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ABSTRACT
.

Let & be a discrete semigroup. A left fnvariant mean on the
Banach space m(S) of bounded real-valued (unctions on S with the
sup norm, is a positive element of norm one in the dual m(S) of

m(S), which id invariant with- respect to all left translations on

m(S) by elements of § . When m(S) has a left invariant mean, we

say that S 1is left amenable. In this thesis we rresent two sets o
of results on left amenable semigroups.
The first set, contained in Chapter 1I, is concerned with

determining a lower bound for, and in someﬁcasev exactly, the dimension
-
of the set of left invariant means (denoted by dim <M£(S)>) when §

i{s !eft amenable. Theorem: If S is left amenable, then

dim <ML(S)> = n < e if aﬁd only if S contains exattly n disjé}gL»~\\

A}

finite left idgal groups. This result was proved by Granirer for S

cduntable or left cancellativé. Moreover,'when S is infinite, left
. . v . ¢

*  amenable, and either left or right cancellative, we show that

dim <M£(Sj>- is at least the cardinality of S . An application of

these results shows that the radical of the second conjugate algebra .
of Kl(S) is infinite dimensional-when § 1is a left amenable semi-
group which does not contain a finite ideal. -

The purpose of the second set of results, compflsing Chapter III,
’ ! ) N
is to gsettle two problems. The first is Sorenson's conjecture on
\
whether every right cancellative jeft amenable semigroup is left

4

cancellative. The second, posed by Argabright and Wilde, is whether

every left amenablé semigfoup satisfies,@he strong Félner condition.

)



S {,

WC first show that these two prbblémﬁ are equivalent, then prove
that the answer to both questions .is no, {hrough analyzing the sepi—
direct product of semigroupg in relation to amenability and
cancellation properties.. Various other properties of semigroups

satisfying the strong Fédlner condition and a subclass of such

semigroups (called left measurable semigroups) are also discussed.

N

vi



e

ACKNOWREDGEMENT

v
I wish to express my deep gratitude to my supervisor, Anthony
AN ¢ ’
Lau. T am well awsre of the sizeable amount of time that he has
. \
invested in directing my research. His comments und suggestions

have often led to clearer proofs or further applications of my
résults. However, most of all, I &ould like him to know how much

; )
I value the interest, enthusiasm, and confidence that he has shown

-

in my work.

I would also like to thank my family, especially‘my pareﬁts,
who ha;e helped me in so many ways. ‘

Finally, my chanks‘go to the National Research Council oﬂj
Canada, the University of Alberta, and the Uﬁiversity of Britigﬁ

\

Columbia, for all of their financial support. . \

¢

vii

AN

N\



TABLE OF CONTENTS

CHAPTER o PAGE
I PRELIMINARIES . . . . . . . S i e e 1
Introduction R 1
General properties of left amenabie semigroups . . . . . . , 4
The right cancellative quotient semigroup . . . , . . . . . 6
Left thickness and leftvamenability e e e 7

ITI ON THE DIMENSION OF LEFT INVARIANT MEANS AND LEFT THICK SUBSETS 8

Introduction- 8
Sﬁrong left thickness and collections of pairwise
disjoiﬁt left thick subsets. . -:t S e e e o e s E 11
Uniform left thickness . . . . . . .. ... ... ... 16
A lower bound for dim <ML(S)> S 19
An application to the radicgl of the second {
-conjugate algebra m(S)* 22
Thickness properties for infinite left amenable
'semigroups with left cancellation . . . . . . . . . . . | 24
) 26

Exémples
Limitations of our techniques in determining

dim(M,E(S)>exactly....'.....‘........... 28

III SORENSON'S CONJECTURE AND THE STRONG. FOLNER CONDITION" -?: - . 29

Introduction . 29

Equivalence of the strong Fglner condition problem

to Soq‘eson's conjecture . . . . . . . . . . 32

h viid;



. CHAPTER PAGE

11T continued

The counterexample, semidirect products and amenability . . 35
Semigroups satisfying the stzqﬁg Félner condition . . . . . 44
l,eft measurable semigrghps 47
FOOTNOTES 53
BIBLTOGRAPHY 54

ix

o



\,

-

3 CHAPTER 1

PRELIMINARIES

I.1. Introduction

Let ; be a llscrete semigroup, and m(S) the Bana. h space of
bounded real-valued functions with the sup norm. For each s € S we
define a lineaf operator Ks[rs] on Q(S) by ﬁsf(t) = f(st)
[rsf(t) = f(ts)] for te€ S and f e m(S) . A Eggﬁ on m(S) is
a positive element of'nonm oné in “the dual m(S)* of m(S) . We

* .
say that pem(S) is left [right] invariant if u(@s(f)) = y(f) .

[u(rs(fj) = u(f)] for each f € m(S) and s € 5 . Let ML(S)

[Mr(S)] denote the set of left [right] invariant means on m(S),
. N N a

: . x
and <ML(S)> [<Mr(S)>] denote its linear span in m(S) . When
there exists a left [right] invariant mean on m(S), we'say that S

is left [right] amenable. Furthermore, when § is both left and

right amenable, we say that S is amenable.
This subject originates from a result of Banach in 1923 -[2], who

showed that there exists a mean on the bounded real-valued functions

on the integers which 1is invariant under all translations, i.e. the

>

group of integers under addition is amengble. fhis gqntrasted the
result of Héusdofgf in 1914 [20], who showed that there does not exisr
any ﬁean on the bounded‘real—valued functions on the sph&re in th. ze
diﬁensions, which 1s invariant under ail rotations. In 1929

von Neumann [30] studied invariant means‘on m(S) for S a group,

.and proved several basic combinatorial results about the class of

»
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amenable gr%ups. Extensions of some o? these results to left amenable

semigroups were obtained by Day [7] and Dixmier [9}. The first com-

prehensive discussion of the prqpert{fs of left amenable semigroups

was given by Day in 1957 [7], who also gave a.survey of further

results in this area in 1969 [8]. Two other general references on

amenability are Hewlitt and Ross [21, Section l7r and G?eenleaf (19].
This ghesis is basically composed of two sets of results on

.

. "
amenable semigroups. The first set, contained in Chapter II, is

.

-

concerned with determining a lower bound for, and in some cases
determining exactly, the dimension of <M£(S)> when S 1is left
amenable. The purpose of the second set‘éf results;which comprises
Chapter III, isrgo séttle two problems; the first being Serenson's
conjecture #n whether every right cancellative left amenable sehigroup
is left cancellative, and the'second, the question posed by Argabright
and Wilde of whefﬁér every left amenable semigroup must satisfy the
strong Félher condition (SFC). We are able to show that t;; anéwer
to both of these questions:is no.

The thesis 1is organized as fbllogs:

Chapter I contains “some basic definitions and results that will

be required.

In'Chapéer'II we begin by dmggribing previous results onm the
dimension of 2M€£§)>: (denoted by dim gMﬁ(S)>) obtfined by Day,
‘Luthat, Granire;; and/Chou. In Sections II.2 and II.3 we investigate
tﬁe structure of left thick subsets of ieft amenable seﬁigroups{
This technique leads to'the'proof of the main_thgorem (2.4.4) of

this chapter, which extends the same result proved by Granirer in

¥ 1963 [14] for countable or left cancellative semigroups.giTheorem 2.4.4:

¥

Lo



If S 1is left amenable, then dim <ME(S)> = n « ~ (f ~oniv if
S contaig; exactly " n digjqint finite grov.s which are ° -ft ideals.
Mdreover, we are able to show that when S ié {nf{nite, left amegable?
and &ither right cancellative or left cancellative, then the dimension
of <ML(S)> 1= at least the cardinality of S . An application of
these resultg shows that the radical of the second conjugate algebra
of ﬂl(S) 1s infiﬂite dimensional when S 1is a left amenable semi-
group which does‘not contain a finite ideal (Theorem 2.5.1). Aftep
exhibiting various examples in Section I1I1.7, Chapter II concludes with
some comments on the limitations of using this type of method té
determine the exact size of the dimension of <M(S)>

The introauction_in Chapter IIiI giveé the history of Sérenson's
conjeéture, and Argabright and Wilde's. question of whether all lgft
amenablé semigroups satisfy SFC. Wé then show in Section III.2 that
these two problems ére actﬁélly equivalent; this result follows
directly ffémxTheorem 3.2.2 which completely charac?erizes‘the semi-
groups which satigfy SFC, as those left.aﬁenable semigroups whose
-right cancellative quotient semigroups are left cancellative. Then
in Section III.3, we prove that éhe answer‘té both qUestions is no,

o

through analyzing the semidirect product of semigroups in relafion to

amenability and cancellation properties. In Section III.4 we investi-

.

gate some of the properties of semigroups satisfying SFC, and in
Section III.5 we includé some analogous resulEE_SBpéined by Sorenson

for left measurable .semigroups.

§°



I.?;;General properties of left amenable semigroups

-

For any subset A of a semigroup S, and s € S, we define the

t L -
sets sA = {st : t € A}, As = {ts : t € A}, s 1

¥

A={tes: steal,
11 o card '
and As'" = {t € S : ts € A} . The cardinality of A is denoted by
IAI, and its characteristic function by Xy i.e. xA?é) =1 1if
s € A and XA(S) =0 1if s ¢ A . »
« , - Notice that if S 1s left amenable, then for any u € M{(S), -

- ' - U - ,
A, S, and ‘s € S‘ we have u(xs_lA) u(xA) since KsXA xs_lA =

Thus for edch s € S we have u(XSS) = 1 since

1= u(xs)'z_u(xss) = u(xs_l(ss)) = u(xs) =1 . From this, it is

easy to see that in a left amenable semigroup, the-intérsection of
finitely many right ideais is always non-empty.

The class.of left amenable semigroups includes all finite groups,
solvable'groués, aqd aSelian semigroups (for proofs éee_Greenleaf
{19, Chapter 1] or Hewitt and Ross [21, Section 17]). As examples of

4 .
semigroups which are not left amenable, consider a free semigroup on

§\\\\\\\\“~mg£$\fhan one generator, or any semigfoup S " with AISI >1 and the -* |
| multiplication st = s for -all g;t € S . Since both of‘these semi- '
groups contain disjoint right ideals, they arelnot left amenable.

Voﬁ Neumann showed that any free grodp on more than one generator is

not left amenable; f&r a proof of this see Greenleaf [19, Ex. 1 ..3]
‘or Hewitt and Rosé [21, 17,16]; Undoubtedly the most funda?ent,l oren

( problem'remaining in the study of amenable groups, is éhg question of
whetherr every group which iS'nof aﬁepaBle cbntgins a frée'subgréup on

-two generators (see Day [8, p. 12]).

1



momorﬁhic images and directed unions of left amenable semi-

groups are left amenable. Also, any subgroup of a left amenable

Ve

group 1s left amenable. However, a subsemigroup of a left amenable

group need not be left amenable (see Hochster [22]).

A

N
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1.3 The right cancellative quotient semigroup

2

A semigroup S 1s said to be right [left] canggllative_}f_kﬂ_
whenever rs = ts- [sr = st] we have ~r = t We‘a;}ineAa rglatign
R ‘on any semigroup S by B8Rt Qpr s,t € S if there exists
X € S‘ with s8x = tx . If the intersection of finitely many right
ideals of S 1is always non-eméty (asAi; the case when S . is left
amenable), them R 1s an equivalence relation, the set Si of
of equivalencé classes is a right cancellative semigroup under the
induced multiplication, and the quotient map ﬁ : §—8' 1is a

semigroup homomofphism. A dé;ailed discussion on this relation R

is found in Granirer [15,°p. 371]. When S' exists, we will refer

to it as the right cancellative gquotient semigroup of 5 . Notice
that 1if S 1is left ﬁmenable, then by Proposition 1.2.1 the semigroup

S' 1is also left amenable.



. -
1.4 Left thickness and left amenability )

Let A and B be subséts of a semigrou ,.viTheq A 1is said

. ' /I~
to/Be left thick in B "if for every finite subset F C B, there

exists s € S such that Fs CYA—. Notice that left thickness is a

v
~

transitive property, i.e. if A is left thick.in B, and B {is
left thick ih C, then A 1is left thick in C . When a shbsét is

left thick in the semigroup itself, then L2 refer to 1t as a left

~

thick subset of the semigroup. Clearly any left ideal of a semigroup

. / .
1s.a left thick subsét,' S// v
The definition of :left thickness is due to Mitchell, who gave
the following charactérizagfbﬁ of the left thick subsets of left

ameagble semigroups in [25, Thm. 710

Theprem (Mitchell): If 'S 1is a left amenable semigroup, then a
SL@& A% is left thick in S if and only if,there exists

¢ R . : ' |
woe BI(S) with wu(x) =1 . , —_

‘Notice that this shows that every right ideal of a left amenable

semigrohp is a left thick subset.

4
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CHAPTER I1I

ON THE[{ DIMENSION OF LEFT INVARIANT MEANS AND LEFT THICK SUBSETS

I1.1 1Introduction

‘ItVis\gatural to look for conditions which determine the dimension

- of <M£(S)> when S 1is left amenable. The first results in this

direttion were given by Day [7, p. 535], who proved that infinit%
solvable groups,. infinite amenable non-torsion groups, and infinite
locally finite groups, all have more than one left invariant mean. In
[24, P. 43], Luthar showed ::j§ a c&mmutative semigroup Pas a unique

left invariant m~-~ if and 1 fif it has a finite ideal. Continuing

the search for ions that <M£(S)> be finite dimensional,

Granirer [14, p. ..| proved the following theorem:

THEOREM (Granirer): If S is a couﬁtably infinite left amenable

"

semigroup, then dim <ME(S)> = n < = if and only 1f S contains

exactly n disjbiﬁt finite groups which are left ideals.!

Except for the case where S is left cancellative [14, p. 497,

Granirer was unable to drop the countability condition; hglwas only

able to replace it by a s;ightlvaeaker one (See [14, p.44]).

When S 1s an infinite left amenable semig?oup with cancellation,
Chou has proved [4] that dim <ME(S)> 3_2c . lSI, where ¢ Aenotés ‘
the cardinality of the continuum, and |S| the cardinality of §.
Later Chou [S], using an idea of Kakutani and Oxtoby in [21‘ §l6],

|s|
was able to prove that - dim <Ml(s)> = 22 : when S is an‘infinite

amenable group.
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In this chapter we investigate the structure of the left thick
subsets of infinite left amenable semigroups, and ‘use this to obtain
lower bounds for the dimension of the set of‘left invariant means.»I
By tﬁis'hethod, we 1ire hble to prove Granirer's theorem without the
countability conditjon, and hence prove iuthar's reédlt for all left
amenable semigroups.  Another easily obtained cor;llar§ is that if
S 'is amenable (boﬁh left and right) and dim <M£(§)> is finite,
.then dim <M£(S)> = dim <Mr(S)> =1 ({i.e. S has a uniqqe invariant
mean). This géneralizes another‘theorem of Granirer [15, Thm. 1]
who proved the above proposition undervthe additional hypothesis that
dim <Mr(S)> be finite., Our technidues also yield tbat if -S 1is
eiFher right cancellative or leftnsancellative as well as infinite
and left amenable, then Hi; <M£(é)> > |s]

In.Section‘II;2 we begin by noting (Rema?k 2.2.1) the relatioﬁsﬁip
between collecﬁions of pairwise disjoint }eft thick subsets of a semi-

e Y . -

group S and dim <M{(S)> . We then fintroduce the concept of strong

- left thickne;s for subsets of S . Theorém 2.2.2}illustra£es how this
concept is related to’obtaihing "larée" qpllections of pairwise dis-
jbint left thiﬁk subsets in S . This section concludes.with soﬁe N '
specific results for right cancellative sémigroups;

In Section II.3 we define uniform left thickness, and give an

gqui&alent characterization in terms of the behaviour of left invariant

e

means on the characteristic functions of subsets of S with smaller Foa
- ‘ i

cardinality than S (Proposition 2.3.1).
Our main result giving a lower bound for dim <ME(S)> 1is found .

‘ in Section II.4 (Theorem 2.4;1) as well as the generalizations of the

v
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r

theorems of Granirer and Luthar (Thigfem 2.4.4, Corollaries 2.4.5 and

. "
2.4.6). - K
NS
Section II.5 gives an application of the results of Section II.4
P
/ *
to the radical of thébsecond conjugate algebra m(S) . In Section II.6

q
we look at thickness properties for left cancellative semigroups, whirle

Section II.7 .is devoted to examples. Section.II.8 considers the

limitations involved in using our techniqueé to find the exact size

of Mﬂ(S)}.



» ' ,
I1.2 Strong left thickness and collections of pairwise disjoint

o

-

left thick%subsets

REMARK 2.2.1. 1If {AY ! ye€ T} 1s a collection of pairwise

disjoint left thick subsets of a left amenable semigroup \5, then

o *

by Mitchéll's!;haerem;jsee Section I.4) for each y-€ I' we can
choose e ML - with =1 . This set : y €T} of
M, (ﬁ{} W UY(XAY) ‘ s se {uY Y b
[

left invariant means on S 1is linearly independent. In fact if

n
izlaiui =0 for some {u LETCRRRN } C:{u : y €T}, then for

j.= 1l,...,n we have aj - Z ay (xA = 0 . Thus we are interested .
. 3 :

in finding collections of pairwise disjoint left thick subsets of S

L .
We say that A C S 1is strongly left thick if for each B C 'S

with '|B| < |A], the set A\B 1is left thick in S . Although every

sémigfoup is obviously left thick in itself, it is easy to find
examples of left amenable semigroups which are not strongly left .
thick. Consider finite groupslfor instance, or left amenable semi-
groups which contain a right i@eal of smaller cardinality. An e#aﬁple
of ;his last tyﬁe is given in Section II.7 (Exgmple 2.7.3).

The following theorem shows thatvstrong left thickness is a
usefullproperty ;n determining iower bounds for the dimension of
<ML(S)>
THEOREM 2.2.2. A subset A C S 1is strongly left thick if and only if
there éxists_a'coileétion {DY : Yy er} ofﬁpairglse disjoint subsets

of A, which are left thick in S, such that IT| = |A|

11
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F ,
Proof: Suppose A 1is strongly left) thick. If A is finite,

2
then for each a € A we have ({a}l = A Q’(A N\ {a}) 1is left thick in

S; Hence {{a)} : a% A} is the desired collection. Thus we may

~

assume A 1s infinite.

[{a @ a < w}| = |a].

(31}

-Let w be thk first ofdinal.with lwl

B

Using transfinite induction we construct a family

Write A ='{aa :a'< w) and let A_'= {aa pa < B} Af 1 <B<uw.

' {t : k <B<w, F é\finite subset of AB}

with the following properties:

(1) Ft C A for each finite F CA,, where 1 < § < u .
TR, E) S A gr VR <

(1) Let Xg =U{F§(B’F) : finite .F CAJ} if 1 i B <uw.

Then X_N X

8

8 =¢ for 1.<B<§<uw.

A s {ao}_ and since A 1is left thick, there exists t € S
such that at e A, .Let t(l,{ao}),= t . _ -
Suppose we have constructed a family {t(B F) : 1 <8 <§,
F finite-CﬁAB} satisfying (1) and (i1), where 1 < § < . Let
Y =(J{Xg 158 < 8}, and let |&| denote. |{a : a < 8 . 1f

IGI 1s finite, then Y 1s a finite union of finite sets so

1| < |al . 1f [6] 1s infinite, then lxsl < |8] for 1<8<e,

and we have JY[ §_|6|2 - |6l,< lAl, since § < w . Thus ,Y[ < |A|

in either case, hence A\ Y 1isg left thiék, and so for each finite

subset F‘ClA§ we can choose | t(G,F) € § such that Ft(S,F)C: A'\ Y .

Then X, C A\ Y and XgN Xg = ¢ for 1<B <36 .

12



Let I' = {y : 1 <v <w} . Choosea 1-1 correspondence
y

T : TT~>+"xT and define FY = T-l(F x {y}) for each y € I' T Now
each FY is cofinal in I since [FYI = |F|, and 1f Y1 4 Yy then

r nrT =¢
A8 Y2

For each vy € I', define DY =lJ{XB : B € PY} . Clearly

{DY : Yy € T} is a collection of pairwise disjoint subsets of A .

Since |T| = fw] |Al, 1t only remains to show that each DY is

left thick in S . Since A 1is left thick in S, it suffices to

show that DY is left thick in A . Let F be a finite subset of

A . Then for some B, we must have F C AB’ and since FY is

.cofinal in T we may assume eT . Now Ft ~C X _<CD , and
y assume B €T, (8,F) — "B 'y

‘we see that DY is left thick.

Conversely, let {DY': Yy € T} be a ‘collection of pairwise dis-

joint subsets of A, which are left thick in S, such that']F| = |al.

Suppose B C S with ‘|BI < |A| . Since IF[ > |B13 ﬁﬁere exisqf -

Y G.T ﬁﬁlth B ('\DY = ¢ . Then DY(: ANB so ANB is left’thick,

Whic((finishes the proof. ~ .

s

Next we show that every infinite,left amenable.semigroup with
right cancellation is strongly left thick. 1In Section II.6, we will

see that this remains true when right cancellation is replaced by

left cancellation. First we need the following lemmas:

LEMMA 2.2.3. If B "and C are subsets of an infinite semigroup
S with right cancellation such that |B| < ]S] and IC] < ISI, then

there exists s € S with BN\ sC = ¢

)

13
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Proof. If not, then for eac‘h\"s € S we can find a pailr
(bs’cs) E',B‘ x C such that bs = sc_ - If s 7‘ t, then

(bs,-c;Y # (bt’ct) since otherwise we would have

sc_ = bs = bt: = t:ct = tcs, and . hence s = t -by right cancellatiov.

Thus |B x ¢| = |B||c| > [8], ~which contradicts [B| < |s| and

{

|C| < |S| since S .1is infinite.

LEMMA 2.2.4. If B 1is a subset of an infinite semigroup S
with right cancellation such that IBI < ISI , then there exists a

sequence {s_} €S with s BN s B = ¢ for n#m.
n n m 4

Proof. Construct the sequence {sn} by indtiction. Choose

S1 € S arbitrarily. ‘If we have constructed sl,...,lsn such that
sian\ SjB =¢ for 1 <i<j<mn, then by Lemma 2.2.3 we can find.
S.41 € S so that sn+an (SlB v ... U snB) = ¢, since

[s;BU ... U s B| < Is| ..

PROPOSITION 2.2.5. If S is an infinite left amenable semigroup

with right cancellation, then for each B €S with |B| < IS| and

&

for :ch E.M,C(S); we have u(xB) =0 . o

‘roof. By Lemma 2.2.4 there ,exists a seque}{ce {s‘n} with '
: . . . - o .
s B N smB =¢ for n¥m. Thus 1= M(XS) > nzl u(xsr.lB) . For

each n we have I’s Xg B = Xp and 80 l-l(Xs B>. - u(ﬂe Xg B) > u(xB)- .
n n n “n n
[

Hence u(xB) =0 .

.COROLLARY 2.2.6. If 'S 1is an infinite left amenable sem'igroup

with right cancellation, then every left thick subset A" 1is st\rongly '

14
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[N
/,
left thick. /
Proof: Choose p € ME(S) so that U(XA) =1 If /B C s
IBI < |A’ then U(X(A \ B)) e U(XA) - U(XB) =1 Thus

wi;h

A NB 1is left thick.
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IT.3 Uniform left thickness \ : ae

B

In this section we examine another thickness property for semi-..
!

groups. We say S is uniformly left thick if IA' = ISI for every

left thick subset AC S . As a corollary to the next proposition,
we see that for infinite left amenable semigroups, uniform left

thickness implies strong left thickness.

PROPOSITION 2.3.1. An infinite left amenable semigroup S is

‘uniformly left thick 1f and only if for each B C S with |B] < |s]

and for each yp € ML(S) we have u(xB) =0 , -

Proof. Suppose S is uniformly left thick, B €S with
[B] < |s], and u e ME(S) . Let S' be the right cancellative
qdbtient semigroup of :S, and w : S —+.S' the,quotiengymap (see
Section I.3 for definition). if |s'| = |s|], define y' e m(S')*
by ‘u'(f) =.u(f o m) for each f € m(S') . It is g%t difficult to
show thatiin facg'we have u'e€ ME(S') . Moreover |n(B)|'< |S'], .
so by Proposition 2.2.5 we have 0 = u'(x“(B)) = u(xn(B) o m > S
u(xB) >0 . ' ' | |
Thus we may assume that IS'I < ISl . For each g €.8' choose
. tg € ﬁ;l(gj . Let C = {tgb g € S', .ble B} . Since S ié infinite,
ic| < |s| . 1f VU(XB)IS 0, then C is left thick in S . To see
this, we first show that for any finite éet‘ FC S, there exists
ru €S éuc;‘r“at Fu.- {tgu 1 g € n(F)} ; It is easily seen by
1nduction on IF,? that for each g e w(F) there exists ug € S
with (F(ﬂ "-l(g))ug,-vtgug f;¥Nowlchoose n § 85;}F) u;S . Then

Fu = {tgu‘: g € "(F)} . If u(xB)~> 0, them B uS ¥ ¢ since
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u(xus) =1 . Therefore we can find s € S so that us € B . But

now Fus -‘{tgus :gen(F)ycc . Hence* ¢ is left thick. Since

S 1is uniformly left thick and lc| < |S|, we must have U(XB) =0 .
Conversely, if for_eaéh BC S with |B| < |S| we have

u(xB)l- 0 for all yu « M{(S), then clearly B 1is not left thick

in S .

COROLLARY 2.3.2. For infinite: left amenable semigroups, uniform

left thickness implies strong left thickness.
The proof is idéntical to that of Corollary 2.2.6.

COROLLARY 2.3.3. Evervy infinite left amenable semigroup with

right cancellation is uniformly left thick.

This follows immediately from Proposition 2.2.5.

REMARK 2.3.4. The above propositien falls when we allow S to be
finite. Suppose S 1s a finite group. Then its only left thick'
subget is the group itself; so S 1is uniformly left thick. However,

if u 1s the uniqué left invariant mean on S, then

u(xg) = [BlIs|™ #0 1£ B - - .

In Section II.7 we give an e#ample of an infinite left amenable ———
semigroup which is strongly left thick but not uniformly left thick.
‘Since most of the proof of Proposition 2.3.1 1s devoted to the case
where |S'| < |S| an example of a uniforqu left thick infinite left
amenable semigroup S. with [s'] < fS| is also given in Section II.7.
In view of Proposition 2.3.1, it 1is interesting to note a similar

reformulation of strong left thickness for left amenable semigroups.



PROPOSITION 2.3.5. A left amenable semigroup is strongly left
thick if and only if for each B C S with [B| < |S| there exists

p e MEL(S) ~ith u(xB) =0 . »

18
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"1I.4 A lower bound for dim <ME(S)>

We define the width of a semigroup S, denoted by W(S), as
W(S) = sup{!A] : A is a strongly left thick subset of S} . Now we

—

are ready to prove our main result.

THEOREM 2.4.1. If S 1is a left amenable semigroup which contains

no finite left thick subsets, then dim < ME(S)> > W(S) 3){0 .

Proof: .That dim €M£(8)> > W(S) follows im@ediateiy from
Theorem 2.2.2 and Remark 2.2.1. Thus we need only show that S
contains an infinite strongly left thiék subset. Let A be a left
thick subsemigrqué of S 8o that ]AI is minimal. Clearly A is
infinite, and also uniformly thick since if B é«A is left thick

in A with 'BI < [AI, then the subsemigroup generated by B 1is

A
e

left- thick in. S, and has cardinality less than A . Sipde A is
left thick in S, the semigroup A is left amenable. ”Thﬁs py
Corollary 2.3.2, A is strongly lef;{lhick. (

REMARK 2.4.2. Even when S contains no finite lgft thick sub-
sets, we may have W(S) < ISI (see examéle 2.7.3).

With the help of thié'théorem, we proceed to‘gi?e a proof of
Granirer's theorem without the countabilityléondition, and then the
generaliiation of L&ﬁhar's fesuit, as ment -nad in Section II.1. vFor

this we need one more lemma,

We use the term left ideal group to aignify‘a group which is also

a left ideal in S .

LEMMA 2.4.3. If a left amenable gsemigroup S contains a finite



left thick subset, then S contains a finite left ideal group.

Proof: Suppose A C S iB a finite left thick subset. The
_left ideal Sa‘ ig finite for some a € A, since u(xA) = 1 for
some u € ME(S), implies: u(x(a}) > 0 for some a € A . QhoPse
t € S such that St is finite, yith' |St| minimal, and iet‘«

C = St . It is easy to check that C is right cancellative;band

since C 1is also finite and left amenable, C is a finite group.

‘ ' i
THEOREM 2.4.4. A left amenable’ semigroup has dim <ML(S)> = n < =

if and only if S contains exactly n disjoint finite left ideal

groups. . \

Proof:?_In (14, p. 34], Granirer proved that 1f .S contains
exactly n disjoint finite ieft ideallgroups; then dim <M£(S)> = n .
Now suppose dim ﬁMé(S)> = n ;iw/. The éemigroup- $ ‘must contain
"some finite left ideél group since otherwise Lemma 2.4.2 and
Thgorem é.A.lyshow that dim <ML(S)> .is'}nfinite. S caﬁn;t coqtain
infinitely many disjpint finité left ideal groups since by Remarg 2.2.1,

tﬂatiwould again imply that dim <ME(S)> is infinite. Thus S |
A i

contains exactly m disjoint finite left ideal groups for some ‘

finite number m, and by Granirer's result, we see m =1 . ¢

;o

COROLLARY 2.4.5. If S 1s a left amenable. semigroup, then

dim <ME(S)> 1is finite if and only if S contains a finite two-sided

ideal. o ,)w

Proof: If dim <ME(S)> = n <=, then § contains exactly n,

disjoint finite left ideal groups, say Al,...,An . In [14, p. 341,



Granirer shows that U{Ai :1=1N4.,n} 1is a finite two-sided ideal.
. . 3
If A 1s a finite two-sided ideal of S, theq for 'each
u e M%(S) we have u(xA) = 1, and hence dim <M{(S)> = dim <ML(A)>,

which is finite since A is finite.

COROLLARY 2.4.6. If S 1is an amenable (both left and right)
semigroup wi'h dim <ME(S)> = n < », then § contains a finite group
which is a two-sided ideal, and hence dim <M{(S)> = dim <Mr(S)> =1

(i.e. S has a unique invariant mean).

Proof: As shown in Corollary 2.4.5, S contains a finite two-

sided ideal A  which is the union of ny disjoint finitevleft ideal

groups. By the footnote 1 (p. 52) we see that A is left cancellative.

since A 1is also right amenable and finite, A 1s a finite group.
: . o , _
Let u € m(S) be defined as u(f) = |A| 1 t{f(a) : a € A} . Then

ML(S) = Mr(S) = {u} . .

Theorem 2.4.4 1is proved by Granirer for S countable [14, px 32],
or S left cancellative [14, p. 49]. .Moreover, hé pfoved Corollary
2.4.6 for these caées {14, p. 46], and also for. the general case under
the édditional aésumption that dim <Mr(S)> Be finite [15, Thm. 1].

Corollary 2.4.5 was proved by Luthar [24, p.43) for 8 commutative.
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II.5 An application to the radical of the second cohjugate algebra

*
m(S)

Let ﬁﬂl(S)‘ be the space of real-valued functions 6 on S such
that Z{le(s)l : 8 € S} . is finite. ‘for v € m(S)* and f e m(S), we
" define v * f € m(S) b; v * f(s) = v(ﬂsf) . Now for u,v € m(S)*,
the Areng multiplication on m(S)* 1s defineéd as y *.v(f) = u{v * f)

' *
for each f e m(S) . Under this multiplication m(S) becomes the

second conjugate algebra of £1(S) (for more details see Day [7, p.526]).

THEOREM 2.5.1. If 8 4is a left amenable semigroup which contains

v . N
no finite ideals, then the radical J of m(S) is infinite dimensional.

Proof: Using an ideal of Civin and Yood (see [6; pp. 849-850]1), it

can be shown that M{(S) C J + y for any u e ME(S) . Since ME(S) is

infinite dimensional by Corollary 2.4.5, the radical J must be also.
| .
Granirer used the same proof to show that the radical of m(S)
“is infinite dimensional when S is a commutatiﬁe semigroup without

finite ideals. (see [15, p. 378]), and also when S 1is an inrinite left

amenable group (see [14, p.'48]).

*

COROLLARY 2.5.2. .Let S be a left amenable semigroup'and‘suppose
the radical of m(S) is finite dimensional. If S is elther left

cancellative or right cancellative, then S 1is finite.

Proof: By Theorem 2.5.1, S ‘contains a'finite ideal A . Now for
any a €A, we have aSUSaCA . If S 1s either left cancellative

érnright_¢ancellative, then |S| i!last Sa| :_IAI, and we seé thét s

‘is finite.
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RfMARK. This result i; aLready‘known for the left cancellative
case (Grahirer and Rajagopalan [18]). It is unknown'wﬂéther it still
holds when the cancellafive properties of S are dropped. However,
the folléwing exaﬁple shows that the condition that S be left amenable
- and contain a finite ideal is not enough to ensure thatithe‘radical of

.
m(S) be finite dimensional. A )
& "

"EXAMPLE 2.5.3. Let S = {sn- :n=0,1,2,...} with the multipli-

, : .
cation s, for all 1i,j . Then u € m(S) defined by

Sisj =

p(f) = f(so) for each f € m(S), is the unique left (and right)

invariant mean on S, and {so} is a finite ideal.im S . For each
. . . % . ’

n > 1, define- ¢n e m(S) by ¢n(f) = f(sn+l) - f(sn)‘ for each

f € m(S) . Now the set {¢n :n=1,2,...} 1is linearly independent

* * .

in m(S) , and for any v € m(S) we have v * ¢n = ¢n * v =0 for

each n . Thus {¢n :n=1,2,...}CJ, and hence J 1s infinite

dimensidnal.

. ‘ *
A further illustration that the radical J of m(S) may be

much larger than the ideal A = {ul = Uy T oHysHy € ML(S)} 1s given

by Civin and Yood in [6, Theorem 3.5], where they show that J

is infinite dimensional when S is the additive group of integers.
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II.6 Thickness properties for infinite left amenable semigroups with

left cancellation v
The purpose of this section is to show that every infinite left
amenable semigroup with left cancellation is strongly left thick. 1In

Qrder'to do-this, we first prove some preliminary lemmas.

LEMMA 2.6.1. If- B and C are subsets of an infinite semigroup
S with left cancellation, such that 'B| < IS, and ,C, < ISI, then

there exists s € S with BN Cs = ¢ .

" Proof: Replace right cancellation by left cancellation in the

proof of Lemma 2.2.3,

Bl . N *
Given 8-€ S and p € ME(S), ' define u(s) € m(S) by
u(s)(f)'= u(rsf) for each f € m(S), where rsf(t) =.f(ts) for

t € S . It is easily checked that u(s) € -ML(S), and that for each

A C S, we have “(s)(XAs) > u('XA)

LEMMA 2.6.2. If S is an infinite left amenable semigroup with
left cancellation and "BC S with lgl < ]SI, then there exists a

sequence {un} C ML(S) such that 2 un(xB) <1.
. : n=1 ’

-7

Proof: Using induction, we construct sequences {ul,uz,...}vC.MZ(S)

and ({s,,84,...} C 8 with‘the_fqllowing.property:

)

(1) u(x s |
n*\*(BU Bsnk{ Bsn_lsn U a V) 38283...sn) '

4

2 ()t ou )+ e+ (xg)

Clearly this sequence {un} satisfies the statement of the lemma, since

24



(1) implies that 1 = un(‘xs)wn(xB) + “n—l(XB) +‘W"" + ul(xB) for

€ ME(S) arbitrarily. By’ Lemma 2.6.1 we can -

each n . Choose 1
O 1 ‘
find 52 € S with ?tﬁ B52 = ¢ . Let u2 = ul(sz) -as defined above.
If we have constructed {“1""’un—l} and {SZ""’sn~l} for
.some n > 3, then by Lemma 2.6.1 we can find s with
B N cen = . =
Blﬁ'ﬁ U Bsn U Bsn—l U LJBszs3 snfl)sn ¢ Let M Un-l(sn)
Then we have ’
’un(X(BU Bs UBs s U ... UBs.s,...s )}
n n-1"n o 273 n
T=u (xy) o (x . )
n "B’ n\*(B U Bsn_l,U BSn—an—l U ... U BSZSB"'Sn—l)Sn
> u (xg) + 0 (x - )
n. B‘ n-1 xB U”Bsn_l U BSn—an—l(J = L1B5253...sn_l)

I'v

b Og) + 1 Gg) F o o Gg) ey ()

PROPOSTITION 2ﬂ6.3} If S is an infinite left amenable semigroup

with left cancellation, themn S is strongly'ieft thick.

"Proof: Let B CS with |B| < Is| . By Lemma 2.6.2 we can find

a sequence ’{vn} C ML(S) with z‘ un(xB) < 1. Clearly we must have
.- n=1 . ) ) :

lim U-(XBZ;='O . Since M(S) 4s weak*-compact, we can find a subnet
n-r n . ) .
(,) of {ﬂn} which 1is weak*—convérgent/to p € ME(S) . Then

u(xB) =0, so U(X(S N B) =1 and hence S \'B 1is left thick in S .

REMARK. Although every infinite left amenable semigroup with
right cancellation is uniformly left thick, this does- not remain true
when pight_céncellatioh is replaced hy left cancellation (see Examplé

2.7.4). SR : o
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I1.7 Examples

N

The first three examples are special cases of the following .
general type of left amenéble semigroup. If S is a lattice (a
partially ordered set in which every finite set has a supremuﬁ and
an infdimum), then a’multiplicationlcan be defipeg on S by
ab = sup{a,b} for a,b€ S . This operation is commutative aﬁd
aésociative and hénce S 1s a left amenable seﬁigroup kS is even
éktremely left amenable, i.e. m(é) admifs a mﬁltiplicative left
';nvariant mean, see [16]). We call this bperation,the sup multipli-
cation. A'subset A CS 1s left thick in S if and only if A

is cofinal in S

’EXAMPLE 2.7.1. A left amenable semigréup containing no fiﬁite
. left thick subsets, which is strongly left thick but not unifbrmly
left thiék.- |

Let S bé thevfeal numbers undér thé sup multiplicatién. The
set of integers'is left thick_in_ S; Thence é is not uniformly left
thick; If ' B< S with S\ B .not left tﬁick, then the interval
[é;“) is.contained in B for'some a € S, and we have 'IBI ='|5|

Thus S 1s strongly left thick.

EXAMPLE 2.7.2. An infinite uniformly left thick left amenable
semigéoup S which is.extremely lgfﬁlamenaﬁie._ fn particuiar |
st < Is| . n |

Let S be the integers uhder‘the sup ﬁultiplication. ,Obviausly
S ié Gniforﬁly left thick since every cofiﬁalvsﬁbset is infinite.
Also ’IS'] = 1 since ‘for eéch a,b € S there exists c € S with

»

ac = bc .



" EXAMPLE 2.7.3. A ‘ef;famenable semigroup containing no finite

left thick subsets, which is not-strongly left thick.

Let’ S be the union of the interval [0,1] " with the natural

numbers IN under the sup multiplication. S has no finite left

thick subsets since every cofinal subset is infinite. Since INI < ISl,

and S\ N 1is not left thick, S is not strongly left.thick.

Since N 1is a right ideal of S, 1t is natural to ask whether
- every infinite‘left amenable semigroup, which is not strongly left
thick, contains a right ideal of smaller cardinality. - As far as we

know, this question remains unanswered.

) .
EXAMPLE - 2.7.4. infiinite extremely left amenable semigroup ‘S

 with 1efﬁi§éﬂcellatioﬁ, wpi%h is nét ﬁniformly left thick. As in
EXaﬁple 2.7.1, S 1s strongly left thick, but in.this case 'S does
-ontain finite left thick subsets. |

Let S bé,any infinite set with the multiplication st = t- for.
~all s,t’c S ; For each s € S, the set {s} = Ss 1is left thick, so
S 1is nog ﬁniforml; left thick. S"is gxtreme}y left amenéble‘since
for.eaqh- sye S we can definq Mg € ML(S) by ”s(f),; f(s) for all

f € m(S) . Then each Mg is also multiplicative.

27
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II.8 Limitations of our techniques in:determiping dim §M£($)> exactly

iIf S '1s a unifqrmlyhleﬁc thick infiﬁige-left amenable semigroup,
then ;he existence of a collection {Di : 1 € I} of left thick subsets
of S with bifﬂ Djl
This folléws from Proposition 2.3.1, since b& choosing uy € ML(S) with
ui(*Di) =1 for each 1 € I, we have ui(XDj

i # 3 . Returning to the proof of Theorem 2.2.2, we see that such a

) = u (x )
i (DinDj).

collection can be found if and only if a collection {Pi': i€ I} of
cofinal subsets of T = {a : & < w} can be found, -such that
j|-< Ir] if 1 # 3 . When S (and hence T) is countably

PN P
iﬁfinite, such a collection‘can be found with 1| = £R° =G (see for
instance Chou [3,‘p. 781]).

. This leads one tb hope that when T 1s infinite, oné cqul& always
find such.a collection with III = ZIFI However, when w 1is, the

first uncountable ordinal, the existence of such a collection.is in-
de?endent of the usual axiloms of set theory.2 Thus when S 1is un-

countable, this technique cannot be used to obtain a better lower bound

for dim <ME(S)> ,
A further ekampie of the'i:mitatioﬁs of ﬁsing collections of left

.thick subsété_to deﬁerﬁiné the exéct size of dim <M£($)> isbséen by

considefing dim <ML(G)>, " where ‘GF is an.inffnité.amenable group.

| Using a éechnique of Kakutani and Oxtoby (see [21, pp. 215—225]), Ch9u

has shown.that dim‘<M£(G)> ;‘Zzlclv in [5]. Since G .contains only‘

ZIGI distinct subsets, we cannot pdssibly obtain this result through

the use of collectiong of left thick subsets.

< ]sf for i # j, would imply dim <M£(S)>‘3_|I|.

= 0 when .
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CHAPTER III

SORENSON'S CONJECTURE AND THE STRONG F@LNER CONDITION

IIT.1 Introduction

The main objective of this chapter is to answer two quéstions.
The first is Sorgnson's.cdhjécture on whether every right cancellative
left amenﬁbie.semigroup is left cancellative. The second, due to
Argabright and Wilde,;is whether every left émeﬁable semigroup
satisfies the strong Félner condition (SFC). We begin by showing
that thesé quesfions are equivalepf, thrbugh charécterizing the
éemigroups which s#tisfy SFC as those left amen§blé semigroups whose

right cancellative quotient semigroups are left cancellative. Then ‘

‘by investigating the semidirect product of'semigroups in relation to

amenability and cancellation properties, we are able ‘to construct a
countgrexample to Sorensoh's cdnjecturé, théh aléo shows that fhe
answer to the question qf Afgabright and Wilde is no. |
SorenSon's'canecthe that évery right cancellative ieft amenable
seﬁigroup is left cancella£ive arose és a question'of John Sorenson,
who provéd the weaker reguit that every right4cancellativé.left
measurable (definition in III.5) semigroup ié left cancellative in
ﬂis thesis [29, é. 57] (see also [28]). The first discussion of £h187
conjectﬁre is found in azpaper of Granirer [17, p. 108]. | 4
If this cbnjecgure were true, then for any left aﬁenable semi-
group 1S, 4it§ right cancellgti?e quotient semigroup S' (see

- ‘{?’ . . .
Section I.3 for definition) would ‘actually be cancellative and left

 amenable, and hence could be imbedded in an amenable group (Wilde and

i
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La.

‘that any semigroup satisfying SFC is left amenable.

Witz [33, Cor. 3.61). Thus in some nse the stu&y of iefé amenable.
semigroups would essentially depeﬁd on thelstudy of left amenable
subsemigroups of grouﬁs; Further interest in the conjecture arose
from the work of Argabright and Wii@e on the strong Félnef condition.
In'[ll] Félner introduced the following necessary and sufficient

>

condition for a group S “to be left amenable: .

(FC) For each finite subset F of S and € > 0, there exists a

finite subset A of S such that lsA \ Al < e@ for each s ¢ F.

In his thesis [12] Frey éhoxgg that every left amenable seﬁigroup
satisfies FC; however ﬁhe converse 1s false sipce every finite

semigroup satisfies FC, though not_evefy finite semigroup is left

amenable. A much simpler proof of Frey‘s result was given by Namioka -

[26] usihg the concept of strong amenability (see Day [8, §5]).

Continuing the search for a necessary and sufficiernt condition
of this type for left amenability in semigroupg, Argabright and

Wilde [1] introduced the strong Félner condition (SFC)landIShowed

(SFC) For each finite subset F of S and € > O, there exists a

finite subset A of S such that [A N\ sA| < e|A| for each s e F.

Argabright and Wilde also showed that if Sorensbn's'conjecture
’ e

were true, then every left amenable semigroup would sétisfy SFC.,

Howéver, the_questiod'of whether every'left'amenable semigroup must

satisfy SFC remained open. We will refer to this question as the

SFC problem. 'Further discussion on this problem and Sorenson's
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conjeéture in relation to two conjectures of Granirer on extremely
right amenable semigroups is found in Rajagopalan and Ramakrishnan
[271. o R :

In Section'III.Z we Show that the SFC problem and Sorenson's
conjecture are equivalent, in other words every left amenable semi-
grogp'éatiéfies SFC 1f and only if every‘right cancellative left
amenablé semigrou; 1s left cancellative. This result follows
directly from Theorem 3.2.2 which completely characterizes the semi-
groups which satisfy SFC as those left amenable éem;gfoups whose
right éancellative quotient semigroups are left cancellative.

A counterexample to.Sorenson's’conjecture is constructed in
Section III.3 (3.3.5). invfact‘we exhibit a rightkcancellative
amenable semigroup thch neither is left cancellative, ﬁor satisfles
SFC. This.showé that the answer to both Sorenson's{conjecture and
the SFC problem is stiii no, even 1f we replace left amenable by
amenable. ngever, since all the counterexamples we have been able

to find by oﬁr method are infinitely generated, the question is still

6pen for finitély generated semigroups. The counterexample is(
. . ) T ¥4

obtained via an investigation of the semidirect product of semigroups

in relation to amenability and cancellation properties. Several

oth;r examples and results on this topic are included in.Section III.3.
Ih'SectionlIII.a, some‘éroperties of the class of semigroups

satisfying SFC are described, following the work of Day ([7] and

{81 on left amenable semigroups.

Section III.5 describes related results by Sorenson on left
measurable semigroups, and concludes with a glancg at éemidirect

products of left measurable ‘semigroups.
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I1I.2 EquiValengp of the strong Fé¢lner condition problem to

Sorenson's conjecture

After a simple lemma, we give a complete characterization of
semigroups which satisfy SFC in Theorem 3.2.2. One direction of
this theorem was proved by A#@abright and Wilde [1]. From this
characterization it ﬁill be obvious that Sorenson's cénjecture and
the SFC problem are equivalent (Corollary 3.2.3). Further';esults

on the class of semlgroups satisfyinngFC are found in Sectieon III.4.

)
LEMMA 3.2.1. Let S' be the right cancellative quotient

semigroup of a semigroup § . If S' 1is not left cancellative
then there exist r,s,t € S with rs = rt but sx # tx for

each x € S .

Proof. Since S' 1s not left cancellative, there exist

L 4
-

?,so,to'e S w#Fh rs y = rt_y for some y €°S, but 8% # t X
for each x € S . Now let s ='soy' and t =ty .

@
- [

THEOREM 3.2.2. A semigroup 'S satisfies SFC if and only if
S 1s left amenable and its right cancellative quotient semigroup -

. 8" is left cancellative. -

L
p

Proof. Suppose § 1§'1efc amenable and S' is left cancell-

i

ative. Then S'- isAleft amenable since it is a homomorphic image

of S, “and hence must satisfy FC (Frey [12]}:or Namioka [26, |
Thm. 3;5]). Clearly for left cancellative semigroups, the condi;ion§
.FC and SFC are equivalént, thus‘MS' satisfies SFC. .Argabright and

Wilde showed that this implies that S also satisfies SFC [1, Thm. 5].
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This direction of the proof 1s contained in Argabright and Wilde [1].

Now suppose 'S satisfies SFC. Then S 1s left amenable [1,

Thm. 1], so assume S' is not left cancellative. By Lemma 3.2.1

there exist r,s,t € S with rs = rt’ but sx # tx for each xe€ § .

By SFC we can find a finite subset A C S such that

|a Al < S[al, [ANsAl <3[a], and [AN ta] < Z[A] . Now
lan sta| > ls(a N s'lA)l = |sa N Al > -’5‘—|A| since |A \ sA| < —;—|A|,
and similarly [AN t'lAl > %IAI . Thus |AN stan t_lAl > %|A] "
‘and hence  |A N\ (sTA N t71A)| < —52-|A| . This implies that

|s(A \ (s-lA N t_lA))I < éﬂAI, and since ISAI > %1A| we must have
lanse ] = [s¢s™lan )] > [san stan iy > %[AI .
Let B = (AN s(t™A) U (AN t(s tA)) . Clearly |B| > %|A| .

We have B C A, and for each y € B there exists Yy, € B N {y}

with ry = ry, - To see this suppose y € AN s(t—lA) . Then 'y = sx

for some x € S, where tx e A f\t(s—lA) . Let y0'= tx . Clearly

yoe' B, y #vy, and Cry = ry, by our choice of r,s, and t . A
similar argument applies for y e A1 t(s_lA) . Thus we must have
e8] < 38| . | |

Now we see that lrtaAn A] < |ra| < |r(AN B)| + |rB| < |aA\ B
"+ 1s] « [a] - Hs| < %Al stnce [8] > Z|Al . This shovs cthat
[A N ra| > %1A|, but A was chosen so that |A N ra| <7%1A| .

Thus S' must be left éancglla;ive.

COROLLARY 3.2.>. Every left amenable semigroup satisfies SFC
if and only if every rizht cancellative left amenable semigroup is

" left cancellative.

’
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Proof. This follows immediately from the theorem above, by
noting that 1f S . is right cancellative ansl left amenable, then

s =8’
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IITI.3. The counterexample, semidirect products and amenabiiity

* ' For any semigroup U we let End (U) denote the set of endo-
morphisms of U . We use the notation .Inj(U), Sur(U), and - Aut(U)
to denote the subsete-of End{(U) consisting respectively of injective
endomorphisms, surjective endomorphisms, and "automorphisms.

" . Suppose thae U Vend T are semigroups wiohle homomorphism

"p: T > End(U) . In general we will write Py ‘for the endomorphism

‘p(a) for each ae T . We define the semidirect product of U by
T (with respect éo p) as the semigroup S of ordered pairs

(u,a) for ue€eU and ac T, with the operation (u,a)(v,b) =

(upa(v),ab) . It is easy to check that this opefation is associative,

hence 8§ 1is indeed a semigroup. We write S =y g T, and refer to

U and T as fhe factor semigfoups,

This product is a natural generalization of the usual semidinect
product of groups (see Gorenstein [13] for example) Its extension
‘to semigroups as already been considered from variousIaSpects ‘
(Hofman" and Mostert [23, D.4.1], Wells [31], among othere), although
not in the context of amenability as far as we know.

The eounterexample to Sorenson's conjecture is constructed by
taking the semidirectrproduct of two cancellative amenable semigroups
in such a way that the semidirect product is right cancellative, left
.‘amenable, but not left cancellative. In Lemmas 3ﬂ3'1 and 3.3.2, and
Proposition,3.3.4 we assemble the information needed to show that the
example given in 3.3.5 actuelly-has the desired properties.

4 : : o
The rest of this section contains other results and examples
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;

which examine how amenability of the semidirect product is related

to ameﬁability of the factor semigroups.

LEMMA 3.3.1. If U and T are semigroups with a homomorphism
p: T » End(Uj- such that p(T) ¢'Inj(U), then - S = U S T 1is not

left cancellative. o

Proof. Suppose aeT and u,v € U with u # v such that

p (w) = oa(V) . Then (u,a) # (v,a) but (u,a)(u,a) = (u,a)(\},a) .

LEMMA 3.3.2. If U and T are right cancellgti&e semigroups
with a homomorphism p: T » End(U), then S =1U X T is right

cancellative.

!
Proof. Suppose there exist a,b,c € T and u,v,w € U such
that (u,a)(w,c) = (v,b)(w,c) . Then ac =-bc -implies a =B, and

upa(w) = ubb(w) = vpb(w) implies u = v . Thus. (u;a) = (v,b)

- Given a hémomorphism p: T+ End(U), for each a € T we
define a linear operator Pa on m(U) By Pag(u)'= g(pa(u)) for
' . . *
g €m(U) and u €U . Each P_ induces a linear operator P

on ﬁ(ﬁ)* giVEn byi P:w(g) = w(Pag) for ¢ e m(U)* and g € m(U) .

LEMMA 3.3.3. If U and T are. left amenable semigfoups'with
a homomorphism’ p: T + Sur(U), then there exists ¢ G.MZ(U) such

: K, v
that Pa¢ = ¢ for each a€ T .

Proof. For each ¢y € M{(U) and a € T we have PV e ML (U)
since pa' is a homomorphism of U onto U (this follows from the

proof that a)homomorphié image of a left amenable semigroup is also
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left amenable, given in Day [7, p. 515]) Moreover, since

p: T + Sur(U) 1is a homomorphism the map a —+ P: is a representation
of T in the set of iimear mappings on ME(U) . Since ML(U) is
compact and convex in the weak*—topology and since ? is left

amenable, by the fixed point theorem (Day [8, Thm. 6.1]) there exists

. ] N .
$ € ME(U) with Pa¢ = ¢ for each a € T .

PROPOSITION 3.3.4. If U and T are left amenable semigroups

with a homomorphism p: T + Sur(U), them S =1 S T 1is left amenable.

'Proof."By the lemma above we cadlchooso ¢ € ME(U) such that
P:¢ = ¢ for each a € T . For each f € m(S) define f ¢ m(T) oy
f(a) ='¢(fa), where f e m(U) is deﬁmned»as f%(u) = f(u,a)
Choose Vv € Mﬂ(T) ~and define e m(S)*' by u(f) = v(f) . It is
easy to see that u 1is a mean, and moreo?er we claim that ¢ 1is
left invariant. For (v,b) € S and a €T 'me.have (L(v,b)f)a =
Pbﬂvfba-'since for any u € U, ( )f) (u) = ( 'b)f(u,é) =
£(vo, (w),ba) = £ (voy (W) = pbzvfba(u) . Thus ‘Z‘"’“’“‘(a)
¢(?B£§fb;) = ¢(fba) = be(a) since - P;¢ =¢ ‘and ¢ 1is left‘
inmariant'on .U . Hence u(ﬂ(Q’b)f)" v(L v b)f) = v(ﬂbf)
v(f) = pu(f) since V- is left invamian: on T . Thus u € ML(S),

Hﬁﬁhoviqg that S 1s left amenable.

THE COUNTEREXAMPLE 3.3.5. Let U be the free abelian semigroup
.generated by the elements {ui|i - 0,1,2,...},> and'let T be the

' infinite cyclic sémigroup with generator {a} .. We define
.p?‘T + Sur(U) by pa(ui) -u_y if 113_1 and pa(uo).- u

Since U and T are cancellative abelian semigrodps, by Lemma 3.3.2
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and Proposition 3.3.4, the semigroup S = U ; T 1s right cancellative
and left amenable. However, since pa(ul) - u = pa(uo) we have
p(T) ¢TInj(U), and hence S 18 not left cancellative.
Thus S is indeed a counterexample to Sorenson 8 conjecture
i and by. Theorem 3 2.2, S 1s also a left amenable semigroup which
does not satisfy~SFC. Corollary 3.3.11 will show that S 1is
actually amenable since U and T are amenable, which shows that
Sorenson's conjecture is still falsge when left amenable is replaced
by amenable..4We have not been able to construct a finitely generated
counterexample by the method above, which‘raises the question, of
whether Sorenson's conjecture holds for fihitely generated semigroups.
REMARK 3.3.6. We give three examples of semidirect products of
'left amenable semigroups to illustrate the role- that the condition
p: T » Sur(U) plays in Proposition 3.3.4, The first example shows
“that the condition is not necessary to ensure left amenability of
YU g T, but examples (ii) and (iii) show that .some condition is‘
\needed since neither p: T -+ End(U) nor pi T » Inj(U) is sufficient.
(1) Let U be any semigroup with at least two elements,vin—
cluding a zero element Q, and let T be the trivial semigroup 1
{1} . Define pl €, End(U) by pl(u) = 0 for each uevU., Then’
-for any u,v € U ‘we have (u,l)(v,l) - (O,l), thusv U x T -1i8 left
amenable, but since U has at least two elements Py ¢ Sur(U) . | v‘ :' i
(i1) Let T be any amenable semigroup, and U any amenable ‘ -
semigroup’ of at least two elements and containing an identity e . AP '
We define p: . T + End(U) by Pq (u) = ¢ for each ae€ T‘ and u €U ' g :

. We have (u, a)(v b) = (ue,ab) = (u ab) for any (u,a),(v, b) € U x T .
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Thus if u,v € U with u # v, we see that (u,a)(U ; T) N (v,a)(U,S T)
= ¢ , which shows that U S T 1s not left amenable.
(111) Let U be the non-negative integers under 'addition, and

let T be the infinite cyclic semigroup with generator {a} . Define
) o
e

p: T -+ Inj(U) by pa(u) = 2u for each d € U . Now we see that

(0,a) (U

X

T) = {(u,aj)lu even, j = 2,3,...} and
(1,a) (U X T) = {(d,aj)lu odd,f 3 =-=‘_2,3,...} . Thus

(O’a) (U ﬂs T) n (l'ya) (U

X

T) = ¢ which shows that U'S ™ 1is not

left émenable..

;

REMARK 3.3.7. “SuppOSe S=10 S T . Then we may add a two-sided
identity to either U or T (or both) and extend the homomorphism
o} in such a wayztha% S contains a two-sided ideal of the new semi-

o

direct product ‘obtained. Let U~ be the semigroup obtained by adding

a twofsided.identity é, to U . Then by defining kpo: T > End(U ) .
by oZ(ﬁ) = p,(u) for u€ and b:(e) = ‘e for each a € T".Ye
sec,that (UQ ;O'T)(u,a)(U0 So T) € S 'for each (u,a) €S d
éimilarly if T° is the semigroup obtained by adding a two-sided
idéntit; 1 to.lT, we define pz = p;..for each a€ T and: pi =
identity homomotphism on: U . Omce again we have u ‘ : .
: . N ¢ . .
(U xo 1% (u,a) v xo 1% C s for each (u,a) €5 .
| This temafk will be useful in tﬁc propositions'which follow,
since it is well-known (see Day [8, p. 12 (3L")] or Mitchell (25,
"Thm. 9]) that if A 1s a'sdbsemigroup‘of B containing a two-sided
ideal of B, then A is left [rigmt] améngble ii«and only if B. is

- left [right] amenable.



by f7(u,a) = f(u) . Notice that for each v € U we have

. (ﬂvf)~ = z(v,l)f~ since ‘(ﬂvffv(y,a) = % f(u) = £(vu)

40

PROPOSITION 3.3.8. If S = U S-T is left amenable, then U

and T are left amenable.

)

Proof. ‘The map 0: S + T defined by o(u,a) = a is a homo-
morphism from‘ S onto T, which shows that" T 1is left amenable.

T;r;;;;\(hat ﬁ is left améhable, by Remark 3.3.7 we may assume
without loss of ggnerality that AT has an identity l‘ gnﬂ that' Py

is the identity map on U . For each f € m(U) define £~ € m(S)

£7(vu,

Z(v'l)f~(u,a) . 'cﬁoosing v € MU(S), we define u € m(
B(f) = v(f7) . Actually u e ME(U) since u  is clearly a mean,

and u(va) = v((ﬂvffv) - v(ﬂ(v’l)f”) = v(f~) = u(f) ..

REMARK 3.3.9. The left invariant mean u on U constructed
- . _
in the, above proof has the property Pau = i for each a € T, that
is u(Paf) = u(f) for each f e ﬁ(U), where Paf(u_)'--= f(pa(u)) .
To see this, choose any u € U and notice that for f € n(U) we
] ~ o ~ N €
have ”(KuPaf) K(Da(u)’a)f » since 1f (v,b) U,g T we have

ELET(:B) = LRECY) = PLE(w) = £0p, (W0, () = £7(p, (Wo, (¥),ab)

= Z(pa(a)’a)f~¥v,b) . Thus u(Paf) - u(luPaf) - v((ﬂuPaff") -

Y a7 = VED = u)

PROPOSITION 3.3.10. If U and T are right amenable semi-
groups with a homomorphitm_ p} T + End(U), then S‘- U‘S T 1is

° -

right amenable.

Proof. Choose ¢ € Mr(U)"and v € Mr(T) » For each f € m(S)



we define f e m(T) by the formula f(a) = ¢(fa), where fa € m(U)

is defined by fa(u) = f(u,a) for each a €T and u € U . Now we
' ok ' _

define p € m(S) by u(f) = v(f) for each f € m(S) . It is easy

to check that for (v,b) € S we have (r(v,b)f)a = rpa(v)fab" and

hence r( f=rf . Tﬁus‘ “(r(v,b)f) = v(r(v’b)f) = v(fbf) = u(f).

v,b) b

/ :
Since y 1s also a mean on S, we see that S 1s right amenable.

COROLLARY 3.3.11. 1If U and T are amenable semigroups with

a homomorphism p: T —+ Sur(U),, ‘then S =1U S T 1is amenable.
Proof. This is immediate from Propositions 3.3.4 and 3.3.10.

PROPOSITION 3.3.12. If S =10 S T 1is right amenable then T
is right amenable, and if in addition p: T -+ Aut(U) then U 1is

right amenable also.

?roof.‘ As before T 1is a homomorphic image of .S ' and henée
right amenable. Now suppose p: T + Aut(U’ . By Rema?k 3.3.7 we
may'assuﬁe thaﬁ T has an identity 1 énd that - pi is.the idéntity
map on U . . For f‘%.m<U) ‘wevdefine f¥ e m(8) by f7(u,a) =
f(p;l(u)), where p;l ‘denotes the inverse,automérphism to ba
Now fér e;ch v € U, we have (rvf)%(u;a) = f(p;l(u)V) = .
£ (up, (v))) =.f_”<uga<v>,a{> ® T(y,1yf (8:a) . Choosing v €Mr(s)
lwe define u.€ m(U)* by ﬁ(f) = v(f7) . It is»easy to see that

is a right invariant mean on U .

3

COROLLARY 3.3.13, If § =10 x T is amenable then T is amenable,

- and if in addition p:,T'+-Aht(U),.'then U 1is also amenable.

/
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. Proqf. Iﬁis is immediate from Propositions 3.3.8 and 3.3.12.

’

REMARK 3.3.14. We give two examples to show that the condition
p: T + Aut(U) in fropositioﬁ 3.3.12 cannot be replaced.by either
p: T + Sur(U) or p; T + Inj(U) . Example (111) shows that we
cannot replace 'p: T +‘Aut(U) in Corollary 3.3.13 by p: T ~» End(U);

| (1) we'éonstruct a right amenable semigroup S = U ; T where

,b: T > éur(U), but U 4is not right amenable. Let U be the free
semigr?uﬁ on the generators {uili = 0;1,2,.;.}, éﬁd let T ‘be the
infinite cyclic semigroup generated by {a} . We define p: T + Sur(U)
by pa(ui) f U, for 1 Z_lv and pa(uo) =u . 'Sinéev U is
clearly not right amenable, all that remains tqlbe shown is that S
is right amenable. Actually we show that S satisfies the’"right-
sidéd" version of the strong Félner’condition: (SFCr) For ény.
finite subset FC S and ; > 0, there exists a finite'subget
ACS with |AN As| < ela] for each s e F .

Thus suppose _f is a finite subset and € > 0 . Then there

exists an integer N _ such that
{(p N(u);az)[(u,aﬂ) € F}’Ci{(ug,ék)ll <3,k < N}.
a ' ,

Choose M so that 2N/M < : and let A = {(u:;an+N)ll < m,n < M}

Then for each (u,az) € F 1t is easy to check that

{(u:,an+N)|N + 1 < m,n < M} ClA(u;éz),

v

which shows that [A \ A(u,az)' - 2NM = (2N/M)M? < ela] .

(11) We construct a right amenable semigroup S=U ; T where



p: T ~+ Inj(U),"but U is not right amenable. Let U be the semi-
~ grodp generaéed by the elémen&s- {u vi| =1,2,...} with the
relations divj = Vjuilg uiuj = ujui = uy if i < j, and |
uivj = vjui = inj = vjvi = vj‘ if j <1 . Notice that

for each. i, the semigroup generated by- {ui,vi} is the frée semi-
group on two generators, and. hence Uulf\ le =¢ . This shows that
U is not-right amenable. '

lLet T be the infinite cyclic semigroup generated by .{a},
and define p: T » Inj(U) by o, (u ) = Uy and " Py (v ) = V1+1 .
To see that S =1U ; T is right amenable we show that S satisfies
SFCf as in example (1) above. Suppose F C S is a finite subset
and € >0 . Let N-= sup{n|(u,an) ¢ F for some u € U}, and choose
M so that N/M < ¢ . Letting A = {(ul,ak)ll i_k < M}, we see that
for each '(u,a“) € F  we have A(g,an) = {(ul,ak+n)|l < k < M} since
uP (u) = Uy for all ue U . Also since n < N we have
A\ A(u,a )| <N = (/M)A < ela]

(11i) We construct an amenable semigroup S =U S T 'with
p: T -+ End(U), such that U is not right ameﬁgxle, hence not
‘aﬁenable. Let U = {u,v} where w? = vu =u and v2 = uv = Vv ,
We choose T to be the trivial semigroup {1}, -and define -
p: T - End(U) by pl(u) = pl(v) -u. Clearly U 1is not right
amenable since Uu/N\Uv = ¢ . However (u,1) (v,1) = (v,1)(u,1)

which shows that S is abelian and hence gmenable.
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III.4 Semigroups satisfying the strong Fg¢lner condition

From the counterexample éonstrucfed in 3.3.5 we know that the
class of semigroups satisfying SFC is a propef subset of the class
of left amenéble semig;oups. In this.section we exaﬁine some of
the properties of this class, generally folloying the line of results

established for left amenable semigroups (see Day [7] and [81).

REMARK 3.4.1. By Lemma 3.2.1 and Theorem 3.2.2, in order to
show that a particular left amenable semigroup S satisfies SFC, we
need only show that whenever rs = rt for some r,s;t'e S, there

exists x € S with sx = tx .

PROPOSITION 3.4.2. If S is a semigroup satisfying SFC with
a subsemigroup T such that u(xT) > 0 for some u € ME(S), then

T 4also satisfies SFC.

_Proof. T 1is left amenable since U(XT)'> 0 (Day t7]); Suppose
a,b,c € T with ab = ac . Since S satis}ies SFC there exists
x € § with b¥.= cx . - Since u(*T) ? 0 and u(xxs) =1, T N xS
is non;empty. Hence we can ?ick de TNxS, and we have bd = cd

This shows that T satisfies SFC by Remark 3.4.1.

It is not true, however, that every left aﬁenablé suBsemigrQup
§f a seﬁigroup' atisfying SEC must satisfy SFC. For exgmpie, coﬁsider
a semigroup Zgzj;;:é by adding a two-sided Zero to another semigroup
which is left amenable but does not'saﬁisfy SFGC. i ' .
Recall from -Section I.4 that-a subset T of VS is said to be

left thick in 'S if.for every finite subset F C S, there exists
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s € S such that Fs CT .

by N
PROPOSITION 3.4.3. If T 1s a left thick subset of S such

that T satisfies SFC, then S satisfies SFC.

-

Proof. Let F be a finite subset of S§ and € > 0 . Choose

132 < g . Since T 1s left thick there exists
ae€ T such that FaC T . Choose a finite subset B C T such that

6§ > 0 such that

B N\ aBI < 6[B|* and |B AN saBI < Grﬁl for each s € F . Now we

see that |aB \ saB| < 28|B]| < 25fzf£%§+§TJ|B| < €|aB| .

'This proposition extends a result of Rajagopaian and Ramakrishnan
[27, Thm. 22]). The next two results are stated without proof since

their verification is routine.

PROPOSITION 3.4.4. A finite direct product of semigroups which

satisfy SFC also satisfies SFC .

PROPOSITION 3.4.5. vh“Birected union of semigroups which satisfy

SFC also satisfiles SFC.

PROPOSITION 3.4.6. If U and T are semigroups which satisfy
SYC with a homomorphism p: T + Aut(U), then S = U S T satisfies

SFC. L o

Proof. S is left amenable by Proposition 3.3.4@ Suppoée there
exist (q,a), (v,b), and (w,c) € S = U X T .with (u,a}(v,b)'-
(u,a)(w,c) . Then vupa(v) = upa(w) implies,~p;1(u)y - p;L(u)w,
and henceJthere exists y € U with vy = wy . Also ab = ac implies

there exists d € T with bd = cd . Since p, is surjective and
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pbpd - pcpd we must have CI = Pe - Thus we see that
-1 . -1 .
(v, (py " (¥)d) = (vy,bd) = (wy,cd) = (w,e)(p ~(y),d) = . : .
(w,c)(p;l(y),d) . By Remark 3.4.1 we have shown that S satisfies '
SFC.

Examples 3.3.5 and 3.3.6 (1i11) show respectively that the
] .
condition p: T + Aut(U) 1in the proposition above cannot be

replaced by either pt' T »+ Sur(U) or p: T Inj(U)

PROPOSITION 3.4.7. If S = U S T satisfies SFc; then U  and

T also satisfy SFC.

Proof. U and T are left amenable by Proposition 3.3.8.

Moreover, Remark 3.3.7 combined with Propositions 3.4.2 and 3.4.3

.shows that we may assume that T has an identity 1 and that P1

is the identity map on- U . Suppose uv = uw for u,v,w €ev .
Then (u,1)(v,1) = (u,1)(w,1), hence there exists (¥,a) e"s
with (v,1)(y,a) = (v,li(y,a) . From Qgis Qe see Vy = Wy, wh%gh '\\
shows that E safisfi?s SFC. |

- Now éuppose ab = ac for a,b,c.e T . Then (u,a)(u,$$ =
(u,a)ku,cjl for any u €vu, thﬁs there oiists (Q,d) € § with

(u,b) (v,d) = (u,c)(v,d) . Hence we have bd = cd, showing that

£

T satisfies SFC.

The.question of whetheriho;omorphic images Qf“sémigroups
satisfying SFC also satisfy SFC is still open.. An answer to this
would be particularly interegting in view of the corresponding

results for left amenable éemigropps (yes, Day [7]) and left

measurable sehigroups (nb,'Soredéon [29]). ' o IS

-



II1I.5 Left measurable semigroups

*
For any semigroup S it is easy to see that a mean y € m(S)

is left invariant if and only 1if (X _1') = U(XA) for each AC S
. A ,

is left reversible

and s € S . We say that a mean

invariant if h(xSA) = u(xA) for and s € S, and
denote the: set of left reversible invariaht means on S Dby RMltS)
. ’ 4

If a semigroup S "has a left reversible invariant mean we say that

S 1is left measurable. This term arises from the obvious one-to-one

correspondence between ‘RML(S)_ end the set of left measures on é,
i.e. the set of flnitely additive meaeu;es A on S such that
A(S) = 1 and A(sA) = A(A) for eaeh s€S and AC S . Clearly
every left measurable semigroup is left amenable since any left‘
_Areversible invariant geao is left invariant, and aleo fof.leff g
-cancellative semigroups the condi;lons are equivalent. The terms
right reversible invariant and right meaeurable'are defined
analogously.

Sorenson investigated the properties of left measurable semi-
groups in his thesis :[29]. In partjicular he showed that every 1efe
measurable ;;ght cancellative semigroup is lqgt cancellative [29,
"3.1.71. The proof that follows in Theorem 3.5.1 1s not the one that

Sorenson gave, although he noticed that this type of proof was

possible [29, Remarks on p. 57].

THEOREH'3.531. If S 1is a left measurable semigroup, then its

(_)

right caricellative quotient semigrouo S* 1s left cancellative.

»

417



Proof. Suppose S' 1s not left cancellative. Then by
Lemma 3.2.1 there exist r,s,t € S such that rs = rt but sx ¥ tx
for each x € S . Let A = {A C.SI;A{W tA = ¢} . Then A # ¢
since {x} € A for each x €S . If we pantially order A by
inclusion, it is easy to see that 4 1is chainable, thus by Zorn's
lemma let A be»a maximal element in 4 . For eacﬁ x € SN\ A
we have either sx ¢ tA or tx € sA since 8x # tx .and A is

maximal. Thus we may write S = AU S U 82 where /sSl C tA and-

1%
tS,C sA . If -y € RME(S), we must have u(x,) = u(x,) > u(xssl) =
w(x. ) and similarly u(x,) > u(x. ), which shows that u(yx,) > l-.
5,7 ° : A = Hs, ; A’ 23

‘However, rs = rt implies that U(XA) = M(XrBA)A“ u(xksAUtA)) -

2u(xA), and hence u(xA) = 0 . By this contradiction we see that

S' must be left cancellative.

. v,
i

fa
N

COROLLARY 3.5.2. If S 1is left measurable and right cancell-

ative, them S 1s left cancellative.

Proof. If S is right cancellative then S =S

COROLLARY 3.5.3.  Every left measurable Seﬁigroup satisfies

7’ . '

SFC. - -

Proof. This follows immediateiybfrom;Thedrehs 3.2.2 and 3.5.1.

N

;t'is not true that every hemigroup which satisfies SFC is
left measurable, ‘since any semigroup with a .zero element obviously
satisfies SFC, but cannot be left measurable if it hhs_more thén

one element.
4 .
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We now state sone of the properties of left measurable semi-
»roups obtained by Sorensan.

(1) The homomorphic image of a left measurable semigroup is
not'necqgéarily left measurable [29, Example 1, §3.1].

(11) A left ideal of a.left'measurablé semigroup need‘not be .
., left measurable [29, Example 2, §3.1].

(111). A right ideal of a left mensurabie semigfoup is left
measurable [29, 3.1.2].

(iv) A finite‘direct product of left measnrable}semigrOUps .
is left measurable [29, 3 1.4]. )

(v)' A directed union. of left measurable semigroups is left .,

'measurable [29, 3.1.5].

The next lemma is useful in proving Propositions 3.5. 5 and
3. 5 6, which look at the semidirect product in relation to left
measurability, followlng the pat;ern of results established in
Sections III.3 and III.4 for ¢ 5le semigroups and semigroups

. satisfying SFC respectively.

LEMMA 3. 5 4. A mean y - 1s left reversible invariant on a ) ,
semigroup S 1f and only if u is left invariant and u(xz ) = 1
for each s € S, where Z_ = {t € Sls {st} = {t}}

£ Y. | : ' | -
Proof. Suppose u ¢ RME(S) and 8 € S . It is clear from

the definition of Zs, that by using a Zorn 5 lemma argument we
may write S\Z“-A'UAZ where A M A, = ¢ and sA) = sk, = .
. .a(S\ zﬂ) Thia implies that u()(A ) = u(xAJ ‘u()((-s-\z )) and

alao fhat u(k?g\z )) - H(XAl),+ H(XAZ);Q' From this we see—that _— j}>f'

[
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U(X(S\Zs))A= 0, and hence u(xzs) =1 .

Now éuppose that p € ME(S) and U(XZ )= 1 for each s € § .
. _ 1 ‘ .
For any set A C S we have (s (s4) \,A) <N Zs), and hence

u(x -

. ‘= O . v ; - -
(S—l(sA)\A)) Thus lJ(XSA) U(Xs—l ) Hix,) +

(sA)

-1 ) u(XA), which shows that u 1is left reversible
(s “(sAN\A) .

Lt}

ux

“invariant on S .

The first part of this proof is given by Soremson in [29, 2.3.2].

Notice that for a left amenable éemigroup S to be left
measurable it must be "almoét" left canéellative, in the sense that

Zs must be left thick in S for each s € S , , J

PROPOSITION 3.5.5. If U and’ T are left measurable semi-
groups with a homomorphism -p: T + Aut(U), then S =1U g T 1is

left measurable.

Proof. Recall that in Section IT1I.3 we defined Pé: m(U) -+ m(U)

. , v | | | .
by Paf(u)-é f(pa(u)), which induced a linear operator P_ on m(U) .

no* %

Since p%'é Aut (U), it is s;raighﬁfdrward‘t? show that P  maps

RMZ(U) onto itself, and since RMZ(U?3 is compact and convex with

respect to the weak*—topology((Sorensoﬂ [29,xl.l.lO]),lonce'again

we épplyvthe fixed péinﬁitheorem (Day [8, Thm. 6.1]) to obtain a

: léft revgrsibig inQariant mean . ¢ on U’ §uch that P:¢ =- ¢ ‘for ’

each A‘é T .- , | |

:_ Fér eaéh f € m(S) define £, e'm(u) by . fa(p) -;f(u,a), “and

defiﬁe f « n(T) By f(a) = &(fa) . ‘Choosing v € RME(T) we define
4 . 4

p € m(S). by u(f) = v(f) . From the proof of Proposicign‘3.3.4 we

,



know that p € ME(S), thus by Lemma 3.5.4 we need only show that

u(xZ ) =1 for each (u,a) € S . After noting that
(u,a) S

z = {(v,b)|v € Z
(U,a) .. ) p—l(u)

a

), = X if b e Z,s and (X

and b € Za}, we see that

). =0 Aif
Z(u,a) ®

b ¢ Za . Since ¢(XZ ) =1 by Lemma 3:5.4, we see that
_l - N N
p_~(u)

a

Xy =X, Now we have u(xZ ‘ ) = \)(xZ ) =1 by
(u,a) a . “(u,a) a- :

Lenmma 3.5 .4, as desired.

It is not poséible to replace the condition p: T =+ Aut(U)
in this proposition by either p: T - Sur(U) or ¢: T - Inj(U), ,

as 1s shown by the examples 3.3.5 and 3.3.6 (iii) respectively.

PROPOSITION 3.5.6. If' S =1U xT is left measurable, then U

v

and T are left measurable. - ~

Proof: Let v e(ggﬁ(s) . To see that U is left measurable, we

. . * : ~ :
define u € m(U)  as in Proposition 3.8 by wu(f) = v(f7), where

Fje m(S) 1is defined by’ f7(u,a) = f(u) for each f € m(U) . in

‘theﬂproof of Propdsition'3.3a8 we saw.that u e ME(U), hence it |
suffices to show that u(xz ) =1 for each u €U . ~First consider
the set 2, for some fixed a € T .- Now we have

] (pa(u)sa) : . ) ’ )

, since if 'v ¢ Z, there exists w $ v with

(x; )~ 2 x
2y’ ?(oa(u),a)

uv = uw .. Then for any b ¢ T we have (pa(u),a)(v,b) =

(Qa(u),a)(w,b) which shows that .(v.b) ¢ Z(pa(u),a) for each b €T .

a



Now we have 1 i_u(xz ) = v((xZ‘Y') i.v(xz ) =1 by
o u u (p_(u),a)
‘ Pt

¢

meaBﬂié.
| Similariy, to see that T 1is left measurable we define
'(¢ € m(T)* by .¥(g) = v(g*), where g" e m(S) 1s definéd by .
g"(u,a) =.g(a) for each g € m(T) . After checking ‘that ¢y is a
lleft iﬁvariant mean, we see that w(xz ) =1 for éach aeT,
. a .

for any ue U ..

since (¥ Y > Xo
Z Z
‘a (u,a)
Combining the appropriate version of Lemma-3.5.4 for right

reversible invariant means with Propositions 3;3.10‘and 3.3.12,»

analogous'arguﬁents yield the_follo&ing results:

‘ PROPOSITION 3.5.7. If U and T are right measurable semi-
.grohps with a_homomorphism p: T - End(U), then S = U ; T is

.

right'measﬁ;able.

PROPOSITION 3.5.8. If S =1U ; T is right meastrable and

p: T - Aut(U), then U and T are right ﬁeasurable.

a
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FOOTNOTES

In Granirer's original theorem [14, p. 32]), the condition "S

contains exactly n disjoint finite groups which are left

ideals" Qas stated as "S contains exactly n disjointA
finité left ideal left cancellative groups" (a’set ACS

is said to be left 1deai left cancellative if A ié a left
ideal in’ S; and whenever sa = sb Jfof s € S and a,b € A,
thép a = b);. However, as Granirer later noted,.if G is

a finite group with identity e, and also a left ideél in

S, then.for each s € S we have s8G = s(eG).= (se)G = G,

which implies that G 4is left ideal léft‘cancellative.

 This result'was'bfought to my attention by R. Sirois-Dumais.

. It 'is stated in a preprint "Combinatorics" by K. Kunen. He

has sent me the proof in a letter, mentioning that it was

first obtained by Baumgartner in his Ph.D. thesis.
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