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Abstract

We construct and analyze a nonlocal continuum model for group formation with

application to self-organizing collectives of animals in homogeneous environments.

The model consists of a hyperbolic system of conservation laws, describing indi-

vidual movement as a correlated random walk. The turning rates depend on three

types of social forces: attraction towards other organisms, repulsion from them, and

a tendency to align with neighbors. Linear analysis is used to study the role of the

social interaction forces and their ranges in group formation. We demonstrate that

the model can generate a wide range of patterns, including stationary pulses, trav-

eling pulses, traveling trains, and a new type of solution that we call zigzag pulses.

Moreover, numerical simulations suggest that all three social forces are required to

account for the complex patterns observed in biological systems. We then use the

model to study the transitions between daily animal activities that can be described

by these different patterns.

Key words: nonlocal hyperbolic system, group formation, social interactions,

spatial patterns, zigzag movement
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1 Introduction

Communication between individuals, and in particular, reception of information, is

of crucial importance for group formation and group movement in self-organizing

communities of animals. In this paper, we will derive a mathematical model for group

formation and movement based on how animals receive information, and how this

information influences the social interactions among them.

The study of animal aggregations (such as schools of fish, swarms of insects, etc.)

has become a topic of great interest, especially in the past years (Flierl et al., 1999;

Gueron et al., 1996; Okubo et al., 2001). Understanding aggregation has not only

theoretical significance, but also more practical applications. For example, under-

standing schooling behavior can be useful in establishing fishing strategies (Parrish,

1999; Radakov, 1973), while understanding desert locust aggregations can be useful

in managing and controlling this species’ outbreaks (Uvarov, 1966; Simpson et al.,

1999). More recently, aggregative, schooling and swarming behavior has attracted the

attention of physicists, computer scientists, and engineers interested in autonomous

robots and traffic flow in intelligent transportation systems (Gazi and Passino, 2002;

Vicsek et al., 1999; Kerner and Konhäuser, 1994; Kube and Zhang, 1993).

There are two kinds of factors that influence group formation: external factors that,

for example, give rise to chemotaxis, phototaxis or thermotaxis, and internal factors,

which are social forces that act among individuals (Beecham and Farnsworth, 1999;

Huth and Wissel, 1994; Breder, 1954; Warburton and Lazarus, 1991; Simpson et al.,

1999). The present research focuses on the internal factors that lead to group forma-

tion. We consider the following factors: attraction towards other individuals, repulsion

from others, and the tendency to align with neighbors (i.e., to adjust the movement

direction to that of neighbors). Each of these forces act over a certain spatial scale or
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within a certain range of influence.

Over the past fifty years, a large number of mathematical models have been derived

for the purpose of better understanding animal aggregations (Breder (1954); Okubo

(1986); Pfistner (1990); Huth and Wissel (1994); Gueron et al. (1996); Edelstein-

Keshet et al. (1998); Mogilner and Edelstein-Keshet (1999); Lutscher (2002); Couzin

et al. (2002); Mogilner et al. (2003); Topaz et al. (2006), and references therein). These

models fall into two frameworks: Lagrangian models (individual-based models), and

Eulerian models (continuum models).

In the Lagrangian approach, a set of decision rules that govern the movements of

individuals is given (Reynolds, 1987; Vabø and Nøttestad, 1997; Huth and Wissel,

1994; Gueron et al., 1996; Couzin et al., 2002; Reuter and Breckling, 1994). Most

of these models are in two spatial dimensions, and include all three types of social

interactions that alter the position of an individual: attraction, repulsion, and align-

ment (Reynolds, 1987; Huth and Wissel, 1994; Reuter and Breckling, 1994; Couzin

et al., 2002). Many Lagrangian models focus on the structure of the group (e.g., ge-

ometry of the group, degree of polarization, etc.), and simulations show very close

agreement between these structures and those observed in nature (Reynolds, 1987;

Huth and Wissel, 1994; Vabø and Nøttestad, 1997; Couzin et al., 2002). Couzin et al.

(2002), for example, described four types of groups: swarm, torus, dynamic parallel

groups and highly parallel groups, and then looked at the transition between these

types of group structure, as the size of the interaction zones is varied. Due to an-

alytical difficulties in studying Lagrangian models, as well as some computational

limitations, this approach is applied mostly to small groups of organisms.

On the other hand, Eulerian models are used to study the dynamics of the density

of individuals, which is typically described by partial differential equations. Usu-

ally, these models are applied to large populations of insects, fish, bacteria, and so
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forth. Continuum models for animal aggregations can be divided into two categories:

parabolic and hyperbolic equations. For both types of models, the social interactions

between group members can be local, when immediate neighbors or local effects of the

environment are important (Lutscher, 2002; Lutscher and Stevens, 2002; Edelstein-

Keshet et al., 1998), or nonlocal, when distant individuals or nonlocal effects of the en-

vironment play an important role (Mogilner and Edelstein-Keshet, 1996, 1999; Topaz

and Bertozzi, 2004; Topaz et al., 2006; Bressloff, 2004).

Parabolic models, which comprise the majority of continuum models, usually incor-

porate nonlocal attractive and repulsive terms (Mogilner and Edelstein-Keshet, 1999;

Topaz and Bertozzi, 2004; Topaz et al., 2006). These models include two components

of movement: a random one, modeled by diffusion, and a nonrandom component,

modeled by advection (Okubo et al., 2001; Topaz et al., 2006). To date, the models

have been usually used to investigate one behavior at a time, such as traveling band

solutions (Mogilner and Edelstein-Keshet, 1999), stationary solutions (Topaz et al.,

2006), or vortex-like groups (Topaz and Bertozzi, 2004).

There are a few parabolic models that also incorporate alignment, two such exam-

ples being proposed by Mogilner and Edelstein-Keshet (1996) and Bressloff (2004).

Both models show three types of spatial patterns: alignment without aggregation,

aggregation without alignment, and patches of aligned objects.

A few hyperbolic models analyze the effect of alignment on group formation and move-

ment, using local (Lutscher, 2002) or nonlocal (Pfistner, 1990, 1995) terms. Studying

the swarming behavior of Myxobacteria, Pfistner (1990) derived a system of first-order

hyperbolic equations that considered nonlocal density-dependent turning rates, and

used it to investigate the formation of stationary swarms. Later, Pfistner (1995) mod-

ified the model by introducing free boundary conditions for the swarm edges, and

studied swarm cohesion numerically, analyzing expansion and retraction of bound-
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aries. The new element introduced by these two models is a straightforward way to

incorporate alignment into the turning rates. Starting with the same modeling proce-

dure as Pfistner, we propose to incorporate other social forces that affect these rates:

repulsion and attraction.

To incorporate these social interactions, we focus on communication. Animal com-

munication uses different signals: visual, acoustic, chemical or tactile signals (Marler,

1967; Partan and Marler, 2005). Both emission and reception of signals can be unidi-

rectional or omnidirectional, depending on the signal. In the formulation of our model,

we will be concerned only with the reception of these signals, since it represents the

basis for animal communication (Marler, 1967; Partan and Marler, 2005). Moreover,

some signals are efficient on short ranges (e.g., repulsion range), while others are effi-

cient on long ranges (e.g., attraction range). We use the directionality of the signals,

as well as the ranges on which signals have effect, to define the social interactions. In

this paper, we will consider only a specific case of animal communication, by assuming

that both attraction and repulsion involve omnidirectional signals, while alignment

involves only unidirectional signals.

The aim of this paper is thus to include all three social interactions into a continuum

model for animal movement, and investigate the resulting spatial patterns, and the

possible transitions between them. To this end, we formulate a hyperbolic model

similar to the one by Pfistner (1990), where the turning rates depend on all three

social forces, namely attraction, repulsion and alignment, in a way that reflects the

characteristics of the communication process. We formulate simple rules by which

the perceived signals are translated into movement behavior. We use linear analysis

and numerical simulations to investigate the different possible types of group structure

that arise. We show that only the interactions between all three forces can account for

the complex patterns observed in biological systems. When all three social interactions
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are present, the model displays four types of solutions: stationary pulses, traveling

pulses, traveling trains, and a new type of solution that we call zigzag pulses.

The paper is organized as follows. Section 2 contains the model derivation. Section 3

focuses on the spatially homogeneous steady states and their local stability. We also

use the dispersion relation to gain insights into the effect of different interaction ranges

on group formation. In Section 4, via numerical simulations, we study the spatially

nonhomogeneous solutions displayed by our system. We also discuss the transition

between different daily activities described by the numerical solutions. In Section 5,

we compare the results with actual activity patterns observed in nature. We conclude

with a general discussion in Section 6.

2 Model description

We start with the hypothesis made by many Lagrangian models, namely that each

individual interacts with its neighbors via three social forces, attraction, repulsion,

and alignment. We further assume that each of these forces has a different interaction

range (Figure 1 (a)). More specifically, we assume that an individual changes direction

to approach other individuals if they are within its attraction range, or to avoid

collision if they are within its repulsion range (Figure 1 (a)). Moreover, an individual

turns to match its orientation to its neighbors’ direction of movement (i.e., to align)

if they are within its alignment range.

Figure 1 here

Since we derive a 1D model, the concentric circles that usually describe the interaction

ranges in 2D Lagrangian models (Figure 1(a)) are replaced by intervals on the real

number line (Figure 1(b)).
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Using the correlated random walk approach (Kac, 1974; Segel, 1977; Othmer et al.,

1988; Pfistner, 1990), we derive the following hyperbolic system of conservation laws

that describe the evolution of densities of left-moving and right-moving individuals:

∂tu
+(x, t) + ∂x(γu+(x, t))=−λ+u+(x, t) + λ−u−(x, t),

∂tu
−(x, t) − ∂x(γu−(x, t))= λ+u+(x, t) − λ−u−(x, t),

u±(x, 0)= u±
0 (x), x ∈ R. (1)

Here u+(x, t) (u−(x, t)) is the density of individuals at (x, t) that move to the right

(left), and γ is their constant speed. We have denoted by λ+ (λ−) the turning rates

for the individuals that were initially moving to the right (left) and then turn to the

left (right).

While model (1) is formally identical with the model by Pfistner (1990), the biolog-

ical processes considered in the turning functions differ considerably. Pfistner only

modeled alignment and used turning functions that were positive, unbounded and in-

creasing functions of the signals perceived from neighbors within a certain perception

distance.

We, on the other hand, assume that all three social interactions influence the turning

rates, so that λ± models attraction, repulsion, and alignment as a response of an

individual to the signals perceived from its neighbors. We assume that stronger inter-

action forces lead to higher turning rates (to avoid collision, for example, in case of

high repulsion), and we consider the turning rates to be bounded monotone functions

of the perceived signals y±, which are emitted by individuals moving to the right (u+)

and to the left (u−) :

λ±(y±) =λ1 + λ2f
(

y±[u+, u−]
)

=(λ1 + λ2f(0)) + λ2

(

f(y±[u+, u−]) − f(0)
)

, (2)
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where λ1 + λ2f(0) is a base-line random turning rate, and λ2 (f(y±) − f(0)) is a bias

turning rate. We choose f to be a dimensionless, bounded and increasing function

of the dimensionless functionals y±[u+, u−] which incorporate nonlocal interaction

terms:

y±[u+, u−] = y±
r [u+, u−] − y±

a [u+, u−] + y±
al[u

+, u−]. (3)

Here, y±
r , y±

al and y±
a denote the repulsion, alignment, and attraction terms that

influence the likelihood of turning to the left (+) or to the right (−). We will specify

the dependence of these terms on u+ and u− shortly. The three interactions are

introduced in an additive manner, with repulsive and attractive terms having opposite

effects. Throughout this paper, we use the following turning function (Figure 2):

f
(

y±[u+, u−]
)

= 0.5 + 0.5 tanh
(

y±[u+, u−] − y0

)

, (4)

where the constant y0 is chosen such that f(0) � 1 and the random turning dominates

the movement. In this case, the base-line turning can be approximated by λ1, and the

change in turning rate due to interactions by λ2f(y±).

Figure 2 here

In order to describe the dependence of the social interactions, y±
r , y±

al and y±
a , on u+

and u−, we look at the way organisms perceive and integrate information. As men-

tioned in Section 1, we assume that both direction and spatial range of signals define

the social interactions. We introduce four parameters that measure the information

received from the right or left: p±
r and p±l . The superscript (±) refers to direction in

which the sender of the information moves, and the subscript (r, l) refers to the di-

rection from which the signal is received (right, left) (Figure 3). Later, for the sake of

simplicity, the analysis will concentrate on special cases. By way of example, suppose
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that the individual positioned at (x, t) moves to the right (+) (Figure 3(a)), and that

it receives information from other individuals located to its right, at x+s, and located

to its left, at x−s. Also, suppose that this individual perceives a stronger signal from

the right than from the left, that is, (p+
r u+ + p−r u−)(x + s) > (p−l u− + p+

l u+)(x − s).

If the signal comes from within the repulsion zone, then it will turn to avoid those

neighbors that are to its right, regardless of their orientation. If the signal comes from

within the attraction zone, it will continue moving in the same direction.

Figure 3 here

For simplicity, we choose p+
r = p−r = pr and p+

l = p−l = pl. If we sum the information

from all neighbors (s ∈ (0,∞)), we can translate the diagrams from Figure 3 into the

following nonlocal terms that describe the social interactions:

y+
r,a[u

+, u−] = qr,a

∫ ∞

0
Kr,a(s) (pru(x + s) − plu(x − s)) ds, (5)

y−
r,a[u

+, u−] = qr,a

∫ ∞

0
Kr,a(s) (plu(x − s) − pru(x + s)) ds, (6)

y+
al[u

+, u−] = qal

∫ ∞

0
Kal(s)

(

pru
−(x + s) − plu

+(x − s)
)

ds, (7)

y−
al[u

+, u−] = qal

∫ ∞

0
Kal(s)

(

plu
+(x − s) − pru

−(x + s)
)

ds, (8)

where Ki(s), i ∈ {a, r, al} are interaction kernels, with support inside the interval

[0,∞), that describe how signals from different distances are weighed. The parameters

qa, qr, and qal represent the magnitudes of the attraction, repulsion, and alignment

forces, respectively. For attraction and repulsion, the total density of organisms at a

specific position in space is important: u(x±s, t) = u+(x±s, t)+u−(x±s, t), s > 0. We

assume here that as long as the individual located at x moves towards neighbors that

are in the repulsion zone, it will turn to avoid collision, no matter what the movement

direction of those neighbors is. Similarly, the individual is attracted by neighbors

within its attraction zone, regardless of their orientation. For alignment, on the other

hand, we assume that an individual responds only to neighbors moving towards it. For
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example, for y+
al (equation (7)), we assume that a right-moving individual at point x

will turn around only if pru
−(x + s) is large relative to plu

+(x − s).

In summary, the right-hand sides of equations (5) – (8) describe how the individual at

(x, t) weighs information received from its right and left neighbors. The only difference

between the repulsion term (y±
r [u+, u−]) and the attraction term (y±

a [u+, u−]) is in the

range over which the two kernels Kr(s) and Ka(s) have influence (Figure 4). Recall

that since repulsion and attraction have opposite effects, these two terms enter the

turning function (equation (3)) with different signs.

Figure 4 here

A possible choice for the interaction kernels is translated Gaussian kernels (Figure

4(a)):

Ki(s) =
1

√

2πm2
i

exp
(

−(s − si)
2/(2m2

i )
)

, i = r, a, al, s ∈ [0,∞), (9)

where sr, sal, and sa represent half the length of the interaction ranges, for the repul-

sion, alignment, and attraction terms, respectively. The constants mi are chosen such

that the support of more than 98% of the mass of the kernels is inside the interval

[0,∞): mi = si/8, i ∈ {r, al, a}. In this case, the integrals defined on [0,∞) can be

approximated by integrals on (−∞,∞).

To simplify the model equations for the purpose of analysis, we choose pl = pr (the

case pl 6= pr will be dealt with in Section 4 ). Moreover, these parameters will be

incorporated into the magnitudes of repulsion qr, alignment qal, and attraction qa.

Then, if we extend Kr and Ka to odd kernels on the whole real line, equations (5)

and (6) can be rewritten as

y±
r,a[u

+, u−] = qr,a

∫ ∞

−∞
Kr,a(s)u(x ± s)ds. (10)
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A second possible choice, similar to Mogilner and Edelstein-Keshet (1999), is to define

the attraction and repulsion kernels by (Figure 4 (b))

Ki(s) =
s

2s2
i

exp
(

−s2/(2s2
i )
)

, i = a, r, s ∈ (−∞,∞). (11)

The two model formulations (kernels on the half-line, and odd extensions on the full

line) are equivalent. Equation (10) together with Figure 4(b) show that if a right- or

left-moving individual perceives many neighbors ahead of it, the likelihood of turning

will increase in case of repulsion, or decrease in case of attraction. Conversely, the

perception of many neighbors behind that individual will lead to a decrease in the

turning rates in case of repulsion, or to an increase in these rates in case of attraction.

Since an individual needs to distinguish movement directions and not just densities

of its neighbors (i.e., u+, u− vs. u ) in order to align, we do not use odd alignment

kernels.

Altogether, equations (3) – (11) describe aspects of how an organism at (x, t) makes

the decision to turn: it turns to avoid collision if the majority of the stimuli received

originate within the repulsion zone, or to approach other individuals if the majority

of the stimuli received originate within the attraction zone. If the majority of the

stimuli originate within the alignment zone, the individual will turn to align itself

according to the prevailing movement direction of the neighbors moving towards it.

For a summary of the full model please see Appendix 2.

The full model has 14 parameters. For the convenience of the reader, we list these

parameters in Table 3. While nondimensionalizing allows us to reduce the number

of parameters to 10, the analysis is no more difficult when dealing with the dimen-

sional form, which we will do in the following. Moreover, the original parameters are

biologically motivated. It is easier to interpret the results of the model (Sections 3.3
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to 6) by talking about the model using these parameters in their original biological

context.

3 Spatially homogeneous steady-states and their local stability

A standard approach in the study of animal self-organization is to assess the possibility

of pattern formation. To do so, one determines conditions under which the spatially

uniform steady state loses its stability via growth of small spatial perturbations.

The loss of stability through real or complex eigenvalues suggests a means by which

aggregation or respectively, dispersive waves, can occur.

We start by determining the spatially homogeneous steady states in Section 3.1. In

Section 3.2, we derive the dispersion relation corresponding to these steady states,

and use it first to study the stability of these solutions and later, in Section 3.3, to

study the effect of the length of interaction ranges on the stability.

3.1 Steady states

We look for the spatially homogeneous steady states u+(x, t) = u∗ and u−(x, t) = u∗∗,

with total density A = u∗ + u∗∗, and obtain the steady-state equation for system (1),

h(u∗; qal, λ, A) = 0, (12)

where h is being defined as

h(u∗; qal, λ, A) :=−u∗ (1 + λ tanh(Aqal − 2u∗qal − y0)) +

(A − u∗) (1 + λ tanh(−Aqal + 2u∗qal − y0)) , (13)

and
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λ =
0.5λ2

0.5λ2 + λ1
. (14)

Although the model involves a large number of parameters, only four of them arise

in this steady-state equation: A, λ, qal, and y0. Only the first three parameters will

be varied, y0 being fixed by our choice for the turning function. We look at the effect

of varying A since we expect that the higher the population density, the stronger

the inter-individual interactions. Therefore, we expect A to influence the aggregation

process. A similar explanation holds for qal. Intuitively, the turning rates also influence

the formation of population clusters. The effects of varying all these parameters are

presented in Figure 5, through three bifurcation diagrams.

Since we have chosen Kr,a to be odd kernels,

∫ ∞

−∞
Kr,a(s)(u

∗ + u∗∗)ds = 0. (15)

Hence, the attraction and repulsion terms vanish, and the only social interaction that

determines the number of possible steady states is alignment. When qal = 0, the only

steady state is (u+, u−) = (A/2, A/2). For qal 6= 0, equation (12) can have one, three,

or five solutions (Figure 5), depending on the values of λ. More precisely, there is a

threshold value

λ∗ =
−1 + 3 tanh(y0)

2

2 tanh(y0)
(16)

such that for λ > λ∗ (i.e., for λ1 much smaller than λ2), there are up to three solutions,

while for λ < λ∗, there are up to five solutions (Figure 5 (a)). We will denote these

five solutions by u∗
i , i = 1..5. Therefore, the spatially homogeneous steady states

generically denoted by (u∗, u∗∗) = (u∗, A − u∗) can be any of the following pairs:

(u∗
1, u

∗
5), (u∗

5, u
∗
1), (u∗

2, u
∗
4), (u∗

4, u
∗
2), or (u∗

3, u
∗
3).
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In the remainder of this paper, we fix the ratio λ1/λ2 with λ1 << λ2, so that λ < λ∗,

which implies that there can be up to five steady states (Figure 5 (a) and (b)). The

other two threshold values for qal from Figure 5, namely Q∗ and Q∗∗, are as follows:

Q∗∗ is given explicitly by

Q∗∗ =
−1 + λ tanh(y0)

λA (−1 + tanh(y0)2)
, (17)

while Q∗ is a decreasing function of λ, defined implicitly by

∂3h(A/2; Q∗, λ, A)

∂q3
al

= 0. (18)

The dependence of u∗ on qal is shown in Figure 5 (b), in the five steady states regime.

As alignment becomes very large, and in particular qal → ∞, the three homogeneous

steady states are u± ∈ {A(1 − λ)/2, A/2, A(1 + λ)/2}. Figure 5 (c) illustrates the

dependence of the number of steady states on both A and qal, again in the five steady

states regime. This last figure suggests that qal and A have similar effects on the

number of steady states: for small qal or A, it is possible to have only one steady state

(u∗, u∗∗) = (A/2, A/2), while for large qal or large A, there are three steady states.

Figure 5 here

3.2 Local stability

Once we know the possible homogeneous steady states, the next step is to study

the local stability of these solutions under small perturbations caused by spatially

nonhomogeneous terms: u+(x, t) = u∗ + up(x, t) and u−(x, t) = u∗∗ + um(x, t), with

(u∗, u∗∗ = A − u∗) being the generic notation for the spatially homogeneous steady

states. We approach the problem of pattern formation by choosing to define equa-

tion (1) on a bounded domain of length L with wrap-around boundary conditions
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for the nonlocal influence terms. This yields a problem with a discrete spectrum, and

also approximates the process of pattern formation on an unbounded domain when

L is large. In this case, the interaction kernels are, as in Robbins (2003),

Γj(s) =
+∞
∑

n=−∞

Kj(s + nL), j ∈ {r, al, a}. (19)

The Fourier transform of the kernel Kj(s) is given by

K̂j
±
(k) =

∫ ∞

−∞
Kj(s)e

±iksds. (20)

Also, we define

Γ̂j

±
(k) :=

∫ L/2

−L/2
Γj(s)e

±iksds. (21)

For large L, and in particular for L → ∞, Γ̂j
±
(k) can be approximated by K̂j

±
(k)

(see Appendix 1):

lim
L→∞

∫ L/2

−L/2
Γj(s)e

±iksds = K̂j
±
(k) (22)

Due to this correspondence, we will work on a large finite domain [0, L], and use K̂j(k)

to approximate interactions on finite domain by interactions on infinite domain. For

the remainder of the paper, we will use the interaction kernels defined by equation (9)

(for alignment) and equation (11) (for attraction and repulsion). The kernels are

chosen such that the support of more than 98% of the kernels is small with respect

to the length of the domain. The periodic boundary conditions that complete the

description of the model on a finite domain are given by

u+(0, t) = u+(L, t), u−(0, t) = u−(L, t). (23)
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We let up,m(x, t) ∝ eαt+ikx, with the discrete wavenumber k = 2nπ/L, n ∈ N, and

the growth rate α, and substitute these expressions into system (1) to obtain the

dispersion relation:

2α1,2(k) = C(k) ±
√

C(k)2 − D(k), (24)

where

C(k)=−2(λ1 + λ20.5) − λ2 (f(M1) + f(−M1))

+λ2qalB
(

K̂+
al(k) + K̂−

al(k)
)

,

D(k)= 4γ2k2 − 4γikh2 − 8γkλ2B
(

qrK̂
+
r (k) − qaK̂

+
a (k)

)

+8γikλ2Bqal

(

K̂−
al(k) − K̂+

al(k)
)

,

B = u∗f ′(M1) + u∗∗f ′(−M1),

M1 = qal(u
∗∗ − u∗),

f(u)= 0.5 tanh(u − y0),

f ′(u)= 0.5 − 2f 2(u),

h2 = λ2 (f(−M1) − f(M1)) .

Here, K̂j, j ∈ {a, r, al} are the Fourier transforms of the interaction kernels (11) (for

attraction and repulsion) and (9) (for alignment):

K̂j
+
(k)=

∫ ∞

−∞
Kj(s)e

iksjds = iksj exp(−k2s2
j/2), j = a, r, (25)

K̂al
±
(k)=

∫ ∞

−∞
Kal(s)e

±iksalds = exp(±isalk − k2m2
al/2). (26)

Figure 6 here

Equation (24) shows that the steady state (u∗, u∗∗) is locally unstable, i.e., Re(α1(k)) >

0, when C(k) > 0 or D(k) < 0. The first term, C(k), is positive when λ2 is large.

For D(k) to be negative, it requires either a large λ2, or attraction to be larger than

repulsion: qaK̂a(k) > qrK̂r(k). If we focus now on each of the five solutions of equa-

tion (12) u∗
i , i = 1..5, we notice that equation (24) is important for the stability of

u∗
1,5 for qal > Q∗, and of u∗

3 for qal < Q∗∗. However, the stability of u∗
2,4 as well as u∗

3
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when qal > Q∗∗ is given not only by (24), but also by the domain length L. When the

domain length becomes very large, and in particular L → ∞, the first wavenumber

k1 = 2π/L approaches zero. Consequently C(k1) approaches

C(0) = −2(λ1 + λ20.5) + λ2(f(M1) + f(−M1)) + 2λ2qalB. (27)

In this case, u∗
2 and u∗

4, as well as u∗
3 for qal > Q∗∗, are always unstable. More precisely,

for u∗ = u∗
3, the condition qal > Q∗∗ is equivalent to C(0) > 0, which means that u∗

3

is locally unstable. The steady state u∗ = u∗
2 (or u∗ = u∗

4) and u∗∗ = A − u∗, is given

implicitly as a solution of the system

h(ū∗; Q∗, λ, A) = 0,
∂h(ū∗; Q∗, λ, A)

∂qal
= 0. (28)

By studying the graph of h(u), it can be deduced that the condition qal ∈ (Q∗, Q∗∗)

requires that ∂h(u;qal,λ,A)
∂qal

> 0, for any u ∈ (ū∗, A/2). But this inequality is nothing

else than C(0) > 0, which again, leads to instability. Therefore, for large L, u∗
2,3,4 are

locally unstable, even in the absence of attraction, or for small turning rates. This

ensures that we have a standard subcritical pitchfork bifurcation, as shown in Figure

5(b) and Figure 7.

Figure 6 (a)-(f) shows examples of the dispersion relation for system (1). The solid

curve represents Re(α1), while the dashed curve represents Im(α1). We observe that

for cases (a), (c) and (e), Im(α1(k)) 6= 0, while for (b), (d) and (f), Im(α1(k)) = 0

for some k > 0. Note that for the total density to be preserved, we require k 6= 0.

Therefore, cases (e) and (f) do not contradict the conservation of the total density.

The emergence of the first wavenumber k1 (i.e., Re(α(k1)) > 0) (see Figure 6 (a)

and (b)) is the result of large attraction, while the emergence of ki, i � 1 (Figure 6

(c) and (d)) is the result of large turning rates. Therefore, when attraction is large,
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we would expect the emergence of one group. When the turning rates λ1 and λ2 are

large, we would expect the emergence of i small groups, where i � 1. The last two

cases (Figure 6 (e) and (f)) show the dispersion relation corresponding to u∗
2,4 for

qal ∈ (Q∗, Q∗∗), and to u∗
3 for qal > Q∗, when the domain length L is large. As we

can see here, the first wavenumber k1 is always unstable, provided that the domain

length is large enough. In this case, k1 is very close to 0, and we have already seen

that C(0) > 0, which implies instability.

Figure 7 here

The results concerning the steady states and the effect of the attraction, alignment and

total population size on their stability are summarized in Figure 7. The solid curve

represents stable steady states, while the dashed curve represents unstable steady

states (i.e., Re(α(k)) ≥ 0). Cases (a)-(c) show the effect of alignment and attraction

on the stability of the steady states, whereas cases (d)-(f) show the effect of total

population size and attraction on this stability. The value of the turning rates is the

same for all cases. The threshold values Q∗, Q∗∗, A∗ and A∗∗ determine the number

of spatially homogeneous steady states. However, the stability of these steady states

is greatly influenced by attraction and, not shown here, by the turning rates. One

can see that an increase in the magnitude of attraction from qa = 0.1 for (a) and (d)

to qa = 10 for (c) and (f), leads to an increase in the parameter range (A and qal)

for the unstable steady states. If we look at the total population size, for instance,

these results suggest that unless there is a very strong attraction, large number of

individuals do not aggregate. Therefore, we conclude that both alignment and total

population size have similar qualitative effects on the number of steady states (Figure

5(c)) as well as their stability (Figure 7).

We should also note that for small attraction (qa ≤ qr) and large turning rates, it

is possible to have a hysteresis phenomenon (Figure 7 (a) and (d)). More precisely,
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if we start for example with a very small qal, then the only possible steady state is

(u∗
3, u

∗
3), and it is stable. As we increase alignment, this state will lose stability at

qal = Q∗∗ (Figure 7 (a)). Depending on initial conditions, the system will choose one

of the two other solutions: (u∗
1, u

∗
5) or (u∗

5, u
∗
1), both of which are stable. However, if we

now decrease the alignment beyond Q∗∗, the system will not return immediately to

(u∗
3, u

∗
3). It will return later, when u∗

1 and u∗
5 lose stability at Q∗. A similar phenomenon

is observed when increasing and decreasing the total population size A.

3.3 The effect of different interaction ranges on group formation

We now use the dispersion relation (24) to study the effect of the three interaction

ranges, sr, sal and sa on group formation. We investigate the stability of the spatially

homogeneous steady state (u∗
3, u

∗
3) by increasing (or decreasing) the size of these ranges

while keeping all other parameters constant. At the end, we will briefly discuss the

effect of these ranges on the stability of u∗
i , i = 1, 2, 4, 5. It should be mentioned that

if for some i we have Re(α(ki)) > 0, while for all other j 6= i we find Re(α(kj)) < 0,

then the linear analysis predicts that i groups will emerge.

If we graph the dispersion relation, we see that an increase in the repulsion range,

sr, while keeping everything else constant, leads to the stability of u∗
3 (Figure 8(a)).

Increasing it even further would lead to the biologically unrealistic situation sr > sa.

For alignment (Figure 8(b)), the results are similar to those obtained for the repulsion

case.

If we increase the attraction range, the dispersion relation shows a translation to the

left of the wavenumber that becomes unstable (Figure 8(c)). For example, suppose k2

is the unstable wavenumber initially (correspondingly, there are two groups). After

increasing the attraction range, k1 is the unstable wavenumber (correspondingly, there
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is one group). Biologically, this makes sense since when sa is increased, individuals

perceive information over larger distances. Two separate groups now can sense each

other and merge.

The stability of the other four steady states u∗
i , i = 1, 2, 4, 5, does not seem to be

influenced significantly by alterations in the size of the attraction or repulsion ranges.

More precisely, neither the location nor the amplitude of the leading eigenmode varies

much as the corresponding interaction ranges sa and sr vary. However, an increase in

the alignment range results in a translation to the left of the wavenumber that emerges

(Figures 8 (d)). This means that when there are more individuals moving in one

direction than the other (i.e., the steady states (u∗, u∗∗) with u∗ 6= u∗∗), the attempt

to match one’s movement direction to the movement direction of those neighbors that

are farther away, causes small groups of individuals to come together and form larger

aggregations.

Figure 8 here

4 Numerical results

To have a better idea about the rich behavior of system (1), we investigate the spa-

tially nonhomogeneous solutions numerically, using a first-order upwind scheme (e.g.,

LeVeque (1992)) with periodic boundary conditions. The infinite integrals (5) – (8)

were approximated by integrals on finite domains: 0 < x < 6i, i = sr, sa, for attractive

and repulsive kernels, and 0 < x < 2sal for alignment. These finite integrals were fur-

ther discretized using Simpson’s method. The kernels used for these simulations are

described by equations (9) and (11). To check the validity of our results obtained via

linear stability analysis, we choose the initial conditions to be small random pertur-

bations of the spatially homogeneous steady states. The parameters for the domain
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length and interaction ranges are chosen to be L = 10, sr = 0.25, sal = 0.5, and

sa = 1. These four parameters, as well as y0, mal, ma, mr and A, are kept fixed dur-

ing the simulations (see Table 3). All other parameters will be varied at some point.

The parameters that are varied are precisely those that can be used to characterize

animal groups during different behaviors.

To make sure that the boundary conditions do not lead to artifacts as a result of

the interactions of the front of the wave with its back, we compared the results to

simulations on larger domains up to L = 20, and found no measurable difference in

the results.

Numerical simulations show four types of possible behavior: stationary pulses, travel-

ing pulses, traveling trains and zigzag pulses (Figures 9 and 10). By stationary pulses

(Figure 9 (a) and (d)), we mean spatially nonhomogeneous steady states. Traveling

pulses (Figure 9 (b)) are defined as spatially nonhomogeneous solutions that have

a fixed shape and move at a constant speed c: u±(x, t) = U±(z), z = x − ct, and

U±(±∞) = 0. The periodic boundary conditions allow us to treat the domain as

infinite, and therefore it makes sense to consider traveling pulses. Traveling trains

(Figure 9 (c)) are periodic solutions of the form u±(x, t) = U±(z), z = x − ct, with

U± periodic functions of z. The zigzag pulses (Figure 10) are traveling solutions that

periodically change direction. Moreover, compared to the case of traveling pulses,

where the shape of solutions does not change, for zigzag pulses the shape changes

slightly when the entire group turns around.

A first observation is that both stationary and moving groups have clearly defined

boundaries, where the population density drops to zero very quickly. Moreover, in the

case of moving groups (Figure 9 (b)), the profile is steeper at the leading edge of the

group, and shallower at the back. This phenomenon is caused by attraction towards

other individuals. Under the influence of the attractive force, organisms at the front
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of the group have the tendency to turn around more often, to stay in contact with

the others. Therefore, they move slower than those at the rear of the group, and this

leads to crowding at the leading edge of the group.

In what follows, we present the results in three separate cases: a case that contains

only attraction and repulsion, a case with only alignment, and a case that takes into

consideration all three social interactions. The types of solutions that can be obtained

in each of these cases are summarized in Table 1, and discussed below. These results

were simulated with fixed parameters sampled from the ranges described by Table 3.

Table 1 here

(i) Only attraction and repulsion. For qal = 0, the only possible spatially homo-

geneous solution is (u+, u−) = (u∗
3, u

∗
3) (Figure 5). In the parameter range where it

is unstable, if we start with small random perturbations of this steady state as ini-

tial conditions, we obtain stationary pulses (Figure 9 (a)). We have sampled a large

number of parameter combinations (from the parameter space where u3 is unstable),

and the results always showed stationary pulses. These results suggest that attraction

and repulsion are sufficient to cause group formation, but not sufficient to make the

group travel.

(ii) Only alignment. When alignment is the only social force considered, it is pos-

sible to have up to five spatially homogeneous solutions (u∗
i , i = 1..5) (Figure 5).

Locally unstable steady states (Figure 6 (c) and (d)) are possible when the turning

rates are large, and these solutions evolve into either traveling trains (Figure 9 (c)) or

stationary pulses (Figure 9 (d)). More precisely, traveling trains are possible when the

initial conditions are perturbations of (u+, u−) = (u∗
1, u

∗
5), whereas stationary pulses

are obtained when we start either with perturbations of (u∗
3, u

∗
3), or with perturbations
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of (u∗
1, u

∗
5) and very large turning rates.

Figure 9 here

Figure 10 here

(iii) Attraction, repulsion and alignment. The most complex behavior is ob-

tained when all three social interactions take place. In addition to the behaviors

described above, we also observe zigzag pulses in this case (Figure 10 (a)–(d)). This

behavior is caused by high inter-individual attraction (qa � qr). If organisms weigh

the information received from the left or right equally (pr = pl), then the zigzag paths

are symmetric (i.e., the length of the right moving path is the same as the length of

the left moving path), as shown in Figure 10 (a) and (b). Moreover, if pr 6= pl, the

symmetry is broken and this causes a bias in the movement (Figure 10 (c) and (d)).

We observe that the lengths of the paths in the zigzag movement are correlated with

the turning rates, λ1 and λ2. For Figures 10 (a) and (c), the turning rates are small

(i.e., λ1 = 0.2, λ2 = 0.9) and we observe short path lengths. In contrast, when we

increase the turning rates (e.g., λ1 = 0.4, λ2 = 1.8), we observe longer path lengths,

as shown in Figures 10 (b) and (d). The explanation for this is that when these rates

are small, the individuals in the middle part of the group as well as those at the

back do not turn very often. However, due to large attraction, those at the front of

the group turn around to make sure they are still with the rest of the group. This

leads to a steep increase in the number of individuals at the leading edge of the group

that move in the opposite direction. As a result, the entire group turns around. On

the other hand, when the turning rates are large, the straight paths between group

turning maneuvers are much longer. The individual turns help organisms to move

away from their neighbors, and keep them well spaced for a longer time.
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Figure 11 here

Another important aspect of the zigzag movement that should be mentioned is the

structure of the turn. Figure 11 shows two types of group behavior that can be

observed during the turning maneuver. Small turning rates (Figure 11 (a)), lead to a

very compact group during the turns, while large turning rates (Figure 11 (b)), make

the group more compact before the turning maneuver, but less compact during and

after the turn.

Zigzag movement can be understood to be a transitory type of behavior between

traveling pulses, obtained when attraction is small, and stationary pulses, obtained

when attraction is extremely large compared to repulsion, as shown in Figure 12. If

we increase attraction, the model shows a transition from one type of solution to

another. For attraction taking small to medium values compared to repulsion, the

system displays traveling pulses (as in Figure 9 (b)). As the magnitude of attraction

increases, these groups start moving back and forth, in a zigzag manner (as in Figure

10). When this social interaction becomes extremely strong (for example qa = 20,

and qr = 0.1, and all other parameters as specified in Figure 10), the aggregations

become stationary.

Figure 12 here

A similar transitory type of behavior can be obtained when varying multiple pa-

rameters. For example, the model could be used to describe the succession of daily

activity patterns exhibited by different groups of animals. Usually, these transitions

from one activity to another can be influenced by internal factors (e.g., hunger, neces-

sity to rest, etc.), or external ones (e.g., temperature (Uvarov, 1966) or light (Helfman,

1993)). These factors have an impact on group parameters, such as motility, and this

translates into different turning rates and speed (Uvarov, 1966).
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To exemplify this transitional process, we look at the following succession of activities:

forage → rest → travel → forage. The initial conditions for forage are random pertur-

bations of spatially homogeneous steady state (u∗
1, u

∗
5). For the next three activities,

the initial conditions for the simulations are the densities generated by the previous

activity. Table 2 summarizes possible relative magnitudes for model parameters.

Table 2 here

Figure 13 shows the outcomes of numerical simulations which describe these activities.

Initially, there are many small clusters that travel for a while, and then stop. During

the resting period, the groups are stationary, with the peak of total local densities

decreasing. However, as both attraction and alignment increase to simulate travel,

all animals gather into one large aggregation, which moves towards a new site. Once

arrived there, parameters are changed to simulate foraging and the group spreads

again. It should be noted that even though we use the same parameters to simulate

the two foraging behaviors, the initial conditions play a very important role. Initially,

the small groups that form during foraging are moving through the domain. When

we change the parameters from travel back to foraging, the groups that arise are now

stationary. A similar hysteresis phenomenon was obtained by Couzin et al. (2002),

with a Lagrangian model.

Figure 13 here

All the numerical results presented here were obtained using odd kernels for attraction

and repulsion, and a translated Gaussian kernel for alignment (Figure 4(b)). We

also ran simulations using translated Gaussian kernels for all types of interactions

(attraction, repulsion and alignment) (Figure 4(a)), and the results showed similar

qualitative behavior for the solutions.

It was previously shown (Grünbaum, 1998; Gazi and Passino, 2002) that group po-
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larization helps populations to improve their searching behavior, by climbing noisy

gradients faster. Our model shows that without alignment and in the absence of ex-

ternal environmental cues, group movement does not occur. Mathematical proof of

this result is the subject of a forthcoming paper where we look at the possible types of

solution when repulsion and attraction are the only social interactions. Group move-

ment is possible with alignment, but it depends on the magnitude of the turning rates:

high individual turning rates make it impossible for the group to move as an entity.

Therefore, we can say that alignment appears to be a necessary ingredient, but not a

sufficient one for group movement.

In conclusion, the model shows that interactions between different social factors give

rise to a wide range of patterns. We have seen, for example, that medium attraction

combined with repulsion and alignment leads to traveling pulses, while large attrac-

tion plus repulsion and alignment leads to zigzag pulses. None of these two types of

solutions can be obtained with alignment alone, nor with attraction and repulsion

alone. They are the result of all three social interactions.

5 Parallels to biology

In this section, we discuss how the complex patterns that emerge in the model above

relate to observations in nature.

We begin by analyzing the shape of the aggregations. We saw before that groups

are well defined, i.e., the density outside the group is essentially zero. Moreover, our

results show an increased density at the leading edge of the moving groups, due

to leading individuals turning around to return to the group under the influence of

attraction forces. These results seem to agree with empirical studies (Bumann and

Krause, 1993; Uvarov, 1966). Uvarov (1966), observes that “a noticeable feature of
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a band marching in frontal formation is the greater density of hoppers at its leading

edge”, a possible explanation for this being that “the leading hoppers may hesitate

because there are no other hoppers in their anterior field of vision and they may even

return to the front after jumping beyond it; the hoppers behind are, therefore likely

to catch up with the moving front causing a concentration” (vol. II, pp. 164).

Focusing now on the four types of spatial patterns displayed by our model, we ob-

serve that traveling pulses and stationary pulses correspond to moving (e.g., traveling

schools of fish, flocks of birds) and stationary (e.g., resting) groups of animals. Uvarov

(1966) describes the aggregative behavior of basking locusts that form ground groups

in the morning or in the evening, when the temperature is low and activity ceases.

Uvarov (1966) also offers an illustrating example of oscillations (i.e., traveling trains)

exhibited by animal groups. Commenting on the inter-individual interactions of locust

hoppers, Uvarov describes how “a jump by a disturbed hopper leads to an outburst

by others; this spreads through the group or band, and eventually subsides in a way

reminiscent of ripples on the surface of water caused by a pebble”(vol. II, pp. 165).

Other examples can be observed in some bird flocks (Buchanan et al., 1988) or fish

schools (Radakov, 1973).

Zigzag movement is seen in flocks of birds (Buchanan et al., 1988; Davis, 1980;

Humphries and Driver, 1970) that rapidly change direction, making sharp turns of

1800 (Davis, 1980). Potts (1984) observed that birds do not turn simultaneously, but

the maneuver is initiated by birds banking towards the flock, and not by those that

turn away from the flock. The movement then propagates like a wave throughout the

flock. On the other hand, Davis (1980) suggested that some birds may signal their

intention to change direction, and when a certain number of birds make the same

decision, the entire flock turns.
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The empirical results also differentiate between two types of group structure during

the turning behavior. Studying the turning behavior in Rock Dove flocks, Pomeroy

and Heppner (1992) noticed that the flock became more compact just before turning,

and then it expanded. They also pointed out that this type of turning is different

from what is observed in fish, where groups are usually compact, and they expand

as they make a turn. Moreover, the authors suggested that this difference may be

explained by the inter-individual distances that are smaller in fish schools, compared

to those in bird flocks. Partridge et al. (1980) discussed the relationship between the

inter-individual distance in fish schools, and the fish body structure which causes the

maneuverability of individuals. They noticed that the fish that are more maneuverable

(such as cod and saithe) have smaller inter-individual distances, whereas a “stiff-

bodied” fish (such as herring) has larger inter-individual distances.

As we have previously seen, our mathematical model shows the same two types of

group structure during the turning behavior. The mechanisms that determine these

types of group structure are the different individual turning rates exhibited by ani-

mals. Consequently, the model suggests that it might be possible to explain the two

types of group structure in terms of individual turning rates. These results show that

there is need for a more in-depth analysis that correlates the compactness of the

observed aggregations with the individual turning rates.

While the biological patterns we described here are complex two- and three-dimensional

phenomena, the simulation results show that our one-dimensional model nonetheless

captures essential features of these patterns.
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6 Conclusions

The goal of this paper was to derive and analyze a general one-dimensional math-

ematical model for the study of group formation in self-organizing communities of

organisms. We focused on a hyperbolic model of conservation laws and, following

Pfistner’s approach (Pfistner, 1990), incorporated attraction, repulsion, and align-

ment into the turning rates. The way these social interactions were incorporated

depended on some assumptions that we made about animal communication. We also

assumed that an organism changes its movement direction only after weighing the

information received from left and right. The social interactions were thus defined in

terms of communication and distances, and not just distance alone.

One-dimensional models for group formation and movement usually describe one

type of behavior at a time. For example, Pfistner (1995) reported aggregations,

Mogilner and Edelstein-Keshet (Mogilner and Edelstein-Keshet, 1999) reported trav-

eling waves. The hyperbolic model presented in this paper not only reports both

stationary and traveling waves, but also traveling trains, and zigzag pulses.

Numerical simulations showed that incorporating attraction and repulsion alone can

only lead to stationary groups. Depending on the magnitude of attraction and fre-

quency of turning, there is either one large aggregation, or many small clusters. On

the other hand, alignment alone leads to the formation of a large number of small

groups that can either travel or be stationary. Moreover, the results reveal that in

the absence of external cues, alignment is a necessary ingredient for the groups to

move. The most complex types of behavior observed in biological systems can be

explained only as a result of the interactions between all these social forces. In this

case, it is possible to obtain not only the classical types of solutions (i.e., traveling

trains and pulses, and stationary pulses), but also a new kind of long-time behavior:
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zigzag pulses. These solutions apparently emerge as a result of interactions between

alignment, repulsion, and large attraction.

Also, we have studied the transitions between different daily activities, as the model

parameters are varied. To our knowledge, this is the first continuum model that

looks at the transition between different activities exhibited by animal groups. Similar

transition results were previously obtained with an individual based model (Couzin

et al., 2002).

Linear analysis and numerical simulations both suggest that there is an intermediate

range of values for the parameter describing the magnitude of the alignment, or for

the total population size, for which population clusters can form.

The length scale of the interaction ranges also plays an important role in self-organization,

as shown by analyzing the stability of the spatially homogeneous steady states.

In this paper, we have restricted ourselves to one spatial dimension. In nature, the

majority of biological aggregations are in two or three dimensions. However, the model

demonstrates a straightforward way to model interactions based on animal communi-

cation. The model, as written, is general, and would need to be specifically tailored to

describe a particular organism. By changing the way we model communication (i.e.,

the way we model how organisms receive the stimuli: from both directions, or only

from one direction), the mathematical model can easily be adapted to a particular

species.

The one-dimensional model can approximate the behavior of animal groups in higher

dimensions if they move in a domain which is much longer than wide. Also, this ap-

proximation may be acceptable in the case of directional communication (e.g., vision).

However, for a more realistic and general case, the model should be extended to two

spatial dimensions. This is a subject for future research.
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Appendix 1

Here we show that for L → ∞, Γ̂j(k) can be approximated by K̂j(k), where j ∈

{r, al, a}.

lim
L→∞

∫ L/2

−L/2
Γj(s)e

±iksds= lim
L→∞

∫ L/2

−L/2

(

n=−1
∑

n=−∞

Kj(s + nL) +

Kj(s) +
∞
∑

n=1

Kj(s + nL)

)

e±iksds

= lim
L→∞

∫ L/2

−L/2
Kj(s)e

±iksds +

lim
L→∞

∫ L/2

−L/2

(

n=−1
∑

n=−∞

Kj(s + nL) +

n=∞
∑

n=1

Kj(s + nL)

)

e±iksds

where the kernels are assumed to decrease exponentially as L → ∞ (see equations

(9) and (11)). For large L, the terms containing the sums are approaching zero and

therefore

lim
L→∞

∫ L/2

−L/2
Γj(s)e

±iksds = K̂j
±
(k). (29)
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Appendix 2

The full model used for the linear stability analysis and the numerical simulations is

described by:

∂tu
+(x, t) + ∂x(γu+(x, t))=−(λ0 + λ20.5 tanh(y+[u+, u−] − y0))u

+(x, t) +

(λ0 + λ20.5 tanh(y−[u+, u−] − y0))u
−(x, t),

∂tu
−(x, t) − ∂x(γu−(x, t))= (λ0 + λ20.5 tanh(y+[u+, u−] − y0))u

+(x, t) −

(λ0 + λ20.5 tanh(y−[u+, u−] − y0))u
−(x, t),

u±(x, 0)= u±
0 (x), x ∈ R, (30)

with λ0 = λ1 + 0.5λ2, and y±[u+, u−] given by

y±[u+, u−] = qr

∫ ∞

−∞
Kr(s)u(x ± s)ds −

qa

∫ ∞

−∞
Ka(s)u(x ± s)ds +

qal

∫ ∞

0
Kal(s)

(

u∓(x ± s) − u±(x ∓ s)
)

ds.
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Edelstein-Keshet, L., Watmough, J., Grünbaum, D., 1998. Do travelling band solu-

tions describe cohesive swarms? an investigation for migratory locusts. J. Math.

Biol. 36 (6), 515–549.
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Grünbaum, D., 1998. Schooling as a strategy for taxis in a noisy environment. Evol.

Ecol. 12, 503–522.

Gueron, S., Levin, S. A., Rubenstein, D. I., 1996. The dynamics of herds: from indi-

viduals to aggregations. J. Theor. Biol. 182, 85–98.

Helfman, G., 1993. Fish behaviour by day, night and twilight. In: Pitcher, T. (Ed.),

Behaviour of teleost fishes. Chapman & Hall, pp. 479–512.

Humphries, D. A., Driver, P. M., 1970. Protean defence by prey animals. Oecolo-

gia(Berl.) 5, 285–302.

Huth, A., Wissel, C., 1994. The simulation of fish schools in comparison with exper-

imental data. Ecol. Model. 75/76, 135–145.

Kac, M., 1974. A stochastic model related to the telegrapher’s equation. Rocky Moun-

tain J. Math. 4, 497–509.
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Fig. 1. Illustration of the repulsion (sr), alignment (sal), and attraction (sa) zones: (a) 2D

case; (b) 1D case. It is biologically realistic to have sr < sal < sa.
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random turning.
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Fig. 3. Description of possible turning functions. Cases (a)-(b) depict a switch in movement

direction from right to left, while cases (a’)-(b’) depict the switch in movement direction

from left to right. Cases (a), (a’) describe attraction and repulsion, while (b) and (b’)

describe alignment. Here u+ (u−) represents the density of individuals moving right (left),

and λ+ (λ−) is the probability of turning to the left (right), when initially the individual

at x was moving to the right (left). The other parameters, p±
l and p±r , represent signals

received from the left (subscript l) and the right (subscript r), from other neighbors that

are moving to the left (superscript ”-”) or to the right (superscript ”+”).
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Fig. 4. Examples of kernels used for numerical simulations. These kernels describe how

signals from different distances are weighed. (a) translated Gaussian kernels for attraction,

repulsion and alignment, described by equations (9); (b) odd kernels for attraction and

repulsion, and a translated Gaussian kernel for alignment (equations (11) and (9)). Both

types of kernels are defined on (−∞,∞). The interaction ranges on which these kernels have

an effect, satisfy sr < sal < sa. The sr, sal and sa represent half the length of the interaction

ranges depicted in Figure 1.
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Fig. 5. Bifurcation diagrams for the steady-state equation. (a)Two-parameter bifurcation

diagram in (qal, λ) space: the threshold values λ∗, Q∗ and Q∗∗ determine the number of

possible steady states; A = 2 and y0 = 2 are fixed parameters. (b)Bifurcation diagram

in the five steady-state regime (i.e., λ < λ∗): ū∗ and ū∗∗ = A − ū∗ are the two critical

states that appear at Q∗ as we increase qal. These two states can take up to 5 values

each: ū∗ ∈ {u∗
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∗
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∗
3, u

∗
4, u

∗
5}, and ū∗∗ = A − ū∗. Here A = 2, and λ is given by equation

(14), with λ1 = 0.2 and λ2 = 0.9. (c)Two-parameter bifurcation diagram in (qal, A) space:

qal and A have similar effects on the number of spatially homogeneous solutions; Here

λ1 = 0.2, λ2 = 0.9.
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Note that Im(α1(kc)) = 0 only for u∗
3. Cases (a) and (b) are obtained for small turning

rates and large qa, while (c) and (d) are for large turning rates, and relatively small qa.

Cases (e) and (f) are obtained for qal ∈ (Q∗, Q∗∗) and u∗
2,4, or for qal > Q∗∗ and u∗
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in the (A, u) plane. Solid curves represent the stable steady states, while the dotted curves

represent the unstable steady states, as given by Re(α1(k1)) ≥ 0. The magnitude of attrac-
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qa = 10 for both (c) and (f). As a result, the parameter range for the unstable steady states

(i.e., the dotted curve) is also increasing.
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with the graph of Re(α1) as we increase the interaction ranges. For u∗
3, an increase in the

repulsion range (case (a)) or the alignment range (case (b)) leads to stability of the steady

state. For example, for case (a), let us assume that initially the mode that emerges is the

one with the wavenumber k1. As we increase the repulsion range sr, making sure at the

same time that sr < sa, we see that this mode becomes stable (Re(α1(k1)) < 0). Increasing

sr even more (i.e., sr > sa), the mode that emerges is the one with the wavenumber ki,

i > 1. A similar explanation holds for (b). An increase in the attraction range (case (c))

results in a shift to the left of the wavenumber that will emerge. For u∗
i , i = 1, 2, 4, 5, an

increase in the alignment range leads to the same shift to the left (case (d)).
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Case Social Traveling Traveling Stationary Zigzag

interactions trains pulses pulses pulses

(i) Only attraction No No Yes No

and repulsion

(ii) Only alignment Yes No Yes No

(iii) Attraction, Yes Yes Yes Yes

repulsion, and

alignment

Table 1

A summary of the different types of possible solutions exhibited by the model under the

influence of three different sets of social interactions: traveling trains, traveling pulses, sta-

tionary pulses, and zigzag pulses.

Activity γ λ1, λ2 qal qr qa

Traveling large small large small large

Foraging medium, large large medium large small

Rest small medium small medium medium

Table 2

Examples of magnitudes of model parameters that characterize animal behavior correspond-

ing to different activities.
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Fig. 9. Examples of long-time behavior: (a) Stationary pulses obtained for qa > qr and no

alignment: qa = 10, qr = 0.1, qal = 0, γ = 0.1, λ1 = 0.2, λ2 = 0.9; (b) Traveling pulse:

qa = 5.2, qr = 0.1, qal = 2.8, γ = 0.1, λ1 = 0.2, λ2 = 0.9; (c) Traveling trains obtained for

qal = 2.1, qa = 0, qr = 0, γ = 0.1, λ1 = 0.4, λ2 = 1.8; (d) Stationary pulses, obtained for

qal = 2, qa = 0, qr = 0, γ = 0.1, λ1 = 1.33, λ2 = 6.
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Fig. 10. Zigzag movement is obtained when qa � qr . Cases (a) and (b) show the symmetric

pattern that arises as pr = pl, while cases (c) and (d) show the biased random movement

that arises when this symmetry is broken, i.e., pr 6= pl. The following parameters are the

same for all these four cases: qr = 1.2, qa = 15.0, qal = 2.0, γ = 0.1. The turning rates are

as following: for (a) and (c) λ1 = 0.2, and λ2 = 0.9; for (b) λ1 = 0.33, λ2 = 1.5 ; for (d)

λ1 = 0.4, λ2 = 1.8.
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Fig. 11. The structure of a turn during zigzag movement is determined by the turning

rates: (a) λ1 = 0.2, λ2 = 0.9; (b) λ1 = 0.33, λ2 = 1.5. The brighter the color, the higher

the population density. For small individual turning rates, the density is higher during the

turn (i.e., the group is more compact), while for large individual turning rates (especially

for large λ2), the density is higher between the turns.
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Fig. 12. An illustration of the possible types of solutions and the transitions between them

as one varies the attraction parameter qa. Initially, there is a traveling pulse, and as attrac-

tion increases, it starts moving in a zigzag manner. A very large attraction force keeps all

individuals together, hindering the group movement.
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Fig. 13. The figure shows a ”bird’s eye view” for the total population density during the

succession of three activities: forage → rest → travel → forage. The lighter the color, the

higher the population density. Parameter values are chosen in accordance with Table 2.

During foraging (qr = 2.0, qa = 0.1, qal = 1.9, γ = 0.089, λ1 = 1.3, λ2 = 6), individuals turn

frequently and attraction is smaller than repulsion, which leads to many small groups moving

around the domain. During rest (qr = 0.10, qa = 2.1, qal = 0.5, γ = 0.015, λ1 = 0.286,

λ2 = 1.286), the individuals slow down and turn less frequently. The groups have now a

tendency to disperse. To travel (qr = 0.5, qa = 4.1, qal = 2.0, γ = 0.1, λ1 = 0.2, λ2 = 0.9),

the attraction increases and all the individuals come together to form one large group that

moves around the domain. To forage again, the group splits into multiple small groups that

spread over the domain.
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Parameter Description Units Fixed value

γ Speed L/T no: γ ∈ (0.015, 0.1)

λ1 Turning rate. It approximates the 1/T no: λ1 ∈ (0.2, 1.33)

baseline turning rate: λ1 + λ2f(0)

λ2 Turning rate. It approximates the 1/T no: λ2 ∈ (0.9, 6)

bias turning rate: λ2 (f(y±) − f(0))

y0 Shift of the turning function 1 (nondim.) yes: y0 = 2

qa Magnitude of attraction L/N no: qa ∈ (0, 15)

qal Magnitude of alignment L/N no: qal ∈ (0, 2)

qr Magnitude of repulsion L/N no: qr ∈ (0, 2)

sa Attraction range L yes: sa = 1

sal Alignment range L yes: sal = 0.5

sr Repulsion range L yes: sr = 0.25

ma Width of attraction kernel L yes: ma = 1/8

mal Width of alignment kernel L yes: mal = 0.5/8

mr Width of repulsion kernel L yes: mr = 0.25/8

A Total population size N yes: A = 2

Table 3

A list with the model parameters used during the simulations. The two parameters for the

strength of information received from left/right, namely pl/pr are already incorporated into

the magnitudes of attraction qa, alignment qal, and repulsion qr. Note: T represents unit

time, L is unit space, and N is number of individuals.
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