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Abstract

In this thesis we address several questions around mirror symmetry for Fano manifolds

and Calabi-Yau varieties. Fano mirror symmetry is a relationship between a Fano

manifold X and a pair (Y,w) called a Landau-Ginzburg model, which consists of a

manifold Y and a regular function w on Y . The goal of this thesis is to study of

Landau-Ginzburg models as geometric objects, using toric geometry as a tool, and to

understand how K3 surface fibrations on Calabi-Yau varieties behave under mirror

symmetry. These two problems are very much interconnected and we explore the

relationship between them.

As in the case of Calabi-Yau varieties, there is a version of Hodge number mirror

symmetry for Fano varieties and Landau-Ginzburg models. We study the Hodge

numbers of Landau-Ginzburg models and prove that Hodge number mirror symmetry

holds in a number of cases, including the case of weak Fano toric varieties with terminal

singularities and for many quasi-Fano hypersurfaces in toric varieties.

We describe the structure of a specific class of degenerations of a d-dimensional

Fano complete intersection X in toric varieties to toric varieties. We show that these

degenerations are controlled by combinatorial objects called amenable collections,

and that the same combinatorial objects produce birational morphisms between the
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Landau-Ginzburg model of X and (C×)d. This proves a special case of a conjecture of

Przyjalkowski. We use this to show that if X is “Fano enough”, then we can obtain a

degeneration to a toric variety. An auxiliary result developed in the process allows us

to find new Fano manifolds in dimension 4 which appear as hypersurfaces in smooth

toric Fano varieties.

Finally, we relate so-called Tyurin degenerations of Calabi-Yau threefolds to K3

fibrations on their mirror duals and speculate as to the relationship between these

K3 surface fibrations and Landau-Ginzburg models, giving a possible answer to a

question of Tyurin [141]. We show that this speculative relationship holds in the case

of Calabi-Yau threefold hypersurfaces in toric Fano varieties. We show that if V is a

hypersurface in a Fano toric variety associated to a polytope ∆, then a bipartite nef

partition of ∆ defines a degeneration of V to the normal crossings union of a pair of

smooth quasi-Fano varieties and that the same data describes a K3 surface fibration

on its Batyrev-Borisov mirror dual. We relate the singular fibers of this fibration

to the quasi-Fano varieties involved in the degeneration of V . We then classify all

Calabi-Yau threefolds which admit fibrations by mirror quartic surfaces and show

that their Hodge numbers are dual to the Hodge numbers of Calabi-Yau threefolds

obtained from smoothings of unions of specific blown up Fano threefolds.
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Chapter 1

Introduction

The goal of this thesis is to use tools from complex algebraic geometry, toric geometry

and Hodge theory to understand three different types of objects and their inter-

relations under mirror symmetry: K3 surfaces, Fano threefolds, and Calabi-Yau

threefolds.

1.1 Background

In what follows, we will be concerned with two separate types of algebraic varieties,

which we define.

Definition 1.1.1. A smooth algebraic variety X of dimension n is a Calabi-Yau

variety if its canonical bundle ωX =
⋀nΩ1

X is trivial and the cohomology groups

Hi(X,OX) vanish for 1 ≤ i ≤ n− 1.

Definition 1.1.2. A smooth algebraic variety X of dimension n is a Fano variety

if ω−1
X is an ample line bundle on X. A smooth algebraic variety X will be called

quasi-Fano if it’s anticanonical divisor is effective, base-point free and Hi(X,OX) = 0

for i > 0.

In dimension 1, Calabi-Yau varieties are nothing but elliptic curves and the only

Fano variety is P1. In dimension 2, there are 9 deformation classes of Fano varieties

known as del Pezzo surfaces, and just a single complex deformation class of Calabi-Yau
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1.1 Background 2

varieties, which are known as K3 surfaces. Often, especially when we work with toric

geometry, we will consider singular versions of such varieties. A variety will be called

Gorenstein if its canonical bundle is Cartier. It is called Q-Gorenstein if some integral

multiple of its canonical divisor is Cartier. Replacing “smooth algebraic variety” in

the above definitions with “variety with Gorenstein singularities” produces a general

definition of Calabi-Yau, Fano and quasi-Fano varieties.

1.1.0.1 Mirror symmetry for Calabi-Yau varieties.

In the late 1980s and early 1990s it was noticed by physicists that Calabi-Yau varieties

seem to come in pairs. Let X and X∨ be such a pair of n-dimensional Calabi-Yau

varieties, then it was noticed that transcendental data associated to the periods of

X seems to recover symplectic enumerative data associated to X∨ and vice versa.

Eventually, this duality leads to the fact that there is an identification of cohomology

groups:

hp(X,Ωq
X) = hn−q(X∨,Ωp

X∨).

It was quickly realized that, at least in many examples, Calabi-Yau varieties may be

viewed as arising from combinatorics. In particular, if Y is a toric variety with only

Gorenstein singularities and so that ω−1
Y is ample, then a general section of ω−1

Y is a

Calabi-Yau variety. Such toric varieties arise from so-called reflexive polytopes.

Definition 1.1.3. A polytope ∆ ∈ Rd is called reflexive if each vertex of ∆ is in

Zm,the only integral point on the interior of ∆ is the origin, and the polar polytope

of ∆ which is defined as

∆◦ = {x ∈ N |⟨x, y⟩ ≥ −1,∀y ∈ ∆}

satisfies the previous two conditions.

To each reflexive polytope, there is a toric Fano variety P∆ with at worst Gorenstein

singularities, and so that a the anticanonical hypersurface in P∆ is Calabi-Yau.

Batyrev [14] conjectured that if V is an anticanonical hypersurface in P∆, and W is
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an anticanonical hypersurface in P∆◦ , and both V and W admit smooth resolutions

of singularities, then V and W form a mirror pair.

Subsequent work of Batyrev and Borisov extended this to complete intersections

in toric varieties. That Calabi-Yau varieties constructed in this way indeed form a

mirror pair was verified on the level of Hodge numbers by Batyrev and Borisov in [17].

According to the Hochschild-Kostant-Rosenberg theorem, the Hodge filtration

on the total cohomology ring of any smooth variety X can be though of as the

Hochschild homology its bounded derived category of coherent sheaves. Conjecturally,

the Hochschild homology of the Fukaya category of X is just the quantum cohomology

ring. Thus, the classical formulations of mirror symmetry in terms of Hodge numbers

or as a relationship between periods and Gromov-Witten invariants should appear as

features of some sort of equivalence between a derived version of the Fukaya category

of V and the bounded derived category of coherent sheaves on W . This relationship

was famously proposed by Konsevich [88] in his 1994 ICM lecture.

1.1.0.2 Mirror symmetry for Fano varieties.

More recently, a similar duality was presented for Fano varieties. If we let Y be a

Fano variety of dimension n, then it has been proposed that the mirror dual of Y is

not a Fano variety, but a Landau-Ginzburg model, which in general denotes a pair

(Y ∨, w) where Y ∨ is a quasi-projective variety and w is a function w : Y ∨ → C. For

instance, if Y is a smooth toric Fano variety of dimension n associated to a polytope

∆, then the Landau-Ginzburg model just the pair ((C×)n,w) where

w : (C×)n → C

is a generic Laurent polynomial with Newton polytope ∆. There are various ways

to view mirror symmetry for Fano varieties, but they are all similar in flavour to

the Calabi-Yau/Calabi-Yau mirror symmetry that we are familiar with. The most

common (and most accessible) version of Fano mirror symmetry in the literature

we can recover information about the quantum cohomology ring of X from periods
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of the fibers of the map w. There is also a form of homological mirror symmetry

which relates the Fukaya-Seidel category of (Y,w) to the bounded derived category

of coherent sheaves on X, or conversely relates the derived category of singularities

of (Y,w) to the Fukaya category of Y . This version of mirror symmetry has been

partially addressed in the case of del Pezzo surfaces [8], weighted projective planes [9],

smooth toric Fano varieties [1] and hypersurfaces in Pn [136].

It is not clear how to construct Landau-Ginzburg models of Fano varieties. Tradi-

tionally, Landau-Ginzburg models of Fano varieties have been expressed as Laurent

polynomials on subvarieities of tori (C×)n. This is enough if we are worried about

relating them to Gromov-Witten invariants of Fano varieties, as in [54, 33], or for

homological mirror symmetry of toric Fano varieties, but not for homological mirror

symmetry of general Fano manifolds. In general, Landau-Ginzburg models of Fano

varieties seem to be partial compactifications of tori. In order to obtain such com-

pactification, one needs to find a single torus with which to begin. This “seed” torus

should be obtained from degenerations of X via the following conjecture.

Conjecture 1.1.4. Let X be a Fano variety, then X admits a degeneration to a toric

variety X ′ so that ∆ is the convex hull of the primitive generators of the Fan defining

X ′. The LG model of X can be expressed as a Laurent polynomial with Newton

polytope ∆.

Conjecture 1.1.4 has its roots in the work of V. Batyrev [15], though Batyrev’s work

only concerns the relationship between hypersurfaces in Fano varieties, and toric

hypersurfaces. In the form above, this conjecture seems to first appear in the work

of V. Przyjalkowski [123]. Over the past several years several authors have started

to treat Landau-Ginzburg models of Fano varieties as geometric objects in their own

right (see e.g. [78, 79, 6]). In [79], it is explicitly conjectured that the mirror to a

Fano variety is a Landau-Ginzburg model.

Definition 1.1.5. If X is a variety of dimension n and D is a simple normal crossings

divisor in X, then the pair (X,D) is called a log Calabi-Yau variety if ω−1
X (logD)

admits a unique non-vanishing section up to scaling and hi(X;OX) = 0 for 1 ≤ i ≤ n.
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We expect that if X is a d-dimensional Fano variety, then its mirror LG model Y

is a smooth, quasi-projective log Calabi-Yau variety admitting a regular function

w : Y → A1 whose general fiber is a (d − 1)-dimensional Calabi-Yau manifold. We

expect that there is a compactification Z of Y so that w extends to a morphism

f : Z → P1 and f−1(∞) is a normal crossing union of smooth divisors.

As described in [68], one can construct log Calabi-Yau varieties by gluing together

tori along birational maps which preserve a specific holomorphic form Ω on (C×)n. In

the spirit of Conjecture 1.1.4, the image that I have in mind is that the LG model of

any smooth Fano variety is nothing but a number of tori glued together by birational

maps, and that each of these tori corresponds to a boundary component in the moduli

space of pairs (X,W ) where W is an anticanonical hypersurface in X corresponding

to a degeneration of (X,W ) to a toric variety (P∆,W
′) where P∆ is the toric variety

associated to the polytope ∆, and that ∆ is also the Newton polytope of the restriction

of w to the corresponding torus. Chapters 4 and 5 are motivated by this idea.

Now we assume that for a Fano variety X we have constructed a prospective

Landau-Ginzburg model (Y,w) of X. How can we check, without checking homological

mirror symmetry, that (Y,w) is a good candidate Landau-Ginzburg model? According

to Katzarkov, Kontsevich and Pantev [79], homological mirror symmetry implies the

following cohomological condition:

⨁
p+q=n

Hq,d−p(X) ∼= Hn(Y, V ;C).

Here V is a generic fiber of w. In [79], the authors equip Hn(Y, V ;C) with a filtration

based upon what they call sheaves of f-adapted logarithmic forms. They call the

graded pieces under this filtration Hp,q(Y,w). Conjecturally, we have that

Hq,d−p(X) ∼= Hp,q(Y,w). (1.1)

In Chapter 2, we show that this Hodge filtration can be recovered from the natural

Hodge filtration on Hp+q(Y, V ;C) equipped with the natural mixed Hodge structure.
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We prove in Theorem 2.2.2 that

Hp,q(Y,w) ∼= GrFq H
p+q(Y, V ;C).

Thus Hodge number mirror symmetry becomes a comparison between the graded

pieces of the Hodge filtration on the natural mixed Hodge structure on Hp+q(Y, V ;C)

and the Hodge numbers of X. This closely resembles the näıve Hodge number mirror

symmetry for Calabi-Yau threefolds, except the pure Hodge structure on Hp+q(X,C)

has been replaced with a mixed Hodge structure on Hp+q(Y, V ;C).

For a given Fano variety Y there are often natural candidate Landau-Ginzburg

models for Y , coming from various techniques, but usually these Landau-Ginzburg

models do not satisfy the cohomological conditions above, so we must partially

compactify to produce an appropriate mirror to Y . In Chapter 2, we produce

such compactifications for the Landau-Ginzburg models of smooth weak Fano toric

threefolds, and in Chapter 3, we show that such compactifications exist for any

complete intersection quasi-Fano variety in a weak Fano toric variety. We prove that

Hodge number mirror symmetry holds in many situations in Chapters 2 and 3.

1.1.0.3 Relationship between mirror symmetry for Fano varieties and

Calabi-Yau varieties.

We now consider how mirror symmetry for Fano varieties and Calabi-Yau varieties

are related. Since we expect that the fibers of the Landau-Ginzburg model of X

are Calabi-Yau varieties, it is natural to expect that these Calabi-Yau varieties are

related by mirror symmetry to Calabi-Yau varieties of dimension n − 1 related to

X itself. Since the anticanonical bundle of X is ample, it follows that a generic

anticanonical section Z of X is smooth and the adjunction formula implies that Z is

Calabi-Yau. The first, and most well known relationship between mirror symmetry

for Fano varieties and mirror symmetry for Calabi-Yau varieties is:

Conjecture 1.1.6. The general anticanonical section of Z is mirror to the generic

fiber of Y .
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Indeed, this conjecture seems to emerge naturally from homological mirror symmetry

[6]. Next, we will try to relate mirror symmetry for an n-dimensional Fano varieties X1

and X2 to mirror symmetry for n-dimensional Calabi-Yau varieties built out of them.

Let X1 and X2 be Fano varieties. Assume that there is a fixed smooth Calabi-Yau

hypersurface Z which is anticanonical in both X1 and X2. Then let D1, . . . , Dk be

smooth irreducible divisors in X so that −KX1 |Z −KX2 |Z = D1 + · · ·+Dk. Let X̃1

be the blow up of X1 in D1, . . . , Dk. Then it follows from work of Kawamata and

Namikawa that

Theorem 1.1.7. if X1 ∪Z X2 is a normal crossings union of X1 and X2 meeting

along Z so that there is an ample class on Z which is the restriction of an ample class

on X1 and an ample class on X2, then X̃1 ∪Z X2 admits a deformation to a smooth

Calabi-Yau variety V

Thus if we have a pair of Fano varieties which share an anticanonical divisor, then given

any choice of smooth divisors adding up to −KX1 |X −KZ2 |X there is a Calabi-Yau

variety obtained by smoothing. This idea was used by Kawamata and Namikawa [83]

to construct a number of Calabi-Yau threefolds and Lee [95] computed their Hodge

numbers. In [141], Tyurin suggested that there should be a relationship between the

Landau-Ginzburg models of X1 and X2 and the mirror of the smoothing of X̃1 ∪Z X2.

Classical mirror symmetry predicts that there is a relationship between the Kähler

cone of a Calabi-Yau variety W and the moduli space of complex structures on its

mirror in a small neighbourhood of a maximally unipotent monodromy point. In

our case, this correspondence relates the monodromy action on V associated to the

degeneration of V to X̃1 ∪Z X2 to a boundary ray of the Kähler cone of the mirror W

of V which induces a fibration on W over P1 (see Section 7.5.1). However, it is not

clear what role the mirrors of X1 and X2 play in this fibration.

Question 1.1.8. Is there a codimension 1 Calabi-Yau fibration on the mirror of

the smoothing of X̃1 ∪Z X2? If so, how is this Calabi-Yau fibration related to the

Landau-Ginzburg models of X1 and X2? How is this fibration related to D1, . . . , Dk?
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I do not believe that an algebraic geometry construction will suffice to answer this

question. In Chapter 6 we will discuss a topological construction which I believe

provides an approximate answer to this question. It proceeds by gluing the LG model

(Y1,w1) of X̃1 to the LG model (Y2,w2) of X2 along a neighbourhood of the fiber at

infinity to get a manifold W in a way that is consistent with the maps w1 and w2,

and thus the superpotentials on Y1 and Y2 extend to a map π :W → S2 where S2 is

the 2-dimensional sphere as usual. Thus we obtain (at least topologically) a fibration

on the prospective mirror dual of the Calabi-Yau variety V obtained by smoothing

X̃1 ∪Z X2. We conjecture that the resulting C∞ manifold can be equipped with a

complex structure with which it is mirror to V and the fibration on W extends to a

complex fibration on W . In Chapters 6 and 7, we provide evidence that this is true.

1.2 Overview of results

Here we will give a review of the main results that appear in this thesis. We will go

through, chapter by chapter and review the results contained therein. There are four

parts to this thesis which address roughly four different questions. The first part,

made up of Chapters 2 and 3 is devoted to questions about Hodge numbers of Fano

varieties and their Landau-Ginzburg models. The second part, which focusses on

questions regarding degenerations of toric complete intersection quasi-Fano varieties

and Laurent polynomial expressions for their Landau-Ginzburg models, is comprised

of Chapters 4 ([46]) and 5. The third section discusses the relationship between K3

fibrations on Calabi-Yau threefolds and Tyurin degenerations, and is made up of

Chapters 6 and 7 ([50]). The final part, which is simply Chapter 8 ([48]), addresses

fundamental questions regarding the structure of K3 fibrations and their behaviour

with respect to automorphisms on the fibers. This is not directly relevant to the rest

of this thesis, though it includes information that relates to Chapters 6 and 7. The

contents of this part have been applied directly to [49].
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1.2.0.1 Chapter 2: Landau-Ginzburg models and Fano manifolds

In this chapter, we begin with a review of Hodge number mirror symmetry in formu-

lation for Fano varieties. We will introduce the “Hodge numbers” of an LG model as

defined by Katzarkov-Kontsevich-Pantev [79]. We show (Theorem 2.2.2) that they

agree with the dimensions of graded pieces of the Hodge filtration on Hi(Y, V ;w) for

V a smooth fiber of w. We prove (Corollary 2.2.10) that in nice enough situations

they form a Hodge diamond equipped which looks like the Hodge diamond of a Fano

variety rotated by π/2. In particular we show that, under appropriate conditions,

hp,q(Y,w) = hd−p,d−q(Y,w) = hq,p(Y,w) = hd−q,d−p(Y,w).

This is not automatically true, since the numbers in the Hodge diamond are simply

dimensions of graded pieces of a mixed Hodge structure in general.

We then suggest (Section 2.2.4) that if X is a Fano variety, then its LG model

should have a specific form, extrapolating from the fact that the fiber of (Y,w)

should be mirror dual to a generic anticanonical hypersurface in X. We note that

the conditions required in order for the Hodge numbers to be symmetric across the

horizontal and vertical axes are satisfied by the varieties we expect to be dual to Fano

varieties. We compute several examples. First we compute the Hodge diamonds of

LG models in dimension 2 (Section 2.2.3). We then construct smooth LG models

for all toric weak Fano threefolds (Section 2.3) and show that they satisfy Hodge

number mirror symmetry (Theorem 2.3.7). Then we show that if X∆ is a general

mpcp resolution of a Gorenstein toric Fano variety, then we show that a version of

Hodge number mirror symmetry holds here as well (Theorem 2.3.20), though we have

to be a bit careful in our definitions and statements.

Finally, we look at these results in relation to the work of Coates and collaborators

[33, 34], and show that the fact that the local systems LX associated to Fano threefolds

in [33] are extremal is predicted by the restrictions that we expect to be placed on

LG models of Fano varieties (Section 2.4). We comment on possible implications in

four dimensions.
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1.2.0.2 Chapter 3: Hodge numbers of Fano hypersurfaces and Landau-

Ginzburg models

In this chapter, we begin our study of LG models of quasi-Fano varieties embedded

as complete intersections of nef divisors in toric varieties. Very much in the spirit of

Batyrev and Borisov’s work on mirrors of Calabi-Yau complete intersections, we show

that if X is a quasi-Fano complete intersection of nef divisors in a toric variety X∆ so

that −KX is the restriction of a nef divisor on X∆, then there is a naturally defined

LG model for X which is relatively compact and admits a compactification to a fiber

space over P1 (Theorem 3.2.6). The only caveat here is that the LG model of X need

not be smooth, but instead has at worst terminal Gorenstein singularities, which is a

much as we can reasonably expect in arbitrary dimension. We then show (Theorem

3.3.1, Corollary 3.3.3) that one can compute h2d−2(Y,w) by counting components of

the fibers of (Y,w) where (Y,w) is the LG model constructed in Section 3.2.3.

Then we analyze the case of a quasi-Fano variety X which is a sufficiently ample

hypersurfaces in terminal Gorenstein weak Fano toric variety. We show (Theorem

3.4.9) that h1,d−2(X) + 1 is the number of components in the fiber over 0 of the

LG model of X. We show that this implies that h1,d−2(X) ≤ h1,1(Y,w). If mirror

symmetry holds, then this inequality is an equality, and thus we conclude that there

should be no fibers of w with more than one irreducible component except for the fiber

over 0. Using homological mirror symmetry, this seems to imply certain structures

on the Hodge structure of a quasi-Fano variety. In turn, this implies a statement

about the deformation theory of quasi-Fano varieties, which we then proceed to prove

(Theorem 3.5.4).

1.2.0.3 Chapter 4: Laurent polynomials and degenerations of complete

intersections

This chapter is the paper [46]. We begin with a variety X which is a complete

intersection of nef Cartier divisors in a toric variety X∆ so that −KX is the restriction

of a nef Q-Cartier divisor on X∆. Then we define objects called amenable collections,
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which consist of a sequence of elements of the lattice N which is dual to the lattice M

containing ∆. An amenable collection V is shown to determine two different things

(Theorem 4.2.20):

1. A degeneration of X to a binomial complete intersection X ′ in the homogeneous

coordinate ring of X∆. Let ∆V be the convex hull of the ray generators of the

fan corresponding to the toric variety X ′.

2. A birational map ϕV from (C×)n to the LG model of X (as defined in Chapter

3) so that ϕ∗V w is a Laurent polynomial with Newton polytope ∆V .

Thus we have a robust relationship between toric degenerations of X and torus charts

on its LG model.

This correspondence is then shown to produce toric degenerations for all of the

Fano fourfolds obtained by Coates, Kasprzyk and Prince [34] contained as complete

interesctions in smooth Fano toric varieties (Theorem 4.4.3). We show that we

can use rather simple combinatorics to produce toric degenerations for all complete

intersections in complete flag varieties (Theorem 4.3.4). We also show that our results

almost recover a result of Ilten, Lewis and Przyjalkowski [76] (Theorem 4.4.5). Finally,

we present an application to geometric transitions between Calabi-Yau threefolds

presented as complete intersections in toric varieties and their mirror dual geometric

transitions (Theorem 4.4.6).

1.2.0.4 Chapter 5: Existence of toric degenerations

In this chapter, apply the results in Chapter 4 in the case where X is a Fano variety.

We start with the case where X is a hypersurface in a Gorenstein toric Fano variety

X∆ equipped with a degeneration to a union of toric boundary divisors D1, . . . , Dn

so that −KX is the restriction of a Cartier nef divisor D on X∆, and so that the

restriction of D to the intersection of any subset of the divisors D1, . . . , Dn is ample.

Then we show that in this situation, one obtains an amenable collection associated to

X (Proposition 5.2.7) and hence there exists a degeneration of X to a toric variety.
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We also prove that, in this situation, X is necessarily a Fano variety (Proposition

5.3.4).

Proposition 5.2.7 can be extended (Theorem 5.2.10) to the case where X is a

complete intersection of nef divisors in a toric variety, and the anticanonical bundle

of X is the restriction of a sufficiently ample bundle on X∆, then X admits a toric

degeneration to a toric Fano variety. In specific, if −KX is the restriction of an ample

divisor on X∆, then X admits a toric degeneration. This is, of course forces X to be

Fano. Thus if X is, in this stronger sense, a Fano variety, then X degenerates to a

toric Gorenstein Fano variety. This makes steps towards confirming the conjecture of

Przyjalkowski about the existence of toric degenerations of Fano varieties.

In the course of the proof of the results above, we prove a condition for a hyper-

surface in a Fano variety to be Fano which is weaker than the condition that −KX is

the restriction of an ample divisor on X∆ (Proposition 5.3.4). We apply this criteria

in order to produce smooth toric Fano fourfolds which do not seem to appear in the

literature (Example 5.3.6). Finally, we use the main theorem of this chapter to give a

brief proof that all Fano threefolds of Picard rank greater than 1 admit degenerations

to toric Fano varieties (Theorem 5.4).

1.2.0.5 Chapter 6: Calabi-Yau varieties and Tyurin degenerations

Next we turn our attention to the relationship between so-called Tyurin degenerations

[141, 95] and K3 surface fibrations on Calabi-Yau threefolds. A Tyurin degeneration

of a Calabi-Yau threefold V is a projective map π : V → ∆ where ∆ here is a disc

of radius r in C containing 0 so that the fiber π−1(t) is a smooth Calabi-Yau variety

and π−1(0) is the normal crossings union of a pair of smooth quasi-Fano threefolds X1

and X2 whose intersection is a K3 surface S. We conjecture, following work of Tyurin

[141] and Auroux [7] that the mirror to V admits a K3 surface fibration g over P1 in

such a way that we may think of P1 a union of two open discs D1 and D2 so that for

i = 1, 2 and Ui = g−1(Di) is homeomorphic to the LG model of Xi and the restriction

of g to Ui is equal to wi.
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First, we show that, assuming that Xi and (Yi,wi) have appropriate monodromy

actions, then we may indeed glue together Y1 and Y2, and that the resulting C∞

manifold has appropriate Euler number (Theorem 6.2.1). We show that in the threefold

case, Hodge number mirror symmetry is equivalent to a version of Dolgachev-Nikulin

mirror symmetry for certain K3 surfaces (Proposition 6.2.2).

We proceed to prove that certain approximations of this picture hold when V

is a complete intersection of nef divisors in a Gorenstein toric Fano variety. In the

case where V is an anticanonical hypersurface in a Gorenstein toric Fano fourfold or

threefold P∆, a Tyurin degeneration is determined by a nef partition ∆1,∆2 of ∆,

where X1 and X2 are related to quasi-Fano varieities associated to ∆1 and ∆2. We

show that if a nef partition of ∆ exists, then there is a smooth Calabi-Yau threefold Ŵ

birational to the Batyrev mirror of V which admits a K3 surface fibration (Corollary

6.3.6), and that the fibers of this fibration are Batyrev-Borisov mirror to the K3

surfaces associated to the nef partition ∆1,∆2. We then analyze the degenerate fibers

of this fibration. We prove that the number of components of these fibers carries

numerical data corresponding to the quasi-Fano threefolds X1 and X2 in the Tyurin

degeneration of V (Theorem 6.4.8).

1.2.0.6 Chapter 7: Calabi-Yau threefolds fibered by quartic mirror K3

surfaces

This chapter is the paper [51], written with coauthors C. Doran, A. Thompson and

A. Novoseltsev. This chapter is simply an extended example of the phenomenon

described in Chapter 6. We say that a family f : S → U of smooth K3 surfaces is

lattice polarized by a lattice L if there is a trivial local subsystem L of R2f∗Z so that

for each fiber St = f−1(t) the restriction of L to H2(St,Z) has image in Pic(St) and

is a lattice isomorphic to L.

We classify all M2 = E2
8 ⊕U ⊕ ⟨−4⟩-polarized families of K3 surfaces which admit

compactifications to Calabi-Yau threefolds (Proposition 7.2.3). We compute the

Hodge numbers of all smooth Calabi-Yau varieties obtained this way (Proposition

7.3.2, Corollary 7.3.7). We then show that classical mirror symmetry implies that,
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associated to a Tyurin degeneration of a Calabi-Yau threefold V , there should be a

fibration of its mirror W over P1 (Section 7.5.1). Conversely, we suppose that the

mirror partners of the K3 fibered Calabi-Yau threefolds of Proposition 7.2.3 can be

obtained by smoothing pairs of quasi-Fano threefolds.

We show that the classification of such Calabi-Yau threefolds is almost identical to

to the classification of Calabi-Yau threefolds which admit specific Tyurin degenerations.

In particular, for every smooth Calabi-Yau threefold fibered by M2-polarized K3

surfaces, there is a Calabi-Yau threefold with mirror Hodge numbers obtained by

smoothing a union of a pair of quasi-Fano varieties X1 and X2 where X1 and X2 are

either P3 a quartic double solid or a quartic hypersurface in P4 blown up in a union

of smooth curves (Corollary 7.5.5). We observe (Section 7.5.4) that the resulting

K3 fibrations seem to be exactly the LG models of X1 and X2 glued as described in

Section 6.2.

The original version of this article mentions results that I had previously anticipated

to appear in this thesis. These results have not been completed at this time, thus I

have removed reference to this from Chapter 7.

1.2.0.7 Chapter 8: Families of lattice polarized K3 surfaces with mon-

odromy

The final chapter is the paper [49], written in collaboration with C. Doran, A. Novoselt-

sev and A. Thompson. Herein, we address several questions regarding the relationship

between K3 fibrations and automorphisms of K3 surfaces with an eye towards ap-

plications. In particular, if we have a family of K3 surfaces which are each lattice

polarized by the lattice M = E2
8 ⊕H, then each admits an automorphism ι so that

the quotient S/ι is birational to a Kummer surface, which is dominated by a product

of elliptic curves E1 × E2. The question that we would like to answer is when this

can be done in families. Precisely, if X → U is a fibration over U by K3 surfaces each

admitting an M -polarization, then first, when can the automorphisms on each fiber

be extended to an automorphism on all of X? In Corollary 8.2.12, we show that this
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automorphism extends if the action of monodromy on M inside of the Néron-Severi

lattice of each K3 surface fiber is nice enough.

We then ask, if we obtain a global automorphism ι on X coming from automor-

phisms on each fiber, then under what conditions is the quotient X/ι dominated by

a fiber product of elliptic surfaces. We show (Section 8.4.3) that this can be done

under conditions on the action of monodromy on rational curves on each fiber of X.

In Theorem 8.4.11 shows us that there is a specific finite group G a G-étale cover

U ′ → U of U so that X ×U U
′ is the quotient of a fiber product of a pair of families

of elliptic curves over U ′.

In Section 8.5, we compute G in the case where each fiber of X is polarized by the

lattice Mn = ⟨−2n⟩ ⊕E2
8 ⊕H for n = 1, 2, 3, 4. Finally, in Section 8.5.4, we show that

many of the mirrors of the 14 families of Doran-Morgan [52] of Calabi-Yau threefolds

with hypergeometric Picard-Fuchs differential equations are compactifications of

families of K3 surfaces with Mn-polarized fibers for n = 1, 2, 3, 4. Therefore, each of

these families, in a sense, comes from a fiber product of elliptic surfaces. We comment

in Section 8.6 that the structure of these fibrations seems to have some relation to

whether the monodromy group of the associated family of Calabi-Yau threefolds is an

arithmetic or thin subgroup of Sp4(Z).



Part I

Mirror symmetry for Fano

varieties
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Chapter 2

Landau-Ginzburg models and

Fano manifolds

2.1 Introduction

In this chapter, we introduce a major object of study in subsequent chapters – Landau-

Ginzburg models, which we will almost uniformly call LG models. There is a quite

general notion of an LG model, which is simply a variety equipped with a regular

function which is sometimes used in the literature. From such an object, one can

produce things like a category of matrix factorizations, which are interesting in their

own right, however our goal is to present LG models as objects which correspond

under mirror symmetry to Fano varieties, and for such an application, we want to be

more refined in our notions. Conjecturally, this is a class of objects whose classification

should relate directly to the classification of Fano manifolds. One of the goals of this

chapter is to further refine the notion of an LG model corresponding to a Fano variety,

as presented in [79] so that we obtain a more rigid class of objects corresponding to

Fano manifolds, which we will call extremal LG models.

The most important technical results in this chapter are contained in Section

2.2, where we first reduce the computation of the Hodge numbers hp,q of [79] to a

computation of graded pieces of the Hodge numbers of the Hodge filtration of the pair

17
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(Y,w) for Y a smooth quasiprojective variety and w a regular function on Y . We will

determine how to compute these Hodge numbers in terms of the primitive cohomology

of a fiber of w and the cohomology of a smooth compactification of Y . We then prove

that, despite the fact that there is no a priori reason for the usual symmetries of a

Hodge diamond to hold for the Hodge numbers of (Y,w), they do in certain cases.

One of these cases is the case where (Y,w) has the right structure to be the LG model

of a Fano variety.

In Section 2.3, we will use toric machinery to explicitly show that Hodge number

mirror symmetry holds between a weak toric Fano threefold X∆ and its mirror dual

(Y∆,w). A slightly weaker version of this result is included in Section 2.3.2 for

general weak Fano toric varieties with terminal singularities. A byproduct of the

computation in Section 2.3 is that (Y∆,w) is extremal if and only if the restriction

map H2(X∆,C) → H2(S,C) (for S a generic anticanonical hypersurface in X∆) is

injective, and that the kernel of this map measures how far (Y∆,w) is from being

of extremal. Therefore, extremal LG models do not correspond to Fano varieties,

directly, but instead seem to have a cohomological characterization.

Despite this somewhat disappointing negative result, one could not reasonably

have hoped for more. In the end, if one wishes to define a class of complex geometric

objects whose classification is mirror to the classification of Fano manifolds, then

it is necessary to characterize the properties of the Fukaya category of a monotone

symplectic manifold and reinterpret this in the derived category of singularities and

then recast this derived characterization in terms of the geometry of the LG model.

This seems, to me at least, to be a daunting task.

A much more promising and computable (but less geometric) approach to mirror

classification of Fano manifolds is outlined by Coates and collaborators and carried

out in dimensions 2 and 3 in [33]. The authors of ibid. relate the classification of

Fano threefolds and fourfolds to Laurent polynomials, which are called Minkowski

polynomials therein, although this notion has been corrected in subsequent work

[3]. These are Laurent polynomials f with integral coefficients which satisfy other

conditions that I will not describe here. For the moment, it will suffice to say that
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these are Laurent polynomials which should theoretically be obtained by pulling back

w along an embedding ϕf : (C×)d ↪→ Y for Y the LG model of some Fano variety.

Associated to such Laurent polynomials is a local system Lf . The Laurent polynomials

that they obtain in this way have properties which [33] call extremal or low ramified.

We explain in Section 2.4 how these notions intersect with the notion of an extremal

LG model described above.

2.2 Landau-Ginzburg models and their Hodge numbers

Here we will perform several computations regarding the LG models of Fano varieties.

We will begin, as in [79] by defining a Landau-Ginzburg model.

Definition 2.2.1. A LG model is a smooth quasiprojective variety of dimension d

equipped with the following data:

1. A map w : Y → A1 so that Y is relatively compact and generically the fiber of

w is smooth.

2. A compactification of Y to a smooth variety Z to which w extends to a map

f : Z → P1 and so that the fiber D∞ := f−1(∞) is a simple normal crossings

union of smooth varieties.

3. A non-vanishing holomorphic d-form ω so that the canonical extension of ω to

Z has at worst simple poles along D∞.

4. The Hodge numbers h0,n(Z) vanish for all n ̸= 0.

Note that our definition here does not coincide directly with that of [79]. In their

definition, they do not require that Y be relatively compact over A1.

2.2.1 The hp,q(Y,w) Hodge numbers

Now let’s look at a set of numbers that are canonically associated to an LG model. In

[79], Katzarkov, Kontsevich and Pantev define a complex that they call Ω•
Z(logD∞, f).

Let Ω•
Z(logD∞) be the usual complex of holomorphic differential forms on Z with
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log poles at D∞ := f−1(∞), then note that df defines a holomorphic 1-form with

appropriate poles along D∞. The sheaf Ωi
Z(logD∞, f) is defined to be the subsheaf of

ω ∈ Ωi
Z(logD∞) so that df ∧ ω still has log poles along D∞. This complex is then

equipped with the natural differential coming from its inclusion into Ω•
Z(logD∞).

The ith hypercohomology group of this complex is denoted Hi(Y,w). One of the

main results of [79] is that the hypercohomology spectral sequence for this complex

degenerates at the E1 term and therefore, we have a “Hodge decomposition” on

Hi(Y,w), or in other words,

dimHi(Y,w) =
∑

p+q=i

dimHp(Z,Ωq
Z(logD∞, f)).

If we let V = w−1(t) for t a regular value of w, then it is shown in [79, Lemma 2.21]

that

dimCHi(Y, V ;C) = dimCHi(Y,w).

We will let

hp,q(Y,w) = dimHq(Z,Ωp
Z(logD∞, f))

and hp,q(Y, V ) = dimHq(Z,Ωp
Z(logD∞, relV )). Here the sheaf Ωi(logD∞, relV ) is

the kernel of the natural restriction map

ι∗ : Ωi
Z(logD∞) → ι∗Ω

i
V .

where ι : V ↪→ Z is the embedding. It is known (see e.g. [144, pp. 220]) that the

spectral sequence associated to the complex Ω•
Z(logD∞, relV ) degenerates at the E1

term and thus hp,q(Y, V ) is the dimension of the pth graded piece of Hp+q(Y, V ;C)

under its natural Hodge filtration.

Theorem 2.2.2.

hi,j(Y, V ;C) = hi,j(Y,w).

Proof. In the proof of [79, Claim 2.22], the authors construct the following object,

which they call E•
Z /∆. In brief, this is a complex of coherent sheaves over Z×∆ where
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Z is the compactification of the LG model in question, and ∆ is a small complex

disc containing 0. Over the subvariety Z × ϵ for ϵ ̸= 0 in ∆, this sheaf is equal to

Ω•
Z(logD∞, relV1/ϵ), where V1/ϵ is the fiber of f over 1/ϵ. The restriction of E•

Z /∆

to Z × 0 is equal to Ω•
Z(logD∞, f). If we let p be the projection of Z ×∆ onto ∆,

then the hyper-derived direct image Rap∗E
•
Z /∆ has fibers which are just the hyper

cohomology groups of the complexes Ω•
Z(logD∞, relV1/ϵ) if ϵ ̸= 0 and Ω•

Z(logD∞, f)

if ϵ = 0. The upshot of [79, Claim 2.22] is that the fibers of Rap∗E
•
Z /∆ have constant

dimension over ∆ for all a.

Now the ith hypercohomology group of ΩZ(logD∞, relV1/ϵ) is simply the coho-

mology group Hi(Y, V1/ϵ;C), and its the spectral sequence associated to the stupid

filtration on it degenerates at the E1 term. Thus we have that

hi(Y, V1/ϵ) =
∑

p+q=i

hp(Z,Ωq(logD∞, relV1/ϵ))

Similarly by [79, Lemma 2.19], the same is true of Hi(Z,Ω•
Z(logD∞, f)). In other

words,

hi(Y,w) =
∑

p+q=i

hp(Z,Ωq
Z(logD∞, f)).

By Grauert’s semicontinuity theorem, (see e.g. [11, Theorem 8.5(ii)]), the value of

ϵ ↦→ rankHp(V1/ϵ, (E
q
Z /∆)|V1/ϵ

)

is upper semicontinuous on ∆ in the analytic Zariski topology. Thus it follows that

for a general enough point ϵ0 of ∆ that

hp,q(Y, V1/ϵ0) ≤ hp,q(Y,w).

However, the fact that

∑
p+q=i

hp(Z,Ωq(logD∞, relV1/ϵ0)) = hi(Y, V1/ϵ0) = hi(Y,w) =
∑

p+q=i

hp(Z,Ωq(logD∞, f)).
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implies that we must have equality between hp,q(Y, V1/ϵ) and h
p,q(Y,w) at all points.

For the moment, we will fix a smooth, relatively compact LG model w : Y → A1

with a compactification f : Z → P1 so that D∞ is a simple normal crossings union of

divisors. We will make more assumptions about Y and its fibers later on, but for now,

the structure of Y is essentially unrestricted. This condition is to ensure that we may

apply the Clemens-Schmid exact sequence.

Let us now compute the mixed Hodge structure on Hi(Y, V ;C). This will proceed

in several steps. First, we shall compute the MHS on Y itself. Define the primitive

cohomology of V to be PHi(V,C) = coker(Hi(Z;C) → Hi(V,C)) equipped with the

LMHS at ∞. This exists, since the condition that D∞ is simple normal crossings,

Landman’s monodromy theorem implies that the monodromy action on the fibers of

w associated to a small loop around infinity is unipotent. Thus work of Schmid shows

that the limit mixed Hodge structure is canonically defined. Let Ti be the monodromy

automorphism on PHi(V,C) corresponding to a small loop around ∞, let Ni = log Ti

and define Qi = kerNi. Define Ki = ker(Hi(Z,C) → Hi(D∞,C)).

Proposition 2.2.3. There is a short exact sequence

0 → Qi−1 → Hi
c(Y,C) → Ki → 0.

Proof. We have a long exact sequence in cohomology with compact supports [120,

Proposition 5.54],

· · · → Hi−1(D∞,C) → Hi
c(Y,C) → Hi(Z,C) → Hi(D∞,C) → . . .

which is also an exact sequence of MHS. Note that Z and D∞ are themselves compact,

so we have dropped the subscript on their cohomology groups. Therefore it follows

that if

Q′
i = coker(Hi(Z,C) → Hi(D∞,C))
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then we have a short exact sequence

0 → Q′
i−1 → Hi

c(Y,C) → Ki → 0.

It remains to show that Qi = Q′
i. Let U be a small disc around the point at infinity

in P1 so that the only critical value in U is infinity itself. Then define X = f−1(U).

The Clemens contraction Theorem [28] states that X is strongly homotopic to f−1(∞).

Let X× = f−1(U \ {∞}).

The Clemens-Schmid exact sequence (see e.g. [28] or [120, Corollary 11.44]), says

that there is a long exact sequence of mixed Hodge structures

· · · → Hi(X,X×;C) −→ Hi(X,C) ri−→ Hi(V,C) Ni−→ Hi(V,C) → . . .

where Hi(V,C) is equipped with the limit mixed Hodge structure. The cokernel of ri

is PHi(V,C) equipped with the limit mixed Hodge structure. Furthermore, it follows

from the formulation of [120, Corollary 11.44] that the kernel of the map ri is precisely

the kernel of the map Hi(X,C) → Hi(X×,C). Thus the kernel of ri is simply the

space of cohomology classes in Hi(X,C) whose dual homology classes are supported

on f−1(∞) and in particular, the kernel of ri is contained in the image of

si : H
i(Z,C) → Hi(D∞,C) ∼= Hi(X,C)

and hence we get a map s̃i : H
i(Z,C) → kerNi and the triangle

Hi(Z,C)

s̃i
↓↓ ↘↘

kerNi
→→ Hi(V,C)

where the map from ker Ni to Hi(V,C) is the natural injection. Since this map is

injective, it follows that Qi = Q′
i.
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Let us recall some facts about the action of Ni on the limit mixed Hodge structure

on PHi(V,C). We leave out the definition of the monodromy weight filtration M• on

PHi(V,C), but we record the following facts.

Fact 2.2.4. 1. Each graded piece GrMj admits a pure Hodge structure of weight j

induced by the Hodge filtration on PHi(V,C) and GrMj = 0 if j > 2i or j < 0.

2. Ni(Mj) ⊂Mj−2

3. N j
i induces an isomorphism of pure Hodge structures of degree (−j,−j) between

GrM2i+j and GrM2i−j. Thus the maps N i
ℓ : GrM2i+j → GrM2i+j−ℓ are injective for

ℓ ≤ j and surjective otherwise.

Thus we can compute the values of the Hodge-Deligne numbers ip,q(Qi−1).

Proposition 2.2.5. Let jp,qi−1 be the Hodge-Deligne numbers of PHi−1(V,C) equipped

with the limit Mixed Hodge structure at infinity. Then

ip,q(Qi−1) = 0 if p+ q > i− 1

ip,q(Qi−1) = jp,qi−1 − jp−1,q−1
i−1 if p+ q ≤ i− 1.

The mixed Hodge structure on H2d−i(Y,C) is dual to the mixed Hodge structure on

Hi
c(Y,C) shifted by (d, d). Thus if ip,qc are the Hodge-Deligne numbers of Hi

c(Y,C) and

ip,q are the Hodge-Deligne numbers of H2d−i(Y,C) and let kp,q be the Hodge numbers

of Ki. Then

ip,qc = kp,q if p+ q = i

ip,qc = 0 if p+ q > i

ip,qc = jp,qi−1 − jp−1,q−1
i−1 if p+ q ≤ i− 1.
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Duality sends ip,q to id−p,d−q . Therefore, we have that Now we may use the exact

sequence above to see that

ip,q = kd−q,d−p if p+ q = 2d− i

ip,q = 0 if p+ q < 2d− i

ip,q = jd−p,d−q
i−1 − jd−p−1,d−q−1

i−1 if p+ q ≥ 2d− i+ 1.

Finally, we can compute the MHS on Hi(Y, V ;C). Let R2d−i be the map

R2d−i := Im(H2d−i(Y,C)
r2d−i−−−→ H2d−i(V,C)).

Let rp,q be the Hodge numbers of R2d−i. From the long exact sequence for relative

cohomology groups, we get a short exact sequence of mixed Hodge structures in

cohomology

0 → PH2d−i−1(V,C) → H2d−i(Y, V ;C) → ker(H2d−i(Y,C)
r2d−i−−−→ H2d−i(V,C)) → 0.

There is a pure Hodge structure on R2d−i of weight 2d − i, so rp,q = 0 unless

p+ q = 2d− i. It is then clear that kp,q ≥ rp,q by strictness of morphisms of mixed

Hodge structures. Furthermore, one sees that PH2d−i−1(V,C) is dual (as a Hodge

structure) to PHi(V,C). This follows from the fact that the monodromy representation

on Hi(V,C) is dual to the monodromy representation on H2d−i(V,C) and the fact that

by the global invariant cycles theorem, PHi(V,C) is the orthogonal complement of the

classes fixed by the monodromy representation. We let php,qV be the Hodge numbers

of PH∗(V,C). Since jp,qi−1 are the Deligne-Hodge numbers of the limit mixed Hodge

structure on PHi(V,C), we know that

∑
p

jp,qi−1 = phi−1−q,q
V = ph2d−i+q,2d−1+q

V .
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Therefore if fp,q are the Hodge-Deligne numbers of H2d−i(Y, V ;C) then

fp,q = kd−p,d−q − rp,q if p+ q = 2d− i

fp,q = 0 if p+ q < 2d− i

fp,q = jd−p,d−q
i−1 − jd−p−1,d−q−1

i−1 if p+ q ≥ 2d− i+ 1

fp,q = php,qV if p+ q = 2d− i− 1.

If F is the Hodge filtration on H2d−i(Y, V ;C), we have that grqF =
∑

p i
p,q. Therefore,

we have that

grqF = ph2d−i−q−1,q
V + kd−(2d−i−q),d−q − r2d−i−q,q +

∑
p

p+q≥2d−i+1

(
jd−p,d−q
i−1 − jd−p−1,d−q−1

i−1

)

We prove that the graded pieces of the Hodge filtration on H2d−i(Y, V ;C) satisfy the

usual Hodge symmetry.

Theorem 2.2.6.

grqF = gr2d−i−q
F

Proof. It is easy to see that, since kp,q and rp,q are Hodge numbers of pure weight

2d− i Hodge structures, that the theorem is equivalent to the fact that

ph2d−i−q−1,q
V +

∑
p

2d−i+1≤p+q

(
jd−p,d−q
i−1 − jd−p−1,d−q−1

i−1

)

= phq−1,2d−i−q
V +

∑
p

1≤p−q

(
jd−p,i+q−d
i−1 − jd−p−1,i+q−d−1

i−1

)

We note that according to Fact 2.2.4, the Hodge-Deligne numbers jp,qi−1 satisfy:

jp,qi−1 = jq,pi−1 = ji−1−q,i−1−p
i−1 = ji−1−p,i−1−q

i−1 .
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Thus jd−p,d−q
i−1 = ji+p−d−1,i+q−d−1

i−1 and jd−p−1,d−q−1
i−1 = jp+i−d,q+i−d

i−1 . Therefore, small

∑
p

2d−i+1≤p+q

(
jd−p,d−q
i−1 − jd−p−1,d−q−1

i−1

)
=

∑
p

2d−i+1≤p+q

(
ji+p−d−1,i+q−d−1
i−1 − jp+i−d,q+i−d

i−1

)
(2.1)

Now we change the index over which we take the sum – we let p = −p0 + 2d − i.

Then we take the sum over all p0 so that 2d − i + 1 ≤ −p0 + 2d − i + q, which is

equivalent to all integers p0 so that −1 ≥ p0 − q therefore, Equation (2.1) becomes

−
∑
p

−1≥p−q

(
jd−p,i+q−d
i−1 − jd−p−1,i+q−d−1

i−1

)

after re-indexing. Therefore, we must show that

ph2d−i−q−1,q − phq−1,2d−i−q

=
∑
p

1≤p−q

(
jd−p,i+q−d
i−1 − jd−p−1,i+q−d−1

i−1

)
+

∑
p

−1≥p−q

(
jd−p,i+q−d
i−1 − jd−p−1,i+q−d−1

i−1

)

We note that Ni induces an isomorphism of pure Hodge structures between GriM and

Gri−2
M , therefore if p = q then jd−p,i+q−d

i = jd−p−1,i+q−d−1
i for every p. Thus

∑
p

1≤p−q

(
jd−p,i+q−d
i−1 − jd−p−1,i+q−d−1

i−1

)
+

∑
p

−1≥p−q

(
jd−p,i+q−d
i−1 − jd−p−1,i+q−d−1

i−1

)

=
∑
p

(
jd−p,i+q−d
i−1 − jd−p−1,i+q−d−1

i−1

)
= phd−1−q,i+q−d − phd−q,i+q−d−1

= ph2d−i−q−1,q − phq−1,2d−i−q.

We use the fact that phd−1−q,d−1−p = php,q = phq,p. This establishes the theorem.

Corollary 2.2.7. The Hodge numbers of an LG model are symmetric in the sense

that hp,q(Y,w) = hq,p(Y,w).
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From the beginning, we expected that this fact would hold if we restrict the ourselves

to the LG models of Katzarkov-Kontsevich and Pantev, however it is a bit surprising

that Hodge symmetry holds in general.

2.2.2 Poincaré duality

We will check that Poincaré duality holds for Hi(Y,w), or in other words that

h2d−i(Y,w) = hi(Y,w). First, we recall that there is a relative Mayer-Vietoris exact

sequence. Let Y1 and Y2 be manifolds and let V1 and V2 be submanifolds of Y1 and

Y2 respectively so that Y = Y1 ∪ Y2 and let S = S1 ∪ S2 be the intersection in Y .

· · · → Hi(Y, S) → Hi(Y1, S1)⊕Hi(Y2, S2) → Hi(Y1 ∩ Y2, S1 ∩ S2) → . . . .

Now let Σ be the set of critical values of w and let p be a base-point in A1 = C. Take

a set of open discs {Us}s∈Σ so that each disc contains s and p but no other critical

values of w, for any subset S ⊆ Σ, the set US =
⋂

s∈S Us is simply connected and so

that
⋃

s∈Σ Us is a deformation retract of A1. Then let Ys = w−1(Us) for each s ∈ Σ.

Let V = w−1(p). The following proposition was claimed in [78].

Proposition 2.2.8.

hi(Y, V ;C) =
∑
s∈Σ

hi(Ys, V ;C).

Proof. Let s1, s2 ∈ Σ, then we have chosen U1 and U2 so that U1 ∩ U2 is simply

connected, open and contains no critical points of w. Thus we have that w−1(U1 ∩U2)

is a deformation retract onto V by Ehresmann’s theorem, thus Hi(w−1(U1∩U2), V ) = 0

and therefore Hi(Y1 ∪ Y2, V ) ∼= Hi(Y1, V )⊕Hi(Y2, V ) by the relative Mayer-Vietoris

sequence. Repeating this argument proves the general case.

Now to each point, s ∈ Σ, we can associate a perverse sheaf of vanishing cycles

ϕw−sC supported on the critical points of w in w−1(s) (see e.g. [120, 42]), and the

hypercohomology of ϕw−sC sits in a long exact sequence

· · · → Hi−1(w−1(s), ϕw−sC) → Hi(Ys,C)
ri−→ Hi(V,C) → Hi(w−1(s), ϕw−sC) → . . .
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where the map ri is the natural restriction map. However, this is precisely the map in

the long exact sequence for relative cohomology, thus we find that

Hi−1(w−1(s), ϕw−sC) ∼= Hi(Ys, V ;C)

and therefore,

hi(Y, V ;C) =
∑
s∈Σ

rank Hi−1(w−1(s), ϕw−sC).

It is a well-known fact [42] that the vanishing cycles functor commutes with Verdier

duality, or in other words, for any constructible complex F • on Y s, if D denotes the

Verdier duality functor, then D(ϕw−sF •[−1]) ∼= (ϕw−sDF •)[−1] (see [42, Proposition

4.2.10]). Since DCYs = CYs [2d] (see [42, Example 3.3.8]) where d is the complex

dimension of Y , it follows by [42, Theorem 3.3.10] that

Hm+1(w−1(s), ϕw−sCYs
) ∼= Hm(w−1(s), ϕw−sCYs

[−1])

∼= H−m
c (w−1(s),Dϕw−sCYs

[−1])∨

∼= H−m
c (w−1(s), ϕw−sCYs

[2d− 1])∨

∼= H2d−(m+1)
c (w−1(s), ϕw−sCYs

)∨

Since w−1(s) is itself compact it follows that

Hm(w−1(s), ϕw−sCYs
) ∼= H2d−m(w−1(s), ϕw−sCYs

)∨.

Along with Proposition 2.2.8 this implies that:

Theorem 2.2.9. Poincaré duality holds for LG models. In other words,

hi(Y,w) = h2d−i(Y,w).

This theorem requires remarkably few assumptions. We need to have that w is a

proper, relatively compact fibration with smooth total space over A1, but nothing

more. In terms of Definition 2.2.1, we require that only Condition (1) holds.



2.2 Landau-Ginzburg models and their Hodge numbers 30

Beyond being simply a nice fact, this allows us to conclude that a version of

Lefschetz duality holds for the Hodge numbers of LG models in some situations. I

expect that it holds in all situations, but I have not been able to prove it. In the

following theorem, we assume that all conditions of Definition 2.2.1 hold. In [79], it is

argued that if X is a Fano variety, then the limit mixed Hodge structure on Hi−1(V,C)

at ∞ is Hodge-Tate. By this, we mean that jp,q = 0 unless p = q. This implies that if

p ≤ q, then hp,2d−i−p(Y,w) = php,2d−i−1−p + kp,i−p − rp,2d−i−p.

Corollary 2.2.10. Assume the limit mixed Hodge structure on Hi−1(V,C) is Hodge-

Tate for all i. If d = 3 or 4 or if hp,i−p(Ki) = 0 for p ̸= i− p then

hp,i−p(Y,w) = hd−p,d−i+p(Y,w)

for any i or p. In other words, the Hodge numbers of (Y,w) form a Hodge diamond

in the usual sense.

Proof. Note that Theorem 2.2.6 ensures that Hodge duality holds, or in other words

that Hp,q(Y,w) = Hq,p(Y,w). Using the fact that H0,i(Z) = 0 for i ≠ 0 and the fact

that V is Calabi-Yau and hence Hi,0(V ) = 0 for i ̸= 0, d− 1, a quick look at Theorem

2.2.6 shows that Hp,q(Y,w) = 0 for p or q = 0 or d and (p, q) ̸= (d, 0) or (0, d). In the

case where Z is a threefold, we only need to check that hi,4−i(Y,w) = h3−i,i−1(Y,w).

However, h0,2 = h2,0 = h0,4 = h4,0 = 0, so we only need to check that h1,1 = h2,2. But

we have:

h1,1(Y,w) = h2(Y,w) = h4(Y,w) = h2,2(Y,w)

where the second equality comes from Poincaré duality.

The case where d = 4 we can show that h1,1 = h3,3 in the same way. To check this

duality for hi,5−i and hi,3−i, note that h5 = 2h3,2 and h3 = 2h2,1 by Hodge duality,

thus h2,1 = h1,2 = h2,3 = h3,2.

Now assume that hi,p−i(Ki) = 0 for i ̸= p − i. Then we have that hp,q(Y,w) =

hp,q−1(V ) for q < p and hp,q(Y,w) = hp−1,q(V ) for q > p. Therefore if q < p, then

hp,q(Y,w) = hp,q−1(V ) = hd−p−1,d−q(V ) = hd−p,d−q(Y,w).
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Similarly for q > p. Now we have that if i ≤ d,

hi(Y,w) =
i∑

j=0

hj,i−j(Y,w) =
∑
j=0

hd−j,d−i+j(Y,w) = h2d−i(Y,w)

This equality, along with the fact that hj,i−j(Y,w) = hd−j,d−i+j(Y,w) except if j = i−j

allows us to conclude equality when j = i− j.

Remark 2.2.11. The fact that we have only proved that this Lefschetz-type duality

holds in some cases is quite unsatisfactory to me. Given the fact that Poincaré duality

holds and that we know that there is a certain amount of symmetry in the Hodge

numbers of the LG model, coming from Lefschetz duality for the Hodge numbers of

the primitive cohomology of V , it seems quite unlikely that a theorem like Corollary

2.2.10 holds in general.

Now we mention that in the case where (Y,w) is a LG model in the sense of Definition

2.2.1 and any of the conditions in Corollary 2.2.10 hold, then the values of hp,q(Y,w)

admit horizontal and vertical symmetries. Furthermore, we may note that

• hd,0(Y,w) = 1,

• hi,0(Y,w) = h0,i(Y,w) = 0 for i ̸= d,

• hd,i(Y,w) = hi,d(Y,w) = 0 if i ̸= 0.

Thus if any of the conditions of Corollary 2.2.10 hold then the “Hodge diamond”

of (Y,w) looks remarkably like the Hodge diamond of a Fano variety rotated by 90

degrees.

2.2.3 LG models of del Pezzo surfaces

At this point, let’s work out a basic example. Surfaces Z satisfying Definition 2.2.1

are precisely elliptically fibered surfaces over P1 with h2,0 = 0 and a singular fiber of

type In at ∞. For the moment, we will assume that the elliptic fibration f : Z → P1

admits a section and hence by the classification of elliptic surfaces, Z is a rational
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elliptic surface. Let us define Zn to be an rational elliptic surface with section whose

elliptic fibration given by f : Zn → P1 and so that there is a singular fiber of type In

over ∞ for 1 ≤ n ≤ 9. In plain language, this is a normal crossings union of n-rational

curves whose dual intersection complex is the extended Dynkin diagram Ãn if n > 1

and a nodal rational curve if n = 1. Then let Yn = Zn \D∞, let w = f|Yn and let E

be a smooth fiber of w. According to work of Auroux, Katzarkov and Orlov, [8], the

pair (Yn,w) is the homological mirror dual of the del Pezzo surface of degree n. We

will check this against our computations.

First, we recall that hp,q(Z) is equal to 10 if p = q = 1, equal to 1 if p = q = 0 or

p = q = 2 and 0 otherwise (see e.g. [99, Lecture IV, §1]). The action of monodromy

around ∞ on H2(E,Z) is given by the matrix

⎛⎝1 n

0 1

⎞⎠
(see e.g. [99, Table VI.2.1]). We must compute the value of kerNi for i = 0, 1, 2. For

i = 0, 2, we know that kerNi = C, and the weight filtration in these cases is trivial.

In the case where i = 1, it is a standard computation to show that the LMHS has

i0,0 = i1,1 = 1, and kerN1 is precisely the weight 0 piece of the monodromy weight

filtration at ∞. It has rank 1 and F 1 is empty, so the only nonvanishing ip,q value of

kerN1 is i0,0 = 1. Since H1(Zn,C) = 0 it follows that Q1 = kerN1.

Now we can compute the value of H1(Y,w). Let f−1(∞) = D∞ as usual. Using

the Mayer-Vietoris spectral sequence [66], we see that h2(D∞) = n, h1(D∞) = 1 and

h0(D∞) = 1, and that all of the mixed Hodge structures here are pure, Hodge-Tate

and of weights 2, 0 and 0 respectively. We know that H1(Z,C) vanishes, thus we have

an exact sequence

0 → H0
c(Yn,C) → H0(Zn,C) → H0(D∞,C) → H1

c(Yn,C) → 0

The map H0(Zn,C) → H0(D∞,C) is an isomorphism which implies the vanishing of

h0c(Yn) = h4(Yn) and h1c(Yn) = h3(Yn). Thus the sequence for relative cohomology
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looks like

· · · → H2(Yn,C) → H2(E,C) → H3(Yn, E;C) → 0 → 0 → H4(Yn, E;C) → 0

The map H2(Yn,C) → H2(E,C) is also surjective, since Yn admits a section. Therefore

h3(Yn,w) = h4(Yn,w) = 0. Using the fact that Poincaré duality holds for LG models,

it follows that the only non-zero hi(Yn,w) occurs when i = 2. From the long exact

sequence of compactly supported cohomolgy above, it follows that χ(Yn) + χ(D∞) =

χ(Zn) and thus χ(Yn) = 12 − n. Using the long exact sequence for the relative

cohomology (Yn, E), for E a smooth fiber of w, one finds that χ(Yn, E) = h2(Yn, E) =

12− n.

Continuing to work backwards, we have a long exact sequence for the relative

cohomology

0 → H1(Yn,C) → H1(E,C) → H2(Yn, E;C) → H2(Yn,C) → H2(E,C) → 0

Since H1(Yn,C) has no weight 1 component, its image in H1(E,C) must be 0, and

hence must itself be 0. Therefore, by counting dimensions in the exact sequence above,

we find that h2(Yn) = 11− n. Now we may look at the long exact sequence for the

compactly supported cohomology of Yn,

0 → H1(D∞,C) → H2
c(Yn,C) → H2(Zn,C) ∼= C10 → Cn → H3

c(Yn,C) → 0

The map C10 → Cn is forced to be surjective, for dimension reasons and thus

h3c(Yn) = 0. It then follows that the MHS on H2
c(Yn,C) has Hodge numbers

i0,0 = 1 i1,1 = 10− n

since we have noted that H1(D∞,C) is pure of weight 0 and rank 1 and H2(Z,C) is

pure Hodge-Tate of weight 2. Hence H2(Yn,C) admits a MHS so that i2,2 = 1 and

i1,1 = 10−n. Thus the Hodge numbers of H2(Yn, E;C) are i1,0 = i0,1 = 1, i1,1 = 9−n
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and i2,2 = 1. This implies that grW0 = 1, grW1 = 10− n and grW2 = 1. Thus the hp,q

Hodge numbers of (Yn,w) give us a Hodge diamond

0

0 0

1 10− n 1

0 0

0

which is of course the Hodge diamond of a del Pezzo surface of degree n rotated by

π/2.

Remark 2.2.12. There is no reason for us to restrict ourselves to the case where Z

admits a section. For instance, we can let Z be an Enriques surface, whose Hodge

numbers are the same as those of a rational elliptic surface, yet is not rational. Such

a surface admits an elliptic fibration over P1 with a bi-section (an irreducible curve in

Z which intersects a general fiber in 2 points).

2.2.4 LG models of Fano type

In this section, we will argue that even beyond the assumption that the limit mixed

Hodge structure on Hi(V,C) at infinity be Hodge-Tate, further restrictions are neces-

sary in order to characterize, among all LG models, which LG models correspond to

Fano manifolds under mirror symmetry. We argue that a simultaneously refined and

coarsened version of Dolgachev’s lattice polarized mirror symmetry should extend to

pairs of embedded Calabi-Yau varieties.

Topologically, a K3 surface is its own mirror, however Dolgachev [44] has formulated

a subtle form of mirror symmetry which will be useful to us. He defines a lattice

polarized K3 surface, which is simply a K3 surface S with a primitive embedding by a

lattice L ↪→ H2(S,Z) so that the image of L contains a semi-ample divisor. We also

assume that the orthogonal complement of L in H2(S,Z) contains a copy of the rank 2
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unimodular indefinite lattice U. Let L∨ ⊕ U = L⊥, then the mirror of an L-polarized

K3 surface is an L∨-polarized K3 surface.

For instance, if S ⊆ X is an anticanonical hypersurface in a Fano threefold X,

then S comes equipped with a lattice polarization coming from the restriction map

H2(X,Z) ↪→ H2(S,Z). On the other hand, if S∨ is a fiber of the LG model (Y,w)

of X, then it also comes equipped with a restriction map H2(Y,Z) → H2(S∨,Z). It

is reasonable to postulate that these induce dual lattice embeddings on S and S∨.

Indeed this is true, as I have checked in joint work with Doran, Katzarkov, Lewis

and Przyjalkowski [47] that this holds in many cases. A more coarse way to state

this duality is as a relationship between the primitive and co-primitive cohomology of

S ⊆ X and S∨ ⊆ Y . Define

Hp,q
prim(S) = ker(Hp,q(X) → Hp,q(S))

Hp,q
co−prim(S) = Im(Hp,q(X) → Hp,q(S)).

We may make similar definitions for S∨ ⊆ Y , or indeed, any smooth variety embedded

in another. This motivates a refined version of the mirror symmetry conjecture for

Hodge numbers. If W ⊆ X and V ⊆ Y are Calabi-Yau manifolds of dimension d with

W embedded in a Fano variety X as an anticanonical hypersurface and V the fiber of

the LG model Y of X, then we expect to have

Hd−p,q
co−prim(V ) = Hp,q

prim(W ).

and vice-versa. Note that Hp,q
co−prim(W ) = Hp,q(X) if p+ q ≤ d− 1 since X is assumed

to be Fano. This computation provides justification from mirror symmetry for the

following definition:

Definition 2.2.13. A LG model is of Fano type if hp,i−p(Ki) = 0 unless p = i − p

and if the limit mixed Hodge structure on PHi−1(V,C) at infinity is Hodge-Tate for

all i.
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Indeed, ifW ⊆ X is a smooth anticanonical hypersurface in a Fano variety of dimension

d, then for p + q < d − 1, we have that Hp,q(W,C) ∼= Hp,q(X,C) by the Lefschetz

hyperplane theorem. Assume that dimX > 3. If V is mirror to W , then we have that

hd−p,q(W ) = hp,q(V ). First applying mirror symmetry for Fano varieties, then for

Calabi-Yau varieties, we find that

hp,i−p(Y,w) = hd−p,i−p(X) = hd−p,i−p
co−prim(W ) = hp−1,i−p

prim (V ).

By applying the computations preceding Theorem 2.2.6 under the condition that Y

be of Fano LG type, the equality hp,i−p(Y,w) = hp−1,i−p
prim (V ) for every p < i holds if

and only if (Y,w) is of Fano LG type. This implies that the only information in Y

which is not carried by mirror symmetry for a generic fiber of w is contained in the

ring
⨁d−1

i=1 Hi,i(Y,w). This is mirror to the statement that the only cohomological

information in X that is lost when passing to W is in Hd(X,C).

Example 2.2.14 (Threefolds). We can describe the MHS on H3(Y,w) of a Landau-

Ginzburg threefold. Here we will make the assumption that the action T of monodromy

around ∞ on H2(w−1(t),C) satisfies (T − Id)3 = 0 and (T − Id)2 = 0 and that D∞ is

a normal crossings union of rational surfaces. If D∞ is semistable then this is called a

type III degeneration of K3 surfaces, and the associated limit mixed Hodge structure

on PH2(S,C) has j2,2 = j0,0 = 1 and ph1,1 = j1,12 .

A computation by the Mayer-Vietoris spectral sequence [66] shows that the rank

of H1(f−1(∞),C) is zero, thus K1 = H1(Z,C). Furthermore, since H2(S,C) = 0, we

know that R3 = 0. Therefore, the MHS on H3(Y, V ;C) is described in Table 2.1, since

the fact that H3(V,C) = 0 forces R3 = R1 = 0 as well.

To compute the Hodge numbers h1,1(Y,w), we note that h2,2(Y,w) is just k2,2 − 1,

since we have a long exact sequence in cohomology

· · · → H3(S,C) = 0 → H4(Y, S;C) → K4 → H4(S,C) = C → . . .
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0 1 2 3

6 0 0 0 1
5 0 0 0 0

4 0 0 h1,1prim − 1 0

3 0 k1,2 k2,1 0

2 1 h1,1prim 1 0

Table 2.1 The Hodge numbers of H3(Y,w) for Y a LG model in dimension 3. The
rows denote the graded pieces of the weight filtration and the columns determine
grade pieces of the Hodge filtration.

Thus, using Corollary 2.2.10 the “Hodge diamond” of (Y,w) looks like

0

0 0

0 k2,2 − 1 0

1 ph1,1 + k1,2 ph1,1 + k2,1 1

0 k2,2 − 1 0

0 0

0

Therefore if Z is of Fano LG type then one must only compute the rank of ph1,1, the

value of k1,2 = h1,2(Z) and k2,2. According to Theorem 3.3.1 if ρt be the number of

irreducible divisorial components in w−1(t), and Σ be the critical locus of w. Then

h1,1(Y,w) =
∑

t∈Σ(ρt − 1).

Thus the condition that (Y,w) be an extremal LG model is equivalent to the fact

that k1,2 vanishes. Then if X is a Fano threefold and (Y,w) is its LG model, then

h1,2(Y,w) = h1,1(X) if and only if h1,1co−prim(S) = ph1,1(S∨) for S an anticanonical

hypersurface in X and S∨ a fiber of w. We will say more about this in the following

section.
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2.3 LG models of smooth toric weak-Fano varieties

In the next couple of sections, we will discuss mirror symmetry for toric weak Fano

varieties with at worst terminal singularities. In the case of threefolds, we will show

that LG models can be constructed by direct methods, and that one can compute very

directly the Hodge numbers of the LG model in order to establish that Hodge number

mirror symmetry holds. In the case where X∆ has dimension higher than 3, we are

not guaranteed that there exists a smooth LG model for X∆ in the sense of Definition

2.2.1. In the case where such a resolution does exist, we will reduce the computation

of Hp,q(Y,w) to the computation of the Hodge-graded pieces of Hp+q((C×)d, Uf ;C)

where Uf is the vanishing locus of a general Laurent polynomial with Newton polytope

∆. We will show that for any polytope ∆, the hp,q((C×)d, Uf ) = hd−q,p
st (X∆) where

hq,d−p
st (X∆) are the stringy Hodge numbers [19] of a maximal partial crepant projective

resolution of singularities of the Gorenstein Fano toric variety associated to the

polytope ∆. This should be thought of as the right analogues of Hodge number mirror

symmetry for toric weak Fano varieties.

2.3.1 Explicit computation when d = 3

Now let us discuss mirror symmetry for smooth toric threefolds. We will show that

there is no need for the hypothesis that X be Fano in order for Hodge number mirror

symmetry to hold. Let ∆ be a reflexive polytope embedded in M ⊗R for some lattice

M of rank 3, and let Σ be the fan over the faces of ∆. We may choose a refinement

of Σ which we call Σ̂ so that each cone of Σ̂ is spanned by rays which generate the

lattice M , and that all of the rays of Σ̂ are contained in the boundary of ∆. Such a

refinement exists by [14]. Let X∆ be the toric variety associated to the fan Σ̂, then

X∆ is a smooth projective resolution of P∆. One can show that

h1,1(X∆) = ℓ(∆)− 4.

where ℓ(∆) is the number of lattice points in ∆. Furthermore, since X∆ is a number

of copies of (C×)k (k = 0, 1, 2, 3) glued together, hi,j(X∆) = 0 if i ≠ j. Let S be an
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anticanonical K3 hypersurface in X∆, then the rank of the kernel of the map

H2(X∆,C) → H2(S,C)

is equal to the sum
∑

dimF=2 ℓ
∗(F ). Here the sum is over all faces of ∆ of dimension

2 and ℓ∗(F ) denotes the number of points on the relative interior of F . Thus

h1,1co−prim(S) = ℓ(∆)− 4−
∑

dimF=2

ℓ∗(F ).

2.3.1.1 Building the mirror

Now let us build the mirror of X∆. We take first of all the polar dual polytope ∆◦.

If N = Hom(M,Z), then ∆◦ is a polytope in NR = N ⊗ R which is integral with

respect to the lattice N . We associate to it the toric variety X∆◦ in the same way we

constructed X∆ above. The homogeneous coordinate ring of X∆◦ is C[{xρ}ρ∈∂∆◦∩N ]

and is graded by Pic(X∆◦). We may choose any generic global section s of ω−1
X∆◦ ,

and let s0 =
∏

ρ∈∂∆◦∩N xρ. We may then produce a pencil P(s, r) of anticanonical

hypersurfaces in X∆◦ written as {rs− ts0 = 0} over P1
r,s. The base locus of this pencil

is just the intersection of S∨ = {s = 0} with the union of all toric boundary divisors

Dρ in X∆◦ . By the assumption that S∨ is generic, it follows that S∨ ∩Dρ is a smooth

curve ([14]). We may sequentially blow up the curves in the base locus of P(t, r) to

resolve indeterminacy. The result is a smooth variety Z∆ which is fibered over P1
t,r.

Call this map f. We can furthermore compute that the fibers of f are sections of the

anticanonical bundle of Z∆. Note that this construction only depends upon the fact

that X∆◦ is smooth. Therefore, it can be carried out in arbitrary dimension. We will

make use of this in Section 2.3.2.

The fiber over r = 0 of f is a normal crossings union of smooth rational surfaces

whose dual intersection complex is a triangulation of the sphere, which is precisely the

triangulation of ∆◦ used to build the refinement of Σ∆◦ defining X∆◦ . Furthermore,

recall that if we have a smooth blow-up π : X̃ → X along a codimension 2 subvariety

C in X, and E = π−1(C), then −K
X̃

= −π∗KX − E. Thus if EC1 , . . . , ECk
are the



2.3 LG models of smooth toric weak-Fano varieties 40

exceptional divisors of the map π : Z∆ → X∆◦ , it follows that

−KZ∆
= −π∗KX∆◦ −

k∑
i=1

ECi .

which is just the class of a fiber in the fibration f. Therefore, since −KZ∆
is supported

on fibers, the degeneration of K3 surfaces at infinity is a type III degeneration of

K3 surfaces [58, 90], so a theorem of Kulikov and Persson-Pinkham [90, 118] shows

that monodromy is maximally unipotent and the limit mixed Hodge structure on

H2(S∨,C) at the point at infinity is Hodge-Tate.

2.3.1.2 Hodge numbers

Now we compute the Hodge numbers of Z∆.

Proposition 2.3.1.

h2,1(Z∆) =
∑

F∈∆[2]

ℓ∗(F )

h1,1(Z∆) = 2ℓ(∆◦)− 5−
∑

F∈∆◦[2]

ℓ∗(F ) +
∑

F∈∆◦[1]

ℓ∗(F )ℓ∗(F ◦).

Proof. On the big torus (C×)3x,y,z of X∆◦ , there is a Laurent polynomial f(x, y, z)

which determines S∨ and so that the Newton polytope of f(x, y, z) is ∆. We can

compute (see [17]) that the restriction of S∨ to the big torus (C×)2 in any Dv has

Newton polytope which is computed as follows: let v ∈ ∆◦, and let Γ(v) be the

smallest face of ∆◦ containing v. The face Γ(v) has a dual face Γ(v)◦ in ∆ defined to

be

Γ(v)◦ = {σ ∈MR : ⟨v, σ⟩ = −1}.

These faces satisfy dimΓ(v) + dimΓ(v)◦ = 2. The restriction of S∨ to the big torus

(C×)2 ⊆ Dv has Newton polytope Γ(v)◦. Thus

1. If dimΓ(v)◦ = 2, then Dv ∩ S∨ = ∅,

2. If dimΓ(v)◦ = 1 then Dv ∩S∨ is a union of 1+ ℓ∗(Γ(v)◦) smooth rational curves.
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3. If dimΓ(v)◦ = 0 then Dv ∩ S∨ is a single smooth curve whose genus is ℓ∗(Γ(v))◦

(this follows by [38]).

These statements can be deduced from [17, Theorem 2.5] or an easy computation.

Now, recall that if we let X̃ be the blow up of a threefold X in a smooth irreducible

curve of genus g then

h2,2(X̃) = h1,1(X̃) = h1,1(X) + 1

h2,1(X̃) = h1,2(X̃) = h1,2(X) + g

see e.g. [143, §7.3.3]. One may then compute without much trouble that

h2,1(Z∆) =
∑

F∈∆[2]

ℓ∗(F )

h1,1(Z∆) = 2ℓ(∆◦)− 5−
∑

F∈∆◦[2]

ℓ∗(F ) +
∑

F∈∆◦[1]

ℓ∗(F )ℓ∗(F ◦).

as claimed.

Now we let Y∆ = Z∆ \D∞ (here we consider r = 0 to be the point at infinity of ∞)

and let w = f|Y . We must first compute the rank of primitive cohomology of a fiber

S∨ of w.

Lemma 2.3.2 (Kreuzer-Skarke, [89], Rohsiepe, [130]).

h1,1prim(S
∨) = 24− ℓ(∆◦) +

∑
F∈∆◦[2]

ℓ∗(F )−
∑

F∈∆◦[1]

ℓ∗(F )ℓ∗(F ◦).

and therefore

h2,1(Y,w) = 24− ℓ(∆◦) +
∑

F∈∆◦[2]

ℓ∗(F )−
∑

F∈∆◦[1]

ℓ∗(F )ℓ∗(F ◦) +
∑

F∈∆[2]

ℓ∗(F ).

Proof. Rohsiepe [130] proves that

ℓ(∆◦)− 4−
∑

F∈∆◦[2]

ℓ∗(F ) +
∑

F∈∆◦[1]

ℓ∗(F )ℓ∗(F ◦)
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is the Picard rank of a general enough anticanonical hypersurface in X∆◦ and Pic(S∨)

is spanned by the curves Dv ∩ S∨ for v a point in ∂∆◦ ∩ N . Since we have blown

up along all of the curves in Dv ∩ S∨ to obtain Z∆, it follows that there is indeed a

divisor in Z∆ that restricts to S∨ to give Dv ∩ S∨ for any v in ∆◦. Thus the rank of

the image of the restriction map is at least the rank of Pic(S∨) and hence we have

equality. The second statement is a result of this along with Theorem 2.2.6, Example

2.2.14 and Proposition 2.3.1.

Remark 2.3.3. If X∆ is itself a Fano variety, then for all F ∈ ∆[2], ℓ∗(F ) = 0. Thus

it follows that h2,1(Z∆) = 0, or equivalently that (Y∆,w) is of Fano LG type. It is

also clear that if ℓ∗(F ) = 0 for all F ∈ ∆[2], then X∆ is of Fano LG type, but this

condition on ∆ is not equivalent to X∆ being itself Fano. Therefore, it might be good

to come up with another name for this class of objects.

Now we can check that:

Lemma 2.3.4.

ℓ(∆)− 4 = 24− ℓ(∆◦) +
∑

F∈∆◦[2]

ℓ∗(F )−
∑

F∈∆◦[1]

ℓ∗(F )ℓ∗(F ◦) +
∑

F∈∆[2]

ℓ∗(F ).

Proof. We use [89, Equation 5] to see that if S∨ is a generic hypersurface of X∆◦ ,

then

20 = h1,1(S) = rank Pic(S) + ℓ(∆)− 4−
∑

v∈∆◦[1]

ℓ∗(v◦)

[89, Equation 4] tells us that

rank Pic(S) = ℓ(∆◦)− 4−
∑

F∈∆◦[2]

ℓ∗(F ) +
∑

F∈∆◦[1]

ℓ∗(F )ℓ∗(F ◦).

Combining these two statements and rearranging gives the proposition immediately.

Corollary 2.3.5.

h1,1(X∆) = h2,1(Y,w).
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As noted by Kreuzer and Skarke [89, pp. 8], there is a fundamental problem with trying

to verify lattice polarized mirror symmetry between Batyrev dual K3 hypersurfaces

in toric varieties, which is that if S ⊆ X∆ and S∨ ⊆ X∆◦ are generic anticanonical

hypersufaces, then

rank Pic(S) + rank Pic(S∨) = 20 +
∑

F∈∆[1]

ℓ∗(F )ℓ∗(F ◦)

while lattice polarized mirror symmetry claims [44] that we should have

rank Pic(S) + rank Pic(S∨) = 20.

This problem does not appear when we look at mirror symmetry for smooth toric

varieties, as we have just seen. The difference between Pic(X∆) and Pic(S) is com-

pensated for by h2,1(Z∆) in the mirror. This seems to suggest that Batyrev-Borisov

mirror symmetry is the result of a more natural duality between a smooth toric variety

and its Landau-Ginzburg mirror. Now we compute h1,1(Y∆,w).

Proposition 2.3.6.

h2,2(Y∆,w) = 0.

Proof. First note that the image of the restriction map H2(Y∆,C) → H2(S∨,C) has

image equal to the restriction from Z∆. We can apply the global invariant cycles

theorem to the fibers of f in Z∆ to deduce that the image of the restriction map is

precisely the monodromy invariant classes in H2(S∨,C). The same is true for S∨ as

a fiber of w, and the monodromy representations of f and w are identical, thus the

images of the restriction maps are identical. In the proof of Lemma 2.3.2, we showed

that restriction from Z∆ to S∨ has image of rank

ℓ(∆◦)− 4−
∑

F∈∆◦[2]

ℓ∗(F ) +
∑

F∈∆◦[1]

ℓ∗(F )ℓ∗(F ◦).

It then follows from Proposition 2.3.1 that the kernel of the restriction of H2(Z∆,C)

to H2(S∨,C) has rank ℓ(∆◦) − 1, and in particular, since all fibers of f are linearly
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equivalent, the kernel of the restriction to H2(D∞,C) is of rank at least ℓ(∆◦)− 1. If

L is an ample line bundle on Z∆, then we have a commutative diagram

H4(Z∆,C) −−−−→ H4(D∞,C)

∪c1(L )

↑⏐⏐∼= ∪c1(L )|D∞

↑⏐⏐
H2(Z∆,C) −−−−→ H2(D∞,C)

Hence the rank of the kernel of the map on the top of the above diagram has rank at

least ℓ(∆◦)− 1. Therefore,

h2(Y∆) = h4c(Y∆) ≤ ℓ(∆◦)− 4−
∑

F∈∆◦[2]

ℓ∗(F ) +
∑

F∈∆◦[1]

ℓ∗(F )ℓ∗(F ◦)

by the long exact sequence in compactly supported cohomology. We have thus argued

that the image of the restriction map H2(Y∆,C) → H2(S∨,C) has rank at least equal

to h2(Y∆), hence it has rank equal to h2(Y∆) and is thus injective. Therefore, by the

long exact sequence in relative cohomology, h2(Y∆, S
∨) = 0.

Using Corollary 2.2.10, we find that:

Theorem 2.3.7. Hodge number mirror symmetry holds between X∆ and (Y,w) for

∆ a reflexive 3-dimensional polytope.

Remark 2.3.8. In light of Section 2.2.3 Hodge number mirror symmetry in the

case where ∆ is a reflexive polygon is a simple exercise. One checks that the only

non-zero Hodge numbers of X∆ are hi,i(X∆) for i = 0, 1, 2, and h1,1(X∆) = ℓ(∆)− 3,

and Z∆ is an elliptically fibered surface with ℓ(∆◦)− 1 irreducible components with

multiplicity 1, thus the fiber of f at infinity is of type Iℓ(∆◦)−1. It is known that for

any reflexive polygon, ℓ(∆◦) + ℓ(∆) = 14 (see e.g. [122, Theorem 1]). Therefore,

10− (ℓ(∆◦)− 1) = ℓ(∆)− 3 = h1,1(X∆), which is equivalent to Hodge number mirror

symmetry for toric weak Fano surfaces by Section 2.2.3.
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2.3.1.3 Monodromy and the fiber at infinity

Conjecturally, if t a regular value of w and V = w−1(t), then we should have that

the monodromy action on Hi(V,C) agrees, via mirror symmetry, with the action on⨁d
q=0H

q,i−q(W ) by cup product with exp c1(ω
−1
X |W ) (see e.g. [7]). Friedman and

Scattone [58] have shown that there is a relationship between the geometry of type

III degenerations of K3 surface and the associated action of monodromy on H2(V,C).

A degeneration is Käher manifold X equipped with a holomorphic map π : X → ∆

to a small disc ∆ containing 0 so that π−1(t) is smooth for t ̸= 0. We will assume

that π−1(0) is a normal crossings union of smooth varieties.

The dual intersection complex of the degeneration X is a complex which represents

each component of X0 with a point, each intersection between two components as

an edge between two points, and each intersection of three irreducible components

as a triangle with vertices corresponding to the three intersecting irreducible compo-

nents, and the edges corresponding to the curves of intersection between each pair of

intersecting irreducible components.

A type III degeneration of K3 surfaces is a degeneration so that −KX = 0, the fiber

over 0 is simple normal crossings and its dual intersection complex is a triangulation

of S2 and the fiber over t ̸= 0 is a smooth projective K3 surface. Examples of such a

degeneration are provided by f−1(U) ⊂ Z∆ for U a small disc around infinity for Z∆

and f as in Section 2.3.

Assume that we have a type III degeneration of K3 surfaces so that there is an

embedding of some lattice L into H2(Xt,Z) for each t ∈ ∆ \ 0 = ∆×. Let T be the

monodromy automorphism of H2(Xt,Z) associated to a small counter-clockwise loop

in ∆× around 0. Assume that L ⊆ H2(Xt,Z) is fixed by T and the parallel transport

of L is contained in NS(Xt) for every t in ∆×. Then, according to [90], T is unipotent,

(T − Id)3 = 0 but (T − Id)2 ̸= 0. Then T , or more properly, N := log T , induces a

weight filtration on the general fiber H2(Xt,Z) of π.
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Lemma 2.3.9 (Friedman-Scattone [58, Lemma 1.1]). There is a copy of U in Λ and

αN ∈ U⊥ so that the automorphism N can be represented by the transformation

N(x) = ⟨x, αN ⟩e− ⟨x, e⟩αN .

Now we relate this to mirror symmetry. If we take a lattice L, then we say that a

K3 surface S is L-polarized if there is a primitive embedding L ↪→ H2(S,Z) whose

image contains a pseudo-ample class and the image of L is contained in NS(S). If

the orthogonal complement of L in H2(S,Z) splits as L∨ ⊕U then mirror symmetry

relates the moduli space of L-polarized K3 surfaces to the complexified ample cone of

a K3 surface S∨ so that NS(S∨) = L∨.

Now let α be an ample class in NS(S∨) = L∨. We then can build an endomorphism

Nα of H2(S,Z) by letting e be a primitive isotropic element of U orthogonal to αN in

the transcendental lattice L∨ ⊕U of S in H2(S,Z) and letting

Nα(x) = ⟨x, α⟩e− ⟨x, e⟩α.

This endomorphism is of the right sort to occur as the monodromy matrix around a

type III degeneration of K3 surfaces.

Lemma 2.3.10. We have N2
α ̸= 0, N3

α = 0 and Nα(L) = 0.

Proof. Easy calculation.

Thus if S is the anticanonical hypersurface in a Fano threefold X, then αX := −KX |S

induces an ample class on S. If we choose S generically so that Pic(S) ∼= Pic(X) then

expαX corresponds to an element of O(H2(S,Z)) which looks like the monodromy

matrix associated to a type III degeneration of L-polarized K3 surfaces. The following

conjecture is consistent with mirror symmetry.

Conjecture 2.3.11. Let X be a Fano threefold and (Y,w) its LG model. The trans-

formation TαX = expNαX corresponds to the action of monodromy on the H2(S,Z)

for S a smooth fiber of (Y,w) associated to a small counterclockwise loop around the

point at infinity.
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Friedman and Scattone [58, Proposition 1.10] prove the following result.

Proposition 2.3.12. If N is the monodromy matrix around a type III degeneration

of K3 surfaces, π : X → ∆, and αN is as in Lemma 2.3.9, then the number of faces

of the dual intersection complex of X0 is equal to ⟨αN , αN ⟩.

Let us now assume that in Z, the compactification of Y , we have that for U

a small disc around the point at infinity, f−1(U) is a type III degeneration of K3

surfaces. Take the triangulation of S2 determined by the dual intersection complex

of f−1(∞) = D∞. Since triple points correspond to faces in the triangulation of the

sphere, and we have that

F − E + V = 2 3F = 2E

for F,E, V the number of faces, edges and vertices of the dual intersection complex

of D∞. Thus V = 2 + F/2. If F = ⟨αX , αX⟩ for an ample class αX in a smooth

K3 surface in X, then the genus formula for curves on a K3 surface shows that

V = g(C) + 1 for g(C) the genus of a smooth curve associated to the ample class αX .

Thus combining mirror symmetry for K3 surfaces and Fano varieties, one arrives at

the following conjecture.

Conjecture 2.3.13. Let X be a Fano threefold and (Y,w) be its LG model. Assume

there is a compactification Z of Y so that w extends to a map f : Z → P1 and so that

f1(U) is a type III degeneration of K3 surfaces for U a small disc in P1 containing the

point at infinity. Then the number of triple points in D∞ is equal to the anticanonical

degree of X and the number of irreducible components is equal to the genus of a generic

smooth curve in (−KX) ∩ (−KX) plus 1.

Theorem 2.3.14. Conjecture 2.3.13 holds for the LG model of a smooth toric quasi-

Fano variety.

Proof. By construction D∞ is a normal crossings union of smooth divisors and D∞

has components which are in bijection with points in the boundary of ∆◦, thus there

are ℓ(∆◦) − 1 components in D∞. It remains to prove that the genus of C, the
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intersection of two anticanonical hypersurfaces in X∆ is equal to ℓ(∆)− 2. We have

the Koszul complex for C,

0 → OX∆
(−2S) → OX∆

(−S)⊕ OX∆
(−S) → OX∆

→ 0.

The associated spectral sequence converges to Hi(C,OC [2]), so it can be used to

compute H1(C,OC). We have that Hi(X∆,OX∆
(−S)) = Hi(X∆,OX∆

(−2S)) = 0

unless i = 3, and Hi(X∆,OX∆
) = 0 unless i = 0. Therefore, this spectral sequence

can be seen to degenerate at ′′E2 (simply write out the ′′Ep,q
1 terms). Furthermore,

we know that Hi(C,OC) = 0 if i ̸= 0, 1. Thus the map

′′E3,0
1 = H3(X∆,OX∆

(−2S)) → ′′E3,1
1 = H3(X∆,OX∆

(−S)⊕ OX∆
(−S))

is surjective since ′′E3,1
2 is a summand of H2(C,OC). Therefore, by [17, Theorem 2.5],

we have that

rank ′′E2
3,0

= ℓ∗(2∆◦)− 2ℓ∗(∆◦).

Since ∆◦ is reflexive, ℓ∗(2∆◦) = ℓ(∆◦) and ℓ∗(∆◦) = 1, so g(C) = ℓ(∆◦)− 2 and thus

the number of irreducible components of D∞ is equal to g(C)+1 as claimed. The fact

that the anticanonical degree of X equals the number of faces in the triangulation

follows from the genus formula for curves on a K3 surface and the combinatorial

discussion above regarding the structure of triangulations of S2.

Remark 2.3.15. Note that, while Conjecture 2.3.13 claims to work only for Fano

varieties, it seems to extend at least to weak Fano toric manifolds.

Remark 2.3.16. It is clear that for any del Pezzo surface, the number of irreducible

components in D∞ corresponds to (−KX)2, which is just h0,0(E ∩ E′) for E,E′ two

general smooth anticanonical hypersurfaces. A general version of Conjecture 2.3.13

relates the Hodge numbers of the intersection of two anticanonical hypersurfaces in X

to the Hodge numbers of sheaves of vanishing cycles of the fiber over infinity. The

fiber over the point at infinity should be mirror to the smooth intersection of two
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anticanonical hypersurfaces in X. See [69] for details on homological mirror symmetry

for manifolds of general type.

2.3.2 Mirror symmetry for a general toric weak Fano variety

Here we extend the results of the previous section to the case where X∆ is a weak

Fano toric variety of arbitrary dimension with terminal singularities. We point out

that the results in this section technically supersede the results in Theorem 2.3.7,

however it seemed illustrative to include the concrete computation. Beyond the

topological results in Section 2.3.2.1, our result is mainly due to work of Batyrev [13]

and Batyrev-Dais [19], however we will explicitly review all of the necessary results.

2.3.2.1 Reduction of the computation when a smooth LG model exists

First of all, we deal with the issue of compactification of the Givental LG model of X∆.

In the threefold case, we used the fact that X∆◦ admits a smooth crepant resolution

of singularities and the fact that the base locus of the pencil P is a simple normal

crossings union of smooth varieties.

Then we may repeat the construction in Section 2.3 of the LG model of X∆. We

choose a generic Laurent polynomial f with Newton polytope ∆. Then we have that

the fibers of f : (C×)d → C can be compactified to hypersurfaces in X∆◦ . We assume

that X∆◦ is smooth, then the base locus of the pencil of hypersurfaces defined by f

is a normal crossings union of smooth codimension 2 subvarieties B1, . . . , Bk of X∆◦ .

Then we can take a blow up of X∆◦ along B1, . . . , Bk in order, and call the resulting

variety Z∆. The variety Z∆ is fibered over P1 by smooth Calabi-Yau (d − 1)-folds,

and we call this map f. Let Y∆ = f−1(A1) ⊆ Z∆ and let w = f|Y∆
.

Note that in this situation, there are exceptional divisors E1, . . . , Ek obtained as

the preimage of B1, . . . , Bk under the contraction map Z∆ → X∆◦ . The intersection

of each Ei with each fiber of w is just Bi, thus w|Bi is a smooth fibration over A1.

By Ehresmann’s theorem, Ei ∩ Y is diffeomorphic to Bi × A1. It is easy to see that

Y \∪k
i=1(Ei∩Y ) is just (C×)d and the restriction of w to this open subset is just f itself.

Now we let M be a complex manifold and let P be a smooth complex submanifold of
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M of codimension 1. There is a standard quasi-isomorphism between Ω•
M (logP ) and

Ω•
M\P and a short exact sequence of complexes of sheaves,

0 → Ω•
M → Ω•

M (logP )
res−−→ Ω•

P [−1] → 0

where the first map is the natural injection and the second is the Poincaré residue map.

We assume that P is a divisor in M , then there are local coordinates (x1, . . . , xd) on

M so that P is expressed as as x1 = 0. Then a differential k-form η on M with log

poles at P can be written as

η = α+

(
dx1
x1

)
∧ β

for α a holomorphic k-form on M and β a holomorphic (k − 1)-form on M . The map

res(η) = β|P . Now let Q be another smooth divisor of M , we have an exact sequence

of complexes of sheaves

0 → Ω•
M (relQ) → Ω•

M → Ω•
Q → 0.

where Ω•
M (relQ) is defined by this exact sequence. If we assume that P intersects Q

smoothly, then we obtain another short exact sequence

0 → Ω•
M (logP, relQ) → Ω•

M (logP ) → Ω•
Q(log(Q ∩ P )) → 0.

Again, we have that Ω•
M (logP ) is quasi-isomorphic to Ω•

M\P , Ω
•
Q is quasi-isomorphic to

Ω•
Q\(Q∩P ), therefore, we have that Ω

•
M (logP, relQ) is quasi-isomorphic to Ω•

M\P (relQ).

Lemma 2.3.17. If Q and P are divisors in M which meet transversally, then there

is an exact sequence of sheaves:

0 → Ω•
M (relQ) → Ω•

M (logP, relQ) → Ω•
P (rel(P ∩Q))[−1] → 0.

Proof. This is a purely local computation. If we take a point p ∈ M so that p ∈ P

but p /∈ Q, we may choose a local chart around p not intersecting Q, and thus the
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first map in the sequence above is just the normal residue map and we have exactness.

If p is in neither Q nor P , then the residue map is trivial. Thus we may assume that

p ∈ Q ∩ P . We choose coordinates (x1, . . . , xd) around p so that Q = {x1 = 0} and

P = {x2 = 0}. The sheaf Ωi
M (logP, relQ) is the subsheaf of differential i-forms ω

on M which vanish at Q and have logarithmic poles at P . In the local coordinates

(x1, . . . , xd) around the point p then ω can be written as

∑
I⊆[1,...,d]

|I|=i,1/∈I,2/∈I

x1fI(x)dxI+
∑

I⊆[1,...,d]
|I|=i,1∈I,2/∈I

fI(x)dxI+
∑

I⊆[1,...,d]
|I|=i,1/∈I,2∈I

x1fI(x)

x2
dxI+

∑
I⊆[1,...,d]

|I|=i,1∈I,2∈I

fI(x)

x2
dxI

where fI(x) are arbitrary holomorphic functions and dxI =
⋀

i∈I dxi. Then the

residue of this form is precisely

∑
I⊆[1,...,d]

|I|=i,1/∈I,2∈I

x1fI(x)|x2=0dxI\2 +
∑

I⊆[1,...,d]
|I|=i,1∈I,2∈I

fI(x)|x2=0dxI\2.

Such forms are exactly the germs of sections of Ωi−1
P (rel (P ∩Q)). It is clear that the

kernel of this map is the set of forms where fI(x) vanish along x2 = 0 if 2 ∈ I, which

are just holomorphic forms. Away from points in P ∩Q there is nothing to check, so

we are done.

Now returning to the situation at hand, we may recursively define Y 1
∆ = Y∆ \ (Y∆∩E1)

and Y i
∆ = Y i−1

∆ \ (Y i−1
∆ ∩ Ei). Clearly, Y

k
∆ = (C×)d. Let Vf be the vanishing locus of

f in Y∆ and let V i
f be Vf ∩ Y i

∆. We know that V i−1
f \ V i

f is a smooth divisor in V i−1
f .

We can apply Lemma 2.3.17 to compute the cohomology of (Y∆,w) in terms of the

relative cohomology groups Hi((C×)d, V k
f ;C). Note that both admit mixed Hodge

structures, and the restriction map induces a morphism of mixed Hodge structures

from Hi(Y∆, Vf ;C) to Hi((C×)d, V k
f ;C).

Theorem 2.3.18. We have an isomorphism of mixed Hodge structures Hi(Y∆, Vf ;C) ∼=

Hi((C×)d, V k
f ;C).

Proof. We need to show that Hj(Y i
∆, V

i
f ;C) is isomorphic to Hj(Y i+1

∆ , V i+1
f ;C). In

Lemma 2.3.17, let V = Ei+1 ∩ Y i
∆ and let Z = V i

f . Then Z ∩ V = V i+1
f . Therefore,
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we have that there is a long exact sequence in cohomology

· · · → Hj−2(Ei+1 ∩ Y i
∆, Ei+1 ∩ V i

f ) → Hj(Y i
∆, V

i
f ) → Hj(Y i+1

∆ , V i+1
f ) →

→Hj−1(Ei+1 ∩ Y i
∆, Ei+1 ∩ V i

f ) → . . .

However, we have that Ei+1 ∩ Y i
∆ is diffeomorphic to V i

f ∩Ei+1 × A1, therefore, the

relative cohomolgy groups of the pair (Ei+1 ∩ Y i
∆, V

i
f ∩ Ei+1) are all zero. Therefore,

the long exact sequence in cohomology above provides the isomorphism that we want.

We have only exhibited an isomorphism of cohomology groups, however this map

underlies a morphism of mixed Hodge structures, hence we obtain an isomorphism of

mixed Hodge structures.

This is an appealing result, since it is not always possible to construct a smooth

LG model Y∆. Theorem 2.3.18 says that in the event that such a smooth relative

compactification exists, then the relative cohomology of ((C×)k, V k
f ) is the same as

the cohomology of (Y∆, Vf ;C).

2.3.2.2 Hodge number computations

In this section, we will replace the notation V k
f with Uf for simplicity. It is possible

to understand even the Hodge and weight filtrations on Hd((C×)d, Uf ;C) following

work of Batyrev [13]. Associated to an integral polytope ∆ of dimension d, one may

associate a sequence of numbers (ψ0(∆), . . . , ψd(∆)) which we call the δ-vector of

∆. If ∆ is reflexive, then it is shown by Batyrev and Dais [19, Theorem 7.2] that

the ψi(∆) is equal to hi,ist (P∆) where P∆ is the toric variety associated to ∆ and hi,ist

denotes the appropriate stringy Hodge number of P∆. It is known that if X∆ is a

crepant smooth resolution of P∆ then hi,ist (P∆) = hi,i(X∆), so in a very strong sense,

they should be taken as a replacement for the betti numbers of a toric variety. It is

also shown in [19, Theorem 7.2] that hi,jst (P∆) = 0 if i ̸= j. Batyrev has shown that:



2.3 LG models of smooth toric weak-Fano varieties 53

Theorem 2.3.19 ([14, Corollary 3.12]). If ∆ is reflexive, f is a Laurent polynomial

with Newton polytope ∆, and Uf is as above, then

dimF iHd−1(Uf )/F
i+1Hd−1(Uf )

is equal to ψd−i(∆) for i < d− 1, ψ1(∆) + d for i = d− 1 and 0 otherwise.

Now by the toric Lefschetz hyperplane theorem of Danilov and Khovanskii [38], the

restriction map Hi((C×)d,Q) → Hi(Uf ,Q) is an isomorphism if i < d − 1 and an

injection if i = d−1. Furthermore, it is clear that hi((C×)d) =
(
d
i

)
and it is a standard

fact (see e.g. [13, Example 3.9]) that the only non-zero ip,qs of Hi((C×)d,Q) are ii,i.

Therefore, we can compute the value of GrFi H
i((C×)d, Uf ;Q).

Theorem 2.3.20. If ∆ is reflexive, f is a Laurent polynomial with Newton polytope

∆, and Uf is as above, then

dimF iHd((C×)d, Uf )/F
i+1Hd((C×)d, Uf ) = ψd−i(∆).

Therefore, if there exists a smooth crepant resolution of singularities of X∆◦, then

hp,q(Y∆,w) = hq,d−p
st (P∆).

Proof. It is clear by the toric Lefschetz hyperplane theorem of Danilov and Khovanskii

that hi((C×)d, Uf ) = 0 if i ̸= d. We have an exact sequence of cohomology groups

0 → Hd−1((C×)d) → Hd−1(Uf ) → Hd((C×)d, Uf ) → Hd((C×)d) → 0.

It is then an elementary application of the strictness of morphisms of mixed Hodge

structures and Theorem 2.3.19 to see that the statement about the dimensions

of griFH
d((C×)d, Uf ) holds for i < d. If i = d, then the exact sequence above

along with Theorem 2.3.19 and the fact that Hd−1((C×)d,C) has id−1,d−1 = d and

ip,q = 0 otherwise implies that grFd−1H
d((C×)d, Uf ) = ψd−1(∆). Similarly, one sees
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that that grFd H
d((C×)d, Uf ) = 1. If ∆ is reflexive, then it is a standard fact that

ψ0(∆) = ψd(∆) = 1 and therefore, the statement about the rank of griF is proved.

Applying Theorem 2.3.18 it follows that if X∆◦ admits a smooth crepant resolution

of singularities, then

hi,d−i(Y∆,w) = hi,d−i((C×)d, Uf ) = ψi(∆) = hi,ist (P∆)

as required, which proves the theorem, since we know that hp,q((C×)d, Uf ) = 0 if

p+ q ̸= d and similarly that hp,qst (X∆) = 0 if p ̸= q.

In the case where d = 3, the existence of a smooth crepant resolution of P∆ is assured,

and so in this case we recover exactly Theorem 2.3.7.

2.4 Extremal local systems

We will show that the concept of a Fano LG model seems to agree with the results

of Coates, Corti, Galkin, Golyshev and Kasprzyk [32], and explain the following

condition on local systems that appears in [32].

Definition 2.4.1. Let L be a local system over a Zariski open subset U of P1 where

the natural injection is denoted j : U ↪→ P1. The local system L is called extremal if

h1(P1, j∗L) = 0.

Now, in [33], the authors compute quantum differential operators associated to

Fano threefolds. Via Gromov-Witten computations, they associate to each Fano

threefold a Laurent polynomial gX : (C×)3 → C. It is expected that there is a LG

model of (Y,w) of X and an injective map

ϕ : (C×)3 ↪→ Y

so that ϕ∗w = gX . To each Laurent polynomial gX in d variables, the authors of [33]

associate a differential operator DX . A general fiber g−1
X (t) is a smooth surface, and

as such we can compute periods associated to it. The classical period associtated to
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gX is given by

πgX (t) =

(
1

2π
√
−1

)d ∫
|x1|=···=|xd|=1

(
1

1− tgX

)
dx1 ∧ · · · ∧ dxd

x1 . . . xd

This period is holomorphic around t = 0. The operator DX is the minimal differential

operator which annihilates πgX (t). This operator has at worst logarithmic singularities

at a set of points Σ ⊆ P1, and thus defines a local system along P1 \ Σ. Let this

local system be denoted LX . If the fibers of gX can generically be compactified to

K3 surfaces X over P1 \ Σ, then πgX (t) should be, locally, a holomorphic period

of this family of K3 surfaces. In other words, the operator DX is the Picard-Fuchs

operator associated to this family of K3 surfaces and LX is the transcendental local

system associated to X . Recall that the local system Rdf∗Q of a family of smooth

d-dimensional Calabi-Yau varieties splits into a pair of local systems which we call

TX and NX where TX is the smallest local subsystem of Rdf∗Q so that TX ⊗OP1\Σ

contains F d.

Proposition 2.4.2. If Ki+1 is Hodge-Tate, then so is H1(P1, j∗R
iσ∗C).

Proof. We use [149, Theorem 15.16 (ii)], which notes that if Σ is the set of critical

values of f, then

ker(Hi+1(Z,C) → H0(P1, Ri+1f∗C)) = ∩s∈Σ ker(Hi+1(Z,C) → Hi+1(f−1(s),C)).

Thus

ker(Hi+1(Z,C) → H0(P1, Ri+1f∗C)) ⊆ Ki+1

From the degeneracy of the Leray spectral sequence for f [149, Corollary 15.15], we

deduce the existence of a surjective map of Hodge structures,

ker(Hi+1(Z,C) → H0(P1, Ri+1f∗C)) → H1(P1, Rif∗C).
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By [149, 15.12], we have that H1(P1, Rif∗C) ∼= H1(P1, j∗R
iσ∗C), hence the group

H1(P1, j∗R
i+1σ∗C) is a subquotient of Ki+1. If Ki+1 is Hodge-Tate, then so is any

sub-quotient of Ki+1, and in particular, H1(P1, j∗R
iσ∗C) is Hodge-Tate.

Corollary 2.4.3. Let (Z, f) be a 2n+ 1-dimensional compactified LG model of Fano

type. Let Σ be the set of critical values of f and let Z = f−1(P1 \ Σ) ⊆ Z. Then TX

is an extremal local system.

Proof. By Proposition 2.4.2, we know that H1(P1, j∗R
2nσ∗C) is Hodge-Tate. It carries

a weight 2n+ 1 pure Hodge structure, hence it is zero. Thus

0 = H1(P1, j∗R
2nσ∗C) = H1(P1, j∗TZ ⊗ C)⊕H1(P1, j∗NZ ⊗ C).

We may interpret the results of Section 2.3 in light of Corollary 2.4.3.

Proposition 2.4.4. Let ∆ be a 3-dimensional reflexive polytope so that no facet of ∆

contains an integral point on its relative interior. If g is a generic Laurent polynomial

with Newton polytope ∆, then the local system L associated to g is extremal.

It is noted in [34] that if dimX = 4, then it is no longer true that LX is extremal.

This is of course to be expected in even dimension, since the condition that (Z, f) is

of Fano type does not imply the vanishing of Hd(Z,C). Instead we have that the only

non-zero Hodge numbers of Z are hp,p(Z). The analogue of Corollary 2.4.3 in this

situation is:

Corollary 2.4.5. Let notation be as in Corollary 2.4.3. If (Z, f) is a 2d-dimensional

LG model of Fano type then there is a natural pure Hodge structure on H1(P1, j∗TZ )

of weight 2d whose only non-zero Hodge number is hd,d.

The existence of the pure Hodge structure described above is a consequence of [149] and

the rest follows by imitating the proof of Corollary 2.4.3. This suggests a conjecture.
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Conjecture 2.4.6. Let LX be a local system attached to a d-dimensional Fano

manifold X by the method of [33]. Then hp,d−p(Hi(P1, j∗LX)) ̸= 0 if and only if

p = d− p.

Checking whether a local system is Hodge-Tate does not seem like an easy problem in

general, though results in some cases have been obtained by del Angel, Müller-Stach,

van Straten and Zuo [40].

Problem 2.4.7. Characterize the classes in Hd(Y,w) which should correspond to

classes in H1(P1, j∗R
d−1σ∗C) in terms of the mirror Fano variety.

Remark 2.4.8 (Normal functions). It is well known that there is a close relationship

between (d, d) classes defined over Q in parabolic cohomology groups and admissible

normal functions [40]. Thus an important role is played by the periods of normal

functions in mirror symmetry for Fano varieties of even dimension – they should

correspond to quantum periods of the Fano variety under mirror symmetry. Walcher

[146, 145, 93] and Morrison-Walcher [103] have pointed out the importance of normal

functions and their periods in open string mirror symmetry for compact Calabi-Yau

varieties. It seems possible that one could identify the family of Morrison and Walcher

[103] as the LG model of some quasi-Fano variety X. If this can be done, it would

be interesting to determine whether the fact that these normal functions can be

interpreted in two different ways is significant in terms of mirror symmetry.



Chapter 3

Hodge numbers of Fano

hypersurfaces and

Landau-Ginzburg models

3.1 Introduction

Here we perform several computations regarding the cohomology and geometry of

Landau-Ginzburg models of hypersurfaces in toric Fano varieties. Recall that if

X is a Fano variety, then mirror symmetry predicts that there is a dual variety Y

equipped with a regular function w : Y → A1. The variety Y should have a number of

properties: Y should be smooth (or at least close to it), a generic fiber V of Y should

be a Calabi-Yau variety which is mirror dual to an anticanonical hypersurface in X,

there should be a compactification of Y to a variety Z so that D∞ = Y \ Z is normal

crossings, and there should be a section of ωZ with simple poles along D∞. The first

part of this chapter will be concerned with the construction of such a pair in the case

where X is a complete intersection in a toric variety. Precisely, if ∆ is a reflexive

polytope and ∆1, . . . ,∆k+1 is a nef partition of ∆. Let X∆ be a mpcp resolution of

the toric variety P∆ canonically associated to ∆. Then we take generic global sections

s1, . . . , sk of the line bundles OX∆
(∆i) on X∆ associated to our nef partition. Let

58
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X be the common vanishing locus of s1, . . . , sk. The anticanonical bundle of X is

isomorphic to OX∆
(∆k+1)|X by the adjunction formula, thus it is effective.

We extend a construction of Givental [62] to build a prospective LG model (Y,w)

for X as described in the previous paragraph. These varieties have the following

properties: Y has at worst terminal Gorenstein singularities, the general fiber of w of

Y is Calabi-Yau and Batyrev-Borisov mirror dual to an anticanonical hypersurface in

X, there is a compactification of Y to a variety Z so that D∞ = Z \ Y has toroidal

normal crossings and there is a section of ωZ with simple poles along D∞. Terminal

singularities are an inextricable artifact of the toric methods used in the construction,

just as they are in the case of Batyrev-Borisov mirror symmetry. Note that our

construction also applies to a wide class of (possibly singular) complete intersections

in toric varieties which encompasses the class of Fano complete intersections in toric

varieties.

Once we have carried out this construction, we use the explicit toric description to

partially address Hodge number mirror symmetry for hypersurfaces in toric varieties.

According to Katzarkov, Kontsevich and Pantev, [79], mirror symmetry should imply

a relationship between the Hodge numbers of X and (Y,w). They define Hodge

numbers hp,q(Y,w) of Y in terms of the so-called f-adapted differential forms in order

to conjecture that

hp,q(X) = hd−p,q(Y,w).

They show that [79, Lemma 2.19, Lemma 2.21]

hi(Y,w−1(t);C) =
i⨁

p=0

hi−p,p(Y,w)

for point t ∈ A1 so that w−1(t) is smooth, and hence h2(Y,w−1(t)) should be equal to

h1,d−1(X). If we let ρt denote the number of irreducible components of w−1(t), then

one can show that if Σ is the set of critical values of w then

Theorem 3.3.1.

h2(Y,w−1(t);C) =
∑
t∈Σ

(ρt − 1).
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In [126], Przyjalkowski and Shramov have shown that if X is a Fano complete

intersection in Pn then

h1,d−1(X) = ρ0 − 1.

So all divisors of (Y,w) corresponding to classes in h1,d−1(X) should, according to

mirror symmetry, occur in a single fiber of w. We will show that this is a more general

phenomenon and give some justification.

Let ∆ be a d-dimensional reflexive polytope and let ∆1,∆2 be a nef partition of ∆

so that invertible sheaf OP∆
(∆1) is ample. Then results of Batyrev and Borisov [17]

can be modified slightly to produce a formula for h1,d−2(X) where X is the pullback

of the vanishing locus of a generic section of OP∆
(∆1) to a mpcp resolution of P∆

(Theorem 3.4.5). Then the results of Section 3.2.2 allow us to construct an LG model

(Y,w) of X with mild singularities. We show that, in this mildly singular LG model,

Theorem 3.4.9.

h1,d−2(X) = ρ0 − 1.

This is a somewhat surprising result. In the case where X is an ample hypersurface

in a smooth toric variety, then one can argue via homological mirror symmetry that

this should be true (see Section 3.5), since for a general variety of this type the Hodge

structure on the primitive cohomology is irreducible. However, such arguments fail

when X is a a crepant resolution of an ample hypersurface in a singular toric variety.

This suggests that that for X a crepant resolution of an ample hypersurface in

the d-dimensional toric variety P∆, the generic deformation should have a single

sub-Hodge structure H in Hd−1(X,Q) so that the (1, d− 2) Hodge number of H is

non-zero. Since there are cases where this is not true for a general hypersurface in

X∆, this implies that the general deformation of X is no longer a hypersurface in X∆.

We use this intuition to obtain a result about the deformations of pairs (X,E) where

X is a smooth weak Fano variety and E is a divisor in X which can be crepantly

contracted to a codimension 2 subvariety of a variety X ′ (Theorem 3.5.4).
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3.1.1 Organization

This chapter is organized as follows. Section 3.2 is dedicated to constructing an

appropriate version of the LG model of a quasi-Fano complete intersection in a toric

variety. We also include background on toric varieties. In Section 3.3, we include a

proof of a folklore theorem that states that h1,1(Y,w) may be determined by counting

irreducible components in fibers of the LG model.

In Section 3.4, we prove that for X the pullback to X∆ of an ample quasi-Fano

hypersurface in P∆, the number of components in the LG model of X over 0 agrees

with h1,d−2(X) + 1. This suggests a fact about the action of monodromy on the

cohomology of X, and subsequently in Section 3.5 we intuit that a result in the

deformation theory of pairs should follow. We finally prove this result in a special

case.

3.2 Constructing LG models

This section is devoted to the construction of an adequate version of the LG model of

a quasi-Fano complete intersection in a toric variety. This section does not restrict

the structure of the complete intersection. In Section 3.4.2 we will reduce our scope

significantly.

3.2.1 Toric background

We will now include several results regarding mirror symmetry for complete intersec-

tions in toric varieties. In particular, let ∆ be a d-dimensional reflexive polytope in

M ⊗R for a lattice M of rank d. Let N = Hom(M,Z) as usual, and let NR = N ⊗R.

We will let Σ∆ be the fan over faces of ∆ and let P∆ denote the toric variety associated

to Σ∆. If ∆ is a lattice polytope, we will denote by ∆[i] its i-dimensional strata, and

∂∆ its boundary in MR. If Σ is a fan in MR, then a piecewise linear function on MR

will be called Σ-linear if it is linear on each cone of Σ.

Definition 3.2.1. A nef partition of a polytope is a partition of its vertex set ∆[0]

into subsets E1, . . . , Ek+1 so that for each 1 ≤ i ≤ k+1 there exists convex, continuous
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Σ∆-linear functions φ1, . . . , φk+1 so that φi(v) = 1 for every v ∈ Ei and φi(w) = 0 for

every w ∈ Ej and j ̸= i.

We will let ∆i = Conv(Ei ∪ 0M ) where 0 denotes the origin in M . To a nef partition,

there is associated a dual nef partition, which is defined as follows. Let

∇i = {x ∈ NR : ⟨x, v⟩ ≥ φi(v)}

then we define ∇ = Conv(∇1, . . . ,∇k). It’s not hard to see that n

∇i =

⎧⎨⎩x ∈ NR :
⟨x, v⟩ ≥ −1 if v ∈ Ei

⟨x, v⟩ ≥ 0 if v /∈ Ei

⎫⎬⎭
We have that ∆◦ = ∇1 + · · ·+∇k+1. It is shown in [23] that ∇ is again a reflexive

polytope, and that ∇1, . . . ,∇k+1 forms a nef partition of ∇.

If Σ is a fan and XΣ is a toric variety associated to the fan Σ, then there is a

homogeneous coordinate ring on XΣ which is graded by A1(XΣ). If we let Σ[1] be

the set of primitive generators of the 1-dimensional strata of Σ then we have an exact

sequence

0 → N
g−→ Z|Σ[1]| → A1(XΣ) → 0

here g is the map which sends σ ∈ N to the vector (⟨σ, ρ1⟩, . . . , ⟨σ, ρ|Σ[1]|⟩) where

{ρ1, . . . , ρ|Σ[1]|} is the set Σ[1]. Then applying the functor Hom (−,C×), we obtain a

dual short exact sequence

0 → G→ (C×)|Σ[1]| →M ⊗ C× → 0

where G = Hom(A1(XΣ),C×). Then there is a partial compactification of (C×)|Σ[1]|

depending on the combinatorial structure of Σ which we call U so that U//G = XΣ.

If we let zρ1 , . . . , zρ|Σ[1]| be variables on U , then the homogeneous coordinate ring of

XΣ is C[{zσ}ρ∈Σ[1]]. The function zρ has vanishing locus equal to Dρ in XΣ.

If we have two complete fans Σ′ and Σ both in MR then if each cone of Σ is

contained in a cone of Σ′, then we get a birational map from XΣ → XΣ′ . If this
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condition holds, then we say that Σ is a refinement of Σ′. If ∆ is a reflexive polytope,

then P∆ has at worst Gorenstein singularities, but its singularities can be worse than

terminal. Batyrev [14, Theorem 2.2.24] showed that there exists a refinement Σ̃∆ of Σ∆

so that the morphism f : X
Σ̃∆

→ P∆ is a crepant morphism (that is, f∗KP∆
= KXΣ

),

and that the singularities of X
Σ̃∆

are at worst terminal Gorenstein, and so that X
Σ̃∆

is

a projective toric variety. We call such a variety an mpcp (maximal projective crepant

partial) resolution of P∆. In the following sections, we will fix an mpcp resolution of

P∆, and we will refer to this mpcp resolution as X∆. The ray generators of Σ̃∆ turn

out to be all integral points in ∆ not including 0M .

The canonical divisor of a Fano Gorenstein toric variety P∆ is just the line bundle

OP∆
(
∑

ρ∈∆[0]Dρ). The canonical divisor of X∆ is given by OX∆
(
∑

ρ∈∂∆Dρ). A nef

partition of ∆ determines a set of line bundles Li := OP∆
(
∑

ρ∈Ei
Dρ). The condition

that there exist φi satisfying the convexity condition ensures that these line bundles

are semi-ample, and hence that their associated linear systems are base-point free. If

we take the pullback of Li to X∆ (by abuse of notation, we will refer to this bundle

as Li as well), then this is the divisor OX∆
(
∑

ρ∈∂∆i\0M Dρ). These line bundles are

also semi-ample.

3.2.2 Givental’s LG model

In [62], Givental gave a construction of the LG model of a toric complete intersection

obtained as the complete intersection in a toric variety associated to the first k

components of an (k + 1)-partite nef partition. Here we will describe a method based

on toric geometry for compactifying Givental’s LG model to a relatively compact log

Calabi-Yau variety with at worst terminal Gorenstein singularities.

We let ∆1, . . . ,∆k+1 be an (k + 1)-partite nef partition of a reflexive polytope

∆, and assume that
∑k

i=1∆i does not contain 0M on its relative interior. Givental

describes a process for producing the LG model of X as follows. Let C[x±1 , . . . , x
±
d ]

be the coordinate ring of (C×)d and take the complete intersection of quasi-affine
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hypersurfaces in (C×)d defined as

Y0 =
n−1⋂
i=1

⎧⎨⎩ ∑
ρ∈∆i∩M

aρxρ = 1

⎫⎬⎭ . (3.1)

Here aρ general complex coefficients and xρ =
∏d

i=1 x
⟨vi,ρ⟩
i for v1, . . . , vd a basis of

N = Hom(M,Z). This complete intersection is equipped with the regular function

w0(x1, . . . , xd) =
∑
ρ∈∆n

aρxρ.

The pair (Y0,w0) will be called Givental’s LG model for X. Givental showed that the

oscillating integrals of (Y0,w0) recover the quantum periods of the mirror dual Fano

variety. However, one can check in examples that if one is interested in behaviour of

the singular fibers (Y0,w0) then Givental’s LG model contains strictly less information

than the partial compactification constructed in the following section. For this

reason, we think that the partial compactification of Section 3.2.3 is the appropriate

compactifcation for homological mirror symmetry.

3.2.3 A convenient partial compactification

Our goal now will be to compactify Y0 to a pencil of hypersurfaces in a toric variety.

First we will note that each fiber itself can be compactified to a hypersurface in X∇,

where X∇ is an mpcp resolution of P∇ as described in Section 3.2.1. The fiber of w0

over λ is compactified to

∑
ρ∈∆i∩M

aρ
∏

σ∈∇∩N
z
⟨σ,ρ⟩−σi

min
ρ = 0 if 1 ≤ i ≤ k (3.2)

λ
∏

σ∈∇k+1∩N\0N

zσ −
∑

ρ∈∆k+1∩M\0M

aρ
∏

σ∈∂∇∩N
z
⟨σ,ρ⟩−σk+1

min
ρ = 0 (3.3)

where {zσ}ρ∈Σ[1] are homogeneous coordinates on X∇ and σimin = min{⟨σ, ρ⟩ : ρ ∈ ∇i}.

The value of σi is either 0 or −1 depending on whether σ is in ∆2 or ∆1.
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Definition 3.2.2. Define P(λ) to be the subvariety of X∇ cut out by Equations 3.2

with the parameter λ.

Note that we could just take our partial compactification to be the natural pencil

of complete intersections in X∇ × A1
λ cut out by the equation above and letting λ

be the coordinate on A1, but it is not clear a priori how bad the singularities of this

complete intersection can be. We will spend the next little while trying to get around

this limitation. First let [−1, 1] denote the 1-dimensional polytope determining P1

which is just the interval [−1, 1] ⊆ R, and let

∆̃ = Conv(∆× 0 ∪ 0M × [−1, 1])

in MR × R. Then ∆̃ is reflexive and corresponds to the Gorenstein toric Fano variety

P∆ × P1.

Proposition 3.2.3. If ∆1, . . . ,∆k+1 is a nef partition of ∆, then there is a (k + 2)-

partite nef partition of ∆̃ given by

∆̃i = ∆i × 0 for 1 ≤ i ≤ k

∆̃k+1 = Conv(∆k+1 × 0, 0M × 1)

∆̃k+2 = Conv(0M ×−1, 0M × 0).

Proof. It is not hard to see that the sets ∆̃i come from a partition of the vertices

of ∆̃. It remains to check that there are piecewise linear functions with the correct

properties. First, let φ̃i be the extension of φi to MR × R so that φ̃i(a, b) = φi(a).

Then let v+ :MR × R → R be the map which is given by v+(b, a) = −a if a ≥ 0 and

v+(a) = 0 otherwise. Similarly, let v− be the map taking v−(b, a) = a if a ≤ 0 and

0 otherwise. The maps v+, v− and φ̃i are convex and Σ
∆̃
-linear. Note that φ̃i takes

value −1 on all nonzero integral points in ∆̃i and 0 on all other integral points of ∆̃,

that φ̃k+1 + v+ takes value −1 on the nonzero integral points of ∆̃k+1 and 0 on all

other integral points of ∆̃, and that v− takes value −1 on all nonzero integral points

of ∆̃k+2 and 0 on all other integral points of ∆̃. Thus this is a nef partition.
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We can compute the dual nef partition, which we denote ∇̃1, . . . , ∇̃k+2.

Proposition 3.2.4.

∇̃i = ∇i × 0 for 1 ≤ i ≤ k

∇̃k+1 = Conv(0N ×−1 ∪∇k+1 × 0)

∇̃k+2 = Conv(∇k+1 × 1 ∪ 0N × 0).

We will denote the polytope Conv(∇̃1 ∪ · · · ∪ ∇̃k+2) by ∇̃. As usual, ∇̃ is a reflexive

polytope and ∇̃1, . . . , ∇̃k+2 forms a nef partition of ∇̃.

Remark 3.2.5. Note that the polytope ∇̃ is equal to

Conv(0N ×−1 ∪∇× 0 ∪∇k+1 × 1).

Therefore, the faces of ∇× 0 are in fact faces of ∇̃.

Theorem 3.2.6. Let X be a complete intersection quasi-Fano variety associated to

a (k + 1)-partite nef partition of a polytope ∆. Then the partial compactification

of (Y0,w0) to the total space of the pencil P(λ) in X∇ × A1 has at worst terminal

Gorenstein singularities, is log Calabi-Yau and admits a compactification Z where w

extends to a map f : Z → P1 so that f−1(∞) is a normal crossings union of varieties

with at worst toroidal singularities.

Proof. Let us take X∇̃ to be some mpcp resolution of P∇. We note that since all

faces of ∇ are faces of ∇̃, the maximal projective refinement of Σ∇̃ corresponding

to X∇̃ induces a maximal projective refinement of Σ∇, which we may assume is the

refinement of Σ∇ determining X∇. Another way to say this is that if Σ̃∇̃ is the

maximally refined fan associated to X∇̃ then the projection of M ×R onto R induces

a map g : X∇̃ → P1 so that the fiber away from 0 and infinity is X∇.

Now let Z be the complete intersection

Z = ∩k+1
i=1 {si = 0}
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for si generic elements of Γ(OX∇̃
(∇̃i)). Then the vanishing locus of a global section

sk+2 of OX∇̃
(∇̃i) is an anticanonical Calabi-Yau hypersurface in Z.

We can compute that in terms of homogeneous coordinates on X∇̃, the variety Z

is cut out by equations

si :=
∑

ρ∈(∂∆i∩M\0M )×0

aρz
ρ = 0 for 1 ≤ i ≤ k (3.4)

If Q is a lattice polytope in N ⊗ R then will denote by V (Q) the set of points in

Q ∩ (N \ 0N ). If σ ∈ N , then we will denote σimin := min{⟨σ, ρ⟩ : ρ ∈ ∆i ∩M}. Then

zρ =
∏

σ∈V (∇̃)

z
⟨σ,ρ⟩−σi

min
σ =

⎛⎝ ∏
σ∈V (∇×0)

z
⟨σ,ρ⟩−σi

min
σ

⎞⎠×

⎛⎝ ∏
σ∈V (∇k+1×1)

z
⟨σ,ρ⟩−σi

min
σ

⎞⎠
since ⟨0N × 1, ρ⟩ = 0 for every ρ ∈ ∆̃i ⊆ ∆× 0. We also have

sk+1 := z0M×0 + a0M×1z
0M×1 +

∑
ρ∈V (∇k×0)

aρz
ρ (3.5)

where

z0M×1 = t

⎛⎝ ∏
σ∈V (∇k+1)×0

zσ

⎞⎠×

⎛⎝ ∏
σ∈V (∇k+1)×1

zσ

⎞⎠
z0M×0 = s

⎛⎝ ∏
σ∈V (∇k+1)×0

zσ

⎞⎠
and zρ is as before if ρ ̸= 0M × 0 or 0M × 1. Furthermore, anticanonical hypersurfaces

in Z are cut out by the equation

sk+2 := s− λt

⎛⎝ ∏
σ∈V (∇k+1)×1

zσ

⎞⎠ = 0

Here s = z0N×−1, t = z0N×1 and λ is some constant. The map g is expressed in terms

of homogeneous coordinates as the map which sends any point to [t : s] ∈ P1.
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Now we make the crucial observation that if Σ̃∇̃ is the fan determining X∇̃, then

Σ̃∇̃ ∩ (NR × R≤0) is the fan of X∇ × A1. Restricting to X∇ × A1 ⊆ X∇̃ is the same

as excising the divisors Dσ for all σ ∈ (∇k+1 ∩ N) × 1. In terms of homogeneous

coordinates, this is equivalent to setting t = 1 and zσ = 1 for all σ ∈ ∇k+1 × 1.

Thus Y := Z ∩ (X∇ × A1) is Z with the divisor sk+1 = 0 excised after setting

s = 0. Note that this is a section of the anticanonical bundle of Z. Since Z is a

complete intersection of semi-ample divisors in X∇, it has at worst terminal Gorenstein

singularities. Furthermore, Z ∩ (∪σ∈((∇k+1∩N)×1)Dσ) is a union of divisors with at

worst toroidal simple normal crossings, thus if u ∈ Γ(OX∇̃
(∇̃k+2)

−1) with poles along

∪σ∈(∇k+1×1)Dσ, then Ω = u|Y is a non-vanishing section of ωY which, when extended

to Z has only simple poles along Z ∩ (∪σ∈(∇k+1×1)Dσ). Thus Y is log Calabi-Yau.

In terms of homogeneous coordinates on X∇ × A1, we see that Y is given by

∑
ρ∈(∆i∩M)×0

aρ
∏

σ∈V (∇)×0

z
⟨σ,ρ⟩−σi

min
ρ = 0 if 1 ≤ i ≤ k

(3.6)

(s+ a0M×1)
∏

σ∈V (∇k+1)×0

zσ −
∑

ρ∈∆k+1∩M\0M

aρ
∏

σ∈V (∇)×0

z
⟨σ,ρ⟩−σk+1

min
ρ = 0 (3.7)

where s is the coordinate on A1 and the sections cut out by sk+2 are just s = λ for

some constant λ. These are anticanonical hypersurfaces in Z. Thus the fibers of the

map g restricted to Y are just fibers of the natural projection onto A1. Thus Y is the

total space of the natural pencil of hypersurfaces in Equation (3.2). To be precise,

this fibers of this pencil are the fibers of P(λ) with a shift by −a0M×1 on A1. This

proves the theorem.

Remark 3.2.7. Terminal Gorenstein singularities occur in codimension 4 or greater.

Therefore, if X is a threefold, then Z and Y are smooth, and thus for complete

intersection quasi-Fano threefolds, we have constructed a smooth LG model.
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3.3 Hodge numbers of LG models

In this section, we will prove a folklore theorem, showing that computing the number

of irreducible components in fibers of a smooth LG model (Y,w) is equivalent to

computing h2(Y,w). Then we will show that if (Y,w) is the slightly singular LG

model constructed in Section 3.2.2 and there exists a smooth LG model of (Y ′,w′)

which is birational to (Y,w), then computing the number of irreducible components

in the singular fibers of (Y,w) is equivalent to computing the number of irreducible

in components of singular fibers of (Y ′,w′). This proves that there should be a close

relationship between the number of irreducible components in P(t) and the Hodge

numbers of the mirror dual quasi-Fano complete intersections. The precise relationship

will be explored in Section 3.4 in the case where X is a hypersurface in a toric variety

and (Y,w) is the LG model constructed in Section 3.2.

3.3.1 Computing h2(Y,w) for a smooth LG model

The follwing theorem is implicit in the work of Przyjalkowski [123] and is mentioned

explicitly by Przyjalkowski and Shramov [127], though to my knowledge, no proof

exists in the literature. We make heavy use of the degeneration of the Leray spectral

sequence for w at the E2 term for a projective morphism. This is proved by Zucker

in [149], and an alternate proof may be found in [120, Theorem 4.24]. Note that in

both of the references given, the degeneracy of the Leray spectral sequence is stated

for a morphism g : X → S and for X and S smooth and projective and for g proper.

However, it is easy to see that at least the proof in [120] goes through verbatim for S

and X quasiprojective and for g proper.

Theorem 3.3.1. Let ρt be the number of irreducible components in w−1(t). If s is a

point in A1 so that w−1(s) is smooth then

h2d−2(Y,w) = h2d−2(Y,w−1(s)) =
∑
t∈A1

(ρt − 1).
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Proof. We begin with the case where each fiber has normal crossings singularities.

Then we may apply the Mayer-Vietoris spectral sequence (see e.g. [101]) to each

singular fiber Xt. If we let X
[d]
t be the disjoint union of all intersections of (d+ 1)-

dimensional components of Xt, then we have that

Ep,q
1 = Hq(X

[p]
t ,C).

Furthermore, this spectral sequence degenerates at the E2 term to Hp+q(Xt,C). We

compute H2d−2(Xt,C) by noting that Ei,2d−2−i
1 = H2d−2−i(X [i],C) = 0 unless i = 0,

since dimX [i] = d − 2 − i and that Hd−2(X [0],C) ∼= Cρt . Now by the Clemens

contraction theorem [28], we have that (R2d−2w∗C)t ∼= Cρt . Let Σ be the set of critical

values of w, let j : A1 \ Σ ↪→ A1 be the natural injection and let σ = w|A1\Σ. Then by

[149, Proposition 15.12], we have a surjective map

Rnw∗C → j∗R
nσ∗C. (3.8)

In our case, j∗R
2d−2σ∗C ∼= CA1 and the kernel is

⨁
t∈ΣCρt−1

t where Ct denotes the

skyscraper sheaf supported at t with fiber C. There is a short exact sequence in

cohomology

0 →
⨁
t∈Σ

Cρt−1 → H0(A1, Rnw∗C) → H0(A1,C) → 0.

Thus h0(A1, R2d−2w∗C) = 1+
∑

t∈Σ(ρt− 1). We now compute H1(A1, R2d−1w∗C) and

H2(A1, R2d−2w∗C). Note that the surjection in Equation (3.8) has kernel a skyscraper

sheaf supported on Σ, therefore,

Hi(A1, Rnw∗C) ∼= Hi(A1, j∗R
nσ∗C)

for i = 1, 2. Since fibers of w are Calabi-Yau, we have H2d−3(w−1(s);C) = 0 for

s ∈ A1 \Σ. Thus j∗R2d−3σ∗C = 0, and thus Hi(A1, Rnw∗C) = 0. If V is a local system
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on A1 \ Σ, and j!V is the extension by 0 sheaf, then we have a short exact sequence

0 → j!V → j∗V → i∗i
∗V → 0

for i : Σ ↪→ A1 and i∗i
∗V a skyscrapter sheaf supported at points t ∈ Σ. The upshot

of this is that

H2(A1, j∗R
2d−4σ∗C) = H2(A1, j!R

2d−4σ∗C).

By Verdier duality, we have that H2(A1, j!R
2d−4σ∗C) = H0

c(A1,DA1j!R
2d−4σ∗C)∨ for

DA1 the Verdier duality functor on A1. It is a well known fact that j∗DA1\Σ = DA1j!.

Furthermore, by [42, Example 3.3.8] we know that, since R2d−4σ∗C is a local system,

DA1\Σ(R
2d−4σ∗C) = (R2d−4σ∗C)∨[2], so

H2(A1, j!R
2d−4σ∗C) ∼= H−2

c (A1,DA1j!R
2d−4σ∗C)∨

∼= H−2
c (A1, j∗DA1\ΣR

2d−4σ∗C)∨

∼= H0
c(A1, j∗(R

2d−4σ∗C)∨)∨

where (R2d−4σ∗C)∨ is the local system dual to R2d−4σ∗C. The set of global sections of

j∗(R
2d−4σ∗C)∨ can be identified with the global sections of (R2d−4σ∗C)∨ and thus are

just monodromy invariant sections. Therefore the only global section with compact

support is the zero section. Thus h2(A1, R2d−4f∗C) = 0.

By the degeneration of the Leray spectral sequence at the E2 term, we conclude

that rankH2d−2(Y,C) = 1+
∑

t∈Σ(ρt−1). We have a short exact sequence determining

H2d−2(Y, V ;C),

0 → H2d−2(Y, V ;C) → H2d−2(Y,C) → C → 0 (3.9)

using the fact that H2d−3(V,C) = H2d−1(Y,C) = 0 and H2d−2(V,C) ∼= C. Therefore,

h2(Y,w) = h2d−2(Y,w) = h2d−2(Y, V ;C) =
∑
t∈Σ

(ρt − 1).
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The first equality is by Theorem 2.2.9. If Xt is not normal crossings, then we can blow

up repeatedly along smooth loci in Xt to obtain a variety whose fibers are normal

crossings (this is possible by [71]). Let π : Ỹ → Y be this blow up. If π is a composition

of nt smooth blow ups in each Xt, then h
2d−2(Ỹ ) = h2d−2(Y ) +

∑
t∈Σ nt, and each

fiber has ρt + nt irreducible components. The theorem then follows by comparing

the short exact sequences like that in Equation (3.9) determining H2d−2(Y, V ;C) and

H2d−2(Ỹ , V ;C).

3.3.2 Relating singular and smooth LG models

Now we will show that counting components in fibers in a terminal singular model of

Y is equivalent to counting components in an appropriate smooth model of Y . We

assume that there is a pair (Y ′,w) where Y ′ is smooth and admits a compactification

to a smooth fiber space f ′ : Z ′ → P1 so that −KZ′ = F , for F the class of a general

fiber if f ′. We assume that there is a birational map ϕ : Z 99K Z ′ which preserves

fibrations and thus sends the fiber over infinity of f to the fiber over infinity of f ′.

Since we have that both Z and Z ′ are Q-factorial terminal, [81] states that ϕ is can

be extended to a map which is an isomorphism in codimension 1. Note that according

to [82, Theorem 1], ϕ is actually a series of flips.

Lemma 3.3.2. Let w′ : Z ′ → P1 for some Z ′ as above, and let ϕ be as in the

discussion in the paragraph above. Then for any t ∈ P1 the number of irreducible

components of w−1(t) is equal to the number of irreducible components of (w′)−1(t).

Proof. By [81] it follows that ϕ is an isomorphism in codimension 1. In other words,

if D is a divisor on Y , then ϕ(D) is again a divisor in Y ′. Since

w(D) = (ϕ · w′)(D) = w′(ϕ(D)) = t

it follows that ϕ(D) is again a component of w−1(t). Repeating this argument for ϕ−1

shows that the number of irreducible components of w−1(t) is equal to the number of

irreducible components of (w′)−1(t).
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Therefore, if one wants to count the number of components of the singular fibers of

any smooth birational model for (Y,w), then it is enough to count the number of

components of P(t). In the next section, we will carry this out for X the pullback

to X∆ of an ample hypersurface in P∆.Thus, combining Theorem 3.2.6 with Lemma

3.3.2 and Theorem 3.3.1 and defining ρt to be the number of irreducible components

in P(t) for a point t ∈ A1, we find

Corollary 3.3.3. If there is a smooth log Calabi-Yau model (Y ′,w′) of (Y,w), then

h2(Y ′,w′) is equal to ∑
t∈Σ

(ρt − 1).

Batyrev and Dais [19] define stringy Hodge numbers for a variety X with mild

singularities, and show that these stringy Hodge numbers agree with the Hodge

numbers of a smooth crepant resolution of X if a crepant resolution exists. It is not

immediately obvious to me how extend the definition of [19] to the f-adapted forms of

[79], but the corollary above suggests a provisional definition,

h1,1st (Y,w) :=
∑
t∈Σ

(ρt − 1).

As noted in Remark 3.2.7, if X is a three-dimensional toric complete intersection then

h1,1st (Y,w) = h1,1(Y,w).

3.4 Hodge numbers and mirror symmetry

Now that we have provided a general construction of an appropriate LG model for

any quasi-Fano complete intersection, and shown that the number of components in

the singular fibers of (Y,w) should reflect information about the Hodge numbers of

X, our goal is to put this into action. We will compute the number of irreducible

components in P(0) in the case where X is the pullback of an ample hypersurface in

a Gorenstein Fano toric variety P∆ and show that it is actually equal to h1,d−2(X).

It is possible that one might be able to recover the results of [126] using the same

technique, but I expect that the combinatorics involved are still nontrivial. We would
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like to point out that the technique of [126] have the advantage that it is not wedded

to the case of complete intersections in toric varieties, and thus could possibly be

applied to cases which are inaccessible using my methods.

3.4.1 Some combinatorial results

Here we collect several combinatorial results which will be useful later. A first, general

remark, which will be used several times in the present section, is that if v is a point

on the relative interior of a polyhedron with vertices ρ1, . . . , ρn, then there are positive

numbers a1, . . . , an so that
∑n

i=1 ai = 1 and
∑n

i=1 aiρi = v. Next, we say that a

polytope Q is a Minkowski summand of P if there is some integer n and some polytope

Q′ so that

Q+Q′ = P.

To a divisor D on P∆ there is a polytope ∇D in N associated to D whose integral

points correspond to sections of OP∆
. For instance if E1, . . . , Ek+1 is a nef partition of

∆ and if Di =
∑

ρ∈Ei
Dρ, then the polytope ∇Di is just ∇i. The divisor D is ample

if and only if the polytopes ∇D and ∆◦ are Minkowski summands of one another.

If ∆1, . . . ,∆k+1 is a nef partition, then ∇i is a Minkowski summand of ∆◦, so the

condition that Di be ample is just the fact that ∆◦ is a Minkowkski summand of ∇i.

Let Γ be a face of ∆, and take v a point on the relative interior of Γ. For a polytope

Q in NR, define

vQ,min := min{⟨v, x⟩ : x ∈ Q}, Γ∨
Q := {x ∈ Q : ⟨v, x⟩ = vQ,min}.

If v is a point in ∆, then we define Γ(v) to be the smallest face of ∆ containing v.

The following result seems to be well known, though I do not know a precise reference

for it (though [17] mention it).

Proposition 3.4.1. Assume that ∆◦ is a Minkowski summand of ∇1. Then there

is a combinatorial duality between ∇1 and ∆. In other words, there is an inclusion
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reversing bijection between dimension i faces of ∇1 and dimension d− i− 1 faces of

∆ given by the assigning Γ∨
∇1

to a face Γ of ∆.

If ρ is an integral point in ∆, then ρ∇1,min = 0 if ρ ∈ ∆2 and −1 if ρ is in ∆1. If Γ is

a face of ∇1, then we denote by Γ∨
∆ the face of ∆ so that Γ∨

∇1
= Γ.

Definition 3.4.2. Define ∇≥1
1 to be the subset of integral points σ in ∇1 satisfying

⟨σ, ρ⟩ ≥ 1 for each ρ ∈ E2.

Lemma 3.4.3. Assume that σ is an integral point in ∇≥1
1 . Then Γ(σ)∨∆1

= Γ(σ)∨∆ =

Γ(σ)∨∇◦.

Proof. By [17, Proposition 6.3], the face Γ(σ) is a face of ∇. Its dual face in ∇◦ is

given by the set of points in ∇◦ so that ⟨σ, ρ⟩ = −1. The face Γ(σ)∨∇◦ , in ∇◦ is the

Minkowski sum of Γ(σ)∨∆1
and Γ(σ)∨∆2

where

Γ(σ)∨∆1
= {ρ ∈ ∆1 : ⟨σ, ρ⟩ = −1}

Γ(σ)∨∆2
= {ρ ∈ ∆2 : ⟨σ, ρ⟩ = 0}.

Since σ is in ∇≥1
1 , it follows that Γ(σ)∨∆2

contains only one integral point, 0M , and

therefore is equal to 0M . Thus Γ(σ)∨∇◦ = Γ(σ)∨∆1
. Furthermore, if we let Γ′(◦) be

the smallest face of ∆◦ containing σ. Then Γ′(σ)∨∆ is precisely the set of points in ∆

satisfying ⟨σ, ρ⟩ = −1, which one observes is simply Γ(σ)∨∆1
.

3.4.2 Hodge numbers of hypersurfaces

Now we assume that we have a hypersurface X in X∆ associated to a nef partition

∆1,∆2. We let X be the hypersurface given by the vanishing locus of a section

s ∈ H0(X∆,L1). Then by the adjunction formula, we have that L2|X = ω−1
X . We

may compute several Hodge numbers of X easily. The following results are minor

modifications of results of Batyrev and Borisov in [17]. We state them without proof.

If Q is a polytope in MR, then we let ℓ∗(Q) be the number of integral points on the

relative interior of Q.
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Theorem 3.4.4 ([17, Corollary 3.5]). Assume that we have a nef partition ∆1,∆2

so that both ∇1 and ∇2 have positive dimension and assume that ℓ∗(∇i) = 0 and

d− 1 ≥ 2. Then

hi(OX) = 0 for i > 0.

and h0(OX) = 1.

Therefore, we have identified a class of varieties which cohomology groups which look

like the cohomology groups of a Fano variety.

Theorem 3.4.5 ([17, Proposition 8.6]). Take a bipartite nef partition ∆1,∆2 satisfying

the conditions of Theorem 3.4.4 so that the line bundle L1 is ample on P∆, and let X

be the pullback to X∆ along the crepant parital resolution map X∆ → P∆ of a generic

hypersurface defined by a section of L1, then

h1,d−2(X) = ℓ∗(2∇1)−
∑

Γ∈∆[0]

ℓ∗(Γ)ℓ∗(Γ∨
∇1

) +
∑

Γ∈∆[1]

ℓ∗(Γ)ℓ∗(Γ∨
∇1

)

We will proceed to simplify this computation. We fix some 0 ≤ i ≤ d for the moment.

By the combinatorial duality between ∆ and ∇i (Proposition 3.4.1), it follows that

∑
Γ∈∆[i]

ℓ∗(Γ)ℓ∗(Γ∨
∇1

) =
∑

Γ∈∇i[d−i−1]

ℓ∗(Γ)ℓ∗(Γ∨
∆)

If Γ∨
∆ contains an integral point on its relative interior, then it follows from [17,

Proposition 6.3] that Γ∨
∆ is either in ∆1 or ∆2. If σ is on the relative interior of some

face Γ of ∇1 so that the dual face is in ∆1, then σ is not in the dual of any face in

∆2. Therefore, there is no ρ ∈ E2 so that ⟨σ, ρ⟩ = ρ∇1,min = 0. Therefore, ⟨σ, ρ⟩ ≥ 1

for every ρ ∈ E2. As in Definition 3.4.2, let ∇≥1
1 be the set of points in ∇1 satisfying

⟨σ, ρ⟩ ≥ 1 for ρ ∈ E2, then by definition, such a σ is in ∇≥1
1 .

If σ ∈ ∇1 is on the interior of a face so that Γ(σ)∨∆ is in ∆2 and if ρ is an integral

point on the relative interior of Γ(σ)∨∆, then ρ∇1,min = 0, and thus Γ(σ) contains 0N

and is contained in a plane passing through the origin of NR. By reflexivity of ∆◦ any
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interior point of such a face is 0N itself. Therefore

∑
Γ∈∇i[d−i−1]

ℓ∗(Γ)ℓ∗(Γ∨
∆) =

∑
σ∈∇≥1

1 ∩N
dimΓ(σ)=d−i−1

ℓ∗(Γ(σ)∨∆) + δdimΓ(0N ),d−i−1ℓ
∗(Γ(0N )∨∆).

Here δi,j is just the Kronecker delta function. If σ ∈ ∇≥1
1 , then by Lemma 3.4.3 we

have that Γ(σ)∨∆ = Γ(σ)∨∆1
. If we take any ρ ∈ E2 then Γ(ρ)∨ contains 0N , thus by the

combinatorial duality of Proposition 3.4.1, we have that Γ(ρ) is contained in Γ(0N )∨∆.

Therefore, Γ(0N )∨∆ contains all points in E2 and we conclude that Conv(E2) = Γ(0N )∨∆.

In the future, we will call this polytope ∆′
2. Thus we have that

∑
Γ∈∆[i]

ℓ∗(Γ)ℓ∗(Γ∨
∇1

) =
∑

σ∈∇≥1
1 ∩N

dimΓ(σ)=d−i−1

ℓ∗(Γ(σ)∨∆1
) + δdimΓ(0N ),d−i−1ℓ

∗(∆′
2).

In particular, we see that

∑
Γ∈∆[0]

ℓ∗(Γ)ℓ∗(Γ∨
∇1

) = #{σ ∈ ∇≥1
1 ∩N, dimΓ(σ) = d− 1}+ δdimΓ(0N ),d−1

We further refine the statement of Theorem 3.4.5 using following lemma.

Lemma 3.4.6. An integral point σ is on the interior of 2∇1 if and only if σ ∈ ∇≥1
1 .

Proof. The polytope 2∇1 is defined to be the set of points σ so that

⟨σ,∆′
1⟩ ≥ −2

⟨σ,∆′
2⟩ ≥ 0.

An integral point σ is in the interior of 2∇1 if and only if these inequalities are strict,

in other words,

⟨σ,∆′
1⟩ ≥ −1

⟨σ,∆′
2⟩ ≥ 1.
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Hence σ is on the interior of 2∇1 if and only if σ is in ∇≥1
1 ∩N .

From Lemma 3.4.6 we obtain an awkward but ultimately useful expression for

h1,d−2(X).

h1,d−2(X) = #(∇≥1
1 ∩N)− (#{σ ∈ ∇≥1

1 ∩N, dimΓ(σ) = d− 1}+ δdimΓ(0N ),d−1)

+
∑

σ∈∇≥1
1 ∩N

dimΓ(σ)=d−2

ℓ∗(Γ(σ)∨∆1
) + δdimΓ(0N ),d−2ℓ

∗(Γ(0N )∨∆1
).

This can be reorganized into what is essentially a weighted count of points in ∇≥1
1 by

assigning weight wσ = 1 + ℓ∗(Γ(σ)∨∆1
) if dimΓ(σ) = d− 2, wσ = 0 if dimΓ(σ) = d− 1

and wσ = 1 otherwise. We will let w0N = δdimΓ(0N ),d−2ℓ
∗(∆′

2) − δdimΓ(0N ),d−1. We

obtain the count

h1,d−2(X) =
∑

σ∈∇≥1
1

wσ + w0N . (3.10)

This expression has the added bonus of being obviously non-negative if dimΓ(0N ) ̸=

d− 1. One can argue pretty easily that in the case where dimΓ(0N ) = d− 1 that wσ

is nonzero for some σ ∈ ∇≥1
1 .

3.4.3 Counting components of P(0)

Now we will count the irreducible components in P(0) and show that there are

precisely h1,d−1(X) + 1 of them. Let s1 be a general global section of L1, and let

Q = {s1 = 0}. The variety P(λ) is given by the intersection of Q with the vanishing

locus of

s2 =
∑

ρ∈∆′
2∩N

aρ
∏
σ∈∇

z
⟨ρ,σ⟩−σ2

min
σ − λ

∏
ρ∈V (∇2)

zρ.

Let bσ be the largest integer so that ⟨σ, ρ⟩ ≥ bσ for every ρ ∈ E2 and let ∆′
2 = Conv(E2).

Then we have that P(0) is given by the intersection of Q with the subvariety of X∇
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cut out by the equation

∑
ρ∈∆′

2∩M

aρ
∏

σ∈∇∩(N\0N )

z
⟨ρ,σ⟩−σ2

min
σ

=

⎛⎝ ∏
σ∈∇∩(N\0N )

zbσσ

⎞⎠⎛⎝ ∑
ρ∈∆′

2∩M

aρ
∏

σ∈∇∩(N\0N )

z
⟨ρ,σ⟩−bσ−σ2

min
σ

⎞⎠
If σ is in ∇2 then there is some integral point ρ ∈ ∆′

2 so that ⟨ρ, σ⟩ = −1, so

σmin + bσ = 0. Thus for a generic choice of aρ and λ = 0, the vanishing locus s2 = 0

decomposes as a union of hypersurfaces

{zσ = 0 : σ ∈ ∇≥1
1 } ∪

⎧⎨⎩ ∑
ρ∈∆′

2∩M

aρ
∏

σ∈∇∩(N\0N )

z
⟨ρ,σ⟩−bσ−σ2

min
σ = 0

⎫⎬⎭
Note that there are situations where the second term is empty – this happens precisely

when ∆′
2 is a single point. Otherwise, the second component, which we will call Dnt

(the non-toric component), is the compactification of the vanishing locus a Laurent

polynomial f with Newton polytope ∆′
2 to a hypersurface in X∇. It is irreducible if

dim∆′
2 ̸= 1 and if dim∆′

2 = 1, it has ℓ∗(∆′
2)+1 irreducible components. We formalize

this in the following lemma.

Lemma 3.4.7. Assume that d ≥ 4.

1. If dim∆′
2 = 0 then Dnt ∩Q is empty.

2. If dim∆′
2 = 1, then Dnt ∩Q has ℓ∗(∆′

2) + 1 irreducible components.

3. If dim∆′
2 ≥ 2 then Dnt ∩Q is irreducible.

Proof. We may assume that dim∆′
2 ≥ 1, or else Dnt itself is empty as noted in the

paragraph above the statement of the lemma. The dimension of Conv(∆′
2, 0M ) = ∆2

is equal to the dimension of the Minkowski sum ∆′
2 +Conv(p, 0M ) for p ∈ ∆′

2. Thus

4 ≤ d = dim(∆1 +∆′
2 +Conv(p, 0M )) ≤ dim(∆1 +∆′

2) + 1,
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since for any pair of polytopes P1 and P2, we have dim(P1 + P2) ≤ dimP1 + dimP2.

Thus dim(∆1+∆′
2) ≥ d−1. By assumption, d ≥ 4, so we have that dim(∆1+∆′

2) ≥ 3.

Now we apply the Koszul complex associated to Q ∩Dnt,

0 → OX∇(−Dnt −Q) → OX∇(−Dnt)⊕ OX∇(−Q) → OX∇ → 0

and its corresponding spectral sequence ′′Ep,q
r to compute H0(ODnt∩Q). We know that

′′Ep,q
∞ =⇒ Hi(ODnt∩Q[2]), hence we have

′′E0,2
∞ ⊕′′ E1,1

∞ ⊕′′ E2,0
∞

∼= H0(ODnt∩Q)

The term ′′E0,2
1 = H2(OX∇(−Dnt−Q)) vanishes by [17, Theorem 2.5], which shows that

Hi(OX∇(−Dnt−Q)) vanishes for i ≤ 3 (here we use the fact that dim(∆1+∆′
2) ≥ 3. We

make note of the fact that ∆1 has no points on its relative interior, so Hi(OX∇(−Q)) = 0

for all i > 0 and thus ′′E1,i
1 = Hi(OX∇(−Dnt)). It is well known that Hi(OX∇) = 0 for

i > 0. Thus the relevant terms on the E1 page are

0 −−−−→ H2(OX∇(−Dnt)) −−−−→ 0

0 −−−−→ H1(OX∇(−Dnt)) −−−−→ 0

0 −−−−→ H0(OX∇(−Dnt)) −−−−→ H0(ODv) = C

Thus ′′E0,2
∞ = 0 and ′′E1,1

∞ = H1(OX∇(−Dnt)). If dim∆′
2 = 1 then h0(OX∇(−Dnt)) = 0

and h1(OX∇(−Dnt)) = ℓ∗(∆′
2), thus h

0(ODnt∩Q) = 1 + ℓ∗(∆′
2). If dim∆′

2 = 0, then

h1(OX∇(−Dnt)) = 0 and h0(OX∇(−Dnt)) = 0 and since h−1(ODnt∩Q) = 0, it follows

that ′′E2,0
2 =′′ E1,1

2 = 0. Finally, if dim∆′
2 ≥ 2 then hi(OX∇(−Dnt)) = 0 for i < 2 and

thus h0(ODnt∩Q) = 1. This proves the lemma.

Note that this simply says that the number of irreducible components of Dnt ∩Q is

equal to w0N + 1. Now we must compute the number of irreducible components of

{zσ = 0} ∩Q for σ ∈ ∇≥1
1 in order to determine the total number of components of

P(0). Recall that by Lemma 3.4.3 if v ∈ ∇≥1
1 ∩N and Γ(v) is the minimal face of ∇1

containing v then Γ(v)∨∇◦ is equal to Γ(v)∨∆1
and thus has dimension d− 1− dimΓ(v).
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By [17, Proposition 6.6] the restriction of Q to Tv ∼= (C×)d−1, the torus in X∇

corresponding to v, then Q∩Tv is the vanishing of a Laurent polynomial with Newton

polytope Γ(v)∨∆1
.

Lemma 3.4.8. 1. If dimΓ(v) = d− 1 then Dv ∩Q is empty

2. If dimΓ(v) = d− 2 then Dv ∩Q has ℓ∗(Γ(v)∨∆1
) + 1 components.

3. If dimΓ(v) > 1 then Dv ∩Q is irreducible.

Proof. There is a short exact sequence of sheaves whose associated long exact sequence

in cohomology determines the cohomology of ODv∩Q,

0 → ODv(−Q ∩Dv) → ODv → OQ∩Dv → 0.

According to [17, Theorem 2.5], H1(Dv,ODv(−Q ∩ Dv)) = 0 if dimΓ(v) ̸= 1 and

ℓ∗(Γ(v)) otherwise. If dimΓ(v) = 0, then H0(Dv,ODv(−Q ∩Dv)) = C. This, along

with the fact that H0(Dv,ODv) = C and Hi(Dv,ODv) = 0 for i ̸= 0 is enough to prove

the lemma. Alternately, one could observe that if dimΓ(v) = 1, then the polynomial

determining Q∩ Tv is a polynomial in one variable of degree ℓ∗(Γ(v)) + 1 with general

coefficients (once proper coordinates are chosen), hence it factors into ℓ∗(Γ(v)) + 1

components. Similar elementary arguments can be made when Γ(v) has dimension 0

or 2.

By Lemma 3.4.8 and referring to Section 3.4.1 for notation, we then have that

{zσ = 0 : σ ∈ ∇≥1
1 } ∩Q

has ∑
σ∈∇≥1

1

wσ

irreducible components and that Dnt has w0N + 1 irreducible components. Therefore,

by comparing this to Equation (3.10), we obtain the following result.
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Theorem 3.4.9. Let X be a partial crepant resolution of singularities of an ample

hypersurface in a toric variety P∆ associated to a bipartite nef partition of ∆ and let

dim∆ ≥ 4. Let (Y,w) be the LG model of X as constructed in Section 3.2.2. Then

for any terminal log Calabi-Yau model of (Y,w),

h1,d−2(X) = ρ0 + 1 ≤ h1,1st (Y,w).

Remark 3.4.10. Theorem 3.4.9 is somewhat remarkable in the sense that it seems

to imply that there is only one bad fiber of (Y,w) with more than one irreducible

component, or else Hodge number mirror symmetry fails in the most basic case.

3.4.4 Del Pezzo examples illustrated

Here we give a visual description of how to compute the number of central fibers in

the LG model of several del Pezzo surfaces. We denote for n ≤ 8 by dPn the del Pezzo

surface obtained by blowing up P2 in n generic points.

Example 3.4.11 (dP4). Here we look at an example of the bidegree (2, 1) hypersurface

in P2 × P1. The polytope defining this toric variety is

∆ = Conv({e1, e2, e3,−e3,−e1 − e2}).

If we choose the nef partition E1 = {e1, e2, e3} and E2 = {−e3,−e1 − e2}, then the

dual nef partition is given by

∇1 = Conv({−e∗1 − e∗2 − e∗3,−e∗1 − e∗2,−e∗1 − e∗3,−e∗2 − e∗3,−e∗1,−e∗2})

∇2 = Conv({0N , e∗3, e∗1, e∗2, e∗1 + e∗3, e
∗
2 + e∗3}).

These polytopes are given by the red and green dots respectively in Figure 3.1.

The set ∂∇∩N is made up of 16 points. The points in ∇1 are given by

0N ,−e∗1,−e∗2, e∗1 − e∗2,−e∗1 − e∗2,−e∗1 + e∗2
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Fig. 3.1 The nef partition ∇1,∇2 in Example 3.4.11

Fig. 3.2 Toric divisors contributing to the central fiber of the LG model of the del
Pezzo surface of degree 4

and their translates by −e∗3. We see that a point in this set satisfies ⟨σ,−e3⟩ ≥ 1 and

⟨σ,−e1 − e2⟩ ≥ 1 if and only if σ = −e∗1 − e∗2 − e∗3,−e∗1 − e∗3, or −e∗2 − e∗3. These points

are marked in black in Figure 3.2. Since none of the faces of ∆ contain interior points,

and since none of the points in ∇≥1
1 in Figure 3.2 are on the relative interior of a facet

of ∇1, it follows that wσ = 1 for all σ ∈ ∇≥1
1 . Similarly, since 0N does not lie on the

interior of a facet of ∇1 and since ∆ has no faces with interior points, it follows that

w0N = 1. Therefore ρ0 = 4 for the LG model of dP4.

We will now look at the example of the cubic in P3, which is nothing but dP6. In

many ways, this has been a guiding example in the writing of this chapter, since it

exhibits several somewhat unexpected phenomena.

Example 3.4.12 (dP6). We begin with the polytope ∆ which determines P3,

∆ = Conv({e1, e2, e3,−e1 − e2 − e3})
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Fig. 3.3 The nef partition ∇1,∇2 from Example 3.4.12

Fig. 3.4 Points of ∇1 which are in ∇≥1
1 are marked with black dots.

and the nef partition E1 = {e1, e2, e3} and E2 = {−e1 − e2 − e3}. The dual nef

partition is given by

∇1 = Conv({−e∗1 − e∗2 − e∗3, 2e
∗
1 − e∗2 − e∗3,−e∗1 + 2e∗2 − e∗3,−e∗1 − e∗2 + 2e∗3})

∇2 = Conv({0N , e∗1, e∗2, e∗3}).

The points in the polytopes ∇1 and ∇2 are shown by the red and green vertices

in Figure 3.3. Now we compute the number of components of w−1(0) of the LG

model of the cubic surface. The condition that ⟨σ,−e1 − e2 − e3⟩ ≥ 1 is simply that

σ = ae∗1 + be∗2 + ce∗3 for integers a, b, c so that a+ b+ c ≤ −1. The points in ∇1 which

satisfy this criteria are marked by black dots in Figure 3.4. Now we compute the value

wσ for all of the black dots in Figure 3.4. There are three points, −e∗1,−e∗2,−e∗3 which

are contained in facets of ∇1, thus for these points, wσ = 0. In every other case, since

∆ has no faces with integral points on their relative interiors, the value of wσ is 1.
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Thus ∑
σ∈∇≥1

1

wσ = 7.

Since 0N is on a facet of ∇1, we see that w0N is 0 and thus ρ0 = 7.

Remark 3.4.13. Note that Theorem 3.4.9 is not claimed to hold when dim∆ = 3,

as in the examples above. However, this is due to the fact that Lemma 3.4.7 may fail

to hold in lower dimensions. One can check by hand that Lemma 3.4.7 holds in the

examples above, and hence the computations that we have done are indeed valid.

Remark 3.4.14. Note that in both of these examples, we have that ρ0−1 = h1,1prim(X),

where H1,1
prim(X) is the orthogonal complement of the image of H1,1(X∆) in H1,1(X).

This was shown by Przyjalkowski and Shramov in [126] in the case where X is a

complete intersection in X∆ = Pn of dimension 2.

Remark 3.4.15. The degeneration observed in the fiber over 0 of the LG model of the

cubic surface has been observed in the literature on so-called ‘tops’ ([39, 24, 64, 27]). It

would be interesting to know whether all of the degenerations of Calabi-Yau varieties

obtained by the study of tops arise as the fibers over 0 of the LG model of some

variety. This will be explored, to a certain extent, in future work.

3.5 Higher Noether-Lefschetz loci and homological mir-

ror symmetry

As we have stated in the introduction, the general conjecture that we have set out

to address is that if t is a point in A1 and w : Y → A1, and ρt is the number of

irreducible components of w−1(t), then

h1,n−1 =
∑
t∈A1

(ρt − 1).
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Somewhat surprisingly, we have shown that for any pullback of an ample hypersurface

in a Gorenstein Fano toric variety, that

h1,n−1(X) = ρ0 − 1

which is a considerably stronger (and in a sense, weaker) statement. Under the

assumption that mirror symmetry holds, this is equivalent to the fact that ρt = 1

for t ̸= 0. In the case where P∆ is smooth, then we can justify this result using

homological mirror.

3.5.1 Monodromy action on the cohomology of ample hypersurfaces

First we recall the following classical theorem:

Theorem 3.5.1 ([119, §3]). Let X ⊆ Z be a very ample hypersurface in a variety

Z of dimension d and let PHd−1(X,C) be the orthogonal complement of the image

of the restriction map Hd−1(Z,C) → Hd−1(X,C). Then the action of monodromy on

PHd−1(X,C) obtained by deforming X in Z is irreducible.

LetX be an ample hypersurface in a smooth toric varietyXΣ of dimension d. Therefore,

by e.g. [112, Corollary 2.15] X is actually very ample on X. Furthermore, since

hp,q(XΣ) = 0 if p ̸= q, it follows that monodromy acts irreducibly on a subspace of

Hd−1(X,C) containing H1,d−2(X) if d ≥ 4.

Now we apply the features of homological mirror symmetry to understand the

possible ramifications of this theorem. Assume that X is quasi-Fano, and it with

the natural symplectic form ω associated to some ample class on X restricted from

XΣ, we may interpret the action of monodromy on X as a symplectomorphism of

(X,ω). This in turn gives an action by a group of autoequivalences on the Fukaya

category F(X,ω) [59, 135]. It is expected that the Hochschild homology of F(X,ω)

is isomorphic to the quantum cohomology of (X,ω) and thus may be identified with

the cohomology of X as a group. The action of c1(TX)⋆ on QH•(X) where ⋆ denotes

quantum product, decomposes QH•(X) into generalized eigenspaces QH•(X)λ which
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are preserved by the action of monodromy. Thus there is at most one eigenspace of

QH•(X) which intersects H1,d−2(X) nontrivially.

Under homological mirror symmetry, the (derived) Fukaya category should be

associated to the derived category of matrix factorizations D(MF(Y,w)) [116]. This

category is equivalent to ∪λ∈ΣD
b
sing(Yλ) for Σ the critical locus of w, and Db

sing(Yλ) the

quotient of the derived category of coherent sheaves on w−1(λ) = Yλ by the derived

category of perfect complexes on Yλ. According to Katzarkov, Kontsevich and Pantev

[79, pp. 10], the eigenspaces QH•(X)λ correspond to HH•(D
b
sing(Yλ)). We know, by

work of Efimov [53, Theorem 5.3] that H•(Db
sing(Yλ)) is equal to H•(Y, (Ω•

Y , dw∧)).

Furthermore, we have that

HH•(MF(Y,w)) =
⨁
λ∈Σ

HH•(D
b
sing(Yλ))

by work of Kuznetsov [92] and that

H•(Y, (Ω•
Y , dw∧)) ∼=

⨁
λ∈Σ

H•(Yλ, ϕw−λRj∗C)

by Sabbah [131], Ogus and Vologodsky [115] and Barranikov and Kontsevich. Thus

one expects that, for each λ ∈ Σ,

HH•(D
b
sing(Yλ)) = H•(Yλ, ϕw−λRj∗C).

We can identify Hi−1(Yλ, ϕw−λRj∗C) with a sub-space of Hi(Y, V ;C) by a simple

argument involving the Mayer-Vietoris sequence and the long exact sequences satisfied

by both relative cohomology and the hypercohomology of sheaves of vanishing cycles.

The Hodge filtration on QH•(X) should be identified with the filtration by degree in

cohomology of H•(Y, V ;C). Therefore, we expect that there is at most one λ ∈ Σ so

that H1(Yλ, ϕw−λRj∗C) ̸= 0. An argument along the lines of the proof of Theorem

3.3.1 shows that rankH1(Yλ, ϕw−λRj∗C) = ρλ − 1 and therefore there should exist

only one point λ ∈ A1 so that w−1(t) has more than one irreducible component.
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3.5.2 Crepant resolutions

Thus one should expect that Theorem 3.4.9 holds in the case where P∆ is smooth

or perhaps has at worst terminal singularities. It is somewhat interesting then that

Theorem 3.4.9 holds when X is the pullback of an ample divisor onto a crepant

resolution of P∆. In the case where P∆ is allowed to have worse than terminal

singularities, the action on Hd−1
prim(X,Q) obtained by letting the equation for X in X∆

vary need not be irreducible. In fact, the term

∑
Γ∈∇1[1]

ℓ∗(Γ)ℓ∗(Γ∨
∆)

computes the image of the Gysin homomorphism:

g :
⨁

v∈∂∆∩M
H0,d−3(X ∩Dv) → H1,d−2(X).

Since the Gysin homomorphism is a map of Hodge structures, if the term above is

non-zero, then we can produce examples where the monodromy representation on

Hd−1(X,C) obtained by letting X vary in X∆ may have the property that there is

more than one irreducible sub-representation intersecting H1,d−2(X) nontrivially. We

conjecture that the deformation space of X should contain the space of deformations

of X which are hypersurfaces in X∆ as a subspace of codimension greater than one.

We show that this is true in the following example.

Example 3.5.2. Let us take the threefold X in P(1, 1, 2, 2, 2) of degree 6. This can

be written as a toric variety with polytope whose vertices ρ1, . . . , ρ5 are given by the

columns of the matrix ⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 −2

0 1 0 0 −2

0 0 1 0 −2

0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠
If we take the nef partition E1 = {ρ2, ρ3, ρ4, ρ5}, E2 = {ρ1}, then sections of L1 are

homogeneous polynomials of degree 6. We can check that the edge between ρ4 and ρ5
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contains the integral point (ρ4 + ρ5)/2 on its relative interior, and that the dimension

2 face Γ∨
∇1

of ∇1 which is dual to the face Γ with vertices ρ4, ρ5 is

Γ∨
∇1

= Conv({(0, 2,−1,−1), (0,−1, 2,−1), (3,−1,−1,−1)})

which contains (1, 0, 0,−1) on its relative interior. Therefore, ℓ∗(Γ)ℓ∗(Γ∨
∇1

) = 1. One

can compute that if X is a resolution of singularities of the vanishing locus of a section

of L1 then X has h1,2(X) = 18 and h1,1(X) = 2. If we take E to be the intersection

of the divisor of X∆ associated to the point (−1,−1,−1, 0) then a resolution of

singularities Ẽ of E has h1,0(Ẽ) = 1, and the Gysin map H1,0(Ẽ) → H1,2(X) is

non-zero. Thus H3(X,Z) contains as a sub-Hodge structure the Hodge structure of

an elliptic curve, and hence the monodromy action on H3(X,Z) obtained by letting

the equation cutting out X in X∆ vary cannot be absolutely irreducible.

However, just as in the case of Calabi-Yau hypersurfaces [97, 35] in P(1, 1, 2, 2, 2),

one sees that not all complex deformations of X are obtained from deforming the

equation for X in X∆. There are so-called non-polynomial deformations of X obtained

by embedding X∆ into a higher dimensional toric variety. In this situation, following

Example 3.1 of [97], we may embed X∆ as a complete intersection in P5 × P1 cut out

by equations

y2z0 = y0z1 y1z1 = y0z0

where z0, z1 are variables on P1 and P5 has variables y0, . . . , y5. Then X is cut out

by a generic bidegree (3, 0) polynomial, thus X deforms to a complete intersection of

bidegree (3, 0), (1, 1) and (1, 1) divisors in P5 × P1.

The subvariety T = {y0 = y1 = y2 = 0} is the contained in X∆ and is the toric

boundary divisor associated to (−1,−1,−1, 0) in X∆. We see that X ∩ T is a (3, 0)

divisor in P2 × P1, hence this subvariety is E × P1 for E an elliptic curve and has

h1,0(T ∩X) = 1. We take the projection of X into P5 and note that a subvariety W of

X is contracted if and only if W = E × P1. The contracted locus of projection of X∆

onto P5 is precisely the contraction of T = P2 × P1 onto P2. A general deformation of

X is the intersection of a general (3, 0) divisor and a variety Y that can be written in
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the form

y2z0 = y0z1 y1z1 = z0ℓ(y0, . . . , y5)

for some linear form ℓ(y0, . . . , y5). Thus the contracted locus of Y under the projection

onto P5 is simply the projection of T ′ = {y0 = y1 = y2 = ℓ(y0, . . . , y5) = 0} ∼= P1 × P1

onto P1. Hence in a general deformation of X in P5 × P1, the projection onto P5

contracts just three rational curves to ordinary double points. This is not a complete

intersection of ample divisors, but we still expect that the generic complete intersection

of this type has PH3(X,Z) with an irreducible Hodge structure.

Based on this and Theorem 3.4.9, we conjecture that

Conjecture 3.5.3. If X is a general deformation of a crepant resolution of an ample

hypersurface in a d-dimensional toric Gorenstein Fano variety, then there at most one

sub Hodge structure H of Hd−1
prim(X,Z) so that H ⊗ C ∩H1,d−2(X) is non-empty.

3.5.3 Noether-Lefschetz loci and deformations of pairs

We will now prove a theorem which supports Conjecture 3.5.3. Let us begin with a

weak Fano variety X of dimension d so that there exists a smooth section W of the

anticanonical bundle of X. Then we know by a theorem of Ran [128] (extended by

Sano [132] to the case where W need not be smooth) that the deformations of X are

unobstructed and hence there exists a versal deformation of X over a small disc U of di-

mension H1(X,ΘX). Let V be a Z-module isomorphic to Hd
prim(X,Z)/Hd

prim(X,Z)tors

equipped with Q, the cup product pairing on V and let hp,q = hp,qprim(X). According to

Griffiths [65], we can write down a period space Per(V,Q, hp,q) which parametrizes

polarized Hodge structures of weight d on V for which Q is a polarization and whose

Hodge numbers are equal to hp,q. Then for the versal deformation X → U there is a

holomorphic period map ϕ : U → Per(V,Q, hp,q).

If there is a sub module H of Hd
prim(X,Z) then there is a sublocus NL(H) where

each Hodge structure corresponding to a point of NL(H) restricts to induce a Hodge

structure on H. This is called a (higher) Noether-Lefschetz locus of Per(V,Q, hp,q).

If we have an embedding E ↪→ X inducing a map Hd−2(E,Z) → Hd(X,Z), then the
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image of this map forms a sub-Hodge structure HE of Hd(X,Z). If we have a diagram

E

↘↘

→→X

↓↓

U

so that E → U is a complex deformation of E, X → U is a complex deformation

of X and the map E → X is a smooth embedding so that over 0 this restricts to

the embedding E → X, then there is a map Hd(Et,Z) → Hd(Xt,Z) for all t ∈ U .

The image of the period map U → Per(V,Q, hp,q) is thus contained in ϕ−1(NL(HE)).

If Conjectue 3.5.3 holds, this means that if X is a crepant resolution of an ample

quasi-Fano hypersurface in a Gorenstein toric Fano variety, then there is no Noether-

Lefschetz locus with h1,d−1 ≥ 1 containing ϕ(U) for a generic deformation of X. In

particular if E is the exceptional divisor of a crepant contraction of X and the image

of the map H1,d(E) → H1,d(X) has nontrivial image, we should be able to deform X

so that the map E → X does not deform with X.

Theorem 3.5.4. Let X be a smooth weak Fano variety of dimension d with smooth

anticanonical section W , and let f : X → X ′ be a crepant map which contracts a

smooth divisor E in X to a smooth subvariety B of codimension 2 in X ′. Then

the deformation space of the pair Def(X,E) is of codimension at least equal to the

dimension of the image of the restriction map H1(X,Ωd−1
X ) → H1(E,ωE).

Proof. The tangent space of Def(X) is isomorphic to H1(X,ΘX) and there is a sheaf

ΘX⟨E⟩ so that H1(X,ΘX⟨E⟩) is isomorphic to the tangent space of Def(X,E). By

[128], the deformation space of X is unobstructed. Here, ΘX⟨E⟩ can be described

as the kernel of the map ΘX → NE/X (see e.g. [21]). By the adjunction formula,

we have that ωE = (ωX |E ⊗ OE(E)) which is nothing but ωX |E ⊗NE/X . Therefore,

NE/X = ωE ⊗ ω−1
X |E . We now write down the exact sequence

0 → ΘX⟨E⟩ → ΘX → ωE ⊗ ω−1
X |E → 0.
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Recall that if W is a smooth effective Cartier divisor on X cut out by a section

s ∈ Γ(OX(W )), then there is another short exact sequence of sheaves

0 → OX(−W )
s−→ OX → OW → 0.

We take the tensor product of the first short exact sequence with the short exact

sequence of the second with s a section of ω−1
X which determines W , then we get a

diagram

0 0⏐⏐↓ ⏐⏐↓
0 −−−−→ ΘX⟨E⟩ ⊗ ωX −−−−→ ΘX ⊗ ωX −−−−→ ωE −−−−→ 0⏐⏐↓ ⏐⏐↓ ⏐⏐↓
0 −−−−→ ΘX⟨E⟩ −−−−→ ΘX −−−−→ ωE ⊗ (ω−1

X |E) −−−−→ 0⏐⏐↓ ⏐⏐↓ ⏐⏐↓
0 −−−−→ ΘX⟨E⟩|W −−−−→ ΘX |W −−−−→ ωE |E∩W ⊗ ω−1

X |E∩W −−−−→ 0⏐⏐↓ ⏐⏐↓
0 0

We have that ΘX ⊗ ωX
∼= Ωd−1

X and that the map Ωd−1
X → ωE is the pullback map.

We obtain a commutative diagram

H1(X,Ωd−1
X ) −−−−→ H1(E,ωE)⏐⏐↓ ⏐⏐↓

H1(X,ΘX⟨E⟩) r−−−−→ H1(X,ΘX) −−−−→ H1(E,NE/X)

where r is the tangent map from Def(X,E) to Def(X). So we have only to show that

H1(E,ωE) → H1(E,NE/X) is injective. If this is true, then the image of H1(X,Ωd−1
X )

in H1(E,ωE) maps into the image of H1(X,ΘX) in H1(E,NE/X) and thus the image

of H1(X,ΘX⟨E⟩) in H1(X,ΘX) has codimension as required.

Note that since f is crepant, the hypersurface W is the preimage of some W ′ ⊆ X ′

where W ′ is a section of ωX′ , thus W ∩ E is a union of fibers of f |E . Furthermore,

f∗ωX′ is, by definition, constant on fibers of f |E , therefore ω−1
X |V ∩E is trivial on fibers
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of f . We have that E is a P1 bundle over B, thus the restriction of ωE to each fiber

of f |E is OP1(−2). Thus the restriction of ωE |E∩W ⊗ ω−1
X |E∩V to any fiber of f |E is

isomorphic to OP1(−2).

If we have a global section of ωE |E∩W ⊗ ω−1
X |E∩W then its restriction to all fibers

of f |E is a section of OP1(−2) and thus is 0. Therefore, there are no global sections

of ωE |E∩W ⊗ ω−1
X |E∩W . Therefore the map H1(E,ωE) → H1(E,NE/X) is injective as

required.

Theorem 3.5.4 applies directly to the situation in Example 3.5.2 to show that if X is

a crepant resolution of a degree 6 hypersurface in P(1, 1, 2, 2, 2), then the subspace of

the versal deformation space of X corresponding to deformations of X in a crepant

resolution of P(1, 1, 2, 2, 2) is of codimension at least 1. One may consider Theorem

3.5.4 as some sort of log Calabi-Yau version of [107, Theorem 6.5],[148, Proposition

4.1] or [67, Proposition 1.2].

3.5.4 Beyond crepant contractions

We used the fact that there is a crepant contraction X → X ′ contracting E in

a very important way in Theorem 3.5.4. If X is not an ample hypersurface in a

Gorenstein toric Fano variety and there is some toric boundary divisor Dv so that

H0,d−3(Dv ∩ X) → H1,d−2(X) is non-trivial, we should not expect that there is a

deformation of X which does not extend to a deformation of (Dv ∩X,X), since it

may be that such divisors cannot be contracted crepantly. As we see in the following

example, such situations do occur and they give rise to LG models with several fibers

with more than one irreducible component.

Example 3.5.5. Let X be a cubic in P4. Then if we take a generic pair of hyperplanes

H1, H2 in P4, then X ∩H1∩H2 is a smooth genus 0 curve in X, and the blow-up X̃ of

X along X ∩H1 ∩H2 is again a Fano variety. We may obtain X as a hypersurface in

the blow up of P4 along H1∩H2 which is a toric Fano fourfold. Calling this blow-up P̃4,

the hypersurface X̃ is nef and big in P̃4 but clearly not ample, since it is the pullback

of an ample divisor in P4. According to Mori and Mukai [100], all deformations of
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X̃ can be realized as a blow-up of a cubic threefold along an elliptic curve, thus the

Hodge structure on the cohomology of X̃ is reducible regardless of how we deform.

On the level of LG models, one can check explicitly that the fiber over 0 of the

LG model of X̃ constructed as in Section 3.2.2 has only 6 components, while h1,2(X̃)

is clearly 6. A detailed computation shows that there is a fiber of (Y,w) over a point

λ ≠ 0 which contains two smooth components meeting in a curve of genus 0 which

accounts for the remaining class in h1,2(X̃).

Thus Theorem 3.4.9 will undoubtedly just become an inequality if it is extended

to the case where X is a semi-ample hypersurface in a Fano toric Gorenstein variety.

The main obstruction to extending Theorem 3.4.9 to this case, however, is that I do

not know how to compute h1,d−2(X).
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Chapter 4

Laurent polynomials and

degenerations of complete

intersections

4.1 Introduction

Mirror symmetry for Fano varieties predicts that the mirror of a Fano variety X is

given by a quasi-projective variety X∨ equipped with a regular function w : X∨ → A1

(with appropriate choices of symplectic and complex structure on both X and X∨)

which satisfies certain conditions. In particual, homological mirror symmetry implies

that there is a relationship between the bounded derived category of X and the

Fukaya-Seidel category of (X∨, w), or conversely, the Fukaya category of X is related

to the derived category of singularities of (X∨, w) (see, for instance, [78, 79] for details).

The pair (X∨, w) can be viewed as a family of varieties over A1. From a more classical

point of view, mirror symmetry predicts that the periods of this family at infinity

should be related to the Gromov-Witten invariants of X [54].

0This chapter is joint work with C.F. Doran. It has been accepted by the Canadian Journal of
Mathematics under the title “Toric Degenerations and the Laurent polynomials related to Givental’s
Landau-Ginzburg models”.
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In the particular case where X is a smooth n-dimensional toric Fano variety, then

there should be some copy of (C×)n contained in X∨ so that on this torus, w is

expressed as a Laurent polynomial

w : (C×)n → C

with Newton polytope equal to the polytope whose face fan from which X itself is

constructed.

A folklore conjecture (stated explicitly in [61] Problem 44 and [123] Optimistic

picture 38) says that for each birational map

ϕ : (C×)n 99K X∨

so that the Newton polytope of ϕ∗w is ∆, there is a degeneration of the Fano variety

X to X∆. It is expected that X∨ is covered (away from a subset of codimension 2) by

tori (C×)n corresponding to toric varieties to which X degenerates, and these charts

are related by a generalized type of cluster mutation. Our main result (Theorem

4.2.20) is very much in the spirit of this suggestion.

For X a complete intersection in a toric variety, Givental [62] provided a method

of computing the Landau-Ginzburg model of X. This Landau-Ginzburg model is

presented as complete intersection in (C×)n which we call X∨ equipped with a

function w. We call the pair (X∨, w) obtained by Givental’s method the Givental

Landau-Ginzburg model of X.

In Section 4.2, we introduce certain types of embedded toric degenerations of Fano

complete intersections in toric varieties which we call amenable toric degenerations,

and prove that they correspond to Laurent polynomial models of Givental’s Landau-

Ginzburg models.

Theorem 4.1.1 (Theorem 4.2.20). Let X be a complete intersection Fano variety

in a toric variety Y . Let X ⇝ XΣ be an amenable toric degeneration of X, then the
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Givental Landau-Ginzburg model of X can be expressed as a Laurent polynomial with

Newton polytope equal to the convex hull of the primitive ray generators of Σ.

In the case where X is a smooth complete intersection in a weighted projective

space, Przyjalkowski showed that there is a birational map ϕ : (C×)m 99K X∨ to the

Givental Landau-Ginzburg model of X so that ϕ∗w is a Laurent polynomial. In [76],

Ilten, Lewis and Przyjalkowski have shown that there is a toric variety X∆ expressed

as a binomial complete intersection in the ambient weighted projective space so that

the complete intersection X admits a flat degeneration to X∆.

Theorem 4.2.20 generalizes both the method of Przyjalkowski in [123], and its

subsequent generalization by Coates, Kasprzyk and Prince in [34]. Theorem 4.2.20

shows that there are toric degenerations corresponding to all of the Laurent polynomials

associated to Fano fourfolds obtained in [34], and that the Laurent polynomials are

the toric polytopes of the associated degenerations.

Using the toric degeneration techniques of [63] and [18], Przyjalkowski and Shramov

have defined Givental Landau-Ginzburg models associated to complete intersection

Fano varieties in partial flag varieties. They have shown that the Givental Landau-

Ginzburg models of complete intersections in Grassmannians Gr(2, n) can be expressed

as Laurent polynomials. We provide an alternate approach to this question using

Theorem 4.2.20. This provides toric degenerations for most complete intersection

Fano varieties in partial flag manifolds, and shows that we may express their Givental

Landau-Ginzburg models as Laurent polynomials.

Theorem 4.1.2 (Theorem 4.3.4). Many Fano complete intersections in partial flag

manifolds admit degenerations to toric weak Fano varieties X∆ with at worst Goren-

stein singularities and the corresponding Givental Landau-Ginzburg models may be

expressed as Laurent polynomials with Newton polytope ∆.

Of course, the word “many” will be explained in detail in Section 4.3, but as an

example, this theorem encompasses all complete intersections in Grassmannians.
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4.1.1 Organization

This paper will be organized as follows. In Section 4.2, we will recall facts about toric

varieties and use them to prove Theorem 4.2.20. In Section 4.3, we will apply the

results of Section 4.2 to exhibit toric degenerations of complete intersections Fano

varieties in partial flag manifolds and show that their Givental Landau-Ginzburg

models admit presentations as Laurent polynomials. In Section 4.4, we shall comment

on further applications to the Przyjalkowski method of [34] and how our method seems

to relate to the construction of toric geometric transitions as studied by Mavlyutov

[98] and Fredrickson [56].
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4.2 General results

Here we describe the relationship between degenerations of complete intersections in

toric Fano varieties with nef anticanonical divisor and their Landau-Ginzburg models.

We will begin with a rapid recollection of some facts about toric varieties. A general

reference for all of these facts is [36].

4.2.1 Toric facts and notation

Throughout, we will use the convention that M denotes a lattice of rank n, and N

will be Hom (M,Z). We denote the natural bilinear pairing between N and M by

⟨−,−⟩ : N ×M → Z.
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The symbol Σ will denote a complete fan in M ⊗Z R, and XΣ or YΣ will be used to

denote the toric variety associated to the fan Σ. We will let ∆ be a convex polytope in

M ⊗Z R with all vertices of ∆ at points in M , which contains the origin in its interior.

We will let Σ∆ be the fan over the faces of the polytope ∆, and we will also denote

the toric variety XΣ∆
by X∆. If ∆ is an integral convex polytope, then we will let ∆[n]

be the set of dimension n strata of ∆. In particular, denote by ∆[0] the vertices of ∆.

We will abuse notation slightly and let Σ[1] be the set of primitive ray generators of

the fan Σ. Similarly, if C is a cone in Σ, then C[1] will denote the set of primitive ray

generators of C.

There is a bijection between primitive ray generators of Σ and the torus invariant

Weil divisors on XΣ.

If XΣ is a toric variety, then XΣ has a Cox homogeneous coordinate ring which is

graded by GΣ = Hom(An−1(XΣ),C×). There is a short exact sequence

0 → N
g−→ ZΣ[1] −→ An−1(XΣ) −→ 0

where the map g assigns to a point u ∈ N the vector

(⟨u, ρ⟩)ρ∈Σ[1].

Elements of ZΣ[1] are in bijection with torus invariant Weil divisors and the map g

assigns to a torus invariant Weil divisor on XΣ its class in the Chow group An−1(XΣ).

Applying the functor Hom (−,C×) to the above short exact sequence, we get a

sequence

1 → GΣ → (C×)Σ[1] → TM → 1

where TM =M ⊗Z C×. Let xρ be a standard basis of rational functions on (C×)Σ[1].

There is a partial compactification of (C×)Σ[1], which we may call VΣ

(C×)Σ[1] ⊆ VΣ ⊆ CΣ[1].
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so that there is an induced action of GΣ on VΣ and linearizing line bundle so that the

categorical quotient VΣ//GΣ is the toric variety XΣ. Since we have assumed that Σ

is complete, the homogeneous coordinate ring of XΣ is C[{xρ}ρ∈Σ[1]] equipped with

the grading given by the action of GΣ. A subvariety of XΣ is a complete intersection

in XΣ if it corresponds to a quotient of a complete intersection in VΣ.

The sublocus of XΣ corresponding to Dρ = {xρ = 0} is exactly the torus invariant

divisors associated to the ray generator ρ. Despite being given by the vanishing of

a function in the homogeneous coordinate ring, these divisors need not be Cartier.

A torus invariant divisor D =
∑

ρ∈Σ[1] aρDρ is Cartier if and only if there is some

piecewise linear function φ on M ⊗Z R which is linear on the cones of Σ, which takes

integral values on M . If ϕ is upper convex then the divisor D is nef.

The canonical divisor of a toric variety XΣ is the divisor KXΣ
= −

∑
ρ∈Σ[1]Dρ.

A toric variety XΣ is called Q-Gorenstein if its canonical divisor is Q-Cartier, and

Gorenstein if its canonical divisor is Cartier. In the future, we will be concerned solely

with Q-Gorenstein toric varieties.

A nef partition of Σ will be a partition of Σ[1] into sets E1, . . . , Ek+1 so that there

exist integral upper convex piecewise linear functions φ1, . . . , φk+1 so that

φi(Ej) = δij .

This means that for each maximal cone C in the fan Σ, there is some vector uC ∈ N

so that

φi(v) = max{⟨uC , v⟩}C∈Σ

A Q-nef partition will be a partition of Σ[1] exactly as above, except we no longer

require that the functions φi be integral, but only that they take rational values

on u ∈ M . This is equivalent to the fact that each φi is determined by a vector

uC ∈ N ⊗Z Q for each maximal cone C of Σ.

The divisors determined by a Q-nef partition are Q-Cartier. Note that the existence

of a Q-nef partition implies thatXΣ is Q-Gorenstein and the existence of a nef partition

implies that XΣ is Gorenstein.
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4.2.2 Amenable collections of vectors

We begin by letting X be a complete intersection in a toric variety YΣ of the following

type.

Definition 4.2.1. We will say that X is a quasi-Fano complete intersection in YΣ if

there are divisors Z1, . . . , Zk defined by homogeneous equations fi in the homogeneous

coordinate ring of YΣ so that (f1, . . . , fk) forms a regular sequence in C[{xρ}ρ∈Σ[1]],

and there is a Q-nef partition E1, . . . , Ek+1 so that

Zi ∼
∑
ρ∈Ei

Dρ.

We now define the central object of study in this paper. Fix a Q-nef partition of

Σ as E1, . . . , Ek+1 and let X be a corresponding quasi-Fano complete intersection.

Definition 4.2.2. An amenable collection of vectors subordinate to a Q-nef partition

E1, . . . , Ek+1 is a collection V = {v1, . . . , vk} of vectors satisfying the following three

conditions

(i) For each i, we have ⟨vi, ρ⟩ = −1 for every ρ ∈ Ei.

(ii) For each j so that k + 1 ≥ j ≥ i+ 1, we have ⟨vi, ρ⟩ ≥ 0 for every ρ ∈ Ej .

(iii) For each j so that 0 ≤ j ≤ i− 1, we have ⟨vi, ρ⟩ = 0 for every ρ ∈ Ej .

Note that this definition depends very strongly upon the order of E1, . . . , Ek. Now

let us show that an amenable collection of vectors may be extended to a basis of N .

Proposition 4.2.3. An amenable set of vectors vi spans a saturated subspace of N .

In particular, there is a basis of N containing v1, . . . , vk.

Proof. First of all, it is clear that k ≤ rank (M), or else X would be empty. Now for

each Ei, choose some ρi ∈ Ei. We then have a map

η : spanZ(v1, . . . , vk) → Zk
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determined by

η(v) = (⟨v, ρ1⟩, . . . , ⟨v, ρk⟩)

which, when expressed in terms of the basis v1, . . . , vk is upper diagonal with (−1) in

each diagonal position and thus η is an isomorphism. If spanZ(v1, . . . , vk) were not

saturated, then there would be some v ∈ spanQ(v1, . . . , vk)∩N not in spanZ(v1, . . . , vk).

But then η(v) could not lie in Zk, which is absurd, since v ∈ N and ρi are elements of

M and by definition ⟨v, ρi⟩ ∈ Z.

Thus the embedding spanZ(v1, . . . , vk) ↪→ N is primitive and there is a comple-

mentary set of vectors vk+1, . . . , vn so that v1, . . . , vn spans N over Z.

Now we will proceed to show that amenable collections of vectors lead naturally

to a specific class of complete intersection toric subvarieties of YΣ.

4.2.3 Toric degenerations

Now let us define a toric variety associated to an amenable collection of vectors

subordinate to a Q-nef partition of a fan Σ.

Definition 4.2.4. Let V be an amenable collection of vectors subordinate to a Q-nef

partition of a fan Σ. Let MV be the subspace of M ⊗Z R composed of elements which

satisfy ⟨vi, u⟩ = 0 for each vi ∈ V . Define the fan ΣV to be the fan in MV whose cones

are obtained by intersecting the cones of Σ with MV .

We may now look at the subvariety of YΣ determined by the equations

∏
ρ∈Ei

xρ −
∏
ρ/∈Ei

x⟨vi,ρ⟩ρ = 0 (4.1)

in its homogeneous coordinate ring for 1 ≤ i ≤ k. Note that if X is a quasi-Fano

complete intersection in YΣ determined by a Q-nef partition E1, . . . , Ek, then the

variety determined by the equations above is a degeneration of X in the sense that

we can deform the equations defining X to the equations above. To see this, recall

that the integral linear function which sends ρ ∈MR to ⟨vi, ρ⟩ ∈ R corresponds to a
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Weil divisor ∑
ρ∈Σ[1]

⟨vi, ρ⟩Dρ = −
∑
ρ∈Ei

Dρ +
∑
ρ/∈Ei

⟨vi, ρ⟩Dρ

which is linearly equivalent to 0 (see e.g. [36] Chapter 4, Proposition 1.2). Thus∏
ρ/∈Ei

x
⟨vi,ρ⟩
ρ is a section of the line bundle OYΣ

(Ei) associated to Ei, and any global

section of OYΣ
(Ei) can be deformed to Equation 4.1. Our goal is to show that the

subvariety of YΣ that is determined by Equation 4.1 above is actually a complete

intersection.

Following [55], we introduce a definition:

Definition 4.2.5. An integral square matrix is called mixed if each row contains

both positive and negative entries. A k ×m matrix is called mixed dominating if

there is no square submatrix which is mixed.

Mavlyutov ([98] Corollary 8.3) packages Corollaries 2.4 and 2.10 of [55] into the

following convenient form. If l is an integral vector in a lattice expressed in terms of a

fixed basis, as l = (t1, . . . , tn) then we define monomials x(l−) and x(l+) to be

x(l+) =
∏
ti>0

xtii , x(l−) =
∏
ti<0

xtii .

Proposition 4.2.6. Let L =
⨁k

i=1 Zli be a saturated sublattice of Zm so that L∩Nm =

{0}. Assume that the matrix with rows l1, . . . , lk is mixed dominating, then the set of

polynomials (x(li)+ − x(li)−) for i = 1, . . . , k forms a regular sequence in C[x1, . . . , xm]

Proposition 4.2.7. If X is a Fano complete interesection in a toric variety YΣ, and V

is an amenable collection of vectors associated to X, then V determine a degeneration

of X to a complete intersection toric variety in the homogenous coordinate ring of YΣ

cut out by equations ∏
ρ∈Ei

xρ −
∏
ρ/∈Ei

x⟨vi,ρ⟩ρ = 0.

Proof. The definition is clear, but what needs to be shown is that the subvariety of

YΣ determined by these equations is a complete intersection. This is equivalent to

the fact that the equations given in the statement of the proposition form a regular
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sequence. To check this, we prove that the conditions of Proposition 4.2.7 hold. The

relevant matrix is the matrix with rows

(⟨vi, ρ⟩)ρ∈Σ[1].

Call this matrix T . If we choose some ρj ∈ Ej for each 1 ≤ i ≤ k, then the maximal

submatrix (⟨vi, ρj⟩) is upper triangular with (−1)s on the diagonal. Thus the rows of

T form a saturated sublattice of Zm.

Now let us choose any square submatrix of T , or in other words, choose a set U

of ℓ vertices of Σ[1] and a set V of ℓ vectors vi. Then we must show that the matrix

S = (⟨vi, ρ⟩)vi∈V,ρ∈U has a row without both positive and negative entries. If the row

(⟨vi, ρ⟩)ρ∈Σ[1] contains negative entries for V0 = {vi1 , . . . , vim} ⊆ V , then in particular

for each vij there is some ρ ∈ U contained in Eij . If V0 = V , then it follows that for

each ρ is contained in a distinct Ei1 , . . . , Eim . If i1 is the smallest such integer and ρ1

is the corresponding element of U , then ⟨vi, ρ⟩ ≤ 0 for all vi ∈ V , since ⟨vi, Ej⟩ = 0

for all j < i. Thus the corresponding row contains no positive entries.

Finally, if L∩Nm is nonzero then there is some vi so that ⟨vi, ρ⟩ ≥ 0 for all vertices

ρ of Σ[1]. If there were such a vi, then all points ρ of Σ[1] would be contained in the

positive half-space determined by vi, contradicting the fact that Σ is a complete fan

with each cone strictly convex.

Thus applying Proposition 4.2.7, the equations in the proposition above determine

a complete intersection in the homogeneous coordinate ring of YΣ.

Proposition 4.2.8. The subvariety of XΣV
of YΣ corresponds to the complete inter-

section in the coordinate ring of YΣ cut out by equations

∏
ρ∈Ei

xρ −
∏
ρ/∈Ei

x⟨vi,ρ⟩ρ = 0.

for 1 ≤ i ≤ k.
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Proof. We recall that there is an exact sequence

0 → N
g−→ ZΣ[1] → An−1(XΣ) → 0.

Here g is the map which sends a point v ∈ N to the point

(⟨v, ρ⟩)ρ∈Σ[1] ∈ ZΣ[1]

Applying the functor Hom (−,C×) to this exact sequence, we obtain a dual exact

sequence

0 → GΣ → (C×)Σ[1] g∗−→M ⊗Z C× → 0

where GΣ = Hom(An−1(XΣ),C×). For an appropriate choice of basis (xρ)ρ∈Σ[1] the

induced action of GΣ on (C×)Σ[1] ⊆ VΣ determines the GΣ-action on the homogeneous

coordinate ring of XΣ.

The equations by which we have defined XΣ can be written on the torus (C×)Σ[1]

as ∏
ρ∈Σ[1]

x⟨vi,ρ⟩ρ = 1

for 1 ≤ i ≤ k. But this corresponds exactly to the pullback of the locus ⟨vi,−⟩ = 0 in

M , which is simply the subspace MV . Thus, in the homogeneous coordinate ring of

YΣ, the toric subvariety XΣV
is cut out by the equations given in the proposition.

Thus the amenable collection V determines a degeneration of a quasi-Fano complete

intersection in YΣ to a toric variety XΣV
where ΣV is the fan obtained by intersecting

Σ with the subspace of M orthogonal to elements of V .

Definition 4.2.9. A toric degenerationX ⇝ XΣ of a quasi-Fano complete intersection

determined by an amenable collection of vectors subordinate to a Q-nef partition

E1, . . . , Ek+1 is called an amenable toric degeneration of X subordinate to the Q-nef

partition E1, . . . , Ek+1.

Now we define a polytope depending upon the amenable collection of vectors

V = {v1, . . . , vk}.
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Definition 4.2.10. Let V be an amenable collection of vectors subordinate to a Q-nef

partition E1, . . . , Ek+1 equipped with rational convex Σ-piecewise linear functions

φ1, . . . , φk+1. Then we define ∆V to be the polytope defined by ρ ∈M ⊗R satisfying

equations

⟨vi, ρ⟩ = 0 for 1 ≤ i ≤ k

φk+1(ρ) ≤ 1.

This polyhedron is convex. We will refer to the subspace of M ⊗Z R satisfying

⟨vi, ρ⟩ = 0 for 1 ≤ i ≤ k for V = {v1, . . . , vk} an amenable collection of vectors as MV .

It is first of all, important to show that ∆V is precisely the polytope whose vertices

are the generating rays of the fan MV ∩ Σ∆.

Lemma 4.2.11. Let C be a sub-cone of Σ so that C ∩MV is nonempty, then there

is a vertex of C which is contained in Ek+1.

Proof. Let p be an element of (C ∩ MV ) ∩ M and choose a set of vectors U =

{u1, . . . , um} contained in generating set of the 1-dimensional strata of C so that

p is a strictly positive rational linear combination of a set of vectors in U . Let j

be the largest integer so that Ej ∩ U ̸= ∅ and j ̸= k + 1. If no such integer exists,

then U ⊆ Ek+1 and we are done. If not, we have that ⟨vj , u⟩ = 0 or (−1) for all

u ∈ U \ Ek+1, since ⟨vj , Ei⟩ = 0 for i < j. If p′ =
∑

ui∈U\Ek+1
aiui for positive

numbers ai, then ⟨vj , p′⟩ = −
∑

ui∈Ej
ai < 0, since Ej ∩ U is nonempty. Thus, since

p = p′ +
∑

ui∈U∩Ek+1
aiui and ⟨vj , p⟩ = 0, we must have U ∩ Ek+1 nonempty.

The following proposition holds in the case where E1, . . . , Ek+1 is any Q-nef

partition of ∆ and V is amenable collection of vectors subordinate to this nef partition.

Proposition 4.2.12. Let C be a minimal sub-cone of Σ so that C ∩ MV is 1-

dimensional, then there is some point ρ in (C ∩MV ) ∩M so that φk+1(ρ) = 1.

Proof. By Lemma 4.2.11, we may deduce that the set C[1] of primitive integral ray

generators of C must contain an element of Ek+1. We must show that there is some
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p ∈ Ek+1 and u1, . . . , um ∈ C[1] \ (C[1] ∩ Ek+1) so that ρ = (p +
∑m

i=1 niui) ∈ MV ,

ni > 0. Then since ui ∈ Σ[1]\Ek+1 and φk+1 is linear on C, we must have φk+1(ρ) = 1.

Let us take p in Ek+1∩C[1]. Then assume ⟨vj , p⟩ = nj > 0. If there is no u ∈ C[1]

so that u ∈ Ej then ⟨vj , u⟩ ≥ 0 for all u ∈ C[1]. The subset ⟨vj , u⟩ = 0 contains

C ∩MV by definition and must be a sub-stratum of C since C is a convex rational

cone. By minimality of C, we must then have ⟨vj , u⟩ = 0 for all u ∈ C[1]. In particular,

nj = 0 for all j so that Ej ∩ C[1] = ∅.

Now we will fix uj ∈ Ej for each Ej so that Ej ∩ C[1] ̸= ∅. We know that

⟨vj , uj⟩ = −1. Take the largest j so that Ej ∩ C[1] ̸= ∅. Then ⟨vj , p + njuj⟩ = 0.

Now we have that p + njuj is orthogonal to vj and since it is a positive sum of

elements in C[1], it is contained in C. Let j′ be the next smallest integer so that

Ej′ ∩ C[1] ̸= ∅. Then let ⟨vj′ , p + njuj⟩ = sj′ . This is a non-negative integer since

p and uj are not contained in Ej′ . We now have ⟨vj′ , p + njuj + sj′uj′⟩ = 0 and

⟨vj , p+ njuj + sj′uj′⟩ = sj′⟨vj , uj′⟩ which is zero by the condition that ⟨vj ,∆i⟩ = 0

for i < j.

We may now sequentially add positive multiples of each uℓ for Eℓ ∩ C[1] ̸= ∅ in

the same way until the resulting sum ρ is orthogonal to v1, . . . , vk. Thus we obtain

ρ ∈ C which lies in MV and satisfies φk+1(ρ) = 1 by arguments presented in the first

two paragraphs of this proof.

We may make an even stronger claim if we make further assumptions on the

divisors associated to Ei.

Recall that we have been assuming that the Weil divisors Di =
∑

ρ∈Ei
Dρ are

Q-Cartier, or in other words, there are rational convex Σ-linear functions φi and for

ρ ∈ Dj , φi(ρ) = δij . We can make stronger statements about the relationship between

the fan ΣV and the polytope ∆V .

Proposition 4.2.13. The point ρ in the proof of Proposition 4.2.12 is a primitive

lattice point under either of the following two conditions:

(i) The divisor Dk+1 is Cartier, or

(ii) All divisors Di for 1 ≤ i ≤ k are Cartier.
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Proof. For (1), If Dk+1 is Cartier, then the function φk+1 is integral, and thus if

φk+1(ρ) = 1 implies that ρ is a primitive lattice point.

In (2), assume that there is some r so that ρ/r is still in M . Recall that ρ =

p+
∑k

i=1 niui for some ui ∈ Ei. Thus φi(ρ/r) = ni/r is an integer, since φi is integral

and ρ/r is in M . Hence ρ/r −
∑k

i=1(ni/r)ui = p/r is in M . Since p ∈ Σ[1] are

assumed to be primitive, r = 1.

Finally, this shows that

Corollary 4.2.14. Under either of the conditions of Proposition 4.2.13, the polytope

∆′ in MV obtained as the convex hull of the rays generating ΣV =MV ∩Σ is equal to

∆V .

Proof. By Proposition 4.2.12, each generating ray of ∆′ lies inside of ∆V , thus the

convex hull of the generating rays of ΣV is contained inside of ∆V . If ρ is a vertex

of ∆V , then let C in Σ be the unique cone containing ρ on its interior, C0. If

CV = C ∩MV then ρ is in C0
V , the interior of CV . Since φk+1 is linear on C0

V , we

must have some substratum of ∆V containing ρ on which φk+1 is a linear function,

but since ρ is a vertex of ∆V , the only such substratum is spanned by ρ itself. Thus

C ∩MV is the ray generated by ρ and ρ is in ΣV [1]. Therefore all vertices ρ of ∆V

are in ΣV [1], and hence are primitive, so we can conclude that ∆′ ⊆ ∆V .

It is well known (see e.g. Remark 1.3 of [12]) that if all facets of an integral

polytope ∆ are of integral height 1 from the origin, then ∆ is reflexive. Thus:

Theorem 4.2.15. Let X be a quasi-Fano complete intersection in a toric variety

YΣ, and let E1, . . . , Ek+1 be a Q-nef partition of Σ[1] so that Ek+1 corresponds to a

nef Cartier divisor. If X ⇝ XΣV
is defined by an amenable collection of vectors V

subordinate to this nef partition, then XΣV
is a weak Fano partial crepant resolution

of a Gorenstein Fano toric variety X∆V
.

Proof. The polytope over the ray generators of ΣV is ∆V by Corollary 4.2.14, which

is reflexive by Remark 1.3 of [12]. It follows that the fan ΣV is a refinement of the

fan over faces of ∆V obtained without adding rays which are not generated by points
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in ∆V . By Lemma 11.4.10 of [36], it follows that XΣV
is a projective crepant partial

toric resolution of X∆V
whose anticanonical model is X∆V

, thus is weak Fano.

4.2.4 Laurent polynomials

In [62], Givental constructs the mirror of a quasi-Fano complete intersection variety

X in the following way. Assume that we have a smooth toric variety YΣ associated

to a fan Σ with ray generators Σ[1] and a nef partition E1, . . . , Ek+1. Then, as in

Section 4.2.1, we have an exact sequence

0 → N
g−→ ZΣ[1] h−→ Pic(YΣ) −→ 0.

If we choose a facet σ of Σ, then the ray generators of σ generate M as a lattice,

since YΣ is smooth. We may label the elements of Σ[1] as u1, . . . , un and the rest of

the elements of Σ[1] as un+1, . . . , ud. Let v1, . . . , vn be a basis of N which is dual to

u1, . . . , un.

Then if we express the map g as a matrix in terms of the basis v1, . . . , vn of N ,

g =
(
Idn G

)
for an n× (d− n) matrix G whose columns express the coordinates of un+1, . . . ud in

terms of u1, . . . , un. Furthermore, h is given by

h =

⎛⎝ −G

Id(d−n)

⎞⎠ .

We let y1, . . . , yd be coordinates on (C×)d and we define the complete intersection

d∏
j=1

y
hj,ℓ
ρ = qℓ for 1 ≤ ℓ ≤ d− n

∑
uj∈Ei

yj = 1 for i ̸= k + 1 (4.2)
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with parameters qℓ ∈ C×. This complete intersection is equipped with the superpo-

tential

w =
∑

uj∈Ek+1

yj . (4.3)

This is the Landau-Ginzburg model of X as defined by Givental in [62] or by Hori

and Vafa in [74]. We may simplify this expression further given the form of h that we

have deduced above. The relations

n∏
j=1

y
hj,ℓ

j = qℓ

can be rewritten as

yℓ =
qℓ∏n

j=1 y
hj,ℓ

i

for n+ 1 ≤ ℓ ≤ d (4.4)

where hi,ℓ are coordinates for ui in terms of the basis Σ[1] of M . Thus we can express

the Landau-Ginzburg model of X as a complete intersection in the torus (C×)n with

coordinates {yi}ni=1 by substituting Equation 4.4 into Equations 4.2 and 4.3.

We are mainly interested in the case where YΣ is not necessarily a smooth toric

variety, so we will give a different description of this construction based on the discus-

sion above, but which does not require any smoothness properties from YΣ.

Let X be a quasi-Fano complete intersection in the toric variety YΣ obtained from

a Q-nef partition E1, . . . , Ek+1. Let us take the usual Laurent polynomial ring in

n variables, C[x±1 , . . . , x±n ] and let xρ be the map Hom (N ⊗ C×,C×) associated to

ρ ∈M which assigns to q⊗ p ∈M ⊗C× the value p⟨q,ρ⟩. In particular, if u1, . . . , un is

a basis for N , then we may represent it as a Laurent monomial

xρ =

n∏
i=1

x
⟨ui,ρ⟩
i .
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The Givental Landau-Ginzburg model associated to a nef partition E1, . . . , Ek+1 of

Σ[1] is given by the complete intersection X∨ in (C×)n written as

∑
ρ∈Ei

aρx
ρ = 1 (4.5)

for 1 ≤ i ≤ k equipped with the superpotential

w =
∑

ρ∈Ek+1

aρx
ρ.

Here aρ are constants in C×. To be completely correct, the constants aρ should be

chosen to correspond to complexified classes in the nef cone of XΣ. In other words,

there should be some integral Σ-piecewise linear function φ and a complex constant t

so that

aρ = tφ(ρ).

(see [5] or [15] for details).

The goal of this section is to show that the existence of an amenable collection of

vectors subordinate to the Q-nef partition E1, . . . , Ek+1 implies that X∨ is birational

to (C×)n−k and that under this birational map, the superpotential w pulls back to a

Laurent polynomial. In Section 4.2.5 we will determine the relationship between the

Laurent polynomial w and the polytope ∆V .

Let v1, . . . , vk be an amenable collection of vectors. Then by Proposition 4.2.3, we

may extend v1, . . . , vk to a basis v1, . . . vn of N . Let us fix such a basis once and for

all.

Now we can rewrite Equation 4.5 in terms of this basis as

∑
ρ∈Ei

aρxρ =
∑
ρ∈Ei

aρ

⎛⎝∏
j≥i

x
⟨vi,ρ⟩
i

⎞⎠ = 1. (4.6)
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since ⟨vi, ρ⟩ = 0 for j < i. Note that each monomial in this expression can be written

as ∏
j≥i

x
⟨vi,ρ⟩
i =

(
1

xi

)∏
j>i

x
⟨vi,ρ⟩
i .

since ⟨vi, ρ⟩ = −1 for any ρ in Ei. Therefore we may rearrange Equation 4.6 to get

∑
ρ∈Ei

aρ

⎛⎝∏
j>i

x
⟨vi,ρ⟩
i

⎞⎠ = xi. (4.7)

By assumption, we have that ⟨vi, ρ⟩ ≥ 0 for ρ ∈ Ej and k ≥ j > i, so xi+1, . . . xk

appear to non-negative degrees in Equation 4.7. We now sequentially substitute

these expressions into one another in order to get Laurent polynomial expressions

for each of x1, . . . , xk in terms of xk+1, . . . , xn. First note that in the case i = k,

Equation 4.7 directly provides such a Laurent polynomial. Applying induction, we

assume that each of xi+1, . . . , xk is given as a Laurent polynomial in xk+1, . . . , xn, then

direct substitution into Equation 4.7 expresses xi as a Laurent polynomial in terms

of xk+1, . . . , xn. Note that the fact that the exponents of xi+1, . . . , xk are positive in

Equation 4.7 is used crucially at this step.

The expressions that we obtain for each xi, 1 ≤ i ≤ k by this procedure will be

called fi(xk+1, . . . , xn). Now we have that, expressed as a function on (C×)n,

w =
∑

ρ∈Ek+1

(
n∏

i=1

x
⟨vi,ρ⟩
i

)

has x1, . . . , xk appearing only to positive degrees since v1, . . . , vk satisfy ⟨vi, u⟩ ≥ 0 for

each u ∈ Ek+1. Making substitutions xi = fi(xk+1, . . . , xn) for each 1 ≤ i ≤ k into w,

we obtain a Laurent polynomial for w on the variables xk+1, . . . , xn. We summarize

these computations as a theorem.

Theorem 4.2.16. Assume X is a quasi-Fano complete intersection in a toric variety

YΣ. Then for each amenable toric degeneration X ⇝ XΣ′ there is a birational map

ϕV : (C×)n−k 99K X∨
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so that ϕ∗V w is a Laurent polynomial.

Proof. Let fi(xk+1, . . . , xn) be the expressions for xi obtained by using the algorithm

described above. We define the map ϕV as

ϕV (xk+1, . . . , xn) = (f1(xk+1, . . . , xn), . . . , fk(xk+1, . . . , xn), xk+1, . . . , xn).

Of course, as a map from (C×)n−k to (C×)n, this map is undefined when fi(xk+1, . . . , xn)

is equal to 0 for 1 ≤ i ≤ k, which is a Zariski closed subset of (C×)n−k. We have

shown above that ϕV has image which lies inside of X∨, thus since dim(X∨) = n− k,

the map ϕV is a birational map from (C×)n−k to X∨.

Thus the choice of an amenable set of vectors v1, . . . , vk determines both a toric

degeneration of X and a Laurent polynomial expression for its Landau-Ginzburg model.

In Section 4.2.5 we will examine the relationship between the Laurent polynomial

ϕ∗V w and the polytope ∆V .

4.2.5 Comparing polytopes

Now we will show that if E1, . . . , Ek+1 is a (k + 1)-partite Q-nef partition of a fan Σ

and V is an amenable collection subordinate to this Q-nef partition, then the Newton

polytope of φ∗
V w is precisely ∆V . Let ∆ϕ∗

V w be the Newton polytope of the Laurent

polynomial ϕ∗V w.

Take any subset S ⊆ M , then if we choose v ∈ N , we get stratification of S by

the values of ⟨v,−⟩. We will define subsets of S

Sb
v = {s ∈ S|⟨v, s⟩ = b}.

If S is contained in a compact subset of M ⊗Z R, then let bvmax be the maximal value

so that Sb
v is nonempty.

Proposition 4.2.17. Let E1, . . . , Ek+1 be a Q-nef partition of a fan Σ, and let

V = {v1, . . . , vk} be an amenable collection of vectors in N subordinate to E1, . . . , Ek+1.
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Then the monomials of φ∗
V w correspond to all possible sums of points p ∈ Ek+1 and

u1, . . . , uℓ in
⋃k

i=1Ei (allowing for repetition in the set u1, . . . , uℓ) so that

⟨vi, p+
ℓ∑

i=1

ui⟩ = 0.

for all 1 ≤ i ≤ k.

Proof. Let i = 0. It is clear then that the points in M corresponding to monomials in

the Laurent polynomial

w =
∑

ρ∈Ek+1

aρx
ρ

are all points q in M obtained as sums of points p ∈ Ek+1 and u1, . . . , um ∈ ∪i
j=1Ej

so that

⟨vj , p+
ℓ∑

i=1

ui⟩ = 0.

for all 1 ≤ j ≤ i. Now we may apply induction.

Let us define

hi(xi+1, . . . , xn) =
∑
ρ∈Ei

aρ
∏
j>i

x
⟨vj ,ρ⟩
j

Assume that we have sequentially substituted h1, . . . , hi−1 into w to get a Laurent

polynomial w′ in the variables xi, . . . , xn, and that the resulting expression has

monomials which correspond to all points q in M which are all sums of points p in

Ek+1 and u1, . . . , uℓ in E1, . . . , Ei−1 so that ⟨vj , p +
∑ℓ

s=1 us⟩ = 0 for 1 ≤ j ≤ i − 1

(allowing for repetition in u1, . . . , uℓ). Now we show that substituting the expression

hi(xi+1, . . . , xn) into w
′ gives a polynomial whose monomials correspond to all points

p+
∑r

j=1 uj so that p ∈ Ek+1, uj ∈
⋃i+1

s=1Es and ⟨vj , p+
∑r

s=1 us⟩ = 0 for all 1 ≤ j ≤ i

(again, allowing for repetition in the set u1, . . . , ur).

We may let F be the set of integral points in M corresponding to monomials of

w′. Then we have

w′ =

bmax
vi∑
b=0

xbigb(xi+1, . . . , xn)
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where

gb(xi+1, . . . , xn) =
∑
ρ∈F b

vi

aρ
∏
j>i

x
⟨vj ,ρ⟩
j .

Substituting into w′ the expression xi = hi(xi+1, . . . , xn) gives us a Laurent polynomial

in xi+1, . . . , xn whose monomials correspond to points in set

∪b
vi
max
b=0 (F b

vi + bEi).

Each point in this set satisfies ⟨vi, Eb
vi + bEi⟩ = 0 by the condition that ⟨vi, Ei⟩ = −1.

Furthermore, ⟨vj , Ei⟩ = 0 for j < i, and hence each set of points F b
vi + bEi is

orthogonal to v1, . . . , vi and can be expressed as a sum of points p +
∑s

j=1 ui for

u1, . . . , us ∈ ∪i
j=1Ej and p ∈ Ek+1.

Now assume that we have a point q = p+
∑s

j=1 ui for u1, . . . , us ∈ ∪i
j=1Ej and

p ∈ Ek+1 which is orthogonal to vj for 1 ≤ j ≤ i. Then let U = {u1, . . . , us}∩Ei, and

let

q′ = p+
s∑

i=1,ui /∈U

ui = ρ−
∑
ui∈U

ui.

We see that q′ is orthogonal to vj for 1 ≤ j ≤ i − 1 since ⟨vj , u⟩ = 0 for u ∈ U and

1 ≤ j ≤ i − 1, thus q′ ∈ F . Note that we must have ⟨vi, q′⟩ = #U . Thus the point

q′ is in F#U
vi and hence q ∈ (F#U

vi + (#U)Ei) (since
∑

ui∈U ui is clearly an element

of (#U)). Thus q corresponds to a monomial in w′ after making the substitution

xi = hi(xi+1, . . . , xn). This completes the proof after applying induction.

Proposition 4.2.18. Assume that MV intersects a cone C of Σ in a ray generated

by an integral vector ρ ∈M , then there is some multiple of ρ in the polytope ∆ϕ∗
V w.

In other words, ∆V ⊆ ∆ϕ∗
V w

Proof. This follows from Proposition 4.2.17 and Proposition 4.2.12. According to

Proposition 4.2.12, there is an integral point in MV ∩ C so that φk+1(ρ) = 1. In the

proof of Proposition 4.2.12, it is actually shown that this point is constructed as a

sum of points p ∈ Ek+1 and u1, . . . , uℓ ∈
⋃k

i=1Ei (allowing for repetition in the set
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u1, . . . , uℓ). According to Proposition 4.2.17 this point must correspond to a monomial

of the Laurent polynomial ϕ∗V w.

Theorem 4.2.19. Assume that V is an amenable collection of vectors subordinate to

a Q-nef partition E1, . . . , Ek+1 of a fan Σ. The polytope ∆ϕ∗
V w is equal to ∆V .

Proof. We may deduce that ∆V ⊆ ∆ϕ∗
V w from Proposition 4.2.18. Thus it is sufficient

to show that ∆ϕ∗
V w is contained in ∆V , or in other words, each integral point ρ ∈ ∆ϕ∗

V w

satisfies φk+1(p) ≤ 1. However, this is reasonably easy to see. We have shown in

Proposition 4.2.17 that each point in ∆ϕ∗
V w is a sum of a single point p ∈ Ek+1 and a

set of points u1, . . . , uℓ in Σ[1] \ Ek+1 (allowing for repetition in the set u1, . . . , uℓ).

Recall that we have a set of vectors w1, . . . , wv ∈ N for v the number of maximal

dimensional faces of Σ∆ so that

φk+1(ρ) = max{⟨wi, ρ⟩}vi=1.

Now let us apply this to ρ = p+
∑ℓ

i=1 ui. We obtain

max{⟨wi, p+

ℓ∑
i=1

ui⟩}vi=1 ≤ max{⟨wi, p⟩}vi=1 +

ℓ∑
i=1

(max{⟨wi, ui⟩}vi=1) = φk+1(p) = 1

as required.

Note that this is actually a general description of the polytope ∆ϕ∗w without any

restrictions on the Q-nef partition. We summarize the results of this section as the

following theorem, which follows directly from Theorem 4.2.14 and Theorem 4.2.19.

Theorem 4.2.20. Let X be a complete intersection in a toric variety YΣ so that

there is a Q-nef partition E1, . . . , Ek+1 of Σ[1] so that X is a complete intersection of

Q-Cartier divisors determined by E1, . . . , Ek, then if

(i) Ek+1 is a Cartier divisor or

(ii) E1, . . . , Ek are Cartier divisors,
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then an amenable collection of vectors V subordinate to this Q-nef partition determines

an amenable degeneration X ⇝ XΣV
for some fan ΣV , and the corresponding Laurent

polynomial has Newton polytope equal to the convex hull of ΣV [1].

A more robust geometric statement is available to us in the case where X is a

Fano variety corresponding to a nef partition in a toric variety. This follows from

Theorem 4.2.20 and Theorem 4.2.15

Theorem 4.2.21. Assume X is a Fano toric complete intersction in a toric variety

Y = Y∆ cut out by the vanishing locus of sections si ∈ H0(Y,OY (Ei)) for 1 ≤ i ≤ k,

and E1, . . . , Ek+1 is a nef partition of ∆, and that V is an amenable collection of

vectors subordinate to this nef partition. Then V determines:

(i) A degeneration of X to a toric variety X̃∆V
which is a crepant partial resolution

of of X∆V
and

(ii) A birational map ϕV : (C×)n−k 99K X∨ so that ϕ∗V w has Newton polytope equal

to ∆V .

4.2.6 Mutations

Here we will analyze the relationship between Laurent polynomials obtained from the

same nef partition and different amenable collections. First we recall the following

definition.

Definition 4.2.22. Let f be a Laurent polynomial in n variables and let

ωn =
dx1 ∧ · · · ∧ dxn
(2πi)nx1 . . . xn

.

A mutation of f is a birational map ϕ : (C×)n 99K (C×)n so that ϕ∗ω = ω and so that

ϕ∗f is again a Laurent polynomial.

This definition is due to Galkin and Usnich [61] in the two dimensional case. The

generalized form given above is due to by Akhtar, Coates, Galkin and Kasprzyk [4]

and Katzarkov and Przyjalkowski [80].
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Assume, first of all, that we have two different amenable collections V and V ′ which

are subordinate to the same nef partition E1, . . . , Ek+1 of a fan Σ. Then associated

to both V and V ′ are two maps. The first map is

ϕV : (C×)n−k 99K X∨

and the second is a map

ϕ−1
V = πV : (C×)k → (C×)n−k

which is defined as

(x1, . . . , xn) ↦→ (xk+1, . . . , xn).

so that ϕV is a birational section of πV . However, the map πV · ϕV ′ for a different

amenable collection V ′ is simply a birational morphism of tori. If we let yk+1, . . . , yn

and xk+1, . . . , xn be coordinates on the torus (C×)n−k associated to V and V ′ respec-

tively, then for each k + 1 ≤ j ≤ n, there is a rational polynomial hj(xk+1, . . . , xn) so

that the map πV · ϕV ′ is written as

(xk+1, . . . , xn) ↦→ (hk+1, . . . , hn).

In particular, to determine this map, we have Laurent polynomials fi(xk+1, . . . , xn)

for each 1 ≤ i ≤ k so that

ϕV ′(xk+1, . . . , xn) = (f1(xk+1, . . . , xn), . . . , fk(xk+1, . . . , xn), xk+1, . . . , xn).

There are bases B and B′ of N associated to both V and V ′ so that B = {v1, . . . , vn}

and V = {v1, . . . , vk} and so that B = {u1, . . . , un} with V ′ = {u1, . . . , un}. There is

an invertible matrix Q with integral entries qi,j so that vi =
∑n

j=1 qi,juj , and torus

coordinates x1, . . . , xn and y1, . . . , yn on (C×)n related by

yi =

n∏
j=1

x
qi,j
j .
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In particular, we have

hi(xn−k+1, . . . , xn) =

⎛⎝ k∏
j=1

fj(xk+1, . . . , xn)
qi,j

⎞⎠⎛⎝ n∏
j=k+1

x
qi,j
j

⎞⎠ .

The map given by the polynomials hi(xn−k+1, . . . , xn) for k+1 ≤ i ≤ n then determine

explicitly the birational morphism above associated to a pair of amenable collections

subordinate to a fixed nef partition. Now it is clear that the birational map of tori

ϕ−1
V ′ · ϕV induces a birational map of tori which pulls back the Laurent polynomial

ϕ∗V w to a Laurent polynomial. Our goal now is to show that this map preserves the

torus invariant holomorphic n form ωn−k defined in Definition 4.2.22. First, we prove

a lemma.

Lemma 4.2.23. Let ϕ : (C×)n 99K X∨ ⊆ (C×)n be a birational map onto a complete

intersection in (C×)n cut out by Laurent polynomials

Fi = 1− fi(xi+1, . . . , xn)

xi

which have only non-negative exponents in xi+1, . . . , xk if i ̸= k. Then the residue

ResX∨

(
ωn

F1 . . . Fk

)

agrees with the form (2πi)kωn−k on the domain of definition of ϕ.

Proof. We argue by induction. We may make a birational change of variables on

(C×)n so that x1 = y1 + f1(yk+1, . . . , yn) for each 1 ≤ i ≤ k and yi = xi for i ̸= 1.

Note that

dx1 = d (y1 + f(y2, . . . , yn)) = dy1 + ρ
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where ρ is some 1-form written as a linear combination of dy2, . . . , dyn with Laurent

polynomial coefficients. Thus under our change of variables,

dx1 ∧ · · · ∧ dxn = (dy1 + ρ) ∧ · · · ∧ dyn

= dy1 ∧ · · · ∧ dyn.

Furthermore, under the correct choice of variables, we have

F1(x1, . . . , xn) = 1− f1(x2, . . . , xn)

x1

Thus
ωn

F1 . . . , Fk
=

dx1 ∧ · · · ∧ dxn
(x1 − f1(x2, . . . , xk))F2 . . . Fkx2 . . . xn

.

Changing variables to y1, . . . , yn, we see that

ωn

F1 . . . Fk
=

dy1 ∧ · · · ∧ dyn
F2 . . . Fky1y2 . . . , yn

whose residue along the locus y1 = 0 (which is precisely the image of our torus

embedding ϕ), is just (2πi)ωn−1

F2...Fk
since F2, . . . , Fk are independent of y1. Thus locally

around any point in X∨ where the birational map ϕ is well defined and the torus

change of coordinates φ is well-defined, it follows that the residue of ωn
F1...F2

on X∨

agrees with (2πi)ωn−1

F2...Fk
. Repeating this argument for each 2 ≤ i ≤ k shows that

ϕ∗V ResX∨

(
ωn

F1 . . . Fk

)
= (2πi)kωn−k.

Now this allows us to prove:

Theorem 4.2.24. Let V and V ′ be two amenable collections of vectors subordinate to

a nef partition E1, . . . , Ek+1. Then the birational map of tori ϕ−1
V · ϕV ′ is a mutation

of the Laurent polynomial ϕ∗V ′w.
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Proof. It is clear that this map is birational and takes ϕ∗V ′w to a Laurent polynomial.

To see that ϕ−1
V · ϕV ′ preserves the form ωn−k, we note that there is some open

subset U∨ of X∨ on which both ϕV and ϕV ′ induce isomorphisms from open sets

UV and UV ′ in (C×)n−k. In other words, we have isomorphisms ϕ◦V : UV
∼−→ U∨ and

ϕ◦V ′ : UV ′
∼−→ U∨ between open sets. From Lemma 4.2.23, we know that

(ϕ◦V )
∗ResU∨

(
ωn

F1 . . . Fk

)
= (2πi)

kωn−k|UV

(ϕ◦V ′)∗ResU∨

(
ωn

F1 . . . Fk

)
= (2πi)

kωn−k|UV ′

therefore we must have that on UV , (ϕV ·ϕ−1
V ′ )∗(ωn−k|UV ′ ) = ωn−k|V , and thus ϕV ·ϕ−1

V

is a mutation.

Of course, Theorem 4.2.24 requires that we start with two amenable collections

subordinate to the same nef partition. It is possible to have distinct nef partitions

corresponding to the same quasi-Fano variety. It would be interesting to show that if

we have two such nef partitions and amenable collections subordinate to each, then

there is a mutation between the corresponding Laurent polynomials.

4.3 Degenerations of complete intersections in partial

flag varieties

Now we discuss the question of constructing toric degenerations and Laurent polyno-

mial expressions for Landau-Ginzburg models of complete intersections in partial flag

varieties. Recall that the partial flag variety F (n1, . . . , nl, n) is a smooth complete

Fano variety which parametrizes flags in V ∼= Cn,

V1 ⊆ · · · ⊆ Vl ⊆ V

where dim(Vi) = ni. The reader may consult [26] for general facts on partial flag

varieties.
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According to [18] and [63], there are small toric degenerations of the complete flag

variety F (n, n1, . . . , nl) to Gorenstein Fano toric varieties P (n, n1, . . . , nl) which admit

small resolutions of singularities. It is suggested in [126] that the Landau-Ginzburg

models of the complete flag variety can be expressed as a Laurent polynomial whose

Newton polytope is the polytope ∆(n1, . . . , nl, n) whose face fan determines the toric

variety P (n, n1, . . . , nl).

For any Fano complete intersection X in F (n1, . . . , nl, n), one obtains a degenera-

tion of X to a nef Cartier complete intersection in the toric variety P (n, n1, . . . , nl)

and hence conjectural expressions for the Landau-Ginzburg model of X can be

given in terms of the Givental Landau-Ginzburg model of complete intersections in

P (n, n1, . . . , nl). In [126], Przyjalkowski and Shramov give a method of constructing

birational maps between tori and X∨ so that the superpotential pulls back to a Laurent

polynomial for complete intersections in Grassmannians Gr(2, n). Here we will use

Theorem 4.2.20 to show that most nef complete intersections X in P (n, n1, . . . , nl)

admit an amenable toric degeneration, which express the Givental Landau-Ginzburg

model of X as a Laurent polynomial.

4.3.1 The structure of P (n1, . . . , nl, n)

In order to construct the toric variety to which F (n1, . . . , nl, n) degenerates, we begin

with an external combinatorial construction presented in [18]. We define a graph

Γ(n1, . . . , nl, n). Let us take an n×n box in the Euclidean plane with lower left corner

placed at the point (−1/2,−1/2). Let kl+1 = n− nl, let ki = ni − ni−1, and k1 = n1.

Along the diagonal of this box moving from the bottom right corner to the top left

corner, we place boxes of size ki × ki sequentially from 1 to l + 1. The region below

these boxes is then divided equally into 1× 1 boxes along grid lines, as shown in the

first part of Figure 4.1.

From this grid, we construct a directed graph with black and white vertices.

Assume that the centers of each of the 1× 1 boxes beneath the diagonal are at integral

points in the (x, y) plane so that the center of the bottom left box is at the origin. At

the center of each 1× 1 box beneath the diagonal, we place black points. In each box
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Fig. 4.1 The grid, nodes and graph of Γ(2, 5, 8)
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B on the diagonal, we insert a white point shifted by (1/2, 1/2) from the bottom left

corner of B. See the second part of Figure 4.1 as an example.

We then draw arrows between each vertex u and any other vertex v which can be

obtained from u by a shift of v by either (1, 0) or (0,−1) directed from left to right

or from top to bottom, as in the third part of Figure 4.1. Let D be the set of black

vertices, and let S be the set of white vertices. In the language of [18], the elements

of S are called stars. Let E denote the set of edges of Γ(n1, . . . , nl, n). We will denote

the vertex at a point (m,n) ∈ Z2
≥0 by vm,n and an arrow between points vm1,n1 and

vm2,n2 by (vm1,n1 → vm2,n2). We have functions

h : E → D ∪ S and t : E → D ∪ S

assigning to an arrow the vertex corresponding to its head and tail respectively.

The polytope ∆(n1, . . . , nl, n) is then constructed as a polytope in the lattice

M = ZD as the convex hull of points corresponding to edges E, which we construct

as follows. If d ∈ D, then let ed be the associated basis vector for M , and formally

define es to be the origin for s ∈ S. If α is an edge of Γ(n1, . . . , nl, n), then to α, we

associate the point in M given by

pα = eh(α) − et(α).

Definition 4.3.1. The polytope ∆(n1, . . . , nl, n) is the convex hull of the points pα

for all α ∈ E.

We rapidly review properties of ∆(n1, . . . , nl, n). The toric variety P (n1, . . . , nl, n)

is toric variety associated to the fan over faces of ∆(n1, . . . , nl, n), and it has torus

invariant Weil divisors associated to each vertex v, which correspond directly to the

points pα for α ∈ E. We will refer to the divisor corresponding to the arrow α as Dα.

Torus invariant Cartier divisors
∑

α∈∆[0] nαDα correspond to piecewise linear

functions φ which are Σ-linear so that φ(qα) = nα for all qα. In Lemma 3.2.2 of [18],
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Fig. 4.2 Roof paths of Γ(2, 5, 8) connecting sequential white vertices.

Cartier divisors which generate Pic(P (n1, . . . , nl, n)) are given. We will now describe

these divisors.

Definition 4.3.2. A roof Ri for i ∈ {1, . . . , l} is a collection of edges which have

either no edges above or to the right, and which span a path between two sequential

white vertices of Γ(n1, . . . , nl, n).

Examples of roofs and the associated paths in Γ(n1, . . . , nl, n) are shown in Figure

4.2. Associated to each roof is a set of divisors. Let α be an edge in Ri and let U(α)

be the collection of edges either directly below α if α is a horizontal arrow, or directly

to the left of α if α is a vertical arrow. If Dβ is the Weil divisor of P (n1, . . . , nl, n)

corresponding to the arrow β then it is proven in Lemma 3.2.2 of [18] that the Weil

divisor

Hα =
∑

β∈U(α)

Dβ

is nef and Cartier, and that if we take two edges α and α′ in the same roof Ri, then

Hα is linearly equivalent to Hα′ . We define Li to be the line bundle on P (n1, . . . , nl, n)

associated to the divisor Hα for α any arrow in Ri. There is an embedding

ψ : P (n1, . . . , nl, n) ↪→ PN1−1 × · · · × PNl−1

where Ni =
(
n
ni

)
. This map is comes from the product of the morphisms determined

by each Li (see Theorem 3.2.13 of [18]). By work of Gonciulea and Lakshmibai [63],
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the Plücker embedding

ϕ : F (n1, . . . , nl, n) ↪→ PN1−1 × · · · × PNl−1

gives a flat degeneration to the image of ψ. The divisors Ci on F (n1, . . . , nl, n) obtained

by pulling back PN1−1×· · ·×hi×· · ·×PNl−1 where hi is a generic hyperplane in PNi−1

along ϕ form the Schubert basis of the Picard group of F (n1, . . . , nk, n), and the ample

cone is the interior of the cone generated over R≥0 by classes Ci (see Proposition 1.4.1

of [26]). Furthermore, the anticanonical bundle divisor of F (n1, . . . , nl, n) is given by

−KF =
l∑

i=1

miCi.

Here mi is the number of edges in the ith roof of Γ(n, n1, . . . , nl). We choose multi-

degrees di = (d
(1)
i , . . . , d

(l)
i ) for integers 1 ≤ i ≤ k so that

∑k
i=1 d

(j)
i < mj . Let d

denote this set of multidegrees. Then let Zdi
be the intersection of F (n1, . . . , nl, n)

with a generic divisor of multi-degree di in PN1−1 × · · · ×PNl−1 under the emebedding

ϕ. The complete intersection Xd in F (n1, . . . , nk, n) of the divisors Zdi
is Fano, since

by the adjunction formula, −KX =
(∑l

i=1 niCi

)
|X for ni = mi −

∑k
j=1 d

(i)
j > 1 is

the restriction of a very ample divisor on F (n1, . . . , nl, n).

If we keep the divisors Zdi
fixed and let F (n1, . . . , nl, n) degenerate to P (n1, . . . , nl, n),

we obtain a natural degeneration of Xd to a generic complete intersection X ′
d
in

P (n1, . . . , nl, n) cut out by the vanishing locus of a non-degenerate global section of⨁l
i=1O(

∑k
j=1 L

d
(i)
j

j ).

We may now associate X ′
d
to a nef partition of ∆(n1, . . . , nl, n). For each di, choose

a set Ui,j of d
(j)
i vectors α ∈ Rj in such a way that the sets Ui,j have pairwise empty

intersection and so that no Ui,j contains an arrow α so that h(α) is a white vertex.

It is possible to choose sets this way since
∑k

i=1 d
(j)
i < mj . Let Ui = ∪l

j=1Ui,j .

Thus we have divisors

Hi =
∑
α∈Ui

Hα
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which are nef Cartier divisors on P (n1, . . . , nl, n) linearly equivalent to the divisors

Zdi
restricted to P (n1, . . . , nl, n) in PN1−1 × · · · × PNl−1. Furthermore, Hi correspond

to a nef partition of ∆(n1, . . . , nl, n). Let Uk+1 = (∪l
i=1Ri) \ (∪k

i=1Ui). Note Uk+1

contains all arrows α with h(α) a white vertex. Then the sets

Ei :=
⋃
α∈Ui

U(α)

define a nef partition of ∆(n1, . . . , nl, n). We have the standard generating set of

regular functions on (C×)D written as xm,n associated to black vertices vm,n of

Γ(n1, . . . , nl, n). The monomial associated to an arrow α is

xα =
xh(α)

xt(α)

and we define the Givental Landau-Ginzburg mirror of Xd to be the complete inter-

section X∨
d

1 =
∑
α∈Ui

aαx
α

for 1 ≤ i ≤ k equipped with superpotential

w =
∑

α∈Uk+1

aαx
α.

Here the coefficients aα should be chosen so that they satisfy the so-called box equations

and roof equations of Section 5.1 of [18].

4.3.2 Associated amenable collections

An element ℓ of N = Hom(M,Z) is determined by the number that it assigns to each

generator of M . Since we have associated to each black vertex of Γ(n1, . . . , nl, n) a

generator ed, and we have formally set es to be the origin for s ∈ S a white vertex, an

element of N just assigns to each black vertex of Γ(n1, . . . , nl, n) some integer, and

assigns the value 0 uniformly to all white vertices. To the points in ∆(n1, . . . , nl, n)
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determined by edges α of Γ(n1, . . . , nl, n), the linear operator ℓ assigns the number

ℓ(pα) = ℓ(eh(α))− ℓ(et(α)).

Therefore, each ℓ ∈ N is simply a rule that assigns to each black vertex of Γ(n1, . . . , nl, n)

an integer so that the resulting value associated to the arrows in each Ej is (−1),

takes non-negative values elsewhere, and takes the value 0 on Ek for k < j. Our task

now is to choose carefully an amenable collection of vectors associated to a given

nef partition. We will first describe this process for a single α in Ri. There are two

distinct cases to deal with:

(i) The edge α is horizontal and t(α) and h(α) are black vertices.

(ii) The edge α is vertical.

We treat these cases separately then combine them to produce the desired function. Let

us take two white vertices of Γ(n1, . . . , nl, n) located at points (m0, n0) and (m1, n1)

so that there is no white vertex (m2, n2) with m0 ≤ m2 ≤ m1 and n1 ≤ n2 ≤ n0, and

let α be an edge in the roof between (m1, n1) and (m2, n2).

(i) Let α be a vertical arrow so that α = (vm,n → vm,n−1) for m0 ≤ m ≤ m1 − 1

and n1 − 1 ≤ n ≤ n0. Then we define the function ℓα so that

ℓα(e(i,j)) =

⎧⎨⎩ −1 if i ≤ n1 − 1 and j ≤ m− 1

0 otherwise

We can check the value of ℓα on vertical arrows

ℓα(e(i,j))− ℓα(e(i,j−1)) =

⎧⎨⎩ −1 if j = n

0 otherwise

and on horizontal arrows,

ℓα(e(i,j))− ℓα(e(i+1,j)) =

⎧⎨⎩ 1 if i = m1 − 1

0 otherwise
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Thus ℓα takes value (−1) only on elements of U(α) and takes positive values

only at arrows (vn1−1,j → vn1,j).

(ii) Now let us take some vector α ∈ Ri so that α = (vm,n0−1 → vm+1,n0−1) for

m0 ≤ m ≤ m1 − 2. Define ℓα on the basis e(i,j) so that

ℓα(e(i,j)) =

⎧⎨⎩ −1 if m+ 1 ≤ i ≤ m1 − 1 and j ≤ n0 − 1

0 otherwise

Thus

ℓα(e(i,j))− ℓα(e(i+1,j)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if i = m

1 if i = m1 − 1

0 otherwise

and for any vertical arrow,

ℓα(e(i,j))− ℓα(e(i1,j)) = 0

Examples of ℓα for both vertical and horizontal arrows α are shown in Figure 4.3.

Thus we have chosen ℓα ∈ N for each α ∈ Ri so that h(α) is not a white vertex, in

such a way that ℓα takes value (−1) only at arrows in U(α) and which takes positive

values only at horizontal arrows (vm0−1,j → vm0,j). Thus for any arrows α1 ∈ Ri and

α2 ∈ Rj for which h(αi) is not a white vertex, we have ℓα1(α) = 0 for all α ∈ U(α2)

and ℓα2(α) = 0 for all α ∈ U(α1).

Now let us choose some (k + 1)-partite nef partition of ∆(n1, . . . , nl, n) given by

multidegrees di = (d
(i)
1 , . . . , d

(i)
r ) so that

∑k
i=1 d

(i)
j < mi. Then, as in Section 4.3.1, we

may choose disjoint collections Uj of vectors in the union of all roofs ∪r
i=1Rj so that

Uj ∩ Ri is of size d
(j)
i and so that for all Uj there is no α ∈ Uj for which h(α) is a

white vertex. Define

ℓUj =
∑
α∈Uj

ℓα.

and let E1, . . . , Ek+1 be the nef partition described in Section 4.3.1 associated to the

sets Ui.
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Fig. 4.3 Functions ℓαi associated to a horizontal and vertical arrows α1, α2 ∈ R1

respectively. Vertices and arrows which have not been assigned numbers correspond
to vertices and arrows to which ℓα assigns the number 0.
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Proposition 4.3.3. If we have a (k + 1)-partite nef partition as described in the pre-

ceding paragraph, then the collection of vectors V = {ℓU1 , . . . , ℓUk
} forms an amenable

collection of vectors subordinate to the chosen (k + 1)-partite nef partition.

Proof. It is enough to show that ℓUi(β) = 0 for any β ∈ U(α) for α ∈ Uj and j ̸= i.

However, this follows easily from the fact that each ℓα takes the value (−1) at β ∈ U(α),

positive values on arrows in U(δ) with h(δ) a white vertex and 0 otherwise. Thus ℓUj

takes values (−1) only at arrows β ∈ U(α) for α ∈ Uj and positive values on arrows

in U(δ) with h(δ) a white vertex and 0 otherwise. We have that U(α) ∩ U(δ) = ∅

if α ̸= δ, thus since Ui contains no arrow δ with h(δ) a white vertex, ℓUi(β) = 0 if

α ∈ U(α) and α ∈ Uj with j ̸= i.

Therefore, we may conclude, following Theorem 4.2.20, that

Theorem 4.3.4. Let X ′
d
be a Fano complete intersection in P (n1, . . . , nl, n) deter-

mined by a set of multi-degrees d. Then X ′
d
admits a degeneration to a weak Fano

toric variety XΣ with at worst Gorenstein singularities. Furthermore, the Givental

Landau-Ginzburg model of X ′
d
admits a torus map ϕd so that the pullback of the

superpotential w along ϕd is a Laurent polynomial with Newton polytope ∆ so that

X∆ = XΣ.

Example 4.3.5. We conclude with a non-trivial example of our method at work.

Let us take the partial flag manifold F (1, 2, 5), and we will compute the Laurent

polynomial associated to a Fano hypersurface in this Flag manifold. First, we have

variables x0,1, x0,0, x1,1, x1,0, x2,1, x2,0 and x3,0, and we choose the nef partition of

∆(1, 2, 5) associated to the roof-paths of length 3 and 1 in each block (in other words

the multi-degree d is just (3, 1)). This nef partition corresponds to the following

Givental Landau-Ginzburg model,

1 = x0,1 +
x0,0
x0,1

+
x1,0
x1,1

+
x2,0
x2,1

+ x3,0 +
x1,1
x0,1

+
x2,1
x1,1

+
x1,0
x0,0

+
x2,0
x1,0

equipped with potential

w =
1

x2,1
+

1

x3,0
+
x3,0
x2,0

.
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The method described in Proposition 4.3.3 produces an amenable collection with only

one element, which is given by

v = −e∗(0,1) − 2e∗(0,0) − 2e∗(1,1) − 3e∗(1,0) − 4e∗(2,0) − e∗(3,0) − 3e∗(2,1)

which may be completed to a basis if we let v2 = e∗(0,0), v3 = e∗(1,1), v4 = e∗(1,0),

v5 = e∗(2,0) v6 = e∗(3,0) and v7 = e∗(2,1). Then in terms of this basis, the Givental

Landau-Ginzburg model looks like

1 =
1

y1
+
y2
y1

+
y4
y1y3

+
y5
y1y7

+
y6
y1

+
y3
y1

+
y7
y1y3

+
y4
y1y2

+
y5
y1y4

with potential

w =
y31
y7

+
y1
y6

+
y31y6
y5

.

Eliminating y1 from the first equation, we obtain

y1 = 1 + y2 +
y4
y3

+
y5
y7

+ y6 + y3 +
y7
y3

+
y4
y2

+
y5
y4

and thus

w =

(
1 + y2 +

y4
y3

+
y5
y7

+ y6 + y3 +
y7
y3

+
y4
y2

+
y5
y4

)
×

(
1

y6
+

(
1 + y2 +

y4
y3

+
y5
y7

+ y6 + y3 +
y7
y3

+
y4
y2

+
y5
y4

)2(y6
y5

+
1

y7

))

4.4 Further applications

Recently, Coates, Kasprzyk and Prince [34] have given a reasonably general method of

turning a Givental Landau-Ginzburg model into a Laurent polynomial under specific

conditions. We will show that all of their Laurent polynomials are cases of Theorem

4.2.16, and that all of the Laurent polynomials of Coates, Kasprzyk and Prince come

from toric degenerations. We will also comment on the extent to which we recover
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results of Ilten Lewis and Przyjalkowski [76], and mention how our results relate to

geometric transitions of toric complete intersection Calabi-Yau varieties.

4.4.1 The Przyjalkowski method

Here we recall the Przyjalkowski method as described by Coates, Kasprzyk and

Prince in [34] and show that their construction can be recast in terms of amenable

toric degenerations. We will conclude that if the Przyjalkowski method is applied

when Y∆ is a Fano toric variety, then results of Section 4.2.5 imply that all of the

Laurent polynomials obtained in [34] correspond to amenable toric degenerations of

the complete intersection X.

We begin with a smooth toric Fano variety Y∆ obtained from a reflexive polytope

∆ ⊆M ⊗Z R with M a lattice of rank m. Then we have an exact sequence

0 → Hom(M,Z) → ZN (mij)−−−→ Pic(Y∆) → 0 (4.8)

where the vertices of ∆ are given an ordering and identified with elements of the set

{1, . . . , N} and where Pic(Y∆) is the Cartier divisor class group of Y∆. We make the

following choices: let E be a a subset of {1, . . . , N} corresponding to a set of torus

invariant divisors which generate Pic(Y∆) and let S1, . . . , Sk be disjoint sets subsets

of {1, . . . , N} whose corresponding divisors may be expressed as non-negative linear

combinations in elements of divisors corresponding to elements of E. Assume that

each Si is disjoint from E. Torus invariant divisors of Y∆ correspond to vertices of

∆. The method of Hori-Vafa [74] for producing Landau-Ginzburg models for X is

then applied. This construction was described in Section 4.2.4, but we repeat it here

using the notation of [34]. Take variables xi for 1 ≤ i ≤ N , which can be though of as

coordinates on the torus (C×)N , and impose relations

qℓ =

m∏
j=1

x
mℓj

j
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for each ℓ ∈ E and qℓ a variable in C×, and equip the associated toric subvariety of

(C×)N with the superpotential

w =
N∑
i=1

xi

By assumption, we have that elements of E form a basis of Pic(Y∆). Therefore, the

matrix (mij) can be written as the identity matrix when restricted to the subspace

of ZN spanned by elements in E. Since the sequence in Equation 4.8 is exact the

elements {e1, . . . , en} of E are part of a basis {e1, . . . , en, un+1, . . . , uN} of ZN . In

this basis, we have

qℓ =
m∏
j=1

x
mℓj

j = xℓ

N∏
j=1,i ̸=ℓ

x
mℓj

j

and thus we obtain the relations

xℓ =
qℓ∏N

j=1,j ̸=ℓ x
mℓj

j

.

The superpotential for Y∆ then becomes

w =
∑
ℓ∈E

(
qℓ∏N

j=1,j ̸=ℓ x
mℓj

j

)
+
∑
i/∈E

xi (4.9)

The monomials in w correspond to the vertices of ∆, and we have eliminated variables

corresponding to elements of E. Since E has cardinality equal to rank (Pic(Y∆)), the

superpotential w is expressed in terms of n variables. All values mij involved in the

expression above are non-negative if j ∈ Si for some 1 ≤ i ≤ k, since we have chosen

S1, . . . , Sk to be non-negative linear combinations in Pic(Y∆) of elements in E.

The Givental Landau-Ginzburg model of X is then given by the subspace X∨ of

(C×)N cut out by equations

1 =
∑
j∈Si

xj for 1 ≤ i ≤ k.
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Equipped with the superpotential obtained by restricting w to X∨. This agrees with

the notion of Givental Landau-Ginzburg model presented in Section 4.2 up to a

translation by the constant k.

At this point, the authors of [34] choose an element si ∈ Si for each 1 ≤ i ≤ k and

then make the variable substitutions for each ℓ ∈ Si

xℓ =

⎧⎪⎪⎨⎪⎪⎩
yℓ

1 +
∑

j∈Si,j ̸=si
yj

if ℓ ̸= si

1

1 +
∑

j∈Si,j ̸=si
yj

if ℓ = si

These expressions for xℓ in terms of yj then parametrize the hypersurfaces defined by

the equations

1 =
∑
j∈Si

xj .

Since all mij in Equation 4.9 are non-negative for j ∈ ∪k
i=1Si, substitution turns w

into a Laurent polynomial expressed in terms of n− k variables, yℓ for ℓ ∈ ∪k
i=1Si and

xj for j ∈ {1, . . . , N} \ (∪k
i=1Si ∪ E).

4.4.2 Associated amenable collections

Now we rephrase Przyjalkowski’s method in terms of our discussion in Section 4.2.

Since the monomials of w correspond to vertices of ∆, the conditions on S1, . . . , Sk and

E restrict ∆ so that we may choose m vertices of ∆ which correspond to a spanning

set {e1, . . . , en} of M . Then the remaining vertices of ∆, and S1, . . . , Sk correspond

to subsets of this spanning set. Furthermore, the insistence on positivity of elements

of S1, . . . , Sk in terms of elements of E means that every vertex of E must be a sum

−
∑n

j=1mi,jej so that mi,j is positive for j corresponding to an element of ∪k
i=1Si.

Thus e1, . . . , en must actually span a maximal facet of ∆.

In other words, we have an n-dimensional polytope ∆ with simplicial face with

vertices {e1, . . . , en} a generating set for M so that Y∆ is a smooth Fano toric variety.

We have now chosen a partition of ∆[0] so that E1, . . . , Ek correspond to the vertices

to which elements of S1, . . . , Sk correspond and are thus composed of disjoint subsets



4.4 Further applications 137

of {e1, . . . , en}. The set Ek+1 is simply the complement ∆[0] \ ∪k
i=1Ei. Furthermore,

we have chosen Ei so that elements of u ∈ Ek+1 are written as u = −
∑n

j=1mi,jej

and mi,j ≤ 0 if ej ∈ Ei for 1 ≤ i ≤ k.

Proposition 4.4.1. The sets E1, . . . , Ek and Ek+1 form a nef partition of ∆.

Proof. By definition, this is a partition of vertices of ∆. It remains to show the

existence of convex Σ∆-piecewise linear functions compatible with this partition, but

this follows from the assumption that Y∆ is a smooth Fano toric variety, hence all

irreducible and reduced torus invariant Weil divisors in Y∆ are nef and Cartier.

The problem is then to show that there are vi in the lattice N = Hom(M,Z) so

that the method of Section 4.2 recovers the Laurent polynomial of [34].

Proposition 4.4.2. Let E1, . . . , Ek+1 be a nef partition chosen as above. Then there

is an amenable collection of vectors V subordinate to this nef partition of ∆ so that

the resulting Laurent polynomial is the same as the Laurent polynomial obtained by

the Przyjalkowski method.

Proof. Let e∗1, . . . , e
∗
m be the basis of N dual to e1, . . . , ed

vi = −
∑
ej∈Ei

e∗j .

This choice of vi then satisfies ⟨vi, ej⟩ = −1 if ej ∈ Ei,⟨vi, ej⟩ = 0 if ej ∈ Ej for

j ≠ i, k + 1, and ⟨vi, ρ⟩ ≥ 0 for ρ ∈ Ek+1. Thus v1, . . . , vk forms an amenable set of

vectors. To see that this amenable collection of vectors recovers the Laurent polynomial

coming from the Przyjalkowski method, we must choose vectors vk+1, . . . , vn ∈ N

so that v1, . . . , vn form a basis of N . Here we use the choice of si ∈ Si. Each si

corresponds to some vertex of ∆ represented by a basis vector of M which we may

assume is given by ei up to re-ordering of the basis of M . It is then easy to check that

{v1, . . . , vk} ∪ {vk+1 = e∗k+1, . . . , vn = e∗n} form a basis for the lattice N . In terms of
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this basis, we have

1 =
∑
ρ∈Ei

⎛⎝k+1∏
j=1

x
⟨vj ,ρ⟩
i

⎞⎠ =
1

xi
+

∑
ej∈Ei,j ̸=i

xj
xi

and thus we have a torus map

ϕV : (C×)n−k 99K X∨

parametrizing X∨ given by variable assignment

xi =

⎧⎨⎩ 1 +
∑

ej∈Ei,j ̸=i yj if 1 ≤ i ≤ k

yi otherwise

This is expressed in torus coordinates which are dual to the basis v1, . . . , vn. This is,

of course different from the map used in the Przyjalkowski method, but only because

we have changed to a basis dual to v1, . . . , vn and not the basis e∗1, . . . , e
∗
n. Changing

basis so that we return to the standard basis with which we began, we must make the

toric change of variables on (C×)n

xj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zj
zi

if ej ∈ Ei for 1 ≤ i ≤ k

1

zj
if 1 ≤ j ≤ k

zj otherwise

In these coordinates, ϕ is written as

zj =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yj
1 +

∑
ej∈Ei,j ̸=i yj

if ej ∈ Ei for 1 ≤ i ≤ k

1

1 +
∑

ej∈Ei,j ̸=i yj
if 1 ≤ j ≤ k

yj otherwise

which is precisely the embedding given by the Przyjalkowski method.
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Of course, as a corollary to this, Theorem 4.2.20 allows us to conclude that the

Przyjalkowski method produces toric degenerations of the complete intersection with

which we began.

Theorem 4.4.3. Let Y∆ be a smooth toric Fano manifold and let X be a Fano

complete intersection in Y . If the Givental Landau-Ginzburg model of X becomes a

Laurent polynomial with Newton polytope ∆′ by the Przyjalkowski method, then X

degenerates to the toric variety X∆′.

4.4.3 Relation to [76]

Perhaps it now should be mentioned how this work relates to work of Przyjalkowski

[123] and Ilten, Lewis and Przyjalkowski [76]. In their situation, they begin with

a smooth complete intersection Fano variety X in a weighted projective space

WP(w0, . . . , wn). By Remark 8 of [123], we may assume that w0 = 1, and hence

the polytope ∆ defining WP(1, . . . , wn), has vertices given by the points e1, . . . , en and

−
∑n

i=1wiei for {e1, . . . , en} a basis of M . Then the Przyjalkowski method may be

applied, essentially verbatim, letting S1, . . . , Sk correspond to subsets of the vertices

{e1, . . . , en} and E = {−
∑n

i=1wiei}.

Then the amenable collection constructed in the proof of Proposition 4.4.2 is given

by

vi = −
∑
j∈Si

e∗j

produces a Laurent polynomial associated to the Givental Landau-Ginzburg model

identical to those constructed by Przyjalkowski in [123], up to a toric change of basis.

Proof of this is essentially identical to the proof of Proposition 4.4.2. Since Przy-

jalkowski assumes that the divisors of WP(1, w1, . . . , wn) which cut out X are Cartier,

we have that X is associated to a Q-nef partition E1, . . . , Ek+1 where E1, . . . , Ek are

Cartier. This allows us to apply Theorem 4.2.20 to show

Proposition 4.4.4. There is a degeneration of each smooth Fano weighted projective

complete intersection to a toric variety XΣ so that the convex hull of the ray generators
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of Σ is a polytope equal to the Newton polytope of the Laurent polynomial associated

to X in [123].

This is a weaker version of the theorem proved in [76].

Theorem 4.4.5 ([76] Theorem 2.2). Let ∆f be the Newton polytope of the Laurent

polynomial associated to a smooth Fano weighted projective complete intersection X in

[123]. Then there is a degeneration of X to P̃(∆f ), as defined in Section 1.1 of [76].

The difference between these two statements is that Proposition 4.4.4 shows that

X degenerates to a toric variety which is possibly a toric blow-up of the variety to

which Theorem 4.4.5 shows that X degenerates.

4.4.4 Geometric transitions of Calabi-Yau varieties

Readers interested in compact Calabi-Yau varieties, should note that we may reinter-

pret the work in Section 4.2 as a general description of geometric transitions of toric

complete intersection Calabi-Yau varieties.

We note that there is a reinterpretation of the map ϕV : (C×)n−k 99K (C×)n as a

section of the toric morphism πV : (C×)n → (C×)n−k given by

(x1, . . . , xn) ↦→ (xk+1, . . . , xn).

which sends the subscheme of X∨ cut out by the equations w − λ for some complex

value λ to the subscheme of (C×)n−k cut out by the vanishing locus of ϕ∗V w − λ in

(C×)n−k. Thus we obtain a birational map between the fibers of w, and fibers of the

Laurent polynomial ϕ∗V w which may be compactified to anticanonical hypersurfaces

in X(∆ϕ∗
V

w)◦ .

Note that if E1, . . . , Ek+1 is a nef partition of a Fano toric variety determined by a

reflexive polytope ∆, then E1, . . . , Ek+1 determine a Calabi-Yau complete intersection

Z in Y∆, which is precisely an anticanonical hypersurface in the complete intersection

quasi-Fano variety X determined by E1, . . . , Ek. According to Batyrev and Borisov

[17], there is a reflexive polytope ∇ determined by E1, . . . , Ek+1 and a dual (k + 1)-
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partite nef partition of Y∇ which determines a complete intersection Calabi-Yau variety

Z∨ which is called the Batyrev-Borisov mirror dual of Z.

It is well known [62] that the fibers of the Givental Landau-Ginzburg model of X

may be compactified to complete intersections in Y∇, and that these compactified

fibers are the Batyrev-Borisov mirror dual to anticanonical hypersurfaces Z in X.

Now if we degenerate the homogeneous equations in the coordinate ring of Y∆

defining X to equations defining some toric variety X∆V
, then we obtain simultaneous

degenerations of anticanonical hypersurfaces Z in X to anticanonical hypersurfaces

Z ′ of X∆V
. In general, anticanonical hypersurfaces of X∆V

are more singular than

anticanonical hypersurfaces of X.

Classically, mirror symmetry predicts that there is a contraction of Z∨ → (Z ′)∨

which is mirror dual to the degeneration Z ⇝ Z ′ where Z ′ and (Z ′)∨ are mirror dual.

Since Z ′ is a toric hypersurface, the contracted variety (Z ′)∨ should be a hypersurface

in the toric variety X(∆V )◦ .

We deduce the following:

Theorem 4.4.6. Let Z be an anticanonical hypersurface in a quasi-Fano complete

intersection X in a toric Fano variety Y∆ determined by a nef partition E1, . . . , Ek+1

and so that E1, . . . , Ek determines the quasi-Fano variety X. Assume there is an

amenable collection of vectors subordinate to the nef partition E1, . . . , Ek+1 which

determines an amenable degeneration X ⇝ XΣV
where the convex hull of the ray

generators of ΣV is a reflexive polytope ∆V . Then Z degenerates to a hypersurface in

X∆V
, and there is a mirror birational map from Z∨ to an anticanonical hypersurface

in X(∆V )◦

Note that this is just a birational map, not necessarily a birational contraction. In

work of Fredrickson [56], it is shown that an associated birational contraction exists

in several cases, once one performs appropriate partial resolutions of singularities

on both Z∨ and (Z ′)∨. In [98], Mavlyutov showed that any toric variety X∆ with

a fixed Minkowski decomposition of ∆◦ can be embedded in a Fano toric variety Y

determined by the Cayley cone associated to the given Minkowski decomposition,
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and that anticanonical hypersurfaces in X∆ can be deformed to nondegenerate nef

complete intersections in Y . He then showed that a mirror contraction exists if the

degeneration of X to X∆ is obtained in this way.



Chapter 5

Existence of toric degenerations

5.1 Introduction

In [46], the relationship between degenerations of a complete intersection X in a toric

variety to a binomial complete intersection and the structure of the Landau-Ginzburg

mirror of X was investigated. A particular case of the results in [46] occurs when ∆ is

a reflexive polytope and E1, . . . , Ek+1 is a partition of the vertices of ∆. Let Σ∆ be the

fan over faces of ∆. Such a partition is called a nef partition if there are Σ∆-piecewise

linear upper convex functions φi so that φi(ρ) = 1 if ρ ∈ Ei and φi(ρ) = 0 if ρ /∈ Ei.

Definition 5.1.1. A collection v1, . . . , vk of elements of N = Hom(M,Z) is called an

amenable collection of vectors subordinate to a nef partition E1, . . . , Ek+1 if

1. ⟨vi, ρ⟩ = −1 for any ρ ∈ Ei.

2. ⟨vi, ρ⟩ = 0 for any ρ ∈ Ej and j < i.

3. ⟨vi, ρ⟩ ≥ 0 for any ρ ∈ Ej and j > i.

By general results in toric geometry, we have that each vertex ρ of ∆ determines a

torus invariant divisor Dρ in P∆, and that the line bundle Li := OP∆
(
∑

ρ∈Ei
Dρ) is a

semi-ample line bundle on P∆. If we let si be a generic global section of H0(P∆,Li),

then the complete intersection subvariety X of P∆ determined by the simultaneous

143



5.1 Introduction 144

vanishing of s1, . . . , sk has effective anticanonical bundle Lk+1|X . In [46] it is proven

that

Theorem 5.1.2 ([46, Theorem 2.15 ]). If X is a complete intersection in P∆ deter-

mined by a nef partition E1, . . . , Ek+1 of ∆ as above, and there exists an amenable

collection V subortinate to this nef partition, then there is a degeneration X ⇝ XV

of X to a Gorenstein toric variety XV which is a partial crepant resolution of a

Gorenstein toric Fano variety.

In Section 5.2 we will prove that

Theorem 5.1.3. If the line bundle Lk+1 is sufficiently ample then there exists an

amenable collection subordinate to E1, . . . , Ek+1.

The phrase “sufficiently ample” will be clarified in Section 5.2, but it is a con-

dition that includes Lk+1 being ample and implies that X is Fano. Theorem 5.1.3

is consistent with a conjecture of V. Przyjalkowski [123] which states that if X is a

smooth Fano variety then it admits a degeneration to a toric variety. Theorem 5.1.3

applies not just to smooth varieties, but arbitrary Fano complete intersections in toric

varieties and should be thought of as support for this conjecture.

5.1.1 Organization

This chapter is organized as follows. In section 5.2, we deal with all of the relevant

combinatorics and provide a proof of Theorem 5.1.3. In Section 5.3, we interpret

Theorem 5.1.3 in terms of geometry. On the way to this, we provide sufficient criteria

for a hypersurface in a toric variety to be Fano. We use this criteria to construct

examples X of Fano fourfolds in smooth toric Fano fivefolds P∆ so that −KX is

the restriction of a nef and big but not ample divisor in P∆. In Section 5.4, we use

Theorem 5.1.3 to give a short proof that all Fano threefolds with Picard rank greater

than 1 admit degenerations to toric varieties.
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5.2 Combinatorics

In this section, we will provide a lightning (but not very enlightening) overview of some

relevant combinatorial ideas and describe some of their relations to toric geometry.

Fix a lattice M of rank d, and let N = Hom(M,Z). Let MR =M ⊗ R and similarly,

NR = Hom(M,R). The origin in M will be denoted 0M and similarly, the origin in

N will be denoted 0N . We will denote the pairing between NR and MR by ⟨•, •⟩. If

we have point sets A1 and A2 in M , then we denote by A1 +A2 the set

{a1 + a2 : a1 ∈ A1, a2 ∈ A2}

which we call the Minkowski sum of A1 and A2. We say that ∇1 is a Minkowski

summand of ∇ if there is some integer n and a polytope ∇2 so that ∇1 +∇2 = n∇.

We denote by Conv(A1) the convex hull of points in A1

A polytope ∆ in MR is called a lattice polytope if all of its vertices are located at

points of M and reflexive if its polar polytope

∆◦ = {σ ∈ NR : ⟨σ, ρ⟩ ≥ −1 for every ρ ∈ ∆}

is also integral. We will let ∆[i] be the disjoint union of all dimension i strata of ∆. A

facet of ∆ will be any element of ∆[d− 1], and a vertex is any element of ∆[0]. To a

polytope ∆ containing 0M , we associate a fan Σ∆ whose dimension n cones are cones

over the elements of ∆[n− 1]. This is called the fan over faces of ∆.

A nef partition of ∆ is partition of ∆[0] into subsets E1, . . . , Ek+1 so that there

exist continuous upper convex functions φi which are linear on cones of Σ∆, which

take integer values at points in M and so that φi(ρ) = −1 if ρ is in Ei and φi(ρ) = 0

if ρ is in Ej for j ̸= i. We will let ∆i = Conv(Ei ∪ 0M ).

To a nef partition, we can associated a dual nef partition which we denote

∇1, . . . ,∇k+1 which we obtain by the inequalities

∇i = {v ∈ NR : ⟨v, ρ⟩ ≥ φi(ρ)}.
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It has been shown by Borisov [23] that this is in fact a nef partition of ∇ :=

Conv(∪k+1
i=1∇i), and that ∇ is reflexive. We denote the partition of ∇[0] that we obtain

this way by F1, . . . , Fk+1. Furthermore, Borisov has shown that ∇1+ · · ·+∇k+1 = ∆◦.

Let P∆ be the toric variety associated to the fan Σ∆, in the sense that Σ∆ is the

fan determining P∆. There is a bijection between torus invariant divisors Dρ of P∆

and vertices ρ of ∆. If there is a piecewise Σ∆-linear integral function φ, then there is a

Cartier divisor
∑

ρ∈∆[0] φ(ρ)Dρ. Thus to any nef partition E1, . . . , Ek+1 of ∆, we have

invertible sheaves L1, . . . ,Lk+1 defined as Li = OP∆
(
∑

ρ∈Ei
Dρ). Since the piecewise

linear functions φi are convex, Li are semiample. Furthermore
⨂k+1

i=1 Li
∼= ω−1

P∆
.

To every line bundle L on P∆, we can associate a polytope ∇L in NR whose

integral points correspond to global sections of L which are equivariant with respect

to the natural action of (C×)d on P∆. If we take the line bundles Li defined above,

then ∇Li
is just ∇i.

Proposition 5.2.1 ([16]). A line bundle L of P∆ is ample if and only if ∆◦ is a

Minkowski summand of ∇L and ∇L is a Minkowski sumand of ∆◦.

Let v ∈ ∆ and let Q be a polytope in N , then define vQ,min = min{⟨σ, v⟩ : σ ∈ ∇1}.

In the following, assume we have a bipartite nef partition ∆1,∆2 of ∆ with dual nef

partiton ∇1,∇2. If v is in ∆ or Q, then we let Γ(v) be the smallest face of ∆ or Q

respectively which contains v on its interior. We will define

Γ(v)∨Q = {⟨σ, v⟩ = vQ,min : σ ∈ Q}

If we are given a face Γ, then let v be any point on the relative interior of Γ, we define

Γ∨
Q = {⟨σ, v⟩ = vQ,min : σ ∈ Q}.

The n-dimensional toric strata of P∆ correspond to the (d− n− 1)-dimensional strata

of ∆. If Γ is a (d− n− 1)-dimensional face of ∆, then the polytope associated to the

corresponding stratum is Γ(v)∨∆◦ for some point v on the interior of Γ. Thus:
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Proposition 5.2.2. Let L be a line bundle on P∆, and let YΓ be the toric stratum

associated to Γ. Then L |YΓ
is ample if and only if Γ(v)∨∆◦ and Γ(v)∨∇L

are summands

of one another.

Our goal will be to show that if one imposes strong enough ampleness criteria

upon the invertible sheaf Lk+1, then there is automatically an amenable collection

associated to the nef partition E1, . . . , Ek+1. This all hinges upon a strong criteria for

the existence of an amenable collection. First, we record a lemma.

Lemma 5.2.3. If ∇1, . . . ,∇k+1 are lattice polytopes, then every vertex of ∇1 + · · ·+

∇k+1 is a sum of vertices σi of ∇i.

Proof. The faces of ∇1+ · · ·+∇k+1 are Minkowski sums of faces of ∇1, . . . ,∇k+1. For

polytopes Q1, . . . , Qn, we have dimQj ≤ dim
∑n

i=1Qi for each 1 ≤ j ≤ n therefore,

vertices of ∇1 + · · ·+∇k+1 are sums of vertices of ∇1, . . . ,∇k+1.

It is easy to prove that:

Proposition 5.2.4. If Γ is a face of ∆i whose vertices are all in Ei, then Γ is a face

of ∆.

Proof. First, if v is in a face of ∆i, then there are vertices ρ1, . . . , ρm of ∆ so that

v =
∑m

j=1 ajρj ,
∑m

j=1 aj = 1 and for each j, 0 < aj ≤ 1. We know, by convexity, that

φi(v) ≥
∑m

j=1 ajφi(ρj) = 1. Since v ∈ ∆, we must have equality, and thus v is in the

boundary of ∆. Thus there is a minimal face Γ′ of ∆ containing v.

Then if η1, . . . , ηn are vertices of Γ, then there are numbers 0 < b1, . . . , bn ≤ 1 so

that v =
∑n

j=1 bjηj and
∑n

j=1 bj = 1. Since φi(v) = 1, it follows that φi(ηj) = 1 for

all j and hence ηj ∈ ∆i for all j and thus Γ = Γ′.

Theorem 5.2.5. Assume E1, E2 is a nef partition of ∆. Then an amenable collection

v subordinate to E1, E2 exists if and only if there is a face Γ of ∆ so that ∆1 =

Conv(Γ ∪ 0M ). One may choose v ̸= 0N to be a vertex of ∇1

Proof. Assume that there exists such an amenable collection, which in the bipartite

case is just a vector v ∈ N so that ⟨v, ρ⟩ = −1 for each ρ ∈ E1 and ⟨v, ρ⟩ ≥ 0 for each
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ρ ∈ E2. Thus there is a hyperplane of MR containing E1. By convexity of ∆1, the

result follows.

Conversely, assume that there is a face Γ of ∆ so that ∆1 = Conv(Γ ∪ 0M ). Let

σ be a vertex of ∆◦ so that σ∨ is a facet of ∆ containing Γ. Thus ⟨σ, ρ⟩ = −1 for

every ρ ∈ σ∨, and in particular for every ρ ∈ E1. We know that ∆◦ = ∇1 +∇2, and

therefore σ = σ1 + σ2 for σ1 a vertex of ∇1 and σ2 a vertex of ∇2 by Lemma 5.2.3.

Since ⟨σ1, ρ⟩ ≥ −1 for ρ ∈ E1 and ⟨σ2, ρ⟩ ≥ 0 for ρ ∈ E1, we must have ⟨σ1, ρ⟩ = −1

for all ρ ∈ E1 and ⟨σ2, ρ⟩ = 0 for ρ ∈ E1. Therefore σ1 satisfies the conditions of the

theorem.

Definition 5.2.6. Let E1, E2 be a bipartite nef partition of ∆ so that for every face

Γ of ∆1 which is a face of ∆ we have that Γ∨
∇2

and Γ∨
∆◦ are Minkowski summands of

one another. In this situation, we will say that E2 is E1-ample.

Let Θ be the unique face of ∇2 containing 0N on its relative interior. Note that Θ is

the only face of dimension dimΘ containing 0N .

Proposition 5.2.7. Assume that E2 is E1-ample, then there is a unique face Γ of

∆ of dimension d − 1 − dimΘ which is contained in ∆1, which is dual to Θ. Thus

∆1 = Conv(Γ ∪ 0M ).

Proof. If v1, . . . , vn are vertices of Θ, then let NΘ be the span of v1, . . . , vn in NR.

Since 0N is on the interior of Θ, we see that for each vi, there are positive real numbers

a1, . . . , an so that −vi =
∑n

j=1 aivi. Then since ⟨∇2,∆1⟩ ≥ 0, we must have ⟨vi, ρ⟩ = 0

for all ρ ∈ ∆1 and all v1, . . . , vn. Since v1, . . . , vn spans NΘ, we have ∆1 ⊆MΘ where

MΘ is used to denote the subspace of MR orthogonal to NΘ. Therefore if Γ is a face

of ∆1 then dimΓ ≤ d− 1− dimΘ.

Now we show that any face Γ of ∆ whose dual face in ∇2 is Θ is contained in ∆1.

Assume that there is some v ∈ ∆ which is contained in the interior of Γ, then Γ(v) = Γ.

Since Γ(v)∨∇2
= Θ contains 0N , it follows that v∇2,min = 0. Thus v is contained in ∆1

for any point v on the interior of Γ (by definition of ∆1) and hence Γ is contained in

∆1.
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Since any face Γ of ∆1 that is also a face of ∆ corresponds to a toric stratum of P∆

which is contained in some Dρ for ρ ∈ E1, we have that Γ∨
∇2

and Γ∨
∆◦ are Minkowski

summands of one another. Thus any face of ∆1 of dimension n which is a face of ∆

has unique dual face in ∇2 of dimension d− 1−n. If Γ is a face in ∆1 dual to Θ, then

dimΓ = d− 1− dimΘ, and such a face exists by the above paragraph. If Γ′ is a face

of dimension d− 1− dimΘ of ∆1, then by assumption, its dual has dimension dimΘ

and contains 0. Thus its dual is Θ. Therefore, there is exactly one face of ∆1 which is

a face of ∆ of dimension d− 1− dimΘ.

Combining Theorem 5.2.5 and Proposition 5.2.7, we conclude:

Corollary 5.2.8. If E2 is E1-ample, then there is an amenable collection subordinate

to E1, E2.

Let I = {1, . . . , k + 1}. For each subset J of I, we let EJ =
⋃

j∈J Ej . We make the

following observation.

Lemma 5.2.9. If E1, . . . , Ek+1 is a nef partition, then for any J ⊆ I, the partition

{Ei}i/∈J , EJ is also a nef partition with dual nef partition {∇j}j /∈J ,
∑

j∈J ∇j.

We will prove that under the condition that Ek+1 is EI\k+1-ample, one may deduce

the existence of an amenable collection subordinate to E1, . . . , Ek+1.

Theorem 5.2.10. Let E1, . . . , Ek+1 be a nef partition of ∆, and assume that Ek+1 is

EI\k+1-ample. Then there is an amenable collection subordinate to this nef partition.

Proof. By Proposition 5.2.7 there exists an amenable collection v subordinate to

EI\k+1, Ek+1, and by Theorem 5.2.5, v is a vertex of ∇I\k+1 =
∑k

i=1∇i. By Lemma

5.2.9, we may write v = v1 + · · ·+ vk for vertices vi of ∇i, hence vi ∈ N . If ρ ∈ Ej ,

then ⟨vi, ρ⟩ ≥ −1 if i = j and ⟨vi, ρ⟩ ≥ 0 if i ̸= j. Since v is an amenable collection

subordinate to EI\k+1, Ek+1, we have

⟨v1 + · · ·+ vk, ρ⟩ = −1,

for every ρ ∈ EI\k+1 and thus we must have ⟨vj , ρ⟩ = 0 for all j ̸= i and ⟨vi, ρ⟩ = −1.

Thus v1, . . . , vk provides an amenable collection subordinate to E1, . . . , Ek+1.
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Remark 5.2.11. Note that the amenable collections obtained in this way do not

depend upon ordering. This is not true in general.

5.3 Geometric interpretation

If X is a hypersurface in P∆ determined by the vanishing of a section s1 of H0(P∆,L1)

then X is linearly equivalent to the union of divisors ∪ρ∈E1Dρ, and thus there is a

flat degeneration of X to ∪ρ∈E1Dρ. It may be interesting to note that Theorem 5.2.5

can be rephrased as the fact that if there is a nef partition E1, E2 of ∆, then there

is an amenable collection subordinate to E1, E2 if and only if there is a unique toric

stratum of P∆ contained in ∩ρ∈E1Dρ.

If E1 is E2-ample, then the restriction of L2 to ∪ρ∈E1Dρ is ample, and thus this

variety is, in a sense, Fano. Note that if Lk+1 is in fact an ample divisor on P∆, then

Lk+1 is in particular EI\k+1-ample. Furthermore, since Lk+1|X = −KX , it follows

that X itself is Fano, where X is a complete intersection associated to E1, . . . , Ek.

Thus it follows that:

Corollary 5.3.1 (Corollary to Theorem 5.1.3). If Lk+1 is ample then X admits a

degeneration to a toric Gorenstein Fano variety.

A little thought shows that this recovers the exact form of the amenable collections

constructed in Section 4.3 in relation to the results of [34].

Remark 5.3.2. Corollary 5.3.1 suffices to recover Theorem 4.3.4 ([46, Section 3]).

Briefly, if Y is a partial flag variety, then the Plücker embedding of Y degenerates

to a toric variety Y ′ in a product of projective spaces P := Pr1 × · · · × Prn . The

anticanonical divisor of Y is the restriction of a multidegree (R1, . . . , Rn) hypersurface

for some integers 0 < R1, . . . , Rn. If X is a Fano complete intersection in Y , then

X is cut out by the intersection of Y ⊆ P with divisors Dj in P with multidegree

(dj1, . . . , d
j
n) for 1 ≤ j ≤ ℓ, so that

∑ℓ
i=1 d

ℓ
j < Rj .

The complete intersection X degenerates to a complete intersection X ′ in Y ′ by

letting the equations defining the Plücker embedding of Y degenerate to a set of
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binomial equations in the homogeneous coordinate ring of P, and X ′ is the restriction

of a multidegree (R1−
∑ℓ

i=1 d
i
1, . . . , Rn−

∑ℓ
i=1 d

i
n) divisor to X

′. This divisor is ample

on Y ′ by the condition that
∑ℓ

i=1 d
ℓ
j < Rj for all j, thus we may apply Theorem 5.1.3

to obtain a degeneration of X ′ to a parital crepant resolution of a toric Gorenstein

Fano variety. We note that this proof is even more oblique than that of Section 4.3

and infinitely more oblique than the results of [126].

Remark 5.3.3. Theorem 5.1.3 covers the case where P∆ is a complete intersection

of Cartier divisors in a toric Fano variety with only Gorenstein singularities and with

Picard rank 1. In the case where P∆ is a weighted projective space, the existence of such

degenerations is a special case of results obtained by Ilten, Lewis and Przyjalkowski

[76].

The condition that Ek+1 be EI\k+1-ample is a weakening of the condition that Ek+1

be ample. In the case where X is a hypersurface in P∆, we are able to argue that under

the condition that E2 is E1-ample, the restriction of L2 is ample when restricted to a

hypersurface in P∆ determined by the vanishing of a generic section of L1.

Proposition 5.3.4. If E2 is E1-ample, then L2|X = −KX is an ample line bundle

on X.

Proof. Let us take a pencil of hypersurfaces over a Zarsiki open subset U of A1 so

that the fiber over 0 is ∪ρ∈E1Dρ and the fiber over U \ 0 is generic. Then the total

space X of this pencil maps properly onto U and L2 can be pulled back to a line

bundle on X which is ample on the fiber over 0 by assumption. It is well known [70,

III1 Théorème 4.7.1] that if a line bundle on X is ample on the fiber Xt over t ∈ U ,

then there is an open subset V of U containing t so that this line bundle restricts

to an ample line bundle on Xs for every s ∈ V . Thus for a generic hypersurface X

linearly equivalent to ∪ρ∈E1Dρ, the anticanonical bundle −KX is ample.

One should view this as saying that a nice enough Fano hypersurface in P∆ must

admit a degeneration to a Gorenstein toric Fano variety. Here, by nice we mean that

the natural degeneration of X to a union of toric divisors in P∆ is itself Fano, in the

sense that its anticanonical bundle is ample.
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Proposition 5.3.4 hints that the proper way of thinking about amenable collections

is that they are ways of encoding deformations of unions of toric varieties with toroidal

crossings which correspond to toric Gorenstein varieties. In terms of the homogeneous

coordinate ring (see e.g. [36]) on P∆, which we denote C[{zρ}ρ∈∆[0]], we have that

∪ρ∈E1Dρ =

⎧⎨⎩∏
ρ∈E1

zρ = 0

⎫⎬⎭
and that the amenable collection v subordinate to E1, E2 is determines the toric

subvariety of P∆ determined by the homogeneous equation

∏
ρ∈E1

zρ +
∏
ρ∈E2

z⟨v,ρ⟩ρ = 0.

If v does not form an amenable collection, then the equation above is not homogeneous.

Remark 5.3.5. The converse of Proposition 5.3.4 does not hold. Let us take the

second Picard rank 3 example of Mori and Mukai [100]. According to [33], this is

a hypersurface in the toric variety with vertices ρ0, . . . , ρ6 given by columns of the

matrix ⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 1 1 0 −1

0 1 0 1 1 0 −1

0 0 1 −1 0 0 0

0 0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠
and associated to a nef partition E1 = {ρ1, . . . , ρ5} and E2 = {ρ0, ρ6}. The convex

hull of E1 is 4-dimensional, thus there can be no amenable collection subordinate to

E1, E2 by Theorem 5.2.5, and hence E2 is not E1-ample. Therefore, the associated

degeneration of X3.2 to a union of toric divisors cannot be smoothed to a Gorenstein

Fano toric variety in P∆.

In [34], a large number of new Fano fourfolds were constructed. To do this, the

authors started with a smooth Fano toric variety P∆ of dimension 4 + k associated to

a reflexive polytope ∆. They then take a nef partition E1, . . . , Ek+1 so that Ek+1 is
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associated to an ample divisor. They then conclude that the complete intersection of

nef divisors associated to E1, . . . , Ek is a smooth Fano fourfold.

Above, we have given a weaker criteria for a hypersurface in a toric Fano variety

to be Fano itself, from which it may be possible to construct new Fano fourfolds.

Indeed, in [33] several Fano threefolds were exhibited as complete intersections in toric

varieties associated to nef partitions whose anticanonical bundle is not the restriction

of an ample divisor of the ambient toric variety (for example, the Fano threefold

discussed in Remark 5.3.5). Thus one can expect that there exist complete intersection

Fano fourfolds which do not appear in the computations of [34]. Proposition 5.3.4

gives a way of determining whether a given hypersurface in a toric variety is Fano

without requiring that L2 be itself ample. The following example carries this out in

an example.

Example 5.3.6. Let us now construct a Fano fourfold hypersurface X in a smooth

toric variety P∆ which was not detected by the authors of [34] since the bundle L2 is

nef and big but not ample on P∆. We take the Fano toric fivefold associated to the

polytope ∆ in R5 with vertices ρ0, . . . , ρ7 at the columns of the matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 −1

0 1 0 0 0 0 0 −1

0 0 1 0 0 0 0 −1

0 0 0 1 −1 0 −1 −3

0 0 0 0 0 1 −1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Then P∆ has Picard lattice of rank 3. The homogeneous coordinate ring of P∆ has

variables z0, . . . , z7, and the class of zi = 0 in Pic(P∆) ∼= Z3 is given by the ith column

of the matrix ⎛⎜⎜⎜⎝
1 1 1 0 0 −1 −3 1

0 0 0 1 0 1 1 0

0 0 0 0 1 −1 −1 0

⎞⎟⎟⎟⎠
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in terms of a basis U, V,W of Z3 = Pic(P∆). The nef cone of P∆ is the cone

spanned by vectors −U + V −W,U, V . If we take the nef partition E1 = {ρ3, ρ5} and

E2 = {ρ0, ρ1, ρ2, ρ4, ρ6, ρ7}, then c1(L1) = −U + 2V −W and c1(L2) = U + V which

is contained in a face of the nef cone of P∆, hence is nef but not ample.

Now we check that E2 is actually E1-ample. To see this, it is enough to show that

for every ρ ∈ E1, the dual faces ρ∨∇2
and ρ∨∆◦ are Minkowski summands of one another.

This is a somewhat laborious computation which can be made much simpler by using

Sage [41]. In order to perform this computation, we compute the dual faces in the

standard way, and note that ρ∨∇2
is automatically a summand of ρ∨∆◦ . To see that the

converse is true, we use the fact that one can determine whether a polytope Q is a

Minkowski summand of P using the fact that

(P −Q) + P = Q

where the minus sign is used to denote Minkowski difference. Both Minkowski sum

and difference are functions built into Sage, hence this task can be reduced to a

computational one.

Now we can compute that (−KX)4 is equal to 205 by using toric intersection

theory theory functions built into Sage. One can check that there is no Fano fourfold

with degree 205 occurring in the list of [34].

According to Øbro [111], there are 866 smooth toric Fano varieties of dimension 5.

We have looked at all smooth toric Fano fivefolds with Picard ranks 1, 2 and 3, and

have computed all hypersurfaces associated to nef partitions E1, E2 for which E2 is

E1-ample, but L2 is not ample. In ranks 1 and 2, no such nef partitions exist, but in

the case of the 91 smooth Fano toric fivefolds with Picard rank 3, there is a number of

these hypersurfaces. We list them along with their (−KX)4 values in Table 5.1. We

have ignored cases where E1 is a single vertex because in this case, a section of L1

is a binomial hypersurface in P∆, thus it is itself a smooth Fano toric variety. Such

objects are of course classified by [89].
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Remark 5.3.7. Somewhat curiously, the only nef partitions that we found where E2

was E1-ample were in the case where E1 is a union of two vertices or a single vertex.

It would be interesting to know whether this is a structural property or simply a

coincidence in low dimension.

Remark 5.3.8. We note that the 13th entry in Table 5.2 is just P1 × P3, since the

ambient toric variety is just P3 × F1.

Remark 5.3.9. For all examples in Table 5.1, except for #4, there are known Fano

varieties with the same degree as that listed below, so we cannot say for certain

whether the Fano varieties that we have constructed are novel. On the other hand, to

the best of my knowledge, entry 4 in Table 5.2 is new.

5.4 Toric degenerations of Fano threefolds

In this section, we will show that all Fano threefolds of Picard rank greater than 2

admit flat degenerations to toric varieties. There are, roughly, three sets of Fano

varieties that we need to deal with.

1. Fano threefolds which are known smoothings of Fano toric varieties with small

resolvable singularities.

2. Fano threefolds which occur as complete inetersections in toric varieties.

3. Fano threefolds which are products of P1 and a del Pezzo surface.

4. None of the above.

The first class is known, by work of Galkin [60]. There are 40 families of Fano

threefolds with Picard rank 2, 3 or 4 which are known smoothings of small-resolvable

toric Fano threefolds. According to [33], there are only six Fano threefolds of Picard

rank greater than 1 which are not isomorphic to P1 × dP for some del Pezzo surface

dP, which cannot be obtained as a complete intersection in a toric variety. Most of

these are also smoothings of Fano toric varieties with small-resolvable singularities.

The fourth category listed above consists of just one Fano variety, which is called
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X2.14, the 14th Picard rank 2 example in the list of Mori-Mukai [100]. If we let B5 be

the complete intersection in Gr(2, 5) of three hyperplane sections under the Plücker

embedding, then X2.14 is the blow up of B5 in the union of two hyperplane sections,

which is an elliptic curve. In [33], the Fano X2.14 is also described as a hypersurface

of degree (1, 1) in B5 × P1.

It is tautological that Fano threefolds of class (1) admit degenerations to toric

Fano varieties. If X is in the third class, then there are known toric degenerations of

all del Pezzo surfaces, so there is nothing to prove. If X is in the second class and it is

a complete intersection of sections of line bundles L1, . . . ,Ld−3 on a toric variety of

dimension d determined by a reflexive polytope ∆, then if ω−1
P∆

⊗L −1
1 ⊗ · · · ⊗L −1

d−3 is

ample on P∆, then we know that X admits a toric degeneration by Theorem 5.1.3.

This is true in all cases of complete intersections except for:

2.1, 2.2, 2.3, 2.8, 3.1, 3.2, 3.4, 3.5, 3.14, 3.16, 4.2, 4.6,

Here the notation x.y refers to the yth entry in the table of rank x Fano threefolds

of Mori and Mukai [100]. The last four are smoothings of toric Fano threefolds with

only small resolvable singularities. Thus we have only eight Fano varieties for which

we need to prove that there exist toric degenerations. In the cases listed above, one

needs to show by hand that there exist appropriate amenable collections. These are

listed in Table 5.2. The case of X2.14 is more involved, but we will deal with it in

much the same way. This is done in Example 5.4.2.

Remark 5.4.1. Nathan Ilten has informed me that he has independently obtained

the same result by similar methods – using the expressions for Fano threefolds as

complete intersections in toric varieties in a number of cases and using ad hoc methods

in every other case.

Example 5.4.2 (X2.14). To see that X2.14 admits a degeneration to a toric variety,

we note that B5 is a smoothing of the small-resolvable toric variety determined by the
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polytope ∆ with vertices given by the columns of

⎛⎜⎜⎜⎝
1 0 0 −1 0 0 −1

0 1 0 0 0 −1 −1

0 0 1 0 −1 0 −1

⎞⎟⎟⎟⎠ .

Therefore, there is a degeneration of B5 × P1 to P∆ × P1 and X2.14 degenerates to a

hypersurface in P∆ × P1. There is a nef partition corresponding to this hypersurface.

The polytope ∆′ with vertices v0, . . . , v8 determined by columns of the matrix

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 −1 0 0 −1 0 0

0 1 0 0 0 −1 −1 0 0

0 0 1 0 −1 0 −1 0 0

0 0 0 0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

andX2.14 degenerates to a nef divisor corresponding to the vertices E1 = {v2, v3, v5, v6, v7}

of ∆′. It is then enough to show that such a hypersurface admits a subordinate

amenable collection. But the line bundle ω−1
X∆′ ⊗ L1 is ample, thus Theorem 5.1.3

suffices to show that such an amenable collection exists.

Finally, we state this as a theorem.

Theorem 5.4.3. If X is a Fano threefold, then X admits a degeneration to a toric

variety. If X has degree ≥ 10, then X admits a degeneration to a toric Gorenstein

Fano variety.

This of course follows from the result in rank 1 of [76] and the computations above.

Remark 5.4.4. The attentive reader will note that the results of [46] only guarantee

that there is a degeneration of X to a weak Fano partial crepant resolution X̃ ′ of a

Gorenstein Fano toric variety X ′. However, an argument communicated to me by

Nathan Ilten shows that if X is Fano, then one indeed obtains a flat degeneration of

X to the anticanonical model of X̃ ′, which is X ′ itself. Roughly, one takes the relative

anticanonical model of the total space of the degeneration of X to X̃ ′ and argues that

the resulting variety has X as the general fiber and X ′ as the special fiber.
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5.5 Tables
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# Weight matrix Weight of X E1 (−KX)4

1

⎛⎝ 1 1 1 0 0 −3 0 1
0 0 0 1 0 −1 1 0
0 0 0 0 1 1 0 0

⎞⎠ (0, 1, 1) [4, 6] 341

2

⎛⎝ 1 1 1 0 0 0 −3 1
0 0 0 1 0 1 1 0
0 0 0 0 1 −1 −1 0

⎞⎠ (0, 2,−1) [3, 5] 170

3

⎛⎝ 1 1 1 0 0 −3 1 1
0 0 0 1 0 −1 1 0
0 0 0 0 1 1 0 0

⎞⎠ (1, 1, 1) [4, 6] 260

4∗

⎛⎝ 1 1 1 0 0 −1 −3 1
0 0 0 1 0 1 1 0
0 0 0 0 1 −1 −1 0

⎞⎠ (−1, 2,−1) [3, 5] 205

5

⎛⎝ 1 0 0 0 0 0 −1 1
0 1 1 1 1 0 1 −1
0 0 0 0 0 1 0 1

⎞⎠ (1, 0, 1) [0, 5] 512

6

⎛⎝ 1 0 0 0 0 0 1 −1
0 1 0 0 0 0 −1 1
0 0 1 1 1 1 −2 3

⎞⎠ (0, 1, 3) [0, 7] 376

7

⎛⎝ 1 0 0 0 0 0 1 −1
0 1 0 0 0 0 −1 1
0 0 1 1 1 1 −1 2

⎞⎠ (0, 1, 2) [0, 7] 431

8

⎛⎝ 1 0 0 0 0 −1 1 0
0 1 1 1 0 −2 0 1
0 0 0 0 1 1 0 0

⎞⎠ (1, 0, 1) [4, 6] 376

9

⎛⎝ 1 0 0 0 0 −1 1 0
0 1 1 1 0 −2 1 1
0 0 0 0 1 1 0 0

⎞⎠ (1, 1, 1) [4, 6] 295

10

⎛⎝ 1 0 0 0 0 0 −1 1
0 1 1 1 1 0 −2 2
0 0 0 0 0 1 1 0

⎞⎠ (1, 2, 1) [5, 7] 240

11

⎛⎝ 1 0 0 0 0 −1 1 0
0 1 1 1 0 −1 0 1
0 0 0 0 1 1 0 0

⎞⎠ (1, 0, 1) [4, 6] 431

12

⎛⎝ 1 0 0 0 0 0 −1 1
0 1 1 1 1 0 −1 1
0 0 0 0 0 1 1 0

⎞⎠ (1, 1, 1) [5, 7] 350

13

⎛⎝ 1 0 0 0 0 0 −1 1
0 1 1 1 1 0 0 0
0 0 0 0 0 1 1 0

⎞⎠ (1, 0, 1) [5, 7] 512

Table 5.1 Examples of Fano fourfold hypersurfaces in smooth toric Fano fivefolds so
that L2 is not ample.
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# Polytope vertices (Q)-Nef divisors Amenable collection

2.1

⎛⎜⎜⎝
1 0 1 0 1 −1
0 1 1 0 1 −1
0 0 0 1 1 −1
0 0 0 0 3 −2

⎞⎟⎟⎠ E1 = {1, 2, 5, 6} v1 =

⎛⎜⎜⎝
0
−1
6
−2

⎞⎟⎟⎠
2.2

⎛⎜⎜⎝
1 0 0 0 2 −1
0 1 0 0 2 −1
0 0 1 0 −1 0
0 0 0 1 −1 0

⎞⎟⎟⎠ E1 = {1, 2, 3, 5} v1 =

⎛⎜⎜⎝
2
−1
−1
−1

⎞⎟⎟⎠
2.3

⎛⎜⎜⎝
1 0 1 0 1 −1
0 1 1 0 1 −1
0 0 0 1 1 −1

−1 −1 −2 −1 −5 4

⎞⎟⎟⎠ E1 = {1, 2, 4, 5} v1 =

⎛⎜⎜⎝
2
1
6
2

⎞⎟⎟⎠
2.8

⎛⎜⎜⎝
1 0 0 0 1 −1
0 1 0 0 1 −1
0 0 1 0 1 −1
0 0 0 1 −2 1

⎞⎟⎟⎠ E1 = {0, 1, 2, 3, 4} v1 =

⎛⎜⎜⎝
−1
−1
−1
−1

⎞⎟⎟⎠
3.1

⎛⎜⎜⎝
1 0 0 1 0 1 −1
0 1 0 1 0 1 −1
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0

⎞⎟⎟⎠ E1 = {1, 2, 3, 4, 5, 6} v1 =

⎛⎜⎜⎝
−1
−1
−1
−1

⎞⎟⎟⎠
3.2

⎛⎜⎜⎝
1 0 0 1 1 0 −1
0 1 0 1 1 0 −1
0 0 1 −1 0 0 0
0 0 0 0 0 1 −1

⎞⎟⎟⎠ E1 = {2, 5, 6} v1 =

⎛⎜⎜⎝
1
1
−1
−1

⎞⎟⎟⎠
3.4

⎛⎜⎜⎝
1 0 1 0 0 1 −1
0 1 1 0 0 1 −1
0 0 0 1 0 1 −1
0 0 0 0 1 −1 0

⎞⎟⎟⎠ E1 = {0, 2, 3, 4, 5} v1 =

⎛⎜⎜⎝
−1
0
−1
−1

⎞⎟⎟⎠

3.5

⎛⎜⎜⎜⎝
1 0 0 0 1 1 0 −1
0 1 0 0 1 1 0 −1
0 0 1 0 −1 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1

⎞⎟⎟⎟⎠ E1 = {3, 7}
E2 = {2, 6} v1 =

⎛⎜⎜⎜⎝
1
0
−1
1
−1

⎞⎟⎟⎟⎠ , v2 =

⎛⎜⎜⎜⎝
0
1
0
−1
0

⎞⎟⎟⎟⎠
Table 5.2 Amenable collections determining degenerations for Fano threefolds for
which no toric degenerations are guaranteed by other methods.
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Chapter 6

Calabi-Yau varieties and Tyurin

degenerations

6.1 Introduction

Here we will concern ourselves with a conjectural relationship between quasi-Fano

varieties, LG models and compact Calabi-Yau varieties. A variant of the construction

that we propose here has been described by Auroux [7] in detail in the case where V

is a double cover of a Fano variety X ramified over a smooth member of | − 2KX |,

and it is hinted at by Tyurin at the end of [141].

A Calabi-Yau manifold V can be built up from pairs of quasi-Fano manifolds X1

and X2. We require that Z be a smooth member of both | − KX1 | and | − KX2 |,

and that NZ/X1
and NZ/X2

be inverses of one another. By adjunction, Z is a Calabi-

Yau variety of dimension d − 1. We also require that there is some ample class D

in Pic(Z) so that there are ample classes D1 ∈ Pic(Y1) and D2 ∈ Pic(Y2) so that

D1|Z = D2|Z = D. Then we may take the variety which is a normal crossings union

of X1 and X2 meeting along Z, which we denote X1 ∪Z X2. A theorem of Kawamata

and Namikawa says that there exists a complex manifold V equipped with a map

π : V → U to a small analytic disc U so that π−1(0) = X1 ∪Z X2 and π−1(t) is a

smooth Calabi-Yau manifold for any t ∈ U \ {0}. Lee [95] has computed the Hodge
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numbers of π−1(t) in the case where X1 and X2 are smooth threefolds. Let us define

ρi : H
2(Xi,Q) → H2(Z,Q) for i = 1, 2 and define k = rank (Im(ρ1) ∩ Im(ρ2)).

Theorem 6.1.1. Let V be a Calabi-Yau threefold constructed as above. Then

• h1,1(V ) = h2(X1) + h2(X2)− k − 1

• h1,2(V ) = 21 + h1,2(X1) + h1,2(X2)− k.

I conjecture that the degeneration of V to X1 ∪Z X2 appears via mirror symmetry

as a fibration of the mirror W by K3 surfaces. In the next few sections, I will try

to justify this expectation by providing evidence from topology and toric geometry.

First, we will look at the LG models of X1 and X2 and show that mirror symmetry

suggests that the condition that −KX1 |Z −KX2 |Z = 0 implies that the LG model of

X1 and the LG model of X2 may be glued together to form the mirror of V . We prove

that if mirror symmetry holds for Hodge numbers of Xi and (Yi,w) then it follows

that the gluing of Y1 to Y2 has the correct Euler characteristic to be mirror to W , and

in the threefold case, we show that if Y1 ∪ Y2 admits a complex structure so that it is

Calabi-Yau, then it must have Hodge numbers mirror to those of V .

Next, we will put this into practice in the case where V is a 3-dimensional

anticanonical hypersurface in a Gorenstein toric Fano fourfold. We will show that

if there is a nef partition F1, F2, then there is a Tyurin degeneration of V . We will

show that there is a mirror pencil of varieties in W , the Batyrev dual to V , which

are birational to K3 surfaces. We show that this induces a K3 fibration on a smooth

birational model of W , and finally, we show that the singular fibers of the pencil K3

surfaces on W contain numerical information coming from the Tyurin degeneration.

6.2 Gluing LG models

Let us first define what we mean by Landau-Ginzburg model in this section. We have

defined in Chapter 2 a notion of a LG model which conjecturally encapsulates the LG

models of Fano varieties, and we have seen that this goes further to describe the LG

model of many quasi-Fano varieties. However, there seems to be a class of quasi-Fano
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varieties for which this notion does not suffice. In particular, it seems forced upon us

in examples that there exist quasi-Fano varieties so that the mirror LG model (Y,w)

is just a pair so that Y is a Kähler manifold and w is a holomorphic function. We

note that this leaves room for the image of w to be an open set in C. However, we

will insist that H1(Y ) = 0. Since the cohomology of Y need not admit a mixed Hodge

structure in this case, it seems unclear how to define Hodge numbers of (Y,w) in this

case. Instead, we propose that if (Y,w) is mirror to X, then we have

hi(Y, V ) =
∑
j

hd−i+j,j(X).

We also expect that if (Y,w) is mirror to X, then the smooth fibers of w are mirror to

anticanonical hypersurfaces in X.

Letting notation be as in previous section, we will discuss the possible relationship

between the quasi-Fano varieties X1, X2 and the Calabi-Yau fibration on W which is

conjecturally mirror dual to the degeneration of V to X1 ∪Z X2. It seems natural to

predict that the LG models of X1 and X2 can be somehow glued together to give W ,

since we are, in a topological sense, gluing X1 and X2 together to form V (see [141]

for details on this topological construction).

First of all, we recall that we expect that if Yi is the LG model of Xi equipped

with superpotetial wi then the monodromy symplectomorphism induced on w−1
i (t)

associated to a small loop around ∞ for t a regular value of wi can be identified

under mirror symmetry with the restriction of the the Serre functor of Db(Xi) to

Db(Z) [79, 133]. The Serre functor is simpy ⊗ωXi [d] where [d] denotes shift by

d = dimXi. Thus, up to a choice of shift, we see that the action of monodromy on

w−1
i (t) should be identified with the autoequivalence of Db(Z) induced by taking the

tensor product with ω−1
Yi

|Z = NZ/Xi
. So f X1 ∪Z X2 can be smoothed to a Calabi-

Yau manifold, then we must have that NZ/X1
⊗NZ/X2

= OZ , which means that we

should have that the monodromy symplectomorphism ϕ1 associated to a clockwise

loop around infinity on w−1
1 (t) is the same as the monodromy ϕ−1

2 associated to a

counter-clockwise loop around infinity on w−1
2 (t). Note that this implies that this
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makes use of the assumption that the fibers of w1 and w2 are topologically the same

Calabi-Yau manifold which we denote Q. This is a stronger assumption than just the

fact that they are both mirror to Z. Let r1 and r2 be such that |λ| ≤ r1 for every λ

in the critical locus of w1 and |λ| ≤ r2 for every λ in the critical locus of w2. Then we

may choose a local trivialization of Y1 and Y2 over Ur1 and Ur2 respectively, where

Ur1 = {z ∈ C : |z| > r1}. Let Pri = w−1
i (Uri) for i = 1, 2. The local trivializations

of P1 and P2 that we have chosen are topologically equivalent to expressing Pi as a

gluing of the ends of Di = Q× [−1, 1]× (−1, 1) to itself along the map

ϕ̃i : p× {−1} × (z) ↦→ ϕi(p)× {1} × (z).

where ϕi is the monodromy symplectomorphism, and which identifies Q×{−1}×(−1, 1)

with Q× {1} × (−1, 1). Therefore, we may glue Y1 to Y2. Recall that the condition

that X1 ∪Z X2 smooths to a Calabi-Yau variety conjecturally implies that ϕ1 = ϕ−1
2 .

In this case we can identify D1 with D2 by the map

τ : p× [x]× (z) ↦→ p× [−x]× (−z)

Under this identification of D1 and D2, it is clear that τ · ϕ̃1 = ϕ̃2. Thus the

identification τ gives an isomorphism between P1 and P2, thus it allows us to glue

Y1 to Y2 along P1 and P2 to produce a C∞ manifold W . This gluing respects the

fibrations w1 and w2 thus X is equipped with a fibration π over the gluing of C with

C described above. It is clear that the base of this fibration is just the 2-sphere S2.

Theorem 6.2.1. Let Y1 and Y2 be Landau-Ginzburg models of d-dimensional quasi-

Fano varieties X1 and X2 which contain the same anticanonical Calabi-Yau hypersur-

face Z and that KX1 |Z +KX2 |Z = 0. Let V be a Calabi-Yau variety obtained from

X1 ∪Z X2 by smoothing and let W be the variety obtained by gluing Y1 to Y2 as above.

Then

χ(V ) = (−1)dχ(W ).
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Proof. Start by recalling the long exact sequence of the pair (Yi,w
−1
i (t)) for t a regular

value of wi, and the fact that Euler numbers (which we denote χ(X)) are additive in

long exact sequences.

· · · → Hn(Yi,C) → Hn(w−1
i (t),C) → Hn+1(Yi,w

−1
i (t);C) → Hn+1(Yi,C) → . . .

Thus we have that χ(Yi) = χ(Yi,w
−1
i (t)) + χ(w−1

i (t)). Under mirror symmetry,

we see that χ(Yi,w
−1(t)) = (−1)dχ(Xi) (this is a consequence of Hodge number

mirror symmetry as described in Chapter 2) where d is the dimension of Yi. Thus

χ(Yi) = (−1)dχ(Xi) + χ(w−1
i (t))). On the other hand, we have the Mayer-Vietoris

exact sequence

· · · → Hn(W,C) → Hn(Y1,C)⊕Hn(Y2,C) → Hn(Y1 ∩ Y2,C) → . . .

and so χ(W ) = χ(Y1)+χ(Y2)−χ(Y1∩Y2). Since Y1∩Y2 is a fibration over an annulus,

we can compute its cohomology using the Wang sequence [120, Theorem 11.33]

· · · → Hn(Y1 ∩ Y2,C) → Hn(w−1(t),C) Tn−Id−−−−→ Hn(w−1(t),C) → . . .

Where Tn is the action of monodromy on Hn(w−1(t),C) associated to a small loop

around our annulus. Thus χ(Y1 ∩ Y2) = 0. Since w−1(t) is topologically mirror to Z

by assumption, we have that χ(Z) = (−1)d−1χ(w−1(t)) and therefore

χ(W ) = (−1)d(χ(X1) + χ(X2)− 2χ(Z)).

Let g : V → ∆ be a smoothing of X1 ∪Z X2, in other words, assume that g−1(0) =

X1 ∪Z X2 and that g−1(s) = Vs be a smooth Calabi-Yau variety for s ∈ ∆ \ {0}. Then

we can compute the Euler characteristic of Vs by applying [94, Proposition IV.6] which

claims that

χ(Vs) = χ(X1) + χ(X2)− 2χ(Z).

Therefore we have that χ(W ) = (−1)dχ(V ) as claimed.
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This is precisely the relationship between Euler characteristics of mirror dual Calabi-

Yau varieties. Now we will provide more evidence for the fact that W this is the

mirror dual of the original Calabi-Yau variety V in the case where V is a Calabi-Yau

threefold.

Proposition 6.2.2. Let W be as above and let S be a fiber of the map π. Assume

that dimW = dimS +1 = 3. Then b2(W ) = 1+ b2(Y1) + b2(Y2)− ℓ where ℓ is rank of

the subgroup of H2(S,C) spanned by the intersection of the images of H2(Y1,C) and

H2(Y2,C) under the natural restriction maps.

Proof. Let U be the annulus along which D1 and D2 are glued, and let Q = π−1(U)

be its preimage in W . We have that

0 → H2(Yi, S;C) → H2(Yi,C) → H2(S,C) → . . .

The image of the restriction map H2(Yi,C) → H2(S,C) is the space of monodromy

invariant cycles in the monodromy representation of wi. Thus h2(Yi) is equal to

h2,1(Yi) + rankH2(S,C)ρi , where ρi is the monodromy representation of (Y ∨
i ,wi).

Now we will compute the rank of H2(W,C) using the sequence

. . . −→ H1(Q,C) −→ H2(W,C) −→ H2(Y1,C)⊕H2(Y2,C)
rU1 −rU2−−−−→ H2(Q,C) −→ . . . .

We can use the Wang sequence to compute that H1(Q,C) = C. Using the assumption

that H1(Y1,C) = H1(Y2,C) = 0, we see that H2(W,C) is isomorphic to the direct

product of C and the kernel of the restriction map H2(Y1,C) ⊕ H2(Y2,C)
rQ1 −rQ2−−−−→

H2(Q,C), where rQi are the natural restriction maps from H2(Yi,C) to H2(Q,C). We

note that this map fits into a commutative triangle,

H2(Y1,C)⊕H2(Y2,C)

rS1 −rS2 →→

rQ1 −rQ2 →→ H2(Q,C)

rSQ
↓↓

H2(S,C)
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where the map rSQ is injective by the Wang sequence and the vanishing of h1(S), thus

the kernel of rS1 − rS2 is the same as the kernel of rQ1 − rQ2 . It remains to compute the

rank of the rank of this kernel. By the assumption that mirror symmetry holds, we

have that h2(Yi, S) = h1,2(Xi). Therefore, the relative cohomology sequence

· · · → H1(S,C) = 0 → H2(Yi, S;C) → H2(Yi,C) → H2(S,C) → . . .

implies that h2(Yi, S) = rank (ker(rSi )). Thus the rank of the kernel of rQ1 −rQ2 is equal

to h1,2(X1) + h1,2(X2)− rank (Im(rQ1 ) ∩ Im(rQ2 )). Thus the proposition follows.

Therefore, if W admits a complex structure for which it is Calabi-Yau, then we can

compute that

χ(W ) = 2h1,1(W )− 2h1,2(W )

= 2(1 + h1,2(X1) + h1,2(X2)− ℓ)− 2h1,2(W )

But we also know that

χ(W ) = −χ(X1)− χ(X2) + 48

= −(4 + 2h1,1(X1) + 2h1,1(X2)− 2h1,2(X1)− 2h1,2(X2)) + 48

Therefore, we have that h1,2(W ) = ℓ− 21 + h1,1(X1) + h1,1(X2). So in order for W

and V to be topologically mirror to one another, we must have

ℓ− 21 + h1,1(X1) + h1,1(X2) = h1,1(X1) + h1,1(X2)− k − 1

which is equivalent to ℓ+ k = 20. This is true if S and the fiber R of π are Dolgachev-

Nikulin dual, given the lattice polarization on S coming from the common image of

the restriction maps H2(Xi,Z) → H2(S,Z) and the lattice polarization on a fiber R of

π in W given by the restriction H2(W,Z) → H2(R,Z). Thus mirror symmetry for V

and W is consistent with mirror symmetry for R and S.
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6.3 Batyrev-Borisov duality and K3 fibrations

The results of this section should be thought of as illustrations of the situation

considered in Section 6.2. We will show that if V is a Calabi-Yau complete intersection

of nef divisors in a d-dimensional toric variety X∆, so that there is a nef partition

E1, . . . , Ek determining V , and if we have another nef partition F1, . . . , Fk+1 so that

Ek = Fk ∪ Fk+1, then there is first of all a Tyurin degeneration associated to this

combinatorial data, and also a pencil of quasi-smooth varieties birational to Calabi-Yau

(d− 1)-folds inside of the Batyrev-Borisov dual W . In the case where V is a threefold

or surface, we show that this induces a K3 surface fibration on some birational model

of W . In the case where V is a hypersurface of dimension 2 or 3, we show that the

singular fibers of the fibration on W carry information about the Tyurin degeneration

of V . Now let us build Tyurin degenerations out of refinements of nef partitions.

Definition 6.3.1. Let ∆ be a reflexive polytope and let E1, . . . , Ek be a nef partition of

the vertices of ∆. Then a refinement of E1, . . . , Ek is another nef partition F1, . . . , Fk+1

so that Ek = Fk ∪ Fk+1.

Let us now take Li to be line bundles on X∆ associated to each Ei. A refinement

of our nef partition gives rise to a pair of nef line bundles L ′
k and L ′

k+1 so that

L ′
k ⊗ L ′

k+1 = Lk. Let si ∈ H0(X∆,Li) be generic sections determining a quasi-

smooth Calabi-Yau complete intersection V in X∆. If we let s
′
k and s′k+1 be sections of

L ′
k and L ′

k+1 respectively, then s′ks
′
k+1 is a section of Lk. Therefore, we can construct

a pencil of complete intersections. First, let

U = ∩k−1
i=1 {si = 0}

and assume that U is connected and quasi-smooth. It is clear that U is quasi-Fano as

well. Then take the pencil

Q : {tsk − s′ks
′
k+1 = 0} ∩ U
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in A1 ×X∆ with t a parameter on A1. If we assume that X∆ is a smooth resolution

of P∆, then the only singularities of Q in a neighbourhood of 0 ∈ A1 are along

t = sk = s′k = s′k+1 = 0, which we call Q. We can blow up t = s′k = 0 inside of

A1 ×X∆ and take the proper transform of Q to resolve this singularity, assuming

that the singular locus itself is smooth. If this can be done, then we obtain a Tyurin

degeneration of V so that the fiber over 0 of the degeneration is equal to a quasi-Fano

variety X1, which is just U ∩ {s′k = 0} blown up at U ∩ {s′k = sk = s′k+1 = 0} and a

quasi-Fano variety X2 given by U ∩ {s′k+1 = 0}.

Note that since Q is the intersection of a set of nef divisors in X∆, it has no base

locus, and its singularities are contained in the singular set of X∆. Furthermore, the

intersection of Q with any torus invariant subvariety of X∆ is irreducible, thus Q itself

is either irreducible or a union of non-intersecting subvarieties of X∆. As a result, if

X∆ is smooth, then so is Q, for general enough choices of sections. In the general

situation, we can still perform all of the steps above, but we will have singularities

occurring at every step in general. Regardless, such an the resulting degeneration

should include data corresponding to the quasi-Fano varieties X1, X2 and the blown

up locus Q. We note that a version of the results of Kawamata and Namikawa for

mildly singular varieties has been explored in the thesis of Lee [94]. Another way

to interpret the singular case is that the union of X1 and X2 is equipped with a log

structure (see e.g. [2] and the references therein) which accounts for the subvariety Q

and determines the smoothing of X1 ∪Z X2 to V .

Now we will look at how this nef partition is reflected in the mirror. At this

point we restrict ourselves to the case where V is a hypersurface and d = 2 or 3. We

have that the Batyrev dual Calabi-Yau variety W is embedded as an anticanonical

hypersurface in X∆◦ . There is also a dual nef partition of ∆1 and ∆2 of ∇ ⊆ ∆◦. As

usual we denote the dual nef partition as ∇1,∇2. It does not follow that this can be

extended to a degeneration of W to quasi-Fano varieties dual to X1 and X2. We have
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that W is cut out by equations

f =

⎧⎨⎩ ∑
ρ∈∆i∩M

aρ
∏

σ∈∂∆◦∩N
z⟨σ,ρ⟩+bσ
σ = 0

⎫⎬⎭ for 1 ≤ i ≤ k − 1.

By scaling, we may assume that the coefficient of
∏

σ∈∂∆◦ is equal to 1. We will take

a pencil P(q), q ∈ P1
s,t of hypersurfaces in W defined by the equations:

s
∑

ρ∈∆1∩M\0M

aρ
∏

σ∈∂∆◦∩N
z⟨σ,ρ⟩+1
σ = t

∏
ρ∈∂∆◦∩N

zρ

s
∑

ρ∈∆2∩M\0M

aρ
∏

σ∈∂∆◦∩N
z⟨σ,ρ⟩+1
σ = (s− t)

∏
ρ∈∂∆◦∩N

zρ.

Note that the sum of these last two equations is just sf for some constant s, thus for

all [s, t] ∈ P1
s,t the variety P([s : t]) is contained in W . We need to prove that this is

a blown up K3 surface.

Proposition 6.3.2. If d − k = 3 then the general member of the above pencil is

smooth blown up K3 surface. If d− k = 2, then the general member of the above pencil

is a smooth elliptic curve.

Proof. If we let Ŝ be a generic hypersurface in W determined by the equations above,

then Ŝ ∩ (C×)4 is determined by equations

∑
ρ∈∆1∩M

aρz
ρ = 0

∑
ρ∈∆2∩M

aρz
ρ = 0

which naturally compactifies to the K3 surface or an elliptic curve in X∇ associated to

the nef partition ∇1,∇2 depending whether d = 3 or 4. Therefore Ŝ is birational to a

K3 surface in the d = 4 case and Ŝ is birational to an elliptic curve in the d = 3 case.

If we can show that Ŝ is smooth, then since minimal models of surfaces are obtained

by sequentially contracting (−1) curves, we may conclude that Ŝ is a blown up K3

surface in the d = 4 case, and that Ŝ is an elliptic curve in the d = 3 case. We will

restrict our proof to the d = 4 case.
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To see that Ŝ is smooth for a generic choice of Ŝ, we note that since Ŝ is contained

in a Calabi-Yau hypersurface, which itself does not generically contain any toric strata

of X∆◦ , Ŝ does not contain any toric strata. Now we look at Ŝ and W on charts of

X∆◦ . If σ is a point in ∂∆◦, we know that if σ, u1, u2, u3 is a basis of N , then the

chart corresponding to σ is C× (C×)3 and W is given in this chart by

∑
ρ∈∆

aρx
⟨σ,ρ⟩+1

∏
i=1,2,3

z
⟨ui,ρ⟩
i = 0.

and that the divisor corresponding to σ is given by x = 0 in this chart. Now, explicitly,

we are given that S is given by the vanishing of the polynomials

f1 =
∑
ρ∈∆1

aρx
⟨σ,ρ⟩+1

∏
i=1,2,3

z
⟨ui,ρ⟩
i f2 =

∑
ρ∈∆2

aρx
⟨σ,ρ⟩+1

∏
i=1,2,3

z
⟨ui,ρ⟩
i

on this chart. Note that these polynomials are in C[x, u±1
1 , u±1

2 , u±1
3 ]. We know that,

away from x = 0, this is smooth. Since both of the polynomials above are generic

polynomials with Newton polytopes ∆1 and ∆2, they do not have any singularities on

(C×)4 ⊆ C× (C×)3. Again, restricting to x = 0, we see that that f1|x=0 and f2|x=0 are

generic Laurent polynomials with some given Newton polytope, since the coefficients

are allowed to vary arbitrarily. Now we check to see whether f1 = f2 is smooth on

(C×)3 ×C explicitly. The singular locus is given by the vanishing of the minors of the

matrix ⎛⎝∂f1/∂x ∂f1/∂u1 ∂f1/∂u2 ∂f1/∂u3

∂f2/∂x ∂f2/∂u1 ∂f2/∂u2 ∂f2/∂u3

⎞⎠ .

Since f1 = f2 = 0 is smooth where x ≠ 0, we may search for singularities when x = 0.

Ignoring the first column of this matrix and letting x = 0, we get

⎛⎝∂f1|x=0/∂u1 ∂f1|x=0/∂u2 ∂f1|x=0/∂u3

∂f2|x=0/∂u1 ∂f2|x=0/∂u2 ∂f2|x=0/∂u3

⎞⎠ .

which we have already determined is rank 2 on f1|x=0 = f2|x=0, since f1|x=0 =

f2|x=0 = 0 is smooth. Thus f1 = f2 = 0 is smooth on C× (C×)3. Similar arguments



6.3 Batyrev-Borisov duality and K3 fibrations 173

suffice to analyze the intersection of Ŝ with the codimension 2 and 3 strata of X∆◦ .

Since W does not intersect codimension 4 strata of X∆◦ , neither does Ŝ so this is

enough to show that Ŝ is smooth.

In the case where d = 3, a similar proof shows that members of the pencil in

question are smooth and birational to elliptic curves, thus they correspond to a pencil

of elliptic curves on W .

In the case where W is a threefold or a surface, we will show that there is in fact a

K3 surface fibration on a birational model of W whose fibers are birational to the

members of the pencil P.

Proposition 6.3.3. If Z ⊆W is a smooth Calabi-Yau (d−1)-fold in a d-dimensional

Calabi-Yau manifold, then |Z| is base-point free and hence there is a map f :W → P1

so that Z is a fiber of f .

Proof. By adjunction, OZ(Z) = NZ/W = ωZ = OZ . Thus h0(NZ/W ) = 1. Let

ι : Z ↪→W , then we have a short exact sequence of sheaves

0 → OW
s−→ OW (Z) → ι∗OZ(Z) ∼= ι∗OZ → 0

where s is a section of OW (Z) whose vanishing locus is Z. We have a long exact

sequence in cohomology groups which provides the map

0 → H0(W,OW ) → H0(W,OW (Z)) → H0(W, ι∗OZ) → 0

and thus a generic section of OW (Z) to S is a nonzero section of ι∗OZ which is a

fortiori non-vanishing. Thus |Z| is base-point free and determines a map to P1 from

W , since h0(OW (Z)) = 2 by the exact sequence above.

Therefore it follows immediately that in the case where d = 3, the pencil P is an

elliptic fibration on W . Next we prove that if W is a Calabi-Yau threefold containing

a blown up K3 surface Ŝ, then we can get rid of the (−1) curves in S by performing

birational transformations
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Proposition 6.3.4. Let W be a Calabi-Yau threefold and let Ŝ be a blown up K3

surface in W . If C is a (−1) curve in Ŝ, then NC/W
∼= OP1(−1)⊕ OP1(−1).

Proof. We have a short exact sequence of sheaves on C,

0 → ΘC → ΘW |C → NC/W → 0.

Since c1(ΘC) = 2 and c1(ΘW |C) = c1(ΘW )|C = 0, it follows that NC/W
∼= OP1(a)⊕

OP1(b) for a+ b = −2 (see e.g. [77, Section 1]). We may embed the normal bundle

NC/Ŝ into NC/W to get a short exact sequence of line bundles

0 → NC/Ŝ → NC/W → L → 0

for some line bundle L . Since C is a (−1) curve in Ŝ, we know that NC/Ŝ
∼= OP1(−1).

Furthermore, we have that c1(L ) = −1 from the fact that c1(NC/W ) = −2, thus

L ∼= OP1(−1). The long exact sequence in cohomology coming from the above

short exact sequence proves that H0(C,NC/W ) = 0 and therefore we must have that

NC/W = OP1(−1)⊕ OP1(−1).

Therefore, any (−1) curve C in Ŝ may be blown up to produce a a variety W̃ with

exceptional divisor a copy of P1×P1. This copy of P1×P1 can be smoothly contracted

onto either component. The effect of contracting onto one component is just recovering

W , but the contraction onto the other component, which we call W+ is of interest to

us. The preimage of Ŝ in W̃ is just Ŝ itself, but when we contract Ŵ onto W+, we

contract the curve C in Ŝ.

Repeating this for all (−1) curves in Ŝ we obtain a Calabi-Yau birational model

of W in which Ŝ has been contracted to its minimal model, which is in fact just a

K3 surface [20]. We call the Calabi-Yau threefold resulting from this process Ŵ . We

have proved that:

Theorem 6.3.5. If W is a Calabi-Yau threefold containing a smooth blown-up K3

surface Ŝ, then by performing flops on W repeatedly, we may obtain a birational model
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Ŵ of W which admits a fibration f : Ŵ → P1 so that the minimal model S of Ŝ is a

general fiber of f .

In the case of toric hypersurface Calabi-Yau threefolds, this shows that:

Corollary 6.3.6. If there is a nef partition of ∆ and V is a general complete intersec-

tion hypersurface in X∆, then V is constructive, and its Batyrev dual W has birational

model which admits a K3 surface fibration by K3 surfaces which are Batyrev-Borisov

dual to the nef partition ∆1,∆2.

Of course, the fibers of this fibration are just the members of the pencil of K3 surfaces

on W described above with several rational curves contracted in each. In general, it is

not clear if this can be done if dimV ≥ 4, however, all of the proofs above generalize

in the obvious way to refinements of k-partite nef partitions of (k + 3)-dimensional

polytopes to give K3 surface fibrations on a birational model of the Batyrev-Borisov

mirror dual. We have restricted ourselves to the hypersurface case for ease of notation.

Remark 6.3.7. It’s a bit surprising to me that the birational contortions that we

went through above are necessary! There seems to be an inherent incompatibility

between Batyrev (and Batyrev-Borisov) duality and K3 surface fibrations on Calabi-

Yau threefolds, since one can show that in very basic examples, there are in fact

exceptional curves in Ŝ that cannot be avoided by simply changing birational model

of X∆◦ . A notable exception occurs when either ∆1 or ∆2 is 1-dimensional. In this

case, one of the two component quasi-Fano varieties to which V degenerates is itself a

toric variety. This is mirrored by the fact that X∆◦ itself admits a morphism to P1

which induces the required K3 fibration on W . These seem to be a subset of the “toric

fibrations” have been studied extensively in the physics literature by by a number of

authors ([27, 10, 64] to name a few).

Remark 6.3.8. One can consider more general refinements of nef partitions, by

taking a nef partition F1, . . . , Fℓ so that for each Ei, there is a subset Ii of {1, . . . , ℓ} so

that Ei = ∪j∈IiFj . These will give rise to generalized degenerations of the Calabi-Yau

determined by E1, . . . , Ek to unions of quasi-Fano varieties, and families of Calabi-Yau
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varieties of codimension ℓ− k in W . The issure of course is that it is hard to prove

that this forms a fibration on a birational model of W . Despite this, these families of

Calabi-Yau varieties surely have properties related to the LG models of the appropriate

quasi-Fano varieties.

Remark 6.3.9. Generalizing Corollary 6.3.6 to higher dimensions seems to be a

challenge, since we have made use of both the minimal model program for surfaces

and a characterization of flops in three dimensions. Of course, both of these objects

have analogues in higher dimensions, but they are much more oblique and not likely

to be useful in such a general situation.

6.4 Comparison with LG models

The results in this section can be extended quite generally, however, we will stick to

the situation of threefold hypersurfaces. We will analyze the members of the pencil

P, which are birational to the fibers of Ŵ when such a variety exists. Thus in the

threefold case, we can give a very accurate description of the singular fibers of Ŵ , up

to some birational transformation. Our first goal is to look at the fiber P(∞) and

understand its meaning in terms of the Tyurin degeneration described in Section 6.3.

Proposition 6.4.1. The member of the pencil P corresponding to s = 0 is equal to

⋃
σ∈(∆◦\∇)∩N

(Dσ ∩W ).

In other words, the fibration f is associated to the line bundle OW (
∑

σ∈(∆◦\∇)∩N Dσ|W ).

Proof. We may write the pencil P as the intersection of W with hypersurfaces of the

form

s
∑

ρ∈∆1∩M\0M

aρ
∏

σ∈∂∆◦∩N
z⟨σ,ρ⟩+1
σ − t

∏
σ∈∂∆◦∩N

zσ = 0
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where ∆1 and ∆2 is a nef partition of ∆. Thus, at least on an open set of W , we may

write this as a rational map from X∆ to P1 as a map ϕ given by

[zσ] ↦→

⎡⎣ ∏
σ∈(∆◦\∇)∩N

zσ,

⎛⎝ ∑
ρ∈∆1∩M\0M

aρ
∏

σ∈∂∆◦∩N
z⟨σ,ρ⟩+1
σ

⎞⎠/( ∏
σ∈∂∇∩N

zσ

)⎤⎦ = [s, t]

We want to show that this map is defined on W away from the base locus of P. Note

that homogeneity is clear, since, away from perhaps
∏

σ∈∂∇∩N zσ, both terms are

sections of L := OX∆◦ (
∑

σ∈∆◦\∇∩N Dσ). We check that if σ ∈ ∇2, then the second

polynomial in the expression for ϕ has a factor of zσ, since ⟨σ, ρ⟩ ≥ 0 for all ρ ∈ ∆1

and σ ∈ ∇2. Thus this is a section of . Restricted to W , we notice that the second

term can also be written as⎛⎝ ∑
ρ∈∆2∩M

aρ
∏

σ∈∂∆◦∩N
z⟨σ,ρ⟩+1
σ

⎞⎠/( ∏
σ∈∂∇∩N

zσ

)

and thus for the same reason as above, this is a section of L along Dσ for σ ∈ ∇1.

The fact [17, Proposition 6.3] implies that ∇∩N = (∇1 ∩N) ∪ (∇2 ∩N), we deduce

that this homogeneous function forms an honest global section of L |W . Thus the

map ϕ is well-defined away from the base locus of L |W and the fiber of ϕ over ∞ is

as required.

It follows from the proof of Proposition 6.4.1 that the line bundle OW (Ŝ) is just

OW (
∑

σ∈(∆◦\∇)∩N Dσ). Since W is an anticanonical hypersurface, the intersection

of a divisor Dσ with W is empty if and only if σ lives on the relative interior of a

facet of ∆◦. If σ is on the interior of a codimension 2 face of ∆◦, then Dρ ∩W has

1 + ℓ∗(Γ(σ))ℓ∗(Γ(σ)∨) irreducible components (see e.g. [130, §3.3]). Here Γ(σ) is the

smallest face of ∆◦ containing σ and Γ(σ)∨ is the face of ∆ made up of points ρ

satisfying ⟨σ, ρ⟩ = −1.

Proposition 6.4.2. If σ is in (∆◦ \ ∇) ∩ N then Dρ ∩W has a single irreducible

component. Therefore, the fiber over infinity of the K3 surface fibration obtained in
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Section 6.3 has

#(∆◦ ∩∇) ∩N

irreducible components.

Proof. First, if σ is contained on the relative interior of a facet of ∆◦, then Γ(σ)∨

is a single vertex η of ∆. Without loss of generality, we can assume that η ∈ ∆1.

Therefore, ⟨σ, ρ⟩ ≥ −1 for all points ρ ∈ ∆ and ⟨σ, ρ⟩ = −1 if and only if ρ = η,

therefore, by definition, σ is in ∇1. By [17, Proposition 6.3], it follows that all points

of ∇ are either in ∇1 or ∇2, it follows that no point ∆◦ \ ∇ is on the interior of a

facet of ∆◦.

Now if we have σ in (∆◦ \ ∇) ∩N then we must have that there is some ρ1 ∈ ∆1

and ρ2 ∈ ∆2 so that ⟨ρ1, σ⟩ = ⟨ρ2, σ⟩ = −1. Therefore, Γ(σ)∨ contains points in both

∆1 and ∆2 and is thus a face of neither. It follows from [17, Proposition 6.3] that

this implies that Γ(σ)∨ does not contain any points on its relative interior. Thus

ℓ∗(Γ(σ)∨) = 0 and hence Dσ ∩W has a single irreducible component.

Remark 6.4.3. In the case where W has arbitrary dimension, the same proposition

is true, however, we do not know whether this may be interpreted as a count of

components of a singular fiber in a fibration on W .

Next we show that this number has meaning with respect to the mirror Calabi-Yau

variety.

Proposition 6.4.4. If dim∇1 = dim∇2 = 4 then V ∩X1∩X2 is an irreducible curve

C of genus

g(C) = #(∆◦ ∩∇) ∩N − 1.

Proof. We have that C is a complete intersection of sections of line bundles L1 =

OX∆
(
∑

ρ∈∆1∩N Dρ) and L1 = OX∆
(
∑

ρ∈∆2∩N Dρ) and ω−1
X∆

. We have the Koszul

complex resolving OC given by

ω2
X∆

→ L −1
1 ⊗ ωX∆

⊕ L −1
2 ⊗ ωX∆

⊕ ωX∆
→ L −1

1 ⊕ L −1
2 ⊕ ωX∆

→ OX∆
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The corresponding second spectral sequence converges to Hi(C,OC [3]), therefore

⨁
p+q=i+3

′′E
p,q
∞

∼= Hi(C,OC).

The relevant portion of ′′Ep,q
1 is given by

H4(ω2
X∆

) → H4(L −1
1 ⊗ ωX∆

)⊕H4(L −1
2 ⊗ ωX∆

)⊕H4(ωX∆
) → C → 0

0 → 0 → 0 → 0

0 → 0 → 0 → 0

0 → 0 → 0 → 0

0 → 0 → 0 → C
(6.1)

By [17, Theorem 2.5], we know that h4(ω2
X∆

) = ℓ∗(2∆◦), h4(ωX∆
) = 1, h4(L −1

1 ⊗

ωX∆
) = ℓ∗(∇1 +∆◦) and h4(L −1

2 ⊗ ωX∆
) = ℓ∗(∇2 +∆◦). It is not hard to see then

that this spectral sequence degenerates at the ′′E2 term and h0(OC) = 1, hence C is

irreducible. Since hi(OC) = 0 for i > 1, we have that the top row of Equation 6.1 is

exact except in the left-most term. Thus we can compute that

g(C) = ℓ∗(2∆◦)− (ℓ∗(∆◦ +∇1) + ℓ∗(∇2 +∆◦)).

It remains to show that this is precisely the number of points in (∆◦ \ ∇) ∩N .

Lemma 6.4.5. For Q either ∇i or ∆◦, the number ℓ∗(Q+∆◦) is equal to ℓ(Q).

Proof. The polytope ∆◦ is defined by the inequalities ⟨ρ, σ⟩ ≥ −1 for all points ρ ∈ ∆.

Similarly, ∇1 is defined by the inequalities ⟨ρ, σ⟩ ≥ −1 for all points ρ ∈ ∆1 and

⟨σ, ρ⟩ ≥ 0 for all points ρ ∈ ∆2. We shall prove the lemma for Q = ∇1 and the other

cases are similar. Now the polytope ∆◦ +∇1 is defined by the inequalities ⟨σ, ρ⟩ ≥ −2

for ρ ∈ ∆1 and ⟨σ, ρ⟩ ≥ −1 for ρ ∈ ∆1. Therefore a point on the interior of ∆◦ +∇1

satisfies these inequalities strictly, and thus (∆◦ +∇1) ∩N is the set of points in N

so that ⟨σ, ρ⟩ ≥ 0 for all ρ ∈ ∆2 and ⟨σ, ρ⟩ ≥ −1 for all ρ ∈ ∆1. Thus this is the set of

all integral points in ∆◦ +∇1.
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Therefore, we have that

ℓ∗(2∆◦)− (ℓ∗(∆◦ +∇1) + ℓ∗(∇2 +∆◦)) = ℓ(∆◦)− ℓ(∇1)− ℓ(∇1).

By [17, Proposition 6.3], it follows that all points of ∇ are points of ∇1 or ∇2, thus

this is just

ℓ(∆◦)− ℓ(∇) + 1 = #(∆◦ \ ∇) + 1

Note the (−1) term corresponds to the fact that we have over-counted the origin, as

it is the intersection of ∇1 and ∇2.

Remark 6.4.6. A very minor modification of this proof shows that, in the case where

W has dimension d, then hd−2,0(V ∩X1 ∩X2) = #(∆◦ \ ∇)− 1.

As a corollary, we have that

Theorem 6.4.7. The member P(∞) of the pencil of hypersurfaces in the previous

section has exactly hd−2,0(X1 ∩X2 ∩ V ) + 1 components.

Next, we analyze the rest of the fibers in the fibration on Ŵ . Our goal is to show

that the fibers over 0 and 1 are essentially the fibers over 0 of the LG models of

X1 and X2.Thus there is a very real sense in which the fibration on Ŵ is collecting

information regarding the LG models of X1 and X2.

Theorem 6.4.8. The fibers P(0) and P(1) are birational to the fibers over 0 of

(Y1,w) and (Y2,w) respectively. In fact, for any choice of W and P(t) with t ≠ ∞,

there is a choice of LG model (Y,w) of either X1 or X2 so that P(t) is birational to

a fiber of (Y,w).

Proof. We recall that we have an expression for a birational model of W as a complete

intersection in P1 ×X∇ given by the vanishing of

f1 = s
∑

ρ∈∆1∩M\0M

aρ
∏

σ∈∂∆◦∩N
z⟨σ,ρ⟩+1
σ − t

∏
ρ∈∂∆◦∩N

zρ

f2 = s
∑

ρ∈∆2∩M\0M

aρ
∏

σ∈∂∆◦∩N
z⟨σ,ρ⟩+1
σ − (s− t)

∏
ρ∈∂∆◦∩N

zρ.
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Note that f1 has a factor of
∏

σ∈∂∇2∩N zρ and similarly for f2, by the definition of

∇2. If we let t = 0, then we have the complete intersection of

f1|t=0 =
∑

ρ∈∆1∩M\0M

aρ
∏

σ∈∂∆◦∩N
z⟨σ,ρ⟩+1
σ

f2|t=0 =
∑

ρ∈∆2∩M\0M

aρ
∏

σ∈∂∆◦∩N
z⟨σ,ρ⟩+1
σ −

∏
ρ∈∂∆◦∩N

zρ.

We have that f1|t=0 has an additional factor of
∏

σ∈∇≥1
1
zσ. Note that this is precisely

the complete intersection deterimining the fiber over 0 of the LG model of X1, except

compactified to X∆◦ and not X∇. We define a birational map φ from X∆◦ to X∇

which sends zσ to zσ if σ is a point in ∂∇ ∩ N . If we let X
[1]
∆◦ and X

[1]
∇ be the

complement of all torus invariant loci of codimension ≥ 2 in X∆◦ and X∇ respectively,

then the restriction of φ simply has the effect of removing tori (C×)3 corresponding

to σ ∈ (∆◦ \ ∇) ∩N .

Thus φ induces a birational map between the fiber over 0 of (Y1,w) if no components

of P(0) are contained in torus invariant loci of X∆◦ of codimension ≥ 2 and no

component of P(0) is contained in a divisor Dσ for σ ∈ (∆◦ \∇)∩N . The first claim

is trivial. Since each component of P(0) is of dimension d− 2 in X∆◦ , it is contained

in a codimension ≥ 2 torus invariant subvariety of X∆◦ if and only if it is the closure

of a the torus invariant subvariety. Since W contains no torus invariant subvarieties

of X∆◦ , this cannot happen.

The second point follows from the fact that if σ ∈ (∆◦ \∇)∩N then Dσ ∩W is in

P(∞). Thus we can have P(0) intersects Dσ in at most a codimension 2 subvariety

of X∆◦ . An identical argument suffices to show that P(1) is birational to the fiber

over 0 of (Y2,w), and in fact this shows that for any t ∈ P1 \ {∞}, a generic choice of

W there is a choice of i = 1 or 2, and an LG model (Yi,w) so that P(t) is birational

to a fiber of (Yi,w).

As a philosophical remark, this proves that all of the interesting data surrounding

the fibration on Ŵ is related to either the LG models of X1 and X2 or the variety

V ∩ X1 ∩ X2. In the case where both X1 and X2 are pullbacks to X∆ of ample
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hypersurfaces in P∆ along the natural crepant resolution map, then we can say even

more by using Theorem 3.4.9 in Chapter 3.

Corollary 6.4.9. Let ρp be the number of irreducible components in the fiber of f

over p ∈ P1. If X1 and X2 are pullbacks of ample hypersurfaces in P∆, then

• ρ0 = h1,2(X1) + 1.

• ρ1 = h1,2(X2) + 1,

• ρ∞ = h1,0(C) + 1.

Let ℓ be the rank of the image of the restriction map H2(Ŵ ,C) → H2(W,C) for S a

smooth fiber of f . Using the same techniques as in the proof of Theorem 3.3.1, one

can show that

h1,1(W ) =
∑
p∈P1

(ρp − 1) + ℓ+ 1

By [14], we know that h2,1(V ) = h1,1(Ŵ ), thus applying Theorem 6.1.1, one sees that

in this situation we have

∑
p∈P1\{0,1,∞}

(ρp − 1) + ℓ+ k = 20,

This implies that if Dolgachev-Nikulin mirror symmetry does not hold (in a precise

sense) for the K3 surfaces associated to the nef partition ∆1,∆2 and their Batyrev-

Borisov duals, then this failure is seen by the rest of the fibers of the fibration f on

Ŵ .

Finally, we will illustrate this construction with an example in the case where V is

an anticanonical surface in a toric Fano threefold.

Example 6.4.10 (Anticanonical hypersurfaces in (P1)3). Let us take, as described,

the anticanonical hypersurface in (P1)3. This is a K3 surface with Picard lattice of
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rank 3 and isomorphic to the lattice with Gram matrix

⎛⎜⎜⎜⎝
0 2 2

2 0 2

2 2 0

⎞⎟⎟⎟⎠ .

There is a Tyurin degeneration of V to a union of two (1, 1, 1) divisors X1, X2 in (P1)3.

The intersection of V ∩X1 ∩X2 is just 12 points. On the other side, we see that there

is an elliptic fibration on the mirror dual K3 surface has an I12 type singular fiber at

∞ and I2 singular fibers at 0 and 1. The polytope ∆ has vertices σ0, . . . , σ5 given by

the columns of the matrix ⎛⎜⎜⎜⎝
1 −1 0 0 0 0

0 0 1 −1 0 0

0 0 0 0 1 −1

⎞⎟⎟⎟⎠
The appropriate nef partition is E1 = {σ0, σ2, σ4} and E2 = {σ1, σ3, σ5}, which has

dual nef partition with

∇1 = Conv({(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, 1, 0), (0, 1, 1), (0, 1, 1), (0, 0, 0)})

∇2 = −∇1.

We draw the polytopes ∇ and ∆◦ in the second picture in Figure 6.1. The first

picture in Figure 6.1 is just the polytope ∆◦, the second denotes ∇1 and ∇2 coloured

in red and green respectively. The third picture colours the points corresponding

to components the fibers over 0 and 1 in red and green respectively. The points of

(∆◦ \ ∇) ∩N are drawn in blue. It is clear in the description of the fiber over ∞ that

it is actually semi-stable, hence it follows from Kodaira’s classification of singular

fibers of elliptic fibrations [85] that the resulting fiber is necessarily of type I12. The

same cannot be said for the fibers over 0 and 1, since it is not necessarily true that

these fibers have normal crossings. Thus Kodaira’s classification shows that these

fibers are either of type I2 or of type III.
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Fig. 6.1 Polytopes related to Example 6.4.10



Chapter 7

Calabi-Yau threefolds fibered by

quartic mirror K3 surfaces

7.1 Introduction

In this paper, along with its predecessor [51], we take the first steps towards a

systematic study of threefolds fibred by K3 surfaces, with a particular focus on

Calabi-Yau threefolds. Our aim in this paper is to gain a complete understanding of a

relatively simple case, where the generic fibre in the K3 fibration is a mirror quartic,

to demonstrate the utility of our methods and to act as a test-bed for developing a

more general theory.

We have chosen mirror quartic K3 surfaces (here “mirror” is used in the sense of

Nikulin [109] and Dolgachev [44]) because, from a moduli theoretic perspective, they

may be thought of as the simplest non-rigid lattice polarized K3 surfaces. Indeed,

mirror quartic K3 surfaces are polarized by the rank 19 lattice

M2 := H ⊕ E8 ⊕ E8 ⊕ ⟨−4⟩,
0This chapter is joint work with C.F. Doran, A. Novoseltsev and A. Thompson. It has been

submitted under the title ‘Calabi-Yau threefolds fibered by quartic mirror K3 surfaces” and is available
at arxiv:1501.04019v1.

185



7.1 Introduction 186

so move in a 1-dimensional moduli space. By [44, Theorem 7.1], this moduli space is

isomorphic to the modular curve Γ0(2)
+ \H, we denote its compactification by MM2 .

Our first main result (Theorem 7.2.2) will show that an M2-polarized family of K3

surfaces (in the sense of [51, Definition 2.1]) over a quasi-projective base curve U is

completely determined by its generalized functional invariant map U → MM2 , which

may be thought of as a K3 analogue of the classical functional invariant of an elliptic

curve. This also explains why we choose to polarize our K3 surfaces by M2 instead

of M1 := H ⊕E8 ⊕E8 ⊕ ⟨−2⟩, which at first would seem like a more obvious choice.

Indeed, M1-polarized K3 surfaces admit an antisymplectic involution that fixes the

polarization, which means that the analogue of Theorem 7.2.2 does not hold for them;

in analogy with elliptic curves again, the presence of an antisymplectic involution

that fixes the polarization means that to uniquely determine an M1-polarized family

of K3 surfaces we would also need a generalized homological invariant, to control

monodromy around singular fibres, whereas for M2-polarized familes the lack of such

automorphisms means that the generalized functional invariant alone suffices.

A second reason for choosing mirror quartic K3 surfaces is the fact that the mirror

quintic Calabi-Yau threefold admits a fibration by mirror quartics [51, Theorem

5.10]. This makes fibrations by mirror quartic K3 surfaces particularly interesting

for the study of Calabi-Yau threefolds; the majority of this paper is devoted to this

study. Indeed, our second main result (Corollary 7.2.7) provides a complete explicit

description of all Calabi-Yau threefolds that admit M2-polarized K3 fibrations, and we

compute Hodge numbers and candidate mirror partners in all cases. Throughout this

study we present the mirror quintic as a running example, thereby demonstrating that

many of its known properties can be easily recovered from our theory, although we

would like to note that our methods apply to a significantly broader class of examples

of Calabi-Yau threefolds, many of which are not even known to be toric.

The structure of this paper is as follows. In Section 7.2 we begin by proving

Theorem 7.2.2, which shows that any M2-polarized family of K3 surfaces is uniquely

determined by its generalized functional invariant. In particular, this means that any

M2-polarized family of K3 surfaces is isomorphic to the pull-back of a fundamental
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family of M2-polarized K3 surfaces, introduced in Section 7.2.1, from the moduli space

MM2 . The remainder of Section 7.2 is then devoted to showing how this theory can

be used to construct Calabi-Yau threefolds, culminating in Corollary 7.2.7, which

gives an explicit description of all Calabi-Yau threefolds that admit M2-polarized K3

fibrations.

In Section 7.3 we begin our study of the properties of the Calabi-Yau threefolds

constructed in Section 7.2, by computing their Hodge numbers. The main results are

Proposition 7.3.2, which computes h1,1, and Corollary 7.3.7, which computes h2,1.

Section 7.4 is devoted to a brief study of the deformation theory of the Calabi-Yau

threefolds constructed in Section 7.2. The main result is Proposition 7.4.1, which

shows that any small deformation of such a Calabi-Yau threefold is induced by a

deformation of the generalized functional invariant map of the K3 fibration on it. In

particular, this allows us to relate the moduli spaces of such Calabi-Yau threefolds to

Hurwitz spaces describing ramified covers between curves, and gives an easy way to

study their degenerations.

Finally, in Section 7.5, we exhibit candidate mirror partners for the Calabi-Yau

threefolds constructed in Section 7.2, given as Calabi-Yau smoothings of pairs of

Fano threefolds glued along anticanonical K3 surfaces. As evidence for the mirror

correspondence between these Calabi-Yau threefolds, in Section 7.5.3 we show that

mirror duality of Hodge numbers is satisfied, and exhibit mirror dual filtrations in

cohomology. Finally, in Section 7.5.4, we exhibit a relationship between the Landau-

Ginzburg models of the pair of Fano threefolds and the M2-polarized K3 fibration

on the original Calabi-Yau threefold. This provides a class of examples illustrating a

prediction of Tyurin [141]: that the mirror of a Calabi-Yau smoothing of a pair of

Fano threefolds should be expressible in terms of the corresponding Landau-Ginzburg

models of those Fanos.
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7.2 Construction

We begin by setting up some notation. Let X be a smooth projective threefold that

admits a fibration π : X → B by K3 surfaces over a smooth base curve B. Let NS(Xp)

denote the Néron-Severi group of the fibre of X over a general point p ∈ B. In what

follows, we will assume that NS(Xp) ∼= M2, where M2 denotes the rank 19 lattice

M2 := H ⊕ E8 ⊕ E8 ⊕ ⟨−4⟩.

Denote the open set over which the fibres of X are smooth K3 surfaces by U ⊂ B

and let πU : XU → U denote the restriction of X to U . We suppose further that

XU → U is an M2-polarized family of K3 surfaces, in the sense of [51, Definition 2.1].

To any such family, we can associate a generalized functional invariant map

g : U → MM2 , where MM2 denotes the (compact) moduli space of M2-polarized K3

surfaces. g is defined to be the map which takes a point p ∈ U to the point in moduli

corresponding to the fibre Xp of X over p.

[51, Theorem 5.10] gives five examples of Calabi-Yau threefolds admitting such

fibrations, arising from the Doran-Morgan classification [52, Table 1]. In each of these

cases, the family πU : XU → U is the pull-back of a special family of K3 surfaces

X2 → MM2 , by the generalized functional invariant map.

Remark 7.2.1. In addition to the five examples from [51, Theorem 5.10], the authors

are aware of many more Calabi-Yau threefolds which admit such fibrations. Indeed,

the toric geometry functionality of the computer software Sage may be used to perform

a search for such fibrations on toric Calabi-Yau threefolds with small Hodge number

h2,1, yielding dozens of additional examples; details will appear in future work.

Our first result will show that this is not a coincidence: in fact, any M2-polarized

family of K3 surfaces πU : XU → U is determined up to isomorphism by its generalized

functional invariant, so we can obtain any such family by pulling back the special

family X2. We will therefore begin our study of threefolds fibred by M2-polarized K3

surfaces by studying the family X2.

Theorem 7.2.2. Let XU → U denote an M2-polarized family of K3 surfaces over

a quasi-projective curve U , such that the Néron-Severi group of a general fibre of
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XU is isometric to M2. Then XU is uniquely determined (up to isomorphism) by its

generalized functional invariant map g : U → MM2.

Proof. Suppose for a contradiction that XU and YU are two non-isomorphic M2-

polarized familes of K3 surfaces over U , that satisfy the conditions of the theorem

and have the same generalized functional invariant g : U → MM2 .

Let {Ui} denote a cover of U by simply connected open subsets and let XUi (resp.

YUi) denote the restriction of XU (resp. YU ) to Ui for each i. On each Ui, Ehresmann’s

Theorem (see, for example, [143, Section 9.1.1]) shows that we can choose markings

compatible with the M2-polarizations on the families of K3 surfaces XUi and YUi .

Thus, by the Global Torelli Theorem [109, Theorem 2.7’], the families XUi and YUi

are isomorphic for each i.

Therefore, since we have assumed that XU and YU are non-isomorphic, they must

differ in how the families XUi and YUi glue together over the intersections Ui ∩Uj . Let

V ⊂ Ui ∩ Uj be a connected component of such an intersection, such that the gluing

maps differ over V . As XU and YU are isomorphic over V , the gluing maps over V

must differ by composition with a nontrivial fibrewise automorphism ψ. Moreover, by

the polarization condition, ψ must preserve the M2-polarizations on the fibres over V .

Now, consider the action of ψ on the fibre Xp of XU over a general point p ∈ V .

As the Néron-Severi group of Xp is isometric to M2 (by assumption) and ψ∗ ∈

O(H2(Xp,Z)) fixes M2, we see that ψ must act non-symplectically on Xp.

Thus, by [110, Proposition 1.6.1], ψ∗ descends to an element of the subgroup

O(M⊥
2 )∗ of O(M⊥

2 ) which induces the trivial automorphism on the discriminant group

AM⊥
2
. Furthermore, since Xp is general, M⊥

2 supports an irreducible rational Hodge

structure, so ψ∗ must act irreducibly on M⊥
2 . Therefore, by [109, Theorem 3.1], it

follows that the order n of ψ∗ must satisfy φ(n)|rank (M⊥
2 ) = 3, where φ(n) denotes

Euler’s totient function. Using Vaidya’s [142] lower bound for φ(n),

φ(n) ≥
√
n for n > 2, n ̸= 6
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we see that φ(n)|3 implies that n ≤ 9. A simple check then shows that n = 2 or

n = 1. If n = 2 then, by irreducibility, ψ∗ would have to act as −Id on M⊥
2 and as the

identity on M2. However, since the discriminant group of M⊥
2 is AM⊥

2

∼= Z/4Z, such

ψ∗ would not descend to the identity on AM⊥
2
, so this case cannot occur. Therefore,

ψ∗ must be of order 1. But then ψ must be the trivial automorphism, which is a

contradiction.

7.2.1 A fundamental family

The family X2 → MM2 is described in [51, Section 5.4.1]. It is given as the minimal

resolution of the family of hypersurfaces in P3 obtained by varying λ in the following

expression

λw4 + xyz(x+ y + z − w) = 0. (7.1)

This family has been studied extensively by Narumiya and Shiga [108], we will make

substantial use of their results in the sequel (note, however, that our λ is not the same

as the λ used in [108], instead, our λ is equal to µ4 or u
256 from [108]).

Recall from [44, Theorem 7.1] that MM2 is the compactification of the modular

curve Γ0(2)
+ \H. In [51, Section 5.4.1] it is shown that the orbifold points of orders

(2, 4,∞) in MM2 occur at λ = ( 1
256 ,∞, 0) respectively, and the K3 fibres of X2 are

smooth away from these three points. Let UM2 denote the open set obtained fromMM2

by removing these three points. Then the restriction of X2 to UM2 is an M2-polarized

family of K3 surfaces (in the sense of [51, Definition 2.1]).

As noted in the previous section, it follows from Theorem 7.2.2 that any M2-

polarized family of K3 surfaces XU → U can be realized as the pull-back of X2 by the

generalized functional invariant map g : U → MM2 .

7.2.2 Constructing Calabi-Yau threefolds

In the remainder of this paper, we will use this theory to construct Calabi-Yau

threefolds fibred by M2-polarized K3 surfaces and study their properties. We note

that, in this paper, a Calabi-Yau threefold will always be a smooth projective threefold
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X with ωX ∼= OX and H1(X ,OX ) = 0. We further note that the cohomological

condition in this definition implies that any fibration of a Calabi-Yau threefold by K3

surfaces must have base curve P1, so from this point we restrict our attention to the

case where B ∼= P1.

Recall that, by [51, Theorem 5.10], we already know of several Calabi-Yau threefolds

with h2,1 = 1 that admit fibrations by M2-polarized K3 surfaces. It is noted in [51,

Section 5.4] that the generalized functional invariant maps determining these fibrations

all have a common form, given by a pair of integers (i, j): the map g is an (i+ j)-fold

cover ramified at two points of orders i and j over λ = ∞, once to order (i+ j) over

λ = 0, and once to order 2 over a point that depends upon the modular parameter of

the threefold, where i, j ∈ {1, 2, 4} are given in [51, Table 1].

The aim of this section is to extend this construction of Calabi-Yau threefolds

to a more general setting. Let g : P1 → MM2 be an n-fold cover and let [x1, . . . , xk],

[y1, . . . , yl] and [z1, . . . , zm] be partitions of n encoding the ramification profiles of g

over λ = 0, λ = ∞ and λ = 1
256 respectively. Let r denote the degree of ramification

of g away from λ ∈ {0, 1
256 ,∞}, defined to be

r :=
∑
p∈P1

g(p)/∈{0, 1
256

,∞}

(ep − 1),

where ep denotes the ramification index of g at the point p ∈ P1.

Let π2 : X̄2 → MM2 denote the threefold fibred by (singular) K3 surfaces defined by

Equation (7.1); then X̄2 is birational to X2. Let π̄g : X̄g → P1 denote the normalization

of the pull-back g∗X̄2.

Proposition 7.2.3. The threefold X̄g has trivial canonical sheaf if and only if k + l+

m− n− r = 2 and either l = 2 with y1, y2 ∈ {1, 2, 4}, or l = 1 with y1 = 8.

Proof. We begin by noting that a simple adjunction calculation shows that X̄2 has

canonical sheaf ωX̄2
∼= π∗2OMM2

(−1). We need to study the effects of the map X̄g → X̄2

on this canonical sheaf.
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It is an easy local computation using Equation (7.1) to show that the pull-back

g∗X̄2 is normal away from the fibres over g−1(∞). To see what happens on the

remaining fibres, suppose that p ∈ P1 is a point with g(p) = ∞ and let yi denote the

order of ramification of g at p. Then the fibre over p is contained in the non-normal

locus of g∗X̄2 if and only if yi > 1. Away from the fibre over p the normalization map

X̄g → g∗X̄2 is an isomorphism, whilst on the fibre over p it is an hcf(yi, 4)-fold cover.

With this in place, we perform two adjunction calculations. The first is for the

map of base curves g : P1 → MM2 . As MM2
∼= P1, we find that we must have

k + l +m− n− r − 2 = 0. (7.2)

Next, we compute ωX̄g
. We find:

ωX̄g
∼= π̄∗gOP1

(
k +m− n− r −

l∑
i=1

(
yi

hcf(yi, 4)
− 1

))
.

Putting these equations together, we see that the condition that ωX̄g
is trivial is

equivalent to

l − 2 +
l∑

i=1

(
yi

hcf(yi, 4)
− 1

)
= 0.

Since l ≥ 1 and ( yi
hcf(yi,4)

− 1) is nonnegative for any integer yi > 0, we must therefore

have either l = 2 and yi = hcf(yi, 4), in which case yi|4, or l = 1 and y1 = 2hcf(y1, 4),

in which case y1 = 8. Together with Equation (7.2), this proves the proposition.

Next we will show that we can resolve most of the singularities of X̄g.

Proposition 7.2.4. If Proposition 7.2.3 holds, then there exists a projective birational

morphism Xg → X̄g, where Xg is a normal threefold with trivial canonical sheaf and

at worst Q-factorial terminal singularities. Furthermore, any singularities of Xg occur

in its fibres over g−1( 1
256), and Xg is smooth if g is unramified over λ = 1

256 (which

happens if and only if m = n).
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Remark 7.2.5. There exist examples of maps g : P1 → MM2 , satisfying the conditions

of this proposition and ramified over λ = 1
256 , for which the corresponding threefolds

Xg are not smooth; see Example 7.4.5.

Proof. We prove this proposition by showing that the singularities of X̄g may all be

crepantly resolved, with the possible exception of some Q-factorial terminal singulari-

ties lying in fibres over g−1( 1
256).

The threefold X̄2 has six smooth curves C1, . . . , C6 of cA3 singularities which form

sections of the fibration π2. These lift to the cover X̄g so that, away from the fibres

over g−1{0, 1
256 ,∞}, the threefold X̄g also has six smooth curves of cA3 singularities

which form sections of the fibration. These can be crepantly resolved, so Xg is smooth

away from its fibres over g−1{0, 1
256 ,∞}.

Now let ∆0 be a disc in MM2 around λ = 0 and let ∆′
0 be one of the connected

components of its preimage under g. Then g : ∆′
0 → ∆0 is an xi-fold cover ramified

totally over λ = 0, for some xi. The threefold X̄2 is smooth away from the curves Ci

over ∆0 and the fibre of π2 : X̄2 → MM2 over λ = 0 has four components meeting

transversely along six curves D1, . . . , D6, with dual graph a tetrahedron.

After pulling back to ∆′
0 we see that, after resolving the pull-backs of the six curves

Ci of cA3 singularities, the threefold X̄g is left with six curves of cAxi−1 singularities in

its fibre over g−1(0), given by the pull-backs of the curves Dj . Friedman [57, Section

1] has shown how to crepantly resolve such a configuration, so Xg is smooth over ∆′
0.

Next let ∆∞ be a disc in MM2 around λ = ∞ and let ∆′
∞ be one of the connected

components of its preimage under g. Then g : ∆′
∞ → ∆∞ is a yi-fold cover ramified

totally over λ = ∞, for some yi ∈ {1, 2, 4, 8}.

The family π2 : X̄2 → MM2 has a fibre of multiplicity four over λ = ∞ and, in

addition to the six curves Ci of cA3 singularities forming sections of the fibration π2,

the threefold X̄2 also has four curves E1, . . . , E4 of cA3 singularities in its fibre over

λ = ∞. The curves Ej intersect in pairs at six points, which coincide with the six

points of intersection of the curves Ci with the fibre π−1
2 (∞). Thus, over ∆∞ the

threefold X̄2 has ten curves of cA3 singularities, which meet in six triple points.
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If yi = 1, then X̄g is isomorphic to X̄2 over ∆∞. The ten curves of cA3 singularities

may be crepantly resolved by the method in [57, Section 1], so Xg is smooth over ∆′
∞.

This resolution gives three exceptional components over each curve of cA3 singularities

and three exceptional components over each point where three of these curves meet.

The resulting singular fibre over g−1(∞) has 31 components (3 from each of the

curves Ej , three from each of the six intersections between these curves, and the strict

transform of the original component).

When yi = 2, the four curves Ej lift to four curves of cA1 singularities in X̄g.

The threefold X̄g thus contains ten curves of singularities over ∆′
∞: six curves of

cA3’s coming from the pull-backs of the Ci and four curves of cA1’s coming from

the pull-backs of the Ej . To crepantly resolve these singularities, first resolve the six

curves of cA3’s. The resulting threefold is smooth away from its fibre over g−1(∞),

which contains ten curves of cA1 singularities (the strict transforms of the pull-backs

of the Ej and six further curves coming from the six points where they intersect).

These ten curves may be blown up once each to give the threefold Xg, which is smooth

over ∆′
∞. The resulting singular fibre over g−1(∞) has 11 components, arranged in

an example of a “flowerpot degeneration” [37] with flowers of type 4α (see [37, Table

3.3]).

Finally, if 4|yi, the lifts of the four curves Ej are smooth in Xg. Over ∆′
∞, the

threefold X̄g thus contains only the six curves of cA3 singularities coming from the

pull-backs of the curves Ci. These may be crepantly resolved without adding any

new components to the fibre of X̄g over g−1(∞). Thus we see that, in all cases, the

threefold Xg is smooth over ∆′
∞.

Finally, let ∆ 1
256

be a disc in MM2 around λ = 1
256 and let ∆′

1
256

be one of the

connected components of its preimage under g. Then g : ∆′
1

256

→ ∆ 1
256

is an zi-fold

cover ramified totally over λ = 1
256 , for some zi.

The threefold X̄2 is smooth over ∆ 1
256

away from the six curves Ci of cA3’s forming

sections of the fibration, but its fibre over λ = 1
256 has an additional isolated A1

singularity. Upon proceeding to the zi-fold cover ∆′
1

256

→ ∆ 1
256

, this becomes an

isolated terminal singularity of type cAzi−1 in X̄g.
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Thus Xg is smooth away from its fibres over g−1( 1
256), where it can have isolated

terminal singularities. By [87, Theorem 6.25], we may further assume that Xg is

Q-factorial. To complete the proof, we note that if g is a local isomorphism over ∆ 1
256

,

then Xg is also smooth over g−1( 1
256) and thus smooth everywhere.

Let πg : Xg → P1 denote the fibration induced on Xg by the map π̄g : X̄g → P1. By

construction, the restriction of πg to the smooth fibres is an M2-polarized family of

K3 surfaces, in the sense of [51, Definition 2.1]. Moreover, we have:

Proposition 7.2.6. Let Xg be a threefold as in Proposition 7.2.4. Then the cohomol-

ogy H1(Xg,OXg) = 0.

Proof. Since H1(P1,OP1) = 0, the proposition will follow immediately from the Leray

spectral sequence if we can prove that R1(πg)∗OXg = 0.

To show this, we note that Xg is a normal projective threefold with at worst

terminal singularities and the canonical sheaf ωXg
∼= OXg is locally free. So we

may apply the torsion-freeness theorem of Kollár [86, Theorem 10.19] to see that

R1(πg)∗OXg is a torsion-free sheaf on P1. Moreover, since H1(X,OX) = 0 for a generic

fibre X of πg : Xg → P1, the sheaf R1(πg)∗OXg also has trivial generic fibre. We must

therefore have R1(πg)∗OXg = 0.

Corollary 7.2.7. Let Xg be a threefold as in Proposition 7.2.4. If Xg is smooth, then

Xg is a Calabi-Yau threefold.

Conversely, let X → P1 be a Calabi-Yau threefold fibred by K3 surfaces, let U ⊂ P1

denote the open set over which the fibres of X are smooth and let XU denote the

restriction of X to U . Suppose that XU is an M2-polarized family of K3 surfaces (in

the sense of [51, Definition 2.1]) and that the Néron-Severi group of a general fibre of

XU is isometric to M2. Then X is birational to a threefold Xg as in Proposition 7.2.4.

Proof. To prove the first statement note that, by Proposition 7.2.4, Xg has trivial

canonical bundle. Moreover, H1(Xg,OXg) = 0 by Proposition 7.2.6. So Xg is Calabi-

Yau.
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The converse statement follows from the fact that, if g : P1 → MM2 denotes the

generalized functional invariant of X , then Theorem 7.2.2 shows that X and Xg are

isomorphic over the open set U .

Example 7.2.8. We now explain how the five Calabi-Yau threefolds fibred by M2-

polarized K3 surfaces from [51, Theorem 5.10] fit into this picture. As noted in [51,

Section 5.4], in each of these cases the generalized functional invariant g : P1 → MM2

has the special form

g : (s : t) ↦→ λ =
Asi+j

ti(s− t)j
,

where (s : t) are coordinates on P1, A ∈ C is a modular parameter for the threefold,

and i, j ∈ {1, 2, 4} are as listed in [51, Table 1].

In our notation from above, this map g has (k, l,m, n, r) = (1, 2, i + j, i + j, 1),

[x1] = [i + j], [y1, y2] = [i, j], and [z1, . . . , zi+j ] = [1, . . . , 1]. It follows immediately

from Proposition 7.2.4 and Corollary 7.2.7 that Xg is a smooth Calabi-Yau threefold

for each choice of i, j, as we should expect. The reason for the special form of the

generalized functional invariants g appearing in these cases will be discussed later in

Remark 7.3.8.

In particular, we see that the M2-polarized K3 fibration on the quintic mirror

threefold appears as a special case of this construction, with (i, j) = (1, 4). Its

generalized functional invariant g therefore has (k, l,m, n, r) = (1, 2, 5, 5, 1), [x1] = [5],

[y1, y2] = [1, 4], and [z1, . . . , z5] = [1, 1, 1, 1, 1].

7.3 Hodge Numbers

This enables us to construct a large class of Calabi-Yau threefolds Xg admitting

fibrations by M2-polarized K3 surfaces. We next study the Hodge numbers of these

Calabi-Yau threefolds.

Remark 7.3.1. It is easy to see here that the case l = 1, y1 = 8 is a smooth

degeneration of the case l = 2, (y1, y2) = (4, 4), corresponding to restriction to a

sublocus in moduli. Therefore, when discussing the Hodge numbers of the Calabi-Yau
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threefolds Xg, to avoid pathological cases we will restrict to the case l = 2. In this

case we have y1, y2 ∈ {1, 2, 4} and k +m− n− r = 0.

7.3.1 The Hodge number h1,1

The Hodge number h1,1 is relatively easy to compute. We find:

Proposition 7.3.2. Let Xg be a Calabi-Yau threefold as in Corollary 7.2.7 and

suppose that g−1(∞) consists of two points (so that l = 2). Then

h1,1(Xg) = 20 +

k∑
i=1

(2x2i + 1) + c1 + c2,

where [x1, . . . , xk] is the partition of n encoding the ramification profile of g over λ = 0

and c1, c2 are given in terms of the partition [y1, y2] of n encoding the ramification

profile of g over λ = ∞ by cj = 30 (resp. 10, 0) if and only if yj = 1 (resp. 2, 4).

Proof. Note that h1,1(Xg) is equal to the rank of Pic(Xg), so it suffices to find this

rank.

Recall first that, with respect to the fibration πg on Xg, any irreducible effective

divisor D on Xg is either horizontal (i.e. the restriction of πg : Xg → P1 to D is

surjective) or vertical (i.e. πg(D) is a point, so D is a component of a fibre). Moreover,

Pic(Xg) ∼= Pich(Xg)⊕ Picv(Xg), where Pich(Xg) and Picv(Xg) denote the subspaces

of Pic(Xg) spanned by the classes of horizontal and vertical divisors respectively. We

analyze each of these subspaces in turn.

The subspace of horizontal divisors is easy to access. Let Xp denote the fibre of

πg : Xg → P1 over a general point p ∈ P1. Then any horizontal divisor restricts to a

divisor on Xp and this restriction respects linear equivalence, so we have an embedding

Pich(Xg) ↪→ Pic(Xp). Furthermore, as the restriction of πg to the smooth fibres of Xg

defines an M2-polarized family of K3 surfaces (in the sense of [51, Definition 2.1]),

monodromy around singular fibres acts trivially on divisor classes in Xp. Thus, every

irreducible effective divisor in Xp sweeps out a unique irreducible effective divisor in

Xg. This shows that Pic
h(Xg) ∼= Pic(Xp), so rank (Pich(Xg)) = ρ(Xp) = 19.
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The vertical divisors are more difficult. Firstly, we note that any two fibres are

linearly equivalent. This contributes a single divisor class to Picv(Xg). The remaining

vertical divisor classes arise from components of singular fibres of Xg.

The fibres of Xg are irreducible over all points p ∈ P1 with g(p) = λ /∈ {0,∞}, so

we only need to consider the points p outside this set. First suppose that p is a point

with g(p) = 0 and let x denote the order of ramification of g at p. The fibre of X2

over λ = 0 is semistable, with four components arranged as a tetrahedron. So the

fibre of Xg over p is isomorphic to the resolution of the pull-back of such a fibre by a

base change t ↦→ tx, where t is a local coordinate around p ∈ P1.

Pull-backs of semistable fibres of this kind were computed by Friedman [57, Section

1]. By [57, Proposition 1.2], we see that the fibre of Xg over p has

• 4 components that are strict transforms of the original 4,

• 6(x− 1) new components arising from the blow-ups of the six curves of cAx−1

singularities that occur along the pull-backs of the six edges of the tetrahedron,

and

• 2(x− 1)(x− 2) new components arising from the blow-ups of the pull-backs of

the four corners of the tetrahedron.

Summing, we obtain (2x2 + 2) components in the fibre over p. This gives (2x2 + 1)

new classes in Picv(Xg) (as the sum of all (2x2 + 2) components is linearly equivalent

to the class of a fibre, which we have already counted).

Finally, we consider a fibre of Xg over a point p with g(p) = ∞. Let y denote the

order of ramification of g at p; by Proposition 7.2.3 we have y ∈ {1, 2, 4}. In each

case, the fibre of Xg over p was computed explicitly in the proof of Proposition 7.2.4.

In particular, we found that it has 31 (resp. 11, 1) components when y = 1 (resp. 2,

4). Thus, the fibre of Xg over p contributes 30 (resp. 10, 0) new classes to Picv(Xg)

when y = 1 (resp. 2, 4).
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Summing over all singular fibres in Xg, we find that

rank (Picv(Xg)) = 1 +
k∑

i=1

(2x2i + 1) + c1 + c2,

where xi and cj are as in the statement of the proposition. Adding in the 19 horizontal

divisor classes, we obtain the result.

7.3.2 Leray filtrations and local systems

The Hodge number h2,1 is somewhat more difficult to compute. To find it, we begin

by developing some general theoretical results that apply to any K3-fibred threefolds,

then specialize these to the case that interests us. Our main tools in this endeavour

will be the Leray spectral sequence and Poincaré’s formula for the ranks of cohomology

groups of local systems.

So let π : X → B be a smooth projective threefold fibred by K3 surfaces over a

smooth complete base curve B. Denote the fibre of X over p ∈ B by Xp. Zucker

[149, Corollary 15.15] has shown that, under these assumptions, the Leray spectral

sequence for π : X → B degenerates, so we have a Leray filtration L• on H3(X ,Q)

with GriL = H3−i(B,Riπ∗Q).

Since B is an algebraic curve, we must have H3(B, π∗Q) = 0. Moreover, R1π∗Q is

a skyscraper sheaf since the generic fibre of π is a K3 surface, giving H2(B,R1π∗Q) = 0

also. The Leray filtration thus gives rise to the following exact sequence

0 −→ H1(B,R2π∗Q) −→ H3(X ,Q) −→ H0(B,R3π∗Q) −→ 0, (7.3)

which may be used to study H3(X ,Q).

Now, if πU : XU → U is the restriction of π to the locus of smooth fibres and

j : U ↪→ B is the natural injection, it follows from the local invariant cycle theorem

that

H1(B,R2π∗Q) ∼= H1(B, j∗(R
2(πU )∗Q))
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(see [149, (15.1)] for details). This cohomology group can be computed in explicit

examples, as we shall see in Section 7.3.3.

To study H3(X ,Q) we must also calculate H0(B,R3π∗Q). Zucker [149, Section

15] shows that H0(B,R3π∗Q) admits a pure Hodge structure of weight 3 and that

there is a short exact sequence

0 −→ A −→ H0(B,R3π∗Q) −→ H0(B, j∗R
3(πU )∗Q) −→ 0; (7.4)

here A ⊂
⨁

s∈ΣH
3(Xs,Q), where Σ ⊂ B denotes the locus of singular fibres in X and

Xs denotes the fibre of X over s ∈ Σ. Specializing this result to our setting, where π

is a K3 surface fibration, we see that H0(B, j∗R
3(πU )∗Q) = 0, so the exact sequence

above gives H0(B,R3π∗Q) ∼= A.

A may be described explicitly as follows. Suppose that X̃ is a resolution of X ,

chosen so that each singular fibre X̃s in X̃ is a normal crossings union of smooth

surfaces, and let π̃ : X̃ → B be the induced K3 fibration on X̃ . Let ∆s ⊂ B be a

small closed disc around each point s ∈ Σ, let X̃∆s = π̃−1(∆s) and let ∂X̃∆s be the

boundary of X̃∆s . Then Zucker [149, Section 15] shows that A may be defined as a

sum of images of morphisms of mixed Hodge structures,

A =
⨁
s∈Σ

im
(
ϕs : H

3(X̃∆s , ∂X̃∆s) → H3(X̃s)
)
,

from which it follows that A admits a pure Hodge structure of weight 3. The exact

definitions of the maps ϕs appearing here will not concern us, as we only need to use

the fact that they are morphisms of mixed Hodge structures; the interested reader may

refer to [149, Section 15] for more details. We compute A in the following proposition.

Proposition 7.3.3. Let π : X → B be a smooth projective threefold fibred by K3

surfaces. Let Xp = π−1(p) for p a point in B. If every Xp is either:

1. a K3 surface with at worst ADE singularities, or

2. a normal crossings union of smooth surfaces Si, with H
3(Si,Q) = 0,

then A = 0. In particular, this implies that H3(X ,Q) ∼= H1(B, j∗R
2(πU )∗Q).
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Proof. To show that A ⊂
⨁

s∈ΣH
3(Xs) is trivial, it suffices to show that its restriction

to H3(Xs) is trivial for every s ∈ Σ.

Begin by letting Xs be any fibre satisfying case (1) of the proposition. Then Xs

is still a K3 surface, so H3(Xs) = 0. Thus the restriction of A to H3(Xs) must be

trivial in this case.

Now consider a fibre Xs satisfying case (2). As Xs is a normal crossings union of

smooth surfaces, we may choose a resolution X̃ so that X̃ ∼= X in a neighbourhood

∆s of s. Therefore, by the definition of A above, to show that the restriction of A to

H3(Xs) is trivial, it suffices to show that the image

im
(
ϕs : H

3(X∆s , ∂X∆s) → H3(Xs)
)

is trivial.

To do this, we use the Mayer-Vietoris spectral sequence as described by Griffiths

and Schmid in [66, Section 4]. Let Xs have irreducible components {Si}, then

define (Xs)i1,...,ip =
⋂

i0...,ip
Sij for a disjoint set of indices i0, . . . , ip and let X

[p]
s =∏

i0<···<ip
(Xs)i0,...,ip . The E1 term of the Mayer-Vietoris spectral sequence is then

given by Ep,q
1 = Hq(X

[p]
s ,Q).

This spectral sequence degenerates at the E2 level and converges to Hp+q(Xs,Q).

Its graded pieces GrWi are the weight-graded pieces of the functorial mixed Hodge

structure on Xs. Thus only H
3(X

[0]
s ,Q), H2(X

[1]
s ,Q) and H1(X

[2]
s ,Q) may contribute

to H3(Xs,Q). Moreover, by the condition that Si is a smooth rational surface for all

values of i, we have H3(Si,Q) = 0 and hence GrW3 H
3(Xs,Q) = H3(X

[0]
s ,Q) = 0.

Zucker [149, Section 15] notes that the weight filtration on H3(X∆s , ∂X∆s) has

Wi = 0 for i ≤ 2. By strictness, we thus see that

im(ϕs) ∩W2(H
3(Xs,Q)) = 0

and

ϕs(WiH
3(X∆s , ∂X∆s)) = im(ϕs) ∩Wi(H

3(Xs)) = im(ϕs) ∩W3(H
3(Xs))
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for all i ≥ 3. So in particular

im(ϕs) = ϕs(W3H
3(X∆s , ∂X∆s)) ⊂W3(H

3(Xs))

and the map

W3(H
3(Xs)) −→ GrW3 (H3(Xs))

is injective on the image of ϕs. Thus the image of the induced map

W3H
3(X∆s , ∂X∆s)

ϕs−→W3(H
3(Xs)) −→ GrW3 (H3(Xs)) = 0

is equal to the image of ϕs, so the restriction of A to H3(Xs) is trivial in this case.

Therefore, we have A = 0 under the conditions of the proposition. It thereby

follows from the exact sequence (7.4) that there is an isomorphism

H0(B,R3π∗Q) ∼= H0(B, j∗R
3(πU )∗Q) = 0

and substitution into the exact sequence (7.3) gives H3(Y,Q) ∼= H1(B, j∗R
2(πU )∗Q).

7.3.3 The Hodge number h2,1

Now let V be an irreducible Q-local system on a quasi-projective curve U and let

j : U ↪→ B be the canonical injection of U into its smooth closure. Associated to V

and a base-point p ∈ U , we have a representation ρ : π1(U, p) → GL(Vp), where Vp is

the fibre of V at p.

Denote the points in B − U by {q1, . . . , qs}. Via this representation, to each qi we

may associate a local monodromy matrix γi, coming from a counterclockwise loop

about qi. This allows us to associate an integer

R(qi) := rankVp − dim(Vγi
p )
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to each qi, where Vγi
p is the subspace of elements of Vp that are fixed under the action

of γi

With this in place, we may compute h1(B, j∗V) using the following variation on

Poincaré’s formula in classical topology, due to del Angel, Müller-Stach, van Straten

and Zuo [40, Proposition 3.6]:

h1(B, j∗V) =
n∑

i=1

R(qi) + 2(g(B)− 1)rank (V). (7.5)

As a result of this formula and Proposition 7.3.3, if the singular fibres of π satisfy

the assumptions of Proposition 7.3.3 and we know the local monodromy matrices,

then we can easily deduce the Betti number b3(X ) of a K3 surface fibred threefold X .

These conditions are satisfied by the examples discussed in Section 7.2.

Example 7.3.4. Let X2 → MM2 be the K3-fibred threefold discussed in Section 7.2.1.

Recall that X2 has three singular fibres, over the points (q1, q2, q3) = (0, 1
256 ,∞), and

that the family of K3 surfaces over UM2 := MM2 − {q1, q2, q3} is an M2-polarized

family of K3 surfaces (in the sense of [51, Definition 2.1]).

If πU denotes the restriction of the fibration X2 → MM2 to UM2 , then R
2(πU )∗Q is

a Q-local system on UM2 . It is easy to see from the explicit description in the proof of

Proposition 7.2.4 that the singular fibres of X2 are either nodal K3 surfaces or normal

crossings unions of smooth rational surfaces. Thus we may apply Proposition 7.3.3

to deduce that b3(X2) = h1(MM2 , j∗(R
2(πU )∗Q)), where j : UM2 → MM2 denotes the

inclusion.

It therefore remains to compute this cohomology. The discussion of [51, Section

2.1] gives a splitting of R2(πU )∗Q as a direct sum of two irreducible Q-local systems

R2(πU )∗Q = NS(X2)⊕ T (X2),

where NS(X2) consists of those classes which are in NS(Xt) ⊗ Q for every smooth

fibre Xp of X2, and T (X2) is the orthogonal complement of NS(X2). In our situation,
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NS(X2) is a trivial rank 19 local system, and T (X2) is an irreducible local system of

rank 3.

We therefore have

H1(MM2 , j∗(R
2(πU )∗Q)) = H1(MM2 , j∗T (X2))⊕H1(MM2 , j∗NS(X2)),

and triviality of NS(X2) allows us to reduce this expression to

H1(MM2 , j∗(R
2(πU )∗Q)) = H1(MM2 , j∗T (X2)).

We will compute this last cohomology group using Equation (7.5). According

to [108, Section 5], the Picard-Fuchs equation of the family of K3 surfaces X2 is

hypergeometric of type 3F2(
1
4 ,

2
4 ,

3
4 ; 1, 1; 256λ). From this, we may use a theorem of

Levelt ([96, Theorem 1.1], see also [22, Theorem 3.5]) to compute that the global

monodromy representation of T (X2)⊗ R is given by the monodromy matrices

A =

⎛⎜⎜⎜⎝
0 0 −1

1 0 −1

0 1 −1

⎞⎟⎟⎟⎠ , B−1 =

⎛⎜⎜⎜⎝
3 1 0

−3 0 1

1 0 0

⎞⎟⎟⎟⎠ , A−1B =

⎛⎜⎜⎜⎝
1 0 −4

0 1 2

0 0 −1

⎞⎟⎟⎟⎠
around λ = ∞, λ = 0 and λ = 1

256 respectively (here the names of the matrices have

been chosen to agree with [22]). Thus the local system T (X2)⊗C has local monodromy

matrices given by

γ∞ =

⎛⎜⎜⎜⎝
√
−1 0 0

0 −
√
−1 0

0 0 −1

⎞⎟⎟⎟⎠ , γ0 =

⎛⎜⎜⎜⎝
1 1 0

0 1 1

0 0 1

⎞⎟⎟⎟⎠ , γ 1
256

=

⎛⎜⎜⎜⎝
−1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎠
Using Equation (7.5), we can therefore compute that

b3(X2) = h1(MM2 , j∗(R
2(πU )∗Q)) = h1(MM2 , j∗T (X2)) = 3 + 1 + 2− 2 · 3 = 0
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Local systems V satisfying h1(P1, j∗V) = 0 are called extremal local systems in [32].

Remark 7.3.5. Note that we choose not to use the explicit monodromy matrices

computed in [108, Section 4] for this calculation. This is because the method used to

compute monodromy matrices in [108] contains a sign ambiguity, corresponding to the

choice of primitive fourth root of unity in the transformation [108, (4.1)]. Making the

opposite choice has the effect of applying an antisymplectic involution on the fibres,

which multiplies the monodromy matrices γ∞ and γ0 by a factor of −1. As this sign

is crucial in the computation of R(0) and R(∞), we choose to avoid ambiguity and

instead compute the monodromy matrices directly from the Picard-Fuchs equation.

Next we consider the general case. Let πg : Xg → P1 be a K3 surface fibred

Calabi-Yau threefold as in Corollary 7.2.7 and suppose that g−1(∞) consists of two

points (so that l = 2). Recall that Xg is defined by a degree n cover g : P1 → M2

with ramification profiles [x1, . . . , xk], [y1, . . . , yl] and [z1, . . . , zm] over λ = 0, λ = ∞

and λ = 1
256 respectively, and ramification degree r away from these three points. Let

U ⊂ P1 be the preimage g−1(UM2) and let j : U → P1 denote the inclusion.

Now, by the proof of Proposition 7.2.4, the singular fibres of Xg are all either nodal

K3 surfaces or normal crossings unions of smooth rational surfaces, so the argument of

Example 7.3.4 gives b3(Xg) = h1(P1, j∗T (Xg)). But, by construction, the local system

on U given by T (Xg) is equal to g
∗V, where V is the local system over UM2 given by

T (X2). The cohomology of this local system is computed by:

Proposition 7.3.6. Let V be the local system over UM2 given by T (X2). We have

h1(P1, j∗g
∗V) = 2 + 2k + (modd − n),

where modd denotes the number of z1, . . . , zm which are odd.

In particular, if g is unramified over λ = 1
256 , then h

1(P1, j∗g
∗V) = 2 + 2k.

Proof. If g ramifies to order a at a point q in P1 − U , then the monodromy of the

pulled-back local system g∗V about q is given by γag(q) where γg(q) is the monodromy
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matrix of T (X2) around g(q). Therefore we can compute, using the explicit expressions

for local monodromy found in Example 7.3.4, that

• if g ramifies to order y at a preimage of ∞, then R(q) = 4− hcf(y, 4),

• if g ramifies to order z at a preimage of 1
256 , then R(q) = 2− hcf(z, 2), and

• at any preimage of 0, we have R(q) = 2.

Thus we calculate

h1(P1, j∗g
∗V) =

l∑
i=1

(4− hcf(yi, 4)) +
m∑
j=1

(2− hcf(zj , 2)) + 2k − 6. (7.6)

Now we impose the conditions of Proposition 7.2.3. By assumption we have l = 2,

and yi = hcf(yi, 4) for both y1 and y2. Equation (7.6) thus gives

h1(P1, j∗g
∗V) = (4− y1) + (4− y2) +

m∑
j=1

(2− hcf(zj , 2)) + 2k − 6

= 2 + 2k + (modd − n) .

Note that (modd − n) ≤ 0 is an even number.

Since Xg is a Calabi-Yau threefold, we therefore have:

Corollary 7.3.7. Let Xg be a Calabi-Yau threefold as in Corollary 7.2.7 and suppose

that g−1(∞) consists of two points (so that l = 2). Then

h2,1(Xg) = k +

(
modd − n

2

)
,

where k denotes the number of ramification points of g over λ = 0, modd denotes the

number of ramification points of odd order of g over λ = 1
256 , and n is the degree of g.

Moreover, if g is unramified over λ = 1
256 , then h2,1(Xg) = k = r, the degree of

ramification of g away from λ ∈ {0, 1
256 ,∞}.

Remark 7.3.8. We can now explain the general form for the generalized functional

invariant maps g of the Calabi-Yau threefolds fibred by M2-polarized K3 surfaces
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listed in [51, Theorem 5.10] (see Example 7.2.8). Indeed, in these cases h2,1(Xg) = 1

by assumption so, if we assume that the map g is unramified over λ = 1
256 (which

guarantees smoothness of Xg, by Proposition 7.2.4), then k = r = 1 by Corollary 7.3.7.

From this, we see that g is totally ramified over λ = 0 and has a single ramification of

degree 2 away from λ ∈ {0, 1
256 ,∞}. Moreover, if we write [y1, y2] = [i, j], for some

i, j ∈ {1, 2, 4}, then we must have deg(g) = n = i+ j.

This shows that, if g is unramified over λ = 1
256 and h2,1(Xg) = 1, then the

generalized functional invariant map g : P1 → MM2 must have the form given in

Example 7.2.8.

To conclude this section, we demonstrate the application of this theory by calcu-

lating the Hodge numbers in our running example of the quintic mirror threefold:

Example 7.3.9. Recall from Example 7.2.8 that the fibration of the quintic mirror

threefold by M2-polarized K3 surfaces has generalized functional invariant g with

(k, l,m, n, r) = (1, 2, 5, 5, 1), [x1] = [5], [y1, y2] = [1, 4], and [z1, . . . , z5] = [1, 1, 1, 1, 1].

The Hodge numbers of this threefold are well known; here we illustrate how to recover

them from the results above.

Firstly, we have h2,1(Xg) = k = 1, by Corollary 7.3.7. Moreover, by Proposition

7.3.2, we have

h1,1(Xg) = 20 + (2x21 + 1) + c1 + c2 = 20 + 51 + 30 + 0 = 101

as expected.

7.4 Deformations and Moduli Spaces

Now consider the setting where g is unramified over the point λ = 1
256 and has only

simple ramification points away from λ ∈ {0, 1
256 ,∞}. In this case Corollary 7.3.7

raises an obvious question. It is easy to see that, in this setting, r is equal to the

number of simple ramification points of g away from λ ∈ {0, 1
256 ,∞}. Moreover, for

the corresponding threefolds Xg, we also have h2,1(Xg) = r. So to what extent are
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small deformations of Xg determined by the locations of these simple ramification

points?

In more generality, we may ask to what extent small deformations of the threefold

Xg are determined by deformations of the map g. In fact, we find:

Proposition 7.4.1. Let Xg be a Calabi-Yau threefold as in Corollary 7.2.7 and

suppose that g−1(∞) consists of two points (so that l = 2). Moreover, suppose that g is

unramified over λ = 1
256 . Then any small deformation of Xg is obtained by deforming

the map g in a way that preserves the ramification profiles over λ ∈ {0,∞}.

Proof. Suppose that πg : Xg → P1 and πg′ : Xg′ → P1 are two Calabi-Yau threefolds

defined by maps g, g′ : P1 → MM2 satisfying the assumptions of the proposition. We

say that an isomorphism φ : Xg → Xg′ is an isomorphism of fibrations between (Xg, πg)

and (Xg′ , πg′) if there is a commutative diagram

Xg

πg
↘↘

φ
→→ Xg′

πg′↙↙

P1

Such an isomorphism exists if and only if then there is an automorphism ϕ : P1 → P1

so that

P1

g
↘↘

ϕ
→→ P1

g′↙↙

MM2

Assume that g has ramification profile [y1, y2] over λ = ∞ and [x1, . . . , xk] over

λ = 0. By applying an automorphism ϕ of P1 as above, we may assume that the

ramification points over λ = ∞ are (1 : 0) and (0 : 1), and that (1 : 1) is a ramification

point over λ = 0 with ramification index x1. Then g may be written as

g : (s : t) ↦−→
a1(s− t)x1

∏k
i=2(s− ait)

xi

sy1ty2
,
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with parameters a1, . . . , ak ∈ (C×)k −∆ where ∆ is the union of the big diagonals in

(C×)k.

Thus there is an k-dimensional space of maps g : P1 → MM2 with the property

that g has ramification profile [y1, y2] over λ = ∞ and [x1, . . . , xk] over λ = 0. By

the discussion above, this means that the space of local deformations of the fibration

(Xg, πg) is also k-dimensional.

Now, by a result of Oguiso [114, Example 2.3], K3 fibrations on Xg correspond to

certain rational rays in the nef cone of Xg so, in particular, there are at most countably

many K3 fibrations on Xg. This means that we cannot continuously vary the K3

fibration on Xg without deforming Xg itself. Since the K3 fibration (Xg, πg) may be

deformed in k different directions and the deformation space of Xg is k-dimensional

(by Corollary 7.3.7), the claim follows.

Remark 7.4.2. From the proof of this proposition the reader may note that, under the

assumptions that g−1(∞) consists of two points and g is unramified over λ = 1
256 , an

open subset of the moduli space of K3-fibred Calabi-Yau threefolds (Xg, πg) is identified

with a moduli space of maps g with fixed ramification profiles over {0, 1
256 ,∞}. Moduli

spaces of such maps are called Hurwitz spaces and have been studied extensively in

the literature.

Next, we will show that any Calabi-Yau threefold Xg is deformation equivalent

to a Calabi-Yau threefold Xg′ defined by a map g′ : P1 → MM2 with only simple

ramification away from λ ∈ {0, 1
256 ,∞}. In particular this shows that, if we are only

interested in generic members of deformation classes, we can safely ignore the type of

ramification away from λ ∈ {0, 1
256 ,∞}.

Proposition 7.4.3. Let g : P1 → MM2 be a morphism. Then there exists a deforma-

tion g′ : P1 → MM2 of g that has only simple ramification away from λ ∈ {0, 1
256 ,∞}.

Thus, if Xg is a Calabi-Yau threefold as in Corollary 7.2.7, then Xg is deformation

equivalent to a Calabi-Yau threefold Xg′ defined by a map g′ : P1 → MM2 that is simply

ramified away from λ ∈ {0, 1
256 ,∞}.
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Remark 7.4.4. We note that this result is not unexpected: neither our computation of

h1,1(Xg) nor our computation of h2,1(Xg) made any reference to the type of ramification

away from λ ∈ {0, 1
256 ,∞}, so we should not expect such ramification to affect the

deformation type of Xg.

Proof. Assume that g has degree n and let Σ = {p1, . . . , ps} be the set of branch

points of g in MM2 . Choose a set of discs ∆i around each pi ∈ Σ, small enough that no

pair of discs intersects, and choose non-intersecting paths βi from a base-point p ∈ P1

to the boundary of each ∆i. For each ∆i, let γi be the path obtained by following the

path βi from p to the boundary of ∆i, going around ∂∆i once counterclockwise, then

traversing βi backwards to p.

The classes of γi generate π1(p , MM2 − Σ) and the concatenation γ1 · · · γs is

a contractible loop. Label the points above p by the integers {1, . . . , n}. Then to

each point pi ∈ Σ, we may associate an element σi ∈ Sn which describes the action

of monodromy around γi on the points over p. This monodromy representation

determines g up to reordering of the points over p. Since P1 is connected, the subgroup

of Sn generated by {σ1, . . . , σs} is transitive.

If g is not simply ramified away from λ ∈ {0, 1
256 ,∞}, then there exists a pi /∈

{0, 1
256 ,∞} so that the corresponding σi is not a transposition. Let σi = τ1 · · · τs′

be a minimal decomposition of such a σi into transpositions. Then we claim that

the set P ′ = {σ1, . . . , σi−1, τ1, . . . , τs′ , σi+1, . . . , σs} can be used to define a new cover

g′ : P1 → MM2 , so that the points qj over which g′ ramifies with cycle structure τj

have only simple ramification.

To define this cover, let t be a complex coordinate on the disc ∆i, chosen so that

∆i = {t ∈ C | |t| < 1} and pi lies at t = 0. Let q denote the point where the path βi

meets the boundary of ∆i. Take points q1, . . . , qs′ ∈ ∆i and define non-intersecting

loops δj from q around each qj . Then let γ′j denote the path obtained by following

the path βi from p to q, going around δj once counterclockwise, then traversing βi

backwards to p. After relabelling if necessary, we may assume that γi = γ′1 · · · γ′s′ in

π1(p , MM2 − Σ′), where Σ′ := {p1, . . . , pi−1, q1, . . . , qs′ , pi+1, . . . ps}.
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By construction, the set {γ1, . . . , γi−1, γ
′
1, . . . , γ

′
s′ , γi+1, . . . , γs} forms a basis for

π1(p , MM2 − Σ′). Assign the set P ′ of elements of Sn to these loops by associating

σi to γi and τj to γ′j . This defines a representation ρ : π1(p , MM2 − Σ′) → Sn whose

image is transitive by construction so, by the Riemann existence theorem, there is a

unique connected curve C and morphism g′ : C → MM2 , such that g′ is branched over

Σ′ and ρ is the monodromy representation of the associated Galois cover of MM2 −Σ′.

Using the Riemann-Hurwitz formula, it is easy to check that C ∼= P1

Now take a deformation g′t of g
′, obtained by multiplying each point q1, . . . , qs′ by

the local coordinate t, and an appropriate deformation of the loops γ′j . At t = 0, the

points qj all go to pi and the map g degenerates to a map g′0 whose monodromy about

pi is τ1 · · · τs′ = σi. By the uniqueness part of the Riemann existence theorem, the

map g′0 is exactly g.

We may now repeat this procedure for each pi ≠ {0, 1
256 ,∞} over which the

corresponding ramification of g is not simple, to obtain a map g′ : P1 → MM2 that

deforms to g and has simple ramification away from {0, 1
256 ,∞}.

Given this, the statement about the threefolds Xg and Xg′ follows from the fact

that the deformation g ⇝ g′ induces a deformation Xg ⇝ Xg′ . As this deformation

does not affect a neighbourhood of the fibres above λ ∈ {0, 1
256 ,∞}, we see that Xg′

must also be Calabi-Yau.

We conclude this section by asking what happens to the threefolds Xg when the

map g degenerates. Such degenerations occur when a ramification point away from

λ ∈ {0, 1
256 ,∞} moves to one of these points. In this situation it is easy to see what

occurs: the ramification profile defining Xg changes and the threefold becomes singular.

If the new ramification profile defines a smooth Calabi-Yau (according to Corollary

7.2.7), then this singular threefold admits a Calabi-Yau resolution, with new Hodge

numbers given by Proposition 7.3.2 and Corollary 7.3.7. Geometrically, the Calabi-Yau

threefold Xg undergoes a geometric transition to a new Calabi-Yau threefold with

different Hodge numbers.
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Example 7.4.5. In our running example of the quintic mirror threefold, the gener-

alized functional invariant g has one simple ramification away from λ ∈ {0, 1
256 ,∞}.

As noted above, moving this ramification point corresponds to deforming the quintic

mirror in its (1-dimensional) complex moduli space. This can also be seen from the

explicit form of the generalized functional invariant given in Example 7.2.8, where

varying the modular parameter A changes the location of this simple ramification point,

whilst keeping the other ramification points fixed.

It is easy to see what happens when this simple ramification point moves to

λ ∈ {0, 1
256 ,∞}. At λ = 1

256 (corresponding to A = 1
55
), the proof of Proposition 7.2.4

shows that Xg acquires a single isolated cA1 (node) singularity. Moreover, by [106,

Lemma 3.5] and [105, Theorem 2.5], the resulting singular threefold is Q-factorial,

so does not admit a crepant resolution. In particular, this degeneration provides an

example of a map g that satisfies the conditions of Proposition 7.2.4 but does not give

rise to a smooth Calabi-Yau threefold.

When the simple ramification point moves to λ = ∞ (corresponding to A = ∞),

the map g becomes totally ramified over λ ∈ {0,∞}. The degenerate threefold acquires

an additional Z/5Z action, which acts to permute the sheets of this cover.

Finally, when the simple ramification point moves to λ = 0 (corresponding to

A = 0), we obtain a degeneration with maximally unipotent monodromy (see Section

7.5.1).

As we can see, we have obtained the three well-known boundary points in the

complex moduli space of the quintic mirror threefold.

7.5 Mirror Symmetry

We conclude this paper with an exploration of the mirror dual varieties associated to

the K3-fibred Calabi-Yau threefolds that are constructed above.

We begin by assuming that Xg is a Calabi-Yau threefold as in Corollary 7.2.7.

Suppose further that g−1(∞) consists of two points and that g is unramified over
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λ = 1
256 (so l = 2 and m = n). In this case, by the discussion in the last section, we

see that the deformation class of Xg is determined by two pieces of data:

1. a choice of i, j ∈ {1, 2, 4} (these determine both the ramification profile [y1, y2] =

[i, j] over λ = ∞ and the degree deg(g) = n = i+ j); and

2. a partition µ = [x1, . . . , xk] of n = i+ j (this defines the ramification profile over

λ = 0).

Moreover, it follows from Proposition 7.2.4 and Corollary 7.2.7 that any threefold Xg

determined by such data must be Calabi-Yau.

In the remainder of this section, we will denote a general Calabi-Yau in the

deformation class determined by a choice of such data by Xµ
i,j . Our aim is to exhibit

a candidate mirror partner for Xµ
i,j .

7.5.1 Monodromy operators and the Kähler cone

Mirror symmetry predicts that if Y and Y ∨ are mirror dual Calabi-Yau threefolds,

then there is a relation between monodromy operators acting on H3(Y,Q) and divisors

in the closure of the Kähler cone of Y ∨. We will briefly sketch some of the details of

this relationship here, the interested reader may find more details in [35, Chapter 5].

Suppose that Y → (∆∗)n is a family of Calabi-Yau threefolds over the punctured

polydisc, with fibre Yt = Y above some t ∈ (∆∗)n. For each i ∈ {1, . . . , n}, let Ti

be the unipotent monodromy operator acting on Hd(Y,Q) coming from the loop

(t1, . . . , ti−1, e
2πit, ti+1, . . . , tn), where (t1, . . . , ti−1, ti+1, . . . , tn) are fixed constants,

and let Ni = log(Ti). The family Y is said to have maximally unipotent monodromy

at (0, . . . , 0) if

1. for any n-tuple (a1, . . . , an) of positive integers, the weight filtration on Hd(Y,Q)

induced by
∑n

i=1 aiNi has dimW0 = dimW1 = 1 and dimW2 = n+ 1, and

2. if g0, . . . , gn is a basis of W2 chosen so that g0 spans W0, and mij are defined by

Nigj = mijg0, then the matrix (mij) is invertible.
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If Y has maximally unipotent monodromy, then mirror symmetry should produce

a map which assigns to each Ni a divisor Di in the closure of the Kähler cone

of Y ∨. Moreover, there should be an identification under mirror symmetry which

gives an isomorphism H3−i,i(Y ) ∼= H i,i(Y ∨), and hence an isomorphism H3(Y,C) ∼=⨁3
i=0H

i,i(Y ∨), so that the action of Ni on H
3(Y,C) agrees with the action of the

cup product operator Li(−) = (−) ∪ [−Di] under this correspondence. Thus, for

any n-tuple (a1, . . . , an) of non-negative integers, the weight filtration on H3(Y,C)

induced by N :=
∑n

i=1 aiNi should be mirrored by the filtration on
⨁3

i=0H
i,i(Y ∨)

induced by L :=
∑n

i=1 aiLi, and the limit Hodge decomposition should correspond to

the decomposition
⨁3

i=0H
i,i(Y ∨).

Now we specialize this discussion to the case of a degeneration Y → ∆ of Calabi-

Yau threefolds over the unit disc ∆ ⊂ C. Assume that that total space Y is smooth

and the central fibre of Y is a union of threefolds Y1 and Y2 that meet normally along

a smooth K3 surface S. Assume further that KYi ∼ −S and h0,1(Yi) = 0 for i ∈ {1, 2},

such Yi are called quasi-Fano threefolds. Degenerations of this form have been studied

by Lee [94], who calls them Tyurin degenerations.

Let Y be a general fibre in Y and let T be the monodromy operator acting

on H3(Y,Q) associated to a counterclockwise loop around 0. In order to apply

the predictions of mirror symmetry, we assume that T may be identified with a

loop
∏n

i=1 T
ai
i around a point of maximally unipotent monodromy in the complex

moduli space of Y , where Ti are as above and ai are non-negative integers. Define

N := log(T ) =
∑n

i=1 aiNi. We will use the Clemens-Schmid exact sequence associated

to N to compute the limit mixed Hodge structure on H3(Y ), then see what this allows

us to deduce about the mirror threefold Y ∨.

Remark 7.5.1. We note that the Tyurin degeneration Y cannot have maximally

unipotent monodromy, for purely topological reasons (see, for instance, [101, Corollary

2]), so T must correspond to a loop around some positive-dimensional boundary

component of the compactified complex moduli space of Y . In particular, this implies

that some of the ai must be zero.
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We begin by looking at the mixed Hodge structure on H3(Y) given by Griffiths

and Schmid [66, Section 4]. The weight filtration on H3(Y,Q) has

GrW3 = H3(Y1,Q)⊕H3(Y2,Q)

and, if r1 and r2 are the restriction maps ri : H
2(Yi,Q) → H2(S,Q), then

GrW2 = H2(S,Q)/(im(r1) + im(r2)).

These weight graded pieces are then equipped with the appropriate Hodge filtrations.

Define integers u := rank (GrW2 ) − 2 and v := 1
2rank (GrW3 ). Noting that KYi is

anti-effective, so that h3,0(Yi) = 0, we see that v = h2,1(Y1) + h2,1(Y2).

The Clemens-Schmid exact sequence gives us an exact sequence of mixed Hodge

structures

· · · −→ H5(Y) −→ H3(Y)
i∗−→ H3

lim(Y )
N−→ H3

lim(Y ) −→ H3(Y) −→ · · ·

where i∗ is the pull-back on cohomology induced by the inclusion i : Y ↪→ Y.

Lemma 7.5.2. H5(Y) = 0, so the map i∗ is an injection.

Proof. The Mayer-Vietoris sequence for Y1 ∪S Y2 gives

· · · −→ H5(Y1)⊕H5(Y2) −→ H5(Y) −→ H4(S)
α−→ H4(Y1)⊕H4(Y2) −→ · · · ,

where the map α is induced by the inclusions S ↪→ Yi.

Now, H5(Y1) ⊕ H5(Y2) vanishes by Poincaré duality and the assumption that

h0,1(Yi) = 0. Moreover, as S is an effective anticanonical divisor in both Y1 and Y2,

the image of the class [S] ∈ H4(S) of S under α is non-trivial. But [S] generates

H4(S), so α must be injective. Thus the sequence above gives H5(Y) = 0.

Applying this lemma and some standard results on the Clemens-Schmid exact

sequence (see, for instance, [101]) we obtain the following limit mixed Hodge structure
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on H3(Y )

Gr3F Gr2F Gr1F Gr0F

GrM4 C Cu C 0

GrM3 0 Cv Cv 0

GrM2 0 C Cu C

where M is the monodromy weight filtration induced by N and F is the limit Hodge

filtration.

Therefore, the divisor D =
∑n

i=1 aiDi on Y
∨ which corresponds to N under mirror

symmetry should have

H0,0(Y ∨) H1,1(Y ∨) H2,2(Y ∨) H3,3(Y ∨)

coimage(L) C Cu C 0

ker(L)/im(L) 0 Cv Cv 0

im(L) 0 C Cu C

where, as before, L(−) = (−) ∪ [−D] denotes the cup-product operator. In particular,

we see that L2 = 0. Since D is in the closure of the Kähler cone of Y ∨, results of

Oguiso [114, Example 2.3] show that mD is the class of a fibre in a fibration of Y ∨ by

K3 or abelian surfaces, for some positive integer m.

Remark 7.5.3. We conjecture that mD will always be the class of fibre in a K3

fibration on Y ∨. Oguiso [114, Example 2.3] gives a simple criterion to test for this:

mD defines a K3 fibration on Y ∨ if and only if c2(Y
∨) · D > 0. We can translate

this to a statement on Y as follows. Let c ∈ H1,2(Y ) be the class corresponding

to c2(Y
∨) ∈ H2,2(Y ∨) under the isomorphism between these two groups induced

by mirror symmetry. Then c2(Y
∨) · D > 0 if and only if c /∈ ker(N) = im(i∗) (or,

equivalently, if c ∈ GrM4 H
1,2(Y )).

In light of this remark, we will assume throughout the remainder of this section

that mD defines a K3 fibration on Y ∨. Then the calculation above also shows that

the classes in Pic(Y ∨) supported on fibres span a v + 1 dimensional subspace, where

one of these classes is mD itself. Moreover, there is a rank u subspace of Pic(Y ∨)
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with L(η) ̸= 0 for each class η ̸= 0 in this subspace. By the global invariant cycles

theorem, classes in this second subspace come from monodromy invariant cycles on

fibres of the K3-fibration on Y ∨. Thus the K3 surface fibration on Y ∨ induced by mD

is Λ∨-polarized (in the sense of [51, Definition 2.1]), for some lattice Λ∨ of rank u.

Therefore we see that, if Y admits a Tyurin degeneration to a union of threefolds

Y1 ∪S Y2, and if restriction of divisors from Y1 and Y2 induces a lattice polarization of

S by a lattice Λ of rank 20−u, then we expect the mirror Y ∨ to admit an Λ∨-polarized

K3 surface fibration, for some lattice Λ∨ of rank u. Moreover, the space of vertical

divisors in Y ∨ should have rank v + 1 = h2,1(Y1) + h2,1(Y2) + 1.

This is precisely what we will see in the following section. We will build certain

Calabi-Yau threefolds Y µ
i,j which admit Tyurin degenerations, so that there is a mirror

matching between the Hodge numbers of Y µ
i,j and Xµ

i,j , and such that the limit mixed

Hodge structure on H3(Y µ
i,j) matches the filtrations on

⨁3
i=0H

i,i(Xµ
i,j) as described

above. The Y µ
i,j are therefore candidates for mirror pairs to the Xµ

i,j .

7.5.2 Constructing mirror partners from smoothings

We will construct the Y µ
i,j by smoothing a carefully chosen union of threefolds Y1 and

Y2 as above. First, however, we recall how to construct a Calabi-Yau threefold from a

more general union of threefolds with smooth anticanonical divisor.

Let S be a smooth K3 surface. Fix once and for all a pair of threefolds Y1 and

Y2, such that S is a member of | −KYi | and h1,0(Yi) = 0 for i ∈ {1, 2}. Then we may

take the union Y1 ∪S Y2 of Y1 and Y2 glued along the image of S.

Specializing a result of Kawamata and Namikawa [83, Theorem 4.2] to our setting,

we see that the union Y1 ∪S Y2 is smoothable to a Calabi-Yau threefold Y if and only

if the condition

−KY1 |S −KY2 |S ∼ 0

is satisfied. Moreover, the resulting Calabi-Yau threefold Y is unique up to deformation.

Now we go about constructing the threefolds Y µ
i,j . Let V1, V2 and V4 be, respectively,

a quartic hypersurface in P4, a double cover of P3 branched along a quartic, and P3
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itself. Let S ⊂ Vi be a generic anticanonical hypersurface. Then S is a primitively

⟨4⟩-polarized K3 surface and −KVi |S ∼ iH, where H is the hyperplane section on S

induced by the embedding into P3 defined by the polarization.

If we fix a primitively ⟨4⟩-polarized K3 surface S along with embeddings S ↪→ Vi

and S ↪→ Vj that realize S as an anticanonical divisor, then we can form the gluing

Vi ∪S Vj . Unfortunately, this Vi ∪S Vj cannot be smoothed to a Calabi-Yau threefold,

since −KV1 |S −KV2 |S ∼ (i+ j)H.

We may rectify this by blowing up Vi and Vj along smooth curves contained in S.

In particular, if we have smooth curves C1, . . . , Ck ⊂ S so that C1+· · ·+Ck ∼ (i+j)H,

we may blow up, say, Vi sequentially in the curves C1, . . . , Ck to get a threefold Ṽi

with exceptional divisors E1, . . . , Ek. As a result of the canonical bundle formula for

smooth blow-ups,

−K
Ṽi
|S ∼ iH − (E1 + · · ·+ Ek)|S ∼ iH − (C1 + · · ·+ Ck) ∼ −jH

and thus −K
Ṽi
|S −KVj |S ∼ 0.

Hence, we see that Ṽi ∪S Vj can be smoothed to a Calabi-Yau threefold. In other

words, there is an analytic family with fourfold total space V → ∆ so that the central

fibre V0 = Ṽi ∪S Vj and a general fibre is a smooth Calabi-Yau threefold. Moreover,

we may perform a series of flips to move the surfaces ECl
from Vi to Vj in V without

affecting the general fibre, so in particular we see that the smooth fibre does not

depend upon which threefold we chose to blow up the curves Cl in.

Thus, starting from threefolds V1, V2 and V4, we may construct families of Calabi-

Yau threefolds based on the following data:

1. a choice of integers i, j ∈ {1, 2, 4}, corresponding to the choice of Vi and Vj ; and

2. a partition µ = [x1, . . . , xk] of i+ j, so that Cs ∼ xsH for s ∈ {1, . . . , k}.

Let Y µ
i,j denote a general member of the family of Calabi-Yau threefolds obtained from

this construction.
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7.5.3 Hodge numbers and filtrations

We expect that the threefolds Y µ
i,j are mirror partners to the threefolds Xµ

i,j . To

justify this, we begin by computing the Hodge numbers of the Y µ
i,j . This is done using

results of Lee [95], who shows that one can use the Clemens-Schmid exact sequence

to compute the Hodge numbers of Calabi-Yau threefolds built from Fano threefolds in

the way discussed above.

Proposition 7.5.4. Let i, j ∈ {1, 2, 4} and let µ = [x1, . . . , xk] be a partition of i+ j.

Then the Hodge numbers of the threefold Y µ
i,j are given by

h1,1(Y λ
i,j) = k,

h2,1(Y λ
i,j) = 20 +

k∑
s=1

(2x2s + 1) + h2,1(Vi) + h2,1(Vj),

where h2,1(Vi) = 30 (resp. 10, 0) for i = 1 (resp. 2, 4).

Proof. By definition, Y µ
i,j is a smoothing of Ṽi ∪S Vj . Define

q := rank (im(H2(Ṽi,Z)⊕H2(Vj ,Z) → H2(S,Z))).

Then Lee [95, Corollary 8.2] shows that the Hodge numbers of Y µ
i,j are given by

h1,1(Y µ
i,j) = h2(Ṽi) + h2(Vj)− q − 1,

h2,1(Y µ
i,j) = 21 + h2,1(Ṽi) + h2,1(Vj)− q.

Now, since the Néron-Severi group of S is generated by the restriction of a

hyperplane section from Vi, we must have q = 1. Moreover, since we blew up Vi a total

of k times to obtain Ṽi, we have h2(Ṽi) = k + 1 and h2(Vj) = 1. Thus h1,1(Y λ
i,j) = k.

To compute h2,1(Y µ
i,j), we begin by noting that a smooth curve which satisfies

Cs ∼ xsH has self-intersection 4x2s in S. So the genus formula for curves on a surface

gives g(Cs) = 2x2s +1. Thus, by standard results on the cohomology of a blow-up (see,
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for instance, [143, Theorem 7.31]), we find

h2,1(Ṽi) = h2,1(Vi) +

k∑
s=1

(2x2s + 1),

giving the claimed result for h2,1(Y µ
i,j). Finally, the values of h2,1(Vi) are easy to

compute explicitly.

Putting this proposition together with the results of Proposition 7.3.2 and Corollary

7.3.7, we obtain:

Corollary 7.5.5. Let i, j ∈ {1, 2, 4} be a pair of integers and let µ be a partition of

i+ j. Then there is a mirror duality between the Hodge numbers of the Calabi-Yau

threefolds Xµ
i,j and Y µ

i,j .

We expect that Xµ
i,j is actually mirror to Y µ

i,j , but of course this is not a proof. As

further evidence, however, we can also compare filtrations as in Section 7.5.1. For the

threefolds Y µ
i,j , we may compute the limit mixed Hodge structure associated to the

degeneration to Ṽi ∪ Vj , to obtain

Gr3F Gr2F Gr1F Gr0F

GrM4 C C19 C 0

GrM3 0 Cv Cv 0

GrM2 0 C C19 C

for v = h2,1(Vi) + h2,1(Vj) +
∑k

s=1(2x
2
s + 1).

Now, for the threefolds Xµ
i,j , let L be the cup product operator with the negative

of the class of a fibre of the M2-polarized K3 surface fibration on Xµ
i,j . Then, by the

proof of Proposition 7.3.2 and Proposition 7.5.4, we see that the rank of the space of

vertical divisors in H1,1(Xµ
i,j) is

rank (ker(L)) = 1 +

k∑
s=1

(2x2s + 1) + h2,1(Vi) + h2,1(Vj) = v + 1.
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Moreover, the image of L in H1,1(Xµ
i,j) is the span of the class of a fibre, the image of

L in H2,2(Xµ
i,j) is the space of classes dual to horizontal divisors in H1,1(Xµ

i,j) (which

has rank 19), and the image of L spans H3,3(Xµ
i,j). Thus, we obtain

H0,0(Xµ
i,j) H1,1(Xµ

i,j) H2,2(Xµ
i,j) H3,3(Xµ

i,j)

coimage(L) C C19 C 0

ker(L)/im(L) 0 Cv Cv 0

im(L) 0 C C19 C

and the duality of bifiltered vector spaces discussed in Section 7.5.1 is satisfied in this

case.

Finally, we note that restriction of divisors from Vi and Vj induces a lattice

polarization of S by the lattice ⟨4⟩, whilst the K3 surface fibration on Xµ
i,j is M2-

polarized. As expected from the calculation in Section 7.5.1, the ranks of these two

lattices sum to 20. However, in this case more is true: the lattices ⟨4⟩ and M2 are in

fact mirror to one another, in the sense of [44].

7.5.4 Relationship to Landau-Ginzburg models of Fano threefolds

We conclude this section with some relations between the fibrations on Xµ
i,j and the

Landau-Ginzburg models of Vi and Vj , which provide further justification for our

claim that Xµ
i,j and Y µ

i,j are a mirror pair.

Mirror symmetry can be extended to Fano varieties (see [54][6]). In brief, the

mirror to a Fano variety Y should be an open log Calabi-Yau variety U , equipped

with a function w : U → A1 whose fibres are Calabi-Yau varieties mirror dual to an

anticanonical hypersurface in Y . These mirrors are called Landau-Ginzburg models.

We will avoid giving a detailed discussion of Landau-Ginzburg models, except to

say that much of the important data in a Landau-Ginzburg model is encoded in its

singular fibres. We refer the interested reader to [134][117] [69] for more details.

For the Fano threefolds V1, V2 and V4, candidate Landau-Ginzburg models are

known. From [124, Table 1] we see that, on a torus chart (C∗)3 of U , the fibres of the
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functions w are given by

f1 =
(x+ y + z + 1)4

xyz
,

f2 =
(x+ y + 1)4

xyz
+ z,

f4 = x+ y + z +
1

xyz
,

where fi defines the fibre of the toric Landau-Ginzburg model associated to Vi.

The threefold X2 is easily seen to be a smooth fibrewise compactification of f1,

and the open threefold U1 given by removing the fibre over λ = ∞ from X2 is the

Landau-Ginzburg model of a generic quartic in P4. Similarly, it is also known [47]

that the Landau-Ginzburg models of V2 and V4 may be obtained by pulling back X2

by the map hi(s, t) = (si : ti) for i = 2, 4 respectively, resolving singularities as in the

proof of Proposition 7.2.4, and removing the fibre over λ = 0. Call these threefolds

U2 and U4.

Let wi be the induced fibration map wi : Ui → A1. The singular fibres of this map

may be read off from the proof of Proposition 7.2.4. In particular, we find:

Proposition 7.5.6. Let wi : Ui → A1 be the Landau-Ginzburg model of the Fano

threefold Vi constructed above. Then

• U1 has a nodal fibre and a singular fibre with 31 components.

• U2 has two nodal fibres and a singular fibre with 11 components.

• U4 has four nodal fibres.

It is conjectured [125, Conjecture 1.1] that if w : U → A1 is the Landau-Ginzburg

model of some smooth Fano variety V of dimension d and ρx is the number of

irreducible components in w−1(x) for x ∈ A1, then hd−1,1(V ) =
∑

x∈A1(ρx − 1). We

note that this is true for the Landau-Ginzburg models of Vi presented above.

Looking at the proof of Propositions 7.2.4 and 7.3.2, we see:

Proposition 7.5.7. The singular fibres of the Calabi-Yau threefold Xµ
i,j are precisely
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(1 ) The singular fibres of Ui and Uj, and

(2 ) One semistable singular fibre of type III lying above λ = 0 for each element xs of

the partition µ = [x1, . . . , xk], consisting of (2x2s + 2) smooth rational components.

This data can also be obtained by looking closely at the decomposition of

H1,1(Xµ
i,j) induced by L. As noted in the previous section, it has graded pieces

im(L), ker(L)/im(L), and coimage(L). The group ker(L)/im(L), which has rank

h2,1(Vi) + h2,1(Vj) +
∑k

s=1(2x
2
s + 1), breaks up naturally into several disjoint com-

ponents, corresponding to contributions from distinct singular fibres of Xµ
i,j . These

components have ranks h2,1(Vi), h
2,1(Vj), and one of rank (2x2s + 1) for each each

element xs of the partition µ. The divisors spanning the components corresponding

to h2,1(Vi) and h
2,1(Vj) are the central fibres of the Landau-Ginzburg models of Vi

and Vj respectively, and the remaining contributions come from fibres over λ = 0.

The upshot is, suppose that we degenerate Xµ
i,j by deforming the map g so that all

ramification points away from λ = ∞ are moved to λ = 0, then remove the fibre over

λ = 0. The resulting threefold splits into two components, which are isomorphic to

the Landau-Ginzburg models Ui and Uj of the Fano threefolds Vi and Vj . Moreover,

the data required to smooth the compactification of Ui ∪ Uj to Xµ
i,j is the same as

the data determining the smoothing of Vi ∪S Vj to Y µ
i,j , namely the partition µ. This

provides a class of examples illustrating a prediction of Tyurin [141]: that the mirror

of any Calabi-Yau threefold admitting a degeneration to a pair of Fano threefolds

should be expressible in terms of the corresponding Landau-Ginzburg models of those

Fanos.

Example 7.5.8. We conclude by returning to our running example of the quintic

mirror threefold. In the notation of this section, this threefold is denoted by X
[5]
1,4.

We begin by studying the candidate mirror Y
[5]
1,4 . In this case we consider a quartic

hypersurface V1 in P4 glued to V4 ∼= P3 along a generic anticanonical K3 surface S.

Without loss of generality, we can realize this configuration by the union of a quartic
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hypersurface and a hyperplane in P4. We write

V1 ∪S V4 = {x1f4(x1, x2, x3, x4, x5) = 0} ⊂ P4,

where (x1, x2, x3, x4, x5) are coordinates on P4 and f4 is a generic homogeneous quartic

polynomial.

This degenerate threefold can be embedded into a family

{x1f4(x1, x2, x3, x4, x5) + tg5(x1, x2, x3, x4, x5) = 0} ⊂ P4 ×∆,

where ∆ := {t ∈ C : |t| < 1} denotes the open unit disc in C and g5 is a generic

homogeneous quintic. As we might expect, the generic fibre of this family is a quintic

hypersurface in P4. However, this is not a smoothing (indeed, by Kawamata’s and

Namikawa’s criterion, V1 ∪S V4 is not smoothable to a Calabi-Yau threefold), as the

total space of this family is not a smooth fourfold: it has a curve of cA1 singularities

along the locus {t = g5 = f4 = x1 = 0}. This locus is given by the intersection of

the K3 surface S with the locus {g5 = 0}; it is a smooth curve in the linear system

|5H| on S. Blowing up this locus once in V1, we obtain a smoothing of Ṽ1 ∪S V4 to a

quintic hypersurface in P4. This shows, as expected, that Y
[5]
1,4 is a quintic Calabi-Yau

threefold.

Finally, degenerate X
[5]
1,4 by moving the simple ramification point of g that lies

away from λ ∈ {0,∞} to λ = 0 (as mentioned in Example 7.4.5, this corresponds

to a degeneration to the maximal unipotent monodromy point in the moduli space of

the quintic mirror threefold). Under this operation, the P1 base of the K3 fibration

on X
[5]
1,4 degenerates to a non-normal curve. After normalizing, g splits into two

covers: an isomorphism g1 : P1 ∼→ MM2, and a 4-fold cover g4 : P1 → MM2 which is

totally ramified over λ ∈ {0,∞}. The threefold X
[5]
1,4 therefore degenerates to a pair of

threefolds, obtained by pulling back X2 by the maps g1 and g4, glued along their fibres

over λ = 0. Removing the fibres over λ = 0, this degenerate threefold splits into the

Landau-Ginzburg models U1 and U4 of V1 and V4 respectively.
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Chapter 8

Families of lattice polarized K3

surfaces with monodromy

8.1 Introduction

The concept of lattice polarization for K3 surfaces was first introduced by Nikulin

[109] and further developed by Dolgachev [44]. Our aim is to extend this theory to

families of K3 surfaces over a (not necessarily simply connected) base, in a way that

allows control over the action of monodromy on algebraic cycles.

Our interest in this problem arises from the study of Calabi-Yau threefolds with

small Hodge numbers. In their paper [52], Doran and Morgan explicitly classify

the possible integral variations of Hodge structure that can underlie a family of

Calabi-Yau threefolds over the thrice-punctured sphere P1 − {0, 1,∞} with h2,1 = 1.

Explicit examples, coming from toric geometry, of families realising all but one of

these variations of Hodge structure were known at the time of publication of [52], and

a family realising the fourteenth and final case was recently constructed in [30].

One of the main tools used to study the Calabi-Yau threefolds constructed in

[30] was the existence of a torically induced fibration (i.e. a fibration of the threefold

0This chapter is joint work with C.F. Doran, A. Novoseltsev and A. Thompson. It has appeared
as “Families of Lattice Polarized K3 Surfaces with Monodromy” in Int. Math. Res. Notices (2015),
doi: 10.1093/imrn/rnv071
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induced by a fibration of the toric ambient space by toric subvarieties) of these

threefolds by K3 surfaces polarized by the rank 18 lattice

M := H ⊕ E8 ⊕ E8.

K3 surfaces polarized by this lattice have been studied by Clingher, Doran, Lewis

and Whitcher [29][31] and have a rich geometric structure. In particular, the canonical

embedding of the lattice E8 ⊕ E8 into M defines a natural Shioda-Inose structure

on them, which in turn defines a canonical Nikulin involution [102]. The resolved

quotient by this involution is a new K3 surface, which may be seen to be a Kummer

surface associated to a product of two elliptic curves; its geometry is closely related to

that of the original K3 surface.

In [30], toric geometry was used to show that this Nikulin involution is induced

on the M -polarized K3 fibres by a global involution of the Calabi-Yau threefold.

The resolved quotient by this involution is another Calabi-Yau threefold, which is

fibred by Kummer surfaces and has geometric properties closely related to the first.

Examination of this second Calabi-Yau threefold was instrumental in proving that

the construction in [30] realised the “missing” fourteenth variation of Hodge structure

from the Doran-Morgan list.

Motivated by the discovery of this K3 fibration and the rich geometry that could be

derived from it, we decided to search for similar K3 fibrations on the other threefolds

from the Doran-Morgan classification. In a large number of cases (summarized by

Theorem 8.5.10), we found fibrations by K3 surfaces polarized by the rank 19 lattices

Mn := H ⊕ E8 ⊕ E8 ⊕ ⟨−2n⟩,

which contain the lattice M as a sublattice. Many, but not all, of these fibrations are

torically induced.

This raises two natural questions: Do the canonical Nikulin involutions on the

fibres of these K3 fibrations extend to global symplectic involutions on the Calabi-Yau



8.1 Introduction 228

threefolds? And if they do, what can be said about the geometry of the new Calabi-Yau

threefolds obtained as resolved quotients by these involutions?

Both of these questions may be addressed by studying the behaviour of the Néron-

Severi lattice of a K3 surface as it varies within a family. Furthermore, in order for

this theory to be useful in the study of K3 fibred Calabi-Yau threefolds it should be

able to cope with the possibility of monodromy around singular fibres, meaning that

we must allow for the case where the base of the family is not simply connected.

To initiate this study, we introduce a new definition of lattice polarization for

families of K3 surfaces and develop the basic theory surrounding it. We note that a

related notion of lattice polarizability for families of K3 surfaces was introduced by

Hosono, Lian, Oguiso and Yau [75], who also proved statements about period maps

and moduli for such families. However, our definition is more subtle than theirs, given

that our goal is to derive precise data about the monodromy of algebraic cycles. The

relationship between the definitions is discussed in greater detail in Remark 8.2.6.

The structure of this paper is as follows. In Section 8.2 we begin with the central

definitions of N -polarized (Definition 8.2.1) and (N,G)-polarized (Definition 8.2.4)

families of K3 surfaces, where N is a lattice and G is a finite group. The first is a

direct extension of the definition of N -polarization for K3 surfaces to families and does

not allow for any action of monodromy on the lattice N . The second is more subtle:

it allows for a nontrivial action of monodromy, but this monodromy is controlled by

the group G.

The remainder of Section 8.2 proves some basic results about N - and (N,G)-

polarized families of K3 surfaces and their moduli. Of particular importance are

Proposition 8.2.11 and Corollary 8.2.12, which use this theory to give conditions under

which symplectic automorphisms can be extended from individual K3 fibres to entire

families of K3 surfaces.

Section 8.3 expands upon these results, focussing mainly on the case where the

symplectic automorphism is a Nikulin involution. The main result of this section is

Theorem 8.3.3, which shows that the resolved quotient of an N -polarized family of K3

surfaces, where N is the Néron-Severi lattice of a general fibre, by a Nikulin involution
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is an (N ′, G)-polarized family of K3 surfaces, where N ′ is the Néron-Severi lattice of

a general fibre of the resolved quotient family and G is a finite group.

In Section 8.4 we specialize all of these results to families of M -polarized K3

surfaces with their canonical Nikulin involution, which extends globally over the family

by Corollary 8.2.12. The resolved quotient family is an (N ′, G)-polarized family of

K3 surfaces whose general fibre is a Kummer surface. The first major result of this

section, Proposition 8.4.2, places bounds on the size of the group G.

To improve upon this result, in Section 8.4.3 we show that, after proceeding to a

finite cover of the base, we may realise these families of Kummer surfaces by applying

the Kummer construction fibrewise to a family of Abelian surfaces, a process which we

call undoing the Kummer construction. As a result of this process we obtain Theorem

8.4.11 and Corollary 8.4.13, which enable explicit calculation of the group G.

In Section 8.5 we further specialize this analysis to families of Mn-polarized K3

surfaces, then apply the resulting theory to the study of the Calabi-Yau threefolds from

the Doran-Morgan list. The main results here are Theorems 8.5.10 and 8.5.20, which

show that twelve of the fourteen cases from that list admit fibrations by Mn-polarized

K3 surfaces. In fact, we prove an even stronger result: for n ≥ 2 these fibrations are in

fact pull-backs of special Mn-polarized families on the moduli space of Mn-polarized

K3 surfaces, under the generalized functional invariant map, and for n = 1 they are

pull-backs of a special 2-parameter M1-polarized family by a closely related map.

We compute the generalized functional invariant maps for all of these fibrations in

Sections 8.5.4 and 8.5.5. We find that they all have a standard form, defining multiple

covers of the moduli spaces of Mn-polarized K3 surfaces with ramification behaviour

determined by a pair of integers (i, j).

Finally, in Section 8.6 we use these results to make an interesting observation

concerning an open problem related to the Doran-Morgan classification. Recall that

each of the threefolds from this classification moves in a one parameter family over the

thrice-punctured sphere. Recently there has been a great deal of interest in studying

the action of monodromy around the punctures on the third integral cohomology group

of the threefolds. This monodromy action defines a Zariski dense subgroup of Sp(4,R),
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which may be either arithmetic or non-arithmetic (more commonly called thin). Singh

and Venkataramana [138][137] have proved that the monodromy is arithmetic in seven

of the fourteen cases from the Doran-Morgan list, and Brav and Thomas [25] have

proved that it is thin in the remaining seven. It is an open problem to find geometric

criteria that distinguish between these two cases.

In Theorem 8.6.1 we provide a potential solution to this problem: the cases may

be distinguished by the values of the pair of integers (i, j) arising from the generalized

functional invariants of torically induced K3 fibrations on them. Specifically, we find

that a case has thin monodromy if and only if neither i nor j is equal to two. This

suggests that it may be possible to express the integral monodromy matrices for

the families of Calabi-Yau threefolds from the Doran-Morgan list in terms of the

families of transcendental cycles for their internal K3-fibrations, and that doing so

explicitly may be a good route towards an understanding of the geometric origin of

the arithmetic/thin dichotomy.

A different criterion to distinguish the arithmetic and thin cases was recently given

by Hofmann and van Straten [73, Section 6], using an observation about the integers

m and a from [52, Table 1] (which are called d and k in [73]). Furthermore, the

discovery of a yet another criterion has been announced in lectures by M. Kontsevich,

using a technique involving Lyapunov exponents. Whilst our result does not appear

to bear any immediate relation to either of these other results, it is our intention to

investigate the links between them in future work.
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8.2 Families of K3 surfaces

Begin by assuming that X is a K3 surface. The Néron-Severi group of divisors modulo

homological equivalence on X forms a non-degenerate lattice inside of H2(X,Z),

denoted NS(X), which is even with signature (1, ρ−1). The lattice of cycles orthogonal

to NS(X) is called the lattice of transcendental cycles on X and is denoted T(X).

The aim of this section is to develop theoretical tools that will enable us to embark

upon a study of the action of monodromy on the Néron-Severi group of a fibre in a

family of K3 surfaces.

8.2.1 Families of lattice polarized K3 surfaces

We begin with some generalities on families of K3 surfaces. A family of K3 surfaces

will be a variety X and a flat surjective morphism π : X → U onto some smooth,

irreducible, quasiprojective variety U such that for each p ∈ U the fibre Xp above p is

a smooth K3 surface. For simplicity the reader may assume that U has dimension 1

but our results are valid in arbitrary dimension. We further assume that there is a

line bundle L whose restriction to each fibre of π is ample and primitive in Pic(Xp)

for each p ∈ U .

In the analytic topology, there is an integral local system on U given by R2π∗Z

whose fibre above u is isomorphic to H2(Xp,Z). The Gauss-Manin connection ∇GM

is a flat connection on R2π∗Z⊗OU .

The cup-product pairing on H2(Xp,Z) extends to a bilinear pairing of sheaves

⟨·, ·⟩X = R2π∗Z×R2π∗Z → R4π∗Z ∼= ZU (8.1)

where ZU is the constant sheaf on U with Z coefficients. This form extends naturally

to arbitrary sub-rings of C.

There is a Hodge filtration on R2π∗Z⊗OU . In particular H2,0
X = F 2(R2π∗Z⊗OU ),

and there is a local subsystem of R2π∗C which gives rise to H2,0
X . Choosing a flat

local section of H2,0
X , which we will call ωX , we take the local subsystem of R2π∗Z

which is orthogonal to ωX . Since the pairing ⟨·, ·⟩X is Z linear and ωX is flat, ω⊥
X is
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defined globally on U . We will call this local subsystem NS(X ). Note that NS(X ) is

the Picard sheaf of the flat morphism π.

We let T (X ) be the integral orthogonal complement of NS(X ). We have an

orthogonal direct sum decomposition over Q

R2π∗Q = (T (X )⊕NS(X ))⊗ZU
QU

Our aim is to use this to study the action of monodromy on the Néron-Severi

lattice of a general fibre of X . In order to gain control of this monodromy, we begin

by extending the definition of lattice polarization for K3 surfaces to families.

To do this, let N be a local subsystem of NS(X ) such that for any p ∈ U , the

restriction of ⟨·, ·⟩X to the fibre Np over p exhibits Np as a non-degenerate integral

lattice of signature (1, n− 1), which is (non-canonically) isomorphic to a lattice N and

embedded into H2(Xp,Z) as a primitive sublattice containing the Chern class of the

ample line bundle Lp. This allows us to define a näıve extension of lattice polarization

to families.

Definition 8.2.1. The family X is N -polarized if the local system N is a trivial local

system.

Note that any family of K3 surfaces is polarized by the rank one lattice generated

by the Chern class of the line bundle L restricted to each fibre.

Unfortunately, this definition is too rigid for our needs: it is easy to see that for

an N -polarized family of K3 surfaces, a choice of isomorphism N ∼= Np for any point

p determines uniquely an isomorphism N ∼= Nq for any other point q by parallel

transport, so this definition does not allow for any action of monodromy on Nq. We

will improve upon this definition in Section 8.2.3, but in order to do so we first need

to develop some general theory.

8.2.2 Monodromy of algebraic cycles on K3 surfaces

In this section we will begin discusing the action of monodromy on the Néron-Severi

group of a general fibre of X . Let p be a point in U such that the fibre above p has
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NS(Xp) ∼= NS(X )p. Parallel transport along paths in U starting at the base point p

gives a monodromy representation of π1(U, p)

ρX : π1(U, p) → O(H2(Xp,Z))

since we have the pairing in Equation (8.1). Furthermore, ρX restricts to monodromy

representations of both NS(X ) and T (X ), written as

ρNS : π1(U, p) → O(NS(Xp))

and

ρT : π1(U, p) → O(T(Xp)).

Similarly for any local subsystem N of R2π∗Z, we will denote the associated mon-

odromy representation ρN . Note here that if X is N -polarized, then the image of ρN

is the trivial subgroup Id.

Now we prove an elementary but useful result concerning the image of ρNS . Here

we let X be a K3 surface. Recall that the lattice NS(X) is an even lattice of signature

(1, rankNS(X)− 1). For such a lattice NS(X), there is a set of roots

∆X = {w ∈ NS(X) : ⟨w,w⟩ = −2}.

The Weyl group WX is the group generated by Picard-Lefschetz reflections across

roots in ∆X . It admits an embedding into the orthogonal group O(NS(X)). Denote

the set of roots in ∆X which are dual to the fundamental classes of rational curves

by ∆+
X . Then a fundamental domain for the action of WX on NS(X) is given by the

closure of the connected polyhedral cone

K(X) = {w ∈ NS(X)⊗ R : ⟨w,w⟩ > 0, ⟨w, δ⟩ > 0 for all δ ∈ ∆+
X}.

K(X) is the Kähler cone of X [11, Corollary VIII.3.9].
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If we let O+(NS(X)) be the subgroup of O(NS(X)) which fixes the positive cone

in NS(X) and let DX be the subgroup of O+(NS(X)) which maps K(X) to itself,

then we obtain a semidirect product decomposition

O+(NS(X)) = DX ⋉WX .

Now let L be an ample line bundle on X. Then the Chern class of L is contained

in K(X). Define DL
X to be the stabilizer of this Chern class in DX .

Proposition 8.2.2. Let X be a family of K3 surfaces and let Xp be a generic fibre

of X . Let Lp be the restriction of the bundle L on X to Xp. Then the group D
Lp

Xp
is

finite and contains the image of ρNS .

Proof. First we show that D
Lp

Xp
is a finite group. Let γ be in D

Lp

Xp
. Then γ fixes Lp by

definition. Therefore γ acts naturally on [Lp]
⊥ and fixes [Lp]

⊥ if and only if it fixes

all of NS(Xp). Since Lp is ample, the orthogonal complement of [Lp] in NS(Xp) is

negative definite by the Hodge index theorem.

We then recall the fact that O(N) is finite for any definite lattice N , so DL
X is

contained in a finite group and thus is itself finite.

To see that ρNS has image contained in D
Lp

Xp
, we recall that ρNS fixes Lp ∈ K(Xp)

and hence, since the closure of K(Xp) is a fundamental domain for WXp and the

action of WXp is continuous, ρNS must have image in DXp .

8.2.3 Monodromy and symplectic automorphisms

We are now almost ready to make a central definition which extends Definition 8.2.1

to cope with the possible action of monodromy on N .

Denote by N∗ the dual lattice of N . We may embed N∗ ⊆ N⊗ZQ as the sublattice

of elements u of N ⊗Z Q such that ⟨u, v⟩ ∈ Z for all v ∈ N .

Definition 8.2.3. The discriminant lattice of N , which we call AN , is the finite

group N∗/N equipped with the bilinear form

bN : AN ×AN → Q mod Z.
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induced by the bilinear form on N ⊗Z Q.

For each lattice N we may define a map αN : O(N) → Aut(AN ) where Aut(AN ) is

the group of automorphisms of the finite abelian group AN which preserve the bilinear

form bN . Denote the kernel of αN by O(N)∗. Then we make the central definition:

Definition 8.2.4. Fix an even lattice N with signature (1, n − 1) and a subgroup

G of Aut(AN ). Let X be a family of K3 surfaces and let Xp be a generic fibre of

X . Assume that there is local sub-system N ⊆ NS(X ) which has fibres Np that are

isometric to N and are embedded into H2(Xp,Z) as primitive sublattices containing

the Chern class of the ample line bundle Lp. Then X is called an (N,G)-polarized

family of K3 surfaces if the restriction of the map αN to the image of ρN is injective

and has image inside of G.

One sees that if Id is the trivial subgroup of Aut(AN ), then the definition of

an N -polarized family of K3 surfaces is identical to the definition of a family of

(N, Id)-polarized K3 surfaces. We also note that, if G ⊂ G′, then any (N,G)-polarized

family of K3 surfaces will also be (N,G′)-polarized. With this in mind, we identify a

special class of (N,G)-polarized families where the group G is as small as possible.

Definition 8.2.5. An (N,G)-polarized family of K3 surfaces X is called minimally

(N,G)-polarized if the composition αN · ρN is surjective onto G.

Remark 8.2.6. We note that in [75], the authors introduce a similar notion of N -

polarizability for a family of K3 surfaces. A K3 surface X is N-polarizable in the

sense of [75] if there is a sublattice inside of NS(X) isomorphic to N , but the primitive

embedding of N into NS(X) is only fixed up to automorphism of the K3 lattice ΛK3.

A family of K3 surfaces is then called N -polarizable if each fibre is N -polarizable.

There is a well-defined period space of N polarizable K3 surfaces M◦
N , so that to any

family of N -polarizable K3 surfaces there is a well-defined period map.

Our definition is more subtle than this, since our goal is to derive precise data about

the monodromy of algebraic cycles. Any (N,G)-polarized family of K3 surfaces is

N -polarizable, but the converse does not hold. In fact, both of the families constructed
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in Section 8.2.4 are families of N -polarizable K3 surfaces, but only one of them is

(N,G)-polarized.

There is a close relationship between (N,G)-polarizations and symplectic auto-

morphisms. Recall the following definition:

Definition 8.2.7. Let X be a smooth K3 surface and let τ : X → X be an automor-

phism of X. The automorphism τ is called a symplectic automorphism if for some

(hence any) non-vanishing holomorphic 2-form ω on X, τ∗ω = ω. If τ has order 2, it

is called a symplectic involution of X or a Nikulin involution.

Symplectic automorphisms of finite order on K3 surfaces exhibit behaviour similar

to translation by a torsion section on an elliptic curve. The quotient of an elliptic

curve by some subgroup of Pic(E)tors is an isogenous elliptic curve, i.e. an elliptic

curve E′ such that there is a Hodge isometry H1(E,Q) ∼= H1(E′,Q). Analogously

there is a sense in which the resolved quotient of a K3 surface X by a finite group of

symplectic automorphisms is isogenous to X: there is a real quadratic extension of Q

under which the Hodge structures on their transcendental lattices are isometric. This

will be explained in detail by Proposition 8.3.1.

The following is a consequence of the famous Global Torelli Theorem for K3

surfaces [121][109]. More precisely, it may be seen as a corollary of [43, Theorem

4.2.3].

Theorem 8.2.8. The kernel of the map αNS(Xp) : D
L
X → Aut(ANS(Xp)) is isomorphic

to the finite group of symplectic automorphisms of Xp which fix [Lp].

From this, using Proposition 8.2.2, we obtain:

Corollary 8.2.9. Let X be a family of K3 surfaces with generic Néron-Severi lattice

N . The family X is (N,G)-polarized for some G in Aut(AN ) if and only if there is

no γ ∈ π1(U, p) such that ρNS(γ) = σ|NS(Xp) for some symplectic automorphism σ of

Xp.

Therefore, a measure of how far a family of K3 surfaces with generic Néron-Severi

lattice N can be from being (N,G)-polarized is given by the size of the group of
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symplectic automorphisms of a generic N -polarized K3 surface. The number of

possible finite groups of symplectic automorphisms of a K3 surface is relatively small.

Mukai [104, Theorem 0.3] has shown that such groups are all contained as special

subgroups of the Mathieu group M23, and in particular Nikulin [109, Proposition 7.1]

has shown that an algebraic K3 surface with symplectic automorphism must have

Néron-Severi rank at least 9. This gives:

Corollary 8.2.10. Any family of K3 surfaces with generic Néron-Severi group N

having rank (N) < 9 is (N,G)-polarized for some G ⊂ Aut(AN ).

We end this subsection with a proposition which determines when a symplectic

automorphism on a single K3 surface extends to an automorphism on an entire

family of K3 surfaces. This will be useful in Section 8.3, when we will further discuss

symplectic automorphisms in families.

Proposition 8.2.11. Let Xp be a fibre in X which satisfies NS(X )p ∼= NS(Xp), and

let τ be a symplectic automorphism of Xp. Then τ extends to an automorphism of X

if and only if its action on NS(Xp) commutes with the image of ρX .

Proof. Since X is a proper family of smooth manifolds, Ehresmann’s theorem (see,

for example, [143, Section 9.1.1]) implies that there is a local analytic open subset,

called U0, about p ∈ U , so that there is a marking on the family of K3 surfaces XU0

on U0. Therefore [109, Lemma 4.2] and the Global Torelli Theorem [109, Theorem

2.7’] shows that τ extends uniquely to an automorphism on XU0 .

Let γ ∈ π1(U, p), let γ∗τ be the analytic continuation of τ along γ, and let

w ∈ H2(X0,Z). Then it is easy to see that

γ∗τ(w) = ρX (γ) · τ · (ρX (γ))−1(w).

Therefore, the action of τ on NS(Xp) commutes with the image of ρX if and only

if the action of γ∗τ on NS(Xp) agrees with the action of τ . By the Global Torelli

Theorem, this happens if and only if the automorphisms τ and γ∗τ are the same.
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Corollary 8.2.12. Let X → U be an N -polarized family of K3 surfaces and suppose

N ∼= NS(Xp) for some fibre Xp. If Xp admits a symplectic automorphism τ , then τ

extends to an automorphism of X .

8.2.4 A non-polarizable example

As we have seen, algebraic monodromy of families of K3 surfaces is intimately related

to the existence of symplectic automorphisms. In this section, we will give a simple

example which will show how the existence of symplectic automorphisms produces

non-polarized families of K3 surfaces.

Let us take the pencil of K3 surfaces mirror (in the sense of [44]) to the Fermat

pencil of quartics in P3. We may write these surfaces as a family X of ADE singular

hypersurfaces in P3:

(x+ y + z + w)4 + t2xyzw = 0.

As a non-compact threefold, we may express these as a singular subvariety of

[x : y : z : w]× t ∈ P3 × C×.

This is an (E2
8⊕H⊕⟨−4⟩, Id)-polarized family of K3 surfaces. Each fibre admits A4 as

a group of symplectic automorphisms acting via even permutations on the coordinates

x, y, z, w. In particular we have a symplectic involution on each fibre induced by

σ : [x : y : z : w] ↦→ [y : x : w : z],

which extends to X by Corollary 8.2.12. We also have an involution on the base,

acting via

η : t ↦→ −t.

Therefore, the fibrewise resolutions of the quotient families Y1 = ˜X/(Id× η) and

Y2 = ˜X/(σ × η) are fibrewise biregular, but are not biregular as total spaces. More

importantly both families have the same holomorphic periods, but the monodromy of

NS(Y1) is trivial and the monodromy of NS(Y2) is non-trivial around 0.
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Thus we see that the family Y1 is N -polarized. However, by Corollary 8.2.9, the

family Y2 is not (N,G)-polarized for any G since, by construction, monodromy around

0 acts as a Nikulin involution on NS(Y2).

Remark 8.2.13. Of course this examples and examples like it reflect directly the

general principle that there does not exist a fine moduli scheme of objects which admit

automorphisms, and in particular this example itself proves that the period space of

K3 surfaces is not a fine moduli space. If one considers instead the moduli stack of

polarized K3 surfaces (see [129]), then such families are distinguished.

8.2.5 Moduli spaces and period maps

In the last subsection of this section, we will study the moduli of (N,G)-polarized

families. We begin by establishing some definitions regarding the period spaces of K3

surfaces; much of this material may be found in greater detail in [44].

Define the K3 lattice to be the lattice ΛK3 = E2
8 ⊕ H3. The space of marked

pseudo-ample K3 surfaces is the type IV symmetric domain

PK3 = {z ∈ P(ΛK3 ⊗ C) : ⟨z, z⟩ = 0, ⟨z, z⟩ > 0}.

There is a natural action on PK3 by the group O(ΛK3). Using terminology of [44], the

orbifold quotient

MK3 := O(ΛK3) \ PK3

is called the period space of Kähler K3 surfaces.

For any even lattice N of rank n and signature (1, n−1) equipped with a primitive

embedding N ↪→ ΛK3, one may construct a period space of pseudo-ample marked K3

surfaces with N -polarization. Let

PN = {z ∈ P(N⊥ ⊗ C) : ⟨z, z⟩ = 0, ⟨z, z⟩ > 0}.

There is a natural embedding

φN : PN ↪→ PK3
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where we suppress the dependence upon choice of embedding of N into ΛK3. Let

O(N⊥) = {γ|N⊥ : γ ∈ O(ΛK3), γ(N) ⊆ N}.

The map φN descends to an embedding

φN : O(N⊥) \ PN ↪→ O(ΛK3) \ PK3.

For each group GN⊥ in Aut(AN⊥), we may construct a finite index subgroup of

O(N⊥),

O(N⊥, GN⊥) = {γ|N⊥ ∈ O(N⊥) : αN⊥(γ|N⊥) ∈ GN⊥}.

This subgroup is related to (N,GN )-polarized K3 surfaces in the following way. Recall

the following standard lattice theoretic fact from [110].

Proposition 8.2.14. [110, Proposition 1.6.1] Let N be a primitive sublattice of an

even unimodular lattice K, and let N⊥ be the orthogonal complement of N in K.

Then

(1 ) There is a canonical isomorphism ϕN between the underlying groups AN and AN⊥

which satisfies

bN (a, b) = −bN⊥(ϕN (a), ϕN (b)).

(2 ) If g is an automorphism of N and g′ is an automorphism of N⊥, then g ⊕ g′

is an automorphism of N ⊕N⊥ which extends to an automorphism of K if and

only if the induced actions of g on AN and of g′ on AN⊥ are the same under the

identification ϕN .

Therefore, if a family of K3 surfaces X is (N,GN )-polarized, then Proposition

8.2.14 shows that the transcendental monodromy of X is in O(N⊥, GN⊥) where GN⊥

is the subgroup of AN⊥ identified with GN by ϕN .

As a particular example, if Id is the trivial subgroup of GN then the family X

is N -polarized and the group O(N⊥, Id) corresponds to the group O(N⊥)∗. By [44,
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Proposition 3.3], we have

O(N⊥, Id) = O(N⊥)∗ ∼= {γ|N⊥ : γ ∈ O(ΛK3), γ(w) = w for all w ∈ N}.

In the case where our family is N -polarized we will use the notation and language of

[44], but adopt the notation introduced above when the group GN becomes relevant.

In [44], the space

MN = O(N⊥)∗ \ PN

is called the period space of pseudo-ample N-polarized K3 surfaces. Dolgachev [44,

Remark 3.4] shows that for any N -polarized family of K3 surfaces π : X → U , there is

a period morphism

ΦX : U → MN .

In light of this, define

M(N,GN ) := O(N⊥, GN⊥) \ PN .

Note that for GN ⊆ G′
N , there is a natural inclusion O(N⊥, GN⊥) ⊆ O(N⊥, G′

N⊥)

and therefore there are natural surjective morphisms

M(N,GN ) → M(N,G′
N )

of degree [GN : G′
N ].

We now take some time to prove the existence of period morphisms associated to

the spaces M(N,GN ).

Theorem 8.2.15. Let X → U be a family of K3 surfaces. If there is some local

subsystem N ⊆ NS(X ), where N is fibrewise isomorphic to a lattice N of signature

(1, n− 1) and αN · ρNS is contained inside of a subgroup GN of Aut(AN ), then there

a period morphism

Φ(N,GN ) : U → M(N,GN ).
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Proof. Let Ũ be the simply connected universal covering space of U and g : Ũ → U be

the canonically associated covering map. Then, since g∗X is marked, pseudo-ample

and N -polarized, we have the following diagram

Ũ →→

g

↓↓

PN

U

Now we apply Proposition 8.2.14. Since the image of αN · ρN is in GN , the image

of αN⊥ · ρN⊥ is contained in GN⊥ under the identification induced by ϕN . Thus ρN⊥

is contained in O(N⊥, GN⊥).

This allows us to canonically complete the diagram above to a commutative square

Ũ →→

g

↓↓

PN

↓↓

U
Φ(N,GN )

→→M(N,GN )

as required.

We note that the assumptions in this proposition are weaker than the assumption

that X → U is (N,GN )-polarized, as we do not assume here that the map αN is

injective on the image of ρNS . What distinguishes (N,GN )-polarized families of K3

surfaces from the rest is the following observation.

Remark 8.2.16. Let X → D∗ be an (N,GN )-polarized family of K3 surfaces over

the punctured disc D∗, and let γ be a generator of π1(D
∗, p) and u ∈ N ⊆ NS(Xp)

with u its image in AN . Then under the identification ϕN defined in the proof of

Theorem 8.2.15,

αN⊥(ρN⊥(γ))(ϕN (u)) = ϕN (αN (ρN (γ))(u)).
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Since αN is an injection and ϕN is an isomorphism, we see that, for an (N,GN )-

polarized family, all data about algebraic monodromy of N is captured by the mon-

odromy of N⊥.

This remark will be essential for the calculations that we will do in Section 8.4.

8.3 Symplectic automorphisms in families

In this section, we expand upon Proposition 8.2.11 in the case where τ is a Nikulin

involution. The main result is Theorem 8.3.3, which will be used in Section 8.4 to

study lattice polarized families of K3 surfaces with Shioda-Inose structure, in an

attempt to understand the relationship between such families and their associated

families of abelian surfaces.

8.3.1 Symplectic automorphisms and Nikulin involutions

We begin with some background on symplectic automorphisms of K3 surfaces. Let

X be a K3 surface and let ω be a non-vanishing holomorphic 2-form on X. For any

group Σ of symplectic automorphisms of X, there are two lattices in H2(X,Z) which

may be canonically associated to Σ. The first is the fixed lattice H2(X,Z)Σ. To

derive the second, note that, by assumption, Σ fixes ω and hence, since Σ acts as

Hodge isometries on H2(X,Z), we see that Σ must preserve the transcendental Hodge

structure on X. This implies that T(X) ⊆ H2(X,Z)Σ. So we may define a second

lattice

SΣ,X := (H2(X,Z)Σ)⊥.

When the K3 surface X is understood, we will abbreviate this notation to simply

SΣ. This is appropriate because Nikulin [109, Theorem 4.7] proves that, as an abstract

lattice, SΣ depends only upon Σ. It follows from the fact that T(X) is fixed by Σ that

SΣ is contained in NS(X). In [109, Lemma 4.2] it is also shown that SΣ is a negative

definite lattice and contains no elements of square (−2).
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In [109, Proposition 7.1], Nikulin determines the lattice SΣ for any abelian group

of symplectic automorphisms Σ. Therefore, since any group contains at least one

abelian subgroup, if X admits any nontrivial group Σ of symplectic automorphisms,

then SΣ contains one of the lattices in [109, Proposition 7.1]. The smallest lattice

listed therein is SZ/2Z, which has rank 8.

In general, symplectic automorphisms have fixed point sets of dimension 0. The

local behaviour of Σ about the fixed points determines a quotient singularity in X/Σ.

It is easy to see from the classification of minimal surfaces that the minimal resolution

Y := X̃/Σ of X/Σ is again a K3 surface: σ∗ω = ω implies that ω descends to a

non-vanishing holomorphic 2-form on the quotient surface and the resulting quotient

singularities are crepant.

There is a diagram of surfaces

X̃
c

↙↙

q

↘↘

X

↘↘

Y

↙↙

X/Σ

where X̃ is the minimal blow up of X on which Σ acts equivariantly with the map c

and whose quotient X̃/Σ is Y .

In NS(Y ) there is a latticeK spanned by exceptional classes. The minimal primitive

sublattice of NS(Y ) containing K will be called K0. Nikulin [109, Propositions 7.1

and 10.1] shows that K0 and SΣ have the same rank but are, of course, not isomorphic.

The map

θ := q∗c∗ : K
⊥
0 → H2(X,Z)Σ

is an isomorphism over Q and satisfies

⟨θ(u), θ(v)⟩ = |Σ|⟨u, v⟩
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for any u, v ∈ K⊥
0 . Therefore there is a linear transformation g over Q(

√
|Σ|) which

relates the lattices H2(X,Z)Σ and K⊥
0 ; a more precise description of this relationship

is given in [147, Theorem 2.1].

Since the group Σ acts symplectically, for a class ω spanning H2,0(Y ) we have

that θ(ω) is in H2,0(X), so we see that ⟨θ(u), θ(ω)⟩ = 0 if and only if ⟨u, ω⟩ = 0. Thus

θ(NS(Y ) ∩K⊥
0 ) = NS(X) ∩H2(X,Z)Σ. In other words, θ(T(Y )) = T(X).

8.3.2 Symplectic quotients and Hodge bundles

If X is a family of K3 surfaces for which a group of symplectic automorphisms on

the fibres extends to a group of automorphisms on the total space, then base-change

allows us to relativize the constructions in Section 8.3.1.

We obtain sheaves of local systems (R2π∗Z)Σ and SΣ which agree fibrewise with

H2(Xp,Z)Σ, and SΣ,Xp . The Hodge filtration on R2π∗Z ⊗ OU restricted to these

sub-sheaves produces integral weight 2 variations of Hodge structure on U .

We wish to compare the variation of Hodge structure on (R2πX∗ Z)Σ and the

variation of Hodge structure on the subsystem of R2πY∗ Z orthogonal to the lattice

spanned by exceptional curves in each fibre. Since we deal only with smooth fibrations,

the following statements are equivalent to their counterparts for individual K3 surfaces.

Proposition 8.3.1. Let X → U be a family of K3 surfaces on which a group Σ of

symplectic automorphisms acts fibrewise and extends to automorphisms of πX : X → U .

Let πY : Y → U be the resolved quotient threefold. Then

(1 ) The Hodge bundles F 2(R2πX∗ Z⊗OU ) and F
2(R2πY∗ Z⊗OU ) are isomorphic as

complex line bundles on U .

(2 ) If we extend scalars to Q(
√

|Σ|), the induced VHS on (R2πX∗ Z)Σ is isomorphic

to a sub-VHS of R2πY∗ Z.

(3 ) The transcendental integral variations of Hodge structure T (X ) and T (Y) are

isomorphic over Q(
√
|Σ|).
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Proof. These are relative versions of the discussion in Section 8.3.1. We use the fact

that statements about the local systems R2πX∗ Z and R2πY∗ Z reduce to statements on

each fibre. The same is true for statements about the Hodge filtrations on R2πX∗ Z⊗OU

and R2πY∗ Z⊗OU . Therefore Proposition 8.3.1 reduces to the statements in Section

8.3.1.

In particular, we can recover from Proposition 8.3.1(3) a result of Smith [139,

Theorem 2.12], that the holomorphic Picard-Fuchs equation of X agrees with the

Picard-Fuchs equation of Y, since Picard-Fuchs equations depend only upon the

underlying complex VHS.

A corollary to this is that the transcendental monodromy of Y can be calculated

quite easily from the transcendental monodromy of X . If we let g be the Q(
√

|Σ|)-linear

map relating the lattices H2(Xp,Z)Σ and K⊥
0

g : H2(Xp,Z)Σ → K⊥
0

for a given fibre Xp, then

ρH2(Xp,Z)Σ(w) = g−1ρK⊥
0
(g · w). (8.2)

In particular, we have:

Corollary 8.3.2. Let X be an N-polarized family of K3 surfaces and suppose N ∼=

NS(Xp) for some fibre Xp. Assume that X admits a group of fibrewise symplectic

automorphisms Σ and let Y be the fibrewise resolution of the quotient X/Σ. If K⊥
0 is

the sublattice generated by classes orthogonal to exceptional curves on Yp, then the

monodromy representation fixes K⊥
0 ∩NS(Yp).

Proof. By construction, we have that NS(Xp)
Σ is fixed under monodromy. Therefore,

the relation in Equation (8.2) implies that its image inK⊥
0 under the Q(

√
|Σ|) isometry

g is also fixed. Since g sends the transcendental lattice of Xp to the transcendental

lattice Yp, the image of NS(Xp)
Σ under g is K⊥

0 ∩NS(Yp). Thus K
⊥
0 ∩NS(Yp) is fixed

by monodromy of the family Y.
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8.3.3 Nikulin involutions in families

We will now tie our results together. We begin with a family X of K3 surfaces which

admits a fibrewise Nikulin involution and is lattice polarized by a lattice N which

is isomorphic to the generic Néron-Severi lattice of the fibres of X . Our goal is to

understand how lattice polarization behaves under Nikulin involutions in families. We

begin with some generalities on Nikulin involutions.

A Nikulin involution fixes precisely 8 points on X. The resulting quotient X/β

has 8 ordinary double points which are then resolved by blowing up to give a new

K3 surface Y . We can also resolve these singularities indirectly by blowing up X

at the 8 fixed points of β, calling the resulting exceptional divisors {Ei}8i=1. We see

that the blown up K3 surface X̃ also admits an involution β̃ whose fixed locus is the

exceptional divisor

D =

8∑
i=1

Ei.

Let Fi = q∗Ei, where q : X̃ → X̃/β̃ ∼= Y is the quotient map. The branch divisor in

Y is then the sum f∗D =
∑8

i=1 Fi. Since there is a double cover ramified over f∗D,

there must be some divisor

B =
1

2
f∗D.

We call the lattice generated by B and {Fi}8i=1 the Nikulin lattice, which we denote

KNik.

According to [109, Section 6], KNik is a primitive sublattice of NS(X̃/β̃) and, in

the case where Σ is a group of order 2, the lattice K0 discussed in Section 8.3.1 is

equal to KNik. The following theorem is a technical tool, useful for calculations in

Section 8.4.

Theorem 8.3.3. Let X → U be an N-polarized family of K3 surfaces and suppose

N ∼= NS(Xp) for some fibre Xp. Suppose further that Xp admits a Nikulin involution

β; by Corollary 8.2.12 this extends to an involution on X . Let Y → U be the resolved

quotient family of K3 surfaces and let N ′ be the Néron-Severi lattice of a generic fibre
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of Y. Then there is a subgroup G of Aut(AN ′) for which Y is an (N ′, G)-polarized

family of K3 surfaces.

Proof. To see that the resulting family Y is (N ′, G)-polarized for some G, it is enough

to see that monodromy of Y cannot act trivially on Aut(AN ′).

First we note that monodromy of Y must fix K⊥
Nik ∩ NS(Yp) by Corollary 8.3.2,

where KNik denotes the Nikulin lattice. Thus the only non-trivial action of monodromy

can be upon KNik.

Suppose for a contradiction that the image of ρNS(Y) contains a non-identity

element g that lies in the kernel of αN ′ . Recall from Theorem 8.2.8 that such a

g must act on NS(Yp) in the same way as a non-trivial symplectic automorphism

τ . Thus the orthogonal complement of the fixed lattice NS(Yp)
g must have rank at

least 8. Since KNik has rank 8 and K⊥
Nik ∩ NS(Yp) is fixed under monodromy, the

orthogonal complement of NS(Yp)
g must be contained in KNik. For reasons of rank this

containment cannot be strict, so we must have equality. However, KNik is generated

by elements of square (−2), thus, by [109, Lemma 4.2], it cannot be the lattice Sτ of

any automorphism τ of X. This is a contradiction.

Note that the proof given above does not extend to quotients by arbitrary sym-

plectic automorphisms.

As a result of this theorem, Remark 8.2.16 and Equation (8.2) we may calculate

G.

Corollary 8.3.4. If g is the linear transformation which relates T(Xp) to T(Yp) for

some p ∈ U and ΓX (resp. ΓY) is the image of the monodromy group of T (X ) in

O(T(Xp)) (resp. T (Y) in O(T(Yp))), then ΓY = g−1ΓX g and the image αT(Y)(ΓY) is

the group G such that Y is minimally (N ′, G)-polarized.

This allows us to control the algebraic monodromy of the family Y of K3 surfaces.

In the following section, we concern ourselves with a geometric situation where it will

be important to know exactly what our algebraic monodromy looks like.
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8.4 Undoing the Kummer construction.

One of the major motivations for this work is the idea of undoing the Kummer

construction globally in families. As we shall see, this has applications to the study of

Calabi-Yau threefolds.

8.4.1 The general case.

Begin by assuming that X is a family of K3 surfaces which admit Shioda-Inose

structure. Concretely, a Shioda-Inose structure on a K3 surface X is an embedding of

the lattice E8 ⊕ E8 into NS(X). By [102, Section 6], a Shioda-Inose structure defines

a canonical Nikulin involution β and the minimal resolution of the quotient X/β is

a Kummer surface. Furthermore, if X has transcendental lattice T(X), then the

resolved quotient Y = X̃/β has transcendental lattice T(Y ) ∼= T(X)(2).

Assume that X is a lattice polarized family of Shioda-Inose K3 surfaces. Then by

Corollary 8.2.12, the Nikulin involution extends to the entire family of K3 surfaces to

produce a resolved quotient family Y of Kummer surfaces.

We would like to find conditions under which one may undo the Kummer construc-

tion in families starting from the polarized family X of K3 surfaces with Shioda-Inose

structure. In other words, we would like to find conditions under which a family of

abelian surfaces A exists, such that application of the Kummer construction fibrewise

to A yields the family Y of Kummer surfaces associated to X .

The following proposition provides an easy sufficient condition for undoing the

Kummer construction on a family of Kummer surfaces.

Proposition 8.4.1. Beginning with a family of lattice polarized Shioda-Inose K3

surfaces X over U , the Kummer construction can be undone on the family of resolved

quotient K3 surfaces Y, if Y itself is lattice polarized.

In general, however, the family Y will not be lattice polarized; instead, by Theorem

8.3.3, it will be (N ′, G)-polarized, for some lattice N ′ and subgroup G of Aut(AN ′).

To rectify this, we will have to proceed to a cover f : U ′ → U to remove the action
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of the group G, so that the Kummer construction can be undone on the pulled-back

family f∗Y.

We begin by finding such a group G. We note, however, that in general Y will not

be minimally (N ′, G)-polarized for this choice of G.

Proposition 8.4.2. Let X → U be a family of N -polarized K3 surfaces with Shioda-

Inose structure, where N is isometric to the Néron-Severi lattice of a generic K3 fibre

Xp. Then the associated family of Kummer surfaces Y is an (N ′, G)-polarized family

of K3 surfaces, where N ′ is the generic Néron-Severi lattice of fibres of Y and G is

the group

O(N⊥)∗/O(N⊥(2))∗.

Furthermore, if X has transcendental monodromy group ΓX = O(N⊥)∗, then Y is

minimally (N ′, G)-polarized.

Proof. By the results of Section 8.3.2 there is a map

g : ρT (X ) → ρT (Y).

Let Xp be a general fibre of X and let Yp be the associated fibre of Y. As Xp has

Shioda-Inose structure and Yp is the associated Kummer surface, the transformation

g induces the identity map on the level of orthogonal groups,

Id : O(T(Xp)) → O(T(Yp))

since the lattice T(Yp) is just T(Xp) scaled by 2.

Let ΓX (resp. ΓY) denote the transcendental monodromy group of X (resp. Y).

Then, by Corollary 8.3.4, ΓY = g−1ΓX g ∼= ΓX and Y is minimally (N ′, αT(Y)(ΓY))-

polarized. But ΓX ⊂ O(T(Xp))
∗ ∼= O(N⊥)∗ (by [44, Proposition 3.3]) and αT(Y) has

kernel O(T(Xp)(2))
∗ ∼= O(N⊥(2))∗, so αT(Y)(ΓY) ⊂ G, where G is as in the statement

of the proposition, with equality if ΓX = O(N⊥)∗.

The group G from this proposition will prove to be very useful in later sections.
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8.4.2 M-polarized K3 surfaces.

We will be particularly interested in the case in which our family X is M -polarized,

where M denotes the lattice

M := H ⊕ E8 ⊕ E8.

Such families admit canonically defined Shioda-Inose structures, so the discussion

from Section 8.4.1 holds.

Our interest in such familes stems from the paper [52], in which Doran and Morgan

explicitly classify the possible integral variations of Hodge structure that can underlie

a family of Calabi-Yau threefolds over P1−{0, 1,∞} with h2,1 = 1. Their classification

is given in [52, Table 1], which divides the possibilities into fourteen cases. Explicit

examples, arising from toric geometry, of families of Calabi-Yau threefolds realising

thirteen of these cases were known at the time of publication of [52] and are given in

the rightmost column of [52, Table 1]. A family of Calabi-Yau threefolds that realised

the missing case (hereafter known as the 14th case) was constructed in [30].

It turns out that many of these threefolds admit fibrations by M -polarized K3

surfaces. The ability to undo the Kummer construction globally on such threefolds

therefore provides a new perspective on the geometry of the families in [52, Table 1],

which will be explored further in the remainder of this paper.

We begin this discussion with a brief digression into the geometry of M -polarized

K3 surfaces, that we will need in the subsequent sections. In this section we will

denote an M -polarized K3 surface by (X, i), where X is a K3 surface and i is an

embedding i : M ↪→ NS(X).

Clingher, Doran, Lewis and Whitcher [31] have shown thatM -polarized K3 surfaces

have a coarse moduli space given by the locus d ≠ 0 in the weighted projective space

WP(2, 3, 6) with weighted coordinates (a, b, d). Thus, by normalizing d = 1, we may

associate a pair of complex numbers (a, b) to an M -polarized K3 surface (X, i).

Let β denote the Nikulin involution defined by the canonical Shioda-Inose structure

on (X, i). Then Clingher and Doran [29, Theorem 3.13] have shown that the resolved
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quotient Y = X̃/β is isomorphic to the Kummer surface Kum(A), where A ∼= E1×E2

is an Abelian surface that splits as a product of elliptic curves. By [29, Corollary 4.2]

the j-invariants of these elliptic curves are given by the roots of the equation

j2 − σj + π = 0,

where σ and π are given in terms of the (a, b) values associated to (X, i) by σ = a3−b2+1

and π = a3.

There is one final piece of structure on (X, i) that we will need in our discussion.

By [29, Proposition 3.10], the K3 surface X admits two uniquely defined elliptic

fibrations Θ1,2 : X → P1, the standard and alternate fibrations. We will be mainly

concerned with the alternate fibration Θ2. This fibration has two sections, one singular

fibre of type I∗12 and, if a3 ≠ (b± 1)2, six singular fibres of type I1 [29, Proposition

4.6]. Moreover, Θ2 is preserved by the Nikulin involution β, so induces a fibration

Ψ: Y → P1 on X. The two sections of Θ2 are identified to give a section of Ψ, and Ψ

has one singular fibre of type I∗6 and, if a3 ̸= (b± 1)2, six I2’s [29, Proposition 4.7].

8.4.3 Undoing the Kummer construction for M-polarized families

We will use this background to outline a method by which we can undo the Kummer

construction for a family obtained as a resolved quotient of an M -polarized family

of K3 surfaces. An illustration of the use of this method to undo the Kummer

construction in an explicit example may be found in [30, Section 7.1].

Let N be a lattice that contains a sublattice isomorpic to M . Assume that X

is an N -polarized family of K3 surfaces over U with generic Néron-Severi lattice

N ∼= NS(Xp), where Xp is the fibre over a general point p ∈ U . Choose an embedding

M ↪→ NS(Xp); this extends uniquely to all other fibres of X by parallel transport and

thus exhibits X as an M -polarized family of K3’s.

This M -polarization induces a Shioda-Inose structure on the fibres of X , which

defines a canonical Nikulin involution on these fibres that extends globally by Corollary

8.2.12. Define Y to be the variety obtained from X by quotienting by this fibrewise
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Nikulin involution and resolving the resulting singularities. Then Y is fibred over U

by Kummer surfaces associated to products of elliptic curves. Let Yp ∼= Kum(E1×E2)

denote the fibre of Y over the point p ∈ U , where E1 and E2 are elliptic curves.

The aim of this section is to find a cover Y ′ of Y upon which we can undo

the Kummer construction. The results of Section 8.4.1 give a way to do this. Let

N ′ ∼= NS(Yp) denote the generic Néron-Severi lattice of Y . Then Theorem 8.3.3 shows

that there is a subgroup G of Aut(AN ′) for which Y is an (N ′, G)-polarized family

of K3 surfaces. We will find a way to compute the action of monodromy around

loops in U on N ′, which will allow us to find the group G such that Y is a minimally

(N ′, G)-polarized family, along with a cover Y ′ of Y that is an N ′-polarized family of

K3 surfaces. Then Proposition 8.4.1 shows that we can undo the Kummer construction

on Y ′.

To simplify this problem we note that, by Corollary 8.3.2, the only non-trivial

action of monodromy on N ′ can be on the Nikulin lattice KNik contained within

it. This lattice is generated by the eight exceptional curves Fi obtained by blowing

up the fixed points of the Nikulin involution. Moreover, as β extends to a global

involution on X , the set {F1, . . . , F8} is preserved under monodromy (although the

curves themselves may be permuted). Thus, we can compute the action of monodromy

on N ′ by studying its action on the curves Fi.

To find these curves, we begin by studying the configuration of divisors on a

general fibre Yp. Recall that Yp is isomorphic to Kum(E1 × E2), where E1 and E2

are elliptic curves. There is a special configuration of twenty-four (−2)-curves on

Kum(E1 × E2) arising from the Kummer construction, that we shall now describe

(here we note that we use the same notation as [29, Definition 3.18], but with the

roles of Gi and Hj reversed).

Let {x0, x1, x2, x3} and {y0, y1, y2, y3} denote the two sets of points of order two

on E1 and E2 respectively. Denote by Gi and Hj (0 ≤ i, j ≤ 3) the (−2)-curves

on Kum(E1 × E2) obtained as the proper transforms of E1 × {yi} and {xj} × E2

respectively. Let Eij be the exceptional (−2)-curve on Kum(E1×E2) associated to the
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point (xj , yi) of E1 × E2. This gives 24 curves, which have the following intersection

numbers:

Gi.Hj = 0,

Gk.Eij = δik,

Hk.Eij = δjk.

Definition 8.4.3. The configuration of twenty-four (−2)-curves

{Gi, Hj , Eij | 0 ≤ i, j ≤ 3}

is called a double Kummer pencil on Kum(E1 × E2).

Remark 8.4.4. Note that there may be many distinct double Kummer pencils on

Kum(E1 × E2). However, if E1 and E2 are non-isogenous, Oguiso [113, Lemma 1]

shows that any two double Kummer pencils are related by a symplectic automorphism

on Kum(E1 × E2).

Clingher and Doran [29, Section 3.4] identify such a pencil on the resolved quotient

of an M -polarised K3 surface. We will study this pencil on a fibre of Y and, by

studying the action of monodromy on it, derive the action of monodromy on the

curves Fi.

By the discussion in Section 8.4.2, the M -polarization structure on Xp defines an

elliptic fibration Θ2 on it, which is compatible with the Nikulin involution. Furthermore,

as X is an M -polarized family, this elliptic fibration extends to all fibres of X and

is compatible with the fibrewise Nikulin involution. Therefore Θ2 induces an elliptic

fibration Ψ on Yp which extends uniquely to all fibres of Y, so Ψ must be preserved

under the action of monodromy around loops in U .
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Using the same notation as in [29, Diagram (26)], we may label some of the

(−2)-curves in the fibration Ψ as follows:

R1•
R2•

F1•

R3•
R5•

R6•
R7•

R8•
R9•

S̃1•

R4•
F2•

Here R1 is the section of Ψ given uniquely as the image of the two sections of Θ2

and the remaining curves form the I∗6 fibre. Note that the Ri and S̃1 are uniquely

determined by the structure of Ψ, so must be invariant under the action of monodromy

around loops in U . By the discussion in [29, Section 3.5] the curves F1 and F2 are

two of the eight exceptional curves that we seek, but are determined only up to

permutation.

By the discussion in [29, Section 4.6], we may identify these curves with (−2)-curves

in a double Kummer pencil as follows: R1 = G2, R2 = E20, R3 = H0, R4 = E30,

R5 = E10, R6 = G1, R7 = E11, R8 = H1, R9 = E01, S̃1 = G0, F1 = E02 and F2 = E03.

This gives:

Lemma 8.4.5. In the double Kummer pencil on Yp defined above, the action of

monodromy around loops in U must fix the 10 curves G0, G1, G2, H0, H1, E01, E10,

E11, E20, E30.

We can improve on this result, but in order to do so we will need to make an

assumption:

Assumption 8.4.6. The fibration Ψ on Yp has six singular fibres of type I2.

Remark 8.4.7. Recall from the discussion in Section 8.4.2 that this assumption is

equivalent to the assumption that the (a, b)-parameters of the M -polarized fibre Xp

satisfy a3 ̸= (b± 1)2.

Using this, we may now identify all eight of the curves Fi. From the discussion

above, we already know F1 = E02 and F2 = E03. [29, Section 3.5] shows that, under
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Assumption 8.4.6, the remaining six Fi are the components of the six I2 fibres in Ψ

that are disjoint from the section R1 = G2.

Kuwata and Shioda [91, Section 5.2] explicitly identify these six I2 fibres in the

double Kummer pencil on Yp. We see that:

• the section G3 of Ψ is the unique section that intersects all six of F3, . . . , F8,

• the section H2 of Ψ intersects F1 and precisely three of F3, . . . , F8 (say F3, F4,

F5), and

• the section H3 of Ψ intersects F2 and the other three F3, . . . , F8 (say F6, F7,

F8).

Combining this with Lemma 8.4.5 and the fact that the structure of Ψ is preserved

under monodromy, we obtain

Proposition 8.4.8. In addition to fixing the ten curves from Lemma 8.4.5, the action

of monodromy around a loop in U must also fix G3 and either

(1 ) fix both F1 = E02 and F2 = E03, in which case H2 and H3 are also fixed and the

sets {F3, F4, F5} and {F6, F7, F8} are both preserved, or

(2 ) interchange F1 = E02 and F2 = E03, in which case H2 and H3 are also swapped

and the sets {F3, F4, F5} and {F6, F7, F8} are interchanged.

Whether the action of monodromy around a given loop fixes or exchanges F1 = E02

and F2 = E03 may be calculated explicitly. Recall that the curves {F3, . . . , F8} appear

as components of the I2 fibres in the alternate fibration on Yp. Let x be an affine

parameter on the base P1
x of the alternate fibration on Yp, chosen so that the I∗6 -fibre

occurs at x = ∞. Then the locations of the I2 fibres is given explicitly by [29,

Proposition 4.7]: they lie at the roots of the polynomials (P (x)± 1), where

P (x) := 4x3 − 3ax− b, (8.3)

for a and b the (a, b)-parameters associated to the M -polarized K3 surface Xp.



8.4 Undoing the Kummer construction. 257

Without loss of generality, we may say that {F3, F4, F5} appear in the I2 fibres

occurring at roots of (P (x)− 1) and {F6, F7, F8} appear in the I2 fibres occurring at

roots of (P (x) + 1). We thus have:

Corollary 8.4.9. Case (1 ) (resp. (2 )) of Proposition 8.4.8 holds for monodromy

around a given loop if and only if that monodromy preserves the set of roots of (P (x)+1)

(resp. switches the sets of roots of the polynomials (P (x) + 1) and (P (x)− 1)).

If case (2) of Proposition 8.4.8 holds for some loop in U , we note that the Nikulin

lattice is not fixed under monodromy around that loop. This presents an obstruction

to Y admitting an N ′-polarization. To resolve this we may pull-back Y to a double

cover of U , after which case (1) of the lemma will hold around all loops and the curves

F1 = E02, F2 = E03, H2 and H3 will all be fixed under monodromy.

Given this, we may safely assume that case (1) holds around all loops in U , so

F1 and F2 are fixed under monodromy and the sets {F3, F4, F5} and {F6, F7, F8} are

both preserved. All that remains is to find whether monodromy acts to permute

F3, . . . , F8 within these sets.

Proposition 8.4.10. Assume that the action of monodromy around all loops in U

fixes both F1 and F2 (i.e. case (1 ) of Proposition 8.4.8 holds around all loops in

U). Then the action of monodromy around a loop in U permutes {F3, F4, F5} (resp.

{F6, F7, F8}) if and only if it permutes the roots of (P (x)− 1) (resp. (P (x) + 1)).

Proof. As {F3, F4, F5} appear in the I2 fibres occurring at roots of (P (x) − 1) and

{F6, F7, F8} appear in the I2 fibres occurring at roots of (P (x)+1), they are permuted

if and only if the corresponding roots of (P (x)− 1) and (P (x) + 1) are permuted.

Monodromy around a loop thus acts on {F3, F4, F5} and {F6, F7, F8} as a permu-

tation in S3 × S3. Taken together, the permutations corresponding to monodromy

around all loops generate a subgroup H of S3 × S3.

Therefore, in order to obtain a N ′-polarization on Y, we need to pull everything

back to a |H|-fold cover f : V → U . This cover is constructed as follows: the |H|

preimages of the point p ∈ U are labelled by permutations in H and, if γ is a loop in U ,
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monodromy around f−1(γ) acts on these labels as composition with the corresponding

permutation. This action extends to an action of H on the whole of V . In fact, we

have:

Theorem 8.4.11. Let f : V → U be the cover constructed above and let Y ′ → V

denote the pull-back of Y → U . Then Y ′ is a N ′-polarized family, where N ′ is the

generic Néron-Severi lattice of Y, so we can undo the Kummer construction on Y ′.

Furthermore, the deck transformation group of f is a subgroup G of S6 given by:

• If case (1 ) of Proposition 8.4.8 holds around all loops in U , then G = H.

• If case (2 ) of Proposition 8.4.8 holds around some loop in U , then there is an

exact sequence 1 → H → G→ C2 → 1.

Remark 8.4.12. We note that in the second case there does not seem to be any

reason to believe that G ∼= H ⋊ C2 in general. Whilst we do not know of any explicit

examples where this fails, it does not seem to be inconsistent with the theory as

presented.

Proof. Let Y ′
p denote one of the preimages of Yp under the pull-back. Then the

argument above shows that each of the eight curves Fi extends uniquely to all smooth

fibres of Y ′. Thus the Nikulin lattice KNik is preserved under monodromy and so, by

Corollary 8.3.2, N ′ is also. Therefore Y ′ is a N ′-polarized family and, by Proposition

8.4.1, we may undo the Kummer construction on Y ′.

It just remains to verify the statements about the group G. Note that G can be

seen as a subgroup of S6, given by permutations of the divisors {F3, . . . , F8}, and that

H is the subgroup of G given by those permutations that preserve the sets {F3, F4, F5}

and {F6, F7, F8}. If case (1) of Proposition 8.4.8 holds around all loops in U , then all

permutations in G preserve the sets {F3, F4, F5} and {F6, F7, F8}, so G = H. If case

(2) of Proposition 8.4.8 holds around some loop in U then H has index 2 in G, so it

must be a normal subgroup with quotient G/H ∼= C2.

Corollary 8.4.13. Y is a minimally (N ′, G)-polarized family of K3 surfaces, where

G is the group from Theorem 8.4.11.
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Proof. We just need to show that G is minimal. Note that G was constructed explicitly

as the permutation group of the divisors {F1, . . . , F8} under monodromy. Furthermore,

it is clear from the construction that any permutation in G is induced by monodromy

around some loop in U . So αN ′ is surjective and G is minimal.

Remark 8.4.14. As the group G from Theorem 8.4.11 is minimal, it will be a

subgroup of the group O(N⊥)∗/O(N⊥(2))∗ from Proposition 8.4.2.

8.4.4 The generically M-polarized case.

Suppose now that we are in the case where a general fibre Xp of X has NS(Xp) ∼=M .

In this case we have the following version of Proposition 8.4.2.

Proposition 8.4.15. Suppose that X is an M -polarized family of K3 surfaces with

general fibre Xp satisfying NS(Xp) ∼=M . Then the resolved quotient Y ∼= X̃/β of X

by the fibrewise Nikulin involution is a (not necessarily minimally) (N ′, G)-polarized

family of K3 surfaces, where G ∼= (S3 × S3)⋊ C2.

Proof. Recall that M⊥ is isomorphic to H2. The proposition will follow from Propo-

sition 8.4.2 if we can show that

O(H2)∗/O(H2(2))∗ ∼= (S3 × S3)⋊ C2.

This quotient is just Aut(AH2(2)). To see this, note that O(H2)∗ is isomorphic to

O(H2), since AH2 is the trivial group, and O(H2) is isomorphic to O(H2(2)), hence

O(H2(2))/O(H2(2))∗ ∼= O(H2)∗/O(H2(2))∗.

By a standard lattice theoretic fact (see, for example, [110, Theorem 3.6.3]), O(H2(2))

maps surjectively onto Aut(AH2(2)). So the group O(H2)∗/O(H2(2))∗ is isomorphic

to Aut(AH2(2)). According to [84, Lemma 3.5] this group is isomorphic to (S3 ×S3)⋊

C2.
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Remark 8.4.16. The results of Section 8.4.3 give an immediate interpretation for

this group: the two S3 factors correspond to permutations of the two sets of di-

visors {F3, F4, F5} and {F6, F7, F8}, whilst the C2 corresponds to the action which

interchanges these two sets (and also swaps F1 and F2).

Example 8.4.17. In [30], the family of threefolds Y1 that realise the 14th case

variation of Hodge structure admit torically induced fibrations by M -polarized K3

surfaces with general fibre Xp satisfying NS(Xp) ∼=M . In [30, Section 7.1] we apply

the results of the previous section to undo the Kummer construction for the resolved

quotientW ∼= Ỹ1/β of Y1 by the fibrewise Nikulin involution. It is an easy consequence

of those calculations that W is minimally (N ′, G)-polarized, for G ∼= (S3 × S3)⋊ C2.

It turns out, however, that the 14th case is the only case from [52, Table 1] that

admits a torically induced M -polarized fibration with general fibre Xp satisfying

NS(Xp) ∼=M . In most other cases (see Theorem 8.5.10) the Néron-Severi lattice of

the general fibre is a lattice enhancement of M to a lattice

Mn :=M ⊕ ⟨−2n⟩,

with 1 ≤ n ≤ 4. In particular, note that Mn-polarized K3 surfaces are also M -

polarized, so the analysis of this section still holds. We will examine this case in the

next section.

8.5 Threefolds fibred by Mn-polarized K3 surfaces.

In this section we will specialize the analysis of Section 8.4 to the case where we have

a family X of Mn-polarized K3 surfaces. We will then apply this theory to study

Mn-polarized families of K3 surfaces arising from threefolds in the Doran-Morgan

classification [52, Table 1].

8.5.1 The groups G.

We begin with the analogue of Proposition 8.4.2 in the Mn-polarized case.
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Proposition 8.5.1. Suppose that X is an Mn-polarized family of K3 surfaces with

general fibre Xp satisfying NS(Xp) ∼=Mn. Then the resolved quotient Y ∼= X̃/β of X

by the fibrewise Nikulin involution is a (not necessarily minimal) (N ′, G)-polarized

family of K3 surfaces, where N ′ is the generic Néron-Severi latice of Y and

• if n = 1 then G = S3 × C2,

• if n = 2 then G = D8, the dihedral group of order 8,

• if n = 3 then G = D12, and

• if n = 4 then G = D8.

Proof. This will follow from Proposition 8.4.2 if we can show that

O(M⊥
n )∗/O(M⊥

n (2))∗ ∼= G,

where G is as in each of the four cases in the statement of the proposition. We proceed

by obtaining generators for O(M⊥
n )∗ ∼= O(H ⊕ ⟨2n⟩)∗ and then determining their

actions on AH(2)⊕⟨4n⟩ to compute the group G.

In the case n = 1, the generators of O(H ⊕ ⟨2⟩)∗ are

g1 =

⎛⎜⎜⎜⎝
0 −1 0

−1 0 0

0 0 1

⎞⎟⎟⎟⎠ , g2 =

⎛⎜⎜⎜⎝
1 0 0

1 1 2

1 0 1

⎞⎟⎟⎟⎠ , g3 =

⎛⎜⎜⎜⎝
−1 0 0

0 −1 0

0 0 −1

⎞⎟⎟⎟⎠
whose induced actions on AH(2)⊕⟨4⟩ have orders 2, 3 and 2 respectively. One may

check that g1g2g1 = g22, and hence g1 and g2 generate a copy of S3. It is clear that g3

commutes with g1 and g2, so the subgroup of Aut(AH(2)⊕⟨4⟩) generated by g1, g2 and

g3 is isomorphic to S3 × C2.

In the case n = 2, the group O(H ⊕ ⟨4⟩)∗ has a non-minimal set of generators

g1 =

⎛⎜⎜⎜⎝
1 0 0

2 1 4

1 0 1

⎞⎟⎟⎟⎠ , g2 =

⎛⎜⎜⎜⎝
1 2 4

2 1 4

−1 −1 −3

⎞⎟⎟⎟⎠ , g3 =

⎛⎜⎜⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎟⎟⎠ .
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Let the automorphism induced on AH(2)⊕⟨8⟩ by gi be denoted hi. Then h21 = h22 =

h23 = Id. We check h1h3 has order 4 and it is easy to see that

h1(h1h3)h1 = h3h1 = (h1h3)
−1.

Therefore, h1 and h1h3 generate a copy of D8. Finally, one checks that (h1h3)h1 = h2,

so the group of automorphisms ⟨h1, h2, h3⟩ is isomorphic to D8.

In the case when n = 3, we may calculate generators of O(H ⊕ ⟨6⟩)∗ to find

g1 =

⎛⎜⎜⎜⎝
1 0 0

3 1 6

1 0 1

⎞⎟⎟⎟⎠ , g2 =

⎛⎜⎜⎜⎝
1 3 6

3 4 12

−1 −2 −5

⎞⎟⎟⎟⎠ , g3 =

⎛⎜⎜⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎟⎟⎠ .

As before, let the corresponding automorphisms of H(2)⊕ ⟨12⟩ be called h1, h2 and

h3. We calculate that

h21 = h32 = h23 = (h1h3)
6 = Id.

Furthermore, (h1h3)
2 = h2 and

h1(h1h3)h1 = h3h1 = (h1h3)
−1.

Therefore, the group ⟨h1, h2, h3⟩ is isomorphic to D12.

In the case when n = 4, we may calculate generators of O(H ⊕ ⟨8⟩)∗ to obtain

g1 =

⎛⎜⎜⎜⎝
1 0 0

4 1 8

1 0 1

⎞⎟⎟⎟⎠ , g2 =

⎛⎜⎜⎜⎝
9 4 24

4 1 8

−3 −1 −7

⎞⎟⎟⎟⎠ , g3 =

⎛⎜⎜⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎟⎟⎠ .

Once again, let the corresponding automorphisms of H(2)⊕ ⟨16⟩ be called h1, h2 and

h3. We calculate that

h21 = h22 = h23 = Id
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We check that h1h2 = h2h1 and h3h2 = h2h3. Once again, we also have (h1h3)
2 = h2

and

h1(h1h3)h1 = h3h1 = (h1h3)
−1.

Therefore the group ⟨h1, h2, h3⟩ is isomorphic to D8.

8.5.2 Some special families

There are some special families of Mn-polarized K3 surfaces that we can use to vastly

reduce the amount of work that we have to do to undo the Kummer construction for

the Mn-polarized cases from [52, Table 1].

We begin by noting that the moduli space MMn of Mn-polarized K3 surfaces is a

1-dimensional modular curve [44, Theorem 7.1]. Denote by UMn the open subset of

MMn obtained by removing the orbifold points.

Definition 8.5.2. Xn → UMn will denote an Mn-polarized family of K3 surfaces

over UMn , with period map UMn → MMn given by the inclusion and transcendental

monodromy group ΓXn = O(M⊥
n )∗.

Remark 8.5.3. Examples of such families for any n are given by the restriction of the

special M -polarized family from [31, Theorem 3.1] to the Mn-polarized loci calculated

in [31, Section 3.2]. For n ≤ 4, we will explicitly construct examples of such families

in Sections 8.5.4 and 8.5.5.

Let Yn → UMn be the family of Kummer surfaces associated to Xn → UMn and

let Kn be the Néron-Severi lattice of the Kummer surface associated to a K3 surface

with Shioda-Inose structure and Néron-Severi lattice Mn.

Suppose now that we can undo the Kummer construction for Yn, by pulling back

to a cover CMn → MMn . Then if we know that an Mn-polarised family of K3 surfaces

X → U is the pull-back of a family Xn → UMn by the period map U → MMn (which,

in the Mn-polarized case, is more commonly known as the generalized functional

invariant, see [45]), then we can undo the Kummer construction for the associated

family of Kummer surfaces Y → U by pulling back to the fibre product U ×MMn
CMn .
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Thus the aim of this section is to find covers CMn → MMn such that the pull-backs

of Yn to CMn are Kn-polarized (and so, by Proposition 8.4.1, the Kummer construction

can be undone on these pull-backs).

Lemma 8.5.4. The families Yn are minimally (Kn, G)-polarized, where G is the

group G = O(M⊥
n )∗/O(M⊥

n (2))∗

Proof. This follows from Proposition 8.4.2 and the fact that the families Xn have

transcendental monodromy groups O(M⊥
n )∗.

As MMn = O(M⊥
n )∗ \ PMn , this lemma suggests that, in order to undo the action

of G, we should define CMn to be the curve CMn := O(M⊥
n (2))∗ \ PMn . This curve

may be constructed as a modular curve in the following way.

Recall that

Γ0(n) :=

⎧⎨⎩γ ∈ SL2(Z) : γ ≡

⎛⎝∗ ∗

0 ∗

⎞⎠ mod n

⎫⎬⎭
and

Γ(n) :=

⎧⎨⎩γ ∈ SL2(Z) : γ ≡

⎛⎝1 0

0 1

⎞⎠ mod n

⎫⎬⎭ .

By convention, Γ0(1) and Γ(1) are just the full modular group Γ = SL2(Z). We also

have

Γ0(n)
+ := Γ0(n) ∪ τnΓ0(n) ⊆ SL2(R)

where

τn =

⎛⎝ 0 −1/
√
n

√
n 0

⎞⎠
is the Fricke involution. With this notation, we have MMn

∼= Γ0(n)
+ \H [44, Theorem

7.1].

For any lattice N , let PO(N) be defined as the cokernel of the obvious injection

±Id ↪→ O(N). Then we have the exact sequence

1 → {±Id} → O(N) → PO(N) → 1.
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If N is a lattice of signature (1, n− 1) with a fixed primitive embedding into ΛK3 and

Γ and Γ′ are two subgroups of O(N⊥), the quotients Γ \ PN and Γ′ \ PN are the same

if and only if Γ and Γ′ have the same images in PO(N⊥), in which case Γ and Γ′ are

said to be projectively equivalent.

By [44, Theorem 7.1], there is a map Rn, defined in the following proposition, under

which Γ0(n)
+ is mapped to a subgroup of SO(M⊥

n ) that is projectively equivalent to

O(M⊥
n )∗.

Lemma 8.5.5. The group O(M⊥
n (2))∗ is projectively equivalent to the image of

Γ(2) ∩ Γ0(2n) under the map

Rn : SL2(R) → SOR(2, 1)

which is defined as

⎛⎝ a b

cn d

⎞⎠ ↦→

⎛⎜⎜⎜⎝
a2 c2n 2acn

b2n d2 2bdn

ab cd bcn+ ad

⎞⎟⎟⎟⎠
(see the related map in [75, Equation 5.6]).

Proof. We know that the pre-image of O(M⊥
n )∗ under Rn is the subgroup Γ0(n)

+ and

that O(M⊥
n (2))∗ ⊆ O(M⊥

n )∗ is the subgroup which fixes the group AM⊥
n (2). Since Rn

maps the Fricke involution to the automorphism

⎛⎜⎜⎜⎝
0 1 0

1 0 0

0 0 −1

⎞⎟⎟⎟⎠ ,
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which is never trivial or −Id on AM⊥
n (2), we may automatically restrict to the image

of Γ0(n). Automorphisms which fix AM⊥
n (2) are matrices of the form

⎛⎜⎜⎜⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞⎟⎟⎟⎠
with a12, a21, a31, a32 ≡ 0 mod 2, a13, a23,≡ 0 mod 2n, a11, a22 ≡ 1 mod 2 and a33 ≡

1 mod 2n. Thus a2 ≡ d2 ≡ 1 mod 2 and hence a, d ≡ 1 mod 2. Using this and the fact

that ab ≡ cd ≡ 0 mod 2, we find that b ≡ c ≡ 0 mod 2. Therefore the matrices which

map to O(M⊥
n (2))∗ are precisely those which satisfy

⎛⎝ a b

cn d

⎞⎠ ≡

⎛⎝∗ ∗

0 ∗

⎞⎠ mod 2n

and ⎛⎝ a b

cn d

⎞⎠ ≡

⎛⎝1 0

0 1

⎞⎠ mod 2.

In other words elements of the group Γ0(2n) ∩ Γ(2).

We therefore have

CMn
∼= (Γ0(2n) ∩ Γ(2)) \H.

Let f : CMn → MMn be the natural map coming from the modular description of

each curve.

Proposition 8.5.6. If n ̸= 1, the pullback f∗Yn of Yn to CMn is Kn-polarized.

Proof. The transcendental monodromy of the pullback f∗Xn is a group Γ contained

in O(M⊥
n )∗ with quotient space Γ \ PMn

∼= (Γ0(2n) ∩ Γ(2)) \H. By Lemma 8.5.5, the

group O((M⊥
n )(2))∗ has this property.

Suppose that there is another subgroup Γ′ of O(M⊥
n )∗ with this property. Let γ ∈ Γ

be any element and let g ∈ PO(M⊥
n ) be its image. Since Γ and Γ′ are projectively

equivalent, there is some γ′ ∈ Γ′ which maps to g.
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If Γ and Γ′ are not the same group, we can find some g ∈ PO(M⊥
n ) such that there

are γ ∈ Γ and γ′ ∈ Γ which map to g yet have γ ≠ γ′. Thus γ−1γ′ ̸= Id but γ−1γ′

maps to the identity in PO(M⊥
n ). However, for n ̸= 1, [75, Lemma 1.15] shows that

the kernel of O(M⊥
n )∗ → PO(Mn) is trivial. This is a contradiction, hence Γ = Γ′.

Therefore, the monodromy group of the family f∗Xn is O(M⊥
n (2))∗ ⊆ O(M⊥

n )∗.

By Corollary 8.3.4, the associated family of Kummer surfaces then has transcendental

monodromy O(M⊥
n (2))∗ as well. Since this group is contained in the kernel of αT(Yn),

we conclude that Yn is Kn-polarized.

Remark 8.5.7. This discussion may be rephrased in the following way. The quotient-

resolution procedure taking Xn to Yn defines an isomorphism MMn

∼−→ M(Kn,G),

where G is the group from Lemma 8.5.4. The cover CMn → MMn is then precisely

the cover MKn → M(Kn,G).

In the case where n = 1 this proof fails, as the kernel of the map O(M⊥
n )∗ →

PO(Mn) is nontrivial. It will therefore be necessary for us to do a little more work in

order to find a cover of MM1 on which the pullback of Y1 is lattice polarized.

The family X1 is a family of smooth K3 surfaces over P1 \ {0, 1,∞}. Let g1

and g2 in O(H ⊕ ⟨2⟩)∗ be as in the n = 1 case of the proof of Proposition 8.5.1:

then g1 describes monodromy around 1 and g2 describes monodromy around ∞, and

monodromy around 0 is, as usual, given by g1g
−1
2 . Around the point 1, the order of

monodromy is 2, around 0, the order of monodromy is 6, and around ∞, the order of

monodromy is infinite.

The group Γ0(2) ∩ Γ(2) is just Γ(2), since Γ(2) ⊆ Γ0(2), and the map from

CM1 = Γ(2) \ H to MM1 = Γ0(1)
+ \ H ∼= Γ0(1) \ H is just the j-function of the

Legendre family of elliptic curves. This map may be written as a rational function,

j(t) =
(t2 − t+ 1)3

27t2(t− 1)2
.

The function j(t) has three ramification points of order 2 over 1, three ramification

points of order 2 over ∞ and two ramification points points of order 3 over 0. Looking

back at the proof of Proposition 8.5.1, we see that the monodromy around the
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preimages of 1 and ∞ must act as h21 = Id and h22 = Id on AH(2)⊕⟨4⟩. However,

monodromy around the preimages of 0 acts on AH(2)⊕⟨4⟩ as (h1h2)
2 = −Id. Therefore,

in order for monodromy to act trivially on AH(2)⊕⟨4⟩, we must take a further double

cover of CM1 = Γ(2) \H = P1
t ramified along the roots of t2 − t+1 = 0. We thus have:

Proposition 8.5.8. If n = 1, there is a double cover C ′
M1

of CM1 on which the

pull-back of the family Yn is K1-polarized.

The maps f : CMn → MMn will be calculated in the next section.

8.5.3 Covers for small n

In this section, we will explicitly compute the maps f : CMn → MMn for n ≤ 4. To

do this, we decompose the map f = f1 ◦ f2 ◦ f3, where

f1 : Γ0(n) \H −→ Γ0(n)
+ \H,

f2 : Γ0(2n) \H −→ Γ0(n) \H,

f3 : CMn
∼= (Γ0(2n) ∩ Γ(2)) \H −→ Γ0(2n) \H.

8.5.3.1 The case n = 1

The rational modular curves Γ0(1)
+ \H and Γ0(1) \H are isomorphic and have two

elliptic points of orders 2 and 3 along with a single cusp. The map f2 is a triple cover

ramified with index 3 over the elliptic point of order 2 and indices (2, 1) over the

elliptic point of order 2 and the cusp. Γ0(2) \H is a rational modular curve with an

elliptic point of order 2 and two cusps. Finally, f3 is a double cover ramified over the

elliptic point and the cusp that is not a ramification point of f2 and CM1 is a rational

modular curve with three cusps.

We thus see that f : CM1 → Γ0(1)
+ \H is a 6-fold cover ramified with indices 2

and 3 at all points over the elliptic points of order 2 and 3 respectively and index 2 at

all points over the cusp. It is easy to see that the deck transformation group of f is

S3.
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However, from Proposition 8.5.8, we need to take a further double cover of

CM1 before we can undo the Kummer construction. This double cover is ramified

over the two preimages under f of the elliptic point of order 3. The composition

C ′
M1

→ Γ0(1)
+ \H is a 12-fold cover ramified with indices 2 and 6 at all points over

the elliptic points of order 2 and 3 respectively and index 2 at all points over the cusp.

It is easy to see that the deck transformation group of this composition is S3 ×C2, as

expected from Proposition 8.5.1.

8.5.3.2 The case n = 2

The rational modular curve Γ0(2)
+ \H has two elliptic points of orders 2 and 4 and a

single cusp. The map f1 is a double cover ramified over the two elliptic points and

Γ0(2) \H is a rational modular curve with a single elliptic point of order 2 and two

cusps. The map f2 is then a double cover ramified over the elliptic point and one of

the cusps, and Γ0(4) \H is a rational modular curve with three cusps. Finally, f3 is a

double cover ramified over the two cusps that are not ramification points of f2 and

CM2 is a rational modular curve with four cusps.

We thus see that f : CM2 → Γ0(2)
+ \H is an 8-fold cover ramified with indices 2

and 4 at all points over the elliptic points of order 2 and 4 respectively and index 2 at

all points over the cusp. It is easy to see that the deck transformation group of f is

D8, as expected from Proposition 8.5.1.

8.5.3.3 The case n = 3

The rational modular curve Γ0(3)
+ \H has two elliptic points of orders 2 and 6 and a

single cusp. The map f1 is a double cover ramified over the two elliptic points and

Γ0(3) \H is a rational modular curve with one elliptic point of order 3 and two cusps.

The map f2 is then a triple cover ramified with index 3 over the elliptic point and

indices (2, 1) over each of the cusps, and Γ0(6) \H is a rational modular curve with

four cusps. Finally, f3 is a double cover ramified over the two cusps that are not

ramification points of f2 and CM3 is a rational modular curve with six cusps.
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We thus see that the map f : CM3 → Γ0(3)
+ \H is an 12-fold cover ramified with

indices 2 and 6 at all points lying over the elliptic points of orders 2 and 6 respectively

and index 2 at all points over the cusp. It is easy to see that the deck transformation

group of f is D12, as expected from Proposition 8.5.1.

8.5.3.4 The case n = 4

The rational modular curve Γ0(4)
+ \H has an elliptic point of order 2 and two cusps.

The two cusps are distinguished by their widths, which are 1 and 2. The map f1 is a

double cover ramified over the elliptic point and the cusp of width 2. The rational

modular curve Γ0(4) \ H has three cusps of widths (4, 1, 1). The map f2 is then a

double cover ramified with index 2 over the cusp of width 4 and one of the cusps of

width 1. The rational modular curve Γ0(8) \ H has four cusps of widths (8, 2, 1, 1).

Finally, f3 is a double cover ramified over the two cusps of width 1. The curve CM4 is

a rational modular curve with six cusps of widths (8, 8, 2, 2, 2, 2).

We thus see that f : CM4 → Γ0(4)
+ \H is an 8-fold cover ramified with index 2 at

all points lying over the elliptic point and indices 2 and 4 at all points over the cusps

of widths 1 and 2 respectively. It is easy to see that the deck transformation group of

f is D8, as expected from Proposition 8.5.1.

Remark 8.5.9. Note that if n ̸= 1 we may also find a cover of Yn → UMn that is

Kn-polarized using the method of Section 8.4.3 (if n = 1 then this method cannot

be used, as Assumption 8.4.6 fails; see Section 8.5.5). In the three cases with n ≥ 2

above it may be seen that this cover agrees with CMn .

8.5.4 Application to the 14 cases.

We now apply this theory to undo the Kummer construction for families of Kummer

surfaces arising from M -polarized fibrations on the fourteen cases in [52, Table 1].

Examining these cases, we find Mn-polarized K3 fibrations with 2 ≤ n ≤ 4 on nine

of them, listed in the appropriate sections of Table 8.1. In this table, the first column

gives the polarization lattice M or Mn, the second gives the mirrors of the threefolds
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Lattice Mirror threefold Toric? (i, j) Arithmetic/thin

WP(1, 1, 1, 1, 2)[6] Yes (1, 2) Arithmetic
WP(1, 1, 1, 1, 4)[8] Yes (1, 3) Thin

M1 WP(1, 1, 1, 2, 5)[10] Yes (2, 3) Arithmetic
WP(1, 1, 1, 1, 1, 3)[2, 6]∗ Yes (1, 1) Thin
WP(1, 1, 1, 2, 2, 3)[4, 6]∗ Yes (2, 2) Arithmetic

P4[5] Yes (1, 4) Thin
WP(1, 1, 1, 1, 2)[6] Yes (2, 4) Arithmetic

M2 WP(1, 1, 1, 1, 4)[8] Yes (4, 4) Thin
P5[2, 4] Yes (1, 1) Thin

WP(1, 1, 1, 1, 2, 2)[4, 4] Yes (2, 2) Arithmetic

P4[5] No (2, 3) Thin
P5[2, 4] No (1, 3) Thin

M3 P5[3, 3] Yes (1, 2) Arithmetic
WP(1, 1, 1, 1, 1, 2)[3, 4]∗ Yes (2, 2) Arithmetic

P6[2, 2, 3] Yes (1, 1) Thin

P5[2, 4] No (2, 2) Thin
M4 P6[2, 2, 3] No (1, 2) Thin

P7[2, 2, 2, 2] Yes (1, 1) Thin

M WP(1, 1, 1, 1, 4, 6)[2, 12] Yes (1, 1) Thin

Table 8.1 Lattice polarized K3 fibrations on the threefolds from [52, Table 1].

that have M - or Mn-polarized K3 fibrations, and the third states whether or not these

fibrations are torically induced (the meanings of the fourth and fifth columns will be

discussed later). More precisely, we have:

Theorem 8.5.10. There exist K3 fibrations with Mn-polarized generic fibre, for

2 ≤ n ≤ 4, on nine of the threefolds in [52, Table 1], given by the mirrors of those

listed in the appropriate sections of Table 8.1. Furthermore, if X → P1 denotes one of

these fibrations and U ⊂ P1 is the open set over which the fibres of X are nonsingular,

then the restriction X|U → U agrees with the pull-back of a family Xn (see Definition

8.5.2) by the generalized functional invariant map U → MMn. The family X|U → U

is thus an Mn-polarized family of K3 surfaces.

Remark 8.5.11. The M1-polarized cases in the first section of Table 8.1 will require

some extra work, so they will be discussed separately in Section 8.5.5. The 14th case

of [30] has already been discussed in Example 8.4.17, where we recalled that the family
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of threefolds Y1 realising the 14th case variation of Hodge structure admit torically

induced M -polarized K3 fibrations. By [30, Section 8.2], these threefolds Y1 can be

thought of as mirror to complete intersections WP(1, 1, 1, 1, 4, 6)[2, 12]. This case is

included in the final row of Table 8.1.

Remark 8.5.12. To check which of the fibrations listed in Table 8.1 are torically

induced, one may use the computer software Sage to find all fibrations of the toric

ambient spaces by toric subvarieties that induce fibrations of the Calabi-Yau threefold

byM -polarized K3 surfaces. The resulting list may be compared to the list of fibrations

in Table 8.1, giving the third column of this table. This also proves that Table 8.1

contains all torically induced fibrations of the Calabi-Yau threefolds from [52, Table

1] by M -polarized K3 surfaces.

We will prove Theorem 8.5.10 by explicit calculation: we find families Xn satisfying

Definition 8.5.2 and show that they pull back to give the families X|U under the

generalized functional invariant maps.

In each case, we will see that the generalized functional invariant map is completely

determined by the pair of integers (i, j) from the fourth column of Table 8.1. In fact,

we find that it is an (i + j)-fold cover of MMn
∼= Γ0(n)

+ \ H having exactly four

ramification points: one of order (i+ j) over the cusp (or, in the M4-polarized case,

the cusp of width 1), two of orders i and j over the elliptic point of order ̸= 2 (or, in

the M4-polarized case, the cusp of width 2), and one of order 2 which varies with the

value of the Calabi-Yau deformation parameter.

We thus have everything we need to undo the Kummer construction in the families

arising as the resolved quotients of the families X|U from Theorem 8.5.10. By the

discussion in Section 8.5.2, in order to undo the Kummer construction we just need

to pull back to the cover CMn ×MMn
U , where the map CMn → MMn is as calculated

in Section 8.5.3 and U → MMn is the generalized functional invariant map, described

above.
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8.5.4.1 M2-polarized families

We begin the proof of Theorem 8.5.10 with the M2 case. Note first that an M2-

polarized K3 surface is mirror (in the sense of [44]) to a ⟨4⟩-polarized K3 surface,

which is generically a hypersurface of degree 4 in P3.

By the Batyrev-Borisov mirror construction [17], the mirror of a degree 4 hypersur-

face in P3 is a hypersurface in the toric variety polar dual to P3. The intersection of

this hypersurface with the maximal torus is isomorphic to the locus in (C×)3 defined

by the rational polynomial

x1 + x2 + x3 +
λ

x1x2x3
= 1, (8.4)

where λ ∈ C is a constant. This is easily compactified to a singular hypersurface of

degree 4 in P3, given by the equation

λw4 + xyz(x+ y + z − w) = 0,

where (w, x, y, z) are coordinates on P3.

Consider the family of surfaces over C obtained by varying λ. By resolving the

singularities of the generic fibre and removing any singular fibres that remain, we

obtain a family of K3 surfaces X2 → U2 ⊂ C. Dolgachev [44, Example (8.2)] exhibited

elliptic fibrations on the K3 fibres of X2 and used them to give a set of divisors

generating the lattice M2. It can be seen from the structure of these elliptic fibrations

that these divisors are invariant under monodromy, so there can be no action of

monodromy on M2. We thus see that X2 is an M2-polarized family of K3 surfaces.

The action of transcendental monodromy on X2 was calculated by Narumiya and

Shiga [108] (note that our parameter λ is different from theirs: our λ is equal to µ4 or

u
256 from their paper). In [108, Section 4] they find that the fibre Xλ of X2 is smooth

away from λ ∈ {0, 1
256} and the monodromy action has order 2 around λ = 1

256 , order

4 around λ = ∞, and infinite order around λ = 0. Furthermore, they show [108,

Remark 6.1] that the monodromy of X2 generates the (2, 4,∞) triangle group (which
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is isomorphic to Γ0(2)+ ∼= O(M⊥
2 )∗), so the period map of X2 → U2 must be injective.

Thus the family X2 → U2 satisfies Definition 8.5.2.

We can use the local form (8.4) of the family X2 to find M2-polarized families of

K3 surfaces on the threefolds from [52, Table 1]. For example:

Example 8.5.13. The first M2-polarized case from Table 8.1 is the mirror to the

quintic threefold. By the Batyrev-Borisov construction, on the maximal torus we may

write this mirror as the locus in (C×)4 defined by the rational polynomial

x1 + x2 + x3 + x4 +
A

x1x2x3x4
= 1,

where A ∈ C is the Calabi-Yau deformation parameter. Consider the fibration induced

by projection onto the x4 coordinate; for clarity, we make the substitution x4 = t. If

we further substitute xi ↦→ xi(1− t) for 1 ≤ i ≤ 3 and rearrange, we obtain

x1 + x2 + x3 +
A

x1x2x3t(1− t)4
= 1.

But, from the local form (8.4), it is clear that this describes an M2-polarized family

of K3 surfaces with

λ =
A

t(1− t)4
.

This is the generalized functional invariant map of the fibration. Note that it is

ramified to orders 1 and 4 over the order 4 elliptic point λ = ∞, order 5 over the cusp

λ = 0, and order 2 over the variable point λ = 55A
28

, giving (i, j) = (1, 4).

Similar calculations may be performed in the other M2-polarized cases from Table

8.1. We find that the generalized functional invariants are given by

λ =
Aui+j

ti(u− t)j
,

where (t, u) are homogeneous coordinates on the base U ⊂ P1 of the K3 fibration,

(i, j) are as in Table 8.1, and A is the Calabi-Yau deformation parameter.



8.5 Threefolds fibred by Mn-polarized K3 surfaces. 275

8.5.4.2 M3-polarized families

Here we follow a similar method to the M2-polarized case. An M3-polarized K3

surface is mirror to a ⟨6⟩-polarized K3 surface, which may be realised as a complete

intersection of type (2, 3) in P4.

By the Batyrev-Borisov construction, on the maximal torus we may express the

mirror of a (2, 3) complete intersection in P4 as the locus in (C×)3 defined by the

rational polynomial

x1 +
λ

x1x2x3(1− x2 − x3)
= 1, (8.5)

where λ ∈ C is a constant. This is easily compactified to a singular hypersurface of

bidegree (2, 3) in P1 × P2, given by the equation

λs2z3 + r(r − s)xy(z − x− y) = 0,

where (r, s) are coordinates on P1 and (x, y, z) are coordinates on P2.

Consider the family of surfaces over C obtained by varying λ. By resolving the

singularities of the generic fibre and removing any singular fibres that remain, we

obtain a family of K3 surfaces X3 → U3 ⊂ C. We now show that X3 is anM3-polarized

family that satisfies Definition 8.5.2.

There is a natural elliptic fibration on the fibres of X3, obtained by projecting

onto the P1 factor. This elliptic fibration has two singular fibers of Kodaira type IV ∗

at r = 0 and r = s, a fibre of type I6 at s = 0, two fibres of type I1 and a section. In

fact, one sees easily that the hypersurface obtained by intersecting with z = 0 splits

into three lines, which project with degree 1 onto P1 and hence are all sections. If we

choose one of these sections as a zero section, the other two are 3-torsion sections and

generate a subgroup of the Mordell-Weil group of order 3.

One can check that the lattice spanned by components of reducible fibers and

these torsion sections is a copy of the lattice M3 inside of NS(Xλ), for each fiber Xλ

of X3 → U3. Since the 3-torsion sections are individually fixed under monodromy,
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there can be no monodromy action on this copy of M3 in NS(Xλ). We thus see that

X3 is an M3-polarized family of K3 surfaces.

Next we calculate the transcendental monodromy of this family to show that it

satisfies Definition 8.5.2.

Lemma 8.5.14. U3 is the open subset given by removing the points λ ∈ {0, 1
108} from

C. Transcendental monodromy of the family X3 → U3 has order 2 around λ = 1
108 ,

order dividing 6 around λ = ∞ and infinite order around λ = 0.

Proof. The discriminant of the elliptic fibration on a fibre Xλ of X3 vanishes for

λ ∈ {0, 1
108 ,∞}, giving the locations of the singular K3 surfaces that are removed

from the family X3. At λ = 1
108 the two singular fibres of type I1 collide so that the

K3 surface Xλ= 1
108

has a single node. Thus there is a vanishing class of square (−2)

associated to the fibre Xλ= 1
108

and monodromy around this fibre is a reflection across

this class. Therefore monodromy around λ = 1
108 has order 2.

We will use this to indirectly calculate the monodromies around other points.

After base change λ = µ3 and a change in variables, one finds that the λ = ∞ fiber

can be replaced with an elliptically fibered K3 surface with three singular fibers of

type IV ∗. Since a generic member of the family X3 has Néron-Severi rank 19, this

fiber can only have a single node, so again the monodromy transformation around it

must be of order at most 2. Hence monodromy around λ = ∞ has order dividing 6.

To determine monodromy around the final point, it is enough to note that the

moduli space of Mn-polarized K3 surfaces has a cusp, and the preimage of this cusp

under the period map must also have monodromy of infinite order. Since the points

λ ∈ { 1
108 ,∞} are of finite order and every other fiber is smooth, λ = 0 must map to

the cusp under the period map and therefore has infinite order monodromy.

As a result we find:

Proposition 8.5.15. The period map of X3 → U3 is injective and the subgroup of

O(M⊥
3 )∗ generated by monodromy transformations is O(M⊥

3 )∗ itself. The family X3

thus satisfies Definition 8.5.2.
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Proof. Notice first that, by Lemma 8.5.14, the monodromy group of X3 is isomorphic

to a triangle group of type (2, d,∞) for d = 2, 3 or 6 and contained in O(M⊥
3 )∗. It is

well known that O(M⊥
3 )∗ ∼= Γ0(3)

+ is a (2, 6,∞) triangle group, and since the period

map is of finite degree, the monodromy group of X3 is of finite index in Γ0(3)
+. Thus

we need to show that the only finite index embedding of a (2, d,∞) triangle group

into the (2, 6,∞) triangle group is the identity map from the (2, 6,∞) triangle group

to itself. But this is calculated in [140].

As before, we can use the local form (8.5) of the family X3 to find M3-polarized

families of K3 surfaces on the threefolds from [52, Table 1]. We find that the generalized

functional invariants are given by

λ =
Aui+j

ti(u− t)j
,

where (t, u) are homogeneous coordinates on the base U ⊂ P1 of the K3 fibration,

(i, j) are as in Table 8.1, and A is the Calabi-Yau deformation parameter.

8.5.4.3 M4-polarized families

We conclude the proof of Theorem 8.5.10 with theM4-polarized case. AnM4-polarized

K3 surface is mirror to an ⟨8⟩-polarized K3 surface, given generically as a complete

intersection of type (2, 2, 2) in P5.

By the Batyrev-Borisov construction, on the maximal torus we may express the

mirror of a complete intersection of type (2, 2, 2) in P5 as the locus in (C×)3 defined

by the rational polynomial

x1 +
λ

x2(1− x2)x3(1− x3)x1
= 1. (8.6)

This may be easily compactified to a singular hypersurface of multidegree (2, 2, 2) in

(P1)3 given by

λs21s
2
2s

2
3 − r1(s1 − r1)r2(s2 − r2)r3(s3 − r3) = 0,
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where (ri, si) are coordinates on the ith copy of P1.

As above, we consider the family of surfaces over C obtained by varying λ. By

resolving the singularities of the generic fibre and removing any singular fibres that

remain, we obtain a family of K3 surfaces X4 → U4 ⊂ C. We now show that X4 is an

M4-polarized family that satisfies Definition 8.5.2.

Begin by noting that there is an S3 symmetry on X4 obtained by permuting copies

of P1. Furthermore, projection of (P1)3 onto any one of the three copies of P1 produces

an elliptic fibration on the K3 hypersurfaces. This elliptic fibration has a description

very similar to that of the elliptic fibration on X3. Generically it has two fibres of

type I∗1 at ri = 0 and ri = si, a fibre of type I8 at si = 0, and two fibres of type I1.

This elliptic fibration has a 4-torsion section. Using standard facts relating the

Néron-Severi group of an elliptic fibration to its singular fiber types and Mordell-Weil

group (see [99, Lecture VII]), we see that each fiber of X4 is polarized by a rank 19

lattice with discriminant 8. A little lattice theory shows that this must be the lattice

M4. The embedding of M4 into the Néron-Severi group must be primitive, otherwise

we would find full 2-torsion structure, which is not the case. As in the case of X3,

this embedding of M4 is monodromy invariant, so X4 is an M4-polarized family of K3

surfaces.

Proposition 8.5.16. U4 is the open subset given by removing the points λ = {0, 1
64}

from C. Transcendental monodromy of the family X4 → U4 has order 2 around λ = 1
64

and infinite order around λ ∈ {0,∞}.

Furthermore, the period map of X4 → U4 is injective and the subgroup of O(M⊥
4 )∗

generated by monodromy transformations is O(M⊥
4 )∗ itself. The family X4 thus satisfies

Definition 8.5.2.

Proof. As in the proof of Lemma 8.5.14, to see that fibers of X4 degenerate only when

λ ∈ {0, 1
64 ,∞}, it is enough to do a simple discriminant computation. The elliptic

fibration described above is well-defined away from λ ∈ {0,∞} and the two I1 singular

fibers collide when λ = 1
64 . As before, this shows that monodromy has order 2 around

λ = 1
64 .



8.5 Threefolds fibred by Mn-polarized K3 surfaces. 279

To see that monodromies around λ ∈ {0,∞} have infinite order, we argue as

follows. We have a period map from P1
λ to MM4 , the Baily-Borel compactification

of the period space of M4-polarized K3 surfaces. The monodromy of X4 is a (2, k, l)

triangle group for some choice of k, l, and lies inside of O(M⊥
4 )∗ ∼= Γ0(4)

+ (which

is a (2,∞,∞) triangle group) as a finite index subgroup, since the period map is

dominant. However, by [140], the only (2, k, l) triangle group of finite index inside

of the (2,∞,∞) triangle group is the (2,∞,∞) triangle group itself (equipped with

the identity embedding). Therefore the period map is the identity and monodromy

around λ ∈ {0,∞} is of infinite order.

As in the previous cases, we can use the local form (8.6) of the family X4 to find

M4-polarized families of K3 surfaces on the threefolds from [52, Table 1]. We find

that the generalized functional invariants are given by

λ =
Aui+j

ti(u− t)j
,

where (t, u) are homogeneous coordinates on the base U ⊂ P1 of the K3 fibration, (i, j)

are as in Table 8.1, and A is the Calabi-Yau deformation parameter. This completes

the proof of Theorem 8.5.10.

8.5.5 The case n = 1

It remains to address the case of threefolds from [52, Table 1] that are fibred by

M1-polarized K3 surfaces. Unfortunately many of the results that we have proved

so far do not apply in this case: Assumption 8.4.6 does not hold (this follows easily

from Remark 8.4.7 and the expressions for the (a, b, d)-parameters of M1-polarized

K3 surfaces, below), so the methods of Section 8.4.3 do not apply, and the torically

induced fibrations of these threefolds by M1-polarized K3 surfaces (computed with

Sage) cannot all be seen as pull-backs of special M1-polarized families X1 from the

moduli space MM1 , so we cannot directly use the results of Section 8.5.2 either.

Instead, we will construct a special 2-parameterM1-polarized family of K3 surfaces

X 2
1 → U2

1 , which is very closely related to a family X1 satisfying Definition 8.5.2 (this
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relationship will be made precise in Proposition 8.5.18 and Remark 8.5.19), and show

that the M1-polarized fibrations X → U on our threefolds are pull-backs of this family

by maps U → U2
1 .

Now let Y2
1 → U2

1 denote the family of Kummer surfaces associated to X 2
1 → U2

1

and suppose that we can construct a cover V → U2
1 that undoes the Kummer

construction for Y2
1 . Then, as before, we may undo the Kummer construction for the

family of Kummer surfaces associated to X → U by pulling back to the fibre product

U ×U2
1
V .

To construct the 2-parameter family X 2
1 → U2

1 , we begin by noting that an M1-

polarized K3 surface is mirror to a ⟨2⟩-polarized K3 surface, which can generically

be expressed as a hypersurface of degree 6 in WP(1, 1, 1, 3). By the Batyrev-Borisov

construction, an M1-polarized K3 surface can be realised torically as an anticanonical

hypersurface in the polar dual of WP(1, 1, 1, 3). The defining polynomial of a generic

such anticanonical hypersurface is

a0x
6
0 + a1x

6
1 + a2x

6
2 + a3x

2
3 + a4x0x1x2x3 + a5x

2
0x

2
1x

2
2, (8.7)

where x0, x1, x2 are variables of weight 1 and x3 is a variable of weight 3.

On the maximal torus, the family defined by this equation is isomorphic to the

vanishing locus in (C×)3 of the rational polynomial

y + z +
α

x3yz
+ x+ 1 +

β

x
= 0, (8.8)

where α =
a0a1a2a33

a64
and β = a3a5

a24
. Consider the family of K3 surfaces over C2 obtained

by varying α and β. By resolving the singularities of the generic fibre and removing

any singular fibres that remain, we obtain the 2-parameter family of K3 surfaces

X 2
1 → U2

1 ⊂ C2.
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We can express the (a, b, d)-parameters (see Section 8.4.2) of a fibre of X 2
1 in terms

of α and β as

a = 1, b =
2633α

(4β − 1)3
+ 1, d =

(
2633α

(4β − 1)3

)2

,

where this parameter matching was computed using the elliptic fibrations on M -

polarized K3 surfaces in Weierstrass normal form.

Introducing a new parameter

γ :=
2633α

(4β − 1)3
,

we see from the expressions for (a, b, d) above that γ parametrizes the moduli space

MM1 , so the generalized functional invariant of the family X 2
1 is given by γ. Then we

find:

Lemma 8.5.17. U2
1 is the open set U2

1 := {(α, β) ∈ C2 | γ /∈ {0,−1,∞}}. Further-

more, X 2
1 → U2

1 is an M1-polarized family of K3 surfaces.

Proof. Using the computer software Sage, it is possible to explicitly compute a toric

resolution of a generic K3 surface defined in the polar dual of WP(1, 1, 1, 3) by Equation

(8.7). From this, we find that the singular fibres of this family occur precisely over

γ ∈ {0,−1,∞}.

To see that X 2
1 → U2

1 is an M1-polarized family, we note that X 2
1 is a family of

hypersurfaces in the polar dual to WP(1, 1, 1, 3). By [130], there is a toric resolution

Y of the ambient space such that the fibres X of X 2
1 become smooth K3 surfaces in

Y and the restriction map

res : NS(Y ) → NS(X)

is surjective. Furthermore the image of res is the lattice M1. This defines a lattice

polarization on each fiber and, since this polarization is induced from the ambient

threefold, it is unaffected by monodromy. Thus X 2
1 is a family of M1-polarized K3

surfaces.
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Changing variables in (8.8) and completing the square in x, the family X 2
1 may be

written on (C×)3 as the vanishing locus of

x2

4β − 1
+ y + z +

γ

yz
+ 1 = 0.

Furthermore, we note that points (α, β) ∈ U2
1 correspond bijectively with points (β, γ)

in {(β, γ) ∈ C2 | β ̸= 1
4 , γ /∈ {0,−1}}. Using this we can reparametrize U2

1 by β and

γ, and thus think of X 2
1 → U2

1 as the 2-parameter family parametrized by β and γ

given on the maximal torus by the expression above.

After performing this reparametrization, the generalized functional invariant map

of the family X 2
1 is given simply by projection onto γ. The fibres of this map are

1-parameter families of K3 surfaces with the same period, parametrized by β ∈ C−{1
4},

which are therefore isotrivial. It is tempting to expect that these isotrivial families

are in fact trivial, but this is not the case. Instead, we find:

Proposition 8.5.18. Monodromy around the line β = 1
4 fixes the Néron-Severi lattice

of a generic fibre of X 2
1 and acts on the transcendental lattice as multiplication by

−Id.

Furthermore, the family X̂ 2
1 obtained by pulling back X 2

1 to the double cover of U2
1

ramified over the line β = 1
4 is isomorphic to a direct product X1 × C×, where X1 is

an M1-polarized family of K3 surfaces satisfying Definition 8.5.2.

Proof. The double cover of U2
1 ramified over the line β = 1

4 is given by the map

C× × (C − {0,−1}) → U2
1 taking (µ, γ) → (β, γ) = (µ2 + 1

4 , γ). After a change of

variables x ↦→ xµ, the family X̂ 2
1 may be written on the maximal torus (C×)3 as the

vanishing locus of the rational polynomial

x2 + y + z +
γ

33yz
+ 1 = 0. (8.9)

This family does not depend upon µ, so X̂ 2
1 is isomorphic to a direct product

X1 ×C×, for some family X1 → (C− {0,−1}) parametrized by γ, and its monodromy

around µ = 0 is trivial. Furthermore, for two K3 surfaces X1 and X2 in X̂ 2
1 lying
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above a fiber X in X 2
1 there are natural isomorphisms

ϕ1 : X1 → X, ϕ2 : X2 → X.

The automorphism ϕ−1
1 · ϕ2 is the non-symplectic involution given on the maximal

torus by (x, y, z) ↦→ (−x, y, z), which fixes the lattice M1 = NS(X).

Therefore monodromy around β = 1/4 has order 2 and acts on TX in the same

way as a non-symplectic involution ι with fixed lattice M1 = NS(X). Thus, TX =

(NS(X)ι)⊥ and so ι acts irreducibly on TX with order 2. It must therefore act as −Id.

It remains to prove that the 1-parameter family X1 → (C− {0,−1}) given on the

maximal torus by varying γ in (8.9) satisfies Definition 8.5.2. We have already noted

that the generalized functional invariant map (C− {0,−1}) → MM1 defined by γ is

injective. Furthermore, using the expressions for a, b and d calculated earlier we see

that γ = −1 at the elliptic point of order 2, γ = ∞ at the elliptic point of order 3,

and γ = 0 at the cusp. All that remains is to check that the monodromy of the family

X1 → (C− {0,−1}) has the appropriate orders around each of these points.

This family X1 has been studied by Smith [139, Example 2.15], where it appears

as family D in Table 2.2 (and we note that Smith’s parameter µ is equal to − 1
γ in our

notation). Its monodromy around the points γ ∈ {0,−1,∞} is given by the symmetric

squares of the matrices calculated in [139, Example 3.9]; in particular we find that

this monodromy has the required orders.

Remark 8.5.19. We note that the complicating factor in the M1-polarized case is

the fact that a generic M1-polarized K3 surface X admits a non-symplectic involution

which fixes M1 ⊆ NS(X). It is this which prevents some of the torically induced

fibrations of the threefolds in [52, Table 1] by M1-polarized K3 surfaces from being

expressible as pull-backs of an M1-polarized family X1 from the moduli space MM1 .

However, from Proposition 8.5.18, we find that we can express these fibrations as

pull-backs of X1 if we proceed to a double cover of the base which kills this involution.

Given this result, it is easy to undo the Kummer construction for the family

Y2
1 → U2

1 of Kummer surfaces associated to the family X 2
1 . First, pull back Y2

1
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Mirror Threefold α β γ

WP(1, 1, 1, 1, 2)[6]
A(t+ u)3

tu2
0 −2633A(t+ u)3

tu2

WP(1, 1, 1, 1, 4)[8]
Au

t

t

u

2633Au4

t(4t− u)3

WP(1, 1, 1, 2, 5)[10]
Au2

t2
t

u

2633Au5

t2(4t− u)3

WP(1, 1, 1, 1, 1, 3)[2, 6]∗ − Au2

t(t+ u)
k − 2633Au2

(4k − 1)3t(t+ u)

WP(1, 1, 1, 2, 2, 3)[4, 6]∗
Au4

t2(t+ u)2
k

2633Au4

(4k − 1)3t2(t+ u)2

Table 8.2 Values of α and β for threefolds admitting M1-polarized fibrations.

to the double cover (C − {0,−1}) × C× ∼= UM1 × C× of U2
1 ramified over the line

β = 1
4 (where UM1 is defined as in Section 8.5.2). The result is the family of

Kummer surfaces associated to the family X̂ 2
1
∼= X1 × C×. This is exactly the family

Y1 × C×, where Y1 → UM1 is the family of Kummer surfaces associated to X1. The

Kummer construction can then be undone for this family by pulling back to the cover

V = CM1 × C× of UM1 × C×, where the cover CM1 → UM1 is as calculated in Section

8.5.3.

Thus, given a family X → U of M1-polarized K3 surfaces that can be expressed

as the pull-back of the family X 2
1 by a map U → U2

1 , we may undo the Kummer

construction for the associated family of Kummer surfaces Y → U by pulling back to

the cover V ×U2
1
U .

We conclude by applying this to the cases from [52, Table 1]. We find:

Theorem 8.5.20. There exist K3 fibrations with M1-polarized generic fibre on five

of the threefolds in [52, Table 1], given by the mirrors of those listed in Table 8.2.

Furthermore, if X → P1
t,u denotes one of these fibrations and U ⊂ P1

t,u is the open

set over which the fibres of X are nonsingular, then the restriction X|U → U agrees

with the pull-back of the family X 2
1 by the map U → U2

1 defined by α and β in Table

8.2 (in this table (t, u) are coordinates on the base U ⊂ P1
t,u of the fibration, A is the

Calabi-Yau deformation parameter and k ∈ C − {0, 14} is a constant). The family

X|U → U is thus an M1-polarized family of K3 surfaces.
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Proof. This is proved in the same way as Theorem 8.5.10, by comparing the forms of

the maximal tori in the threefolds from [52, Table 1] to the local form of the family

X 2
1 given by Equation (8.8).

Finally, we note that the generalized functional invariants in these cases are given

by γ in Table 8.2. We see that, as in Section 8.5.4, they are all (i+ j)-fold covers of

MM1
∼= Γ0(1) \H (where (i, j) are as in Table 8.1) having exactly four ramification

points: one of order (i+j) over the cusp, two of orders i and j over the elliptic point of

order 3, and one of order 2 which varies with the value of the Calabi-Yau deformation

parameter A.

Remark 8.5.21. There is precisely one case from [52, Table 1] that has not been

discussed: the mirror of the complete intersection WP(1, 1, 2, 2, 3, 3)[6, 6]. However, it

can be seen that this threefold does not admit any torically induced M -polarized K3

fibrations, and our methods have not yielded any that are not torically induced either.

8.6 Application to the arithmetic/thin dichotomy

Recall that each of the threefolds X from [52, Table 1] moves in a one parameter family

over the thrice-punctured sphere P1 − {0, 1,∞}. Recently there has been a great deal

of interest in studying the action of monodromy around the punctures on the third

cohomology H3(X,Z). This monodromy action defines a Zariski dense subgroup of

Sp(4,R), which may be either arithmetic or non-arithmetic (more commonly called

thin). Singh and Venkataramana [138][137] have proved that the monodromy is

arithmetic in seven of the fourteen cases from [52, Table 1], and Brav and Thomas

[25] have proved that it is thin in the remaining seven. The arithmetic/thin status of

each of the threefolds from Theorems 8.5.10 and 8.5.20 is given in the fifth column of

Table 8.1.

It is an open problem to explain this behaviour geometrically. To this end, we are

able to make an interesting observation concerning the arithmetic/thin dichotomy for

the Mn-polarized families with Theorems 8.5.10 and 8.5.20. Specifically, from Table

8.1 we observe that a threefold admitting a torically induced fibration byMn-polarized
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K3 surfaces has thin monodromy if and only if neither of the values (i, j) associated

to this fibration are equal to 2.

This observation may also be extended to the 14th case [30]. In this case, recall

that the threefold Y1, which moves in a one-parameter family realising the 14th case

variation of Hodge structure, admits a torically induced fibration by M -polarized K3’s

rather than Mn-polarized K3’s. Thus the generalized functional invariant map from Y1

has image in the 2-dimensional moduli space of M -polarized K3 surfaces, rather than

one of the modular curves MMn . However, from [30, Section 5.1 and Equation (4.5)],

we see that the image of the generalized functional invariant map from Y1 is contained

in the special curve in the M -polarized moduli space defined by the equation σ = 1

(where σ and π are the rational functions from Section 8.4.2).

By the results of [31, Section 3.1], the moduli space of M -polarized K3 surfaces

may be identified with the Hilbert modular surface

(PSL(2,Z)× PSL(2,Z))⋊ Z/2Z \ H×H,

with natural coordinates given by σ and π. The σ = 1 locus is thus parametrized

by π and has an orbifold structure induced from the Hilbert modular surface. This

orbifold structure has an elliptic point of order six at π = 0, an elliptic point of order

two at π = 1
4 , and a cusp at π = ∞.

The generalized functional invariant map for the K3 fibration on Y1 is given by

the rational function π, which is calculated explicitly in [30, Equation (4.4)]. It is a

double cover of the σ = 1 locus ramified over the cusp and a second point that varies

with the value of the Calabi-Yau deformation parameter. This agrees perfectly with

the description of the generalized functional invariants for the Mn-polarized cases

from Section 8.5.4, with (i, j) = (1, 1), thereby giving the final row of Table 8.1. From

this table, we observe:

Theorem 8.6.1. Suppose that X is a family of Calabi-Yau threefolds from [52, Table

1] that admit a torically induced fibration by Mn-polarized K3 surfaces (resp. M-

polarized K3 surfaces with σ = 1). By our previous discussion, the generalized
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functional invariant of this fibration is a (i + j)-fold cover of the modular curve

MMn
∼= Γ0(n)

+ \H (resp. the orbifold curve given by the σ = 1 locus in the moduli

space of M-polarized K3 surfaces), where i and j are given by Table 8.1, which is

totally ramified over the cusp and ramified to orders i and j over the remaining orbifold

point of order ̸= 2. Then X has thin monodromy if and only if neither i nor j is equal

to 2.
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