
CHAT-BOT FOR TELEMEDICINE

DINITHI FERNANDO

A project report submitted in conformity with the requirements
for the degree of Master’s of Science in Information Technology

Department of Mathematical and Physical Sciences
Faculty of Graduate Studies

Concordia University of Edmonton

© Copyright 2023 by Dinithi Fernando





CHAT-BOT FOR TELEMEDICINE

DINITHI FERNANDO

Approved:

Rossitza Marinova, Ph.D.

Supervisor Date

Committee Member Name, Ph.D.

Committee Member Date

Patrick Kamau, Ph.D.

Dean of Graduate Studies Date



Abstract

Chat-bots could be considered as one of widely used technologies since it in-
creases the business efficiency and throughput. Proposed project is to develop
a web based chat-bot that is capable of booking appointments via the website
Telecare Plus. Machine learning techniques are used to provide an interactive
and personalized learning experience for users. Users details are be retrieved
by the bot to book an appointment, if the user gives permission. Various tools
and resources such as python libraries are integrated with the chat-bot to help
users to practice and provide answers. It is not easy for many users to book
an online appointment because of the technical knowledge and skill levels they
have. One of the main advantages of this chat-bot is the users are able to pro-
vide details to book an appointment in a similar way they do when a patient
interacts with a live agent. User studies are used to evaluate the effectiveness
of the chat-bot as well as to assess its usability, engagement, and outcomes.
The medical field could have a significant impact because of this project by
providing an accessible and efficient way to book appointments.

Keywords: Machine Learning; Chat-bot; Artificial Intelligence; Natural Lan-
guage Processing; Telemedicine; TelecarePLUS; Electronic Medical Records;
Digital Healthcare.

i



Acknowledgement
The project could not have been successfully completed without the careful assistance
of Dr. Rossitza Marinova, her willingness to motivate the researcher by providing
all the subject related detail contributed tremendously in developing the applica-
tion. Besides the researcher would like to take this as an opportunity to, express
gratitude towards Concordia University of Edmonton for offering this subject. It
gave the researcher a great opportunity to participate and learn IT Project module.
Then the students who have participated in the evaluation process of the application
are gratefully acknowledged for offering their time and supporting to develop the
application. Finally to family members and friends for their immense support and
understanding in one way or another to complete the project, thank you.

ii



Contents
1 Introduction 1

2 Objectives / Research Questions 2

3 Literature review 3
3.1 AI in chat-bots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Chat-Bot Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Technologies Used In Chat-Bot Systems . . . . . . . . . . . . . . . . 6

4 Project Design 11

5 Project Implementation and Results 11
5.1 Technology Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Back-end Development . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Front-end Development . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Future Work and Recommendation 23

7 Conclusions 25

References 26

iii



List of Tables
1 Areas of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

iv



List of Figures
1 Prototyping Methodology [17] . . . . . . . . . . . . . . . . . . . . . . 2
2 Deep Neural Network [18] . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Convolution Neural Network [19] . . . . . . . . . . . . . . . . . . . . 5
4 RNN with two hidden layers [20] . . . . . . . . . . . . . . . . . . . . 5
5 How chat-bot works [10] . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Basic configuration codes of Python ChatterBot . . . . . . . . . . . . 6
7 star tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
8 category tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
9 set tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
10 get tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
11 Api.ai chatbot [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
12 Wit.ai chat-bot [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
13 Gantt Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
14 User input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
15 Telecare Plus Chatbot UI . . . . . . . . . . . . . . . . . . . . . . . . 20
16 User input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
17 Chat terminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
18 Chat-bot storing user input . . . . . . . . . . . . . . . . . . . . . . . 21
19 Requesting to upload medical documents . . . . . . . . . . . . . . . . 22
20 File picker to upload medical documents . . . . . . . . . . . . . . . . 22
21 Responsive UI screen . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



Listings
1 Import Flask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Python Function to Store Data . . . . . . . . . . . . . . . . . . . . . 13
3 Retrive stored data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 File upload function . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Log data to backend . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 Chat interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7 CSS for the GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8 CSS for text input area . . . . . . . . . . . . . . . . . . . . . . . . . . 18
9 Send data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
10 Scroll to bottom function . . . . . . . . . . . . . . . . . . . . . . . . . 19
11 Ask guardian information if the pation is a child . . . . . . . . . . . . 23
12 Validate phone number . . . . . . . . . . . . . . . . . . . . . . . . . . 24
13 Validate email address . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vi



1 Introduction
The way people interact with technology has changed dramatically with the devel-
opment of artificial intelligence (AI) and natural language processing (NLP). Due to
their capacity to engage consumers in discussions that are natural and human-like,
chat-bots in particular have drawn a lot of interest. By automating the appointment
scheduling procedure, the Appointment Booking Chat-bot bridges the gap between
businesses and customers and gets rid of the need for manual form submissions and
more time-consuming, traditional methods like text massages and email.

Chat-bot is a conversational agent that communicates with the user with the aid of
natural language sentences. The process of the chat-bot is to produce a meaningful
answer for the user entered question with the aid of the knowledge base and output
the answer through a graphical user interface.[1].

Healthcare professionals may now communicate with patients thanks to technological
improvements, especially for people with mobility issues who live in rural or distant
areas. Enhancing patient care is telemedicine’s main objective.

Enabling two-way, real-time contact between patients and providers at a distance
to improve a patient’s health[7]. Virtual reality and robotics components have also
been incorporated into certain pre-existing platforms [6]. It is a quickly developing
service that aims to expand accessibility to high-quality healthcare while making it
simple and affordable, especially in the wake of the COVID-19 pandemic.

The project is to develop a chat-bot that can effectively book appointments by re-
trieving it from the users while having conversations. The chat-bot is designed using
natural language processing (NLP) and machine learning (ML) techniques in order
to provide interactive and personalized learning experience for users. Programming
languages such as Python, HTML and Javascript are used to implement the chat-bot
application, offer feedback and chat facilities [2].

The researcher has carefully selected prototyping methodology to develop the ap-
plication after taking account about the requirements and evaluating the pros and
cones of each existing methodologies. Prototyping methodology allows the users to
test the application and provide feedback, so it helps for the researcher to let users
to test a prototype of the application and do changes until the users are fully sat-
isfied. Figure 1 shows a clear idea of how the prototyping methodology works. In
the figure it shows that the analysis, design and implementation phases are iterative
and continued until the final system. Completion of the analysis and design phrases
a prototype system could be generated so that the user feedback is obtained to do
further changes.

1



Figure 1: Prototyping Methodology [17]

2 Objectives / Research Questions
The main objectives of this project are:

• To develop a chat-bot application to retrieve user input during the conversation.

• To create interactive and natural texting experience for users by using machine
learning tools and techniques.

• To create a user interface for the chat-bot to interact with users.

• To integrate the chat-bot with Telemedicare website to pass data and book
appointments.

• To conduct user studies in order to rate the effectiveness in engagement, us-
ability, and learning outcomes.

• To make it accessible for a broader audience to help with users who has various
levels of technical knowledge.

• To contribute to the field of healthcare by providing an innovative and acces-
sible approach to book appointments.

These objectives lead to provide an innovative and effective solution for booking
appointments for patients. The project is hugely contributing to the field of health
as well as promote inclusively in telemedicine.

Below is the list of research questions for TelecarePLUS platform:

• Compared to traditional measures, how effective is telemedicine in contributing
to improve the overall outcome?

• What are the obstacles that could prevent telemedicine from being adopted by
both parties?

• What are the main elements that make telemedicine successful?

2



• What are the legal and ethical concerns related to telemedicine, and how may
they be resolved?

• What are the ideal technology and infrastructure requirements for the adoption
of telemedicine?

• Can telemedicine help people in remote areas have better access to healthcare
services?

• What long-term effects are connected to the adoption of telemedicine, and how
can they be guaranteed for ongoing model optimization?

There are many benefits of telemedicine that contribute to patient and service
provider’s satisfaction since it is easy to use, able to provide improved outcomes,
cost saving and more patients prefer telemedicine since they experience safety and
trust.

3 Literature review
This chapter provides a detailed literature review about content which are relevant
to web based chat-bot for students. It provides information about artificial neural
networks and the ways of cat-bots communicate with humans.

3.1 AI in chat-bots

Over the years, telemedicine has become more and more popular. After the COVID-
19 epidemic, it particularly saw an exponential surge. Due to recent developments in
health technology and policy reforms, telemedicine has made it possible for providers
of healthcare services to deliver remote medical care via electronic means [8].

The topic of the project is Web based chat-bot, which have a business domain of
a chat-bot which retrieve details of patents who needs to book appointments. The
technology undertaken is Machine Learning, Natural Language Processing, Python,
HTML, JavaScript and CSS.

The literature review was carried out under advancement areas, as shown in Table 1.
Areas such as artificial intelligence, information technology and website are subjects
of this research.

3



Table 1: Areas of the project

Areas Similar Terms Category

Artificial Intelligence

Machine Learning,
Deep Neural Network,
Recurrent Neural Network,
Natural Language Processing,
Semantic analysis,
Syntactic analysis,
Word embedding

Chatbot

Graphical User Interface User Interface Technology

Website

Web page,
Web design,
Header,
Link,
Chat page,
Send button

Chat

AI takes a special place when developing a chat-bot. AI is in its early 60’s but it still
has a long way to go. When it comes to AI people think that machines are taking
the place where humans are and they are going to defeat humans. But actually what
happens is that AI helps humans to do their work more efficiently.

Machine Learning is a sub-path of AI. Machine Learning includes vivid deep learning
concepts which enable computers to think and do whatever it comes to humans nat-
urally. Deep learning gains attraction towards technology by making things possible
which people who lived before 20th century thought unbelievable.

Under deep learning techniques there exist many sub neural networks, among them
most important neural networks are DNN, CNN and RNN. As illustrated in Figure 2
deep neural network (DNN) includes an input layer, an output layer and at least one
hidden layer in between those two layers. Each layer was assigned with a specific
task which includes ordering and sorting. Most of all DNN (Figure 2) are similar to
the activity of human brain.

Figure 2: Deep Neural Network [18]

4



When it comes to convolution neural network (CNN) it is enable to learn input data
and users. CNN is able to process 2D data like images by using 2D convolutional
layers as illustrated in Figure 3. In order to interpret words in a sentence recurrent
neural networks (RNN) are used. In RNN output of one layer is added to the next
input. See Figure 4 for an example of RNN.

Figure 3: Convolution Neural Network [19]

Figure 4: RNN with two hidden layers [20]

3.2 Chat-Bot Systems

Many people are interested in using chat-bots so why not integrate it with health
care sector to schedule appointments? According to studies by R. Sanjaya et al.
(2022) [9], a chat-bot can be successfully integrated with a healthcare appointment
system to greatly lessen the workload of administrative employees and give patients
a convenient way to schedule appointments.

Using user surveys, Chao et al. (2018) [2] developed a chat-bot that was integrated
with a platform for learning programming. The outcomes demonstrated that the
chat-bot was successful in assisting students in learning programming concepts and
in giving them performance-based feedback.

Similar to this, Salehi [15] created a smart chat-bot that employs machine learning

5



to customise students’ learning experiences. It was determined through user research
that the chat-bot considerably increased pupils’ knowledge and skill in programming.

A chat-bot that offers tailored programming learning routes was created by Wang et
al. (2020) using reinforcement learning [3].

3.3 Technologies Used In Chat-Bot Systems

A recent study [10] has stated technologies and programming of cloud-based chat-
bots. Initially it has considered about how the chat-bot works. First the user should
initiate the communication by adding user names in their instant messaging platform
account. Then the signal including the chat-bot user ID is delivered over HTTP to
the bot server. Finally the bot output a welcome or out-of-service message in order
to continue the communication. Figure 5 shows a use case on how the chat-bot
works.

Figure 5: How chat-bot works [10]

Conversational dialog engine enables to generate responses based on previous con-
versations, which was developed in Python. This provides the base for developing
most chat-bots.

One of special libraries in Python is ChatterBot [16]. This enables the programmers
to create chat-bots easily since ChatterBot is responsible of generating automatic
responses using different machine learning algorithms. In order to install the user
should run ‘pip install chatterbot’ command. Figure 6 includes the basic configu-
ration codes of the ChatterBot.

Figure 6: Basic configuration codes of Python ChatterBot

6



There are two types of responses that a chat-bot could generate, they are static and
dynamic. Static responses are generated using the templates which the chat-bot
already has. For instance if the chat-bot response "The train time is <ft> hours",
<ft> is a variable the chat-bot is now computing. Dynamic responses are generated
by selecting a better response out of its knowledge base. In order to do so the
chat-bot should learn millions of responses.

There are three major categories of chat-bot platforms, they are non-programming
chat-bots, conversation-oriented chat-bots and platforms by tech giants chat-bots.

Let’s consider each platform briefly.

• Non-programming chat-bot includes one of the basic types of non-technically
oriented platforms. As the name implies in order to develop such type of chat-
bots the developer doesn’t need any knowledge regarding machine learning
nor natural language processing. Examples for such platforms are Chatfuel,
ManyChat and Motion.ai.

• Conversation-Oriented chat-bots use platforms which includes specification lan-
guages like AIML. User interactions are modeled by AIML. To get a better
knowledge on AIML lets consider about few tags used in AIML.

The <star> tag captures a particular text out of user entered sentence. In the
codes of Figure 7 the chatterbot is able to answer that it likes anything the
user also likes.

Figure 7: star tag

The <srai> tag enables AIML interpreter to search answers efficiently from
different user inputs. In Figure 8, separate <category> tags are created
to talk about Alan Turing and Albert Sabin. But users might not ask about
those researchers in the same way. In order to chat-bot to identify the different
questions about those same researchers a new <category> tag was created
including the <srai> tag.

7



Figure 8: category tag

In line 16 of Figure 8 the wildcard “*” identifies the name of the researcher
that the user enters.

The <set> tag is used in order to define variables and the <get> tag is used
to return answers stored by the set tag. Figures 9 and 10 indicate <set>
tag and <get> tag respectively.

Figure 9: set tag

Figure 10: get tag

• Chat-bots by tech giants could be considered as easily developable chat-bots.
Tech giants such as Facebook developers Wit.ai, Google develop Api.ai, Mi-
crosoft develops LUIS, IBM develops Waatson and Amazon develops Lex. Let’s
consider some of them.

8



Contexts and intents are considered as key concepts of the Api.ai model. Intents
are used to create links including actions the chat-bot should perform for the user
inputs. Context includes the string values which differentiate the requests. Within
the help of contexts and intents Api.ai are able to handle large and complex systems.
One of main features of Api.ai is that it allows integrating with several platforms
like Facebook and Twitter from one click. Not only that but also these chat-bots are
able to handle the code proactively in order to decrease server side coding. Figure
11 includes an Api.ai chat-bot.

Figure 11: Api.ai chatbot [10]

The Wit.ai chat-bots are based on the stories which enable to model the behavior.
Usually the developers use examples to teach the Wit.ai. The chat-bot extract
entities by processing requests when a user input information about a similar item.
Not only that but also these chat-bots can have branches to trigger when it comes to
specific conditions in order to control the conversation. Below Figure 12 includes a
Wit.ai chat-bot [10], [11], [12].

9



Figure 12: Wit.ai chat-bot [10]

10



4 Project Design
This phrase of the software development life cycle addresses the diagrams, wire-frame
designs and answering algorithm of the system. It was difficult to find a proper
application to design the wire-frames of the system. Many applications that were
tested by the researcher include the watermark of the application within the wire-
frame, which make changes of the final picture of the wire-frame designs. Because of
this the wire-frames are simply designed using Mockflow website.

The researcher has also created a Gantt chart to break down the project tasks. By
creating a Gantt chart the researcher was able to plan work around deadlines by
managing the time and allocating resources efficiently. Figure 13 states the Gantt
chart for the chatbot.

Figure 13: Gantt Chart

5 Project Implementation and Results
This section indicates about the overall system, technologies used and it’s function-
alities.

5.1 Technology Used

The chat-bot of the proposed system was implemented using Python programming
language. The researcher has used Flask web framework that helps to build web
applications quickly and efficiently. Flask framework helps to handle the chatbot’s
logic and interactions with users. The main reason it was selected than other Python
frameworks is because Flask enables integration with various messaging platforms
and web interfaces.

Below points indicate how Python Flask [14] can be utilized for building chat-bot
applications:

• Web Server: Flask can act as a web server, receiving incoming HTTP requests
from users interacting with the chatbot.

11



• Routing and Endpoints: One of the specialties of Flask is it enables to
define routs and endpoints to handle different types of user interactions.

• NLP Integration: In order to understand user messages it could be even
combined with Natural Language Processing libraries.

• Dialog Management: This feature helps to maintain context during conver-
sations and guide users through multy-turn interactions.

• Integration with External Services: This feature enables the facility to
retrive appoinment schedules or confirm bookings.

• Continuous Learning and AI Integration: To improve chatbots response
it can use reinforcement learning capabilities based on user feedback and inter-
actions.

• Authentication and Security: The security measures helps to protect sen-
sitive user information.

• Response Rendering: Depending on the messaging platform or the web
interface used Flask can handle chatbot responses in different formats like text,
buttons and etc...

• Scalability and Deployment: Easy to deploy and can be hosted on various
platforms.

• Logging and Analytics: To improve chatbot’s performance Flask provides
logging capabilities, allowing developers to monitor and analyze chatbot inter-
actions.

In order to design a responsive and a user friendly UI the researcher has used HTML
and CSS along with JavaScript. With the help of these tools an attractive web design
was developed.

5.2 Back-end Development

Back-end of the chat-bot is like the engine of a vehicle. It includes all the function-
alities that require to process the outcome developer requires, and in this chat-bot
program it is mainly focused to retrieve responses from the user to pass to Telemedi-
care website. The researcher has created a file name ’App.py’ to code all the main
Python functionalities and then has imported the Flask framework. Listing 1 shows
how to import Flask.

1 from flask import Flask , render_template , request , session
2

3 app = Flask (__ name __)
4 app.secret_key = ’your_secret_key ’

Listing 1: Import Flask

12



Below are the code that helps to store user entered data shown in the Listing 2. Here
the chat-bot initiates the conversation by introducing itself and requesting consent
from the user to share details. If only user type ’yes’ as the response the chat-bot
navigates to ask the name of the user.

The chat-bot captures the user name in a variable called ’name’ and stores it in
a session. So when it’s next response the bot retrieves the stored variable data in
’name’ and output it to ask the next question by calling the user by her/his name.
This method is also enables user to validate the data that they entered previously
and could be implemented in a later version to add changes to the data entered while
the conversation is flowing without waiting till the end of the conversation.

After retrieving the first name the chat-bot then greets the user by name and asks for
the last name of the user. Bot always check whether the data user entered is already
stored in the session and if not then the bot take action so store the new data. This
avoids the user entering duplicate data. After checking if the last name is not stored
the chat-bot then will store users last name in a variable named as ’last_name’.

Then the chat-bot navigates to retrieve age of the user by outputting the chat dialog
’Thank you. Enter your age ? Please specify as X years Y months format.’ as shown
in line 11 of Listing 2. Here the user is asked to specify age as in number of years
and months. This action is taken by the developer because the patient could be less
that one year old infant. After user reply for the question chat-bot will store the
number of years and number of months in two separate variables ’age_ in_ years’
and ’age_ in_ months’.

The next ’elif’ statement navigates the question for the user to enter their gender.
The developer hopes to develop this functionality to implement a drop-down list so
that the user can use select their gender out of the options in the drop-down list in
the future development.

After that it was asked by the user to enter their phone number. Here the developer
has used a special built-in string method ’isdigit()’. This allows to validate user input
whether it is a positive integer digit or else the function returns false and it’ll stop
the conversational flow. At this point the developer is hoping to develop a function
in future developments that allow the user to re-enter the phone number if he/she
got it wrong in the first time.

Next the chat-bot asks about the symptoms that user have. The chat-bot will output
the chat dialog ’ What are your symptoms ? Please specify at least three symptoms
separated by a comma’. The list of symptoms that the user entered are separated
by comma and stored in the session one by one by the bot.

Then the chat-bot asks the user whether the user have any medical files to upload.
If yes the bot also asks to enter the keyword ’upload’. If use enter ’upload’ then the
chat-bot will finally output the file picker in the chat. See line 33 of Listing 2.

1 stored_data = session[’stored_data ’]

13



2

3 if query == "yes":
4 response = "What is your first name?"
5 elif ’first_name ’ not in stored_data:
6 name = query.strip()
7 response = f"Hi {name}. Good to meet you. What is your last

name?"
8 stored_data[’first_name ’] = name
9 elif ’first_name ’ in stored_data and ’last_name ’ not in

stored_data:
10 last_name = query.strip()
11 response = "Thank you. Enter your age? Please specify as X

years Y months format."
12 stored_data[’last_name ’] = last_name
13 elif "years" in query.lower() or "months" in query.lower ():
14 split_data = query.split(" ")
15 age_in_years = split_data [0]
16 age_in_months = split_data [2]
17 stored_data[’age_in_years ’] = age_in_years
18 stored_data[’age_in_months ’] = age_in_months
19 response = "What is your gender? Please specify as Male/

Female/Others?"
20 elif "male" in query.lower() or "female" in query.lower () or "

others" in query.lower ():
21 gender = query.strip ().capitalize ()
22 stored_data[’gender ’] = gender
23 response = "Enter phone number"
24 stored_data.pop(’phone_number ’, None)
25 elif query.isdigit ():
26 pn = query.strip()
27 response = "What are your symptoms? Please specify at least

three symptoms separated by a comma."
28 stored_data[’phone_number ’] = pn
29 elif "," in query.lower ():
30 response = "Great! We now have all the information we need.

If you have medical documents to send type ’upload ’"
31 stored_data[’symptoms ’] = query
32 elif "upload" in query.lower():
33 response = open_file_upload ()
34 stored_data[’file_upload ’] = True
35 else:
36 response = "It’s nice to chat with you! Goodbye"
37 # Clear stored data in the session
38 stored_data.pop(’response ’, None)
39 stored_data.pop(’first_name ’, None)
40 stored_data.pop(’last_name ’, None)
41 stored_data.pop(’phone_number ’, None)
42 stored_data.pop(’gender ’, None)

Listing 2: Python Function to Store Data

Then to retrieve stored data the below function is used shown in Listing 3.
1 stored_data = session.get(’stored_data ’)

14



2 if stored_data:
3 # Access stored first_name and last_name
4 first_name = stored_data.get(’first_name ’)
5 last_name = stored_data.get(’last_name ’)
6 if first_name and last_name:
7 print("Stored First Name:", first_name)
8 print("Stored Last Name:", last_name)
9 print("Stored Data:", stored_data)

10

11 return response

Listing 3: Retrive stored data

The function to upload the medical files are stated in the below set of codes shown
in Listing4. This function is called in line 33 of Listing2.

1 def open_file_upload ():
2 html_code = """
3 <form >
4 <input type="file" id=" filePicker" accept =".pdf ,.png ,.jpg ,.

jpeg">
5 </form >
6 <script >
7 // Function to trigger the FilePicker dialog
8 function openFilePicker () {
9 document.getElementById(’filePicker ’).click ();

10 }
11 </script >
12 """
13 return html_code

Listing 4: File upload function

Finally at the end of storing all user entered data the chat-bot then log them in to
the back-end as shown in Figure 14. In order to log data to back-end the developer
has implemented below set of codes exhibited in Listing 5.

Figure 14: User input

1 stored_data = session.get(’stored_data ’)
2 if stored_data:
3 # Access stored first_name and last_name
4 first_name = stored_data.get(’first_name ’)
5 last_name = stored_data.get(’last_name ’)
6 if first_name and last_name:
7 print("Stored First Name:", first_name)
8 print("Stored Last Name:", last_name)

15



9 print("Stored Data:", stored_data)

Listing 5: Log data to backend

5.3 Front-end Development

The chat interface of the chat-bot is developed using the popular programming lan-
guage ’HTML’ by the developer. The whole chat GUI is developed inside a ’section’
tag. Listing 6 shows the code snippets of the chat GUI.

As soon as a user navigates to chat interface the chat-bot initiates the conversation
using the dialog ’My name is TelecarePlus. I will help you book an online appoint-
ment, but I will need your details for that. Can you provide me with your details?
Type Yes/No’. Here the chat-bot introduces it self and ask for the user permission
to get data to book an appointment. See line 8 to 12 in Listing 6.

In order to type replies and enter it to the chat for the user, the developer has
develop a user input area in a ’div’ tag which has an id called ’userInput’ (line 14 of
the Listing 6). Inside the ’div’ tag there is a text input field for the user to type
text replies. See line 14 of the Listing 6. Then a submit button was created by the
developer to send user replies (line 15 of the Listing 6).

1 <section class="msger">
2 <header class="msger -header">
3 <div class="msger -header -title">
4 <i class="fa fa -hospital -o" ></i> Telecare Plus Chat
5 </div >
6 </header >
7 <div id="chatbox">
8 <p class="botText"><span >My name is TelecarePlus.
9 <br>I will help you book an online appointment ,

10 <br>but I will need your details for that.
11 <br>Can you provide me with your details?
12 <br>Type Yes/No </span ></p>
13 </div >
14 <div id="userInput" class="msger -inputarea">
15 <input id="textInput" class="msger -input" type="text" name=

"msg" placeholder="Type a message">
16 <input id="buttonInput" class="msger -send -btn" type="submit"

value="Send">
17 </div >
18 </section >

Listing 6: Chat interface

In order to style the the Graphical User Interface (GUI), the developer used Cascad-
ing Style Sheets (CSS). The display of text and the chat bubble formatting of the
chat dialogues as well as the background of the chat interface is controlled by CSS.
Listing 7 shows some of the codes used to change web display of the chat-bot. The
background image of the chat is inserted using CSS (line 6 of Listing 7) [21].

16



1

2 #chatbox {
3 flex: 1;
4 overflow -y: auto;
5 padding: 10px;
6 background -image: url(https :// static.vecteezy.com/system/

resources/previews /004/696/041/ non_2x/medical -outline -seamless -
pattern -with -pill -syringe -thermometer -and -stethoscope -
illustration -on -green -background -vector.jpg);

7 padding: 10px;
8 }
9

10 #userInput {
11 margin -left: auto;
12 margin -right: auto;
13 /*width: 40%;*/
14 /*margin -top: 60px;*/
15 }
16 #textInput {
17 /*width: 87%;*/
18 border: none;
19 border -bottom: 3px solid #009688;
20 font -family: monospace;
21 font -size: 17px;
22 }
23 #buttonInput {
24 padding: 3px;
25 font -family: monospace;
26 font -size: 17px;
27 }
28 .userText {
29 color: white;
30 font -family: monospace;
31 font -size: 14px;
32 text -align: right;
33 line -height: 30px;
34 }
35 .userText span {
36 background -color: #009688;
37 padding: 15px;
38 border -radius: 15px;
39 display: initial;
40 align -items: flex -end;
41 margin -bottom: 10px;
42 max -width: 343px;
43 border -bottom -right -radius: 0px;
44 }
45 .botText {
46 color: white;
47 font -family: monospace;
48 font -size: 14px;
49 text -align: left;
50 line -height: 30px;

17



51 }
52 .botText span {
53 background -color: #3e79b4;
54 padding: 15px;
55 border -radius: 15px;
56 display: flex;
57 align -items: flex -end;
58 margin -bottom: 10px;
59 border -bottom -left -radius: 0;
60 max -width: 343px;
61 }

Listing 7: CSS for the GUI

The design of the text input area and for the send button is also done using CSS.
See Listing 8. When ever a user hover over the ’Send’ button it change color. This
effect is done using a pseudo-class selector called ’:hover’ (lines 27-29 of Listing 8).

1 .msger -inputarea {
2 display: flex;
3 padding: 10px;
4 /*border -top: var(--border);*/
5 background: #eee;
6 width: -webkit -fill -available;
7 }
8 .msger -inputarea * {
9 padding: 10px;

10 border: none;
11 border -radius: 3px;
12 font -size: 1em;
13 }
14 .msger -input {
15 flex: 1;
16 background: #ddd;
17 }
18 .msger -send -btn {
19 margin -left: 10px;
20 background: rgb(0, 196, 65);
21 color: #fff;
22 font -weight: bold;
23 cursor: pointer;
24 transition: background 0.23s;
25 }
26 .msger -send -btn:hover {
27 background: rgb(0, 180, 50);
28 }
29 .scroll{
30 background: #000;
31 position: absolute;
32 height :199px;
33 overflow -x: hidden;
34 overflow -y: auto;

18



35 }

Listing 8: CSS for text input area

JavaScript is used to pass the user entered data from web page and to the back end.
The main function is given in Listing 9.

1

2 function getBotResponse () {
3 var rawText = $("#textInput").val();
4 var userHtml = ’<p class =" userText"><span >’ + rawText + ’

</span ></p>’;
5 $("#textInput").val("");
6 $("#chatbox").append(userHtml);
7 document.getElementById(’userInput ’).scrollIntoView ({ block

: ’start’, behavior: ’smooth ’});
8 $.get("/get", { msg: rawText }).done(function(data) {
9 var botHtml = ’<p class =" botText"><span >’ + data + ’</

span ></p>’;
10 $("#chatbox").append(botHtml);
11 scrollToBottom ();
12 document.getElementById(’userInput ’).scrollIntoView ({

block: ’start ’, behavior: ’smooth ’});
13 });
14 }
15 $("#textInput").keypress(function(e) {
16 if(e.which == 13) {
17 getBotResponse ();
18 }
19 });
20 $("#buttonInput").click(function () {
21 getBotResponse ();
22 })

Listing 9: Send data

Also the developer has developed a scrolling function inside chat box where the
chat text is visible, so that when ever a new chat text pop up the chat box would
automatically scroll to bottom (Listing 10). This feature was implemented keeping
in mind the user experience. It is this specific feature that allows user not to scroll
to the bottom of the chat text each time a new chat text pops up.

The styling of the scroll bar and it’s position is done using CSS (lines 31–37 of
Listing 8).

1 function scrollToBottom () {
2 var chatbox = document.getElementById(’chatbox ’);
3 chatbox.scrollTop = chatbox.scrollHeight;
4 }

Listing 10: Scroll to bottom function

19



Figure 15 shows the chat user interface when a user navigates in to the site for the
first time. The chat-bot initiates the conversation by introducing itself to the user
and then asks for user consent to get information to book an appointment.

Figure 15: Telecare Plus Chatbot UI

Then the user can type their message in the provided text box and click the ’Send’
button to send the reply, see Figure 16.

If the user does not allow to share the details then the chat-bot will terminate the
conversation, as shown in Figure 17.

Figure 16: User input

20



Figure 17: Chat terminate

If only the user allows to share his/her detail then the bot will ask for user name.
When the user input the name chat-bot is able to store it in a session and output it
within the next chat text, as seen in Figure 18.

Figure 18: Chat-bot storing user input

After retrieving necessary information the chat-bot will then ask the user to upload
any medical documents. Here the user have to type the word ’upload’ if she or he
has any medical documents as shown in Figure 19.

21



Figure 19: Requesting to upload medical documents

When the user click on ’Choose File’ button, it is navigating to a file picker where
user can select the documents. Figure 20 shows this.

Figure 20: File picker to upload medical documents

Finally the developer has also considered the responsiveness of the web user interface
among different devices. Figure 21 shows an example of a responsive screen of the
user interface.

22



Figure 21: Responsive UI screen

6 Future Work and Recommendation
As this artifact described in this work has proven that it has a high potential to be
useful for the healthcare sector. So there are many improvements that could be done
to the application to make it better. Some of the ideas are stated below derived out
of user’s evaluations and the others are personal opinions of the researcher.

User profiles could be created for users who enable storing details. So that if a user
already has an account in the website then that detail could be used by the bot to
output to the user. And if the user does not need to add more detail then the bot can
use the previous account details to book an appointment easily. This functionality
should be linked with users phone number or the email address. So the conversational
flow should be changed in a way that the user could enter the email address and the
phone number at first rather that waiting till the end of the conversation.

When entering the gender a function could be implemented to check the age is below
18 years. If the patient is a child under 18 years then the chat-bot could navigate to
ask specific set of questions about the guardian. As an example see Listing 11.

1

2 if user_age <= 18:
3 guardian_fname = "Please provide the first name of

guardian."
4 print("ROBO: {}".format(guardian_fname))
5 guardian_fname = input ()
6

7 guardian_lname = "Please provide the last name of
guardian."

8 print("ROBO: {}".format(guardian_lname))
9 guardian_lname = input ()

10

11 guardian_full_name = "{} {}".format(guardian_fname ,
guardian_lname)

23



12 result_dict.update ({"name_guardian":
guardian_full_name })

13

14 # validating guardian pn number
15 pattern = r’^\d{10}$’
16 while True:
17 print("ROBO: Please provide 10 digit phone

number of your guardian")
18 guardian_number = input()
19

20 if re.match(pattern , guardian_number):
21 print("ROBO: Phone number is valid.")
22 result_dict.update ({"number_guardian":

guardian_number })
23 break
24 else:
25 print("ROBO: Invalid phone number.")

Listing 11: Ask guardian information if the pation is a child

Also, the verification functionality of the mobile number entered by the user is an-
other important functionality, which the researcher will be developing in the future.
The current function checks whether the user input is a number but it does not check
the number of digits it contains. Developer hopes to add a validation method similar
to the Listing 12

1

2 pattern = r’^\d{10}$’
3 while True:
4 print("ROBO: Please provide a 10 digit phone

number")
5 user_pn = input()
6

7 if re.match(pattern , user_pn):
8 print("ROBO: Phone number is valid.")
9 result_dict.update ({"number_user": user_pn })

10 break
11 else:
12 print("ROBO: Invalid phone number.")

Listing 12: Validate phone number

Not only that but also email validation is also by default considered to be imple-
mented by the developer after this. In order to improve the security of the application
these two validation methods are essential. See Listing 13 for a sample email vali-
dation used in a Python chat-bot.

The advantage of using both of these validation functions are, it allows the user to
insert input until they insert the correct input, without terminating that chat.

1 pattern_mail = r’^[\w\.-]+@[\w\. -]+\.\w+$’
2

3 while True:

24



4 print("ROBO: Please provide email address:")
5 user_email = input("You: ")
6

7 if re.match(pattern_mail , user_email):
8 result_dict.update ({"email_user": user_email })
9 break

10 else:
11 print("ROBO: Invalid email address.")

Listing 13: Validate email address

It is also taken into account to send appointment details to user for their given
mobile number as a text message or email the appointment details to the given email
address. Where this could be used as a confirmation of the booking.

Enabling the voice input/output function will be considered to be added in the future,
so that it expands the ways users can input there information and allows more user
friendly control over the application.

7 Conclusions
This report provides a clear idea about the chat-bot application, how it is imple-
mented and a base level insight of the application. In conclusion, chat-bots have
demonstrated significant promise for healthcare sector to people of various skill levels.
Chat-bots can deliver a customised and dynamic experience thanks to developments
based on natural language processing, machine learning, gamification, interaction
with IDEs, and voice assistants. Chat-bots can make online appointment booking
more approachable by allowing patients to enter required detail in a convenient way,
which is similar to texting. The use of chat-bots in the healthcare sector has come
a long way already, but there is still potential for growth. As a result, we may
anticipate further advancements in the future [13].

25



References
[1] Bala, Kumkum & Kumar, Mukesh & Hulawale, Sayali & Pandita, Sahil. (2018).

Chat-Bot For College Management System Using A.I. 2395-0056.

[2] Chao, C., Huang, Y., & Chen, L. (2018). Integrating a Chatbot with a Pro-
gramming Learning Platform: A Design-based Research Framework. Educational
Technology & Society, 21(3), 32-44, https://doi.org/10.1016/j.caeai.2021.
100033

[3] Pal, A., & Ghosh, S. (2019). Chatbots in Education: A Review of Current Re-
search. International Journal of Emerging Technologies in Learning, 14(6), 163-
178, https://educationaltechnologyjournal.springeropen.com/articles/
10.1186/s41239-021-00302-w

[4] Guo L, Wang D, Gu F, Li Y, Wang Y, Zhou R. Evolution and trends in intelligent
tutoring systems research: a multidisciplinary and scientometric view Asia Pacific
Education Review. 2021 Jan;22(3) 441-461. PMCID: PMC8095475.

[5] Dimitriadou E, Lanitis A. A critical evaluation, challenges, and future perspec-
tives of using artificial intelligence and emerging technologies in smart classrooms.
Smart Learn. Environ. 2023;10(1):12. doi: 10.1186/s40561-023-00231-3. Epub 2023
Feb 6. PMCID: PMC9900563.

[6] Health care financing review - Effects and effectiveness of telemedicine, https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC4193577/, note = Accessed: 2023-
05-22

[7] Approach to Reviewing Telehealth, https://www.medicaid.gov/medicaid/
benefits/telehealth/index.html, note = Accessed: 2023-06-01

[8] ChatGPT - How has the popularity of telemedicine increased over the years?,
https://chat.openai.com/chat, note = Accessed: 2023-05-28

[9] C. Wibhowo and R. Sanjaya, "E-Learning Design for Psychologists to Implement
Chatbots for Clients with Borderline Personality Disorder," 2022 12th Interna-
tional Conference on Information Technology in Medicine and Education (ITME),
Xiamen, China, 2022, pp. 189-192, doi: 10.1109/ITME56794.2022.00049.

[10] A. M. Rahman, A. A. Mamun and A. Islam, "Programming challenges of
chatbot: Current and future prospective," 2017 IEEE Region 10 Humanitar-
ian Technology Conference (R10-HTC), Dhaka, Bangladesh, 2017, pp. 1-4, doi:
10.1109/R10-HTC.2017.8288910.

[11] ARTIFICIAL INTELLIGENCE MARKUP LANGUAGE: A BRIEF TU-
TORIAL, https://arxiv.org/ftp/arxiv/papers/1307/1307.3091.pdf, (Ac-
cessed: 2023-05-24)

26

https://doi.org/10.1016/j.caeai.2021.100033
https://doi.org/10.1016/j.caeai.2021.100033
https://educationaltechnologyjournal.springeropen.com/articles/10.1186/s41239-021-00302-w
https://educationaltechnologyjournal.springeropen.com/articles/10.1186/s41239-021-00302-w
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193577/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193577/
https://www.medicaid.gov/medicaid/benefits/telehealth/index.html
https://www.medicaid.gov/medicaid/benefits/telehealth/index.html
https://chat.openai.com/chat
https://arxiv.org/ftp/arxiv/papers/1307/1307.3091.pdf


[12] B. R. Ranoliya, N. Raghuwanshi and S. Singh, "Chatbot for university re-
lated FAQs," 2017 International Conference on Advances in Computing, Com-
munications and Informatics (ICACCI), Udupi, India, 2017, pp. 1525-1530, doi:
10.1109/ICACCI.2017.8126057.

[13] N. P. K S, S. S, T. T N, Y. Yuvraaj and V. D A, "Conversational Chatbot Builder
– Smarter Virtual Assistance with Domain Specific AI," 2023 4th International
Conference for Emerging Technology (INCET), Belgaum, India, 2023, pp. 1-4,
doi: 10.1109/INCET57972.2023.10170114.

[14] What is Flask Python, https://pythonbasics.org/what-is-flask-python,
(Accessed: 2023-06-23)

[15] M. Salehi and I. N. Kmalabadi, "Attribute-based recommender system for learn-
ing resource by learner preference tree," 2012 2nd International eConference on
Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 2012, pp. 133-
138, doi: 10.1109/ICCKE.2012.6395366.

[16] About ChatterBot, https://chatterbot.readthedocs.io/en/stable, (Ac-
cessed: 2023-05-05)

[17] The Systems Development Life Cycle Essay, https://ivypanda.com/essays/
the-systems-development-life-cycle/, (Accessed: 2023-07-05)

[18] Esko Kilpi, Neural networks as the architecture of human work, from
Michael Nielsen’s book on neural nets, https://medium.com/@EskoKilpi/
neural-networks-as-the-architecture-of-human-work-3f9d20f019a3, (Ac-
cessed: 2023-06-04)

[19] Sumit Saha, A Comprehensive Guide to Convolutional Neural Networks - the
ELI5 way, Published in Towards Data Science (https://towardsdatascience.
com/), 2018. (Accessed: 2023-06-10)

[20] Examples: Mixture Modeling with Cross-Sectional Data, Chapter 7, https:
//www.statmodel.com/HTML_UG/chapter7V8.htm, (Accessed: 2023-06-30)

[21] Chat GUI background image, Medical outline seamless pattern with pill sy-
ringe thermometer and stethoscope vector illustration on green background, from
https://www.vecteezy.com/vector-art/, (Accessed: 2023-06-20)

27

https://pythonbasics.org/what-is-flask-python
https://chatterbot.readthedocs.io/en/stable
https://ivypanda.com/essays/the-systems-development-life-cycle/
https://ivypanda.com/essays/the-systems-development-life-cycle/
https://medium.com/@EskoKilpi/neural-networks-as-the-architecture-of-human-work-3f9d20f019a3
https://medium.com/@EskoKilpi/neural-networks-as-the-architecture-of-human-work-3f9d20f019a3
https://towardsdatascience.com/
https://towardsdatascience.com/
https://www.statmodel.com/HTML_UG/chapter7V8.htm
https://www.statmodel.com/HTML_UG/chapter7V8.htm
https://www.vecteezy.com/vector-art/

	Introduction
	Objectives / Research Questions
	Literature review
	AI in chat-bots
	Chat-Bot Systems
	Technologies Used In Chat-Bot Systems

	Project Design
	Project Implementation and Results
	Technology Used
	Back-end Development
	Front-end Development

	Future Work and Recommendation 
	Conclusions
	References

