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Abstract

This work introduces the “online probing” problem: In each round, the learner is

able to purchase the values of a subset of features for the current instance. After

the learner uses this information to produce a prediction for this instance, it then

has the option of paying for seeing the full loss function for this instance that he is

evaluated against. Either way, the learner pays for the errors of its predictions, and

the cost of observing the features and loss function. We consider two variations of

this problem, depending on whether the learner can observe the label for free. We

provide algorithms and upper and lower bounds of the regret for both variants. We

show that the paying a positive cost for the label significantly increases the regret of

the problem. At the end we also convert the online algorithms to variants for batch

settings.
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Chapter 1

Introduction

To introduce the ideas, consider the challenge of classifying a sequence of parts, as

they individually appear in a conveyor belt, as either defective or not, based on the

values of its observable features. The challenge here is to find a predictor (here, a

classifier) that maps the observed features into the label. However, first we must

extract these features, which may involve non-trivial imaging operations, and so

have some appreciable cost – here computational time. We therefore have only a

prediction loss function that penalizes the predictor for any wrong prediction. But

here we care not only about prediction loss of the classifier but also about its speed.

So we might prefer classifier C1 over C2 even if C1 has slightly greater prediction

error, if C1 uses dramatically fewer features and so can be so much faster. Our

goal is to find a classifier that minimizes the expected risk, where the risk of a

classifier is a weighted sum of its prediction loss and the total cost of the features

that the classifier pays to observe to make its prediction. Of course, the choice of

the best classifier depends on how we weight the prediction loss compared to cost

of features.

We consider the challenge of learning this “minimal risk predictor”, using a

learner that must decide which features it wants to observe for its learning process.

In particular, this learner has access to once instance at a time: it can pay to observe

any of its feature. It can also choose to observe the label of this instance; if so, it

must pay an extra cost. Typically a learner is penalized only by the wrong prediction

of its classifier with a given prediction loss function – e.g., quadratic loss or zero-

one loss. However in this context, the incurred loss will be the sum of the cost for
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all observed features, the cost of the label if it is requested and the prediction loss

of the selected predictor. We will later formulate our task more precisely in several

frameworks. We will see that the cost of observing the label also plays an important

role.

Below this, Section 1.1 provides more detail about this problem more and gen-

eralize from this example to the more general framework.

1.1 Costly Attribute Observation

In the classical settings, machine learning techniques try to learn an accurate pre-

dictor from a set of labeled examples and then use that predictor to produce label

for unlabeled examples. We look at the general problem that includes the given

example in the previous section. We focus on a variant where every feature, as well

as the label, has an associated observation cost. The risk of a predictor is a com-

bination of the prediction error and the costs that learner has paid for the features

of the instances. Here we want a learner that find the best predictor in terms of its

risk. This is what we call Costly Attribute Observation (CAO) framework. In the

general “batch” problem, the goal is to find a predictor that achieves the minimum

error (or in this context, the prediction loss) for the unforeseen examples. Note that

the learner has access to all features and labels in the training phase in this general

model. There are several variations to this general problem. A possible variation is

to define the goal finding a predictor that achieves the best error in the prediction

phase, while we have a limited budget in our learning phase for observing features

and labels of training examples. Another variation can be optimizing a combina-

tion of the cost of features and labels in the training phase, with the risk of the final

predictor in the prediction phase. Also the problem might be in online learning

settings instead of batch which we will discuss later. We put all these variations

under general CAO framework. However in this dissertation we look at some of

those variations and not all of them. After we introduce the other frameworks, we

will provide the formal definitions later in the following chapters for each cases and

how previous works addressed these variations.
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In this dissertation, we look at this problem in two different frameworks, the

online framework and the batch framework. We will solve CAO in the online

framework for two different settings – free label vs costly label – which leads to

two different optimal regret bounds for general prediction loss functions. We will

also provide more constrained bounds for the work by considering a more common

loss function (i.e., quadratic loss) and will be able to further improve the bounds.

Chapter 2 will explain how the CAO framework fits into the online framework and

provide several variations of this problem in the online framework and some algo-

rithms and regret upper bounds for those algorithms as well as regret lower bounds

for the problems. Chapter 3 shows how CAO fits into the batch learning framework

and applies standard online-to-batch methods to transform the online algorithms to

solve the problem in the batch framework. Chapters 2 and 3 begin by relating our

work to previous works and earlier results. Finally, Chapter 4 summarizes all the

results and provides future avenues for extending this work. Appendix A provides

brief definitions of frequent used terms and Appendix B has proofs to the lemmas

and theorems that are not included in the text.
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Chapter 2

CAO in Online Framework

In this chapter, we explain the meaning of having cost for observing the features in

an online problem. Going back to the example of classifying objects in a conveyor

belt, we can look at this problem as an online problem as follows. Firstly, we do not

have any training examples. We have a conveyor belt that is bringing a sequence

of parts. These objects have several features that the learner can extract – e.g., its

weight, or the average intensity of the pixels. Each feature takes a specific amount

of time to extract. For each object, the learner stops the belt to extract the features

that it needs. The goal here for the learner is finding a predictor that uses a subset of

the features that the learner decides to observe and predicts the label as accurate as

possible for that object. Since we are in online settings, we care about minimizing

the regret of learner, which is described with more details in Section 2.1. After the

learner finds the predictor for that object, it has the option of asking an specialist to

provide the true label of the object. Of course that might cost a non-negative amount

for the learner to obtain true label, depending on the settings of the problem. In this

chapter, we will look at the problem of having costs for features and labels in an

online framework, which we call online probing. Section 2.4 shows more examples

of this problem and summarizes the results of this chapter.

In this chapter we look at this problem more closely and provide more in-depth

analysis of different variations and some upper bounds and lower bounds for the

regret of the problem. Section 2.2 summarizes previous works related to this prob-

lem and Section 2.3 provides formal definitions and formulates the problem in our

online framework. Sections 2.5 and 2.7 consider the problem when the labels are
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free and non-free (respectively) and provide algorithms and upper bounds for the

regret in each case. Also Section 2.6 and Section 2.8 show the lower bounds for the

regret in each of the aforementioned case.

2.1 Online Framework and Notion of Regret

An instance of an online learning problem contains a sequence of rounds. At each

round the learner is given an instance and has to predict something for that instance

– e.g., a label or a vector. At the end of each round, the learner suffers a loss. In this

setting, we usually evaluate a learner based on its cumulative loss over all rounds. In

online learning framework, the difference between the learner’s cumulative loss and

cumulative loss of any predictor from a given set of predictors is called regret of the

learner competing against that set of predictors. A learning algorithm is good for

an online problem if it has a bounded cumulative loss, or a bounded regret against

the set of defined predictors. A typical result in this setting is upper bounding the

regret after T rounds with function that is sub-linear in T – e.g.,O(
√
T ) orO(T 2/3).

Note that having a regret that scales linearly in T means that actually learner does

not learn from the samples, as it suffers a constant amount at each round on average.

There is a wide range of problems in this framework. Below we summarize

some of the relevant online problems and algorithms that we use later on. As one

problem, at each round the learner has to choose a prediction from a set of experts’

predictions1 for the current instance (Cesa-Bianchi and Lugosi, 2006) and at the

end, we compare its cumulative loss with cumulative loss of each of these experts.

In this problem, the learner may have full information at each round, which means

it has access to the loss of every single expert at each round. Cesa-Bianchi et al.

(1997) proposed EWA2 for this problem, which achieves regret bound O(
√
T lnN)

where N is the number of experts. They also proved that this is a tight bound, apart

from logarithmic factors. Note this assumes that the learner has access to complete

information about each instance it observes. A variant considers the partial infor-

mation case where the learner has access to the loss of only a subset of experts

1This problem is also known as “prediction with expert advice”
2Exponentially Weighted Algorithm
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and in particular only the chosen expert at each round (Cesa-Bianchi and Lugosi,

2006). Auer et al. (2002a) considered this problem when choosing an expert re-

veals only its own loss3 and proposed the EXP3 algorithm that achieves the regret

bound of O(
√
TN lnN) where N is the number of experts4. They also proved that

no algorithm can achieve better than Ω(
√
TN) regret. Later, Beygelzimer et al.

(2010) proposed an algorithm that achieves O(
√
TN) regret, which matches the

lower bound for this problem. Bubeck and Cesa-Bianchi (2012) recently surveyed

all variations and results of Multi-armed Bandits in online framework. Mannor and

Shamir (2011) looked at the problem of partial feedbacks where we have a graph of

experts and choosing an expert reveals the loss of each expert that is connected by an

edge in the graph. They solved this problem in the general case where we can have

different graphs at each round; they proposed the ELP5 algorithm and proved that

its regret is bounded byO(
√∑T

i=1 χ(Gi) lnN) where χ(Gi) is the clique-partition

number of graph at round i and N is the number of experts. Note that the regret

bounds for their algorithm matches with EWA in the full information case and EXP3

in bandit settings. We will use some of these algorithms later for our problem.

We view our CAO as an online problem as follows. It has multiple rounds,

where at each round the learner is required to find a predictor, the predict the label

using the predictor for the current example, exactly like a typical online problem.

Here, however, the learner must pay to see the values of the features of each exam-

ple, as well as the cost to obtain its true label after its prediction at each round. As

we mentioned before, the total loss of learner (i.e., risk) is the sum of the features

costs it paid and its prediction loss, and it competes with other predictors that (1)

never see the label and so do not pay for it and (2) can use any subset of features,

and so they need to pay only for that subset. This cost model shows that there is

an advantage to finding a predictor that involves few features, as long as it is suffi-

ciently accurate. The challenge, of course, is finding these relevant features, which

happens during this online learning process.

3This problem is also known as Multi-armed Bandits
4In this setting, experts are also called “arms”
5Exponentially-weighted algorithm with Linear Programming
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2.2 Related Online Problems

In the previous section, we introduced some of the other problems in the online

framework and compared those problems with ours, to show the similarities and

the differences. We continue with some of the online problems that are similar to

our problem, focusing on problems where the features and labels are not necessarily

available for free.

Obviously, when there is a cost for observing the loss, the problem is related

to active learning (Settles, 2009; Cesa-Bianchi et al., 2005). To our best knowl-

edge, the case when observing the features is costly has not been studied before

in the online literature. Cesa-Bianchi et al. (2005) considered the full information

prediction with expert advice problem, constrained by the fact that learner can ac-

cess the loss of the experts in at most m rounds6. They showed a lower bound of

Ω(T
√

(lnN)/m) regret on this problem and also proposed an algorithm achieving

this regret upper bound within a constant factor. Our problem is more general that

we can have costs for features. Also the learner can choose in how many rounds it

wants to see the label and there is no hard limit on that. Also in our problem, the

learner decides which feature to see.

Our problem is different than having missing features in the data (Little and

Rubin, 1986; Dempster et al., 1977). For example, Rostamizadeh et al. (2011) and

Dekel et al. (2010) assume the features of different examples might be corrupted,

missed, or partially observed due to the various problems, such as failure of sensors

to gather values for these features. The missing features means the environment

chooses a subset of features to give to the learner. So even though this assumption

might be realistic in some of the applications, it is completely different than our

problem where the learner (and not the environment) gets to decide which features

to observe. They also assume that, at the end of each round, they have the the loss,

without any more cost, which again our framework is extending to more general

assumption of having a cost for revealing the loss as well. In general there might

be delay in obtaining the information about the label and therefore the loss at each

6This problem is also known as label efficient prediction.
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round. However, for simplicity, in this work we have decided not to study the

effect of this delay. Preliminary works on related problems show that delays usually

increase the regret in a moderate fashion (cf. Weinberger and Ordentlich (2006),

Mesterharm (2005), Agarwal and Duchi (2011), the thesis of Joulani (2012) and

the references therein).

Going back to the framework that the learner can pick features, Hazan and Ko-

ren (2012) and Cesa-Bianchi et al. (2010) assume that the learner can choose which

feature to observe; this is similar to our problem. However they allow the learner

to observer at most k features for any example7. Since Cesa-Bianchi et al. (2010)

is more in the batch settings, we look at theirs more closely in Section 3.1. Hazan

and Koren (2012) also focus on LAO in the case of different types of losses and

provide theoretical bounds for their algorithm. Their algorithm can be categorized

in the local budget constraint that we describe in the next chapter. They assume

that data is coming from an unknown but fixed distribution and propose an algo-

rithm that finds a predictor after T examples that achieves an optimal loss on the

distribution of data. So they basically focus on learning with partial observation in

training phase and then try to find a predictor that achieves the best loss at the end.

In the LAO setting, the learner is not penalized for observing the values of features.

So this learner will always choose the maximum allowed number of the features,

k. This makes the problem different than ours. We will solve our problem in the

online framework and bound the regret while we face an adversarial environment.

Note that the adversarial setting is more general than stochastic setting because an

adversary can choose a distribution and choose the data from that.

2.3 Formal Definition

In this section we study online probing motivated by practical problems, where

there is a cost to observe features that may help one’s predictions. Online probing

is a special online learning problem. Like standard online learning problems, the

learner’s goal is to produce a good predictor. In each time step t, the learner pro-

7This settings is also known as Limited Attribute Observation (LAO).
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duces its predictor based on a set of feature values xt = (xt,1, . . . , xt,d)
> ∈ X ⊂

Rd.8 However, unlike in the standard online learning settings, if the predictor wants

to use the value of feature i to produce a prediction, the learner has to purchase

the value at some fixed, a priori known cost, ci ≥ 0. Features whose value is not

purchased in a given round remain unobserved by the learner. Once a prediction,

ŷt ∈ Y , is produced, it is evaluated using a prediction loss function, `t : Y → R. At

the end of a round, the learner has the option of purchasing the full prediction loss

function, again at a fixed pre-specified cost, cd+1 ≥ 0 (otherwise, the prediction

loss function is not revealed to the learner). The learner’s performance is measured

by its regret as it competes against some pre-specified set of predictors. Just like

the learner, a competing predictor also needs to purchase the feature values needed

in the prediction. Let st ∈ {0, 1}d+1 denote the indicator denoting what the learner

purchased in round t. In particular, st,d+1 denotes whether the learner purchased

the label. Also let c ∈ [0,∞)d+1 denote the respective observation costs. Then the

regret with respect to a class of functions F ⊂ {f | f : X → Y} is defined by

RT =
T∑
t=1

{`t(ŷt) + 〈 st, c 〉} − inf
f∈F

{
T 〈 s(f), c1:d 〉+

T∑
t=1

`t(f(xt))

}
,

where c1:d ∈ Rd is the vector obtained from c by dropping its last component

and for a given function f : Rd → Y , s(f) ∈ {0, 1}d is an indicator vector

whose ith component indicates whether f is sensitive to its ith input (in particular,

si(f) = 0 by definition when f(x1, . . . , xi, . . . , xd) = f(x1, . . . , x
′
i, . . . , xd) holds

for all (x1, . . . , xi, . . . , xd), (x1, . . . , x
′
i, . . . , xd) ∈ X , otherwise si(f) = 1). When

defining the best competitor in hindsight, we did not include the cost of observing

the prediction loss function. This is because, if we do include that cost, we would

essentially introduce a constant cost of size cd+1T , basically making it regret-free

for a learning algorithm to observe the loss function, in which case introducing the

cost cd+1 would not make any difference, since they will cancel each other in the

definition of the regret. Thus, the current regret definition is preferred as it promotes

the study of regret when there is a price attached to learning the loss functions.

8We use > to denote the transpose of vectors. In what follows, all vectors x ∈ Rd will denote
column vectors.
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2.4 Online Probing Problem

We provide several examples to further motivate online probing in our framework.

Consider the problem of developing a computer-assisted diagnostic tool to deter-

mine what treatment to apply to a patient in a subpopulation of patients. When

a patient arrives, the computer can order a number of tests, each of which costs

money, to augment other information (e.g., the medical record of the patient) that is

available for free. Based on the available information, the system chooses a treat-

ment. Following-up the patient may or may not incur additional cost. The goal

here is to find a treatment that minimizes a combination of its treatment error and

the cost of tests. As another example, consider the problem of product testing in a

manufacturing process (e.g., the production of electronic consumer devices). When

the product arrives, it can be subjected to a large number of diagnostic tests that

differ in terms of their costs and effectiveness. The goal is to find a predictor to

decide whether the product is defect-free. Obtaining the ground truth can be quite

expensive in the case of complex products. The situation is that the effectiveness

of the various tests is often a priori unknown and that different tests may provide

complementary information. Hence, it might be challenging to decide what the

most cost-effective diagnostic procedure is. Yet another example is the problem of

developing a cost-effective way of instrument calibration. In this problem, the goal

is to predict one or more real-valued parameters of some product. Again, various

tests with different costs and reliability can be used as the input to the predictor.

In all these cases one can easily formulate them using the proposed model in the

previous section.

This chapter analyzes two types of the online probing. In the first version, free-

label online probing, there is no cost to see the prediction loss function, cd+1 = 0

(the prediction loss function is often comparing the predicted value with the true

label in a known way, in which case learning the value of the label for the round

means that the whole prediction loss function becomes known; hence the choice of

the name). Thus, the learner naturally will choose to see the loss function after it

provides its prediction; this provides feedback that the learner can use, to improve

10



the predictor it produces. In the second version, non-free-label online probing, the

cost of seeing the prediction loss function is positive: cd+1 > 0.

In the case of free-label online probing, we give an algorithm that enjoys a regret

of

O(
√

2dLT lnNT (1/(TL)))

when the losses areL-equi-Lipschitz (Theorem 2.5.2). HereNT (ε) is the ε-covering

number of F on sequences of length T . This leads to an Õ(
√

2dLT ) regret bound

for typical function classes, such as the class of linear predictors with bounded

weights and bounded inputs (Corollary 2.5.1). Next, for the case of linear predic-

tion with quadratic loss, in Section 2.5.2 we give an algorithm whose regret scales

only polynomially with the dimension d (Theorem 2.5.3). Also Section 2.6 provides

a matching lower bound for this problem (Theorem 2.6.1).

In the case of non-free-label online probing, in contrast to the free-label case,

we prove that the minimax growth rate of the regret is of the order Θ̃(T 2/3) (The-

orems 2.7.1, 2.8.1). The increase of regret-rate stems from the fact that the “best

competitor in hindsight” does not have to pay for the label. In contrast to the pre-

vious case, since the label is costly, if the algorithm decides to see the label it does

not even have to reason about which features to observe: the main source of the

excess cost over that of the best predictor in hindsight is due to the cost of seeing

the labels. However, in practice (for shorter horizons) it still makes sense to select

the ones that provide the best balance between the feature-cost and the prediction

loss. Although we do not study this, we note in passing that, by combining the

algorithmic ideas developed for the free-label case with the ideas developed for the

non-free-label case, it is possible to derive an algorithm that reasons actively about

the cost of observing the features, too.

In the part dealing with the free-label problem, we build heavily on the results

of Mannor and Shamir (2011), while our results for the non-free-label problem are

based on the ideas of (Cesa-Bianchi et al., 2006).
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2.5 Free-Label Probing

In this section, we consider the case when the cost of observing the prediction loss

function is zero. Thus, we can assume without loss of generality that the learner re-

ceives the loss function at the end of each round (i.e., st,d+1 = 1) – as the learner can

ask for it for free. We will first consider the general setting where the only restric-

tion are that the losses are equi-Lipschitz and the function set F has finite empirical

worst-case covering numbers, NT (F , α) (Section 2.5.1). For this case, we derive

an upper bound O(
√

2dT lnNT (F , 1/(TL))) on the regret (Theorem 2.5.2). For

linear predictors with bounded inputs and weights, this bound results in the bound

O(
√
d2dT lnT ) on the regret (Corollary 2.5.1). Besides covering numbers, our

main tool in proving the upper bound is the work of Mannor and Shamir (2011),

who consider prediction with expert advice in a setting when choosing one expert

will reveal the losses of some other pre-specified experts. Next, we consider a spe-

cial case when the set of competitors are the linear predictors and the prediction

losses are quadratic (Section 2.5.2). For this setting, exploiting the algebraic prop-

erties of prediction loss functions and predictors, we design an algorithm and prove

that its regret is bounded by O(
√
dT ), vastly improving the dependence of the re-

gret on the dimension d. The algorithm proposed, although it tames the exponential

dependence of the regret, is computationally expensive: Both its memory and com-

putational requirements scale exponentially with the dimension d. It remains an

important open problem to design an algorithm whose computational complexity,

as well as regret, scale polynomially with the dimension, while keeping the root-T

dependence of the regret on time.

2.5.1 The case of Lipschitz losses

In this section we assume that the prediction loss functions, `t, are Lipschitz with a

known, common Lipschitz constant L ∈ R+ over Y w.r.t. to some semi-metric dY

of Y:

max
t≥1

sup
y,y′∈Y

|`t(y)− `t(y′)| ≤ LdY(y, y′). (2.1)

The idea is to study first the case when F is finite and then reduce the general
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infinite case to the finite case by considering appropriate finite coverings of the

space F . The regret will then depend on how the covering numbers of the space F

behave.

Let us thus first consider the case when F is finite. In this case, the problem

is an instance of prediction with expert advice under partial information feedback

(Auer et al., 2002a), each expert being identified by an element ofF . The important

observation is that, if the learner chooses to observe the values of some features then

it will also be able to evaluate the losses of all the predictors f ∈ F that use only the

selected features. This can be formalized as follows: By a slight abuse of notation

let st ∈ {0, 1}d be the indicator showing the features selected by the learner at time

t (we drop the last element of st in our earlier notation since, in the current setting,

the prediction loss will always be observed as it costs nothing). Then, the learner

can compute the loss of any predictor f ∈ F such that s(f) ≤ st, where ≤ denotes

the component-wise comparison. Note, however, that depending on the function, it

may be possible to estimate the prediction losses of other predictors, too. This is

what we will exploit when we study some interesting special cases of the general

problem. However, in general, this might be not possible.

Mannor and Shamir (2011) studied problems similar to this in a general frame-

work, where in addition to the loss of the selected predictor (expert), the losses of

some other predictors are also communicated to the learner in every round. In their

problem, there is a graph at each round whose vertices are the elements of F (i.e.,

the experts). If the learner chooses expert f ∈ F , the environment will reveal the

loss for all other experts g ∈ F that has an edge to f in the graph. It is assumed

that the graph of any round t, Gt = (F , Et) becomes known to the learner at the

beginning of the round. Further, it is assumed that (f, f) ∈ Et for any t ≥ 1 and

f ∈ F . Mannor and Shamir (2011) provide Algorithm 1 and prove the following:

Theorem 2.5.1 (Mannor and Shamir (2011)). Consider a prediction with expert

advice problem over F where in round t, Gt = (F , Et) is the directed graph that

encodes which losses become available to the learner. Assume that for any t ≥ 1,

at most χ(Gt) cliques of Gt can cover all vertices of Gt. Let B be a bound on the

non-negative losses `t. Then, there exists a constant CElp > 0 such that for any
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Algorithm 1 The ELP Algorithm. In the pseudocode, ∆N denotes the N -
dimensional simplex: ∆N = {s ∈ [0, 1]N |

∑N
i=1 si = 1}.

Parameters: Neighborhood graphs Gt = (F , Et), 1 ≤ t ≤ T , a bound B on the
losses.
Initialization: N = |F|, β =

√
(lnN)/(3B2

∑
t χ(Gt)), w0,j = 1/N , 1 ≤ j ≤

N .
for t = 1 to T do

Let st = arg maxq∈∆N
min1≤i≤N

∑
(i,k)∈Et qk.

Let s∗t = min1≤i≤N
∑

(i,k)∈Et st,i.
Let γt = βB/s∗t .
Choose action it randomly from probability mass function

pt,i = (1− γt)
wt,i∑N
j=1wt,j

+ γtst,i (1 ≤ i ≤ N).

Receive loss (`t,k)(it,k)∈Et .
Compute g̃t,j =

B−`t,j∑
(l,j)∈Et

pt,l
if (j, it) ∈ Et, and g̃j(t) = 0 otherwise.

wt+1,j = wt,j exp(βg̃t,j), 1 ≤ j ≤ N .
end for

T > 0, the regret of Algorithm 1 when competing against the best predictor using

the algorithm satisfies

E[RT ] ≤ CElpB

√√√√ln |F|
T∑
t=1

χ(Gt) . (2.2)

In particular, the algorithm’s computational cost at any given round is poly(|F|).

The algorithm of Mannor and Shamir (2011) builds on the exponential weights

algorithm, which they call ELP for exponential weights with linear programming,

but modifies it to explore less, and so exploit the information structure of the prob-

lem. The exploration distribution is found by solving a linear program, explaining

the name of the algorithm.

In our case Et ≡ E
.
= {(f, g) | s(g) ≤ s(f)}. Thus, χ = 2d. Further, B =

‖c1:d‖1 + maxt≥1,y∈Y `t(y)
.
= C1 + `max (where C1 = ‖c1:d‖1). It is important to

note that the loss of each expert in Algorithm 1 is sum of the prediction loss and the

cost of the features that the expert needs to see. Plugging these into (2.2) gives

E[RT ] ≤ CElp(C1 + `max)
√

2dT ln |F| . (2.3)
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Now, let us consider the case when F is not finite. Fix F ′ ⊂ {f | f : X → Y},

T > 0. Introduce the worst-case average approximation error of F using F ′ over

sequences of length T as follows:

AT (F ′,F) = max
x∈XT

sup
f∈F

inf
f ′∈F ′

1

T

T∑
t=1

dY(f(xt), f
′(xt)) .

The average error can also be viewed as a (normalized) dY-“distance” between the

vectors (f(xt))1≤t≤T and (f ′(xt))1≤t≤T . For a given positive number α, define the

worst-case empirical covering number of F at level α and horizon T > 0 by

NT (F , α) = min{ |F ′| | F ′ ⊂ {f | f : X → Y}, AT (F ′,F) ≤ α }.

With these definitions, we have the following result:

Theorem 2.5.2. Assume that the losses (`t)t≥1 are L-Lipschitz (cf. (2.1)). Then, for

every α > 0, there exists an algorithm such that for any T > 0, knowing T , the

regret satisfies

E[RT ] ≤ CElp(C1 + `max)
√

2dT lnNT (F , α) + TLα .

In particular, by choosing α = 1/(TL), we have

E[RT ] ≤ CElp(C1 + `max)
√

2dT lnNT (F , 1/(TL)) + 1 .

Proof. Consider the algorithm that starts by constructing a worst-case covering Fα
of F at level α. The regret relative to the best choice of f ∗ ∈ F in hindsight can

then be written as the regret relative to the best approximation of f ∗ within Fα,

plus the error of approximating f ∗ by f . The latter, by the definition of Fα and

thanks the Lipschitzness of the losses, is bounded by TLα, while the former can

be bounded using (2.3). This gives rise to the first stated regret bound. The second

bound is obtained by simply plugging in the definition of α = 1/(TL) in the first

bound.

We note in passing that using the well-known “guess and double trick” (Auer

et al., 2002b), the requirement that the algorithm has to know the horizon T at the
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beginning can be removed at the expense of increasing the constant multiplier in

the regret bound.

In order to turn the above bound into a concrete bound, one must investigate the

behavior of the metric entropy, lnNT (F , α). In many cases, the metric entropy can

be bounded independently of T . In fact, often, lnNT (F , α) = D ln(1 + c/α) for

some c,D > 0. When this holds, D is often called the “dimension” of F and we

get that

E [RT ] ≤ CElp(C1 + `max)
√

2dTD ln(1 + cTL) + 1 .

As a specific example, we will consider the case of real-valued linear functions

over a ball in a Euclidean space with weights belonging to some other ball. For a

normed vector V with norm ‖ · ‖, x ∈ V , r ≥ 0, let B‖·‖(x, r) = {v ∈ V | ‖v‖ ≤ r}

denote the ball in V centered at x that has radius r. For X ⊂ Rd,W ⊂ Rd, let

F ⊂ Lin(X ,W)
.
= {g : X → R | g(·) = 〈w, · 〉 , w ∈ W} (2.4)

be the space of linear mappings from X to reals with weights belonging toW . We

have the following lemma:

Lemma 2.5.1. Let X,W > 0, dY(y, y′) = |y − y′|, X ⊂ B‖·‖(0, X) and W ⊂

B‖·‖∗(0,W ). Consider a set of real-valued linear predictors F ⊂ Lin(X ,W).

Then, for any α > 0,

ln+NT (F , α) ≤ d ln(1 + 2WX/α).

Proof. An appropriate covering of F can be constructed as follows: Consider an

ε-covering W ′ of the ball W with respect to ‖ · ‖∗ for some ε > 0 (i.e., for any

w ∈ W there exists w′ ∈ W ′ such that ‖w − w′‖∗ ≤ ε). Then,

F ′ = {g : X → R | g(x) = 〈x,w 〉, w ∈ W ′} (2.5)

is an εX-covering of F . To see this pick any f ∈ F . Thus, f(x) = 〈w, x 〉 for

some w ∈ W . Let w′ be the vector inW ′ that is closest to w. Thus, ‖w−w′‖∗ ≤ ε.

Let g ∈ F ′ be given by g(x) = 〈x,w′ 〉. Then,

1

T

T∑
t=1

|f(xt)− g(xt)| =
1

T

T∑
t=1

|〈w − w′, xt 〉| ≤ εX, (2.6)
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where the last step required Hölder’s inequality and that xt ∈ X means ‖xt‖ ≤ X .

This argument thus shows that, to get an α-covering of F , we need an ε-covering of

W with ε = α/X and therefore NT (F , α) ≤ N (W , α/X). As it is well known,9

N (W , ε) ≤ (2W/ε+ 1)d and thus ln+NT (F , α) ≤ d ln(1 + 2WX/α).

The previous lemma, together with Theorem 2.5.2, immediately gives the fol-

lowing result:

Corollary 2.5.1. Assume thatF ⊂ Lin(X ,W),X ⊂ B‖·‖(0, X),W ⊂ B‖·‖∗(0,W )

for some X,W > 0. Further, assume that the losses (`t)t≥1 are L-Lipschitz. Then,

there exists an algorithm such that, for any T > 0, the regret of the algorithm will

satisfy,

E [RT ] ≤ CElp(C1 + `max)
√
d2dT ln(1 + 2TLWX) + 1 .

If one is given an a prior bound p on the maximum number of features that

can be used in a single round (allowing the algorithm to use fewer than p features,

but not more) then 2d in the above bound could be replaced by
∑

1≤i≤p
(
d
i

)
≈ dp,

where the approximation assumes that p < d/2. Such a bound on the number of

features available per round may arise from strict budgetary considerations. When

dp is small, this makes the bound non-vacuous even for small horizons. In addition,

in such cases the algorithm also becomes computationally feasible. It remains an

interesting open question to study the computational complexity when there is no

restriction on the number of features used.

2.5.2 Linear prediction with quadratic losses

In this section we study the problem under the assumption that the predictors have

a linear form, i.e., F = Lin(W ,X )
.
= {g : X → R | g(x) = 〈x,w 〉, w ∈ W},

where in our caseW = {w ∈ Rd | ‖w‖∗ ≤ wlim} ⊂ Rd and X = {x ∈ Rd | ‖x‖ ≤

xlim} ⊂ Rd and the prediction loss is quadratic,

`t(y) = (y − yt)2 ,

9The proof of this is given in Section B.1.1 in the appendix for the convenience of the reader.
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where |yt| ≤ xlimwlim. Thus, choosing a predictor is akin to selecting a weight

vector wt ∈ W , as well as a binary vector st ∈ G ⊂ {0, 1}d that encodes the

features to use in round t. Let s(w) denote the binary vector whose ith component

is one if ith component of w is non-zero and otherwise zero. We may also look at

this binary vector as a subset of features in which w is non-zero. The prediction for

round t is then ŷt = 〈wt, st�xt 〉, and the prediction loss suffered is (ŷt−yt)2. The

set G is an arbitrary non-empty, a priori specified subset of {0, 1}d that allows the

user of the algorithm to encode extra constraints on what subsets of features can be

selected. Note that G might be all 2d subsets of {0, 1}d. Further, it is assumed that

xt ∈ X
.
= {x ∈ Rd | ‖x‖ ≤ xlim}.

In this section we show, that in this case, a regret bound Õ(
√

poly(d)T ) is

possible. The key idea, which permits the improvement of the regret bound, is that

a randomized choice of a weight vector Wt (and thus, of a subset) helps one to

construct unbiased estimates of the losses `t(〈w, s � xt 〉) for all weight vectors

w and all subsets s ∈ G under some mild conditions on the distribution of Wt.

The construction of such unbiased estimates is possible, even though some feature

values are unobserved, because of the special algebraic structure of the prediction

and loss functions. A similar construction has appeared in a different context (Cesa-

Bianchi et al., 2010).

The construction works as follows. Define the d × d matrix, Xt by (Xt)i,j =

xt,ixt,j (1 ≤ i, j ≤ d). Expanding the loss of the prediction ŷt = 〈w, xt 〉, we get

that the prediction loss of using w ∈ W is

`t(w)
.
= `t(〈w, xt 〉) = w>Xtw − 2w>xtyt + y2

t ,

where, with a slight abuse of notation, we have introduced the loss function `t :

W → R (we’ll keep abusing the use of `t by overloading it based on the type of its

argument). Clearly, it suffices if we construct unbiased estimates of `t(w) for any

w ∈ W .

We will use a discretization approach. Therefore, assume that we are given a

finite subsetW ′ ofW (that will be constructed later). In each step t, our algorithm

will choose a random weight vector Wt from a probability distribution supported
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onW ′. Let pt(w) be the probability of selecting the weight vector, w ∈ W ′.

For 1 ≤ i ≤ d, let

qt(i) =
∑

w∈W ′:i∈s(w)

pt(w) ,

be the probability that s(Wt) will contain i,10 while for 1 ≤ i, j ≤ d, let

qt(i, j) =
∑

w∈W ′:i,j∈s(w)

pt(w) ,

be the probability that both i, j ∈ s(Wt).11 Assume that pt(·) is constructed such

that qt(i, j) > 0 holds for any time t and indices 1 ≤ i, j ≤ d. This implies that

qt(i) > 0 for all 1 ≤ i ≤ d.

Define the vector x̃t ∈ Rd and matrix X̃t ∈ Rd×d by the following equations:

x̃t,i =
1{i∈s(Wt)}xt,i

qt(i)
, (X̃t)i,j =

1{i,j∈s(Wt)}xt,ixt,j
qt(i, j)

. (2.7)

and observe that E [x̃t | pt] = xt and E
[
X̃t | pt

]
= Xt. Further, notice that both x̃t

and X̃t can be computed based on the information available at the end of round t,

i.e., based on the feature values (xt,i)i∈s(Wt). Now, define the estimate of prediction

loss

˜̀
t(w) = w>X̃tw − 2w>x̃tyt + y2

t . (2.8)

Note that yt can be readily computed from `t(·), which is available to the algorithm

(equivalently, we may assume that the algorithm implicitly observed yt). Due to the

linearity of expectation, we have E
[
˜̀
t(w)|pt

]
= `t(w). That is, ˜̀

t(w) provides an

unbiased estimate of the prediction loss `t(w) for any w ∈ W . Hence, by adding

feature cost term, we get ˜̀
t(w)+〈 s(w), c 〉 as an estimate of the risk that the learner

would have suffered at round t had it chosen the weight vector w.

The algorithm that we propose is based on the standard EXP3 algorithm. Let

η > 0 be the learning parameter (to be chosen later). For each w ∈ W ′, the learner

updates a weight ut(w) with an exponential update-rule using the estimated losses:

ut+1(w) = ut(w)e−η(˜̀
t(w)+〈 c,s(w) 〉), w ∈ W ′ .

10That is, the ith feature will be used
11Note that, following our earlier suggestion, we view each d-dimensional binary vectors as a

subset of {1, . . . , d}.
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Algorithm 2 The LQDEXP3 Algorithm
Parameters: Real numbers 0 ≤ η, 0 < γ ≤ 1,W ′ ⊂ W finite set, a distribution
µ overW ′, Real number T > 0.
Initialization: u1(w) = 1 (w ∈ W ′).
for t = 1 to T do

Draw Wt ∈ W ′ from the probability mass function

pt(w) = (1− γ)
ut(w)

Ut
+ γµ(w), w ∈ W ′ .

Obtain the features values, (xt,i)i∈s(Wt).
Predict ŷt =

∑
i∈s(Wt)

wt,ixt,i.
for w ∈ W ′ do

Update the distribution (cf. Equations (2.8) for the definitions of ˜̀
t(w)):

ut+1(w) = ut(w)e−η(˜̀
t(w)+〈 c,s(w) 〉), w ∈ W ′ .

end for
end for

The probability distribution pt is obtained from the weights (ut(·))w∈W ′ after nor-

malization and mixing the resulting distribution with some “exploration distribu-

tion”, (µ(·))w∈W ′ . Let 0 < γ < 1 be the “mixing” or “exploration” parameter (to

be chosen later), and let Ut =
∑

w∈W ′ ut(w). Then,

pt(w) = (1− γ)
ut(w)

Ut
+ γµ(w), w ∈ W ′ .

Note that if µ is such that, for any 1 ≤ i, j ≤ d,
∑

w∈W ′:i,j∈s(w) µ(w) > 0, then

qt(i, j) > 0 will be guaranteed for all time steps.

The pseudocode of the resulting algorithm, which we call LQDEXP3, is given

as Algorithm 2. In the name of the algorithm, LQ stands for Linear prediction,

Quadratic losses and D stands for discretization. Define

EG = max
s∈G

sup
w∈W:‖w‖∗=1

‖w � s‖∗, (2.9)

ylim = wlimxlim . (2.10)

Now we are ready to state the main theorem of this section.

Theorem 2.5.3. Let wlim, xlim > 0, c ∈ [0,∞)d be given, W ⊂ B‖·‖∗(0, wlim)

convex, X ⊂ B‖·‖(0, xlim) and fix T ≥ 1. Then, there exist a parameter setting
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for LQDEXP3 such that the following holds: Let RT denote the regret of LQD-

EXP3 against the best linear predictor from Lin(W ,X ) when LQDEXP3 is used

in an online free-label probing problem defined with the sequence ((xt, yt))1≤t≤T

for ‖xt‖ ≤ xlim, |yt| ≤ wlimxlim, 1 ≤ t ≤ T , quadratic losses `t(y) = (y − yt)2,

and feature-costs given by the vector c. Then,

E [RT ] ≤ C
√
Td (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + 4y2

lim + ‖c‖1) ln(EGT ) ,

where C > 0 is a universal constant (i.e., the value of C does not depend on the

problem parameters).

The actual parameter setting to be used with the algorithm is constructed in the

proof.

Before stating the proof, let us state a lemma that we will need in the proof of

this theorem. This lemma, which is essentially extracted from the paper by Auer

et al. (2002a), gives a bound on the regret of an exponential weights algorithm as a

function of some “statistics” of the losses fed to the algorithm:

Lemma 2.5.2. Fix the integers N, T > 0, the real numbers 0 < γ < 1, η > 0 and

let µ be a probability mass function over the set N = {1, . . . , N}. Let `t : N → R

be a sequence of loss functions such that

η`t(i) ≥ −1 (2.11)

for all 1 ≤ t ≤ T and i ∈ N . Define the sequence of functions (ut)1≤t≤T , (pt)1≤t≤T

(ut : N → R+, pt : N → [0, 1]) by ut ≡ 1,

ut(i) = exp

(
η
t−1∑
s=1

`s(i)

)
, i ∈ N, 1 ≤ t ≤ T,

and

pt(i) = (1− γ)
ut(i)∑
j∈N ut(j)

+ γµ(i), i ∈ N, 1 ≤ t ≤ T.

Let L̂T =
∑T

t=1

∑
j∈N pt(j)`t(j) and LT (i) =

∑T
t=1 `t(i). Then, for any i ∈ N ,

L̂T − LT (i) ≤ lnN

η
+ η

T∑
t=1

∑
j∈N

pt(j)`
2
t (j) + γ

T∑
t=1

∑
j∈N

µ(j) {`t(j)− `t(i)} .
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The proof is provided in Section B.1.2.

Proof of Theorem 2.5.3. Fix the sequence of ((xt, yt))1≤t≤T as in the statement of

the theorem and let `t(y) = (y − yt)
2. Remember that (with a slight abuse of

notation), the loss of using weight w ∈ W in time step t is

`t(w) = `t(〈w, xt 〉), 1 ≤ t ≤ T .

Then total cumulative loss of the algorithm is

L̂T =
T∑
t=1

[〈 s(Wt), c 〉+ `t(Wt)] ,

where s(Wt) ∈ G ⊂ {0, 1}d is the subset of features selected at time step t and Wt

are the random prediction weights at the same time step. Let

LT (w) = T 〈 s(w), c 〉+
T∑
t=1

`t(w), w ∈ Rd,

be the total loss of using the weight vector w. Then the regret of LQDEXP3 up to

time T on the sequence ((xt, yt))1≤t≤T can be written as

RT = max
w∈W

RT (w) ,

where

RT (w)
.
= L̂T − LT (w), w ∈ Rd.

Using the discretized weight vector set,W ′, the regret can be written as

RT = max
w∈W

RT (w)

=

{
L̂T − min

w′∈W ′
LT (w′)

}
+

{
min
w′∈W ′

LT (w′)− min
w∈W

LT (w)

}
=

{
L̂T − min

w′∈W ′
LT (w′)

}
+ max

w∈W
min
w′∈W ′

{LT (w′)− LT (w)} . (2.12)

Now, fix w ∈ W . By construction,W ′ is such that, for any s ∈ {0, 1}d, there exists

some vector w′ ∈ W ′ such that s(w′) = s. Then,

min
w′∈W ′

{LT (w′)− LT (w)} ≤ min
w′∈W ′:s(w′)=s(w)

{LT (w′)− LT (w)}

= min
w′∈W ′:s(w′)=s(w)

T∑
t=1

`t(w
′)− `t(w).
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Let us first deal with the second term. A simple calculation shows that `t : [−ylim, ylim]→

R where `t(y) = (y − yt)2 is 4ylim-Lipschitz. Hence, as long as w′ ∈ W ′ is such

that s(w′) = s(w),

LT (w′)−LT (w) =
T∑
t=1

`(〈w′, xt 〉, yt)−`t(〈w, xt 〉, yt) ≤ 4Tylim

(
1

T

T∑
t=1

|〈w − w′, xt 〉|

)
.

For s ∈ G, defineW ′(s) = {w ∈ W ′ | s(w) = s} and W (s) = {w ∈ W | s(w) =

s}. For α > 0, let Wα(s) ⊂ W be the minimal cardinality subset ofW(s) such that

Lin(X ,Wα(s)) is an α-cover of Lin(X ,W(s)) w.r.t. dY(y, y′) = |y − y′|. Choose

W ′ = ∪s∈GWα(s) .

Then, by construction,

min
w′∈W ′

LT (w′)− LT (w) ≤ 4Tylimα (2.13)

and since this holds for any w ∈ W , we get that the same bound applies to

maxw∈W minw′∈W ′ LT (w′) − LT (w). Before we turn to bounding the first term

of (2.12), let us bound the cardinality ofW ′, which we will need later.

Notice that

|W ′| ≤
∑
s∈G

|Wα(s)| ≤ |G|max
s∈G
|Wα(s)|.

Now, note also that, thanks to the definition ofEG (cf. (2.9)), for any s ∈ G, w ∈ W ,

‖w‖∗ ≤ EG · ‖w�s‖∗. LetWα denote a minimum cardinality α-cover ofW . Then,

for any s ∈ G, Lin(X ,Wα/EG) is an α-cover of Lin(X ,W(s)) w.r.t. dY(y, y′) =

|y−y′|. Hence, by the minimum cardinality property ofWα(s), we have |Wα(s)| ≤

|Wα/EG | and, by Lemma 2.5.1, we get that ln+ |Wα(s)| ≤ d ln(1 + 2EGylim/α).

Hence,

ln |W ′| ≤ ln(|G|) + d ln(1 + 2EGylim/α). (2.14)

Let us now turn to bounding the expectation of the first term of (2.12). We have

E
[
L̂T − min

w∈W ′
LT (w)

]
= max

w∈W ′
E
[
L̂T − LT (w)

]
,

where we have exploited that LT (w) is deterministic. Therefore, it suffices to bound

E
[
L̂T − LT (w)

]
for any fixed w ∈ W ′. Thus, fix w ∈ W ′.
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By the construction of ˜̀
t, E

[
˜̀
t(w)

]
= `t(w) holds. Further, it also holds that

E
[
˜̀
t(Wt)

]
= E [`t(Wt)] (2.15)

Indeed, by the tower rule,

E
[
˜̀
t(Wt)

]
= E

[
E
[
˜̀
t(Wt)|pt

]]
and

E
[
˜̀
t(Wt)|pt

]
=
∑
w′∈W ′

pt(w
′)E
[
˜̀
t(w
′)|pt

]
=
∑
w′∈W ′

pt(w
′)`t(w

′).

The expectation of the right-hand side is E [`t(Wt)], while the expectation on the

left-hand side (by our earlier remark) is equal to E
[
˜̀
t(Wt)

]
. Therefore, (2.15)

holds. Introduce ˆ̀̃
t(w) = ˜̀

t(w) + 〈 s(w), c 〉. Then, we see that it suffices to bound

E
[
L̂T − LT (w)

]
= E

[
T∑
t=1

∑
w′∈W ′

pt(w
′)ˆ̀̃

t(w
′)−

T∑
t=1

ˆ̀̃
t(w)

]
.

Now, by Lemma 2.5.2, under the assumption that 0 < γ ≤ 1, 0 < η are such

that for any w′ ∈ W ′ , 1 ≤ t ≤ T

η ˆ̀̃
t(w
′) ≥ −1 (2.16)

holds, we have

T∑
t=1

∑
w′∈W ′

pt(w
′)ˆ̀̃

t(w
′)−

T∑
t=1

ˆ̀̃
t(w)

≤ ln |W ′|
η

+ η

T∑
t=1

∑
w′∈W ′

pt(w
′)ˆ̀̃2

t (w
′) + γ

T∑
t=1

∑
w′∈W ′

µ(w′)(ˆ̀̃
t(w
′)− ˆ̀̃

t(w)).

Let us assume for a moment that η, γ can be chosen to satisfy Lemma 2.5.2 condi-

tions – we shall return to the choice of these parameters soon. Taking expectations

of both sides of the last inequality, we get

E
[
L̂T − LT (w)

]
≤ ln |W ′|

η
+ η

T∑
t=1

∑
w′∈W ′

E
[
pt(w

′)ˆ̀̃2
t (w

′)
]

+ γ

T∑
t=1

∑
w′∈W ′

µ(w′)(`t(w
′) + 〈 s(w′), c 〉),
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where we have used that E
[
ˆ̀̃
t(w)

]
= `t(w) + 〈 s(w), c 〉 ≥ 0. Thus, we see that

it remains to bound E
[
pt(w

′)ˆ̀̃2
t (w

′)
]
. For this, we use the following lemma whose

proof is provided in Section B.1.3:

Lemma 2.5.3. LetW ′, ˜̀
t, pt be as in LQDEXP3. Also let W∞ = supw∈W ‖w‖∞

and X1 = supx∈X ‖x‖1. Then, the following equation holds:∑
w∈W ′

p(w)E
[
ˆ̀̃2(w) | p

]
≤ (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + y2

lim + ‖c‖1).

It remains to bound
∑

w′∈W ′ µ(w′) (`t(w
′) + 〈 s(w′), c 〉). Because of the bounds

on weight vectors inW ′ and ((xt, yt))(1≤t≤T ), we know that `t(w′) + 〈 s(w′), c 〉 ≤

4y2
lim + ‖c‖1. Combining the inequalities obtained so far, we get

E
[
L̂T − LT (w)

]
≤ ln |W ′|

η

+ η(4y2
lim + ‖c‖1)(W 2

∞X
2
1 + 2ylimW∞X1 + y2

lim + ‖c‖1)

+ γT (4y2
lim + ‖c‖1).

(2.17)

Thus, it remains to select η, γ such that the earlier imposed conditions, amongst

them (2.16), hold and the above bound on the expected regret is minimized. To

ensure η ˆ̀̃
t(w) ≥ −1, we start with a lower bound on ˜̀

t(w):

˜̀
t(w) = w>X̃tw − 2w>x̃t yt + y2

t

≥ w>X̃tw − 2w>x̃t yt

=
d∑

i,j=1

wiwj(X̃t)i,j − 2yt

d∑
j=1

wjx̃t,j

≥ −
∑

i,j 1{i∈s(w)}1{j∈s(w)}|xt,ixt,jwiwj|
γ

− 2ylim

∑
i 1{i∈s(w)}|xt,iwi|

γ

≥ −‖w‖
2
∗‖xt‖2

γ
− 2ylim

‖w‖∗‖xt‖
γ

≥ −3y2
lim

γ
.

The above derivation used the fact that µ is chosen such that qt(i) ≥ γ and qt(i, j) ≥

γ for all 1 ≤ i, j ≤ d. To ensure that, we can set the probability distribution µ to be

zero for all predictors except the one that observe all the features. Thus, as long as
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3ηy2
lim ≤ γ, it follows that (2.16) holds. To minimize (2.17), we choose

γ = 3ηy2
lim (2.18)

to get

E
[
L̂T − LT (w)

]
≤ ln |W ′|

η

+ η(4y2
lim + ‖c‖1)(W 2

∞X
2
1 + 2ylimW∞X1 + 4y2

lim + ‖c‖1) .

Using η =
√

ln |W ′|
(4y2lim+‖c‖1)(W 2

∞X
2
1+2ylimW∞X1+4y2lim+‖c‖1)

, we get

E
[
L̂T

]
− LT (w)

≤ 2
√
T (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + 4y2

lim + ‖c‖1) ln |W ′| .

Noting that here w ∈ W ′ was arbitrary, together with the regret decomposition

(2.12), the bound (2.13) on the regret arising from discretization, the bound (2.14)

on ln |W ′| and that ln |G| ≤ d ln 2, give

E [RT ]

≤ 2
√
T (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + 4y2

lim + ‖c‖1) ln |W ′|+ 4T ylimα

≤ 2
√
Td (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + 4y2

lim + ‖c‖1) ln(2 + 4EGylim/α)

+ 4T ylimα .

Choosing α = ylimT
−1/2, we get the bound

E [RT ] ≤ C
√
Td (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + 4y2

lim + ‖c‖1) ln(EGT ) .

(2.19)

for some constant C > 0.

2.6 Lower bound for Free-Label Probing with Lin-
ear Predictors

In this section, we show that there exists an online free label probing game with

linear predictors and quadratic losses such that the expected regret of any algorithm

is Ω(
√
Td). So the regret bound provided in the previous section is tight within

logarithmic factors in terms of the number of rounds and the dimension of data.
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Theorem 2.6.1. Given d > 0, T ≥ 4d
8 ln(4/3)

, ε > 0, for the following set of parame-

ters

‖wt‖1 ≤ 1 , ‖xt‖∞ ≤ 1 , |yt| ≤ 1 , c = ε× 1 ∈ Rd ,

and loss function `t(wt) = (w>t xt − yt)
2 + 〈 s(wt), c 〉 at round t, there exist a

sequence of ((xt, yt))1≤t≤T for the online free label probing with linear predictors

such that the regret of any algorithm can be lower bounded by

E[RT ] ≥
√

2− 1√
32 ln(4/3)

√
Td .

Proof. The idea of the proof is similar to Mannor and Shamir (2011, Theorem 4).

We will solve the problem of Multi-armed Bandits with d arms using an algorithm

that can solve free-label probing with examples having d features. We will use the

lower bound proved in Cesa-Bianchi and Lugosi (2006, Theorem 6.11) for Multi-

armed Bandit game. They showed a method of choosing the losses and proved

that there exist a universal constant CMAB such that no algorithm can achieve

an expected regret better than CMAB
√
Td in T rounds using d arms. In their

method, an adversary chooses one of the arms beforehand and assign a random

Bernoulli loss with parameter 1/2 + ε to that arm and a random Bernoulli loss

with parameter 1/2 to all other arms at each round. Then they proved that by

choosing ε =
√

(1/(8 ln(4/3))d/T , no algorithm can achieve an expected regret

bound better than CMAB
√
Td in T rounds. Note that they use the fact that losses

are in range [0, 1]. Without loss of generality we can add ε to all the losses and

assume that the losses are now in range [ε, 1 + ε] and their result still hold.

Now we explain how we can solve that problem using an algorithm that solves

free label probing game. More formally we will use the following lemma.

Lemma 2.6.1. Give any learner A for an online free-label probing game, there

exist a learner A′ for Multi-armed Bandit problem with the adversaries proposed

in Cesa-Bianchi and Lugosi (2006, Theorem 6.11) and an adversary for online

free-label probing game such that

E [RA′(T,MAB)]− 2d
√

(1/(8 ln(4/3)) ≤ E [RA(T,OFLP)] ,
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holds where RA′(T,MAB) is the regret of the learner A′ in the Multi-armed Bandit

problem with the defined adversary and RA(T,OFLP) is the regret of the learner

A in the online free-label probing game.

Proof. We define the adversary in the online free label probing game. The adver-

sary chooses yt = 1 for all the rounds. Note that the challenge is finding a weight

vector to predict the label and not only predicting the label. Consider the weight

vector ei that, for each i ∈ {1, 2, . . . , d} is a zero weight vector with a single one in

its ith element. The adversary then chooses one of the components v in advance and

sets xt,i to be a Bernoulli random variable with parameter one for every i 6= v and

sets xt,v to be a Bernoulli random variable with parameter 1/2 + ε. Note that this

component v is the same arm as the adversary in multi-arm bandit chooses. Now

we know that for each ei, the loss will be the cost of observing ith feature, which

is 1/2, and a prediction error, which is a Bernoulli random variable based on the

assignments to the features. So you can easily see a correspondence between ei and

ith arm in Multi-armed Bandit problem with the adversary defined in Cesa-Bianchi

and Lugosi (2006, Theorem 6.11).

Let RA(T,OFLP) denote the regret of the learner A in this online free-label

probing. We know that if we make the set of competitors smaller, the regret cannot

be increased. Note that we do not change the set of actions that algorithm A can

take. Let R∗A(T,OFLP) denote the regret of the learner A in this online free-label

probing when it competes only against ei weight vectors for all 1 ≤ i ≤ d. Since

we make the set of competitors smaller, we have

R∗A(T,OFLP) ≤ RA(T,OFLP) . (2.20)

Now consider the learner A that solves this online free-label probing game.

We will construct another algorithm A′ such that solves the Multi-armed Bandits

problem. Let It denote the chosen arm by A′ and `t,i denote the loss of arm i at

round t ≥ 1. Here are the different situations.

WhenA chooses wt = 0 ∈ Rd at round t,A′ chooses one of the arms randomly

in the Multi-armed Bandit problem. By this choice,A does not observe any feature

and predicts zero for the label. The expected regret at these types of rounds for A,
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is:

E [`t(0)− `t(ev)] = 1− (1/2 + E
[
(e>v xt − yt)2

]
= 1− (ε+ 1/2− ε) = 1/2 .

On the other hand, the expected regret of A′ in the game of Multi-armed Bandits

at each round is bounded by ε. By this we know that in the rounds that A chooses

wt = 0 ∈ Rd we get

E [`t,It − `t,v] = E [`t(eIt)− `t(ev)] ≤ ε = E [`t(wt)− `t(et)] , (2.21)

which means the regret of A′ is not going to be increased more that regret of A in

such rounds.

When A chooses a weight vector wt 6= 0 in the free-label probing game, A′

chooses all arms i in the bandit game whose corresponding ith component of wt

is not zero in the consecutive rounds. After finding all required component values

of x, it gives it to A as the feedback for calculating the loss. Note that the weight

vector chosen byA requires either one feature or more than one feature. As a result,

A′ plays the bandit games for T ′ rounds whileA plays the online free-label probing

game for T rounds. If wt needs only one feature, due to the way the choice of xt,i,

the minimizer of expected loss is exactly ei. Because if the ith component of wt

was α instead of one we get

E
[
(w>t xt − yt)2

]
= E

[
(αxt,i − 1)2

]
= P [xt,i = 0]× 1 + P [xt,i = 1]× (1− α)2 .

which achieves its minimum for α = 1. So we get Eq.(2.21) for these types of

rounds as well. Now if wt has more than one non-zero components, as we said A′

plays more rounds. At these extra rounds the expected regret ofA′ will be increased

by at most ε. However A is also paying for those extra features that it needs. Since

the cost of each feature is ε, we can conclude that the regret of A for all these extra

rounds is still less than or equal the regret ofA on the rounds that it chooses wt. Let

T ′ denote the random number of rounds that A′ is playing the bandits game. We

know that this number is bounded by dT since at each round A can choose at most

all the features. Putting the above results together with Eq.(2.21), we get

E [RA′(T
′,MAB)] ≤ E [R∗A(T,OFLP)] .
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Because the expected regret is increasing in the number of rounds (Mannor and

Shamir, 2011), we can use E [RA′(T,MAB)] ≤ E [RA′(T
′,MAB)] and also Eq.(2.20)

to get

E [RA′(T,MAB)] ≤ E [RA(T,OFLP)] .

Using the value of ε that Cesa-Bianchi and Lugosi (2006, Theorem 6.11) uses, we

get the lemma statement. Also T ≥ 4d
8 ln(4/3)

in the lemma statement guarantees that

ε ≤ 1/2 which was needed in the middle of the proof.

Using this lemma and also knowing that

E [RA′(T,MAB)] ≥
√
dT

√
2− 1√

32 ln(4/3)

based on the result of Cesa-Bianchi and Lugosi (2006, Theorem 6.11), we can

derive √
2− 1√

32 ln(4/3)

√
dT ≤ E [RA(T,OFLP)] .

2.7 Non-Free-Label Probing

Now we turn our attention to the problem with cd+1 > 0. Recall that the learner in

this problem does not necessarily see the loss function at the end of each round; but

if it does (i.e., st,d+1 = 1) it suffers an extra loss of cd+1 > 0 in that round. We will

see that these problems are inherently harder than the ones with free labels. For this

setting, we use an ε-greedy style algorithm.

We first consider the finitely many experts case since we can easily reduce the

other case to this case in non-free-label probing with the same method we used in

the previous sections.

The idea of the algorithm is very similar to the algorithm “Random Forecaster

with a Revealing Action” (Cesa-Bianchi et al., 2006, Figure 2) that plays exponen-

tial weights on the experts and it observes the losses with probability γ. At time t,

it selects ft ∈ F based on the distribution over experts. It then draws a Bernoulli

random variable Zt with preset parameter γ. If this Zt = 0, the learner then requests
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Algorithm 3 Revealing action algorithm for non-free-label online probing
Parameters: Real numbers 0 ≤ η, γ ≤ 1, Set of experts F .
Initialization: u1(f) = 1 (f ∈ F).
for t = 1 to T do

Draw Ft ∈ F from the probability mass function

pt(f) =
ut(f)∑
f∈F ut(f)

, f ∈ F .

Draw a Bernoulli random variable Zt such that P [Zt = 1] = γ.
if Zt = 0 then
St = (s(Ft), 0) (i.e., st,d+1 = 0).
Obtain the features values, (xt,i)i∈s(Ft).
Predict ŷt = Ft(xt).

else
St = 1 ∈ Rd+1 (i.e., all d+ 1 components are one).
Observe all the features of xt.
Predict ŷt = Ft(xt).
Receive the true label yt.

end if
for each f ∈ F do

˜̀
t(f) = 1{Zt=1}

〈 s(f),c1:d 〉+`t(ŷt)
γ

.
ut+1(f) = ut(f) exp(−η ˜̀

t(f)).
end for

end for

only the features that are “needed”. Otherwise, if Zt = 1, the learner requests the

label and also asks for all the features (that is, st = 1 ∈ Rd+1). We will call these

rounds exploration rounds. The extra loss suffered in these rounds is the cost of the

label (i.e., cd+1) and the cost of features whose st coordinate is one.

In exploration rounds, the losses of all actions can be calculated, and thus the

weights of all actions will be updated via importance weighting; see Algorithm 3.

The following lemma is an upper bound on the expected regret achieved by

Algorithm 3.

Lemma 2.7.1. Given any non-free-label online probing with finitely many experts,

Algorithm 3 with appropriately set parameters achieves

E[RT ] ≤ CT 2/3(`2
max‖c‖1 ln |F|)1/3
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for some constant C > 0.

Proof. The regret has two additive terms: the extra cost we pay in exploration

rounds and the regret of the exponential weighted algorithm. We bound each one

separately to get the total regret bound; see Section B.1.4 in the appendix.

Algorithm 3 works for any prediction loss function and any finite set of experts.

Also the regret is not exponential with respect to dimension. However it has to keep

track of all experts and update each of them at each round which means the running

time at each round is O(|F|).

Now we solve non-free-label probing in the case of linear predictor experts.

When F is the set of linear predictors (cf. (2.4)), since |F| appears under logarithm

in the above bound, we can easily use the set F ′ (cf. (2.5)) introduced in previous

section as the set of function for Algorithm 3. The following theorem states the

regret bound for the case of linear predictors using this technique.

Theorem 2.7.1. Given any non-free-label online probing with linear predictor ex-

perts and Lipschitz prediction loss function with constant L, Algorithm 3 with ap-

propriately set parameters running on Dα achieves

E[RT ] ≤ C T 2/3
[
`2

max‖c‖1 d ln(TLWX)
]1/3

for some constant C > 0.

Proof. We have to add approximation error from Equation (2.6) for all rounds to

the regret in Lemma 2.7.1 and substitute size |F| with NT (F , α) using Lemma

B.1.1 and optimize over α. Using α = 1
LT

, we get the desired bound.

We obtain the expected regret bound for the algorithm but like before, this al-

gorithm must track all of the experts, which makes this algorithm quite impractical.

Since the number of the experts are O(T d). This will open to find a practical algo-

rithm that achieves the same regret bound.

Finally, the regret bound in non-free-label probing is still in Õ(T 2/3) as opposed

to free-label probing that has Õ(
√
T ) regret bound. In the next section we provide a
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lower bound for the expected regret non-free-label probing that proves this problem

cannot be solved with better than O(T 2/3) regret bound.

2.8 Lower Bound for the Non-Free-Label Probing12

In this section we present a lower bound on the expected regret of a non-trivial

class of non-free-label probing problems. As we see, this lower bound is within a

logarithmic factor of the upper bound from Section 2.7.

Theorem 2.8.1. Let the prediction loss function be ˆ̀
t(y) = (yt−y)2 (the quadratic

loss). There exists a constant C such that for any non-free-label probing with linear

predictor expert and cj > (1/d)
∑d

i=1 ci −
1
2d

for every j = 1, . . . , d , the expected

regret of any algorithm can be lower bounded by

E[RT ] ≥ C(cd+1d)1/3T 2/3 .

Proof. Here, we propose a set of strategies whose action losses are close to each

other. However one of them is slightly better and we will show that no algorithm

can find the optimal action without suffering O(T 2/3) regret; see Section B.1.5 in

the appendix.

12Joint work with Gábor Bartók
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Chapter 3

CAO in Batch Framework

This chapter focuses on applying CAO to the batch learning task. We can look

at classifying the objects on conveyor belt as a batch problem. We have several

training instances, with known labels. However extracting features from the training

samples takes time. Now the learner not only should find an accurate predictor but

also it should minimize the time it needs to extract the features in the training phase.

So it has to decide wisely which feature to observe in the training phase. There are

several different versions of this framework: For example we can have a hard limit

for the total time of observing features throughout the training phase or we can

have a time limit for extracting features from each instance in the training phase.

Section 3.1 shows more variations of this problem and previous results. Section 3.2

shows how a low-regret online learning algorithm can be used to find a predictor

whose risk (including the cost of purchasing the features) is almost as good as that

of the predictor with the smallest expected total risk over a pre-specified set of

predictors. Note that the treatment in Section 3.2 is based on both folklore results,

though we were specifically inspired by the clean explanation of these results in the

thesis of Shalev-Shwartz (2007).

3.1 Batch Framework

In this section, we explain the batch framework and fit our problem in this frame-

work. The standard “batch learning” framework has a pure explore phase, of giving

the learner a set of labeled, completely specified examples, followed by a pure
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exploit phase, where the learned predictor is asked to predict the label for novel

instances. Notice those standard learners are not required (nor even allowed) to de-

cide which information to gather. By contrast, “active (batch) learning” requires the

learner to identify which information to collect (Settles, 2009). Most such active

learners begin with completely specified, but unlabeled instances; they then pur-

chase labels for a subset of the instances. But our problem is more similar to the

“active feature-purchasing learning” or “budgeted learning” framework (Greiner

et al., 2002; Lizotte et al., 2003), which requires the learner to decide which fea-

ture values, of which instances, to pay to observe. This is extended in Kapoor

and Greiner (2005) to a version that requires the eventual predictor (as well as the

learner) to pay to see feature values as well. In this sense, in our problem we are

also looking for the predictor that needs to pay for the required features at the test

time as well and the goal is finding such a predictor with minimal risk while keeping

the training cost small.

Following this, Cesa-Bianchi et al. (2010) divide LAO, which we described in

Section 2.2 in the batch settings, into different categories – global budget (i.e., the

total number of the features in the training phase is limited), local budget (i.e., the

observed features from each individual example is limited) and prediction budget

(i.e., the learner has access to the entire dataset during learning but can access a

limited number of features during prediction). They also provide theoretical upper

bounds and lower bound of achievable loss for these problems. However they just

focused on the hard budget constraints and they do not combine the loss with the

cost that learner has to pay for the features. Also they assume that every feature has

the same cost, which means the constraint reduces to restricting the total number of

observed features. In our problem though, we have a cost vector that assigns differ-

ent costs to different features, and also define the total loss or risk as the weighted

sum of the prediction loss and the cost of the required features for the predictor. So

by minimizing the risk, we are actually balancing between prediction loss and cost

of the features, and not imposing hard limit for either.

Another work, Deng et al. (2007), employs Multi-armed Bandit algorithms (see

Section 2.2) and proposes an algorithm for the global limit budget that suggest
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the order of features from different examples to observe, based on the amount of

information each gives to the learner. Although they do not provide any theoreti-

cal proof for their algorithm, they try different reward functions for the features and

show some successful experimental results. Dulac-Arnold et al. (2012) combine the

cost for the observing features with the prediction loss and show some equivalence

between the resulting objective function with the reward function in a Markov De-

cision Process and address the problem of prediction budget case. Also they extend

the problem of prediction budget when we have a hard budget for learning phase

as well. However they do not show any convergence proof to the optimal solutions

for their algorithm. We do this by extending our results in the online framework,

using batch to online conversion methods to bound the quality of a predictor that

works well on stochastically generated data at the end in our framework and show

some expected and high probability theoretical bound. We do not address the prob-

lem of having a hard budget either in training phase nor in the prediction phase in

this work though. However we theoretically bound the total loss of our predictor,

which is sum of the costs and prediction losses in the training phase compared to

the best possible predictor, and using this we can find a bound on the risk for the

final predictor; see Section 3.2.

3.2 From regret bounds to generalization bounds

In this section, we use the results in Chapter 2 to investigate the statistical analogue

of the online learning problem in the case when label cost is zero to be able to derive

the bounds for the batch settings. For this section we fix a set of admissible loss

functions L ⊂ {` | ` : Y → R}. The results in this section use well-known ideas

(cf. Section 5 of Shalev-Shwartz (2011), or Appendix B of Shalev-Shwartz (2007)

and the references therein). They are included here mainly to clarify the “proper”

statistical analogue of the online learning problem studied beforehand.

This analogue is defined as follows: Assume that we are given a sequence of

pairs of random inputs and prediction loss functions,DT
.
= ((Xt,Lt), t = 1, . . . , T )

that are sampled from an unknown distribution P over X × L in an i.i.d. (inde-
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pendent, identically distributed) manner. Denote the expected risk of a predictor

f : X → Y under the common unknown distribution of the loss functions by

R(f) = E [〈 s(f), c1:d 〉+ L(f(X))] ,

where (X,Lt) ∼ P is a pair that is independent of DT . Note that the expected risk,

as defined here, also takes into account the cost of using the features.

In this statistical problem, the goal is to design a method that uses the data Dt to

return a predictor fT from a fixed set of predictors F whose risk R(fT ) is close to

the best possible within-class risk R∗F = inff∈F R(f). That is, one is interested in

finding a predictor whose expected risk on future data is close to optimum. Given

any method that finds a predictor fT , we are interested in bounding the excess risk

R(fT )−R∗F .

Assume that we are given an online learning methodA. Let fAt (·; {(xs, `s)}1≤s≤t−1)

denote the predictor returned byA at time step t given the past data {(xs, `s)}1≤s≤t−1.

Let ˜̀
t(f, x) = 〈 s(f), c1:d 〉+ `t(f(x)) and

RAT = sup
{
E

[
T∑
t=1

˜̀
t(ft, xt)− ˜̀

t(f, xt)

] ∣∣∣
(xt, `t) ∈ X × L, ft(·) = fAt (·; {(xs, `s)}1≤s≤t−1), 1 ≤ t ≤ T, f ∈ F

}
denote the worst-case regret of A. We have the following result:

Theorem 3.2.1 (Online to batch conversion). Let ((Xt,Lt), t = 1, . . . , T ) be an

i.i.d. sequence of examples from some distribution P . Let ft = fAt (·; {(Xs,Ls)}1≤s≤t−1)

be the predictor returned in time step t when A is run on DT in a sequential fash-

ion and let FT be the predictor chosen from the sequence (ft)1≤t≤T uniformly at

random. Then, the expected excess risk of using the predictor FT can be bounded

by

E [R(FT )]−R∗F ≤ E
[
RAT
]
/T .

For the sake of brevity, let us introduce the combined loss

L̃t(f, x) = 〈 s(f), c1:d 〉+ Lt(f(x)).
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Proof. A simple conditioning argument shows that we have

E [R(FT )] = E

[
1

T

T∑
t=1

L̃t(ft, Xt)

]
.

Now,

sup
f∈F

E

[
T∑
t=1

L̃t(ft, Xt)− L̃t(f,Xt)

]
≤ RAT

holds by the definition of RAT . Using the previous equality and the definition of R∗F
gives the desired result.

Remark 3.2.1. Examining the proof, it is clear that the independence assumption

about the data is not used. That is, the theorem continues to hold as long as the

distribution of (Xt,Lt) is P .

It might be tempting to use the averaged predictor F T = 1
T

∑T
t=1 ft instead of

the “randomized ensemble predictor” FT . When the loss functions are convex, it is

known that this averaged predictor has also small expected excess risk. However, in

our case, the loss functions are amended with the cost of using the features, which

involves the term 〈 s(F T ), c1:d 〉, which is not convex in F T and thus prevents this

argument from going through.

The potential problem with the randomized ensemble predictor is that the vari-

ance of its loss may be high. One way of dealing with this is to apply the stan-

dard probability boosting method: Split the data into s even parts, each of length

m = T/s (assuming for simplicity that T is evenly dividable by s) and let Fi be the

randomized ensemble obtained by running A on the ith part (1 ≤ i ≤ s). Assume

now that we also have access to a validation set {(Xt,Lt)}T+1≤t≤T+T ′ sampled

from the same unknown distribution P , independently of the first set and in an i.i.d.

fashion. Then select the predictor whose average empirical risk on the validation

set is the smallest:

i∗ = argmin1≤i≤s

T+T ′∑
t=T+1

L̃t(Fi, Xt) ,

where with a slight abuse of notation we define

L̃t(Fi, Xt) =
im∑

s=(i−1)m+1

L̃t(fs, Xt) .
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Theorem 3.2.2. Assume that for any loss ` ∈ L, the range of risks is included in

the [0, 1] interval. Then using sδ = min(1, dln(1/δ)e), with probability 1 − 3δ, it

holds that

R(Fi∗) ≤ R∗F +
esδR

A
T/sδ

T
+ 2

√
ln(sδ) + ln(1/δ)

2T ′
,

where e is the base of natural logarithm.

Remark 3.2.2. In practice, we have an uniform dataset and we need to decide

how to split it into the training set and the validation set. How to split the data to

minimize this bound if we have T ′′ = T + T ′ data points and what is the resulting

bound? This will depend on RAT . If RAT = Θ(
√
T ), then an even split will do and

we get an O(T−1/2)-rate. When RAT is growing faster than Ω(T 1/2), then less data

should go into the validation set, and the rate will be RAT /T . When RAT is growing

slower than O(T 1/2), then more data should go into the validation set and the rate

will be O(T−1/2) (the second term is the slower term).

Proof. Fix 0 ≤ δ ≤ 1. Define Ri =
∑T+T ′

t=T+1 L̃t(Fi, Xt). A simple application of

Hoeffding’s inequality shows that w.p. 1− δ, simultaneously for all 1 ≤ i ≤ s,

Ri ≤ R(Fi) +

√
ln(s/δ)

2T ′
.

Taking the minimum of both sides w.r.t. i, we get that

Ri∗ ≤ min
1≤i≤s

R(Fi) +

√
ln(s/δ)

2T ′
.

A similar argument also gives that, w.p. 1− δ.

R(Fi∗) ≤ Ri∗ +

√
ln(s/δ)

2T ′
.

Therefore, w.p. 1− 2δ,

R(Fi∗) ≤ min
1≤i≤s

R(Fi) + 2

√
ln(s/δ)

2T ′
.

Now, we want to show that min1≤i≤sR(Fi) is also close to R∗F with high prob-

ability. For this let us first fix 1 ≤ i ≤ s. From Markov’s inequality we know that,

for any a > 0,

P [R(Fi)−R∗F ≥ a] ≤ E [R(Fi)−R∗F ]

a
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and thus from Theorem 3.2.1 it follows that

P [R(Fi)−R∗F ≥ a] ≤
sE
[
RAT/s

]
Ta

.

Solving E
[
sRAT/s

]
/(Ta) = 1/e for a (e is the base of the natural logarithm func-

tion), we get that with probability 1− 1/e,

R(Fi)−R∗F ≤
e sE

[
RAT/s

]
T

.

Due to the independence of the s blocks, the probability that this not hold for all

1 ≤ i ≤ s is at most e−s. Thus, in the opposite case, i.e., with probability at least

1− e−s, there exists some index 1 ≤ i ≤ s such that

R(Fi) ≤ R∗F +
e sE

[
RAT/s

]
T

.

Therefore,

min
1≤i≤s

R(Fi) ≤ R∗F +
e sE

[
RAT/s

]
T

.

Combining the inequalities obtained, we get that with probability at least 1− (2δ+

e−s), it holds that

R(Fi∗) ≤ R∗F +
e sE

[
RAT/s

]
T

+ 2

√
ln(s/δ)

2T ′
.

Choosing e−s = δ, i.e., s = min(1, dln(1/δ)e), we get that w.p. 1− 3δ,

R(Fi∗) ≤ R∗F +
e sE

[
RAT/s

]
T

+ 2

√
ln(1 + ln(1/δ)) + ln(1/δ)

2T ′
,

finishing the proof.

It would be interesting to consider a fixed budget B and see how well we can

do when we have this hard budget in the learning phase using the proposed online

approach. Then we can compare this with Dulac-Arnold et al. (2012) and Cesa-

Bianchi et al. (2010). However this remains as future work.
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Chapter 4

Conclusions

4.1 Future Works

Here we mention several future avenues and extensions for this thesis.

Free label case, Lipschitz losses, covering number argument: We have focused

on Lipschitz loss functions; it would be interesting to consider other loss functions,

such as zero-one loss. Here, if F has a finite Littlestone dimension (see, e.g., Ben-

David et al. (2009)), our result will continue to hold, by just replacing the metric

entropy, lnNT (F , α), with F’s Littlestone dimension.

Free label case, linear prediction, with quadratic losses: We have exploited the

algebraic properties of the quadratic loss functions and the predictors to design an

algorithm that enjoys a O(
√
dT ) regret bound. However we have shown that, with

fewer assumptions, the regret will scale exponentially with the dimension in the

proposed algorithm. This raises the question of whether we can do better given fi-

nite experts with any loss function; and what properties are sufficient and necessary

to ensure that the worst-case regret is Θ(poly(d)
√
T ).

Also, the algorithm proposed for the case of quadratic losses and linear predic-

tion, although it tames the exponential dependence of the regret, is computationally

expensive: Both its memory and computational requirements scale exponentially

with the dimension d. It remains an important open problem to design an algo-

rithm whose computational complexity, as well as regret, scale polynomially with

the dimension, while keeping the
√
T dependence of the regret on time.
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Of course, when one has a small a priori bound S on the number of features that

can be used in a single time step, the exponential dependence on d becomes poly-

nomial (i.e., O(dS)): to achieve this only consider all possible subset of {1, . . . , d}

of cardinality S or less. In practice, the bound S may arise from budget constraints.

Convex upper bound on the feature-cost: A major source of difficulty in our

formulation is that the cost of features, 〈 s(f), c1:d 〉, is non-convex in f . The situ-

ation is similar to the case of zero-one loss, where the standard solution is to use

a convex upper bound on the zero-one loss, making it possible to derive tractable

algorithms (for the new loss) that come with reasonable performance guarantees.

We can use this for our case, as well. Let us consider, for simplicity, the case of

linear predictors. Then for every function f(x) = 〈w, x 〉, a relaxed convex func-

tion for 〈 s(f), c1:d 〉 =
∑d

i=1 ci1{|wi|>0} (similar to the hinge loss for zero-one loss)

is
∑d

i=1 ci|wi|, the c1:d-weighted `1-norm of w. In particular, we see that with this

approach we get the familiar Lasso-type penalty. Since the Lasso-type penalty is

known to promote sparsity, the algorithm is expected to indeed take into account the

varying cost of features. However, it remains for future work to study the behavior

of this natural algorithm.

4.2 Contribution

In this work, we introduced a new framework called CAO and a new problem called

online probing in online settings. This extends previous online learning models by

giving the learner the option of choosing the subset of features it wants to observe

for each instance, as well as option of observing the true label for that instance.

However it has to pay for everything that it observes. In other words, it suffers

from a risk function that combines the prediction loss and costs of observing. This

assumption produced new challenges in solving the online problem. We solved

this problem for two different settings – free label vs costly label – which leads

to two different optimal regret bounds. We proved that no learner can solve the

non-free-label online probing with better than O(T 2/3) regret and that the novel

FPE algorithm achieves Õ(
√
T ) for free-label online probing and an ε-greedy al-
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gorithm achieves Õ(T 2/3) for non-free-label online probing. These results hold for

general loss functions; we also showed that the problem can be solved much more

efficiently, and with better regret with respect to dimension of examples, by restrict-

ing the prediction loss function to a quadratic loss. Then we used online-to-batch

methods to be able to use our online methods in the batch framework and proved

the bound on the risk of final predictor.
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Appendix A

Glossary

approximation error The difference between the loss of a predictor and the loss

of its approximated predictor. 15, 32

CAO Costly Attribute Observation. 3, 6, 34

classifier A predictor with discrete output space. Sometimes, the output space has

only two elements: either positive or negative. 1

competitor A strategy that makes its prediction based on some inputs. This strat-

egy in general might be a simple predictor function or a learner itself. This

word means the same as expert in our context. 9, 11, 12

expert A strategy that makes its prediction based on some inputs. This strategy in

general might be a simple predictor function or a learner itself. This word

means the same as competitor in our context. 5, 7, 12, 30

LAO Limited Attribute Observation. 8, 35

learner An algorithm that learns from examples to produce a predictor that gener-

ates a label for unlabeled examples. 2, 4, 5, 7, 8, 10, 12, 30, 34

prediction loss A loss that a predictor suffers because of its prediction. Usually

there is a prediction loss function that penalizes the predictor for its prediction

and it maps the output space of the predictor to non-negative real numbers –

e.g., quadratic loss. 1, 2, 6, 9, 10, 12, 17, 35, 36
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predictor A function that maps partially observed feature space into the output

space. 1, 2, 4, 5, 8, 12, 26, 32, 34, 35, 37

regret The difference between the learner’s cumulative loss and cumulative loss of

any predictor from a given set of predictors in online learning framework. 4,

9, 26

risk This is the total loss of a predictor and goal of the problem is to minimize this

risk. In this document it has two components: prediction loss and the costs of

the required features. 1, 2, 6, 19, 34, 35, 37
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Appendix B

Proofs

B.1 Proofs

B.1.1 Covering numbers for balls in Euclidean spaces

Lemma B.1.1. Let ‖ · ‖ be a norm on the d-dimensional Euclidean space. Then for

any R,α > 0, N∗ =
⌈(

1 + 2R
α

)d⌉ balls, each of radius α, suffice to cover the ball

B(0, R) = {x | ‖x‖ ≤ R}.

Proof. Fix R,α > 0. Let X = {x1, . . . , xN} be the largest set such that any two

distinct points in the set are at least α-apart. Then B(0, R) ⊂ ∪Ni=1B(xi, α) because

otherwise we could fit one more point into the set X . Pick any c < 1/2. The balls

B(xi, cα) for i = 1, . . . , N are disjoint and ∪Ni=1B(xi, cα) ⊂ B(0, R + cα). The

volume of a ball with radius r is Cdrd where Cd is a constant that depends on the

norm ‖ · ‖ and the dimension d. Hence,

NCd(cα)d = Vol
(
∪Ni=1B(xi, cα)

)
≤ Vol (B(0, R + cα)) = Cd(R + cα)d .

From this we get that N ≤
(
R+cα
cα

)d. Since this is true for any c < 1/2, it is also

true for c = 1/2. By substituting c with 1/2 we get the desired bound.

B.1.2 Proof of Lemma 2.5.2

Lemma 2.5.2. Fix the integers N, T > 0, the real numbers 0 < γ < 1, η > 0 and

let µ be a probability mass function over the set N = {1, . . . , N}. Let `t : N → R

be a sequence of loss functions such that

η`t(i) ≥ −1 (2.11)
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for all 1 ≤ t ≤ T and i ∈ N . Define the sequence of functions (ut)1≤t≤T , (pt)1≤t≤T

(ut : N → R+, pt : N → [0, 1]) by ut ≡ 1,

ut(i) = exp

(
η
t−1∑
s=1

`s(i)

)
, i ∈ N, 1 ≤ t ≤ T,

and

pt(i) = (1− γ)
ut(i)∑
j∈N ut(j)

+ γµ(i), i ∈ N, 1 ≤ t ≤ T.

Let L̂T =
∑T

t=1

∑
j∈N pt(j)`t(j) and LT (i) =

∑T
t=1 `t(i). Then, for any i ∈ N ,

L̂T − LT (i) ≤ lnN

η
+ η

T∑
t=1

∑
j∈N

pt(j)`
2
t (j) + γ

T∑
t=1

∑
j∈N

µ(j) {`t(j)− `t(i)} .

Proof. Let Ut =
∑

1≤i≤N ut(i). The bound will follow from upper and lower

bounds on lnUT . As for the lower bound, we have

lnUT ≥ lnuT (i) = −ηŁT (i) .

On the other hand,

ln(UT ) = ln(U1) + ln(U2

U1
) + . . .+ ln( UT

UT−1
) . (B.1)

and thus it suffices to upper bound the terms ln( Ut
Ut−1

). Thanks to the weight update

rule,
Ut
Ut−1

=
∑
i∈N

ut(i)

Ut−1

=
∑
i∈N

ut−1(i)

Ut−1

e−η`t(i) .

By assumption, −η`t(i) ≤ 1. Hence, applying ex ≤ 1 + x + x2 which holds for

x ≤ 1 to bound e−η`t(i) ≤ 1 we get

Ut
Ut−1

≤
∑
i∈N

ut−1(i)

Ut−1

{1− η`t(i) + η2`2
t (i)}

= 1− η
∑
i∈N

pt(i)− γµ(i)

1− γ
`t(i) + η2

∑
i∈N

pt(i)− γµ(i)

1− γ
`2
t (i)

≤ 1 +
−η
∑

i∈N pt(i)`t(i) + ηγ
∑

i∈N µ(i)`t(i) + η2
∑

i∈N pt(i)`
2
t (i)

1− γ
.

Note that the right-hand side is positive since the left-hand side is positive Using

ln(x) ≤ x− 1 which holds for any x > 0, we get

ln( Ut
Ut−1

) ≤
−η
∑

i∈N pt(i)
˜̀
t(i) + ηγ

∑
i∈N µ(i)`t(i) + η2

∑
i∈N pt(i)`

2
t (i)

1− γ
.
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Plugging these upper bounds into (B.1) and since U1 = N , we get

ln(UT ) ≤ ln(N)+

−η
T∑
t=1

∑
i∈N

pt(i)˜̀
t(i) + ηγ

T∑
t=1

∑
i∈N

µ(i)`t(i) + η2
T∑
t=1

∑
i∈N

pt(i)`
2
t (i)

1− γ
.

Putting the lower and upper bounds of ln(UT ) together and introducing

LT =
T∑
t=1

∑
i∈N

µ(i)`t(i), QT =
T∑
t=1

∑
i∈N

pt(i)`
2
t (i),

gives

−ηL̃T (i) ≤ lnN − ηL̂T
1− γ

+
ηγLT
1− γ

+
η2QT

1− γ
.

Multiplying both sides by 1− γ and reordering the terms yields

ηL̂T − ηLT (i) ≤ (1− γ) lnN + ηγ(LT − LT ) + η2QT

≤ lnN + ηγ(LT − LT (i)) + η2QT .

Dividing both sides by η gives the final result.

B.1.3 Proof of Lemma 2.5.3

Lemma 2.5.3. LetW ′, ˜̀
t, pt be as in LQDEXP3. Also let W∞ = supw∈W ‖w‖∞

and X1 = supx∈X ‖x‖1. Then, the following equation holds:∑
w∈W ′

p(w)E
[
ˆ̀̃2(w) | p

]
≤ (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + y2

lim + ‖c‖1).

Proof. By the tower rule, we have

E

[∑
w∈W ′

pt(w)ˆ̀̃2
t (w)

]
= E

[∑
w∈W ′

pt(w)E
[
ˆ̀̃2
t (w) | pt

]]

Therefore, it suffices to bound∑
w∈W ′

pt(w)E
[
ˆ̀̃2
t (w) | pt

]
.

For simplifying the presentation, since t is fixed, from now on we will remove the

subindex t from the quantities involved and write ˆ̀̃instead of ˆ̀̃
t, p instead of pt, etc.
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The plan of the proof is as follows: We construct a deterministic upper bound

h(w) on | ˆ̀̃(w)| and an upper bound B on
∑

w∈W ′ p(w)h(w). Then, we provide an

upper bound B′ on E
[
ˆ̀̃(w)|p

]
so that

∑
w∈W ′

p(w)E
[
ˆ̀̃2(w)

∣∣∣ p] ≤ ∑
w∈W ′

p(w)h(w)E
[
ˆ̀̃(w)

∣∣∣ p] ≤ B′
∑
w∈W ′

p(w)h(w) ≤ BB′.

Before providing these bounds, let’s review some basic relations. Remember

that W∞ = supw∈W ‖w‖∞ and X1 = supx∈X ‖x‖1. Further, note that for any

1 ≤ j, j′ ≤ d, we have

E
[
1{j∈s(W )}

∣∣∣ p] =
∑

w∈W ′:j∈s(w)

p(w) =
∑
w∈W ′

1{j∈s(w)}p(w) = q(j), (B.2)

E
[
1{j,j′∈s(W )}

∣∣∣ p] =
∑

w∈W ′:j,j′∈s(w)

p(w) =
∑
w∈W ′

1{j,j′∈s(w)}p(w) = q(j, j′). (B.3)

As to the upper bound h(w) on | ˆ̀̃(w)|, we start with

| ˆ̀̃(w)| ≤ |w>X̃w|+ 2|y| |w>x̃|+ |y|2 + ‖c‖1. (B.4)

Now, |y| ≤ ylim and

|w>x̃| ≤ W∞

d∑
j=1

1{j∈s(w)}
|xj|
q(j)

.
= g(w, x),

|w>X̃w| ≤ W 2
∞

∑
j,j′

1{j,j′∈s(w)}
|xjxj′ |
q(j, j′)

.
= G(w, x).

Hence,

| ˆ̀̃(w)| ≤ G(w, x) + 2ylimg(w, x) + y2
lim + ‖c‖1

.
= h(w)

which is indeed a deterministic upper bound on | ˆ̀̃(w)|. To bound
∑

w∈W ′ p(w)h(w),

it remains to upper bound
∑

w∈W ′ p(w)g(w, x) and
∑

w∈W ′ p(w)G(w, x). To up-

per bound these, we move the sum over the weights w inside the other sums in the
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definitions of g and G to get:

∑
w∈W ′

p(w)g(w, x) = W∞

d∑
j=1

|xj|
q(j)

∑
w∈W ′

p(w)1{j∈s(w)}

= W∞X1, (by (B.2) and ‖x‖1 ≤ X1)∑
w∈W ′

p(w)G(w, x) = W 2
∞

∑
j,j′

|xjxj′|
q(j, j′)

∑
w∈W ′

p(w)1{j,j′∈s(w)}

= W 2
∞

∑
j,j′

|xjxj′| = W 2
∞‖x ‖2

1

≤ W 2
∞X

2
1 . (by (B.3) and ‖x‖1 ≤ X1)

Hence, ∑
w∈W ′

p(w)h(w) ≤ W 2
∞X

2
1 + 2ylimW∞X1 + y2

lim + ‖c‖1.

Let us now turn to bounding E
[
| ˆ̀̃(w)|

∣∣∣ p]. From (B.4), it is clear that it suf-

fices to upper bound E
[
|w>X̃w| | p

]
and E

[
|w>x̃| | p

]
. From (B.2) and (B.3), the

definitions of x̃ and X̃ and because by assumption ‖|w|‖∗‖|x|‖ ≤ wlimxlim = ylim,

we obtain

E
[
|w>x̃|

∣∣ p] =
∑
j

|wjxj| ≤ ylim and

E
[
|w>X̃w|

∣∣ p] =
∑
j,j′

|wjwj′xjxj′| =
(∑

j

|wjxj|
)2

≤ y2
lim.

Thus,

E
[
| ˆ̀̃(w)|

∣∣∣ p] ≤ E
[
|w>X̃w|+ 2ylim|w>x̃|+ y2

lim + ‖c‖1

∣∣∣ p] ≤ 4y2
lim + ‖c‖1.

Putting together all the bounds, we get∑
w∈W ′

p(w)E
[
ˆ̀̃2(w) | p

]
≤ (4y2

lim + ‖c‖1)(W 2
∞X

2
1 + 2ylimW∞X1 + y2

lim + ‖c‖1).

B.1.4 Proof of Lemma 2.7.1

The regret of the algorithm is decomposed into two additive terms:
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1. The extra loss suffered in exploration rounds. The cumulative expectation of

this extra loss can be upper bounded by Tγ‖c‖1.

2. The regret of the algorithm compared to each expert, excluding rounds that

request the label and extra features. To upper bound this term, we follow the

classical “exponential weights” proof (see e.g., Cesa-Bianchi et al. (2006)).

First we make the trivial observation that for every time step t and f ∈

F ,E[˜̀t(f)] = 〈 s(f), c1:d 〉 + `t(f(s � xt)). That is, ˜̀
t(f) is an unbiased

estimate of the true loss of function f . Let Ut =
∑

f∈F ut(f). Now we

continue with lower and upper bounding the term UT :

UT ≥
∑
f∈F

uT (f) ≥ uT (f ∗) = exp

(
−η

T∑
t=1

˜̀
t(f
∗)

)
,

where f ∗ is and arbitrary expert in F . For the upper bound we write

Ut
Ut−1

=
∑
f∈F

ut−1(f) exp(−η ˜̀
t(f))

Ut−1

=
∑
f∈F

pt(f)(1− η ˜̀
t(f) + η2 ˜̀2

t (f)) (B.5)

= 1− η
∑
f∈F

pt(f)˜̀
t(f) + η2

∑
f∈F

pt(f)˜̀2
t (f)

≤ exp

(
−η
∑
f∈F

pt(f)˜̀
t(f) + η2

∑
f∈F

pt(f)˜̀2
t (f)

)
, (B.6)

where in (B.5) we used that ut−1(f)/Ut−1 = pt(f) and the inequality ex ≤

1 + x + x2 if x ≤ 1, and in (B.6) we used that ex ≥ 1 + x. Multiplying the

above inequality for t = 1, . . . , T and also U1 we get

UT ≤ |F| exp

−η T∑
t=1

∑
f∈F

pt(f)˜̀
t(f) + η2

T∑
t=1

∑
(s,f(.))∈F

pt(f)˜̀2
t (f)

 .

We now merge the lower and upper bounds and take logarithm of both sides:

−η
T∑
t=1

˜̀
t(f
∗)− ln |F| ≤ −η

T∑
t=1

∑
f∈F

pt(f)˜̀
t(f) + η2

T∑
t=1

∑
f∈F

pt(f)˜̀2
t (f) .
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Rearranging gives

T∑
t=1

∑
f∈F

pt(f)˜̀
t(f)−

T∑
t=1

˜̀
t(f
∗) ≤ η

T∑
t=1

∑
f∈F

pt(f)˜̀2
t (f) +

ln |F|
η

.

After taking expectation of both sides, the first term on the left hand side is the

expected cumulative loss of the algorithm excluding the extra loss suffered in

exploration rounds, while the second term is the expected cumulative loss of

the any arbitrary expert f . The first term on the right hand side can be upper

bounded as

η
T∑
t=1

∑
f∈F

E[pt(f)˜̀2
t (f)] ≤ η

T∑
t=1

∑
f∈F

E[pt(f)˜̀
t(f)]

`max

γ

≤ η`2
maxT

γ
,

where `max is the maximum loss an action can suffer, ignoring the label cost

cd+1.

Adding up the two terms of the expected regret, we get

E[RT ] ≤ Tγ‖c‖1 +
η`2

maxT

γ
+

ln |F|
η

.

Setting the parameters to

η = (ln |F|)2/3T−2/3(4`2
max‖c‖1)−1/3 γ =

√
η`2

max

‖c‖1

we get

E[RT ] ≤ CT 2/3(`2
max‖c‖1 ln |F|)1/3

for some constant C > 0. �

B.1.5 Proof of Theorem 2.8.1

To prove that we propose a set of strategies which is basically a subset of weight

vectors. We construct a set of opponent strategies and show that the expected re-

gret of any algorithm is high against at least one of them. The features xt,i for
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t = 1, . . . , T and i = 1, . . . , d are generated by the iid random variables Xt,i whose

distribution is Bernoulli with parameter 0.5. Let Zt ∈ {1, . . . , d} be random vari-

ables whose distribution will be specified later. The labels yt are generated by the

random variable defined as Yt = Xt,Z .

To construct the distribution of Zt we introduce the following notation. For

every i = 1, . . . , d, let

ai =
1

d
+ 2ci −

2

d

d∑
j=1

cj .

The assumptions on c ensures that ai > 0 for every i = 1, . . . , d. For opponent

strategy k, let the distribution of Zt defined as

Pk [Zt = i] =

{
ai − ε, i 6= k;
ai + (d− 1)ε, i=k ,

with some ε > 0 to be defined later.

Lemma B.1.2. Let ek denote the kth basis vector of dimension d. Against opponent

strategy k, the instantaneous expected regret for any action such that (s, s`) 6=

(ek, 0) is at least dε
2

.

For i = 1, . . . , d, let Ni denote the number of times the player’s action is

(ei, w, sd+1). Similarly, let NL denote the number of times the player requests the

label. Now it is easy to see that the expected regret under opponent strategy k can

be lower bounded by

Ek[RT ] ≥ (T − Ek[Nk])
dε

2
+ cd+1Ek[NL] .

The rest of the proof is devoted to show that for any algorithm, the average of

the above value, 1/d
∑d

i=1 Ei[RT ] can be lower bounded. We only show this for

deterministic algorithms. The statement follows for randomizing algorithms with

the help of a simple argument, see e.g., Cesa-Bianchi and Lugosi (2006, Theorem

6.11).

A deterministic algorithm is defined as a sequence of functions At(·), where

the argument of At is a sequence of observations up to time step t − 1 and the

value is the action taken at time step t. We denote the observation at time step t
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by ht ∈ {0, 1, ∗}d+1, where ht,i = xt,i if st,i = 1 and ht,i = ∗ if st,i = 0 for all

1 ≤ i ≤ d. Similarly, ht,d+1 = yt if st,d+1 = 1 and ht,d+1 = ∗ if st,d+1 = 0. That

is, ∗ is the symbol for not observing a feature or the label. The next lemma, which

is the key lemma of the proof, shows that the expected value of Ni does not change

too much if we change the opponent strategy.

Lemma B.1.3. There exists a constant C1 such that for any i, j ∈ {1, . . . , d},

Ei[Ni]− Ej[Ni] ≤ C1Tε
√
dEj[NL] .

Now we are equipped to lower bound the expected regret. Let

j = argmink∈{1,...,d} Ek[NL].

By Lemma B.1.3,

Ei[RT ] ≥ (T − Ei[Ni])
dε

2
+ cd+1Ei[NL]

≥
(
T − Ej[Ni]− C1Tε

√
dEj[NL]

)
dε

2
+ cd+1Ej[NL]

Denoting
√

Ej[NL] by ν we have

1

d

d∑
i=1

Ei[RT ] ≥

(
T − 1

d

d∑
i=1

Ej[Ni]− C1Tε
√
dν

)
dε

2
+ cd+1ν

2

≥
(
T − T

d
− C1Tε

√
dν

)
dε

2
+ cd+1ν

2

What is left is to optimize this bound in terms of ν and ε. Since ν is the property

of the algorithm, we have to minimize the expression in ν, with ε as a parameter.

After simple algebra we get

νopt =
C1Tε

2d3/2

4cd+1

.

Substituting it back results in

1

d

d∑
i=1

Ei[RT ] ≥ (d− 1)
Tε

2
− C2

1T
2ε4d3

16cd+1
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Now we set

ε =

(
2

C2
1

)1/3

(cd+1)1/3 d−2/3T−1/3

to get

E[RT ] ≥ C3 (cd+1)1/3 d1/3T 2/3

whenever d ≥ 2. �
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