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ABSTRACT

The Mackenzic River at the outlet of Great Slave Lake is affected by ice for up to
six months cach year. As an important trarsportation waterway, both for harge traffic
from Hay River and as the location of the highway crossing to Yellowknife and other
points north, the Mackenzie River plays an important role in northern development.
Therefore, an understanding of the effects of ice on the channel hydraulics is quite
pertinent,

This study provides a method to estimate the Manning's n for both open water and
ice covered conditions. By measuring the water surface profiles in summer and winter
time, respectively, the bed and ice undersurface roughness coefficients can be calibrated
by gradually varied flow model. The calibrated Manning's bed roughness ny are in the
range of 0.02 to 0.03 from the Great Slave Lake outlet to Mills Lake section. The
calibrated Manning's roughness coefficient n; are 0.015 from the Great Slave Lake outlet
to Big River section and (.05 form the Big River to Dock section for a consolidated ice in
April, 1992, Once the roughness for both open water and ice cover are calibrated, the
winter discharge can be estimated by using gradually varied flow model. The estimated
discharges are from 4350 to 6200 cubic meter per second during the late April to the early
May, 1992. This study also provides an alternative method to calculate winter discharges
for different ice conditions at Dory Point. Through a family of rating curves with
backwater as a parameter, the discharge can be estimated from measurements of the water
elevation, ice thickness and ice roughness at Dory Point and the water surface elevation at
the Big River section.

This study also confirms that the lake exits to a mild sloping channel which has an
irregular geometry. Despite this, the channel displays near uniform flow from the lake
outlet to Kakisa River both for the open water case and for the ice conditions which
prevailed in late winter of 1992.

It is recommended that further measurements of velocity profiles under the ice
cover be conducted to verify bed and ice roughness obtained with the gradually varied

flow model],



ACKNOWLEDGMENTS

This study was financially supported through a rescarch contract from the
Government of the Northwest Territorics, Department of Transportation, Marine
Services Division. This support is gratefuily acknowledged. The author would also
like to thank Mr. Tony MacAlpine, of the Marine Services Division, Department of
Transportation, Government of the Northwest Territories for his continued interest
and assistance in this research.

The author wishes to acknowledge with gratitude the valuable advice during
the course of this study from Mr. David, D. Andres, Manager of Surface Water
Engineering in the Environmental Research and Engincering dcpartmentment,
Alberta Research Council.

The efforts of Mr. S. Lovell in obtaining the ficld data is greatly appreciated.
Thanks are also extended to Mr. Audi Steinwand, Ms. Lianne Lefsrud, Mr. John
Take, Mr. Martin Jasek, Mr. Nathan Schmidt, Dr. Arbind Mainali and Mr. Grant
Amold who assisted in the data collection program.Thanks arc also due to Mr.
Bernard Trevor, Research Technologist, Environmental Research and Enginecring
departmentment, Alberta Research Council, for his assistance for the temporary
benchmark survey.

The author would like to express his appreciation to the foliowing people who
supplied data for this study. Hydrometric data was supplied by Mr. Murray Jones of
NWT Program, Inland Water Directorate, Ft. Smith, Mr. Paul Squires of NWT
Programs, Inland Water Directorate, Yellowknife. and Mr. Pat Wood of Water
Survey of Canada in Ft. Simpson. Benchmark data was supplied by Mr. R. Scott
MacDonald, Head of Operations for Water Survey of Canada, NWT programs, Inland
Water Directorate, Yellowknife. Thanks are also extened to Mr. Bob O' Connor of
Aero Arctic, who kindly loaned the summer survey crew a portable GPS system.

The author would like to express his deepest grz'i1 1de to late professor Larry
Gerard for his guidance and encouragement even in his last days. The author always
remembers how they surveyed together and struggled in the one meter thick snow
cover along the river bank near Ft. Providence in the spring 1991, which was the last
time that Larry was in the field. His absolute dedication to his work is inspiring.

Finally, the author would like to express special thank to Dr. Faye E. Hicks,
who supervised the research and the writing of the thesis. Her guidance and

encouragement are greatly appreciated.



Table of Contents

Page
List of Tables
List of Figures
List of Symbols
1 Introduction 1
2 Theoretical background and literature review 3
2.1 River ice formation, evolution and breakup processes 3
2.2 Description of effects of an ice cover on the flow 5
2.3 Estimate of roughness coefficient in an ice covered channel 5
2.3.1 Obtaining resistance coefficients from measured
vertical velocity profiles 6
2.3.1.1 Larsen's method 7
2.3.1.2 Graphical method 8
2.3.1.3 Conversion of k; to Manning's n 8
2.3.1.4 Discussion 9
2.3.2 Estimate of composite roughness 10
2.3.2.1 Pavlovskiy, Lotter, Belokon,
and Sabaneev's analysis 11
2.3.2.2 Chow's equation 12
2.3.2.3 Larsen's analysis 12
2.3.2.4 Hancu's analysis 13
2.3.2.5 Discussion 13
2.3.2.6 Other consideration in the application
of composite roughness formulae 14
3 Field investigation 19
3.1 Introduction 19
3.2 Channel bathymetry 20
3.3 Ice characteristics, Spring, 1992 24
3.4 Water elevation measurements 25
3.5 Discharge measurements and rating curves 26
3.5.1 Discharge estimation at Dory Point 26
3.5.2 Discharge estimation at Big Snye and North Channel 29
3.6 Velocity profile measurements 29

3.7 Observation of major ice movements 31



4 Gradually varied flow (GVF) analysis
4.1 Introduction
4.2 HEC-2 program
4.3 Data input for GVF model
4.3.1 Flow regime
4.3.2 Energy loss coefficients
4.4 Calibration of the GVF model for open water conditions
4.5 GVF analysis for late winter, 1992
4.5.1 Calibration of the reach upstream of Big River
4.5.2 Estimation of discharge during the pre-breakup period
4.5.3 Calibration of the accumulation
through Ft Providence Rapids
4 6 Discussion of results
5 Interpretation of the outlet hydraulics
5.1 Introduction
5.2 Rating curves for open water
5.2.1 Development of GVF rating curves
5.2.2 Development of UF rating curves
5.2.3 Comparison of rating curve of UF and GVF
5.3 Rating curves for 1992 ice conditions
5.3.1 Development of UF rating curves based on
1992 late winter ice conditions
5.3.2 Comparison of rating curves of UF and measured data
5.4 Interpretation of the rating curve at Dory Point
5.5 Discussion
6 Conclusions and recommendations
References
Appendix A

Sl
5l
51
53
53
54
55
S8
58
60

62
63
99
99
100
100
100
102
104

104
104
106
108
124
128
133



List of Tables

Tables

2.1 Composile resistance relationships for ice covered
channels (after Uzuner, 1975).

3.1 Regression of GPS data for the cross section surveys.

3.2 Elevations of temporary benchmarks established on the Mackenzie River

ncar Ft. Providence, as of April 1, 1993,
3.3 Border ice thickness (m) - Mackenzie River near Ft. Providence, 1992.

3.4 Channel ice thickness (m) - Mackenzie River near Ft. Providence, 1992.

3.5 Discharge measurements for open water conditions, Mackenzie River
at Dory Point.

3.6 Discharge estimates of Mackenzie River near Ft. Providence.

3.7 Discharge measurements for ice covered conditions, Mackenzie River
at Dory Point.

3.8 Discharge measurements of Mackenzie River near Ft. Providence.

3.9 Estimate of discharge in the Big Snye and North Channel.

3.10 Measured velocity profiles, Mackenzie River at Ft. Providence, 1992.

3.11 Larsen's method to calculate roughness and Manning's n, 1992.

3.12 Larsen and regression methods to calculate velocity profiles

hoth for bed and ice cover, Mackenzie River at Dory Point, 1992.

4.1 Calculated water surface profiles on the Mackenzie River between
Great Slave Lake to Mills Lake, July 11, 1992.

4.2 Calculated water surface profiles on the Mackenzie River between
Beaver Lake to RCMP, August 29, 1991.

4.3 Calculated water surface profiles on the Mackenzie River between
Great Slave Lake to Big River, April 27, 1992.

4.4 Summary of hydraulic components in the study reach on April 27, 1992.

4.5 Comparison of ice roughness and Manning's n for different rivers.

4.6 Caiculated water surface profiles on the Mackenzie River between
Great Slave Lake to Big River, April 29, 1992.

4.7 Calculated water surface profiles on the Mackenzie River between
Great Slave Lake to Big River, May 3, 1992.

4.8 Calculated water surface profiles on the Mackenzie River between
Great Slave Lake to Big River, May 4, 1992.

Page

18

35

37

42
28

43

28

45

47

48

30

65

67

69

71

73

75

77



4.9 Calculated water surface profiles on the Mackenzic River between
Great Slave Lake to Big River, May 6, 1992,

4.10 Calculated water surface profiles on the Mackenzie River between
Great Slave Lake to Big River, May 7, 1992,

4.11 Calculated water surface profiles on the Mackenzic River between
Great Slave Lake to Big River, May 8, 1992.

4.12 Calculated water surface profiles on the Mackenzic River between
Great Slave Lake to Big River, May 9, 1992,

4.13 Calculated water surface profiles on the Mackenzie River between
Great Slave Lake to Big River, May 10, 1992.

4.14 Calculated water surface profiles on the Mackenzie River between
Great Slave Lake to Big River, May 11, 1992.

4.15 Calculated water surface profiles on the Mackenzie River between
Great Slave Lake to Big River, May 12, 1992.

4.16 Calculated water surface profiles on the Mackenzie River between
Great Slave Lake to Big River, May 13, 1992.

4.17 Discharge estimation, Mackenzie River near Ft. Providence,
Spring, 1992.

4.18 Ice roughness estimation from Big River to Ft. Providence Dock,
April 27, 1992.

4.19 Ice roughness estimation from Big River to Ft. Providence Dock,
April 29, 1992.

4.20 Ice roughness estimation from Big River to Ft. Providence Dock,
May 3, 1992.

5.1 Average bed slope calculation.

A.1 Hydraulic components at Great Slave Lake cross section,
(south channel only), 4.2 km downstream of Great Slave Lake.

A.2 Hydraulic components at South Channel cross section,
16.7 km downstream of Great Slave Lake.

A.3 Hydraulic components at North Channel cross section,
19.2 km downstream of Great Slave Lake.

A.4 Hydraulic components at Kakisa River cross section,
34.2 km downstream of Great Slave Lake.

A.5 Hydraulic components at Beaver Lake cross section,
47.5 km downstream of Great Slave Lake.

79

81

83

87

89

91

93

94

95

96

97
101

135

137

139

141

143



A.6

A7

A8

A9

A.10

A.ll

Al12

A.l3

A l4

A.l5

Al6

Al7

A.18

A.19

A20

Hydraulic components at Burnt Point cross section,
52.6 km downstrcam of Great Slave Lake.
Hydraulic components at Ice Bridge cross section,
59.2 km downstream of Great Slave Lake.
Hydraulic components at Dory Point cross section,
63.7 km downstream of Great Slave Lake.
Hydraulic components at Ferry Crossing cross section,
65.3 km downstream of Great Slave Lake.
Hydraulic components at Coast Guard cross section,
67.3 km downstream of Great Slave Lake.
Hydraulic components at Blue Quonset cross section,
71.5 km downstream of Great Slave Lake.
Hydraulic components at Big River cross section,
72.7 km downstream of Great Slave Lake.
Hydraulic components at Big Snye cross section,
73.6 km downstream of Great Slave Lake.
Hydraulic components at Campground cross section,
75.0 km downstream of Great Slave Lake.
Hydraulic components at Blue House cross section,
76.7 km downstream of Great Slave Lake.
Hydraulic components at Boat Launch cross section,
77.4 km downstream of Great Slave Lake.
Hydraulic components at RCMP cross section,
77.9 km downstream of Great Slave Lake.
Hydraulic components at Dock cross section,
79.5 km downstream of Great Slave Lake.
Hydraulic components at Orange Cabin cross section,
89.5 km downstream of Great Slave Lake.
Hydraulic components at Mills Lake cross section,
103.9 km downstream of Great Slave Lake.

145
147
149

151

155
157
159
161
163
165
167
169
171

173



List of Figures

Figures

2.1 Schematic representation of a br:akup ice jam diagram.

2.2 Schematic representation of the velocity profile and cross section arca
for flow under an ice cover.

2.3 Comparison of composite roughness coefficients as a function of ice
and bed roughness calculated using various predictors.

3.1 Location of study reach.

3.2 Location of cross sections and temporary benchmarks op
the Mackenzie River near Ft. Providence.

3.3 An example of GPS cross sections obtained on Mackenzie River.

3.4 Variation in channel ice thickness, Mackenzie River at Ft. Providence, 1992,

3.5 Variation in border ice thickness, Mackenzie River at Ft. Providence, 1992.
3.6 Water elevation hydrograph at Ferry Crossing section, Spring, 1992.
3.7 Water elevation hydrographs at four sections near Ft. Providence, 1992.
3.8 Discharge correlation between Dory Point and the Big Snye
and North Channel during the open water period.
3.9 Velocity profiles under ice conditions,
Mackenzie River at Ft. Providence, 1992.
3.10 Regression method to analyzing velocity profiles in ice zone,
Mackenzie River at Ft. Providence, 1992.
3.11 Regression method to analyzing velocity profiles in bed zone,
Mackenzie River at Ft. Providence, 1992.
4.1 Waer surface profiles along the Mackenzie River between
Grea: Slave Lake and Mills Lake, July 11, 1992.
4.2 Water surface profiles along the Mackenzie River between
Beaver Lake and RCMP, August 29, 1991.
4.3 Water surface profiles along the Mackenzic River between
Great Slave Lake and Big River, April 27, 1992.
4.4 Ripple characteristics on the undersurface of ice cover.
4.5 Water surface profiles along the Mackenzie River between
Great Slave Lake and Big River, April 29, 1992.
4.6 Water surface profiles along the Mackenzie River between
Great Slave Lake and Big River, May 3, 1992.

Page
N}

16

39

40)

41

44

46

49

50

64

66

68
61

72

74



4.7 Water surface profiles along the Mackenzie River between
Great Slave Lake and Big River, May 4, 1992.
4.8 Water surface profiles along the Mackenzie River between
Great Slave Lake and Big River, May 6, 1992.

4.9 Water surface profiles along the Mackenzie River between
Great Slave Lake and Big River, May 7, 1992.

4.10 Water surface profiles along the Mackenzie River between
Great Slave Lake and Big River, May 8, 1992,

4.11 Water surface profiles along the Mackenzie River between
Great Slave Lake and Big River, May 9, 1992.

4.12 Water surface profiles alorz the Mackenzie River between
Great Slave Lake and Big River, May 10, 1992.

4.13 Water surface profiles along the Mackenzie River between
Great Slave Lake and Big River, May 11, 1992,

4.14 Water surface profiles along the Mackenzie River between
Great Slave Lake and Big River, May 12, 1992.

4.15 Water surface profiles along the Mackenzie River between
Great Slave Lake and Big River, May 13, 1992.

4.16 Discharge hydrograph before breakup, Mackenzie River
near Ft. Providence, 1992.

4.17 Water surface profiles along the Mackenzie River between
Great Slave Lake and Big River.

5.1 Bed slope and measured water level in the study reach

of Mackenzie River.

5.2(a) UF and GVF rating curves for the Mackenzie River at Great Slave Lake.

5.2(b) UF and GVF rating curves for the Mackenzie River at South Channel.
5.2(c) UF and GVF rating curves for the Mackenzie River at Kakisa River.
5.2(d) UF and GVF rating curves for the Mackenzie River at Beaver Lake.
5.2(e) UF and GVF rating carves for the Mackenzie River at Burnt Point.
5.2(f) UF and GVF rating curves for the Mackenzie River at Ice Bridge.
5.2(g) UF and GVF rating curves for the Mackenzie River at Dory Point.
5.2(h) UF and GVF rating curves for the Mackenzie River at Ferry Crossing.
5.2(i) UF and GVF rating curves for the Mackenzie River at Coast Guard.
5.2(j) UF and GVF rating curves for the Mackenzie River at Blue Quonset.
5.2(k) UF and GVF rating curves for the Mackenzie River at Big River.

76

78

80

82

84

86

88

92

94

98

109
110
110
110
110
11
111
111
111
112
112
112



5.2(1) UF and GVF rating curves for the Mackenzie River at Campground. 112

5.2(m) UF and GVF rating curves for the Mackenzie River at Blue House. 113
5.2(n) UF and GVF rating curves for the Mackenzie River at Boat Launch. 13
5.2(o) UF and GVF rating curves for the Mackenzie River at RCMP, 113
5.2(p) UF and GVF rating curves for thc Mackenzie River at Dock. 113
5.3(a) A comparison of UF rating curves for the Mackenzie River at Great Slave
Lake under open water and 1992 spring ice conditions. 114
5.3(b) A comparison of UF rating curves tor the Mackenzie River at South Channel
under open water and 1992 spring ice conditions. 114
5.3(c) A comparison of UF rating curves for the Mackenzie River at Kakisa River
under open water and 1992 spring ice conditions. 115
5.3(d) A comparison of UF rating curves for the Mackenzie River at Beaver Lake
under open water and 1992 spring ice conditions. 115
5.3(e) A comparison of UF rating curves for the Mackenzie River at Burnt Point
under open water and 1992 spring ice conditions. 116
5.3(f) A comparison of UF rating curves for the Mackenzie River at Ice Bridge
under open water and 1992 spring ice conditions. 116
5.3(g) A comparison of UF rating curves for the Mackenzie River at Dory Point
under open water and 1992 spring ice conditions. 117
5.3(h) A comparison of UF rating curves for the Mackenzie River at Ferry Crossing
under open water and 1992 spring ice conditions. 117
5.3(i) A comparison of UF rating curves for the Mackenzie River at Coast Guard
under open water and 1992 spring ice conditions. 118
5.3(j) A comparison of UF rating curves for the Mackenzie River at Big River
under open water and 1992 spring ice conditions. 118
5.4 Water level and discharge relation for ice covered and open water condition,
Mackenzie River at Dory Point. 119
5.5 Measured water level and discharge with ice thickness t,
Mackenzie River at Dory Point. 120
5.6 Rating curves for ice covered and open water conditions, Mackenzie River
at Dory Point (ice thickness = 0.8 m). 121
5.7 Rating curve for ice covered and open water conditions, Mackenzie River
at Dory Point (ice thickness = 1.2 m). 122

5.8 Rating curve for ice covered and open water conditions, Mackenzie River
at Dory Point (ice thickness = 1.6 m). 123



A.l Great Slave Lake cross section (south channel only), 4.2 km downstream of

Great Slave Lake. 134
A.2 South Channel cross section, 16.7 km downstream of Great Slave Lake. 136
A.3 North Channel cross section, 19.2 km downstream of Great Slave Lake. 138
A.4 Kakisa River cross section, 34.2 km downstream of Great Slave Lake. 140
A.5 Beaver Lake cross section, 47.5 km downstream of Great Slave Lake. 142
A.6 Bumt Point cross section, 52.6 km downstream of Great Slave Lake. 144
A.7 Ice Bridge cross section, 59.2 km downstream of Great Slave Lake. 146
A.8 Dory Point cross section, 63.7 km downstream of Great Slave Lake. 148
A.9 Ferry Crossing cross section, 65.3 km downstream of Great Slave Lake. 150
A.10 Coast Guard cross section, 67.3 km downstream of Great Slave Lake. 152
A.11 Blue Quonset cross section, 71.5 km downstream of Great Slave Lake. 154
A.12 Big River Restaurant cross section, 72.7 km downstream of G.S. Lake. 156
A.13 Big Snye cross section, 73.6 km downstream of Great Slave Lake. 158
A.14 Campground cross section, 75.0 km downstream of Great Slave Lake. 160
A.15 Blue House cross section, 76.7 km downstream of Great Slave Lake. 162
A.16 Boat Launch cross section, 77.4 km downstream of Great Slave Lake. 164
A.17 RCMP cross section, 77.9 km downstream of Great Slave Lake. 166
A.18 Dock cross section, 79.5 km downstream of Great Slave Lake. 168
A.19 Orange Cabin cross section, 89.5 km downstream of Great Slave Lake. 170

A.20 Mills Lake cross section, 16.7 km downstream of Great Slave Lake. 172



List of symbols

A = cross section area, m2;

A; = cross section area affected by ice cover, m2;

Ay, = cross section area affected by bed, m?;

a; = transfer coefficient from roughness height to Manning's n,
equal to 0.0316 (based on %; in feet);

C = Chezy coefficient under open water conditions, s/m0-5;

C = expansion (or contraction) loss coefficient;

g = acceleration of gravity, m/s2;

H = water surface elevation, m;

he = the eddy loss between two cross sections, m;

Hg = gage height, m;

K = conveyance coefficient;

k; =equivalent roughness height for the ice underside, m;

L = reach length, m;

n = Manning's roughness coefficient, s/m0.33;

n; = Manning roughness coefficient for ice underside, s/m0-33;

np, = Manning roughness coefficient for bed, s/m033;

P = wetted perimeter, m;

P; = wetted perimeter influenced by ice cover, m

Py, = wetted perimeter influenced by bed, m;

Q =discharge, m3/s;

g = discharge per unit width, m3/s/m;

R = hydraulic radius, m;

R; =hydraulic radius for ice cover, m;

R}, = hydraulic radius for bed, m;;



S =cnergy slope;

S, = representative friction stope for reach;

t = ice thickness, m;

V =cross scctional averaged velocity, m/s;

V; = cross sectional averaged velocity for ice affected zone, m/s;
V}, = cross scctional averaged velocity for bed affected zone, m/s;
v(y;) = velocity at location y; from the ice boundary, m/s;

V. = shear velocity, m/s;

Vpax = maximum velocity, m/s;

¥y, = critical depth, m;

y; = water depth from the ice boundary surface, m;

Y;max =maximurn water depth from ice boundary surface, m;
Ypmax = Maximum water depth from bed boundary surface, m;
o = kinetic energy correction coefficient;

& =P; /Py;

p = water density, kg/m3.

t = boundary shear stress, N/m2;

7, = boundary shear stress for bed, N/m2;

7, = boundary shear stress for ice underside, N/m2.



Chapter 1

Introduction

The Mackenzie River at the outlet of Great Slave Lake is aftected by ice for up
to six months each year. It is an important transportation waterway, both for barge
traffic from Hay River and as the location of the highway crossing to Ycllowknife and
other points north. Therefore, an understanding of the effects of icc on the channel
hydraulics is quite pertinent. The reach of the Mackenzie River considered in this
study extends from the outlet of the Great Slave Lake downstream to Mills Lake, a
distance of about 100 kilometers (km).

The reduced conveyance capacity occurring under an ice cover may cause an
increase in water levels and flooding, particularly when an ice jam forms and rcleases.
In addition, for both hydraulic or ice breakup analysis, the discharge in an icc cover is
an essential data to develop such a model. In terms of the specific problem at Ft.
Providence, a prolonged breakup can result in a significant interruption in ground
transportation. The ferry cannot be operated safely without an adequate model of
breakup processes enabling reliable forecasting. Such a model requires knowledge of
discharge during the breakup period.

This study has two main objectives. The first is to evaluate the hydravlic
conditions which control the lake outflows both under open water and ice conditions.
The second aim is to determine whether such an analysis can be used to interpret stage
data at the Water Survey of Canada (WSC) gauging station in the reach, to cstablish
more reliable winter rating curves. These objectives are addressed by:

1) undertaking a review of the available literature on ice roughness analysis under ice
conditions;
2) carrying out field investigations to collect hydraulic, hydrological and ice

characteristics data on the Mackenzie River;



3) determing the Manning's n for bed roughness in open water conditions;

4) determing the Manning's n for ice cover in ice covered conditions prevalent during
the late winter period of 1992;

5) estimating the pre-breakup discharge and the ice roughness in the Ft. Providence
Rapids;

6) developing uniform flow rating curves for cach cross section and analyzing the
measured stage and discharge data; and

7) developing a family of winter rating curves which consider backwater effects and
ice conditions at Dory Point.

Chapter 2 presents a review of the pertinent literature, while Chapter 3
describes the field data collection program. The hydraulic analysis is described in
Chapter 4 and the interpretation of this analysis as it pertains to the outlet hydraulics is

presented in Chapter 5. Conclusions and recommendations are provided in Chapter 6.



Chapter 2

Theoretical background and literature review

2.1 River ice formation, evolution and breakup processes

A brief review of river ice processes from formation to breakup is provided to
develop an understanding of the effects of an ice cover on the flow. This review is
based on a classification of river ice types which generally reflects the development
process of a natural ice cover through the winter. Such a classification also provides a
convenient framework to analyze ice roughness because each ice cover form has
unique characteristics and resistance effects on the flow. |

When the water temperature in a river decreases and becomes supercooled
(supercooled water is defined as water at temperatures of a few hundredths of a degree
less than 0°C), the first phenomenon that occurs is the formation of minute ice crystals
called frazil. The frazil is present throughout the cross section of the flow if the river is
sufficiently turbulent (Ashton, 1986). Following the initial formation of frazil, crystals
begin to agglomerate into flocs. Because of their buoyancy, frazil flocs float to the
surface to form frazil slush. If the slush stays on the surface long enough, the surface
freezes and an ice floe or frazil pan is formed. As these floating frazil pans move about
and impact upon each other, they often become circular with upturned edges; hence
the name pancake ice. These floes are carried downstream in increasing concentrations
as ice generation continues. If they meet a barrier, such as a man-made structure or an
existing ice cover, the floes begin to accumulate and the ice front propagates upstream
forming a continuous ice cover. This form of ice cover growth is an important
mechanism of ice cover formation over wide rivers (Ashton, 1986).

When brought to the river bottom by turbulence, the frazil may adhere to the
bed, forming anchor ice (Ashton, 1986). Anchor ice can form on a number of

materials, such as aquatic weeds and gravel. Anchor ice seldom forms on the river



bottoms of fine materials, such as sand, silt and clay, because these particles can be
casily lifted off the bottom before the anchor ice can grow to a large size.

There are two kinds of surface ice covers, border (or shore) ice and chanpel
ice. In the slower flow near the banks, where the turbulence is too low to entrain the
frazil particles, they accumulate to form a continuous layer of skim ice on the watefr
surface. This skim ice effectively prevents further supercooling, and subsequent ice
growth is thermal in nature. The resulting ice cover is typically termed "border ice".
Because ice formed by thermal heat exchange across the ice layer usually results jn
crystal growth in the vertical direction, a characteristic of thermal ice is its columnar
crystal structure, easily recognizable in the "candles" of ice seen as this type of ice
melts.

As freezeup progresses, the surface concentration of pans increases as does the
extent of border ice out from the bank. At some point, the pans bridge and a solid
front propagates upstream between the border ice which has developed along the
banks. If the flow velocity is large, the accumulation of pans may shove and thicken.
Normally once the accumulation has stabilized, the water between the ice floes freezes
and gives strength to the accumulation, thereby inhibiting further consolidation.
Subsequent ice growth occurs by one of two means: thermal growth, as described
above, or through snow ice development. The latter may occur as snow accumulates
on the ice surface. The weight of the snow may cause the cover to float lower in the
water, resulting in the inundation and subsequent freezing of the saturated snow layer,
forming snow ice.

In spring, the increase of solar radiation and air temperature results in snow-
melt in the catchment and an increase of heat input on ice covers. Subsequently, the
snow-melt may cause a significant increase in stage and the heat input causes the
deterioration of ice and snow on the river (Prowse, 1989). Thus, the nature of breakup

on a reach can vary from one in which the ice gradually deteriorates and more-or-less



melts in place, to one in which breakup occurs suddenly due to the passage of a
dyramic breakup front while the ice is still competent. The manner of breakup
depends on a subtle trade-off between ice deterioration due to heat input and increased
water levels due to snowmelt, ice melt, or ice jams. Figure 2.1 shows a schematic ice

jam diagram.

2.2 Description of effects of an ice cover on the flow

The formation of an ice cover over a river channel has two significant cffects
on a river flow. First, the ice cover increases the wetted perimeter. Second, the
underside of ice cover makes an important contribution to the channel resistance
causing the river to "stage-up". According to Manning's equation (Henderson, 1966),
river diséharge is a function of cross sectional area, hydravulic radius, river bed slope
and Manning's roughness coefficient n. Comparing the flow in an ice covered channel
with flow in an open channel, the hydraulic radius decreases and equivalent Manning's
n may increase or decrease depending on the roughness of the underside of the ice
cover. Consequently, the river hydraulic conveyance capacity is reduced.

To estimate the discharge under an ice cover, the cross sectional area,
hydraulic radius and roughness coefficient have to be computed in a different way as
compared to the case of open water. Although it is not difficult to recalculate the cross
sectional area and hydraulic radius, determination of an appropriate resistance
coefficient which can account for the combined effects of bed and ice resistance is not

straightforward.

2.3 Estimate of roughness coefficient in an ice covered channel
Difficulties in estimating an accurate roughness coefficient for an ice covered
channel arise from two basic sources. The first is related to the definition of

roughness. If for example it is to be represented by a resistance coefficient, such as

N



Manning's n, then it must incorporate other loss effects such as channel irregularity,
alignment, silting and scouring, obstructions etc., as well as roughness (Chow, 1959).
Sccondly, roughness may not be measured directly. It must be deduced from other
parameters describing the flow. These problems are complicated by the fact that the
nature of the ice cover and/or bed may vary with time, thus altering the resistance
coefficient. Also, resistance effects vary with changing stage and discharge.

Generally, estimates of the roughness coefficients in an ice covered flow, are
done by one of two methods. The first method is based on measured velocity profile(s)
under an ice cover in which the resistance coefficient of the underside of the ice and of
the bed are determined separately and then combined in some way to determine a
composite value of roughness. The second is based on measurement of general flow
characteristics (such as discharge, cross section shape, and water surface slope), in
which case a composite value would determined directly through a simple uniform
flow or gradually varied flow analysis. In the latter case, an estimate of the resistance
coefficient of the underside of the ie may be obtained if the resistance coefficient of
the bed is known, again by using a composite roughness formula.

In the following sections, methods for determining roughness from velocity
profiles are presented. Also, a number of methods for considering the combined

effects of bed and ice cover resistance are reviewed.

2.3.1. Obtaining resistance coefficients from measured vertical velocity profiles
Because the roughness of the ice under surface is difficult to measure directly,
some investigators have used measured velocity profiles to estimate ice or bed
roughness height (Larsen, 1969; Calkins et al, 1982). This approach divides a channel
cross section into two zones as shown in Figure 2.2, and the Karman-Prandtl velocity
distribution is assumed to describe the vertical velocity profile near the wall within

each zone.



2.3.1.1 Larsen's method

In this analysis, the Karman-Pranditl velocity distribution is assumed to
describe the vertical velocity profile from the ice boundary surface to the location of
maximum velocity plane in an ice covered channel (Larsen, 1969). Although the
method is described here in terms of obtaining the ice roughness (as originally applicd
by Larsen) it may be used to estimate the roughness height of the bed as well.

The Karman-Prandtl velocity distribution for the ice affected region is (Larsen,

1969)

v(y,.)=2.5V.ln(%Qy,-) 2-1)

where:;

v (y; ) = velocity at location y; from the boundary, m/s;
V4 = shear velocity defined as V,, = (7, /p) 2

7, = boundary shear stress for ice under surface, N/m2;

p = water density, kg/m3;
k; = equivalent roughness height for the ice under surface, m;
y; = water depth from the ice boundary surface, m;
and ki/30 represents the estimated location of the position of zero velocity from the
boundary (Larsen,1969).

The average velocity can be obtained by integrating the velocities in the ice

affected zone. The equation can be written as (Larsen, 1969):

V=2 5v.[1n(—’;9- Y,.)- 1] (2-2)

and the maximum velocity can be written as (Larsen, 1969):



Vya = 2.5V 1n(%9 Yige) (2-3)

(]

where;

V; = average velocity for ice affected zone, m/s;

Y;max = maximum water depth from ice boundary surface, m;

Vnax = maximum velocity, m/s.

Combining Equation (2-2) and (2-3), the equivalent roughness height for the ice under
surface, k; , can be found by using following equation.

-1
k" = 30Yimax exp(——v———) (2'4)
I- /

Vma.x
This form of the equation has the significant advantage of eliminating the shear
velocity, which cannot be evaluated for a non-uniform flow since the slope of the

energy grade line is unknown.

2.3.1.2 Graphical method

An alternative approach is to fit the Karman-Prandtl velocity distribution to the
.neasured data graphically. This is done by plotting velocity versus the log of the
depth. A best-fit line can then be obtained for the measured data either by eye or
through least-squares regression. Extending the straight line to v; = 0, the

corresponding intercept, y;, can be obtained. The roughness £; is simply equal to 30*y;.

2.3.1.3 Conversion of k; to Mannings n

After k; is found, the Manning roughness coefficient may be estimated from

the Manning-Strickler equation for the ice affected zone (Larsen, 1969):

n, = akk (2-5)



. \1/6
where: a, = (Yiae / K) (2-6)

21.910g(12.2%"£‘-)

n; = Manning roughness coefficient for ice under surface;

a; = coefficient, a function of Y;,,./k; (based on k; in feet) where kY, 18 2
measure of the relative roughness on the boundary.

Strickler found that over a wide range of relative roughness valucs the cocfficicnt a,

value varied little (Chow, 1959). He therefore proposed a constant value be used for

this coefficient. In this study, the constant value of 0.0316 recommended by Ashton

(1986) was used for a;. Calculated estimates of this coefficient for the Mackenzic

River data confirmed that no significant variations occurred and that the value (.0316

was reasonable.

2.3.1.4 Discussion

There are a number of practical difficulties associated with the use of velocity
profiles in the determination of boundary roughness. First, is the suitability of using
the Prandtl-Karman logarithmic velocity distribution law in a natural channel. Pratte
(1979) pointed out the Equation (2-1) was originally applied to turbulent flow in
nearly circular rough conduits and for a wide, shallow ice-coveied channel. the
equation may not be valid. Second, the Prandtl-Karman logarithmic velocity
distribution law describes the velocity distribution in the near-wail region. However,
because of the limited depth within each of the sub-zones, data extending right to the
point of maximum velocity are often employed. This combined with the problem of
obtaining accurate depth measurements under ice conditions, may lead to significant

CITOor.
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Perhaps the greatest inaccuracies are related to the conversion of roughness
height 1o Manning's n . Equation (2-5) implied that n;is a function of k; only.
Actually, roughness height is a local parameter and thus i5 not simply correlated to
Manning's n, which as stated earlier, must incorporate other loss effects such as

channel irregularity, alignment, silting and scouring, obstructions etc.

2.3.2 Estimate of composite roughness

For an ice covered channel, the composite roughness represents the
combination of the roughness effects of the under surface ice cover and channel bed.
Generally, methods for computing composite roughness values consider the flow in an
ice covered channel to consist of two separate flow zones, one affected by the ice
cover and one affected by the bed. It is generally assumed that these two zones,
separated by the zero shear stress interface, act independently of each other. It is also
frequently assumed that this zero shear stress interface coincides with the locus of
maximum velocity providing a means of identifying the relative size of the two zones.
However, when the roughness of the underside of the ice cover and the bed are
different, as is usually the case, the two zones are not independent. This problem was
thoroughly investigated by Hanjalic and Launder (1972) who found by experiment
that because of turbulent mixing between the rougher boundary affected zone and the
smoother boundary affected zone the velocity gradient approximation is not valid for
quantifying the Reynolds shear stresses and the locus of maximum velocity will not
coincide with the zero shear stress interface.

Table 2.1 summarizes seven commonly cited formula for the calculation of
composite roughness as well as their corresponding assumptions. These equations are

also compared graphically in Figure 2.3. Each method is discussed in more detail

below.
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2.3.2.1 Pavlovskiy, Lotter, Belokon, and Sabaneev's analyses

As the original papers describing the analyses of Pavlovskiy (1931), Lotter
(1933), Belokon (1938) and Sabaneev (1948) are not generally available, this and
other discussions (Uzuner, 1975; Ashton, 1986) have relied upon the comprehensive
review presented by Nezhikhovskiy (1964).

Pavlovskiy based his analysis on the assumption that the gravity force along
the channel is equal to the sum of the shear forces exerted on the channel bed and the
ice cover. This equality was derived based on the assumption that the channel
hydraulic radius, R, could be approximated by the average depth (which is an
appropriate assumption only for wide open channel, under ice conditions, the
hydraulic radius would be better approximated as one-half of the mean depth). |

Faced with too many unknowns and too few equations, he further assumed that
the hydraulic radius in the ice affected zone was equal to that in the bed affected zone,
or R, = R; , and that both were also equal to the total hydraulic radius. In addition to
the fact that such an assumption is clearly not valid, it leads to the further restriction
that the average velocity in the two zones must be equal to each other, and to the
overall average velocity (Uzuner, 1975), which is also unreasonable. Lotter
(Nezhikhovskiy, 1964) also based his equation on the assumption that R, = R; = R.

Beiokon (Nezhikhovskiy, 1964) assumed that the zero stress interface was
defined by the locus of maximum velocity (which as discussed above is incorrect if
the ice and bed have different roughnesses) and that the velocity distribution within
each zone can be described by a parabola with an exponent of 1.5. He also assumed
that the average velocities in the ice and bed roughness affected zone are equal to each
other and to the channel average velocity, which is an unrealistic assumption.
Nezhikhovskiy (1964) also points out that Belokon's formula produces unreasonable

results: when the bed and the ice cover have the same roughness, np=n; =n the

computed composite value will be 1.58n.
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Nezhikhovskiy describes Sabancev's equation, also referred to as the Belokon-
Sabaneev equation (Uzuner, 1975; Calkins et al, 1982), as a refinement which
corrected an unidentified mistake in the Belokon equation and included "a new
proposition on the minimum energy losses with the given hydraulic elements of the
stress”" (Nezhikhovskiy, 1964). Simply put, the Belokon-Sabaneev equation merely
differs from the Belokon equation by a factor of 0.63, eliminating the problem noted
above such that when the bed and the ice cover have the same roughness, n, the

computed composite will be equal to that common value.

2.3.2.2 Chow's equation
Chow (1959) utilized R =Rp+R; in his equation, which is also not strictly valid.

According to this assumption,
At+a = ﬁ'_ + A (2-7)

which is not mathematically correct.

2.3.2.3 Larsen's analysis

Following the assumptions employed in the determination of roughness based
on velocity profiles, Larsen's (1969) equation is based on the assumption that velocity
profiles in a natural river comply with the logarithmic velocity distribution. Larsen
combined the Karman-Prandtl formula, continuity equation and Manning's equation
together to find an expression for composite roughness. The equation, shown in Table
2.1, indicates that the composite roughness is a function of the ratio of water depth
Yimax/ Yomax and the roughness coefficients n; and ny,

Larsen's equation is important in that it avoids the limiting (and generally

invalid) assumptions of the methods described above by introducing an equation for



velocity distribution to close the problem. The disadvantage of Larsca's equation is
that the depths Yjpqc OF Ypmay are not casy to measure, which makes Larsen's equation
difficulty to apply in practice. In addition, application of the logarithmic velocity

distribution all the way to the point of maximum velocity is inappropriate.

2.3.2.4 Hancu's analysis

Hancu's analysis, originally published in Romanian (1967) is reported by
(Uzuner 1975). Hancu's approach was based on the velocity defect law and
logarithmic resistance relation, and a shear stress equation of the Darcy-Weisbach
form. It is significant because he too avoided the necessity for assuming V; =V,
obtaining a system of equations, including velocity distribution, equal to the number
of unknowns. In Hancu's equation, the average velocities, V; and V; are nceded,

requiring velocity data. Also, R; and R, must be quantified.

2.3 2.5 Discussion

In summary, the limitations for the equations in Table 2.1 are as follows: 1) all
equations assume that the cross section is divided into two parts with the upper zone
being solely affected by the ice cover and the lower zone solely by the bed, this may
not be valid; and 2) definition of the zones is difficult because the locus of maximum
velocity will not necessarily coincide with the zero shear interface.

Because Larsen's and Hancu's formulae close the system of equations defining
composite roughness with velocity data, rather than through restrictive and unrealistic
assumptions, they are the most reasonable and recommended for use. However,
practically speaking, the data required to apply these two methods are often not
available. Of the remaining equations, although the Belokon-Sabaneev equation
presents no clear refinement in terms of the underlying assumptions used, it is clearly

the most favored in the literature. Nezhikhovskiy considered it the best formula
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(Nezhikhovskiy, 1964), possibly because it produced reasonable results where the
others did not. A number of other authors also recommend the use of the Belokon-
Sabaneev cquation (Carey,1967; Calkins et al, 1982). However, as Figure 2.3
illustrates with published data from Carey (1967) such conclusions may reflect the fact
that differences in the results obtained with the various equations are within the range
of measurement error.

In this investigation, hydraulic analyses were conducted with the Belokon-
Sabaneev (as it is the only option available in the Corps of Engincers HEC-2 program
used in the computation of the water surface profiles). These results were compared

with roughness values computed from velocity profiles, measured on the Mackenzie

River under ice conditions.

2.3.2.6 Other considerations in the application of composite roughness formulae
It should be noted that the bed roughness coefficient may change when
hydraulic conditions change. For example, the bed roughness coefficient obtained
from open channel flow may not be valid in an ice-covered channel. This may be due
in part to a sensitivity of the bed roughness coefficient to depth (or more specifically
hydraulic radius) variations or might be due to changing bed conditions (i.e., varying
bedforms). For example, Carey (1967) applied the bed roughness coefficient obtained
from open channel flow to ice covered river calculations on the St. Croix River and
obtained incorrect, and sometimes negative, values for the ice cover roughness
coefficient, n; . Larsen (1969) applied the bed roughness coefficient obtained from
open channel flow in a canal to the ice covered case and produced quite reasonable
results. This indicates that the bed roughness coefficient changed for ice cover

conditions in Carey's case as roughness is not normally so sensitive to depth

variations.
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Figure 2.3 Comparison of composite roughness coefficients as a function
of ice and bed roughness calculated using various predictors.



Table 2.1 Composite resistance relationships for ice covered channels

(after Uzuner, 1975).

Developer Equation
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where: n = Manning's roughness coefficient;

R = hydraulic radius, defined as R =A/P, m;

A =flow cross section area,

P =wetted perimeter, m; V = average velocity, n/s;

Y. = water depth from boundary surface, m;

d=P/P,;

The subscripts of i and b represent ice cover and river bed respectively.
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Chapter 3

Field investigations

3.1 Introduction

The Mackenzie River system is both the largest in drainage arca and longest in
Canada, flowing approximately 4240 kilometers from the headwaters of the Finlay
River to the Arctic Ocean. The drainage area is about 1.8 million square kilometers
(Mackenzie River Basin Committee, 1981). The Mackenzie River system contains
three major lakes, namely, Great Slave Lake, Athabasca Lake and Great Bear Lake.
The three major river tributaries of the system are the Peace, Athabasca and Liard
Rivers. The annual precipitaticn in this system ranges from 460 mm in the south to
130 mm in the north (Mackenzie River Basin Committee, 1981).

The name "Mackenzie River" is applied to that part of the system that extends
from Great Slave Lake to Arctic coast. The length of the river is about 1650
kilometers. The river flows through Ft. Providence, Ft. Simpson, Wrigley,
Ft. Norman, Ft. Goodhope, and finally passes through Inuvik to the Beaufort Sea. At
Ft. Simpson, a major tributary, the Liard River, joins the Mackenzie River. Others
sizable tributaries joining the river downstream are the Arctic Red and the Peel Rivers
from the mountains to the west and the Great Bear River from Great Bear Lake to the
east.

The study reach is the Mackenzie River from the outlet of the Great Slave
Lake to Mills Lake, about 100 kilometers long. Due to the complication of flow
characteristics at Ft. Providence Rapids during the spring of 1992, the emphasis was
put on the outlet of Great Slave Lake to Ft. Providence Rapids, a distance of 70
kilometers. Figure 3.1 is a map of the study reach.

The objectives of the study are as follows: first, to find discharge and

roughness both for open water and ice cover conditions in the study reach; and second,
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to find how the downstrecam channel controls the flow at outlet of Great Slave Lake,
especially when the channel has an ice cover. In order to do that, historical and field
data had to be collected. These included details of channel bathymetry, ice
characteristics, water surface profile measurements, discharge and velocity profile

mcasurements, and ice movement processes.

3.2 Channel bathymetry
The channel bathymetry is the fundamental data for establishing a hydraulic

model. In this scction, the cross section surveys in 1991 and 1992 are discussed. The
connection of temporary benchmarks to cross sections, the longitudinal distance
between sections and the thalweg are also discussed.

The first cross section surveys were conducted during late August and early
September, 1991. At that time, nine cross sections were surveyed between Beaver
Lake and Ft. Providence. These surveys were based on continuous depth sounding of
the channel cross sections. Horizontal control was obtained by maintaining a relatively
constant boat speed. Due to the difficulty of approaching the edge in shallow water,
the cross section survey did not quite reach the edge of the bank. The Beaver Lake and
Burnt Point cross sections were not surveyed in the proper locations owing to the
difficulty in finding the original temporary benchmarks. These surveys were used for
a preliminary hydraulic analysis.

Additional cross section soundings were undertaken to expand the data base in
early July, 1992. A total of twenty cross section surveys were conducted between
Great Slave Lake and Mills Lake. These = shown in Figure 3.2. All cross section
surveys were extended up onto the bank to facilitate the hydraulic analysis at high
water levels. The nine cross sections which were surveyed in 1991 were surveyed
again in order to maintain consistency and to provide a comparison.

Improved horizontal control was achieved for most of these cross sections with
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the use of a portable Global Positioning System (GPS). The GPS is an clectronic
receiver which provides locations in terms of universal coordinates by triangulation on
orbiting satellites. The GPS's error is generally 10 to 40 meters. However, this can be
improved to about 3 meters by recording a number of measurcments at a single point
and then averaging the results. Since this could not be done in a moving boat, an
alternative approach was tried. During each cross section survey, a serics of readings
were obtained as the boat traversed the channel, with a corresponding notation placed
on the depth sounding chart. In all cases, an effort was made to kecp the boat on a
straight course, roughly perpendicular to the flow. The locations obtained from GPS
were plotted to scale on a map to check the survey results. A linear regression analysis
for the GPS data points on the survey line across the channel at each cross section was
then carried out. Figure 3.3 shows an example of the results obtained by this method.
Although this regression did not improve the horizontal error of the GPS by a
quantifiable amount, it did lend some credibility to the results obtained. As the figure
shows, most points plotted on a near perfect straight line, indicating a measurc of
consistency between readings. Table 3.1 shows the correlation coefficients R obtained
for the regression at each section. These coordinates were used in combination with
the sounding chart to apportion distances across the channel width.

In order to eliminatc "noise" in the cross section soundings, 3, 5, 7 point
moving averages of the cross section elevations were computed. The 5 point moving
average of the cross section elevations was found to be the most representative of the
actual sounding data. Discrete cross section points were taken evenly along the river
width and at breaks in grade. The final number of points defining cach cross section
was equal to or less than 60 in number. Details of the cross section surveys and

hydraulic components are presented in Appendix A.



Table 3.1 Regression of GPS data for the cross section surveys.

“Location
of cross
sections

Great Slave Lake ~ means the
South Channel GPS data
North Channel is not

Kakisa River available.
Beaver Lake
Burnt Point
Ice Bridge
Dory Point
Ferry
Coast Guard
Blue Quonset
Big River
Big Snye
Campground
Blue House
Boat Launch
RCMP (South)
RCMP (North)
Ft. Prov. Dock
Orange Cabin
Mills Lake

To establish a hydraulic model of the study reach, the cross sections had to
related to a common datum. In the study reach, there are some monuments established
by Geodetic Survey of Canada (GSC). Most are located near the roads and highways.
In order to measure the water surface elevation, a number of temporary benchmarks
(TBMs) were established along the channel banks adjacent to the cross sections. These
TBMs were then tied to the GSC monuments, to establish this common datum. The
TBMs at the Ice Bridge, Dory Point, Ferry, and Coast Guard cross sections were tied
into GSC benchmarks along the south side of the river in spring, 1991. The TBMs at
the Big River, Blue House, RCMP cross sections were tied into the GSC benchmark

along the north side of the river in summer, 1991. The TBMs at the Burnt Point and
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Beaver Lake cross sections were tied into GSC benchmarks along the south side of the
river in December, 1991 and the Kakisa River, South Channel, and Great Slave Lake
cross sections were tied in during March, 1992. The TBMs at the Blue Quonset, Boat
Launch, Campground, Dock and Mills Lake cross sections were tied into GSC
benchmarks along the north side of the river in spring, 1992. To climinate the expense
of crossing the river by helicopter during breakup observation, TBMs were established
along the north bank of the river between the Ice Bridge and Coast Guard scctions in
May, 1992. The accuracy of TBM surveys were confirmed by closed level circuit
except at the Great Slave Lake, South Channel, and Kakisa cross sections (due to the
expense involved in conducting these surveys). Since these threc TBMs were tied in
extreme cold weather conditions and it was suspected that the electronic instrument
used may have malfunctioned, TBM elevations were checked by comparing the water
surface elevation at the Great Slave Lake cross section to the water surface elevation
of Great Slave Lake at Hay River. Based on this check, the elevation of the TBM at
the Great Slave Lake section was revised by 1 meter. However, the elevations of the
TBM at the South Channel and Kakisa cross sections werc confirmed based on this
check. Table 3.2 shows the TBM descriptions.

The establishment of a common datum provides key information for
determining bed and water surface slope. Based on this and the cross section surveys,
a quantitative description of the study reach can be presented. The study rcach from
the outlet of Great Slave Lake to Mills Lake can be divided into four distinct sub-
reaches. The first sub-reach extends from the Great Slave Lake section to the Beaver
Lake section. The channel length is 43.3 kilometers. The channel is wide and the bed
slope is mild. The typical channel width is about 6000 meters (Great Slave Lake and
Beaver Lake sections). The average bed slope in this reach is (0.00008. From the
Beaver Lake section to the Ferry Crossing, the river length is 17.8 kilometers. The

average bed slope steepens slightly and has a value of 0.00027. The river width varics



from 6000 meters (Beaver Lake) to 1000 meters (Ferry Crossing) and the typical river
width is about 1800 meters (Dory Point). From the Ferry Crossing to Dock section,
the river length is 14.2 kilometers. The bed slope increases further and has an average
value of 0.00051. The river becomes narrow and the typical width is ahout 800 meters
(Big River). Downstream of the Dock to the Mills Lake section, the bed slope
decreases again and the average value is 0.00014. The river length is 24.4 kilometers.

The typical river width varies from 1100 meters (Dock) to 3700 meters (Mills Lake).

3.3 Ice characteristics, Spring, 1992

The ice thickness for the channel and border ice was measured at 18 cross
sections between the Great Slave Lake section and Dock section at Ft. Providence in
1992. These measurements were first performed in late winter (late March and early
April) and repeated three times during the initial period of the breakup season. After
the ice started to move, some sections were not accessible. Tables 3.3 and 3.4 show
the variation of ice thickness in both border ice and channel ice respectively.

The trend in variation of channel ice thickness can be seen in Figure 3.4. The
ice thickness increased systematically from the Great Slave Lake section to the Ice
Bridge section. At the outlet of Great Slave Lake. most of the water surface was open
by late April, 1992. Downstream of the outlet, the ice thickness increased gradually.
The ice thicknesses at Beaver Lake and Burnt Point were about 1.0 and 1.2 m,
respectively. At the Ice Bridge section, the ice thickness exceeded 1.7 m. Downstream
of the Ice Bridge section to upstream of the Big River section, the ice thickness was
about 1.0 to 1.2 m. Between the Big River and the Dock sections, the ice thickness
ranged from 0.7 to 1.5 m. From Figure 3.4, one can see that these measurements show
no significant trend towards ice thinning during the period of pre-breakup. This was
likely because initial ice movements occurred before any appreciable thermal

deterioration had taken place.



Figure 3.5 shows the border ice variation along the study reach. The thickness
of border ice varied from 0.6 to 1.6 m. The thickest border icc occurred at Beaver
Lake and Burnt Point and the thinnest occurred at the outlet of Great Slave Lake.
Most of the border ice was about one meter thick.

Variations in the ice thickness are closely related to the naturc of ice formation
and accumulation, heat transfer between the interface of the ice and water, and the
flow velocity (Ashton, 1986). In the study reach, the reason for the thin ice upstream
of Burnt Point is probably due to warm water released from the lake. At the Ice Bridge
cross section, the heat transfer between the water and ice interface probably decreased
because the ice upstream had absorbed all the available heat. The flow velocity was
not high due to the width of the cross section. The artificial method to build the ice
bridge méy also have its contribution. All of these made the ice very thick at the Ice
Bridge cross section. Down to the Big River cross section, the channel narrows and

the flow velocity increase. Thus, the ice was thin again.

3.4 Water elevation measurements

The measurement of water surface elevations was an essential part of the field
investigation. Water surface elevations were measured along the study reach during
the pre-breakup period in 1991, and the summer, freezeup, winter and breakup periods
in 1992. In 1991, the measurements were limited to the reach from the Beaver Lake
section to the RCMP section in Ft. Providence. When an ice cover was present, water
surface elevations were obtained by cutting a hole in the border ice and surveying to
the water level in the hole. Care was taken to avoid areas of shorefast ice. In 1992, as
breakup progressed and ice movement increased, the water surface profile
measurements were increased in frequency from 1 time per day to 3 or 4 times per
day. In total, more than 45 water surface profiles were measured in the study reach

between 5 April and 20 May, 1992. Several water surface profiles were measured



from the Great Slave Lake section to the Dock section in Ft. Providence. Most of them
were measured from the Ice Bridge section to the Ft. Providence Dock section.

Figure 3.6 illustrates the stage hydrograph at the Ferry Crossing section
between March 22 and May 24, 1992. As the figure shows, the water elevation at the
Ferry Crossing was relatively stable during late March and early May, with only a
gradual increase in water level over the period between April 22 and May 3. On May
4, a substantial increase in water level occurred during the initial movement in the ice
cover at the Ferry Crossing. Subsequently, the water surface elevation increased
rapidly and continuously until May 18. The fluctuations in water level at the Ferry
Crossing section were associated with major ice movements in the reach and in
particular, the formation and repeated consolidation of an ice jam in the reach through
Ft. Providence Rapids. Breakup, which occurred between May 19 and May 21, was
associnted with a final water level increase, the release of ice and water through the
Big Snye, and a subsequent rapid reduction in stage over a period of 24 hours.

Figure 3.7 illustrates the stage hydrographs measured through Ft. Providence
Rapids from the Big River section to the Dock section. There was only a gradual
increase in water elevation before May 2, as was the case at the Ferry Crossing
section. After that, the water level started to increase and fluctuated until May 22. The
biggest fluctuation occurred on May 8. It was probably a consequence of the ice jam

toe moving downstream from Blue House section to the Dock.

3.5 Discharge measurements and rating curves
3.5.1 Discharge estimation at Dory Point

In the study reach, discharge data were collected at Dory Point by Water
Survey of Canada (WSC) staff from 1961 to 1978. The measured discharge data for
open water are presented in Table 3.5. The rating curve for open water, based on the

data surveyed by WSC staff at Dory Point, was developed in this analysis. The
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discharge and water elevation were plotted, and a best fit curve was obtained using a
least squares power law regression. The resulting rating curve equation can be written
as:

H_ =0.0153* Q%% 3-1)
where;
Hg = gage height, m, (zero height is 148.806 m); and
Q = discharge, m3/s.
The resulting coefficient of determination R2 was equal to 0.95.

The exponent for Q in Equation (3-1) is very close to the exponent 3/5
obtained for a theoretical rating curve based on Manning's equation assuming a
rectangular cross section shape. The coefficient of 0.0153 then is a function of river
width, Manning's n and bed slope. Typical values of width, roughness and bed slope
at Dory Point of 1700 m, 0.02 and 0.00027, respectively, were used in Manning's
Equation. The coefficient computed from Manning equation for Dory Point was 0.013,
which is very close to the value in Equation (3-1).

Another approach to get discharge during open water is to use the discharge
data at Ft. Simpson, located 250 kilometers downstream of Ft. Providence. The flow
travel time from Ft. Providence to Ft. Simpson, based on average velocity estimates
and the distance between Ft. Providence and Ft. Simpson, is estimated to be about 48
hours. To get discharge at Ft. Providence, the discharge at Liard River was subtracted
from the discharge at Ft. Simpson. Considering the travel time, the discharge at
Ft. Providence can be estimated based on records 2 days after the day in question with
relative accuracy during times when discharge is not changing rapidly. Table 3.6
illustrates the relative values obtained for discharge at Ft. Providence determined for

these dates on which cross section surveys were undertaken.



Table 3.6 Discharge estimates of Mackenzie River near Ft. Providence.

Discharge (cms) “Discharge (cms) |
rating curve Ft. Simpson-
at Dory Point Liard River

29-Aug.-91
11-Jul -92

Discharge had also been measured by WSC staff for ice covered cases. These
discharge measurements are presented in Table 3.7. Due to backwater effects which
vary with changing ice conditions, there is not a simple relationship between discharge
and water elevation. Therefore, in order to quantify discharge during the spring of
1992, three measurements were performed. Two measurements were taken at the
Ferry Crossing (located just downstream of the Dory Point site) and a third was taken
at the Orange Cabin section (downstream of Ft. Providence). The measurements of
water depth were inaccurate because of the influence of the flow velocity on the
metering device. To improve the results, the cross section area at Dory Point and
Orange Cabin surveyed in summer, 1992 was used for the discharge calculation
instead of using the surveyed water depth during the velocity measurements. The

results are presented in Table 3.8.

Table 3.8 Discharge measurements of Mackenzie River near Ft.Providence.

Date Location " Discharge (cms) |
measured i

i
Ferry section ;

Ferry section ;
Orange Cabin section
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3.5.2 Discharge estimation at Big Snye and North Channel

Besides the estimated discharge at Dory Point on the Mackenzie River, the
discharges in two major anabranch channels along the study reach, namely, the North
Channel and the Big Snye, had to be considered. Due to the lack of surveyed data,
uniform flow conditions were assumed in these channels and Manning's equation was
used to obtain the corresponding rating curves. The Manning's n in the North Channel
and the Big Snye were assumed to be the same as the Manning's n at the South
Channel and Big River sections, respectively. The water elevations at the North
Channel and Big Snye were assumed to be the same as the water elevations at the
South Channel and Big River sections, rezpectively. The bed slope was approximated
by the water surface slope. The cross section area was obtained from the cross
sectional surveys conducted in July, 1992. Figure 3.8 illustrates the discharge
relationship developed from this analysis between the North Channel and Big River
sections and Dory Point section for the open water period. Table 3.9 shows the
computed discharge for the North Channel and Big Snye for different Manning's n,
indicating the relative sensitivity of the results to the assumed roughness. It is hoped
that coincident measurements of discharge in the Big Snye and at the Ferry Crossing

upstream will refine that relationship in the future.

3.6 Velocity profile measurements

Three velocity profiles were measured in late April and early May, 1992. Two
of them were at the Ferry Crossing section and the third one was measured at the
Orange Cabin section, downstream of Ft. Providence. The velocity profile
measurements were conducted at only one location each time, using a magnetic flow
meter. Representative velocities at each measurement point were obtained by
averaging the metered values over a period of 30 to 60 seconds. Table 3.10 and Figure

3.9 show the measured velocity profiles taken at the Ferry Crossing section. From the
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velocity profile plots, one can see the shape of velocity profile measured on April 27,
1992 is poorly defined due to too few data measurement points. The velocity profile
measured on May 1, 1992 is better defined although there are still very few points.

The two methods mentioned in Chapter 2 were used in the analysis of the
velocity profiles to estimate the roughness height and Manning' n for the ice and the
bed. Table 3.11 presents the results calculated using Larsen's method. Figure 3.10 and
3.11 show the plot of velocity and log y. The regression equations are also presented.
Table 3.12 presents the results of the two methods. Larsen's method produced higher
values than the regression method. Calkins et al (1982) reported a similar trend when
comparing the two methods.

.Table 3.12 Larsen and regression methods to calculate roughness

from a velocity profile hoth for bed and ice cover,
Mackenzie River at Dory Point, 1992.

Equivalent roughness Manning's coefticient
Larsen's Regression Larsen's Regression
method method method method

Roughness k | Roughness k | Manning's n Manning's n

The results of this analysis, particularly for the April 27, 1992 profile are questicnable
given that the calculated roughness heights are greater than the flow depth in some
cases. Given that the analysis is based on so few measured points, it is not surprising

that unrealistic values resulted.



3.7 Observations of major ice movements

All major ice movements were observed and documented in the spring, 1992,
On April 29, the initial development of open water leads and overflow between these
leads were observed from the Blue Quonset section to the Dock section. On May 3,
initial ice movements were observed between the Big River and Campground scctions,
and the channel was open at the Big River section. On May 4, the thin ice in the ferry
passage channel crushed and the ice cover shifted downstream. On May 8, the ice
cleared from Dory Point to the Blue Quonset, moving to Ft. Providence Rapids. By
late afternoon the channel was open from just downstream of the Ice Bridge to
upstream of the Big River section. The toe of the ice accumulation was located at the
Dock and the entire channel through Ft. Providence Rapids was filled with the ice
accumulafion. On May 12, the cracks were observed in Beaver Lake, and the channel
was open from Burnt Point downstream. On May 16, open water appeared in Beaver
Lake. On May 19, the onset of breakup downstream of the Ferry Crossing was
observed, and on May 21, the ice has gone out along the north side of Ft. Providence
Island. Details of the report of the ice movements can be found in Hicks and Andres

(1992).

3l
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Table 3.2. Elevation of temporary benchmarks established on the
Mackenzie River near Ft. Providence, as of April 1, 1993.

(all elevations G.S.C.)
TBM Name Elevation |Remar's
Great Slave Lake 158.427 nail in tres:
South Channel 158.577 nail in tree
Kakisa River 155.881 nai! in tree
Beaver Lake 155.352 nail in tree
154.474 rock
Burnt Point 154.426 nail in tree
154.303 rock
Ice Bridge S 154.605 TBM #1 - nail in tree, SE side road
154.710 TBM #2 - nail in tree, NW side road
Ice Bridge N 155.884 _ |nail in tree
Dory Point § 155.900 nail in tree (confirmed by WSC 3-Jun-92)
Dory Point N 155.752 bolt - N corner of tower (to be confirmed)
Ferry S 153.358 TBMi#1 - on SW comer sheet pile
153.569 TBM#2 - bolt on 2nd 1amp standard
153.307 TBM#3 - on sheet pile
153.138 TBM#4 - on bracket
Ferry N 156.080 GSC 86T040 (under green plate)
156.543 GSC 66T132
[Coast Guard S 152.492 TBM #1 - bolt
152.474 TBM #2 - top of sheet pile
fiCoast Guard N 155.522 nail in 3" tree (requires confirmation)
Blue Quonset 155.383 nail in tree
Big River 157.477 TBM #2 - spike in power pole behind restauran
ICampground 157.7191 nail in tree at end of runway
Blue House 153.817 marker on concrete pad behind plant
Boat Launch 153.762 spike in power pole
RCMP 154.171 spike in power pole
Dock 146.021 on sheet pile
Mills Lake 143.718 HBM 86C9986E (based on tie in to P11B-E)
144.343 Public Works P11B-5
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Table 3.5 Discharge measurements for open water conditions,
Mackenzie River at Dory Point.

Source: Inland Water Directorate, NWT
(No_copyright)

Date Discharge | Gauge Height| Water Stage Remarks
(cms) (m) (m)
Gauge zero =21.280 m.

19-Jul-61 7836 3.48 152.28

21-Sep-61 6083 2.92 151.73

13-Jun-62 7080 3.27 152.08

5-Aug-62 8836 3.89 152.70

15-Sep-62 8354 3.70 152.50

27-Jun-63 8241 3.59 152.40

17-Sep-63 7476 3.43 152.23

Gauge zero = 148.806 m.

3-Sep-64 8354 3.69 152.49

10-Jun-65 7675 3.42 152.23

27-Jul-65 7788 3.69 152.50

30-Sep-65 6938 3.22 152.03

25-Jun-66 7731 3.40 152.21
30-Aug-66 7193 3.26 152.07

6-Oct-66 7080 3.22 152.02

11-Jul-68 6938 3.27 152.08

13-Aug-68 5862 2.92 151.73 at Ferry Crossing
26-Sep-68 5041 2.63 151.44

16-Oct-68 4956 2.48 151.29

17-Jun-69 6400 3.16 151.97

23-Jul-69 5551 2.82 151.62
27-Aug-69 5296 2.69 151.50

16-Jun-70 5749 2.88 151.68

13-Aug-70 5296 2.58 151.39

8-Oct-70 4418 242 151.23 at Ferry Crossing
8-Jul-71 5551 2.96 151.77

22-Sep-71 5098 2.67 151.47

6-Oct-72 4984 2.83 151.64 at Ferry Crossing
4-Sep-75 6004 3.06 151.87

6-Jul-76 7307 3.44 152.25

23-Sep-76 6967 3.44 152.25

23-Sep-77 5891 317 151.98 at Ferry Crossing
12-Jul-78 5947 3.26 152.07 at Ferry Crossing
27-Seg-78 4475 2.69 151.50

Notes: Measurement was taken at Dory Point unless otherwise noted.



Table 3.7 Discharge measurements for ice covered conditions,

Mackenzie River at Dory Point.

Source: Inland Water Directorate, NWT

(No copyright)

43

Date Discharge Gauge Height | Water Stage Remarks
(cms) (m) (m)
Guage zero =21.280 m.
31-Jan-62 2209 3.67 152.48
26-Mar-62 1778 3.36 152.16
Gauge zero = 148.806 m.

25-Feb-64 2294 3.82 152.63

15-Apr-64 1880 3.21 152.02

27-Jan-65 2515 2.98 151.79

11-Mar-65 2203 2.67 151.47

15-Jan-66 2713 4.12 152.92

23-Feb-66 2662 3.53 152.34

5-Apr-66 2464 3.34 152.15

15-Dec-66 3030 424 153.04

25-Jan-67 2801 3.69 152.50

9-Mar-67 2008 3.16 151.97

13-Apr-67 1776 3.03 151.83

30-Jan-68 1674 3.44 152.24

21-Mar-68 1436 3.05 151.86

17-Apr-68 1526 271 151.51

20-Feb-69 1410 3.22 152.02

12-Mar-69 1240 2.99 151.80

10-Apr-69 1240 2.81 151.61

4-Mar-70 1368 3.35 152.16

14-Apr-70 1374 2.77 151.58

4-Feb-71 1498 3.26 152.06 Ave Ice 0.80 m
16-Mar-71 1382 3.03 151.84 Ave Ice 1.00 m
15-Apr-71 1325 2.83 151.64 Ave Ice 0.90 m
16-Feb-72 1784 3.22 152.02 Ave Ice 0.80m
15-Mar-72 1821 2.88 151.68 Avelce 1.0m
28-Apr-72 1685 3.10 151.91 Avelce 1.2 m
27-Apr-92 4351 3.97 152.78 Measured by U of A
1-May-92 4777 410 152.91 Measured by U of A
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Chapter 4
Gradually varied flow (GVF) analysis

4.1 Introduction

In this chapter, the application of a gradually varied flow (GVF) model,
specifically the HEC-2 (Hydrologic Engineering Center, 1982) program, to the
Mackenzie River near Ft. Providence is discussed. In section 4.2, the HEC-2 GVF
model is described. The data requirements for this model are discussed in section 4.3.
In section 4.4, the application of the GVF model to calibrate the Manning's n for an
open water condition and the verification of the calibrated results are given. The
application of the GVF model to calibrate the Manning's n for the ice cover upstream
of the Big River section, estimate of discharges in ice conditions and the estimate of
ice roughness for the accumulation in Ft. Providence Rapids are presented in section

4.5. The discussion of the results is presented in section 4.6.

4.2 HEC-2 program

The HEC-2 computer program was developed in the 1970s at the Hydrologic
Engineering Center, U. S. Army Corps of Engineers (Hydrologic Engineering Center,
1982). This program is capable of calculating water surface profiles for one-
dimensional, steady, gradually varied flow in natural or man-made channels. The
computational procedure, generally known as the Standard Step Method (Henderson,
1966), has the advantage of computing the water surface profiles in natural channels
and is capable of accounting for the effects of an ice cover.

The basic equations which HEC-2 uses for -rofile calculation are as follows

(Hydrologic Engineering Center, 1982):
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where;
H = water suiface elevation, m;
V =cross sectional averaged velocity, m/s;
o = kinetic energy correctict. coefficient;
g = acccleration of gravity, m/s2;
L = reach length, m;
S, = representative friction slope for reach;
C, = expansion (or contraction) loss coefficient;
n = Manning's roughness coefficient; .
R = hydraulic radius, m;
Sf = friction slope; and
K = conveyance coefficient.
Subscripts 1 and 2 refer to the downstream and upstream cross sections, respectively,
in the computation of a subcritical flow. The energy equation (Equation 4-1) is used to
balance the energy between the two cross sections and the Manning equation
(Equation 4-2) is used to evaluate the energy losses other than expansion and
contraction losses.
Manning's equation is applicable only to fully developed turbulent flow. To
verify the flow is fully turbulent in the Mackenzie River, the Dory Point is chosen as 2.

typical cross section. Henderson (1966) gave a criterion of application of Manning's

¢quation, that is:
n® RS, 21.9*107" (4-3)



At Dory Puint, the average water width and depth are 1800 m and 3.0 m, respectively.
The Manning n and energy slope Sfare assumed as .02 and bed slope, 0.00027,
respectively. The calculated value 1.8x10-12 meets the criterion of fully turbulent flow
in open channel.

The HEC-2 program deals with the flow in an ice covered channel by
including two parameters, ice thickness and ice roughness. With the ice thickness
known, the hydraulic vadius can then be computed base . on flow arca (not counting
that portion occupied by ice) divided by the wetted perimeter. With the ice roughness,

the composiie Manaing's n is calculated by the Belokon-Sabaneev formula.

4.3 Data input for GVF model

The data needed to perform the GYVF computation include: flow regime, loss
coefficients, the water surface elevation at the starting cross-section, discharge, cross
section geometry, ice thickness and reach length. The flow regime and loss
coefficients are discussed in this section. The others have been discussed in Chapter 3

already.

4.3.1 Flow regime

The flow regime may be supercritical or subcritical. For subcritical flow, the
calculations start from downstream and progress to upstream. For supceicritical flow,
the calculations start from upstream and progress to downstream. Gradually varied
flow analysis cannot deal with subcritical and supercritical flow together. In order to
determine the flow regirae, the normal depth and the critical flow depth have to be
considered. The normal depth can b: calculated by Manning's equation. The critical
depth is that at which the specific energy head is a minimum. For a rectangular cross-

section channel, the critical water depth can be written as:
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where:

¥y = critical depth, m, and;

4 = discharge per unit width, m3/s/.

However, in a natural river, the cross-section area does not have a simple relationship
with water depth, so it is difficult to have an explicit solution for critical depth.
Therefore the HEC-2 GVE model determines the critical water depth with an iterative
procedure by changing the water depth until the water depth corresponding to a
minimum specific energy is reached.

To determine the flow regime of the Mackenzie River, typical values of
hydraulic geometry were used. Based on a rectangular channel approximation and 2n
average width, bed stupe and discharge of 3000 m, 0.0002 and 5000 cubic meters per
second (m3/s), along with an estimate of the Manning resistance ccefficient of 0.G3
(typical of gravel bed rivers), a uniform flow depth of 2 m was computed. This was
compared to a critical depth of about 0.7 m calculated based on the same parameters
using Equation (4-4). Therefore, the GVF model «-as set up to proceed with
calculations in the upstream direction. Subsequent runs with the GVF model

coniirmed that the flow was subcritical throughout the study reach.

4.3.2 Energy loss coefficients

As stated in Chapter 2, Manning's n is usually employed as a resistance
coefficient, accounting for other losses in addition to friction (such as channel
irregularity, planform variability, silt and scour, etc.). In the HEC-2 model (Equation
(4-1)), expansion and contraction losses have been considered separately. This is a

poor feature because this extracts one of these other losses leaving all of the rest to be

54



lumped with the roughness. If other losses are to be separated from the triction losses
then all should be considered separately, not just one.

The eddy loss refers to the energy loss caused by the flow expansion and
contraction due to the change of river cross section shape between the two cross

sections. The eddy loss is a function of velocity head and can be written as

AN

(4-5)
2g 28 |

he = Cl

where;

he = the eddy loss between iwo cross sections.

Due to flow separation, the loss due to expansion of flow is usually much larger thaa
the contraction loss (Hydrologic Engineering Center, 1982). The loss from a .hert
abrupt transition is larger than loss from a gradual transition. Typ:cal contracion and
expansion coefficients are as follows: for gradual transitions, they are 0.1 and 0.3,
respectively; and for abrupt transitions, they are 0.6 and 0.8, respectively (Hydrologic
Engineering Center, 1982). The Mackenzie River is dominated by zradual transitions.
Therefore contraction and expansion coefficients of 0.1 and 0.3, respectively, were
used. A sensitivity analysis was conducted and it was determined that the model was

not sensitive to variations in these coefficients.

4.4 Calibration of the GVF model for open water conditions

The objective for applying the GVF model in open water, was to quantify the
bed roughness through the study reach by calibrating a measured water surface profile
with a known discharge. Two suitable water surface profiles were available, allowing
for both calibration and verification of the open water model. The first data set was
based on an open water profile taken from Beaver Lake to the RCMP section in

Ft. Providence during the cross section surveys conducted from August 29 to



September 1, 1991. A second profile, extending from Great Slave Lake to Mills Lake,
was taken while surveying cross sections on July 11, 1992. Discharges measurements
were not conducted on either of these dates so the discharge was obtained from the
rating curve established by power law regrcssion of the measured stage discharge data
at the WSC station at Dory Point (Equation (3-1)) as described in Section 3.5.1.

Given that the HEC-2 GVF model represcnts a one-dimensional approximation
to the flow, a decision had to be made as to how to handle flow around islands. For the
two major islands in the study reach: Big isiand, at the outlet of Great Slave Lake;
and, Meridian Island, which divides the flow between the Big Snye and Ft. Providence
Rapids, only the main channel was modeled. That is, the South Channel at Great Slave
Lake, and the Ft. Providence Rapids downstream. To account for the proportion of
flow carried by the neglecled channels, the discharge was decreased in these two
reaches based on Figure 3.8 in Chapter 3.5.2. Smaller islands in the main channel at
Ft. Providence and downstream were not explicitly considered in the model.
Therefore, 1icir effects are incorporated in the calibrated loss coefficients.

There are also numerous small tributaries which contribuie streamflow
throughout the modeled reach, as well as one large one: the Kakisa River. Basea on
estimated peak flows from the small tributaries (observed to be in the order of 1 m3/s
during spring runoff) their total input to the flow in the modeled reach would be in the
order of 100 m3/s. The Kakisa River has recorded peak floods in the order of 100 to
200 m3/s, based on published WSC records. Therefore, if all tributaries were peaking
simultaneously (an unlikely occurrence) the combined inflow wonld still be less than
300 m:/s, (approximately 4% of the Mackenzie River discharge) which is of the order
of the accuracy of the discharge estimate itself. Therefore, these inflows were not
considered in the model.

The calibration was achiev:4 b trial and error, inputting values of Manning's

n and checking to see if the computed water surface profile was close to the surveyed
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one. In order to improve the calibration results, three interpolated cross sections were
generated by the GVF model between the Ice Bridge cross section and the Coast
Guard cross section. The criterion for successful calibration between the computed
and measured water surfzacc profiles at any cross section was set at 0.3 m (based on the
estimated accuracy of the measured water level profiles).

The final range of Manning's n was from 0.02 to 0.03 along the study rcach.
From the Great Slave Lake section to Ice Bridge section, the river channel is very
wide and the calibrated Manning's n was 0.022. Downstream of the Ice Bridge section
to upstream of the Big River section, the calibrated Manning's n was 0.020, which is
not significantly different from the Manning's r upstream. Once the flow passes
through the Ft. Providence Rapids, the river channel becomes very narrow. The
calibrated .Manning's n in this reach varied from 0.025 to 0.030. Downstream of
Ft. Providence Rapids, the river becomes wide again and the Manning's n obtained in
the calibration from the Dock to Mills Lake section was 0.020. Figure 4.1 and Table
4.1 show the calibrated resuits for this open water ¢ondition. From Table 4.1, one can
see the maximum difference between measured wazr surface elevation and computed
water elevation at a cross section is 0.25 m. Figure 4.2 and Table 4.2 present the
verification results for open water case. Table 4.2 shows the maximum difference
between measured water surface elevation and computed water surface elevation at a
cross section is only 0.29 m for the verification run.

Manning's n represents the integrated effect of a large number of factors
contributing to the energy loss in a reach. Some important factors are bed material,
vegetation, cross section irregularity, irregular alignment of channel and obstructions
in the flow such as the islands mentioned above. The channel irregularity includes
variations in cross section, size, and shape along the study reach (Chow, 1959). The
variation of Manning's n along iiie study reach, especially when flow passes the Big

River cross section, may be explained by te following reasons. First, since the
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velocity and bed slope increase at the Big River cross section, the size of bed materials
probably are larger than upstream, that causes the change of Manning's n along the
study reach. The second reason is probably that the presence of the island at Big River
induces losses.

The Manning's n values obtained in the calibration are within a reasonable
range. This can be proven by a literature review. Chow (1959) presented a summary
table and photographs for estimating Manning's n. He recommended Manning's n
from 0.025 to 0.060 for large gravel bed rivers. Bames (1967) provided a number of
illustrative photographs and corresponding values which also indicate that the values
~btained here are reasonable (based on comparable sites in that reference). A
comparison of the calibration results with the resistance values presented in Table 3.12
(based on ineasured velocity profiles undex ice) might be taken to indicate that the
calibrated bed roughness at the ferry crossing is too low. However, given the problems
encountered in measuring the velocity profiles, the limited amount of data, and the
generally inconsistency of the results obtained (Table 3.12) the GVF analysis is

considered superior.

4.5 GVF analysis for late winter, 1992
4.5.1 Calibration of the reach upstream of Big River

The GVF model was applied in ice covered conditions to find the ice
roughness through the study reach by calibrating a measured water surface profile.
The water surface profile measured from April 25 to 27, 1992, was used for this
purpose. Due to the unknown proportions of the split in flow between the Big Snye
and Ft. Providence Rapids under ice conditions, the calibration of Manning's n for the
ice was initially limited to the reach from the Great Slave Lake section to the Big
River cross section. As discussed in Section 3.5.1, a discharge measurement was

conducted on April 27, 1992,
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The bed roughness was based on the calibration for open water conditions.
This approach would be invalid if roughness/resistance were found to vary strongly
with depth as the effective hydraulic roughness is reduced under ice conditions (and at
lower discharges). In the absence of data confirming or denying the validity of this
assumption, it was used, recognizing that contidence in results are somewhat
diminished.

The variation of ice thickness is a three dimensional phenomenon. In order to
use the measured ice thicknesses in the one dimensional hydraulic model, a
simplification had to be made. The ice thickness of border and chaznuel ice at cach
cross section was apportioned into one representative ice thickness. This
apportionment was done in a qualitative way, given the sparse nature of the data. The
representative ice thickness used was generally closer to the value of channel ice
thickness because channel ice covered a larger more fraction of the total active
channel width. Table 4.3 presents both the measured data and the ice thicknesses used
in the model.

The Manning's n; for the ice cover was obtained by trial and error calibration.
In order to improve the calibration results, an additional three cross s.cctions were
interpolated by the HEC-2 program between the Ice Bridge cross section and the
Coast Guard cross section. The criterion for calibration between the computed and
measured water surface profiles at any cross section was again taken as 0.3 m. The
resulting calibrated Manning's n; for the ice cover was 0.015. The maximum
difference between the surveyed water elevation and computed water elevation at a
cross section was 0.30 m at the Great Slave Lake section. This can be attributed in
part, to the fact that the discharge was not reduced (as it had been in the open water
case) to account for the proportion of flow in the north channel around Big Island.

Figure 4.3 and Table 4.3 present the calibrated result for the ice cover profile. Table



4.4 shows the hydraulic components computed by the GVF model at different cross

sections.

A range of reasc.nable ice roughness can be also found from the literature.
Nezhikhovskiy (1964) found that for sheet ice covers, the Manning's n; was from
0.010 to 0.015. Ohashi and Hamada (1970) measured velocity profiles in four rough,
ice covered streams in Hokkaido, Japan, and determined Manning's n; for the under
surface of the ice to be between 0.012 and 0.062. Tesaker (1970) calculated the ice
roughness in three Norwegian rivers and obtained values from 0.013 to 0.020. Table
4.5 presents a comparison of the ice roughness in different rivers. Furthermore, an
upturned ice floe, found at the Big River section in late April, 1992 is shown in Figure
4.4. The observed ripples averaged 5 cm in amplitude and about 20 cm in spacing.
Qualitatively, the value n; = 0.015 does not appear unreasonable based on this photo.
It was considered inappropriate to compare these results to those obtained from the

velocity profiles (as discussed for the open water calibration).

4.5.2 Estimation of discharge during the pre-breakup period

After obtaining a calibrated GVF model of late winter ice conditions,
discharge estimatcs were computed based on water surface profiles measured from
April 29 to May 13, 1992. Since the downstream water elevation, Manning's n for the
river bed and ice cover (assuming it does not change in a short time), ice thickness,
and cross section area are known, the only unknown is discharge. The procedure
employed was to assume a discharge, calculate a water profile, and compare the
calculated profile with the measured water surface profile. When the two profiles were
close to each other, the corresponding discharge was taken as the estimated discharge.
Generally, the criterion for accepting the two water surface profiles as matched was a
maximwa difference between the two water levels of 0.3 m. It should be noted

changes in ice thickness and roughness which may have occurred with time were not
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considered. During the period of discharge estimation, ice movements occurred
between some cross sections and some temporary open water areas developed as ice
moved downstream and jammed in the channel through Fu. Providence. However,
attempts to account for these effects by adjusting the ice thickness (1o zero in some
case) resulted in erratic water surface profiles. It was concluded that such refinements
could not be handled with this simple, one-dimensional flow model. Therefore, when
these cffcets became significant, the model could no longer be applied. Detailed
results of these analysis can be seen in Figure 4.5 to Figure 4.15 and Table 4.6 w0
Table 4.16. Figurc 4.16 and Tablc 4.17 present the discharge hydrograph and
estimated discharge summary table. The result shows good agreement between the

estimated and measured discharges.

ol

F. ure 4.4 Ripple configuration of undersurface of ice cover.



It is interesting to note that the third discharge measurement (taken
downstream of Ft. Providence at the Orange Cabin section) was in good agreement
with the computed discharge upstream of the split in flow between the main channel
and the Big Snye. This implies that little or no discharge was passing through the Big
Snye at that time. This conclusion is supported by field observations. An alternative
cxplanation might be that the ice roughness increased with time and since the model
did not take this into account the discharge was overpredicted (thus balancing any
component of flow in the Big Snye). The former reason is considered to be more
likely.

Substantial changes in ice characteristics were observed after May 13, 1992.
During this period, the ice was shoved from Great Slave Lake to Dory Point and began
piling up at the Big River cross section. Since the ice blocked the water .{ow, he
water level staried rising but the discharge did not increase much. The ice ci-ver was
no longer a simple ice sheet but a fragmented ice cover. The GVF model was no
longer suitable for this situation since discharge, ice thickness and ice roughness were

all unknown.

4.5.3 Calibration of the accumulstion through Ft. Providence Rapids

As stated earlier, when the calibration for the ice cover was initially conducted,
the Big River section was chosen as the starting cross section. However, after the
estimate of the discharge for late April and early May was achieved, the ice roughness
calibration along Ft. Providence Rapids became possible. This was only because the
discharge measurement on May 6, 1992 downstream of Ft. Providence indicated no
flow down the Big Snye. For this extended ice roughness calibration, the input data
included discharge, ice thickness, and bed roughness. The discharge was obtained
from the estimate of discharge described in section 4.5.2. The ice thickness was

obtained by averaging measured ice thicknesses in a manner similar to that done for
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the initial calibration. The bed roughness was again obtaincd from the open water
calibration. Three water surface profiles were used for this calibration. They were
April 27, April 29 and May 4. The calibrated Manning's n for ice roughness was (.05
from the Campground section to the dock at Ft. Providence. Table 4.18 to Table 4.20
preseat the calibration results. The calibration of Manning's n for an ice cover in
Ft. Providence Rapids indicates the ice was rougher than the one upstrcam as would
be expected from the rough nature of the freezeup accumulation in this reach. After
May 4, the ice cover consolidated and formed an ice jam along the Ft. Providence
Rapids. As it was no longer possible to determine accurate ice thickness values, no

further profiles could be calibrated.

4.6 Discussion of results

The water surface profiles for open water and ice covered conditions had a
similar slope along the study reach. Figure 4.17 illustrates this with two of the water
surface profiles. From this figure, one can see that the water surface elevations were
almost constant at Great Slave Lake in the two water surface profiles. These profiles
had a similar mild water surface slope from Great Slave Lake to the Ice Bridge cross
section. From the Ice Bridge to the Big River cross section, they had similar, steeper,

mild slopes. This character can be used to develop the rating curves from GVF model.
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Table 4.17 Discharge estimation, Mackenzie River near Ft. Providence, 1992,

94

Date Time Discharge Discharge
1992 cms cms
GVF madel calibration Measured
27-Apr 15:00 43501+ 4350
29-Apr 10:00 4400
1-May 15:00 4780
3-May 11:00 5000
4-May 11:.00 5200
6-May 20:00 5500
6-May 15:00 5340
7-May 23:00 5700
8-May 19:00 5700
9-May 10:00 5700
10-May 20:30 5900
11-May 21:00 6000
12-May 20:30 6200
13-May 20:00 6200
++ Measured discharge at April 27 is used to GVF model calibration.
7000
initial ice
6000 movement
,_E, 5000
E" 4000
.§ 3000 ——0— GVF model
. calibration
/A 2000
A Surveyed
1000
04 + t ————— i
25-Apr 30-Apr 5-May 10-May 15-May

Figure 4.16 Discharge hydrograph before breakup,
Mackenzie river near Ft. Providence, 1992.
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Chapter 5
Interpretation of the outlet hydraulics

5.1 Introduction

The objective in this chapter is to examine the stage and discharge relation for
cvery cross section for both the open water and ice covered cases. In order to do this, a
brief theoretical background of lake outlet hydraulics is first reviewed. In section 5.2,
the calculation of gradually varied flow (GVF) and uniform flow (UF) in open water
conditions at each cross section is presented and the results are discussed. A
comparison of uniform flow rating curves and measured data under 1992 late winter
ice conditions is presented in section 5.3. In section 5.4, a discussion of the rating
curve at Dory Point both for the open water and ice covered cases is presented.

Before the discussion begins, a brief theoretical description of lake outlet
hydraulics is presented here. The outlet of the Mackenzie River represents a classic
lake outflow to a mild sloping channel (a channel in which uniform flow is
subcritical). In such a case, lake outflow is controlled from downstream. If the channel
is sufficiently long and the cross section relatively uniform, then the outflow from the
lake can be defined based on a simple uniform flow relation, such as Chezy’s or
Manning’s equation (Henderson, 1966). However, if some downstream control
imposes a water level in excess of the uniform flow depth, and the resulting M1 or
“backwater” curve extends all the way upstream to the lake outlet, then outflow will
be somewhat less than that described by the uniform flow relation (all other things
being equal). Conversely, if some downstream control imposes a water level below the
uniform flow depth, and the resulting M2 or “drawdown” curve extends all the way

upstream to the lake outlet, then outflow will be increased beyond that described by

the uniform flow relation.
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In this particular study reach there are two questions of interest. Is the flow out
of the lake relatively uniform (and therefore a relatively simple hydraulic relationship
exists between lake level and outflow) or is outtlow from Great Slave Lake influcnced
by backwater or drawdown? Also, what is the effect of ice on this lake outflow

relation?

5.2 Rating curves for open water
5.2.1 Development of GVF rating curves

After calibration of the GVF model, a group of rating curves of GVF at cach of
the eighteen cross sections from Great Slave Lake and Mills Lake was developed. The
procedure for developing the GVF rating curve was as follows: first, the discharges
were calculated by the GVF model based on a group of measured water surface
profiles; secondly, at each cross section, a rating curve was developed using the group
of water elevations and corresponding discharges. Since the starting water elcvation
for the GVF model was unknown, the calibrated energy slope at the starting cross
section was used to calculate water surface profiles for different discharges (Hydraulic
Engineering Center, 1982). This analysis was based on the assumption that bed
roughness was not a strong function of discharge (which was one of the assumptions

used in the calibration, as well).

5.2.2 Development of UF rating curves

The purpose of the uniform flow calculation was to compare UF rating curves
with GVF rating curves at each cross section for open water conditions to determine if
the lake outflow was affected by backwater or drawdown conditions. The calculation
of the uniform flow rating curves for open water conditions was conducted for each of
the eighteen cross sections from Great Slave Lake to Mills Lake. These uniform flow

rating curves were developed based on Manning’s equation (Henderson, 1966). The
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Manning's n used in the uniform flow calculation at each section was the same as the

one calibrated in the GVF model.

As the uniform flow calculation requires an estimate of the bed slope, four
sub-reaches were identified along the study reach. The calculation of average bed
slope was based on the slope of the thalweg along each sub-reach. Figure 5.1 shows
these four sub-reaches. The first sub-reach extends from the Great Slave Lake section
to the Beaver Lake section. From the Beaver Lake section to the Ferry Crossing, the
bed slope steepens slightly, though it is still a mild slope. Between the Ferry Crossing
and the Dock in Ft. Providence, which includes the reach known as Providence
Rapids, the bed slope increases further (though it still remains a mild slope).
Downstream of Ft. Providence to Mills Lake, the bed slope decreases again. The
average bed slope was calculated by connecting the thalweg at the above four cross
sections. Since the average bed slope calculated by this method agreed well with the
bed slopes observed along the study reach, no further calculations were carried out.

Table 5.1 presents the bed slope values at different cross sections.

Table 5.1 Average bed slope calculation.

Location Distance alweg | Surveyed Average
of cross downstream of | elevation | water level bed slope
sections G. S. Lake 11-July-92
(km) (m) (m)

G. S. Lake

Beaver Lake 47.5 149.56 153.98 0.00027
Ferry Crossing 65.3 144.79 151.80 0.00051
Ft. Prov. Dock 137.50 145.19 0.00014

Mills Lake

One problem encountered was which bed slope should be used for the uniform

{flow calculation at the sections joining two different bed slopes (such as at the Beaver
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Lake, Ferry Crossing, and Dock cross sections). For this analysis, the bed slope of the
downstream channel was adopted at these sections since the flow along the study
reach is subcritical flow. When water flows from a milder bed slope to a mild bed
slope, the shape of the M2 curve appecss at the end of upstream reach. It can be
assumed that the water surface profile in the downstream reach is parallel with the
downstream bed slope even at the joining sections (K. Subramanya, 1982). Theretfore

the water elevation at a joining bed slope section is controlled by the downstream bed

slope.

5.2.3 Comparison of rating curve of UF and GVF

The open water rating curves obtained from the calibrated GVF model and UF
calculation can be used to identify the flow conditions at different cross scctions. If the
rating curve of the GVF model calibration is close to the rating curve of uniform flow
at a cross section, then the stage-discharge can be considered to be well approximated
by uniform flow equations. If the rating curve of the GVF model calibration is higher
than the rating curve of uniform flow, then the stage-discharge relationship at that
cross section is influenced by backwater. If the rating curve of the GVF model
calibration is lower than the rating curve of uniform flow, then drawdown conditions
exist. Figure 5.2 presents the UF and GVF rating curves in open water at every Cross
section from Great Slave Lake to Dock section. The measured water level and its rated
discharge (based on the power law regression of the measured data: Equation (3-1)) at
Dory Point were also plotted in the figure for comparison.

From Figure 5.2, the trend of flow variation along the study reach can be seen.
Since subcritical flow is controlled from downstream, the discussion of the cffect of
backwater and water drawdown is also presented from downstream to upstream. From
the Dock section to Boat Launch section, the GVF rating curve is higher than UF

rating curve, indicating that the flow is affected by backwater (Figure 5.2 n, p). The
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reason is because downstream of Dock section, the bed slope is milder than that in
upstream and a backwater profile extends upstream. By the RCMP section, the
backwater effect is negligible, so the GVF and UF rating curves are very close each
other (Figure 5.2 o) and the flow is near uniform. From the Blue House to the Big
River section, drawdown effects are clearly evident (Figure 5.2 i, m). This is because
the river is narrow, the bed slope is steep (though it is still a mild slope) and the
downstream backwater does not extend up to these sections. From the Blue Quonset to
the Ferry Crossing section, the flow is again affected by backwater (Figure 5.2 j, i, h).
This is because of the flow contraction at the Big River section. At the Dory Point
cross section, the backwater effect is diminished so the flow is close to uniform again
(Figure 5.2 g). From the Ice Bridge to Beaver Lake section, the flow is affected by
backwater (Figure 5.2 d, e and f). This is because of the flow contraction at Ice Bridge
section. The flow is blocked when it passes through the Ice Bridge and the backwater
effect extends up to the Beaver Lake section even though the average bed slope
increases in this reach compared with that in upstream. Upstream of Beaver Lake, the
flow is close to uniform (Figure 5.2 a, b and ¢).This is because the backwater effects
from downstream are diminished by the wide nature of the channel in Beaver Lake.
Combining the above scenarios with Figure 3.2 (map), one can see the
backwater effect is associated not only with changes in the bed slope, but also with the
planform geometry. There are two major contractions along the study reach, one is at
the Ice Bridge section and another is at the Big River section. These two contractions
have pronounced effects on the flow, which results in the flow along the study reach
being affected by backwater. Comparing the flow variation with the river's geometry,

the interpretation of the rating curves along the study reach is reasonable.
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5.3 Rating curves for 1992 ice conditions
5.3.1 Development of UF rating curves based on 1992 late winter ice conditions
Manning's equation was also used to develop UF rating curves based on 1992
late winter ice conditions. The ice and bed roughness were obtained from the
calibrated GVF model. The bed slopes were again based on the 4 sub-rcach average
bed slopes (Table 5.1). To be consistent with the GVF analysis, the Belokon-Sabanecy
equation was used to compute the composite roughness. The hydraulic radius was
recomputed by considering the ice cover and effective flow area. Duc to the
complications associated with the ice accumulation downstream of the Big River cross
section, the rating curves were developed in ten cross sections from the Great Slave
Lake to Big River (Figure 5.3). Rating curves produced for ice conditions varied with
changing ice roughness and thickness. Since these factors change with time, the ice
rating curves presented are specific to late winter 1992, and in particular to the

calibration period (April 25-27, 1992).

5.3.2 Comparison of rating curves of UF and measured data

After the UF ice rating curves were developed, the measured data were plotted
on the same figure for comparison. Figure 5.3 presents this comparison, in which
"measured data" refers to the measured water level versus the discharge calculated by
the GVF model (as discussed in Section 4.5.2).

From Figure 5.3, the trend of flow variation along the study reach in late
winter, 1992 can be seen. The flow had backwater effects from the Big River to the
Ferry Crossing section, (Figure 5.3 h, i and j). This is because the flow was obstructed
at the Big River section due to the change of the river width and due to the ice
accumulation downstream of Big River. At Dory Point, the flow had both backwater
and drawdown effects (Figure 5.3 g), reflecting the increasing water level (and

corresponding backwater effects) downstream as breakup progressed. From the Ice
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Bridge cross section to the Beaver Lake section, the flow had backwater effects
(Figure 5.3 d, ¢, ). This can be explained by river contraction at Ice Bridge section. As
in the open water case, the flow was close to uniform between the Great Slave Lake
and Kakisa cross sections (Figure 5.3 a, b, c).

The reason for backwater dominating the study reach can also be explained by
the effects of ice thickness and roughness. If the ice thickness and roughness are large
in downstream, as the situation in Ft. Providence Rapids, pre-breakup in 1992, the
water level tends to increase, that results in backwater effects upstream. Furthermore,
if the ice from upstream accumulates in the downstream reach, it causes the water
level to increase and leads to a significant increase in backwater effects. Therefore, the
backwater probably has more chance to occur when the river has an ice cover than in
open water conditions.

It should be mentioned that the water level increased quickly from the Ferry
section to the Big River section (Figure 5.3 h, i and j) when the discharge exceeded
5000 m3/s. This was due to the varying backwater effect of an ice jam which formed
downstream of the Big River section in Providence Rapids. Note that, the flow was
close to uniform at Big River when the discharge was less than 5000 m3/s (Figure 5.3
j). As the discharge increased, the ice downstream of Big River shoved repeatedly,
resulting in water level increases and severe backwater effects.

The UF rating curves at some cross sections in ice conditions (Figure 5.3iand
e) are not smooth. This can be explained by the irregularity of cross section shape. For
example, at the Coast Guard cross section, the channel has a shallow flat area along
the north bank (Figure A.10). When flow inundates this shallow zone, the wetted
perimeter increases suddenly, which decreases the hydraulic radius. Consequently, the

discharge decreases and the slope of UF rating curve becomes flatter.
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5.4 Interpretation of the rating curve at Dory Point

After comparing the rating curves of UF with the results of GVF model in
open water and ice conditions, a further analysis for the rating curve at Dory Point is
presented in this section. As mentioned before, WSC operated the gauging station at
Dory Point from 1961 to 1978. A group of measured discharge data is available both
for open water and ice cover cases.

Figure 5.4 demonstrates the rating curves and measured data for open water
conditions. The best fit curve, GVF rating curve and UF rating curve arc plotted. The
development of the best fit curve was discussed in Chapter 3. The best fit curve
represents the flow average situation from 1961 to 1978. It can be used to find the
discharge using measured water levels. However, the scatter in the measured data is
indicative of the varied backwater conditions occurring due to the downstream
constriction.

The development of the GVF rating curve was discussed in Section 5.2.1. The
GVF rating curve for open water conditions represents a lower envelope to the
measured points, which indicates that for most of the measured points, the actual
depth would be larger than that obtained from GVF rating curve. This is because the
rating curve was based on the calibration of the water surface profile measured on July
11, 1992 with the discharge based on the power law regression (note that the two
curve cross at this point). At smaller discharges (i.c. as hydraulic radius decreases), the
relative roughness effect would be increased. Therefore, use of the Manning's n values
obtained in the calibration would not reflect the increase in the effect of roughness
values expected at lower discharges and consequently lower depths are computed for a
given discharge, compared with the measured data.

The development of the UF rating curve was discussed in Section 5.2.2. The
UF rating curve clearly indicates that the stage-discharge relationship at Dory Point is

affected by backwater, an effect which increases with increasing discharge.
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Figure 5.4 also shows the measured data for ice conditions. A single rating
curve for ice covered conditions is not appropriate. This is because there are more
factors affecting the rating curve, such as, ice thickness and ice roughness. Besides,
the ice scenario changes with time. Due to these effects, the measured points are
scattered and a single curve cannot not be used to represent this group of data. Thus,
multiple parameters have to be used to describe the ice situation. To identify the
dominant parameters, a number of comparisons were conducted.

Figure 5.5 shows ice thickness as a parameter in the stage-discharge relation.
However, no trend in ice thickness variation is seen in the figure. One reason might be
that ice thickness is not an important parameter for the stage-discharge relation.
Another possible explanation is that there is not enough ice thickness data to find the
trend of variation.

It has already been shown that due to the existence of the ice cover, a
backwater effect usually occurs. Since the magnitude of this effect would be expected
to increase as a function of ice roughness and thickness (which vary throughout the
winter), an attempt was made to identify a pattern as a function of time. Figure 5.6
illustrates the measured winter data in this form and although a rough pattern may be
cvident, there is still considerable scatter which requires consideration of the varying
effect of backwater on the stage discharge relations.

In an attempt to account for this effect, Figure 5.6 show a family of ice rating
curves with downstream water level as a parameter, based on a nominal ice thickness
of 0.8 m, obtained from the calibrated GVF model (ice roughness n = 0.015). Curves
for ice thicknesses of 1.2 and 1.6 m, are presented in Figures 5.7 and 5.8, respectively.
The procedure to develop these rating curves was as follows: first, given the ice
thickness and water level at Big River, the water surface profile can be calculated
using the GVF model based on different discharges; secondly, the water level and

corresponding discharge at Dory Point are plotted as a rating curve with a downstream
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elevation as a parameter. Figures 5.6 to 5.8 indicate that the backwater effect becomes
less important than thickness as ice thickness increases.

These figures provide a method to find winter discharge in ditferent
conditions. Through the family curves, the discharge can be roughly cstimated by
knowing the water elevation, ice thickness and ice roughness at Dory Point and the

water surface elevation at the Big River section.

5.5 Discussion

Based upon the open water calibration and verification, gradually varicd flow
(GVF) rating curves were calculated and compared with uniform flow (UF) rating
curves (based on the mean bed slope and the calibrated bed roughness) for all cross
sections. The comparison showed that the flow is essentially uniform at the sections
between Great Slave Lake and Kakisa River under open water conditions. A
backwater (or M1) profile extends between the Big River and Beaver Lake cross
sections. Downstream, through Ft. Providence Rapids to the RCMP section (just
upstream of Ft. Providence), a drawdown (M2) curve is observed. Backwater from
Mills Lake extends upstream to the dock in Ft. Providence. In a comparison between
GVF and UF rating curves computed for the ice conditions which prevailed in 1992,

backwater effects were evident between the Big River and Kakisa River sections.
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(b) South Channel cross section rating curve,
16.7 km downstream of Great Slave Lake.

Figure 5.3 A comparison of UF rating curves for surveyed cross sections on the

Mackenzie River from Great Slave Lake to Big River under open
water and 1992 spring ice conditions.
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Mackenzie River from Great Slave Lake to Big River under open

water and 1992 spring ice conditions.
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Mackenzie River from Great Slave Lake to Big River under open
water and 1992 spring ice conditions.
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Figure 5.3 A comparison of UF rating curves for surveyed cross sections on the

Mackenzie River from Great Slave Lake to Big River under open
water and 1992 spring ice conditions.
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Mackenzie River from Great Slave Lake to Big River under open
water and 1992 spring ice conditions.



119

U0 A10( I8 JIARY IIZUNIBIA
‘suonIpuod J3jem uado pue paIdaA0d 31 J0J UONE[II ATIBYISIP PUE [IAI] IINBAL p°S anT1Ly

surd ‘Qdxeysiq
00001 0006 0008 000L 0009 000S 000V 000t 000T 0001 0
“ SIS S T | " _3. 1 " 1y Ap I N T | “ I T S| “ I T “ J I R B | “ S N ) " Lt 1 “ it ) CWﬁ
= g i
g = i
= Q
e. = -
Q g -
5 S
e e T 161
b4 |
m. m. O o I
Qﬂ.w Qﬁoo (o] @u i
g O nNu ©© I
O © + TSI
- o o 0 I
- (o] L
.- 0
-=" -° O i
. v Y o i
o) T £S1
(STonIpuOs poned 351) 2661 Ponseapy v f
(SToNTpuo? PAeA0D 231) 7L 61-2961 ponseapy O L
M) 29M0d U0 PISEQIUI I IO = v - o = v o = s
70°0 = (PQ) U MOy WIOJIT() e — e e e ﬁ‘. 129!
70°0 = (P2q) © monexi[es [opawt JAD B
(suontpuod o1em 13do) pomsespy v r
F
- 661

W ‘uogeAd[d JIJCAL



20

1

“Jut04 A10(] 1© JIATY AIZUINIBIA ‘) SSIUNDIY) 301 YIIM 3ZIBLDSIP PUB [9A3] J3JBM PAMSBIN §°§ N1y

sun ‘d3xeyPsyq Mo

00001 0006 0008 000L 0009 0005 000% 000t 000¢ 0001 0
0s1
T €1
T CSI
T €SI
_ T ¥S1
(sUompaes pazanod 331) 7661 POMITON v
(smonipuo pazaaod 391) ZL61-7961 PAMSTIW o i
200 =(p2Q) U mog utIojrEn — — — — [
- 661

70°0 = (Poq) T TONRIQIIED [IpOLl JAD

(suonipuod 1wm Bado) pamseay v

W ‘UoneAd[d I8N



121

JUIOg AX0(] IB JIATY SMZUINIBIA
‘suonIpuod 13jem udado pue paIdA0d 31 10J SIAIND Suney 9's andig

su ‘adxeypsiq
00001 0006 0008 000L 0009 000S 000¥ 000¢ 000T 0001

SN WY WU W T Y W Y RS WA (N TSOUNY TR T TS [ SO Y TR S Y TN ST U NN NN NN YU TN WO NN SENE TS ST SHN NN UV P SR SN WV S OO SH TR N R S U

T L 1 1 T T 1 1 1

(sU0NIPEod sjem uado) pasmsesyy Y

tady vt (suonipuod 2a1) paunseapy O

a1 (S0P 331) pomsEIR V7
Anna334 Bt (suolpuod 231) pamseapy O

Qwnuwp at (suontpuo 31) pamsespy [

0
W QO'ECT = JATY w—m ® 1—3\\

"W 8 = SO dI]

0s1

IS1

(4!

1391

123!

gel

u ‘uonea’dd I3jep\



JUI0J K10(] I8 JIATY HZUINIBIN
‘suonipuod 13jem uddo pue PasaA0d 3d1 10§ SIAIND Suney L'S a3y

sy ‘adxeydsiq

00001 0006 0008 000L 0009 000S 000V 000€ 000T 0001 0
A {suonipuos Pyem 83do) poImseNy ¥ |
| pady 1 (suonipuod ) pamsey O L

YoIepN U1 (sUCRIPUD 231) pasnseay 7 1,1
| Amigag 01 (suontpuod 231) parmswa O -
g Kwnuer uy (suonipuod 991) pamsedy ] I
! I

w0 0ST =19A1Y 319 @ TM -
w QO IST =19ArY 319 @ "IM T
w 0'ZS1 = J9ATY 319 ® TM: |
w QeS| = Jaary Sig @ T il
W ] = SSaudIY) 9]
I

0s1

161

4y

1391

12

3!

uI ‘uoneAd[d JIeA



123

U0 10T I8 JIARY NZUINOBIA
‘suonipuod 13jem uddo pue pasared 31 10§ saAInd Suney g°s aanSiy

su ‘adxeydsiq

00001 0006 0008 000L 0009 000S 000v 000t 000C 0001

(suonipuos stwm tado) pamvesgy
1ty at (s0ontpaos 3a1) po gy O

PN U1 (STONIPTOD 231) pammespy 7

Arenxqag ug (suotipuoo 331) pasneway O

Lrenuef 4 (sHONtPROS 301) pasmwsopy [

w Q00ST = IoA1Y 31g @ TM
w QY IST =AY Sig @ IM

w QO'7ST =JoAry S1g @ M
W 0'EST = 1Ay S1g @ TM

"W 9] = SSOUNIIY) II]

0s1

IS1

[4Y!

£st

12!

S9!

W ‘uoneAdd JNBA\



Chapter 6

Conclusions and recommendations

The purpose of this study was to develop an understanding of the eftects of ice
on the hydraulics of the Mackenzie River at the outlet of Great Slave Lake, NWT. The
reach of the Mackenzie River considered extends from the outlet of the Great Slave
Lake downstream to Mills Lake, a distance of about 100 kilometers (km). Based on
detailed field surveys establishing the hydraulic geometry of this reach of the
Mackenzie River, it can be divided into four distinct sub-reaches. The first sub-reach
extends from the Great Slave Lake section to the Beaver Lake section. Here, the
channel is wide, typically about 6000 meters, and the average bed slope is 0.(XX})8.
From the Beaver Lake section to the Ferry Crossing, the average bed slope stecpens
slightly and has a value of 0.00027. The river width varies from 6000 m at the Beaver
Lake section, to 1000 meters at the Ferry Crossing. From the Ferry Crossing to the
dock in Ft. Providence, the average bed slope increases further to a value of (0.00051
and the river becomes narrows to a width of about 800 meters. Downstream of the
Dock to the Mills Lake section, the bed slope decreases again to an average value of

0.00014 gradually increasing in width to 3700 meters just upstream of Mills Lake.

Two water surface profiles, measured on July 11, 1992 and August 29 to
September 1, 1991, were used to calibrate and verify bed roughness values during
open water conditions, respectively. This gradually varied flow analysis was
conducted with the steady, one-dimensional model, HEC-2, developed by the U.S.
Corps of Engineers. Based on a rating curve established from data collected by Water
Survey of Canada staff at the Dory Point gauging station, the discharges for these two
water surface profiles were estimated to be 8500 and 7000 m3/s, respectively. The

calibrated Manning's n for the bed under open water conditions was found to vary in
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the range of 0.02 to 0.03. The values of Manning's n for each cross section are as
follows: from the Great Slave Lake section to the Ice Bridge section, it was 0.022;
from the Ice Bridge section to the Big River section, it was 0.020; from the Big River
section to the dock in Ft. Providence, it was in the range of 0.025 to 0.030; and
downstream of the dock, it was 0.020. It is proposed that the reason for the
Manning's n being larger between the Big River section and the dock was that the bed
slope increases significantly in this reach and this would be expected to lead to a larger
median size of bed material thus presenting a rougher bed surface.

A gradually varied flow open water rating curve, developed for the Dory Point
gauging section, based on this calibration and verification was found to represent a
lower envelope to the data measured by Water Survey of Canada at the gauging
station. Although the bed is known to consist of a hard glacial till (and therefore not
subject to varying bed forms) the effective resistance of the bed roughness features
would be increased as flow depth decreased. As the use of the Manning's n values
obtained in this calibration would not reflect the increase in Manning's n value
expected at lower discharges, the validity of using these calibrated bed roughness
values at low discharges remains to be confirmed. Verification tests at lower

discharges could be used to assess the sensitivity of the resistance values to depth.

Calibration of the GVF model with a water surface profile measured under late
winter ice conditions between April 25 and 27, 1992 and a measured discharge of
4350 m3/s produced an ice cover roughness of n; = 0.015 upstream of the Big River
section and n; = 0.050 in the accumulation through Providence Rapids (prior to ice
movement). These ice resistance values were deduced from the total composite
resistance calibrated based on the Belokon-Sabaneev equation, assuming that the
calibrated open water bed resistance values were applicable under late winter ice

conditions and at this low discharge. An attempt to verify or disprove this assumption
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was made by measuring velocity profiles at the Ferry cross section on the day of the
discharge measurement and two days later. These velocity distributions, when fit to
the Karman-Prandtl log law produced inconsistent and unreasonably large values for
the roughness height for both the bed and the ice (values greater than the depth in
some cases). Conversion of these roughness heights to Manning's n values yiclded
results which were not in agreement with the calibration values. It was concluded that
the gradually varied flow analysis results, though likely inaccurate given the usc of the
results of the open water calibration and the Belokon-Sabaneev equation, were more
reliable than those of the measured velocity profiles. Further justification for this
opinion is provided by the fact that the gradually varied flow analysis was based on
reach averaged rather than point values and in recognition of the problems
encountered in measuring the velocity profiles. It is recommended that further
measurements of velocity profiles under the ice cover be conducted in future to

resolve this question.

The calibrated, late winter 1992, gradually varied flow model was used to
determine discharge through the early breakup period, beyond the point which
discharge measurements could be safely obtained. The discharges estimated by GVF
model for April 27 to May 13, 1992 are in the range of 4350 to 6200 m3/s. Comparing
the results with two other discharge measurements: 4780 m3/s on May 1, 1992 and
5340 m3/s on May 6, 1992, lend credibility to the results obtained.

The GVF ice model was also used to develop a family of ice rating curves for
the Dory Point section based on ice thickness and roughness as well as backwater
conditions from downstream as reflected in a representative water level at the Big
River section. Generally, the measurements of water surface profile are easier than the
measurements of discharge. Therefore the method by using GVF model to estimate

discharges is significant and practical.
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A numbe: of conclusions may be drawn regarding the effects of ice on the
outflow from Great Slave Lake. First of all, the lake exits 1o a mild sloping channel
which has an irregular geometry. Despite this, the channel displays near uniform flow
from the lake outlet to Kakisa River both for the open water case and for the ice
conditions which prevailed in late winter of 1992. This occurs despite the fact the
constrictions in the downstream channel result in backwater effects which are
enhanced in the presence of an ice cover. The reason is likely due to the fact that the
channel is quite wide upstream of the Burnt Point cross section and, therefore,

downstream backwater has only a marginal effect on increasing water levels upstream

in Beaver Lake.

The reason for the increase in discharge observed during the breakup period
remains a question, given that the lateral inflows downstream of Great Slave Lake are
considered negligible and that recorded water levels on Great Slave Lake did not vary
substantially. However, it is noted that, based on the late winter ice condition of 1992,
the rating curve at Great Slave Lake displays significantly reduced outflows for a
given water level compared to that predicted under open water conditions. Therefore,
it is possible that increased outflows from the lake occur as warm water issuing from

the lake increases the open water area in the South Channel (thus increasing the

efficiency of the outlet).
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Table A.1 Hydraulic components at Great Slave Lake cross section
(south channel only), 4.2 km downstream of Great Slave Lake.

Water Maximum | Cross section 1"rap width Wetted Hydraulic
elevation | water depth area perimeter radius
(m) (m) (m"2) (m) (m) (m)
153.5 047 37 178 178 0.2
153.6 0.57 58 257 257 0.2
153.7 0.67 92 418 418 0.2
153.8 0.77 142 592 592 0.2
1539 0.87 212 810 810 03
154.0 097 308 1116 1116 03
154.1 1.07 431 1365 1365 03
154.2 1.17 586 1714 1714 03
154.3 1.27 770 1965 1965 04
1544 1.37 979 2210 2210 04
154.5 1.47 1210 2426 2426 05
154.6 1.57 1473 2808 2808 0.5
1547 1.67 1762 2941 2941 0.6
154.8 1.77 2060 3036 3036 0.7
1549 1.87 2371 3195 3195 07
155.0 1.97 2700 3394 3395 0.8
155.1 2,07 3049 3598 3598 09
155.2 217 3421 3836 3836 09
1553 227 3813 4014 4014 1.0
155.4 237 4225 4229 4229 1.0
155.5 247 4659 4451 4451 1.1
155.6 2.57 5116 4683 4683 1.1
155.7 2.67 5593 4853 4853 1.2
155.8 2.77 6087 5027 5027 1.2
1559 2.87 6609 5338 5338 1.2
156.0 297 7153 5528 5528 13
156.1 3.07 7718 5829 5829 1.3
156.2 317 8324 6200 6200 13
1563 327 8946 6279 6279 14
156.4 337 a577 6310 6310 1.5
156.5 3.47 10208 6321 6321 1.6
156.6 3.57 10841 6333 6333 1.7
156.7 3.67 11475 6344 6344 18
156.8 an 12110 6355 6355 19
156.9 3.87 12746 6367 6367 20
157.0 397 13383 6378 6378 2.1
157.1 4.07 14022 6389 6389 22
157.2 417 14664 6454 6454 23
157.3 427 15310 6457 6457 24
1574 437 15956 6460 6460 25
157.5 4.47 16602 6462 6463 26
157.6 4.57 17248 6464 6465 27
157.7 4.67 17895 6464 6465 28
157.8 4.77 18541 6464 6465 29
1579 487 19188 6464 6465 3.0
158.0 497 19834 6465 6465 3.1
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Table A.2 Hydraulic components at South Channel cross section,
16.7 km downstream of Great Slave Lake.

Water Maximum | Cross section Top width Wetted Hydraulic
elevation | water depth area perimeter radius
(m) (m) (m*2) (m) (m) (m)
152.5 0.93 302 692 692 04
152.6 1.03 379 832 832 0.5
152.7 1.13 469 975 976 0.5
1528 1.23 578 1220 1220 0.5
1529 1.33 715 1488 1489 0.5
153.0 1.43 871 1642 1642 0.5
153.1 1.53 1040 1741 1741 0.6
153.2 1.63 1217 1801 1801 0.7
153.3 1.73 1404 1914 1914 0.7
153.4 1.83 1596 1945 1945 0.8
153.5 1.93 1792 1976 1976 0.9
153.6 203 1992 2007 2007 1.0
153.7 2.13 2194 2038 2038 1.1
1538 2.23 2399 20N 2071 1.2
1539 2.33 2608 2108 2108 1.2
154.0 243 2821 2147 2147 1.3
154.1 253 3038 2186 2186 14
154.2 263 3258 2227 2227 1.5
1543 273 3483 2270 2270 1.5
1544 2.83 3712 2296 2296 1.6
154.5 293 3942 2318 2318 1.7
154.6 3.03 4175 2340 2340 1.8
154.7 313 4410 2364 2364 1.9
154.8 3.23 4649 2402 2403 1.9
1549 333 4891 2440 2441 20
155.0 343 5137 2478 2479 21
155.1 353 5386 2510 2511 22
155.2 3.63 5639 2541 2541 2.2
155.3 3.73 5895 2572 2572 23
1554 3.83 6153 2602 2602 24
1555 393 6415 2629 2629 24
155.6 4.03 6681 2696 2696 25
155.7 4.13 6954 2753 2754 25
1558 4.23 7230 2758 2759 2.6
1559 4.33 7506 2768 2768 27
156.0 4.43 7783 21 21 28
156.1 4.53 8061 2786 2787 29
156.2 4.63 8340 2790 2791 3.0
1563 4.13 8619 2794 2794 31
156.4 4383 8899 2797 2798 32
156.5 493 9179 2801 2801 33
156.6 5.03 9459 2804 2804 34
156.7 5.13 9740 2808 2808 s
156.8 5.23 10021 2811 2811 36
1569 533 10302 2814 2815 31
157.0 5.43 10584 2818 2818 3.8
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Table A.3 Hydraulic components at North Channel cross section,
19.2 km downstream of Great Slave Lake.

™ Water Maximum | Cross section 1'-l'op width |  Wetted Hydraulic
elevation | water depth area perimeter radius
(m) (m) (m*2) (m) (m) (m)
155.25 0.13 23 444 444 0.1
155.30 0.18 52 712 712 0.1
155.35 0.23 92 909 909 0.1
155.40 0.28 145 1227 1227 0.1
155.45 033 211 1405 1405 0.2
155.50 0.38 285 1608 1608 02
155.55 0.43 368 1697 1697 0.2
155.60 0.48 458 1920 1920 0.2
155.65 0.53 555 1945 1945 03
155.70 0.58 653 1965 1965 03
155.75 0.63 751 1975 1975 04
155.80 0.68 850 1985 1985 04
155.85 0.73 950 1995 1995 05
155.90 0.78 1050 2005 2005 05
155.95 0.83 1150 2015 2015 0.6
156.00 0.88 1251 2025 2025 0.6
156.05 0.93 1353 2033 2033 0.7
156 ¢ 0.98 1454 2041 2041 0.7
156.15 1.03 1557 2045 2045 08
156.20 1.08 1659 2049 2049 08
15€.25 1.13 1762 2053 2053 09
156.30 1.18 1864 2057 2057 09
156.35 1.23 1967 2061 2061 1.0
156.40 1.28 2070 2065 2065 1.0
156.45 1.33 2174 2068 2068 1.1
156.50 1.38 2277 2070 2070 1.1
156.55 1.43 2381 2070 2070 12
156.60 1.48 2484 2070 2070 1.2
156.65 1.53 2588 2070 2070 13
156.70 1.58 2691 2070 2070 13
156.75 1.63 2795 2070 2070 14
156.80 1.68 2898 2070 2070 14
156.85 .73 3002 2070 2070 1.5
156.90 1.78 3105 2070 2070 1.5
156.95 1.83 3209 2070 2070 1.6
157.00 1.88 3312 2070 2070 1.6
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Table A.4 Hydraullc components at Kakisa River cross section,

34.2 km downstream of Great Slave Lake.

Walter Maximum | Cross section T’op width | Wetted Hydraulic
elevation | water depth area perimeter radius
(m) (m) (m"2) (m) (m) (m)
151.0 1.08 310 808 808 04
151.1 118 394 870 870 05
151.2 1.28 483 926 926 0.5
151.3 138 579 978 978 0.6
1514 1.48 680 1053 1053 0.7
151.5 1.58 791 1174 1174 0.7
151.6 1.68 916 1340 1340 0.7
151.7 1.78 1059 1514 1514 0.7
151.8 1.88 1217 1639 1639 0.7
151.9 198 1387 1764 1764 08
1520 2.08 1567 1849 1850 09
152.1 218 1759 1984 1984 09
152.2 228 1964 2118 2118 0.9
152.3 2.38 2183 2260 2260 1.0
1524 248 2417 2432 2432 1.0
1525 258 2669 2605 2605 1.0
152.6 2.68 2941 2808 2808 1.1
152.7 2.78 3228 2902 2902 1.1
152.8 2.88 3520 2951 2951 1.2
1529 298 3819 3029 3029 1.3
153.0 3.08 4152 3996 3996 1.0
153.1 3.18 4606 5363 5363 0.9
153.2 328 5185 6225 6225 08
153.3 3.38 5834 6649 6650 09
153.4 348 6512 6895 6895 0.9
1535 3.58 7211 7063 7063 1.0
153.6 3.68 7922 7151 7151 11
153.7 3.78 8641 7239 7239 1.2
153.8 3.88 9370 7325 7325 1.3
1539 398 10107 7422 7422 14
1540 4.08 10856 7567 7567 14
154.1 4.18 11631 8027 8027 1.5
154.2 428 12445 8211 8211 1.5
1543 438 13273 8337 8337 1.6
1544 448 14113 8464 8464 1.7
1545 458 14965 8590 8590 1.7
154.6 4.68 15831 8716 8716 1.8
154.7 478 16709 8842 8842 1.9
154.8 4388 17596 8875 8875 2.0
154.9 498 18484 8885 8886 2.1
155.0 5.08 19373 8896 8896 2.2
155.1 5.18 20263 8906 8906 23
155.2 5.28 21154 8911 8911 24
1553 5.38 22045 8911 8911 25
155.4 5.48 22936 8911 8911 26
155.5 5.58 23827 8911 8911 2.7
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Table A.5 Hydraulic components at Beaver Lake cross section,
47.5 km downstream of Great Slave Lake.

Water Maximum ] Cross section Top width Wetted Hydraulic
elevation | water depth area perimeter radius
(m) (m) (m*"2) (m) (m) (m)
150.0 0.54 136 600 600 0.2
150.1 0.64 200 676 676 03
150.2 0.74 274 827 827 03
1503 0.84 375 1252 1252 03
1504 094 526 1769 1769 03
150.5 1.04 757 2810 2810 03
150.6 1.14 1071 3403 3403 03
150.7 1.24 1431 3766 3766 04
150.8 1.34 1818 3943 3943 0.5
150.9 1.44 2218 4043 4043 0.6
151.0 1.54 2627 4164 4164 0.6
151.1 1.64 3051 4293 4293 0.7
151.2 1.74 3482 4322 4322 08
151.3 1.84 3916 4351 4351 09
151.4 1.94 4352 4380 4380 1.0
1515 2.04 4792 4410 4410 1.1
151.6 2.14 5234 4439 4439 1.2
151.7 224 5680 4469 4469 13
151.8 234 6128 4498 4498 14
1519 24 6579 4528 4528 1.5
152.0 2.54 7034 4559 4559 1.5
1521 2.64 7492 4609 4609 1.6
152.2 274 7956 4663 4663 1.7
152.3 2.84 8430 4870 4870 1.7
1524 294 8931 5126 5126 1.7
152.5 3.04 9463 5424 5424 1.7
152.6 3.14 10007 5458 5458 18
152.7 3.24 10555 5493 5493 1.9
152.8 334 11118 5848 5848 1.9
1529 344 11713 6087 6087 19
153.0 3.54 12331 6220 6220 20
153.1 3.64 12955 6275 6275 21
153.2 3.74 13586 6338 6338 21
1533 384 14222 6371 6371 2.2
1534 394 14860 6396 6396 23
153.5 4.04 15501 6421 6421 24
153.6 4.14 16145 6446 6446 25
153.7 4.24 16790 $472 6472 26
153.8 434 17439 6497 6497 27
153.9 4.4 18090 6522 6522 28
1540 4.54 18743 6543 6543 29
154.1 4.64 19398 6551 6551 3.0
154.2 4.4 20054 6558 6558 3.1
154.3 484 20710 6566 6566 3.2
154.4 494 21367 6573 6573 33
154.5 5.04 22025 6580 6580 34
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Table A.6 Hydraullc components at Burnt Point cross section,
52.6 km downstream of Great Slave Lake.

Water Maximum (-,‘mss section ﬁ width Wetted Hydraulic
elevation water depth area perimeter radius
(m) (m) (m*2) (m) (m) (m)
150.0 241 35T 1806 1806 1.5
150.1 2.51 1873 1873 15
150.2 2.61 1902 1902 1.6
1503 271 285 1965 1.6
1504 2.81 «019 2019 1.7
150.5 291 2041 2041 1.8
150.6 301 2064 2064 1.9
150.7 il 6t 2087 2087 19
150.8 321 4229 2109 2109 20
1509 331 4441 2134 2134 2.1
151.0 341 4656 2161 2161 22
151.1 3s1 4874 2189 2189 2.2
151.2 3.61 5094 2218 2218 23
151.3 an 5317 2249 2249 24
1514 381 5544 2279 2279 24
151.5 391 5773 2314 2314 25
151.6 4.01 6007 2349 2349 26
151.7 4.11 6243 2384 2384 2.6
151.8 4.21 6483 2425 2425 2.7
1519 4.31 6731 2541 2541 27
152.0 441 6991 2653 2653 2.6
152.1 4.51 7262 2771 2mM 2.6
152.2 461 7544 2858 2858 2.6
1523 471 7834 2945 2945 2.7
152.4 4381 8132 3014 3014 27
152.5 491 8437 3082 3082 2.7
152.6 501 8748 3163 3163 238
152.7 511 9077 3366 3366 27
152.8 521 9415 3401 3401 23
1529 531 9761 3522 3522 23
153.0 541 1012t 3695 3695 2.7
153.1 551 10496 3791 3792 28
153.2 5.61 10883 3937 3937 28
1533 571 11279 4000 4000 28
153.4 581 11683 4067 4067 29
153.5 591 12093 4134 4134 29
153.6 6.01 12509 4201 4201 3.0
153.7 6.11 12933 4268 4268 3.0
153.8 6.21 13363 4335 4335 3.1
1539 6.31 13800 4396 4396 3.1
154.0 6.41 14240 4403 4403 32
154.1 6.51 14681 4411 4411 33
154.2 6.61 15122 4414 4414 34
1543 6.71 15563 4414 4414 35
1544 6.81 16005 4414 4414 36
154.5 691 16446 4414 4414 3.7
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Table A.7 Hydraulic components at Ice Bridge cross section,

59.2 km downstream of Great Slave Lake.

Water Maximum | Cross section Top width “Wetted Hydraulic
elevation | water depth area perimeter radius
(m) (m) (m*2) (m) (m) (m)
149.5 28 2066 1229 1229 1.7
149.6 29 2189 1248 1248 1.8
149.7 3 2315 1262 1262 1.8
149.8 31 2442 1276 1276 1.9
149.9 3.2 2570 1289 1289 20
150.0 33 2700 1303 1303 21
150.1 34 2831 1316 1316 22
150.2 35 2963 1330 1330 22
1503 36 3097 1343 1343 23
1504 37 3232 1357 1357 24
150.5 38 3368 1370 1370 25
150.6 39 3506 1384 1384 2.5
150.7 4 3645 1397 1397 26
150.8 4.1 3785 1411 1411 2.7
1509 42 3927 1424 1424 238
151.0 43 4070 1437 1437 238
151.1 44 4214 1450 1450 29
151.2 45 4360 1469 1469 3.0
151.3 4.6 4508 1495 1495 30
151.4 47 4659 1526 1526 3.1
151.5 48 4813 1557 1557 31
151.6 49 4971 1588 1589 3.1
151.7 5 5131 1620 1620 32
151.8 5.1 5295 1653 1653 32
1519 52 5462 1690 1690 32
152.0 53 5633 1737 1737 32
152.1 54 5809 1791 1791 32
152.2 55 5991 1853 1853 32
1523 5.6 6181 1946 1946 32
1524 57 6388 2196 2196 29
1525 58 6630 2557 2557 26
152.6 59 6889 2618 2618 2.6
1527 6 7156 2698 2698 27
152.8 6.1 7427 2720 2721 217
1529 6.2 7700 2743 2743 28
153.0 6.3 7976 2765 2765 29
153.1 6.4 8253 2774 2774 30
153.2 6.5 8530 211 2777 31
153.3 6.6 8808 2780 2780 32
1534 6.7 9086 2783 2783 33
153.5 6.8 9365 2786 2786 34
153.6 6.9 9644 2789 2789 35
153.7 7 9923 2796 2796 3.6
153.8 71 10204 2832 2832 36
1539 72 10489 2868 2868 37
154.0 73 1778 2907 2907 3.7
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Table A.8 Hydraulic components at Dory Point cross section,
63.7 km downstream of Great Slave Lake.

Water Maximum | Cross section ﬁwidth Wetted Hydraulic
elevation | water depth area perimeter radius
(m) (m) (m*2) (m) (m) (m)
148.5 34 417 354 354 12
148.6 35 454 398 398 1.1
148.7 3.6 496 445 445 1.1
148.8 37 543 492 492 1.1
148.9 38 595 538 538 1.1
149.0 39 651 590 590 1.1
149.1 4 713 640 640 1.1
149.2 4.1 779 698 698 1.1
149.3 42 853 716 776 1.1
1494 4.3 933 829 829 1.1
149.5 44 1019 881 881 1.2
149.6 45 1110 937 937 12
149.7 4.6 1206 997 997 1.7
149.8 47 1309 1059 1059 1.2
1499 438 1418 1126 1127 13
150.0 49 1534 1186 1186 13
150.1 5 1655 1222 1223 14
1502 5.1 1779 1272 1272 14
1503 52 1913 1456 1456 13
1504 53 2062 1530 1530 14
150.5 54 2220 1601 1601 14
150.6 55 2381 1614 1614 1.5
150.7 56 2543 1623 1623 1.6
150.8 517 2706 1632 1632 1.7
1509 58 2869 1641 1641 18
1510 59 3034 1648 1648 1.8
151.1 6 3199 1653 1653 19
151.2 6.1 3364 1658 1658 20
1513 6.2 3530 1664 1664 2.1
1514 6.3 3697 1671 1672 22
1515 6.4 3865 1678 1679 23
151.6 6.5 4033 1685 1686 24
151.7 6.6 4202 1692 1692 25
1518 6.7 4371 1698 1698 26
1519 68 4541 1704 1704 27
152.0 6.9 4712 1709 1710 28
152.1 7 4883 17 1711 29
152.2 71 5054 1713 1713 3.0
1523 7.2 5226 1715 1715 3.1
1524 73 5397 1716 17117 31
152.5 74 5569 1717 17117 3.2
1526 7.5 5741 1718 1718 33
152.7 7.6 5913 1718 1719 34
152.8 77 6085 1733 1733 35
1529 738 6260 1766 1767 35
153.0 79 6438 1800 1801 3.6
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Table A.9 Hydraullc components at Ferry Crossing cross section,

65.3 km downstream of Great Slave Lake.

Water Maximum | Cross section Tlop width :w_etted Hydraulic
clevation | water depth area perimeter radius
(m) (m) (m"2) (m) (m) (m)
148.0 3.21 1482 872 872 1.7
148.1 331 1570 886 886 1.8
148.2 341 1659 899 900 1.8
1483 351 1750 917 917 19
148.4 3.61 1843 930 930 20
148.5 k) 1936 933 934 2.1
148.6 3.81 2029 937 937 22
148.7 391 2123 940 940 23
148.8 4.01 2217 944 944 24
1489 4.11 2312 947 947 24
149.0 421 2407 951 951 25
149.1 431 PN 954 954 26
149.2 441 2550 957 58 2.7
1495 451 2694 961 961 28
149.4 4.61 2790 964 965 29
149.5 47 2886 968 968 30
149.6 481 2983 97 971 31
149.7 491 3081 974 974 32
149.8 5.01 3178 977 977 33
149.9 51 3276 980 981 33
150.0 521 3374 983 983 34
150.1 531 3473 984 984 35
150.2 541 357 985 985 3.6
1503 5.51 3670 986 986 37
150.4 5.61 3768 986 987 38
150.5 571 3867 987 988 39
150.6 581 3966 988 989 4.0
150.7 591 4065 989 990 4.1
150.8 6.01 4164 990 990 42
1509 6.11 4263 990 991 43
151.0 6.21 4362 991 992 44
151.1 6.31 4461 991 992 45
151.2 6.41 4560 991 992 4.6
1513 6.51 4659 991 992 4.7
151.4 6.61 4758 991 993 43
1515 6.71 4857 991 993 49
151.6 6.81 4956 992 993 50
151.7 691 5056 992 993 5.1
151.8 7.01 5155 2 994 52
1519 7.11 5254 992 994 53
152.0 7.21 5353 992 994 54
152.1 731 5452 992 994 55
152.2 741 5552 992 994 5.6
1523 7.51 5651 992 995 57
1524 7.61 5750 992 995 58
152.5 7.71 5849 992 995 59
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Table A.10 Hydraulic components at Coast Guard cross section,
67.3 km downstream of Great Slave Lake.

™ Water Maximum | Cross section Top width Wetted Hydraulic
elevation | water depth area perimeter radius

(m) (m) (m"2) (m) (m) (m)
148.0 5.03 1566 431 431 3.6
148.1 513 1609 435 436 37
148.2 5.23 1653 440 41 38
1483 533 1697 446 446 38
148.4 543 1743 456 456 38
148.5 5.53 1789 467 467 38
148.6 5.63 1836 478 478 38
148.7 5.73 1884 488 488 39
148.8 5.83 1936 551 551 35
148.9 593 1993 597 597 33
149.0 6.03 2055 646 646 3.2
149.1 6.13 2129 833 833 2.6
149.2 6.23 2218 934 934 24
149.3 6.33 2313 962 963 24
149.4 6.43 2411 1001 1001 24
149.5 6.53 2513 1041 1042 24
149.6 6.63 2618 1053 1053 25
149.7 6.73 2724 1069 1069 2.6
149.8 6.83 2832 1092 1092 2.6
149.9 6.93 2942 1107 1107 27
150.0 7.03 3053 1114 1115 27
150.1 7.13 3165 1122 1122 28
150.2 7.23 3278 1130 1130 29
1503 7.33 3391 1138 1139 3.0
1504 7.43 3505 1145 1146 3.1
150.5 7.53 3620 1152 1152 3.1
150.6 7.63 3736 1161 1161 32
150.7 1.73 3852 1172 1173 33
150.8 7.83 3970 1178 1179 34
1502 7.93 4088 1184 1185 35
151.0 8.03 4207 1190 1191 35
:51.1 8.13 4326 1197 1198 36
151.2 8.23 4446 1204 1205 37
1513 833 4567 1230 1231 37
1514 343 4659 1392 1394 34
151.5 8.53 4845 1526 1527 3.2
151.6 8.63 5004 1645 1647 3.0
151.7 8.73 5169 1645 1647 3.1
151.8 8.83 8333 1645 1647 32
1510 8.93 5458 1645 1647 33
iS00 9.03 5662 1645 1647 34
152.1 9.13 5827 1645 1647 35
152.2 9.23 5991 1645 1647 36
1523 933 6156 16458 1647 37
1524 243 6320 1645 1647 38
152.5 9.53 6485 1648 1650 39
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Table A.11 Hydraulic components at Blue Quonset cross sectlon,
71.5 km downstream of Great Slave Lake.

[ Water Maximum | Cross section lI'ch);> width | Wetted Hydrauﬁ
elevation | water depth area perimeter radius

(m) (m) (m"2) (m) (m) (m)
147.0 3.81 336 455 456 0.7
147.1 391 385 544 544 0.7
147.2 4.01 447 697 697 0.6
147.3 4.11 522 806 807 0.7
1474 4.21 610 939 939 0.7
147.5 431 707 1002 1002 0.7
147.6 441 813 1097 1098 0.7
147.7 4.51 924 1125 1126 038
147.% 4.61 1039 1182 1182 09
1479 471 1158 1200 1200 1.0
148.0 4381 1279 1217 1217 1.1
148.1 491 1402 1244 1244 1.1
148.2 5.01 1528 1266 1266 12
1483 5.11 1655 1283 1283 1.3
148.4 5.21 1784 1297 1298 14
148.5 5.31 1915 1317 1318 1.5
148.6 541 2049 1366 1366 1.5
148.7 5.51 2188 1412 1412 1.6
1488 5.61 2332 1486 1487 1.6
148.9 5n 2485 1577 1577 1.6
149.0 5.81 2647 1658 1658 1.6
149.1 591 2815 1707 1707 1.7
149.2 6.01 2987 1726 1726 1.7
1493 6.11 3160 1732 1733 18
149.4 6.21 3334 1738 1738 19
149.5 6.31 3508 1743 1744 20
149.6 6.41 3683 1748 1749 21
149.7 6.51 3857 1751 1751 22
149.8 6.61 4033 1753 1754 23
149.9 6.71 4208 1755 1756 24
150.0 6.81 4384 1759 1759 25
150.1 6.91 4560 1762 1762 26
150.2 7.01 4736 1765 1766 27
1503 7.11 4913 1768 1769 238
150.4 7.21 5090 1771 1772 29
150.5 7131 5267 1775 1775 3.0
150.6 7.41 5445 1780 1781 3.1
150.7 7.51 5623 1782 1783 32
150.8 7.61 5801 1784 1785 33
1509 1.7 5980 1787 1787 34
151.0 7.81 6159 1789 1790 34
151.1 7.91 6338 1791 1792 35
151.2 8.01 6517 1793 1794 36
151.3 8.11 6696 1796 1796 37
1514 8.21 6876 1798 1799 38
151.5 8.31 7056 1800 1801 3.9
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Table A.12 Hydraulic components at Big River cross section,
72.7 km downstream of Great Slave Lake.

Water Maximum | Cross section Top width Wetted Hydraulic
elevation | water depth area perimeter radius
(m) (m) (m"2) (m) (m) (m)
146.5 5.13 775 518 518 1.5
146.6 5.23 831 597 597 14
146.7 5.33 893 641 641 14
146.3 543 958 668 668 14
146.9 5.53 1026 685 685 1.5
147.0 5.63 1096 707 707 1.6
147.1 573 1167 724 724 1.6
147.2 583 1240 728 728 1.7
1473 593 1313 732 732 18
1474 6.03 1386 736 736 19
1475 6.13 1460 740 740 2.0
147.6 6.23 1534 743 744 21
1471.7 6.33 1609 747 748 22
147.8 6.43 1684 751 751 22
1479 6.53 1759 755 755 23
148.0 6.63 1835 758 758 24
148.1 6.73 1911 760 760 25
148.2 6.83 1987 761 762 26
1483 6.93 2063 763 763 27
148.4 7.03 2139 764 765 28
148.5 7.13 2216 766 766 29
148.6 7.23 2292 767 768 3.0
148.7 733 2369 769 769 31
148.8 743 2446 770 ! 32
1489 753 2523 772 772 33
149.0 7.63 2600 773 774 34
149.1 1.75 2678 775 775 35
149.2 733 2755 776 i 3.6
1493 795 2833 778 778 36
149.4 8.03 2911 779 780 37
149.5 8.13 2989 781 781 38
149.6 823 3067 782 783 39
149.7 833 3145 784 784 40
149.8 843 3224 785 786 4.1
149.9 853 3302 787 787 42
150.0 8.63 3381 795 795 43
150.1 8.73 3461 802 803 43
150.2 8.83 3542 805 806 44
1503 893 3622 806 807 45
1504 9.03 3703 808 808 4.6
150.5 9.13 3784 809 810 47
150.6 9.23 3865 810 811 43
150.7 933 3946 811 812 49
150.8 943 4027 813 814 50
1509 953 4108 814 815 50
151.0 9.63 4190 815 816 5.1
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Table A.13 Hydraulic components at Big Snye cross section,

73.6 km downstream of Great Slave Lake.

Water Maximum | Cross section Top width |  Welted Hydraulic
elevation | water depth area perimeter radius
(m) (m) (m"2) (m) (m) (m)
148.50 1.81 184 343 343 0.5
148.55 1.86 202 369 369 06
148.60 191 221 405 405 06
148.65 1.96 243 494 494 05
148.70 201 271 600 600 0.5
148.75 2.06 301 603 603 0.5
123.80 2.11 33t 606 606 0.6
148.35 2.16 361 608 608 0.6
148.50 221 392 611 611 0.6
148.95 2.26 422 614 614 0.7
149.00 231 453 617 617 07
149.05 2.36 484 619 619 038
149.10 2.4 515 622 622 08
149.15 2.40 546 623 623 0.9
149.20 2.51 577 624 624 09
149.25 2.56 609 626 626 1.0
149.30 2.61 640 627 627 1.0
149.35 2.66 671 628 628 1.1
149.40 271 703 630 630 11
149.45 2.76 734 631 631 1.2
149.50 2.81 766 632 632 1.2
149.55 2.86 797 633 634 1.3
149.60 291 829 635 635 13
149.65 2.96 861 636 636 14
149.70 3ol 893 637 637 14
149.75 3.06 925 639 639 1.5
149.80 i 957 640 640 1.5
149.85 3.1o 989 642 642 1.5
149.90 321 1021 643 644 1.6
149.95 3.26 1053 645 646 1.6
150.00 33 1085 647 648 1.7
150.05 3.36 1118 652 653 1.7
150.10 3.41 1150 654 654 1.8
150.15 346 1183 655 655 1.8
150.20 351 1216 656 656 19
150.25 3.56 1249 657 657 19
150.30 3.61 1282 658 658 20
15035 3.66 1315 659 659 20
150.40 n 1348 660 661 20
150.45 3.76 1381 662 662 2.1
150.50 381 1414 663 663 21
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Table A.14 Hydraullc components at Campground cross section,
75.0 km downstream of Great Slave Lake,

Water Maximum | Cross section ﬁp width | Wetted Hydrﬁ?ic-
elevation | water depth area perimeter radius
(m) (m) (m*2) (m) (m) (m)
145.5 5.89 1184 571 572 2.1
145.6 5.99 1242 576 576 2.2
145.7 6.09 1299 580 580 2.2
1458 6.19 1358 584 584 23
1459 6.29 1416 586 586 24
146.0 6.39 1475 588 589 2.5
146.1 6.49 1534 591 591 2.6
146.2 6.59 1593 593 593 2.7
1463 6.69 1652 594 594 238
146.4 6.79 1712 594 595 29
146.5 6.89 1771 594 595 3.0
146.6 6.99 1831 595 596 31
146.7 7.09 1890 595 596 3.2
146.8 7.19 1950 596 596 33
146.9 7.29 2009 596 597 34
*70 7.39 2069 596 597 3.5
ER 7.49 2129 597 598 3.6
1472 7.59 2188 597 598 37
147.3 7.69 2248 597 599 3.8
1474 7.79 2308 598 599 39
147.5 7.89 2368 598 600 4.0
147.6 7.99 2427 599 600 4.1
147.7 8.09 2487 599 601 4.1
147.8 8.19 2547 599 601 42
1479 8.29 2607 600 602 43
148.0 8.39 2667 601 603 44
148.1 8.49 2727 602 604 45
148.2 8.59 2788 603 605 4.6
148.3 8.69 2848 604 607 4.7
1484 8.79 2908 605 608 4.8
148.5 8.89 2969 606 609 49
148.6 8.99 3029 607 610 5.0
148.7 9.09 3090 608 611 51
148.8 9.19 3151 609 612 5.2
1489 9.29 3212 610 614 52
149.0 9.39 3273 611 615 53
149.1 9.49 3334 612 616 54
149.2 9.59 3395 613 617 5.5
1493 9.69 3457 613 618 5.6
1494 9.79 3518 614 619 5.7
149.5 9.89 3579 615 620 58
149.6 9.99 3641 615 621 59
149.7 10.09 3703 616 621 6.0
149.8 10.19 3764 616 622 6.1
1499 10.29 3826 617 623 6.1
150.0 10.39 3888 617 623 6.2
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Table A.15 Hydraulic components at Blue House cross section,
76.7 km downstream of Great Slave Lake.

Water Maximum Cross section 1'I.‘op width Wetted Hydraulic
elevation | water depih area perimeter radius
(m) (m) (m*2) (m) (m) (m)
143.5 3.32 1238 716 716 1.7
143.6 3.42 1309 718 719 1.8
143.7 3.52 1381 721 721 19
143.8 3.62 1453 722 722 20
1439 3 1526 73 723 21
144.0 3.82 1598 723 724 22
144.1 392 1670 724 725 23
144.2 4.02 1743 725 725 24
1443 4.12 1815 726 726 25
1444 422 1888 727 727 26
1445 432 1961 72° 728 27
144.6 442 2033 728 729 28
144.7 452 2106 729 730 29
1448 4.62 2179 730 731 3.0
1449 4.72 2252 731 732 3.1
145.0 482 2325 732 732 32
145.1 492 2399 733 733 33
145.2 5.02 2472 733 734 34
1453 5.12 2545 T34 735 35
1454 522 2619 735 736 3.6
145.5 532 2692 736 737 37
145.6 542 2766 37 738 38
145.7 552 2840 737 738 39
145.8 5.62 2914 738 739 39
1459 5.72 2087 739 740 4.0
146.0 582 3061 740 741 41
146.1 592 3135 741 742 42
146.2 6.02 3210 742 743 43
146.3 6.12 3284 745 e 746 44
146.4 6.22 3359 747 748 45
146.5 6.32 3433 749 751 4.6
146.6 6.42 3508 752 753 47
146.7 6.52 3584 754 756 47
146.8 6.62 3659 754 756 48
146.9 6.72 3735 754 756 49
147.0 6.82 3810 755 757 5.0
147.1 6.92 3886 755 757 5.1
147.2 7.02 3961 755 57 52
1473 7.12 4037 755 757 53
1474 7.22 4112 755 758 54
1475 732 4188 756 758 55
147.6 742 4263 756 758 56
147.7 7.52 4339 756 758 57
1478 7.62 414 756 759 58
1479 7172 4490 756 759 59
148.0 7.82 4566 757 759 6.0
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Table A.16 Hydraulic components at Boat Launch cross sectlon,
77.4 km downstream of Great Slave Lake.

Water Maximum | Cross section Tap width Wetted Hydraulic
elevation | water depth arec perimeter radius
(m) (m) (m"2) (m) (m) (m)
1425 344 1218 ’19 819 1.5
142.6 3.54 1303 868 862 i5
142.7 3.64 1392 300 ! 901 15
242.8 3.74 1483 929 32 W6
1429 3.84 1578 986 ok 1.6
143.0 394 1673 1011 101 1.7
143.1 4.04 1781 1036 1036 1.7
143.2 4.14 1885 1054 1055 18
1433 ».24 1992 1074 1074 1.9
143.4 434 2100 183 1093 19
143.5 444 2211 1140 1140 1.9
142 ¢ 454 2324 1267 1267 1.8
143.7 4.64 2461 1273 1273 1.9
1438 474 2589 1277 1277 20
1439 484 2717 1280 1281 2.1
144.0 494 2845 1284 1284 2.2
TN 5.04 2973 1288 1288 23
144.2 5.14 3102 1290 1290 24
1443 524 3231 1291 1291 25
1444 534 3:50 1292 1292 26
144.5 544 3490 1293 1293 27
144.6 554 3619 1293 med 28
144.7 564 3748 1294 LS 29
144.8 74 2878 1295 1298 3.0
1449 " 34 4007 1296 1296 3.1
145.0 T3 4137 1297 1297 3.2
14£.1 0.u4 4267 1297 1298 33
145.2 6.14 4397 1298 1299 34
1453 6.24 4526 1299 1300 35
1454 6.34 4656 1300 1301 36
145.5 6.44 4786 1301 1301 3.7
145.6 6.54 4916 1301 1302 38
145.7 6.64 5047 1302 1303 39
145.8 6.74 5177 1303 1304 40
1459 6.84 5307 1304 1305 4.1
146.0 6.94 5438 1306 1307 42
146.1 7.04 5569 1310 1311 43
146.2 7.14 5700 1312 1313 43
146.3 7.24 5831 1314 1315 44
146.4 7.34 5963 1316 i317 45
146.5 7.44 6094 1318 1319 4.6
156.6 543 9459 2804 2804 34
156.7 513 9740 2808 2808 35
156.8 523 10021 2811 2811 36
156.9 533 10302 2814 2815 37
157.0 543 10584 2818 2818 3.8
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Table A.17 Hydraulic components at RCMP cross section,

77.9 km downstream of Great Slave Lake.

Water Maximum | Cross section Top width [ Wetted Hydraulic
elevation | water depth area perimeter radius

(m) (m) (m*2) (=) (m) (m)
1420 243 516 450 450 1.2
142.1 253 563 495 495 11
142.2 2.63 615 540 541 1.1
1423 2.73 671 587 587 1.1
1424 2.83 732 630 630 1.2
1425 293 797 672 672 1.2
142.6 3.03 %66 712 712 1.2
1427 3.13 940 762 762 1.2
142.8 3.23 1018 793 793 1.3
1429 3.33 1098 809 209 14
£ 143.0 3.43 1180 822 823 14
71431 3.53 1263 836 836 1.5
5 1432 3.63 1347 849 849 16
1433 3713 1432 8 262 1.7
143.4 323 1519 870 876 1.7
1435 3.93 1608 890 891 1.8
143.6 4.03 1697 904 oS 19
143.7 4.13 1788 9:8 918 20
143.8 423 1881 932 932 20
1439 433 1975 942 942 21
144.0 443 2069 950 950 22
144.1 4.53 2165 958 958 23
144.2 4.63 2261 966 966 23
1443 4.73 2358 971 97 24
1444 483 2455 974 974 25
1445 493 2552 976 976 26
144.6 5.03 2650 978 978 27
144.7 5.13 2748 980 930 28
1448 523 2846 982 982 29
1449 533 2944 983 984 3.0
145.0 543 3043 985 986 31
145.1 553 3141 987 988 32
145.2 5.63 3240 989 990 33
1453 573 3339 991 992 34
1454 583 3438 993 994 35
145.5 593 3538 995 996 3.6
145.6 6.03 3637 997 998 37
145.7 6.13 3737 998 1000 3.7
1458 6.23 3837 1001 1003 38
L8 €33 3937 1004 1006 39
146.0 6.43 4028 1007 1008 4.0
146.1 6.53 4139 1009 1011 41
146.2 6.63 4240 1012 1014 42
146.3 6.73 1341 1014 1017 43
146.4 6.83 4443 1017 1019 44
146.5 6.93 4544 1019 1022 4.5
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Table A.18 Hydrauiic components at Dock cross section,
79.5 km downstream of Great Slave Lake.

Water Maximum | Cross section ?op width |  Wetted Hydraulic
elevation | water depth area perimeter radius
(m) (m) (m"2) () (m) (m)
142.0 4.5 1529 931 931 1.6
142.1 4.6 1625 977 977 1.7
142.2 4.7 1724 1019 1019 1.7
1423 4.3 1828 1043 1043 1.8
1424 49 1932 1049 1045 1.8
1425 5 2037 1053 1054 19
142.6 5.1 2143 1058 1058 20
142.7 52 2249 1062 1062 2.1
142.8 53 2355 1066 1066 22
429 54 2462 1070 1070 23
i43.0 55 2569 1074 1074 24
143.1 56 2677 1077 1077 25
143.2 517 2785 1080 1080 2.6
1433 58 2893 1082 1082 217
1434 59 3001 1085 1085 28
143.5 6 3110 1088 1088 29
143.6 6.1 3219 1050 1090 3.0
143.7 6.2 3328 1091 1092 3.1
1438 6.3 3437 1092 1093 32
1439 6.4 3546 1094 1094 3.2
144.0 6.5 3656 1095 1095 33
144.1 6.6 3765 1096 1096 34
1442 6.7 3875 1097 1098 35
1443 6.8 3985 1098 1099 3.6
1444 6.9 4095 1099 1100 37
1445 7 4205 1100 1101 38
144.6 7.1 4315 1102 1102 3.9
144.7 7.2 4425 1103 1103 4.0
1448 73 4535 1104 1104 4.1
1449 74 4646 1105 1105 42
145.0 7.5 4756 1106 1106 43
145.1 7.6 4867 1107 1107 44
145.2 77 4978 1112 1113 45
1453 78 5089 1112 1113 4.6
1454 79 5200 1112 1113 4.7
145.5 8 5311 1112 1113 48
145.6 8.1 5422 1112 1114 49
145.7 82 5534 1113 1114 5.0
145.8 83 5645 1113 1114 51 .

1459 84 5756 1113 1114 52
146.0 85 5868 1113 1115 53
146.1 8.6 5979 1114 1116 54
146.2 8.7 6090 1116 1118 55
146.3 838 6202 1118 1120 55
146 4 89 6314 1120 1122 56
146.5 9 6426 1121 1124 5.7
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Table A.19 Hydraulic components at Orange Cabin cross section,
89.5 kin downstream of Great Slave Lake,

Water Maximum Cross section Top width Wetted | 1ydraulic
elevation | water depth area perimeter radius
(m) (m) (m"2) (m) (m) (m)
141.5 3.66 2083 1096 1096 1.9
141.6 3.76 2195 1139 1139 1.9
141.7 3.86 2311 1173 1174 2.0
141.8 3.96 2430 1204 1205 2.0
141.9 4.06 2552 1245 1246 2.1
142.0 4.16 2679 1273 1273 2.1
142.1 4.26 2806 1278 1279 22
142.2 4.36 2934 1284 1284 23
1423 4.46 3063 1287 1287 24
142.4 4.56 3192 1291 1291 25
142.5 4.66 3321 1294 1294 26
142.6 4.76 3451 1298 1298 2.7
142.7 4.8¢ 3581 1301 1301 28
142.8 4.96 3711 1304 1304 29
1429 5.06 3841 1305 1306 29
143.0 5.16 3972 1307 1308 3.0
143.1 5.26 4103 1309 1309 31
143.2 5.36 4234 1311 1311 3.2
1433 5.46 4365 1313 1313 33
1434 5.56 4496 1315 1315 34
1435 5.66 4628 1317 1317 35
143.6 5.76 4760 1318 1319 3.6
143.7 5.86 4892 1320 1321 3.7
143.8 5.96 5024 1322 1323 38
1439 6.06 5156 1325 1325 39
144.0 6.16 5289 1327 1327 40
144.1 6.26 5422 1331 1333 4.1
144.2 6.36 5555 1334 i334 42
1443 6.46 5688 1335 1335 43
1444 5.56 5822 1336 1336 44
144.5 6.66 5956 1337 1338 45
144.6 6.76 6089 1338 1339 4.6
144.7 6.86 6223 1339 1340 4.6
1448 6.96 6357 1340 1341 4.7
1449 7.06 6491 1342 1342 48
145.0 7.16 6626 1343 1343 49
156.1 4.53 8061 2786 2787 29
156.2 4.63 8340 2790 2791 30
156.3 4.7 8619 2794 2794 31
156.4 4383 8399 2797 2798 32
156.5 493 9179 2801 2801 33
156.6 5.03 9459 2804 2804 24
156.7 5.13 9740 2808 2808 35
156.8 523 10021 2811 2811 3.6
156.9 532 10302 2814 2815 37
157.0 5.43 10584 2818 2818 3.8

171



172

“ae"] 2AB|S 121D JO WEINSUMOP U 6'E0] ‘TONIIS SS013 N SN 0T’V vty

Stvel 10560 ob'8tl LS'SLTL

eveEl 887750t 60'87 " 80°Lrll

STLEL eTL96T Ty 00h01

STorl 66°2067 el 61°L66 ‘pte [EuomeSiavy o Jo F3y IomyINCS

88°0v1 91°098% peLel 9t'bS6 21 U0 (986698 4) PUNOJ SeM FIPWIPGI ‘wpeue)
(3041 88°60LE 9T’ Ivl 60°ESLT LOSEL Z1°068 Jo s1A19¢ srydesSorpA ‘pucods v "pie [euonrediavu
s Trl 00969¢ LETYI 8L°1867 61°3€1 $¥9'19L © 183U YUeQ INOS Y} UC PITedo] Wl £hE phl VONRAND
9T 00'169¢ 15°1p1 19647 8681 85°¥59 'C-€11d yrewypuaq epete]) Jo SOM Mand ‘WAL
19191 LBELIE ra 14! 8¥'01vT 18°8L0 76°895
91kl 9¥'759¢ [§i4! yTET 9§ ! 890§ W BESTPT F¥M 7661
Lyovi v01€9¢ 60°'1v1 LI'6LTT L6 19°L6€ ‘T1 AIng w0 IV 06311 18 paImseaul 'UoNBAS|D Jejms
Lopt £9'609€ LL6EL 01'zEiz Vsl 6LSE 2mn QL (540 Sutin &q paptoxd eua tosa00
8p6El TT98SE 0s°LEl O'S20C £5°6€1 1£922 aﬁ%ﬂﬁﬁﬁﬁﬁ“ﬁaﬂdﬁsﬁh
$8'8¢l 08'99S€ 89¢l L6'LiGT LEopT vTe1t woc 10 ooqsm_.ua..o.. pakoAms USY 5w YIIYM “230US
1£°LET STIsve 10°LEt eL eS8l 8L°OP1 £8°L6 _mw.x“n q X .

. . . i ) . Jo poys w2 ¢ paddors pure 191em Rt Jo 93pe
ST9tl 6¥°S6EE LULet LO'89L1 6T vl 9L A wouy W § powwrs sem Sripunos (pdap oyl “PRM
£T9El 10°2192¢ 1S°L¢e1 sTSTUL sLIvt 00'sS an jo OMVO Y WOY W G E? "= xS YHIOU Y UO PILIIS
90°9¢1 09°s¥hE 07°6E1 LL'96ST pecrl 000§ sem Koans syl “z661 ‘TI Alnf uo paunsoyred arom
6L'SET 61viZe 19'6¢€l 0L'68Y1 oLzl 00°0v s3urpunos \pdop pre Smikaamg -axer SN 910J99
ILYEL S6651¢ 12°6¢1 £9-28¢1 e ebl 000 pe]st 158] P Jo urcansumop ysnf Sursved ‘oxe] saelg

(u1) () (w) (w) (u) (u) 131D JO URINSUMOP 7Y €01 “1PARY IRUMIBK

uoneAdq onelg UONPAI[F uonelg goneadjq woneg N WO Pared0] §1 U0 svoD sy | uondudsaq
(ua) uone)s UOIIIS SSOII INe] SN

0006 0008 000L 0009 000S 000t 000¢ 0007 0001 0
— _ . ! . “ ' “ “ 0Otl
S A e e N o §
f f ' ’ ' ' ' w = s
_.....---.----..r-----.--......--------.--..._-.----.--..-“r--..---..-.w ........... .. ....... m..mmm.ﬂn_..w;". ............ 0sI “ou..
....................... L R e eme e i e el et ~
| “, M m _ N ,“ | ", ®'g
|||||||||||| L T T T T I TR AT P T B e §

........... oLt



Table A.20 Hydraulic components at Mills Lake cross sectlon,

103.9 km downstream of Great Slave Lake.

Water Maximum | Cross section | Top width | Wetled | Hydraulic
elevation | water depth area perimeter radius
(m) (m) (m"2) (m) (m) (m)
137.0 2.85 681 573 573 1.2
137.1 295 742 651 651 1.1
1372 3.05 811 718 718 1.1
1373 3.15 885 756 756 1.2
1374 325 962 793 793 1.2
1375 3.35 1043 829 829 13
137.6 345 1127 849 849 1.3
1317 355 1213 869 869 14
1378 3.65 1301 889 889 1.5
1379 3.75 1392 952 952 1.5
1380 3.85 1492 1033 1033 L4
138.1 395 1600 1242 1242 1.3
138.2 405 1732 1394 1394 1.2
1383 4.15 1875 1463 1463 13
1384 4.25 2024 151 1531 1.3
1385 435 2181 1591 1591 14
138.6 445 2342 1639 1639 1.4
138.7 455 2509 1687 1687 15
1338 4.65 2680 1735 1735 15
1389 4.75 2862 1899 1899 1.5
1396 435 3057 2002 2003 15
139.1 495 3260 2055 2055 1.6
139.2 5.05 3468 2107 2107 1.7
139.3 5.15 3633 2189 2189 1.7
1394 525 3909 2354 2354 1.7
139.5 535 4151 2485 2485 17
139.6 545 4405 2577 2577 1.7
139.7 5.55 4664 2505 2606 1.5
139.8 5.65 4926 2629 2630 1.9
1399 535 5190 2656 2656 2.0
1400 5.85 5457 2682 2683 20
140.1 595 5726 2709 2709 2.1
140.2 6.05 5999 2736 2736 2.2
1403 6.15 6274 2765 2765 23
140.4 6.25 6552 2794 2794 23
140.5 6.35 6832 2818 2818 24
140.6 €45 7115 2841 2842 25
140.7 6.55 7401 2865 2865 26
1408 6.65 7688 2888 2888 =7
1409 6.75 7978 2915 2015 2.7
141.0 6.85 8272 2958 2958 28
141.1 6.95 8570 3004 3004 29
141.2 7.05 8873 3065 3065 29
1413 7.15 9184 un 177 29
1414 7.25 9511 3339 3339 29
141.5 7.35 9850 3439 3439 2.9
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