble the standard one-parameter semi-

group generated by time-invariant parabolic operators (Lasiecka, 1980; Pazy,

1983; Acquistapace and Terreni, 1987). However, in general an analytic ex-

pression for the two-parameter semigroup describing the nonautonomous sys-

tem behaviour can not be found, which prevents direct analysis and controller

synthesis. In addition, only few contributions have reported the study of

parabolic PDEs with time-varying domain, in which main results are focused

on establishing existence and regularity properties of the solution. These in-

clude development of transformations to map the PDE onto a new time in-

variant spatial domain (Baconneau and Lunardi, 2004; Burdzy et al., 2004;

Lunardi, 2004) and evolution of continuously differentiable diffeomorphisms

(Kloeden et al., 2008, 2009). Among contributions along this line, a design

of nonlinear distributed state observers for systems with moving boundaries

using stochastic methods (Ray and Seinfeld, 1975) is notable. In particular,

Wang (1990) studied stabilization and optimal control problem of such sys-

tems and later synthesized the linear optimal controller for thermal gradient

regulation of crystal growth processes (Wang, 1995). Ng and Dubljevic pre-

sented the PDE on a moving boundary as an abstract evolution equation on

an infinite-dimensional function space with nonautonomous parabolic opera-
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tor which generates a two-parameter semigroup. With this formulation, they

posed the time-varying optimal control (Ng et al., 2013) and optimal boundary

control (Ng and Dubljevic, 2012) problems for regulation of a parabolic PDE.

However, the setting in (Ng et al., 2013; Ng and Dubljevic, 2012) accounts

only for a well-defined 1D or 2D time-varying trivial square domain while

more practically motivated and physically relevant cases of irregular domain

evolution are not addressed.

Another notable approach in the linear/semilinear PDE control area is the

backstepping method emerging from nonlinear finite-dimensional control sys-

tems synthesis. In this methodology, a Volterra-type integral transformation

is used to transform the PDE to a suitably selected stable target system. The

kernel of transformation is defined by the solution of the kernel PDE that is

of higher-order in space, leading to a state-feedback control law (Krstic and

Smyshlyaev, 2008). This technique provides a framework to handle a large

class of distributed parameter systems controlled at the boundary, however,

the complexity associated with finding the solution of the kernel PDE for dis-

tributed systems described in 2D or 3D spaces prevents the use of this method

for such problems.

Dissipative parabolic PDE systems have the property that the eigenspec-

trum of the spatial differential operator can be partitioned into a finite- dimen-

sional slow subspace and the infinite-dimensional fast and stable complement,

which implies that the dynamic behavior of such processes can be approxi-

mately described by finite-dimensional systems. Hence, if eigenfunctions of

the parabolic operator can be expressed explicitly, one can use Galerkin’s

method to derive a reduced-order model (ROM) in terms of ordinary differen-
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tial equations (ODEs) that accurately describe the dominant dynamics of the

distributed parameter system and subsequently use it for the controller syn-

thesis. Low-dimensional model identification of distributed parameter systems

governed by parabolic PDEs attracted attention of a significant number of re-

searchers in recent years. Among many, the most notable contributions came

from Gay and Ray (1995); Chakravarti and Ray (1999); Park and Cho (1996);

Christofides (2001); Armaou and Christofides (2002); Zheng and Hoo (2002,

2004). However, there is no analytic solution to the operator eigenvalue prob-

lem in general, the examples being the nonlinear spatial operator or problems

with nontrivial geometric domain. In such cases, a well-known approach in the

extraction of spatial characteristics (modes) of distributed parameter systems

is the use of statistical tools, specifically the Karhunen-Loève (KL) decomposi-

tion on an ensemble of solutions of the system obtained by numerical resolution

or experiments (Park and Cho, 1996). These modes, known as empirical eigen-

functions, can be adopted as the basis set of functions in the Galerkin’s method

to find a reduced-order model. This approach is widely used in the derivation

of accurate reduced-order approximations of many distributed parameter sys-

tems, see for example Shvartsman and Kevrekidis (1998); Theodoropoulou

et al. (1999); Baker and Christofides (2000) for diffusion-reaction systems,

Arkun and Kayihan (1998) for sheet-forming processes, Mangold and Sheng

(2004) for molten carbonate fuel cell model, Bleris and Kothare (2005) for

thermal microsystem models and McPhee and Yeh (2008) for ground-water

flow model.

To obtain a reduced-order model of parabolic PDE systems with a mov-

ing boundary domain, Armaou and Christofides (2001a) used a mathematical
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transformation to represent the PDE on a time-invariant spatial domain and

applied Karhunen-Loève decomposition to find the set of eigenfunctions on the

fixed domain. In application, they used this approach in the nonlinear feed-

back (Armaou and Christofides, 2001b) and robust (Armaou and Christofides,

2001c) control of 1D reaction-diffusion systems based on the use of Galerkin’s

method. This approach cannot be used in general, since the mathematical

transformation does not always have an analytical form, e.g. for nontrivial

geometry. In Chapter 4 a more generalized approach to reduce the order of

PDE systems with time-varying domain is proposed, in which the transforma-

tion that preserves the space-invariant properties of PDE solutions is found

and the ensemble of the solution to the PDE is mapped to a selected fixed

reference configuration. Subsequently, KL decomposition is applied on the

mapped data to extract a low-dimensional set of eigenfunctions that contains

most of the energy of the system on the fixed domain. These eigenfunctions

are mapped on the time-varying domain using inverse transformation and as

a result, a set of time-varying empirical eigenfunctions are obtained that can

be used in Galerkin’s method.

In this Chapter, a methodology is developed to design an observer and to

find an optimal control law for output tracking of linear parabolic distributed

systems with nontrivial time-varying domain. Since the boundary actuation

of PDE systems rather than the distributed input as in Chapter 4 is more

realistic in applications, the boundary input control problem is formulated as

finding the appropriate state-space representation of the PDE system. Then,

the proposed method of model order reduction by empirical eigenfunctions

on the time-varying domain is used. Although the approach in Chapter 4
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can be used for general nonlinear parabolic PDE systems, we consider the

order reduction of boundary actuated linear dissipative distributed parameter

systems with subsequent realization of observer to synthesize a linear optimal

output tracking controller. Finally, numerical results are prepared for the 2D

model of temperature distribution in the industrially relevant Czochralski (CZ)

crystal growth process.

5.2 Mathematical Formulation

In this section, the mathematical aspects of the proposed method are reviewed.

In particular, a general description of the parabolic PDE on the moving bound-

ary domain and boundary actuation is presented. Then the order reduction

methodology is briefly reviewed followed by the optimal control formulation.

Finally, the design of the state observer is considered.

5.2.1 Model Description

We are interested in the model dynamics of an extensive property

G(t) =

∫
Ω(t)

ρ(ξ, t)σx(ξ, t)dΩ

given by the intensive property x(ξ, t) at each point ξ ∈ Ω(t) ⊂ Rn at time

t ∈ [0, tf ], where ρ(ξ, t) is density and σ is a constant. The body Ω(t) under

consideration has the velocity v(ξ, t) and its boundary is denoted by Γ(t). With

the use of the Leibniz integral rule and divergence theorem, conservation of

the property G(t) for continuous media (∇·v = 0) is governed by the following
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parabolic partial differential equation (Ng et al., 2013):

ρσ
∂x

∂t
= ∇ · (κ∇x)− ρσv · ∇x (5.1)

where κ is diffusivity. This equation describes the differential form of a

diffusion-convection process dynamics in terms of the property (state) x(ξ, t)

in the time-varying domain Ω(t). Initial conditions are given by x(ξ, 0) = x0(ξ)

and actuations qi(t) are applied to m portions of the domain boundary in the

following form:

κn · ∇x = qi on Γa
i for i = 1, 2, · · · ,m (5.2)

Other boundary conditions are given as Neumann or Dirichlet boundary con-

ditions, respectively as:

κn · ∇x = 0 on Γn

x = 0 on Γd (5.3)

In these equations n is the normal outward vector at each point on the Γ(t).

It is assumed that the evolution of the domain Ω(t) is smooth and known

a priori, as it can be easily measured in many chemical and material process

systems. In the example of the model of industrial CZ semiconductor crystal

growth, there are robust control practices in achieving a desired crystal shape

by manipulating the pulling rate of the crystal from the melt and other con-

trol inputs (see Abdollahi et al. (2014) and series of studies by Gevelber and

Stephanopoulos (1987); Gevelber et al. (1988); Gevelber (1994a,b) for more

details). Hence, the PDE domain evolution is considered independent of the
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thermal field and the mentioned assumption is valid in this case. Further-

more, we assume that the solution of the PDE (5.1) is unique and sufficiently

smooth.

5.2.2 Boundary control formulation

In many relevant control applications, boundary actuation is more realistic

than distributed control within spatial domain. The following formulation,

motivated by Fattorini (1968); Curtain (1985); Park and Cho (1996), converts

the boundary control problem to a distributed control problem. In particular,

the transformation:

x(ξ, t) = p(ξ, t) +
m∑
i=1

bi(ξ, t)qi(t) (5.4)

introduces the new state variable p(ξ, t) along with m functions bi(ξ, t) that

determine the spatial contribution of each actuation qi(t), where m is the

number of actuators on the boundary, see (5.2). Rewriting (5.1-5.3) leads to

the following PDE with initial and boundary conditions:

ρσ
∂p

∂t
= ∇ · (κ∇p)− ρσv · ∇p− ρσ

m∑
i=1

biq̇i

p(ξ, 0) = x0(ξ)

κn · ∇p = 0 on Γn

m⋃
i=1

Γa
i

p = 0 on Γd (5.5)
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providing that the function bi(ξ, t) satisfies

ρσ
∂bi
∂t

= ∇ · (κ∇bi)− ρσv · ∇bi

bi(ξ, 0) = 0

κn · ∇bi = 1 on Γa
i

κn · ∇bi = 0 on Γn

bi = 0 on Γd (5.6)

for i = 1, 2, · · · ,m with over dot representing differentiation with respect to

time. Note that (5.5) is a distributed parameter system actuated by distributed

inputs q̇i and functions bi(ξ, t) are the solutions to (5.6). Equations (5.5) can

be written in the state-space form as

∂p

∂t
= Ap− B̄u

p(ξ, 0) = x0(ξ) (5.7)

where A is the spatial differential operator with given boundary conditions,

B̄ = [b1 b2 · · · bm] and

u = q̇ = [q̇1 q̇2 · · · q̇m]T (5.8)
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5.2.3 Order reduction of the infinite-dimensional sys-

tem

In this section the reduced-order model of the infinite-dimensional system de-

scribed by (5.7) is developed. To this end, we follow the methodology proposed

in Chapter 4 for the PDE given by (5.5). This approach, schematically de-

picted in Fig. 5.1, yields to a set of time-varying empirical eigenfunctions

{φj(ξ, t)}, j = 1, 2, · · · ,M that capture the most energy of the ensemble of

solutions (snapshots) {p(ξ, ti)}, i = 1, 2, · · · , N � M , of (5.5). The fact

that eigenfunctions are inherently time-varying is due to their spatially time-

dependent domain.

There exists the invertible smooth mapping T (t) that maps the domain

Ω(t) to a fixed reference configuration Ω̄ as T (t) : ξ ∈ Ω(t) 7→ ξ̄ ∈ Ω̄ at each

time t as shown in Fig.5.2, with the coordinate transformation ξ̄ = ξ̄(ξ, t) and

the Jacobian matrix [J(t)] = ∂ξ̄
∂ξ

.

Also, the transformation S(ti) given by p̄i(ξ̄) = p(ξ, ti)J
−1
i maps the snap-

shot p(ξ, ti) on the moving boundary domain to p̄i(ξ̄) on the fixed domain

such that σpdΩ = σp̄dΩ̄, that is the space-invariant property σpdΩ is pre-

served. Given the ensemble {p̄i(ξ̄)} on the reference configuration, Karhunen-

Loève (KL) decomposition can be applied to find the empirical eigenfunctions

{φ̄j(ξ̄)} that can approximate each snapshot. KL decomposition is a procedure

for representation of a stochastic field with a minimum number of degrees of

freedom (Loève, 1955; Sirovich and Park, 1990).

Once the set of M eigenfunctions {φ̄j(ξ̄)} is found, they can be transformed

to the time-varying domain Ω(ti) at each time ti using the inverse of S(ti).
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Figure 5.1: Schematics of order-reduction approach: the transformations T (t)
and S(t) map geometry and state of the PDE solution to a fixed domain. Using
KL decomposition, empirical eigenfunctions {φ̄j(ξ̄)} are extracted on the fixed
domain and transformed to the time-varying domain by the application of T
and S resulting in the time-varying basis {φj(ξ, t)}.
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Ω(ti)

ξ2

ξ3

ξ1

Ω̄

ξ̄2

ξ̄3

ξ̄1

T (ti)

ξ ξ̄

x x̄S(ti)

Figure 5.2: At each time instance ti, T (ti) maps moving boundary domain
Ω to the fixed domain Ω̄ and the transformation S(ti) maps the state p(ξ, ti)
from time-varying domain to p̄i(ξ) on the fixed domain

Therefore, one has the basis of M time-varying eigenfunctions {φj(ξ, t)} which

can be used to approximate the state p on the moving boundary domain Ω(t)

as

p(ξ, t) =
M∑
i=1

ai(t)φi(ξ, t) (5.9)

Finally, Galerkin’s method is used to obtain the reduced-order model by

replacing (5.9) in (5.7) and projecting on the basis φj to get:

ȧ(t) = A(t)a(t) +B(t)u(t)

a(0) = D−1(0)y0 (5.10)
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with terms defined as follows:

a(t) = [a1(t) a2(t) · · · aM(t)]T

A(t) = D−1(t)H(t),

B(t) = D−1(t)F (t)

Dij(t) = 〈φi, φj〉

Hij(t) =
〈
Aφi − φ̇i, φj

〉
Fij(t) = −〈bi, φj〉

y0
i = 〈x0, φi(ξ, 0)〉

Equations (5.10) represent the reduced-order form of (5.7), which is a linear

time-varying model of the process.

5.2.4 Optimal output tracking formulation

The control objective is to find a control law u(t) based on the reduced-order

model (5.10), for which the state of the PDE system x(ξi, t) = yi at arbitrary

points ξi, i = 1, 2, · · · , s, track desired reference trajectories yri = xr(ξi, t).

Since the state x(ξ, t) is described by p(ξ, t) and boundary actuations qi(t) (see

(5.4)), the extended state is introduced as ae =
[
aT qT

]T
and the boundary

control problem is given by

ȧe(t) = Ae(t)ae(t) +Be(t)u(t) (5.11)

ae(0) =
[
aT (0) qT (0)

]T
(5.12)
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where

Ae(t) =

 A(t) 0

0 0

 , Be(t) =

 B(t)

I


and I is the identity matrix. Now one may evaluate the state (5.4) at points

ξj to get:

y(t) = C(t)ae(t) (5.13)

which is considered as the system output equation, with

C(t) =

[
Φ(t) C̄(t)

]
Φij(t) = φi(ξj, t) C̄ij(t) = bi(ξj, t)

Equations (5.11,5.13) describe the extended system with an initial condition

(5.12).

One can formulate the control problem as classical linear optimal output

tracking control problem for the process described by equations (5.11-5.13) by

minimizing the finite time linear quadratic cost functional

J =
1

2
ỹT (tf )P ỹ(tf ) +

1

2

∫ tf

0

(
ỹ(t)TQỹ(t) + u(t)TRu(t)

)
dt

where ỹ = y − yr. The optimal control is a time-varying linear state-feedback

control law given by (Lewis et al., 2012):

u(t) = −κ(t)ae(t) + ω(t) (5.14)

where κ(t) = R−1BeT (t)S(t), ω(t) = R−1BeT (t)w(t), the real symmetric and
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positive-definite matrix S is the solution of the differential Riccati equation

−Ṡ(t) =AeT (t)S(t) + S(t)Ae(t)− S(t)Be(t)R−1BeT (t)S(t) + CT (t)QC(t),

S(tf ) =CT (tf )PC(tf )

and the vector w(t) is the solution of the linear vector differential equation

−ẇ(t) =
[
Ae(t)−Be(t)R−1BeT (t)S(t)

]T
w(t) + CT (t)Qyr(t)

w(tf ) =CT (tf )Py
r(tf )

Replacing (5.14) into (5.11) yields the following:

ȧe(t) = (Ae(t)−Be(t)κ(t))ae(t) +Be(t)ω(t)

Let Ā(t) = Ae(t) − Be(t)κ(t), the controllability of the process results in

exponential stability of ȧe(t) = Ā(t)ae(t) which guarantees the existence of a

continuously differentiable symmetric bounded positive definite matrix Π1(t)

that satisfies the differential Lyapunov equation

−Π̇1(t) = Π1(t)Ā(t) + ĀT (t)Π1(t) + χ1(t)

where χ1(t) is continuous, symmetric, and positive definite. Hence, the can-

didate V1(ae, t) = aeTΠ1a
e is a Lyapunov function with time-derivative V̇1 =

−aeTχ1a
e.
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ȳâ
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Figure 5.3: Block diagram representation of the controller-observer setup.

5.2.5 Observer Design

In practice, state variables may not be accessible for the application of state-

feedback control (5.14), specifically, the ROM state a(t) cannot be measured or

physically interpreted. However, the finite-dimensional representation (5.10)

provides tools for state estimation where the measurements of physical proper-

ties are usually available at domain boundaries in applications. In this section,

a state observer is designed to be used in the closed-loop setup depicted in Fig.

5.3. This controller-observer configuration is chosen due to the fact that the

PDE deriving signal q(t) can be determined by integration of input signal

u(t) from (5.8), hence, there is no need to estimate q(t) in the extended state

ae(t). Also, having the measurement y(t) and the knowledge of q(t), one can

determine the new output variable ȳ(t) = Φ(t)a(t) from (5.4,5.9).

Now the open-loop Luenberger-type observer with time-varying gain λ(t)

is introduced as:

˙̂a(t) = A(t)â(t) +B(t)u(t) + λ(t)(ȳ(t)− Φ(t)â(t))
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with the estimation error e(t) = a(t)− â(t). It can be readily shown that the

error dynamics is given by

ė(t) = (A(t)− λ(t)Φ(t))e(t) (5.15)

Although the matrices A and Φ are time-dependent, the continuous observer

gain λ(t) can be evaluated at each time instance t such that A(t) − λ(t)Φ(t)

becomes time-independent with (stable) eigenvalues placed at desired pre-

specified values. Therefore, there exists symmetric positive definite time-

independent matrices Π2 and χ2 that satisfy Lyapunov equation

Π2(A(t)− λ(t)Φ(t)) + (A(t)− λ(t)Φ(t))TΠ2 + χ2 = 0

and the Lyapunov function V2(a) = aTΠ2a with time-derivative V̇1 = −aTχ2a

implies the exponential stability of (5.15).

Now, the state-feedback gain κ(t) is partitioned as

u(t) = −
[
κ1(t) κ2(t)

] â(t)

q(t)

+ ω(t)

which develops the following state-equation for the overall system shown in

Fig. 5.3:


ȧ

q̇

ė

 =


A−Bκ1 −Bκ2 Bκ1

−κ1 −κ2 κ1

0 0 A− λΦ



a

q

e

+


B

I

0

ω (5.16)
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Consider the continuously differentiable function

V (a, q, e, t) =

[
aT qT eT

] Π1 0

0 Π2



a

q

e


which is a valid Lyapunov function candidate. It can be shown that its time

derivative is given by

V̇ = −
[
aT qT eT

]
χ


a

q

e


where

χ =


χ1 −2Π1

 Bκ1

κ1


0 χ2


All matrices defining χ are continuous and bounded. Moreover, at each time

instance the eigenvalues of χ are the union of eigenvalues of positive definite

matrices χ1 and χ2. So χ is positive definite and V is indeed a Lyapunov

function that implies the exponential stability of the dynamics of (5.16). Thus

inserting the observer does not affect the original state-feedback law and it

can be designed separately.
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Figure 5.4: Schematic representation of axisymmetric crystal domain in
Czochralski growth process where L(t) and R(t) are the height and radius
of crystal at time t, respectively.

5.3 Numerical Simulation

In this section, the results from previous section are applied to the 2D rep-

resentation of the Czochralski crystal temperature boundary control problem

depicted in Fig. 5.4. CZ process is one of the main methods in the manu-

facturing of semiconductor materials on a large-scale for the use in the high

performance electronic devices. In this process, a pulling arm drags out the

crystal rod vertically from the surface (z = 0) of a heated pool of melt con-

tained in a crucible. One can observe that the shape of the gradually grown

crystal is nontrivial.
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Figure 5.5: Domain evolution result from radius control strategy.

We consider the axisymmetric diffusive system described by the following

nondimensionalized parabolic PDE (Derby et al., 1987; Ng et al., 2013):

∂x

∂t
= k

[
1

r

∂

∂r

(
r
∂x

∂r

)
+
∂2x

∂z2

]
− L̇∂x

∂z
(5.17)

for x(r, z, t) being the temperature in the time-varying domain Ω(t) subject

to boundary actuations qi(t) on two portions of the domain boundary Γa
i ,

i = 1, 2 and Neumann and Dirichlet boundary conditions. In (5.17), k = 6.25

is the dimensionless process parameter and L̇(t) represents the domain velocity

which is the derivative of the height function L(t) with respect to time. A

simplified radius control strategy arising from geometric model provides the

domain evolution in terms of L(t) and R(t) as shown in Fig. 5.5, see Abdollahi

et al. (2014) for more details.

We developed a finite element model (FEM) that is used to find the solu-

tions to the aforementioned PDE, as well as using as a process plant to apply

the synthesized control. Since the geometry of the domain is time-varying

and the evolution is known, the Arbitrary Lagrangian Eulerian (ALE) mesh
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moving scheme is used in formulating FEM (Reddy and Gartling, 2010). The

domain of interest is spatially discretized by 11×29 2D linear 4-node elements

into 297 degrees of freedom. The evolution of the time-dependent set of or-

dinary differential equations obtained from the finite element discretization is

realized by first-order implicit time integration with the time step dt = 0.0333.

Figure 5.6 shows the schematics of moving elements and functions b1(r, z, t)

and b2(r, z, t) obtained from the solutions to corresponding PDEs by FEM.

The reference configuration Ω̄ on which the solutions of (5.17) are mapped

for the order reduction purpose is considered to be a rectangular with dimen-

sions R̄ = 0.7 and L̄ = 1.25. We chose three empirical eigenfunctions which

contains more than 99.9% of the energy of snapshots, to construct the ROM.

The temperature field in the grown crystal cannot be measured directly,

however, boundary measurements are available by the use of sensing devices.

To reconstruct the state of the reduced-order model of the CZ process, the

temperature of a point on the outer surface of the crystal close (at the distance

of 0.1) to the pulling arm (top of the crystal) is measured, this point can be

considered on the crystal seed that is initially used to grow crystal on.

Thermal gradients near the melt interface in the grown crystal play a key

role in the properties of the product. Structural defects in the form of dislo-

cations can be generated by thermal stress, which is related to the thermal

gradients near the interface (Jordan et al., 1984). Also, thermally induced

stress can cause slip in the crystal structure. Stress analysis results have

shown that thermal stress is largest at the crystal surface (Gevelber, 1994a).

We have chosen two target points close to the interface and crystal surface,

namely at z = 0.2 and at distances 0.05 and 0.25 from the crystal surface.
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Figure 5.6: Finite element moving mesh (top) and functions b1(r, z, t) (middle)
and b2(r, z, t) (bottom) at t = 0.1, 1.27, 2.43, 3.63, 4.8, and 6.

The objective is to keep the dimensionless temperature at these target points

y(t) to track reference value of yr =

[
−0.1 −0.1

]T
which complies with the

requirements for the thermal gradients. Hence, the optimal control problem is

to find the control law to track the reference temperature at the target points.

The input profiles u(t) generated as the time-varying linear state-feedback
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Figure 5.7: Optimal boundary inputs applied to the crystal.
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Figure 5.8: Evolution of the states of ROM and corresponding estimates.

control using the estimated state for the reduced-order system is shown in

Fig. 5.7. Figure 5.8 shows the convergence of the estimated states to ROM
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Figure 5.9: Outputs of the reduced-order model and finite element plant.

states when state-feedback control is applied to the system.

Figure 5.9 shows the closed-loop response of the reduced-order model as

well as the response of the finite element. As it can be seen, the response of

the system converges to the reference value. Also, there is a perfect match

between the profiles of the two models showing the capability of the ROM to

be used for controller design. Finally, the overall temperature profile of the

crystal and target points are captured in Fig. 5.10 showing the evolution of

the state x(r, z, t) of the finite element plant.

5.4 Summary

This Chapter considers the state estimation and optimal control problem with

boundary actuation for linear parabolic PDEs defined on time-dependent spa-

tial domains. The formulation of time-varying parabolic system as a bound-
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Figure 5.10: Dimensionless crystal temperature distribution from the FEM
at t = 1.27, 2.43, 3.63, 4.8, and 6. Temperature measurement is taken at the
point indicated by square on the boundary and target points are shown by
circles.

ary control problem enabled order reduction of the system by extracting the

set of time-varying empirical eigenfunctions that capture the most energy of

PDE snapshots and the utilization of Galerkin’s method. The reduced-order

model which is in the form of a linear time-varying system facilitated the

Luenberger-type observer design and synthesis of a time-varying linear feed-

back controller based on a quadratic cost minimization. As an illustrative

example, the Czochralski crystal growth process with the 2D crystal tem-

perature distribution was considered and the proposed controller formulation

was applied. The numerical results of the simulated system demonstrated the

output tracking of the system in the time-dependent crystal by the optimal

feedback controller through boundary actuation.
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Chapter 6

Conclusions and Future work

Moving boundary parabolic PDEs are models of a class of transport-reaction

phenomena in a variety of processes and they describe the temporal and spa-

tial profiles of state variables. Two systematic treatments are developed in

this thesis for the general boundary control problem of such processes: PDE

backstepping method and empirical order-reduction approach.

6.1 Conclusions

The PDE backstepping boundary control synthesis of one-dimensional heat

equation on a time-varying domain is formulated in Chapter 2. The PDE sys-

tem is transformed to an exponentially stable target system through the inver-

tible Volterra-type integral transformation resulting in the two-dimensional

time-varying PDE with time-dependant domain describing the transformation

kernel. Then, a numerical solution to the kernel PDE is provided and simu-

lated to demonstrate stabilization of the moving boundary unstable system.

In Chapter 3 the observer design of one-dimensional unstable parabolic

PDE on a time-varying domain is formulated, where the observer gains are

129



6.1: Conclusions 130

determined by the use of backstepping methodology. This includes a Volterra

integral transformation to transform the estimation error PDE to a prescribed

exponentially stable target system. The kernel function of this transformation

is described by a two-dimensional time-varying PDE on a moving boundary

domain. Then, the designed observer is incorporated with the backstepping

control in an output-feedback controller and the exponential stability of the

closed-loop system is shown by Lyapunov theorem. Finally, numerical so-

lutions to the kernel PDEs are provided and the output-feedback boundary

stabilization of the unstable system is simulated to demonstrate the successful

performance of the state observer.

Chapters 4 and 5 consider optimal boundary control of parabolic PDEs

with nontrivial time-dependent domain using empirical modes. The method

to obtain a set of time-varying empirical eigenfunctions of data given on the

spatially time-dependent domain is proposed in Chapter 4 where the solutions

of the PDE system are mapped to a fixed reference configuration in such a way

that invariant properties of the data are preserved. Then, KL decomposition

is applied on the mapped solutions to extract a small set of eigenfunctions

that contains most of the energy of system on the fixed domain. These eigen-

functions are mapped back on the time-varying domain yielding a set of time-

varying empirical eigenfunctions that can be used to find the reduced-order

representation of the main PDE system.

Chapter 5 formulates the boundary control problem of moving boundary

parabolic system to be suitable for the order-reduction technique introduced

in Chapter 4 by the use of Galerkin’s method. Then, the state reconstruc-

tion and optimal control problem for the boundary actuated linear parabolic
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PDE is considered. The reduced-order model which is in the form of a lin-

ear time-varying system facilitated the Luenberger-type observer design and

synthesis of a time-varying linear feedback controller based on a quadratic

cost minimization. As an illustrative example, the Czochralski crystal growth

process with the two-dimensional crystal temperature distribution is studied

and the proposed controller formulation is applied. The numerical results of

the simulated system demonstrate the output tracking of the system in the

time-dependent crystal by the optimal feedback controller through boundary

actuation.

6.2 Future work

This thesis developed PDE backstepping and order-reduction methodologies

to address the control problem of moving boundary parabolic PDE systems.

There remain many open questions regarding this subject and a number of

them are briefly mentioned here.

The coupling of moving boundary PDEs with ODE systems or other trans-

port phenomena is an open research area that can be addressed in future. For

the CZ process, there are many other important process dynamics, e.g. heat

transport in the melt, pulling dynamics and dislocation formation, that can be

considered in a more realistic model investigated by backstepping method or

order-reduction. This is of more interest in the backstepping approach since

the knowledge of domain evolution is not required a priori.

Although PDE backstepping is mainly formulated for one-dimensional prob-

lems and this is due the high dimensionality of the kernel PDE, there are cases
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of problems in two- or three-dimensional space for which backstepping method

can be used. Another possibility is to extend these special cases to moving

boundary problems.

Another promising area is the development of advanced control strategies

such as Model Predictive Control (MPC) for parabolic PDEs with time-varying

domain. This is of special interest because there are state and input constraints

in many industrial applications.
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