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Abstract

This thesis examines the predictability of Canadian recessions with special empha-
sis on variable selection in a big data environment. The first paper in this thesis
addresses the problem of variable selection from a traditional point of view by em-
ploying a prescreened set of selected individual variables as well as data aggregation
via factor analysis. Dynamic factors are estimated from panels of macroeconomic time
series for Canada and the US. The factors are derived from financial, stock market,
and real activity indicators for both countries. The predictive power of these factors
is compared to the power of observed data. Additionally, the predictive content of
US versus domestic data is evaluated. Results show that factor augmented probit
regressions outperform models based solely on observed data, with a real-activity fac-
tor performing particularly well at short forecast horizons. Further, while at longer
forecast horizons US interest rate spreads are consistently part of the best performing
models, there is little gain in predictive accuracy from adding US data. The second
paper uses modern machine learning techniques that allow for a much larger set of
candidate variables. Logistic lasso and gradient boosting perform variable selection
and model estimation simultaneously, thus making variable prescreening obsolete.
The algorithms identify new leading indicators of recessions as well as provide ev-
idence of structural instability in the forecasting model. I find that variables from
the US labour and housing market best complement Canadian yield spreads as short
term indicators, particularly during the 2008,/2009 recession when yield spreads lose
predictive power. Longer term forecasts are dominated by Canadian yield spreads
and other financial indicators. US yield spreads and variables from the Canadian oil

and gas sector do not hold predictive power at any forecast horizon.
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Introduction

Recessions are pronounced, pervasive, and persistent declines in aggregate economic
activity that are associated with high welfare costs for society. In major economies
the dating of recession months is left to a commission of experts. Monthly recessions
are defined by NBER for the US and CEPR for the EU. In Canada, recession months
are dated by the Business Cycle Council of the C.D. Howe Institute. This recession
indicator is published with considerable delay of up to a year. Forecasting this binary
reference series therefore provides valuable information to business, policy makers and
the public. An exploration into which data and models should be used for forecasting
is the subject of this thesis.

To forecast recessions, a multitude of economic variables are publicly available
that are potentially good predictors but likely have little or no individual predictive
power. A common issue in the discipline of forecasting is making efficient use of
such sparse and high dimensional data space. Supervised machine learning methods
address such big data problems by performing variable selection and model estima-
tion simultaneously and are therefore becoming increasingly popular in econometrics
(Varian, 2014; Horowitz, 2015; Athey and Imbens, 2017).

In the recession literature, researchers traditionally face the problem of either ar-
bitrarily selecting a small subset of variables to be included in a predictive model or to
employ dimensionality reduction techniques. Following the former approach, Estrella
and Mishkin (1998), Chauvet and Potter (2005) and Kauppi and Saikkonen (2008)
forecast US recessions focusing mainly on the yield spread as explanatory variable.

The importance of the yield spread as leading indicator is mirrored by Atta-Mensah



and Tkacz (1998) for the Canadian case. Hao and Ng (2011) extend the analysis to
a set of 13 selected macro variables. A problem that arises in each of these studies
is that it is not a priori clear which variables should be included in the forecast-
ing model. While hundreds of macro variable are readily available, computational
feasibility traditionally limits the analysis to a small set of selected or pre-screened
variables. The latter approach to address this degrees of freedom problem are dimen-
sionality reduction methods that aggregate the data space. Dynamic factor models
retrieve a common autoregressive trend from a small number of selected explana-
tory variables (Stock and Watson, 1989, 1992); principal component analysis extracts
multiple static factors from a large set of variables (Stock and Watson, 2006). Chen
et al. (2011) and Fossati (2015) employ large sets of macro data to predict US reces-
sions, while Gaudreault et al. (2003) use dynamic factors retrieved from a small set
of selected variables to predict recessions in Canada.

"1 combines these

The first paper in this thesis, “Forecasting Recessions in Canada
two traditional methods. We employ best subset selection and Bayesian model av-
eraging to contrast the predictive power of models containing only Canadian data
to models that add US data as well as dynamic factors. The factors are estimated
from small sets of financial, real activity and stock market variables. The factor esti-
mated from Canadian real activity variables is shown to tremendously improve short
run forecasting results, while the inclusion of US variables contributes to forecasts of
longer horizons. By assessing the predictive power of distinct groups of predictors,
the paper provides a novel look at the problem of variable selection when forecasting
recessions.

The second paper in this thesis, “Forecasting Canadian Recessions: Making use of

Supervised Machine Learning”, addresses the problem of model and variable selection

from a more modern perspective. I employ two supervised machine learning methods,

!Coauthored with Sebastian Fossati (University of Alberta) and Rodrigo Sekkel (Bank of
Canada.)



gradient boosting and logistic lasso, to select variables from a set of over 5000 pre-
dictors. Gradient boosting (Friedman et al., 2000) has recently been employed by Ng
(2014) to forecast US recessions. Penalized regression methods like lasso? (Tibshirani,
1996) are just starting to take a foothold in the field of econometrics. The application
of logistic penalized regression to the problem of forecasting recession probabilities
is new. I employ several specifications of the lasso and boosting model to forecast
Canadian recessions at different forecast horizons. FEach specification is evaluated
with respect to its predictive accuracy in an out-of-sample forecasting exercise. The
non-discriminatory approach to variable selection allows me to identify new variables
that serve as important leading indicators and have previously been ignored in the
literature. I further demonstrate how the optimal forecasting model changes over
time, providing evidence of structural instability. The paper should also be seen as
an exploration into forecasting economic variables in a big data environment, as the

discussed methods can easily be applied to related problems.

2Lasso stands for "least absolute shrinkage and selection operator’.



Chapter 1

Forecasting Recessions in Canada

1.1 Introduction

Predictions about the state of the economy figure prominently on the decision making
process of households, firms, and policy makers. At least since Burns and Mitchell
(1938), assessing the state of the economy to identify early warning signals of recession
has been a prominent task in the discipline of macroeconomics. Renewed interest in
the topic was sparked by Stock and Watson (1989, 1993) who construct coincident and
leading indicators for the US economy and launched a new literature on forecasting
the probability of recession. Stock and Watson (1989) interpret “the state of the
economy’ as an unobservable reference series reflecting co-movements in a broad range
of macroeconomic aggregates such as output, employment, and sales. The reference
series is estimated via dynamic factor analysis and used to construct a recession index
(nowcasting) as well as recession probability forecasts. The Business Cycle Dating
Committee of the National Bureau of Economic Research (NBER) partially relies on
the Stock & Watson methodology to determine ex post recession dates for the US.
The Business Cycle Council of the C.D. Howe institute determines these dates for
Canada. These recession dates, usually published with considerable delay, can be
characterized as a binary reference series, and estimating recession probabilities can
be interpreted as a binary classification problem.

A rich body of literature examines the predictability of recessions in the US, with



comparatively little work focusing on Canada. Estrella and Mishkin (1998) estimate
univariate probit models on a series of 27 macro-variables and find that the yield
spread, measured as the difference between 10 year and 3-months treasury yields,
is the single most important predictor of US recession. Estrella and Hardouvelis
(1991) further explore the predictive power of yield spreads as a measure of the
yield curve, allowing for a greater amount of covariates. Mirroring these results for
Canada, Atta-Mensah and Tkacz (1998) find that the Canadian yield spread, the
difference between long term bond yields and the 3-month commercial paper rate, is
the most useful indicator to predict recessions in Canada. Bernard and Gerlach (1998)
further generalize this result, demonstrating that the predictive power of domestic
yield spreads holds for all developed countries in their sample, including Canada.
Additionally they find that the inclusion of the US yield spread adds predictive power
at medium and long term forecasts for Canada. Subsequent work mainly focuses
on advancements in methodology using mainly the yield spread as predictor of US
recessions.

Building on the idea of Dueker (1997) to include lagged values of the recession
series as predictor, Chauvet and Potter (2005) and Kauppi and Saikkonen (2008)
develop dynamic and autoregressive probit models. Nyberg (2010) and Ng (2012)
extend these models by including a larger number of explanatory variables such as
measures of perceived risk in the economy. Hao and Ng (2011) expand on the list
of variables used to predict recessions in Canada by considering a small number of
macroeconomic financial and real activity indicators, such as a measure of inflation,
employment, monthly GDP and housing starts. The authors estimate a series of
dynamic probit models, arguing that real activity variables have marginal predictive
power over financial ones. They find that while dynamic probit specifications are
better at predicting the duration of recessions, static versions of the model better
predict turning points. However, due to limitations on computational feasibility as

well as concerns about overfitting, the number of variables that can be used in direct



recession probability forecasts is ultimately limited. Only recently the use of machine
learning techniques has allowed direct probability forecasts with large datasets. For
the US, Ng (2014) uses a gradient boosting algorithm that selects relevant variables
sequentially, Fornaro (2016) imposes shrinkage on the coefficients of a probit model
in a Bayesian version of ridge regression. Sties (2017) uses penalized regression and
boosting to forecast Canadian recessions.

Parallel to these developments, advances were made using factor models that
aggregate the data space and thus discount the problem of variable selection. Building
on the methodology of Stock and Watson (1993), Chauvet (1998) and Kim and Nelson
(1998) incorporate the prediction of recession probabilities directly into estimation of
the dynamic factor using Markov regime switching. These models work well for real
time nowcasting (Chauvet and Piger, 2008). At longer forecast horizons however,
estimation becomes computationally expensive as the model’s state dependency does
not allow to make direct forecasts several periods ahead. With the availability of
increasing amounts of macroeconomic data in the 2000’s, the factor model literature
split into two avenues as discussed in (Stock and Watson, 2016): (a) static factor
models extracting information from large datasets (Stock and Watson, 2002) and (b)
dynamic factor models extracting information from small panels of macroeconomic
data or targeted predictors (Ludvigson and Ng, 2010). Chen et al. (2011) and Fossati
(2016) employ large factor models to forecast US recessions. Fossati (2015) employs
small dynamic factors retrieved from three panels of financial, stock market and real
activity macro variables. For Canada, to the best of our knowledge, only Gaudreault
et al. (2003) estimate a dynamic factor to nowcast recession probabilities. The factor
is derived from total employment, real manufacturing shipments, real retail sales,
total housing starts and a U.S. coincident economic index.

In this paper we assess the predictability of Canadian recessions using different sets
of predictors at different forecast horizons. First, we retrieve six dynamic factors from

three macroeconomic panels of financial, stock market, and real activity indicators



from US and Canadian data, respectively. We then construct a dataset including the
six factors as well as individual indicators from Canada and the US and compare the
forecasting performance of models with and without these factors, as well as with
and without US indicators and factors. In order to deal with model uncertainty, we
compare the predictions of the best individual model from each subset, as well as a
Bayesian model average (BMA) of all models within a certain subset. By comparing
the forecast accuracy of models constrained to different subsets of predictors, we
attempt to answer the following three questions:

(1) Do indicators from the US economy add significant predictive power to fore-
casts of Canadian economic activity? Bernard and Gerlach (1998) show that including
the US yield spread as a second predictor in a probit regression of Canadian reces-
sions on the domestic yield spread significantly improves forecast accuracy in-sample.
However, it is not clear if this result holds out-of-sample or when more predictors from
the Canadian economy are added to the regression. On the other hand, it could be
the case that business conditions in Canada so strongly depend on business conditions
in the US that predictors from the US economy overall outperform predictors from
the Canadian economy. For inflation, Gosselin and Tkacz (2010) find evidence that
dynamic factors estimated from US data are better predictors of Canadian inflation
than factors estimated from Canadian data. We find that, although at longer forecast
horizons US interest rate spreads are consistently part of the best performing models,
there is little gain in predictive accuracy from adding US observed predictors and
factors.

(2) Do dynamic factor models that aggregate information from various macroe-
conomic indicators yield better predictions than forecasts that rely solely on the
underlying indicators as predictors? Castle et al. (2013) find that dynamic factors
are better at forecasting GDP at short forecast horizons, while their relative perfor-
mance declines as the forecast horizon increases. We find that this result holds for

forecasts of recessions. Models augmented with dynamic factors significantly outper-



form models estimated with observed data alone. Among the estimated factors, the
Canadian real activity factor is particularly successful at predicting turning points
at short horizons. On the other hand, we find that financial factors estimated from
interest rate spreads and exchange rates are the most successful at predicting reces-
sions at 6 to 12 months horizons, however, such long term forecasts including factors
improve only marginally upon forecasts made with the observed data alone.

(3) Does a Bayesian Model Average yield an improvement in forecast accuracy
over individual models? Following Raftery (1995), Hoogerheide et al. (2010) find
that BMA significantly reduces forecast error for US GDP growth and the S&P 500
index. Berge (2015) uses BMA to combine univariate probit models to forecast US
recessions. While averaging forecasts of a continuous series like GDP or inflation
makes intuitive sense as forecasts below the realized value of the reference series
average out with forecasts above the realized value, the picture is less clear in the
context of probability forecasts. The model with the best fit in-sample will predict the
lowest probabilities of recession for non-recession months and probabilities close to
one during recession months. The forecasts produced with this model are not likely
to be improved by being averaged with models of worse fit. However, an average
forecast might be more robust to out-of-sample estimation. Our findings indicate
that the answer to this third question is unequivocally a negative one. A Bayesian
average of all models does not improve upon the probability forecasts from the best
individual model within the respective subset. This holds true in-sample, where the
prediction error of the BMA is similar to the best individual model, but even more
so out-of-sample, where the BMA forecasts perform significantly worse than the best
individual models.

The remainder of this paper is organized as follows. Section 1.2 describes the
data as well as the methodology used to estimate the dynamic factors and probit
regressions. Section 1.3 summarizes the estimation results and section 1.4 concludes

the paper.



1.2 Methodology

In this section we describe the empirical methodology used in this paper. In sec-
tion 1.2.1 we discuss the estimation of dynamic factors from six subsets of Canadian
and US macroeconomic indicators. Next, we use these estimated factors together
with selected individual indicators to generate recession probabilities for the Cana-
dian economy. We present the predictive probit regressions and forecast evaluation
statistics used to select the best performing models in section 1.2.2. Finally, in section

1.2.3 we discuss the BMA strategy used to combine forecasts.

1.2.1 Dynamic Factors

Dynamic latent factors are estimated from 28 different indicators for the Canadian
economy and 30 indicators for the US economy. For estimation, the data set is
organized into six small panels or blocks.! For the US, we follow Fossati (2015)
and consider three panels: (1) a bond and exchange rates data set of 22 financial
indicators including interest rates, interest rate spreads, and exchange rates; (2) a
data set of 4 stock market indicators including stock price indexes, dividend yield,
and price-earnings ratio; (3) a data set of 4 real activity indicators including industrial
production, personal income less transfer payments, real manufacturing trade and
sales, and employment. Dynamic factors estimated from each of these three panels
have been found useful in many forecasting exercises. For example, Ludvigson and
Ng (2010) show that an important amount of variation in the two-year excess (US)
bond returns can be predicted by factors estimated from panels (1) and (2). Likewise,
the real activity variables in panel (3) have been used in Stock and Watson (1989),
Diebold and Rudebusch (1996), Kim and Nelson (1998), Chauvet (1998), Chauvet
and Piger (2008), Camacho et al. (2015), and Fossati (2015, 2016), among others, to
model real-time business conditions in the US economy. For Canada we also construct

three small panels of Canadian indicators with similar characteristics as those for the

1 See Ludvigson and Ng (2010) for a more detailed motivation to organize the data into blocks.



US economy. The three panels are: (1) a bond and exchange rates data set of 19
financial indicators including interest rates, interest rate spreads, and exchange rates;
(2) a data set of 5 stock market indicators including stock price indexes, dividend
yield, and price-earnings ratio; (3) a data set of 4 real activity indicators including
housing starts, production in manufacturing, credit card debt, and male employment.
In contrast to the US literature described above, the literature on dynamic factors for
the Canadian economy is small. For example, Gaudreault et al. (2003) and Bragoli
and Modugno (2016) use real activity dynamic factors estimated using both Canadian
and US data to nowcast business conditions in Canada. Similarly, Gosselin and
Tkacz (2010) use dynamic factors also estimated using both Canadian and US data
to successfully forecast the inflation rate in Canada.

For each of these six panels we estimate a dynamic factor model using Bayesian
methods and the following framework. Let z be a T' x N panel of macroeconomic

indicators where z;;, 7 =1,...,N and ¢t = 1,...,T, has a factor structure of the form

Ty = Ni(L)ge + e (1.1)

where g; is an unobserved dynamic factor, A\;(L) = Xjo+ i1 L+ - -+ ;s L® a polynomial
of order s, \;; are the dynamic factor loadings, and e;; the idiosyncratic error. The dy-
namics of the latent factor and of the idiosyncratic errors are driven by autoregressive

processes such that

&(L)g, = ny, m ~ i.i.d. N(0,07) (1.2)

1/12‘<L>€Z't = Vi, Vig ~ 2.4.d. N(O, O'?) (13)

where ¢(L) and ;(L) are polynomials of order p, and p., respectively. The factor
model is specified by assuming s = 2 and p, = p. = 1 for every panel so that
N(L) = XNo+Ain L+ Mo L%, (L) =1—¢L,and (L) =1—L fori=1,...,N. For

estimation, the dynamic factor model is written in state-space form and estimated

10



via Gibbs sampling following Kim and Nelson (1999) and Ludvigson and Ng (2010).2
Identification is achieved by setting \;p = 1, that is the factor loading on the first

time series in each panel to 1. Finally, the parameters A;; and 1; are initialized to

2
g’

2

zero, o;, and o; are initialized to 0.5, and principal components is used to initialize
the dynamic factor. The Gibbs sampler runs 6,000 times. After discarding the first
1,000 draws (burn-in period), posterior means are computed using a thinning factor
of 10, that is computed from every 10th draw.

The variables included in each panel, as well as their sources and the transfor-
mations employed, are described in the appendix. Our data set starts in 1967:1 and
ends in 2010:12. Prior to estimation, the data are transformed to ensure stationar-
ity and standardized. Since real activity variables are usually available with some
lag, we account for data availability at time ¢ by using the last known value x;_p,
where p indicates the publication lag of variable 7. Publication lags for US indica-
tors are adopted from Katayama (2010). Publication lags for Canadian real activity
indicators are obtained from Statistics Canada. Figures 1.1 and 1.2 depict the three
estimated factors from the full sample of Canadian and US data, respectively. The
shaded areas indicate recession periods in Canada (Cross and Bergevin, 2012). Both
sets of factors display similar characteristics. For example, periods of recession are
coincident with dips in the real activity factors and major troughs correspond closely
to Canadian recession dates. On the other hand, dips in the financial factors seem
to precede recession periods. Finally, the stock market factors are characterized by

higher volatility and no obvious correlation with recession months emerges from this

plots.

1.2.2 Predictive Probit Regressions

The recession indicator for the Canadian economy is defined as follows. Let y;.5 be

a binary variable which equals 1 if the month ¢ + A is subsequently declared as a

2 While the dynamic factors can also be estimated by maximum likelihood, Gibbs sampling
provides a more robust alternative for the out-of-sample recursive exercises implemented below.
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Figure 1.1: Full sample estimates (posterior means) of the CA dynamic factors. Shaded
areas denote recession months in Canada according to the chronology of the C.D. Howe
Institute (Cross and Bergevin, 2012).
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Figure 1.2: Full sample estimates (posterior means) of the US dynamic factors. Shaded
areas denote recession months in Canada according to the chronology of the C.D. Howe
Institute (Cross and Bergevin, 2012).
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recession and 0 otherwise. A forecast of the probability of a recession in month ¢ + A

(peyn) from a probit regression is then given by

Pesn = P(yeyn = 1] 2) = ©(B'2), (1.4)

where ®(-) is the standard normal cumulative distribution function, g is a vector of
coefficients, and z; is a k x 1 vector of predictors including an intercept. In this paper,
we use the business cycle classification provided by Cross and Bergevin (2012) of the
C.D. Howe institute.?

Our set of potential predictors includes 58 individual indicators and the six dy-
namic factors estimated from the small panels the individual indicators. To make
estimation feasible, we restrict our attention to a subset of individual indicators and
the six factors. The selected individual indicators (highlighted with an asterisk in
the data appendix) include 14 Canadian indicators (interest rates, exchange rates,
interest rate spreads, stock market indexes, and real activity variables) and 5 US
indicators (interest rates, interest rate spreads, a stock market index, and industrial
production). This set of 19 individual indicators is a mix of variables previously used
in the literature, e.g. Hao and Ng (2011), and indicators that are found to be good
individual predictors. Finally, we restrict the probit models to a maximum number
of three predictors (in addition to an intercept). In total, based on the 25 predictors
(including factors), 2625 models are evaluated in this best subset selection exercise.*
All models are estimated in-sample as well as recursively out-of-sample. We eval-

uate the in-sample fit of each model using McFadden’s pseudo-R* (R? ;) which is

defined as
InL
R, =1——2 (1.5)
lnLO

3 We verified the robustness of our results using the recession classification adopted by Atta-
Mensah and Tkacz (1998) and Hao and Ng (2011) who extend existing series using a rule of thumb
of six months of negative gross domestic product growth. Results are not significantly different to
our baseline estimation using the C.D. Howe recession dates.

4 These 2625 models include 25 one-variable models, 300 two-variable models, and 2300 three-
variable models.
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where L, is the value of the log-likelihood function evaluated at the estimated pa-
rameters and Ly is the log-likelihood computed only with a constant term. Predicted
probabilities of recession, both in-sample and out-of-sample, are evaluated using two
popular statistics. The first statistic is the quadratic probability score (QPS), which

is equivalent to the mean squared error and is defined as

9

QPS = > (Uin — Bren)’, (1.6)

t=1
where T™ is the effective number of forecasts and p; ), = @(B’ 2;) is the predicted prob-
ability of recession for month ¢ + h for a given model. The QPS can take values from
0 to 2 and smaller values indicate more accurate predictions. In addition, recession
probabilities are also evaluated using the log probability score (LPS) which is defined

as

T*
1 . .
LPS = T ; [Yesn10g(Dern) + (1 — Yeyn) log(L — Prian)] - (1.7)

The LPS can take values from 0 and +oo and smaller values indicate more accurate

predictions. Compared to the QPS, the LPS score penalizes large errors more heavily.

1.2.3 Bayesian Model Averaging

We use BMA to combine predicted probabilities of recession obtained from the 2625
probit regressions. One of the advantages of BMA is that its forecasts tend to improve
accuracy when there is uncertainty about the true model.® However, there are few
papers exploring BMA in the context of predicting probabilities of recession. For
example, Berge (2015) uses model selection and model averaging strategies (including
BMA) to evaluate the information content in many economic indicators as predictors
of US business cycle turning points. Similarly, Guérin and Leiva-Leon (2014) combine
recession probabilities obtained from univariate and multivariate regime-switching

models using BMA and other averaging strategies. Both papers find that BMA can

® See, for example, Faust et al. (1996), Wright (2008), and Groen et al. (2013), among others.
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yield improvements in forecast accuracy and highlight the importance of allowing for
time variation in the models” weights as the best forecasting models typically change
over time. In addition, we use the weights assigned to the BMA forecasts to evaluate
the predictive content of the dynamic factors vis-a-vis the individual predictors.
The approach we follow to average recession probabilities is similar to Berge
(2015). First, from each of the M models estimated in section 1.2.2 we obtain a
forecast pyip, resulting in {p;,,,, D7,p, - Drint. The BMA combined forecast assigns

each of the M models a weight w;, ¢ = 1,..., M, such that
M
PENA = pipwi (1.8)
i=1

where w; = P(M; | D) is the posterior probability of model i conditional on observed

data D. The posterior probability of model ¢ is given by

P(D | M;)P(M;)

P(M;| D) = —;
23:1 P<D | Mj>P<Mj)

(1.9)

where P(D | M;) is the marginal likelihood of model i and P(M;) is the prior probabil-
ity that model 7 is true. Calculating the marginal likelihood can be a high-dimensional
and intractable problem. We follow much of the literature and use the BIC approx-
imation as discussed in Raftery (1995). When each model is deemed to be equally
likely a priori, the i-th model posterior probability can be approximated by its fit

relative to the fit of all other models such that

BIC;
P(M;| D) = fj‘p( C) (1.10)
> exp (BICG))
As suggested in Raftery (1995), the BIC for model i is defined as
BIC, = —LR; + kInT (1.11)

where LR; is the likelihood ratio test statistic for testing model ¢ against a model

with only a constant term, k& is the number of predictors, and 1" is the sample size.
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1.3 Results

In this section we compare the predictive performance of the different models, as
well as the BMA predictions. In addition, we compare the predictive performance of
models that include dynamic factors to models that do not include factors. Similarly,
we compare the performance of models that include US data (factors and indicators)
to models that include only Canadian data. All models are estimated in-sample (using
the full set of available observations), as well as out-of-sample (using only observations

up to the time the forecast would have been made to mimic real-time forecasting).

1.3.1 In-Sample Results

We start by assessing the individual in-sample predictive content of each variable at
different forecast horizons. To this end, we estimate one-variable probit models by
regressing the recession series v, for h € {1, ..., 18} on each indicator and estimated
factor separately. The models are estimated using data starting in 1967:3 and ending
in 2010:12, that is, the full sample. Figure 1.3 plots the regression anf coefficients
versus the forecast horizon h. Gray lines represent the coefficients for the individual
indicators while blue lines depict the R? , coefficients for the estimated dynamic
factors. We present the results following the six panels described above, with models
estimated with Canadian data on the left panels and models estimated with US data
on the right panels. When comparing the R?nf coefficients across different forecast
horizons we see similar results for US and Canadian indicators and factors, but US
variables overall have lower individual predictive content for Canadian recessions.
The results show that the predictive content of bond and exchange rate variables is
relatively low at short horizons, but rises as the forecast horizons increase to peak at
about 12-months ahead forecasts. The stock market indicators have relatively little
predictive content. The average predictive content of stock market variables peaks

between 3 to 6 months. On the other hand, the real activity indicators have very
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Figure 1.3: In-sample predictive content of CA and US indicators and factors. Gray lines
indicate R?nf coefficients of observable predictors, blue lines indicate anf coefficients of the
dynamic factor estimated from the corresponding group of indicators.

strong predictive content at short forecast horizons. In particular, notice that the
proposed Canadian real activity factor improves significantly upon any of the anf
cocfficients for the observable indicators.

Next, we estimate all combinations of 3-variable probit models as described in
section 1.2.2. Table 1.1 reports the in-sample QPS and LPS for the best individual
models, as well as the BMA results. Three sets of models can be distinguished. The
first set uses the observable indicators and estimated factors, and uses both Canadian
and US data (first column). The second set includes models only estimated with the
observable indicators, that is, without any of the estimated factors (second column).
The third set includes all the models estimated using only Canadian data, that is,
without any US data (third column). All variables are for the Canadian economy

unless indicated otherwise. For h = 1, the shortest forecast horizon considered, the
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best model (985) includes housing starts (H.S), the 10-year Canadian yield spread
(Y'Si0), and the Canadian real activity factor (real®4). If factors are excluded from
the set of predictors, the best model (2312) uses credit card debt (CCD), male
employment (EM P), and the 5-year yield spread (Y'Ss). Excluding the Canadian
real activity factor, however, results in a substantial deterioration in fit (larger QPS
and LPS values). Finally, since the best model includes only Canadian data, for h = 1
the selected model does not change when US variables are excluded.

When the forecasting horizon is increased to 3 months (h = 3) we find that the best
performing models are the same as for h = 1. The models, however, exhibit a small
deterioration in fit due to the reduced predictive content of the Canadian real activity
factor at longer horizons. In contrast, as the forecasting horizon is increased to 6 and
12 months, the best performing models change and US variables start appearing in
them. For example, at h = 6 the best performing model (1563) now includes the 10-
year Canadian yield spread (Y S}g), the equivalent 10-year US yield spread (Y S{7),
and the US real activity factor (realV®). For h = 12, the best performing model
(2256) drops the US real activity factor and incorporates the 5-year US yield spread
(Y'SYS). As a result, for 6 and 12 month ahead forecasts, the performance of the
best models deteriorates when US variables are excluded from the potential set of
predictors. On the other hand, when the dynamic factors are excluded we observe
a deterioration in the forecasting performance at 1, 3, and 6 months, but not at 12
months.

Next, we focus on the in-sample performance of the BMA forecasts. The results
reported in Table 1.1 show that BMA delivers an in-sample performance that is
essentially identical to the one reported for the best performing models. For h =
1, Figure 1.4 shows that about 70% weight is given to the best performing model
(985), while 12% weight is given to a slightly different model where the 10-year yield
spread (Y Syg) is substituted with the 5-year spread (Y'Ss). For h = 3, the same two

models receive about 60% and 19% weight, respectively. Similarly, for h = 6 the best
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Table 1.1: Model comparison of in-sample results

all variables

w/o factors

w/o US variables

h=1 Best BMA Best BMA Best BMA
Model 985 - 2312 - 985 -
Varl real® Y S5 — real® —
Var2 YSl() - cCD - YSl() -
Var3 HS - EMP - HS -
QPS 0.07 0.07 0.11  0.11 0.07 0.07
LPS 0.11 0.11 0.19 0.19 0.11 0.11
T 525 525 525 525 525 525
all variables w/o factors w/o US variables
h=3 Best BMA Best BMA Best BMA
Model 985 - 2312 - 985 -
Varl real® Y S5 — real® —
Var2 YSl() - cCD - YSIO -
Var3 HS - EMP - HS -
QPS 0.09 0.09 0.12  0.12 0.09 0.09
LPS 0.15 0.15 0.21 0.21 0.15 0.15
T 523 523 523 523 523 523
all variables w /o factors w/o US variables
h= Best BMA Best BMA Best BMA
Model 1563 - 2316 - 985 -
Varl realVs Y S5 — real® —
Var2 YSl() - cCD - YSl() -
Var3 Yy St - Yy sS4 - HS -
QPS 0.11 0.11 0.12 0.12 0.11 0.11
LPS 0.17 0.17 0.20 0.20 0.19 0.19
T 520 520 520 520 520 520
all variables w /o factors w/o US variables
h =12 Best BMA Best BMA Best BMA
Model 2256 - 2256 - 1860 -
Varl YSl() - YSlo - IBR -
Var2 ysys o - ysys - Y S5 —
Var3 Yy Sty - Y sS4 - cCD -
QPS 0.10 0.10 0.10 0.10 0.11 0.12
LPS 0.19 0.19 0.19 0.19 0.20 0.20
T 514 514 514 514 514 514

Notes: The column “Best” refers to the best performing individual model
according to QPS. Variable descriptions can be found in the data appendix.
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Figure 1.4: In-sample BMA weights for each of the 2625 3-variable probit models at different
forecast horizons.

performing model (1563) receives 82% of the weight, while 18% weight is given to
a very similar model. Finally, for h = 12 we find that 99% of the weight is given
to the best performing model (2256). Several conclusions can be drawn from the
in-sample BMA results. First, at all horizons, the best performing model according
to QPS receives the highest weight in the BMA forecast. Second, BMA gives positive
weight to few models, and these models are generally very similar with respect to
the variables they contain. As a result, BMA weights are highly concentrated on few
very effective predictors and BMA forecasts end up being very similar to the ones

obtained from the best forecasting models.

In sum, our in-sample results show that Canadian real activity indicators (housing
starts and employment) and particularly the Canadian real activity factor are the
preferred variables for generating short term (1 to 3 months) recession probabilities
of the Canadian economy. At longer horizons (6 to 12 months), the preferred variables

include Canadian and US yield spreads, mainly the 10-year yield spread. In terms
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Figure 1.5: In-sample predicted probabilities of recession for the best performing 3-variable
probit models at different forecast horizons: with factors (blue); without factors (gray).

of the questions formulated in the introduction, we find the following results: (1)
Excluding US data results in a very small deterioration in fit at longer horizons; (2)
Excluding factors can result in a substantial deterioration in fit at shorter horizons; (3)
BMA forecasts cannot improve the performance of the best model selected by QPS. To
illustrate point (2), Figure 1.5 shows the in-sample predicted probabilities of recession
for the best performing models with and without factors. For forecast horizons of 1
and 3 months, the best model with factors produces recession probabilities that are
closer to 0 during expansions and closer to 1 during recessions. This improvement,

however, vanishes as the forecasts horizon is extended to 6 and 12 months.

1.3.2 Out-of-Sample Results

We now evaluate the performance of the models in a recursive out-of-sample forecast-

ing exercise.® In this case, the set of observations is divided into an initial estimation

6 This exercise uses ex-post revised data (instead of real-time data) to generate out-of-sample
predicted recession probabilities for each of the models.
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sample from 1967:3 to 1988:1 (251 — h effective observations) and a hold-out sample
with the remaining observations. A direct h-step ahead forecast is produced for each
period in the hold-out sample, with the first forecast made for 1988:14+-h and the last
for 2010:12. As a result, the hold-out sample includes 275 out-of-sample predictions
when h = 1, 273 predictions when h = 3, 270 predictions when h = 6, and 264
predictions when h = 12. First, the dynamic factors are estimated recursively, each
period using data available at time ¢, and expanding the estimation window by one
observation each month. Next, the probit models are also estimated recursively and
used to generate a recession probability for month t + i based the information avail-
able at month t. We account for data availability at each point in time by adjusting
for the publication lag in real activity variables (see, for example, Katayama, 2010;
Fossati, 2015).

Table 1.2 reports the out-of-sample QPS and LPS for the best individual models,
as well as the BMA results. For h = 1, the best model (985) is the same model
found in-sample and includes housing starts (HS), the 10-year Canadian yield spread
(Y'Sy), and the Canadian real activity factor (real®?). At longer horizons, the
observations made in-sample largely translate to the out-of-sample results but with
some differences. For example, US variables now appear more often and at shorter
forecast horizons. The 10-year US yield spread (Y SY7) is selected at h = 3 and 6,
the US real activity factor (realV®) is selected at h = 3, the US stock market factor
(stockV) is selected at h = 6, and the Federal Funds Rate (F'FU®) is selected at h =
12. But while US variables appear to be more relevant, excluding US variables from
the potential set of predictors has almost no effect in the out-of-sample performance
of the models (mainly larger LPS values at h = 3 and 6). On the other hand, at
shorter forecast horizons we find that factors improve the out-of-sample performance
of the models and excluding the estimated factors from the set of predictors results
in a deterioration in fit.

“Best” refers to the best performing individual model according to QPS. Variable
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descriptions can be found in the data appendix.

We now focus on the out-of-sample performance of the BMA forecasts. One ad-
vantage of averaging is that BMA weights are re-computed for each period in the
hold-out sample. As a result, the models and therefore the variables that are good
predictors are allowed to change over time. Figure 1.6 shows each of the model’s
weight for each of the out-of-sample predictions. For example, for the 1-month fore-
cast, before the first recession in the hold-out sample the dominant model in the
BMA forecast (green line) includes the Canadian real activity factor (real®%), the
US financial factor (bond”?), and the US real activity factor (realV®). During the
two recession periods BMA assigns most weight to a model (blue line) that includes
the Canadian real activity factor, the Canadian financial factor (bond“4), and hous-
ing starts (H.S). In contrast, between the two recession periods the dominant model
(purple line) includes the Canadian real activity factor, the US financial factor, and
housing starts. Finally, after the last recession BMA assigns most weight to a model
that includes the Canadian real activity factor, the 10-year yield spread, and housing
starts (that is, the model with best in-sample fit). The out-of-sample BMA weights
for other forecast horizons paint a similar picture. For the 3-month forecasts, BMA
allocates most weight to the same variables as 1-month ahead. For the 6-month fore-
casts, the models with highest weight include the Canadian real activity factor, the
10-year yield spread, and housing starts as the most selected predictors. Finally, the
12-month ahead forecasts include variables such as the Canadian and US financial
factors, as well as Canadian and US yield spreads. At each horizon, all other models
get very low weight throughout the entire hold-out sample period. As a result, al-
though the dominant model changes over time, essentially the same set of variables
is selected consistently for each forecast horizon.

In terms of the recursive out-of-sample performance of the BMA forecasts, the
results reported in Table 1.2 show that averaging cannot improve the accuracy of the

best models selected by QPS. In fact, averaging can result in a substantial deteriora-
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Figure 1.6: Out-of-sample BMA weights for each of the 2625 3-variable probit models esti-
mated recursively at different forecast horizons.

tion in accuracy at longer horizons. Overall, the out-of-sample results are consistent
with the in-sample results discussed above and show that real activity variables (the
Canadian and US real activity factors, housing starts, etc.) are the preferred vari-
ables for generating short term (1 to 3 months) recession probabilities of the Canadian
economy. At longer horizons (6 to 12 months), the preferred variables include the
Canadian and US financial factors, as well as yield spreads. In terms of the questions
formulated in this paper, we find the following results: (1) Excluding US data results
in no substantial deterioration in out-of-sample fit; (2) Excluding factors can result
in a deterioration in fit at shorter horizons; (3) BMA forecasts cannot improve the
performance of the best model selected by QPS. Finally, Figure 1.7 shows the out-of-
sample predicted probabilities of recession for the best performing models with and
without factors. For forecast horizons of 1 and 3 months, the best model with factors
produces produces recession probabilities that are closer to 0 during expansions and

closer to 1 during recessions. On the other hand, no improvements are observed for
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Figure 1.7: Out-of-sample predicted probabilities of recession for the best performing 3-
variable probit models at different forecast horizons: with factors (blue); without factors

(gray).

forecast horizons of 6 and 12 months.

1.4 Conclusion

In this paper, we show which groups of predictors can be used to best forecast reces-
sions in Canada. We use best subset selection as well as Bayesian model averaging to
compare the predictive power of models with and without dynamic factors as well as
with and without US variables. We close this paper with a few concluding remarks.

Firstly, Our findings confirm the importance of domestic yield spreads in making
predictions at any forecast horizon (Atta-Mensah and Tkacz, 1998). Yield spreads
appear in some form in every single model selected by best subset selection and are
best complemented with real activity indicators at short forecast horizons and with
financial indicators at long forecast horizons. Stock market indicators generally do

not exhibit significant predictive content at any forecast horizon. This mirrors the
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results of Fossati (2015) who finds that among three estimated factors (financial,
stock market, real activity), the stock market factor holds the least predictive power
to forecast US recessions.

The use of US data in forecasting Canadian recessions can improve long term
forecasts but is less useful at shorter forecast horizons. This is in line with the notion
that spillovers from the US affect economic conditions in Canada with a delay (Beaton
et al., 2014). Our findings are similar to the results of Bragoli and Modugno (2016)
who find that US variables matter when nowcasting Canadian GDP and confirm the
finding of Bernard and Gerlach (1998) that US yield spreads add predictive power
to Canadian recession forecasts at medium and long forecast horizons, but not at
shorter ones. Our results however do not go as far as Gosselin and Tkacz (2010) who
find that Canadian inflation can be forecast with dynamic factors solely estimated
from US data. Canadian macro indicators remain the most important predictors of
Canadian recessions.

We estimate a new Canadian real activity factor that can be used to accurately
predict recessions in the short term and significantly improves upon the predictive
power of its underlying macro series. Our findings are in line with Castle et al.
(2013) who show that dynamic factors perform better than observable data at short
forecast horizons. Our factor, extracting the co-movement in Canadian housing starts,
production in manufacturing, credit card debt and male employment, can be used as
a coincident indicator due to its strong correlation with the Canadian business cycle.
It can be considered an update to the factor estimated by Gaudreault et al. (2003).
Small dynamic factors generally are better predictors than their underlying observed
series due to a reduction in noise and the addition of autoregressive terms within the
factor. By augmenting probit models with dynamic factors, the advantages of static
probit models to predict turning points and the advantages of dynamic structures
in predicting recession duration as found in Hao and Ng (2011) can be combined.

Dynamic factors are therefore more robust to out-of-sample estimation.
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Finally, Bayesian model averaging assigns significant weight only to few but similar
models. The best individual models receive the highest weight within the in-sample
BMA forecast. Out of sample, BMA forecasts perform significantly worse than the

best individual models.
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Data Appendix

The following tables list the short name, transformation applied, and a data descrip-
tion of each series in the six groups considered. Canadian data are retrieved from the
statistics Canada CANSIM database as well as the OECD. All US bond, exchange
rates, and stock market series are from FRED (St. Louis Fed), unless the source is
listed as GFD (Global Financial Data), or AC (author’s calculation). Data for the
US real activity factor are from Camacho et al. (2015). The transformation codes

are: 1 = no transformation; 2 = first difference; 3 = first difference of logarithms.

CA Variables

Short Name Trans. Description

Bond and FExchange Rates Factor

1*  BR 2 Bank rate (Percent)

2 GB.10Y 2 Governement marketable bonds average yield (over 10 years)
3 GB.5Y 2 Governement marketable bonds average yield(5-10 years)

4 GB.3Y 2 Governement marketable bonds average yield (3-5 years)

5 GB.1Y 2 Governement marketable bonds average yield (1-3 years)

6 PCP.3M 2 3 months prime corporate paper

7 PCP.2M 2 2 month prime corporate paper

8 PCP.1M 2 1 month prime corporate paper

9 MLR.5Y 2 Average residential mortgage lending rate: 5 year

10* IBR.3M 2 Short-term interest rates; Per cent per annum

11*  EX.US 2 United States dollar, noon spot rate, average

12 EX.JAP 2 Japanese yen, noon spot rate, average

13 EX.SWIT 2 Swiss franc, noon spot rate, average

14* EX.UK 2 United Kingdom pound sterling, noon spot rate, average

15%  YS.10Y.3M 1 Yield Spread b/t 10-yr bond and 3-m prime (AC)

16* YS.5Y.3M 1 Yield Spread b/t 5-10-yr bond and 3-m prime (AC)

17 YS.3Y.3M 1 Yield Spread b/t 3-5-yr bond and 3-m prime (AC)

18 YS.1Y.3M 1 Yield Spread b/t 1-3-yr bond and 3-m prime (AC)

19*  M1.2005 3 Narrow Money (M1) Index 2005=100; SA

Stock Market Factor

20* TCI.C 3 TSX Composite Index; Close (2000=1000)

21  ST.EX.C 2 Exchange;stockyields(composite);closingquotations(Percent)
22*% SP 3 Share Prices; Index 2005=100

23 TSX.VAL 3 Toronto Stock Exchange, value of shares traded (x 1,000,000)
24  TSX.VOL 3 Toronto Stock Exchange, volume of shares traded (shares x 1,000,000)
Real Factor

25% HS 1 Housing starts index; total units

26%* PROD.MAN 3 Production in total manufacturing sa; 2005=100

27% CCD 3 Credit Card Debt; At month-end; sa ; Total outstanding balances
28* EMP.M 2 Employed population; Aged 15 and over; Males

29%  GDP 3 Gross domestic product, factor cost 1992 const. prices
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US Variables

Short Name Trans. Description

Bond and Exchange Rates Factor

1*  Fed Funds

Interest Rate: Federal Funds (Effective) (% per annum)

2 Comm paper Commercial Paper Rate

3 3-m T-bill Interest Rate: USTreasury Bills, Sec Mkt, 3-Mo. (% per annum)

4 6-m T-bill Interest Rate: USTreasury Bills, Sec Mkt, 6-Mo. (% per annum)

5 1-y T-bond Interest Rate: USTreasury Const Maturities, 1-Yr. (% per annum)
6 5-y T-bond Interest Rate: USTreasury Const Maturities, 5-Yr. (% per annum)
7 10-y T-bond Interest Rate: USTreasury Const Maturities, 10-Yr. (% per annum)
8 AAA bond Bond Yield: Moody’s AAA Corporate (% per annum) (GFD)

9  BAA bond Bond Yield: Moody’s BAA Corporate (% per annum) (GFD)

10  CP spread

11 3-m spread
12 6-m spread
13 1-y spread
14*  5-y spread
15*% 10~y spread
16 AAA spread
17  BAA spread
18  Ex rate: index
19  Ex rate: Swit
20 Ex rate: Jap
21 Exrate: U.K.
22 Exrate: Can

O W W W W == = = RDR NN N NN NN

Comm paper — Fed Funds (AC)

3-m T-bill - Fed Funds (AC)

6-m T-bill — Fed Funds (AC)

1-y T-bond — Fed Funds (AC)

5-y T-bond — Fed Funds (AC)

10-y T-bond — Fed Funds (AC)

AAA bond — Fed Funds (AC)

BAA bond — Fed Funds (AC)

Exchange Rate Index (Index No.) (GFD)

Foreign Exchange Rate: Switzerland (Swiss Franc per USS$)
Foreign Exchange Rate: Japan (Yen per USS$)

Foreign Exchange Rate: United Kingdom (Cents per Pound)
Foreign Exchange Rate: Canada (Canadian$ per US$)

Stock Market Factor

23*  S&P 500 3 S&P’s Common Stock Price Index: Composite (1941-43=10) (GFD)

24 S&P indst 3 S&P’s Common Stock Price Index: Industrials (1941-43=10) (GFD)

25 S&P div yield 3 S&P’s Composite Common Stock: Dividend Yield (% per annum) (GFD)
26 S&P PE ratio 3 S&P’s Composite Common Stock: Price-Earnings Ratio (%) (GFD)

Real Factor

27% 1P 3 Industrial Production Index - Total Index

28  PILT 3 Personal Income Less Transfer Payments

29 MTS 3 Manufacturing and Trade Sales

30 Emp: total 3 Employees On Nonfarm Payrolls: Total Private
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Table 1.2: Model comparison of out-of-sample results

all variables

w/o factors

w/o US variables

h=1 Best BMA Best BMA Best BMA
Model 985 - 2312 - 985 -
Varl real®4 — Y S5 — real®? —
Var2 YSl() - cCD - YSl() -
Var3 HS - EMP - HS -
QPS 0.11 0.11 0.13 0.14 0.11 0.11
LPS 0.21 0.26 0.24 0.26 0.21 0.25
T 275 275 275 275 275 275
all variables w/o factors w/o US variables
h=3 Best BMA Best BMA Best BMA
Model 1563 - 2312 - 952 -
Varl real”s — Y S5 — real®? —
Var?2 Y S10 — CcCD - EXys -
Var3 Y Si° - EMP - Y Ss -
QPS 0.15 0.18 0.16  0.16 0.15 0.18
LPS 0.26 0.45 0.28 0.30 0.29 0.42
T 273 273 273 273 273 273
all variables w /o factors w/o US variables
h= Best BMA Best BMA Best BMA
Model 1392 - 2259 - 986 -
Varl stockUs Y Sio — real®4 —
Var?2 YSl() - YS%S - YSIO -
Var3 Y SYS - SpUs MAN -
QPS 0.15 0.18 0.16  0.17 0.16 0.18
LPS 0.31 0.40 0.30 0.36 0.35 0.40
T 270 270 270 270 270 270
all variables w /o factors w/o US variables
h=12 Best BMA Best BMA Best BMA
Model 1850 - 1850 - 1847 -
Varl IBR - IBR - IBR -
Var2 Y S10 - Y Sio - Y Sio -
Var3 FFUS FFUS cCcD -
QPS 0.13 0.21 0.13 0.14 0.13 0.21
LPS 0.21 0.37 0.21 0.22 0.21 0.35
T 264 264 264 264 264 264

Notes: The column “Best” refers to the best performing individual model
according to QPS. Variable descriptions can be found in the data appendix.
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Chapter 2

Forecasting Canadian Recessions:
Making Use of Supervised Machine
Learning

2.1 Introduction

A recession is a pronounced, pervasive, and persistent decline in aggregate economic
activity that is associated with high welfare costs for society. Predicting recession
probabilities through econometric modeling can therefore provide valuable informa-
tion to policy makers, business and the public. To forecast recessions, a multitude of
economic variables are publicly available that are potentially good predictors, many
of which have little or no predictive power. A common issue in the discipline of
forecasting is making efficient use of such sparse and high dimensional data space.
Especially in time series data, where the number of observations is usually small com-
pared to the number of potential predictors, degrees of freedom decrease rapidly and
conventional econometric modeling techniques quickly reach their limits - the curse
of dimensionality. Supervised machine learning methods address this problem by
performing variable selection and model estimation simultaneously and are therefore
becoming increasingly popular in econometrics (Varian, 2014; Horowitz, 2015; Athey
and Imbens, 2017). The analysis in this paper is the first application of supervised

machine learning to forecast Canadian recessions.
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In big data environments, forecasters traditionally face the problem of either ar-
bitrarily selecting a small subset of variables to be included in a predictive model
or to employ dimensionality reduction techniques. Following the former approach,
Estrella and Mishkin (1998) employ univariate static probit regression to examine
the predictive power of a small set of hand selected macroeconomic variables. They
find strong evidence that the yield spread, defined as the difference between 10-year
and 3-months treasury bond yield, is the single most powerful predictor of US reces-
sions. Recently this result has been questioned by Ng and Wright (2013) who argue
that yield spreads have lost their predictive power during the 2008/2009 recession
in the US. Chauvet and Potter (2005) and Kauppi and Saikkonen (2008) extend the
analysis allowing for dynamic and autoregressive structure in the probit specification,
but focus solely on the yield spread as explanatory variable. The importance of the
yield spread as leading indicator is mirrored by Atta-Mensah and Tkacz (1998) for
Canada. The authors define Canadian yield spreads as the difference between the
yields of long term government bonds and the 90-day commercial paper rate.

Making use of dynamic and autoregressive probit specifications, Hao and Ng
(2011) expand the number of possible predictors to a set of 13 selected macro series.
From this set of potential predictors they derive the best 3 variable probit model via
best subset selection. Their best performing models include lagged values of the 10-
year Canadian yield spread, housing starts, the growth rate of the M1 money stock
and a leading economic indicator that Statistics Canada has since ceased to publish.
In line with Bernard and Gerlach (1998) they find that US yield spreads hold predic-
tive power at longer forecast horizons. A problem that arises in each of these studies
is that it is not a priori clear which variables should be included in the forecast-
ing model. While hundreds of macro variables are readily available, computational
feasibility traditionally limits the analysis to a small set of selected or pre-screened
variables.

The latter approach to address the degrees of freedom problem relies on dimen-
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sionality reduction methods that aggregate the data space. Dynamic factor models
retrieve a common autoregressive trend from a small number of selected explana-
tory variables (Stock and Watson, 1989, 1992); principal component analysis extracts
multiple static factors from a large set of predictors.! Fossati (2015) uses dynamic
factors estimated from small panels of macro data, Chen et al. (2011) and Fossati
(2015) employ factors estimated from large sets of macro data to predict US reces-
sions. Gaudreault et al. (2003) and Fossati et al. (2017) use dynamic factors retrieved
from a small set of selected variables to predict recessions in Canada. While large
data macro factors allow for a non-discriminatory approach to variable selection, ex-
tracted factors may have little correlation with the targeted recession variable. If the
macro factor is extracted from a small set of targeted predictors, the researcher again
faces the problem of which variables to include in the estimation.

Recently, two methods have been introduced to the discipline of econometrics
that address the conundrum of variable selection by performing estimation and vari-
able selection simultaneously: gradient boosting and penalized regression.? Penalized
regression adds a penalty term to the estimation’s likelihood function that lets co-
efficients of irrelevant variables shrink to zero. The method applied in this paper is
the logistic lasso (least absolute shrinkage operator) developed by Tibshirani (1996).
Applications of the lasso in the economic forecasting literature are still rare. Notable
exemptions are Li and Chen (2014) who use lasso models to forecast several macroe-
conomic variables and Bai and Ng (2008) who use lasso as a soft thresholding rule to
pre-screen a data set to be used in the estimation of macro factors.

While lasso selects relevant variables within a model, boosting obtains its predic-
tion by averaging over many distinct models. Boosting “combines models that do
not perform particularly well individually into one with much improved properties”

(Ng, 2014). Recently, Ng (2014) and Berge (2015) have used boosting to forecast US

1Stock and Watson (2016) give an overview.
2See Varian (2014) for an introduction.
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recessions.

In this paper, I employ several specifications of the lasso and boosting models to
forecast Canadian recessions at different forecast horizons. Each specification is eval-
uated with respect to its predictive accuracy in an out-of-sample forecasting exercise.
A non-discriminatory approach to data selection allows me to identify new variables
that serve as important leading indicators and have previously been ignored in the
literature. I further demonstrate how the optimal forecasting model changes over
time, providing evidence of structural instability. The paper should also be seen as
an exploration into forecasting economic variables in a big data environment, as the
methods discussed here can easily be applied to related problems.

The rest of this paper is organized as follows. Section 2.2 discusses the data.
Section 2.3 introduces lasso and boosting. The main difference between these models
and those conventionally used in econometrics is that lasso and boosting utilize super-
vised learning, i.e. a model’s performance feeds back into estimation of the model’s
parameters. Section 2.4 describes several versions of this data driven approach to
model selection in detail. Section 2.5 examines the models’ forecasting abilities. In a
pseudo real-time experiment, historical recession probabilities are estimated utilizing
only data that would have been available at the point the forecast is made. The sec-
tion also includes extensions to the lasso and boosting models that further improve
the fit. Section 2.6 examines the selected variables of the default lasso and boosting

model. Section 2.7 concludes the paper.

2.2 Data

I employ a large set of macroeconomic data including 134 monthly variables for the
US economy and 445 monthly variables for the Canadian economy.?> The variables

are transformed to ensure stationarity and standardized as described in the appendix

3The inclusion of US data is motivated by the notion of spillovers from the US economy (Beaton
et al., 2014). More specifically, Bernard and Gerlach (1998) find that the US yield spread adds
significant predictive power to forecasts of Canadian recessions at medium and long forecast horizons.
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(section A.2). The final data set includes twelve lags of each variable adjusted for
publication lag. This means that if a variable is not publicly available for two month
after its realization, the variable itself and the first lag of the variable are omitted
from the data set, but lag two to twelve are included. The data is partitioned into a
training set that is used to initially estimate the models, and a test or hold-out set
that is used to recursively produce out-of-sample forecasts. The training set starts in
1968:2 and includes 142 observations up to 1979:12. The hold-out set starts in 1980:1
and includes 420 observations up to 2014:12.

Combining the Canadian and US data sets yields a zp.x matrix of K = 5764
potential explanatory variables and 7" = 562 time periods. While publication lag is
taken into account, data revisions are not. Unfortunately, different vintages of the
data are not available for the Canadian economy. This is no doubt a shortcoming,
however Chauvet and Piger (2008) find that there is no significant advantage of using
real time data over revised data when identifying recessions. Next, I will briefly
discuss the Canadian data, the US data and the reference series.

All Canadian data are retrieved from Statstics Canada’s CanSim database. As
the models are supposed to select relevant variables themselves, my approach to data
selection is non-discriminatory. I collect all economic series that are available monthly
over the time frame and are still being updated. I limit my analysis to economic
variables at the federal level. A multitude of series are available at the provincial
level. However, this data is not included in the analysis.* The series are then tested
for duplicates and ordered into the same groups as the US data. I construct one
additional group for Canada featuring prices and production in the energy sector:
‘Oil & Gas’. As is standard in the forecasting literature, I additionally construct four
yield spreads as the difference between government bond yields at different maturities

and the three month prime corporate paper rate. To obtain a continuous gdp variable,

4While a provincial analysis could be interesting and a gateway to future research, I assume that
significant changes at the provincial level are reflected in changes of variables at the federal level.
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Figure 2.1: Canadian GDP and C.D. Howe recession months illustrated as shaded areas

two different series (v329529 and v65201483) need to be spliced together.?

US data is retrieved from the FRED-M monthly database hosted by the Federal
Reserve Bank of St. Louis. The data set is regularly updated and publicly available.
McCracken and Ng (2014) describe the variables and do some preliminary analysis.
The data set including 135 macro series is widely used in macro-econometrics.® All
data is sorted into the following eight groups: (1) Output and Income, (2) Labour
Market, (3) Consumption and Orders, (4) Orders and Sales, (5) Money & Credit, (6)
Interest and Exchange Rates, (7) Prices, (8) Stock Market.

Recession months in Canada are determined by the C.D. Howe institute’s business
cycle council (Business Cycle Council, 2012). v, is the binary reference series taking
on values of 1 for a recession month and 0 otherwise. The C.D. Howe institute
publishes recession assessments with considerable delays. I assume 2014:12 to be the
last known non-recession month after the last recession in 2008/2009. Figure 2.1
depicts recession months as shaded areas. The figure shows how recessions are closely

associated with sharp declines in GDP.

°The complete data set is available on my website: http://bit.do/maxsties.
6See De Nicold and Lucchetta (2016) for a recent example.
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Cross and Bergevin (2012) discuss each recession and the methodology employed
by the Business Cycle Council in detail. They rely on a mix of output and employment
variables as well as subjective assessment of historical events such as the bankruptcy

of Lehman Brothers in September 2008.

2.3 Two Supervised Learning Methods

This section introduces the lasso and boosting algorithms. Lasso starts out with the
complete set of K = 5764 variables eliminating non-relevant variables by means of
penalization. On the contrary, boosting successively adds variables that add explana-
tory power. Each method is first described analytically followed by an illustrative
example using the full sample for estimation. The mechanics described in this sec-
tion and the following section 2.4 are working in the background at each stage of the

recursive out-of-sample estimation discussed in section 2.5.

2.3.1 Lasso

The least absolute shrinkage and selection operator (lasso) was developed by Tibshi-
rani (1996). It adds a penalty term to the likelihood function of regressions. For bi-
nary applications like forecasting recessions, Lokhorst (1999) and Shevade and Keerthi
(2003) develop a lasso for logistic regression. The logistic regression model derives

the probability of v, = 1 as
e(BO+m,B)
1 + e(Bo+a'B)

p(ye = 1z) = p
With a T' x K matrix of time series covariates x, regressing a T' X 1 reference series y
on x via penalized logistic regression can be represented by minimizing the penalized
negative likelihood

T K
min {— > (w(Bo +28) — In(1 + o) ) 4 A}; Iﬁkl} ,

t=1

where A is called the regularization parameter that controls the amount of penaliza-

tion. Zszl |Bx| = P is the non-concave L1 norm penalty term on the coefficients.
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Figure 2.2: Coefficients at different logarithmized values of the regularization parameter
A derived from full sample lasso estimation. The upper z-axis depicts associated degrees
of freedom, i.e. number of variables with non-zero coefficient. Fach line illustrates the
coefficients of a certain variable.

Solving for (3} is likely to lead to corner solutions making the respective coefficient
zero.  Only coefficients that contribute significantly to the likelihood function will
be non-zero. The set of non-zero coefficients therefore determines the shrunk set of
relevant predictors. Note that the regularization parameter A\ needs to be chosen by
the researcher. If A\ is chosen to be equal to zero, the penalization term drops out
of the equation and we are left with regular logistic regression including a non-zero
coefficient on each of the K variables.

Section 2.5.2 also presents the results of two modifications of the default lasso
model that each feature an alternate penalty term. (1) The elastic net estima-
tor lets the penalty term vary between an L1 and an L2 norm, such that P, =
S (3(1 — @)B% + a|B]) (Zou and Hastie, 2005). The relative weight given to the
L1 penalty term, «, can be chosen by validation or set arbitrarily between 0 and
1. (2) The adaptive lasso puts a different weight wy on the penalty of each coeffi-

cient during estimation such that Py, = Zle Wk|Bk|, where w needs to be the a
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monotone transformation of the inverse of a consistent estimator of (3, say ff (Zou,

1
1B’
the coefficients model selection consistent meaning that as T' — oo, the procedure

2006). In particular & = where -y is a positive constant. This modification makes
consistently picks the correct number of relevant predictors as long as the correlation
between relevant and irrelevant predictors is not too large.

Lasso regression is implemented using the glmnet package in R that approximates
the solution to this maximization problem using coordinate decent (Friedman et al.,
2010).

As an illustrating example, figure 2.2 plots the magnitude of the lasso coefficients,
estimated from the full sample, against a sequence of the logarithmized regularization
parameter A. On the upper axis, the graph also displays the associated number
of non-zero coefficients. Models with larger A will have a heavier penalty on the
size of the coefficients leading to fewer non-zero coefficients. As A approaches zero,
all coefficients become non-zero and the lasso estimator approaches the maximum
likelihood estimator.

The best model will balance the out-of-sample error due to bias of robust but
small models against the out-of-sample error due to variance of large but overfit
models. This model is usually found by evaluating each model’s quasi-out-of-sample

performance. Section 2.4 discusses such validation procedures in detail.

2.3.2 Boosting

Boosting is a decision tree based method developed by Schapire (1990) and Freund
et al. (1996).” Unlike other tree based methods where decision trees are usually
independent, boosting sequentially adds the tree with the best conditional predic-
tive power. The idea is to give observations that were falsely predicted in previous
estimation steps more weight in the current step. This boils down to sequentially

finding regression trees that best fit the residual variation in the data not explained

"Friedman et al. (2000) and Mayr et al. (2014) provide overviews of the wide array of boosting
algorithms and their applications.
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in previous steps.

But before the boosting algorithm is discussed in further detail, it is useful to
understand the method of regression trees upon which boosting is built. Instead of
linking an input variable 27 with a binary reference series y linearly via coefficients,
regression trees simply split a given variable 27 into two regions, where each of the
regions either produces a positive signal (p; = 1) or negative signal (p; = 0). At each
of these decision nodes, the method simultaneously determines the optimal splitting
variable 27 and the optimal splitting point ¢/. Regression trees are usually made
up of several such decision nodes with each node determining a cut-off for either a
new variable or and additional cut-off for a variable already in the tree. For the
default boosting model only single node, and therefore univariate, regression trees
are considered. In this case, decision trees become decision “stumps” and can be

represented as a simple indicator function
g(x]) = 1(2?, ).

Depending on the sign of the correlation of 2/ with the reference series, the function
produces a positive or negative signal p, when observation :c{ falls below or above the
threshold ¢/. Boosting simply adds many of these regression trees together.

In particular, logistic gradient boosting initializes the predictive function f (x) as

the constant log odds ratio,

23:1 Yt
ZtT=1<1 —Yt)

For each of steps m = 1... M, the algorithm then derives the residual variation not

fO(z) = log

explained by the previous model f'm_l(wt) as

1

m _ ~m—1

Zy =Yt — 1+€fm—1(xt) -
where pi"~! are the predicted values from model fm_l(;rt). The algorithm then fits a

univariate regression tree with a single split on the residuals 2}",
9" (x]) = E(="|z).
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Table 2.1: Demonstration of Boosting Algorithm

SplitVar SplitCodePred ErrorReduction
xl d

Step 1:  treds 0.16 19.35
Step 2: REALLN, -0.86 6.44
Step 3: CLAIM S5 -2.40 4.29
Step 4:  fpus3iy 2.62 3.35
Step 5: NONREV SLs -1.75 2.07
Step 6: [PFUFELS) -1.90 2.26
Step 7:  itre3g 0.21 1.49
Step 8&@' NONREV SLs -1.13 1.51
Step 9:  exswer 2.87 1.11
Step 10:  itre3; 0.17 1.27
Step 11:  C'ES3000000008;5 -2.29 0.88
Step 12: NONREV SLg -1.45 0.94
Step 13: USWTRADE;, -2.37 0.65
Step 14:  itre3; 0.16 0.62
Step 15: NONREV SLy -1.13 0.55
Step 16:  houstotqs -1.15 0.45
Step 17:  exswes 2.87 0.36
Step 18:  bankacplm;s 1.07 0.31
Step 19: USGOOD, -2.90 0.29
Step 20: itre3; 0.18 0.28

Notes: Demonstration of boosting algorithm using M = 20
steps, a learning rate p = 0.5 and forecast horizon h =
1. ‘SplitVar’ refers to the optimal splitting variable in the
respective step 27, ‘SplitCodePred’ indicates the optimal
cut-off for the variable ¢/, and ‘ErrorReduction’ refers to the
decline in the negative of the binomial likelihood. Variable
names using capital letters refer to US variables, subscripts
refer to variable lag. A short description of the variables
can be found in appendix A.1.
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As discussed above, g(x;) partitions the predictor space into disjoint regions. At each
step, the model selects the variable that best fits the residuals from the previous step
and estimates a cut-off that determines a positive (recession) or negative (no recession)
signal for each observation. Using univariate regression trees at each boosting step is
called component-wise boosting (Biithlmann and Yu, 2003; Ng, 2014) and allows for
better interpretability of boosting as a variable selection tool. The optimal variable
a:i as well as the optimal cut-off ¢/ are found simultaneously by minimizing a loss

function W,
§"(af) = angmin >0 (ye, /77 @) + "))
t=1
The particular loss function minimized in this application is the negative binominal

log likelihood. Finally, the regression tree found in step m is added to the model from

step m — 1 scaled down by the learning rate parameter u,
() = 7 ) + g ().

By combining M individual regression trees this way, multiple weak learners, indi-
vidual regression trees, build a strong learner, the function f M(x). The learning rate
specifies how big the steps are that taken while building the aggregate model. A
low learning rate is crucial to avoid overfitting. The complete boosting algorithm
employed in this paper can be found in appendix A.3.

Section 2.5.2 also presents two modifications of the default boosting model. (1)
Friedman (2002) introduces stochastic boosting where new trees are fit on a subsample
of the data. This is called bagging and improves the robustness of the model. (2)
Pairwise boosting increases the interaction depth to two, such that at each stage of
the boosting algorithm the best two node regression tree is fit on the residuals of the
previous step.

Boosting is implemented in R using the gbm package. I specify the maximum
number of steps as M™* = 1000 and the learning rate as p = 0.01 which are

standard in the literature.
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Table 2.1 illustrates an example of the boosting algorithm using the full sample for
h = 1 month ahead forecasts. In the first step, the third lag of the Canadian 3-month
treasury bill yield, itre3s, is selected as best predictor. If the standardized value of
the treasury bill yield exceeds the cut-off value of ¢/ = 0.16, the model predicts a
positive recession signal scaled down by the learning rate p = 0.5, meaning that only
half of the predicting generated in step m is added to the aggregated mode. The
initial regression tree g'(z;) reduces the loss function, the negative of the binomial
likelihood, by 19.35 points. The 12th lag of US real estate loans at commercial banks,
REALLN;,, best fits the residuals not explained in the first step. When the variable
falls below a cut-off of ¢/ = —0.86, an additional recession signal is added. Note that
some variables appear repeatedly throughout the 20 steps. Each additional regression
tree is able to reduce the binomial likelihood, but at an increasingly smaller amount.
In the last step, the binomial likelihood is only reduced by an additional 0.28 points.

As the case with lasso, boosting is prone to overfitting. One measure to counter
overfitting is setting the learning rate p low to slow down the algorithm. However,
the most important variable and the equivalent of A for lasso, is the number of trees
or models fit sequentially, M. With a small number of steps M one obtains a highly
biased, low variance model with only few predictors. If M is large the model fits
the data almost perfectly in sample, however the model carries high variance and
is useless for out-of-sample forecasting. As with the regularization parameter A\ for
lasso, the optimal number of iterations M is chosen by validation, as discussed in the

next section.

2.4 Model Validation

In this section, I discuss several validation procedures in the context of recession
forecasting. A detailed survey on these and other cross validation methods is provided
by Arlot et al. (2010). The role of validation is to determine which among the sequence

of models featuring distinct number of variables should be used for out-of-sample
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forecasting. Each procedure estimates the model for a range of the regularization
parameter (A for lasso, M for boosting) and selects the model with the best quasi-
out-of-sample performance. This means that for each value of the regularization
parameter the model is estimated on a subset of observations to predict the left out
observations of the reference series. The optimal value of the regularization parameter
is the one that is associated with the model that predicts the left out observations
with the smallest amount of error. This prediction error can be calculated using

various goodness of fit measures that are introduced next.

2.4.1 Goodness of Fit Measures

This subsection introduces potential goodness of fit measures for probability predic-

tions of a binary reference series. For each measure, lower values indicate better fit.®

QPS. The quadratic probability score (QPS) is defined as

1

WM’%
I
;‘\

and is the most standard measure. It is simply the mean squared error for binary
regression. The QPS can take on values between zero and one.
LPS. The logarithmic probability score (LPS) is defined as

2

LPS =
T

T
Z yilog(py) + (1 —ye) log(1l —py)) .

This is —2 times the log likelihood or log deviation. The LPS can also be seen as a
variation of the QPS that puts a larger weight on large deviations between estimated
probabilities and the reference series. It can take on values between zero and infinity.
MCE. The misclassification error is the share of false predictions. This includes false

positives as well was false negatives.

1 T
MCE = 7: 2 1o # 7 (7))

8For better comparability, the AUC measure is interpreted as 1-‘area under the ROC curve’ as
larger values of the area under the curve indicate better fit. See appendix A.4 for details.
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where

= {) 42
0 otherwise

To calculate the misclassification error in practice, one needs to determine the thresh-
old ¢ that decides at which point a probability is counted as a positive signal. Two
natural choices arise. A value of ¢ = 0.5 means that if the estimated probability of
recession exceeds 1/2, a recession is indicated (Chauvet and Potter, 2010). Another

choice for ¢ is the sample mean ¢ = used in this paper. Cramer (1999) argues

i
T
that the sample mean is the appropriate cut-off for unbalanced samples like the one
employed in this paper.” However, it should be noted that the choice of ¢ is arbitrary.
AUC. The area under the receiver-operator curve or ROC takes account of this

arbitration. It is defined as

AUC=1— / : TPR(c)FPR (),

where T PR is the true positive rate and F'PR is the false positive rate. The AUC
generalizes the classification error over all possible thresholds ¢ and has previously

been employed by Berge and Jorda (2011) in the context of recession forecasts.'®

2.4.2 k-fold Cross Validation

The most common validation procedure in the machine learning literature is k-fold
cross validation. This entails dividing the sample into &k (possibly random) subsam-
ples, using k — 1 subsamples to fit the model and produce predictions for the k"
subsample. Once predictions are obtained for the entire sample using this quasi-out-
of-sample exercise repeatedly, the joint set of predictions can be compared to the
reference series using a goodness of fit measure. Let the predictions obtained from

k-fold cross validation be denoted by p¢¥, then the cross validation error C'V' is the

9“Unbalanced sample’ in this context refers to an unequal distribution of positive and negative
events in the reference series.
10More on the AUC can be found in appendix A.4.
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average of the goodness of fit measure over all k£ subsamples,
"1
cver=3%" ZGE
k=1
Repeating this procedure for a sequence of values of the regularization parameter will
give a sequence of associated cross validation errors. The minimum cross validation
error in this sequence indicates the optimal value of the regularization parameter that

produces the lowest out-of-sample error. It is common to choose the highest value of
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Figure 2.3: Cross validation error using different goodness of fit measures derived from full
sample lasso estimation at different values for the logarithmized reqularization parameter \.
The upper z-axis depicts the associated number of variables with non-zero coefficient. The
first dotted line from the left indicates the minimum CYV, the second dotted line indicates
the smallest C'V within one standard error of the minimum CV. The blue line plots the
corresponding in-sample error.

A within one standard deviation of the cross validation error to account for the fact
that cross validation predictions are obtained from estimations with lower sample size
than the full model and err on the side of more parsimonious models. Standard errors

can be obtained as

 SDy

SE :
vk
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To illustrate this procedure, figure 2.3 plots the 12-step ahead C'V of full sample
lasso estimation using several goodness of fit measures against a sequence of lambda.
The (first) global minimum of each cross validation curve indicates the optimal level
of lambda. Different goodness of fit or error measures indicate different optimal
values for A as discussed in the next subsection. Note also that the in-sample error
keeps decreasing from right to left and eventually approaches zero when lambda is
chosen small enough. Once enough variables are added, the resulting model can fit

the reference series perfectly in sample.

2.4.3 k-step Ahead Time Series Cross Validation.

For the prediction of macroeconomic time-series, k-fold cross validation can be mod-
ified to better reflect the nature of time series data. As with regular cross validation,
the sample is divided into several subsamples, however, to obtain the time series cross
validation error (T'SC'V'), the sample is divided in a 1,...,t;,; = 90 observation ini-
tialization sample and a validation sample (t;,; + 1),...,7 = 562. The validation
sample is then divided into T‘% = S continuous subsamples. Note that k& now de-
notes the number of observations in a subsample and not the number of subsamples.
A prediction is then made for each period in the validation sample using a model

estimated from the initialization sample and all subsamples that occur before the

period for which the prediction is made. The T'SC'V can be obtained as'!

S
k
TSCVEr =)  —GF

s=1
The ‘within one standard error rule’ should not be applied when using time series
cross validation for two reasons. First, the TSCV already reflects the real out-of-
sample error much closer and chooses more robust models with fewer variables than

regular cross validation. Second, estimated standard errors of the TSCV are generally

"UNote that if Tﬁ,z“”' does not divide by k, some observation at the end of the sample will be left
out.
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Figure 2.4: Distribution of the optimal number of variables obtained from repeated cross
validation of full sample lasso estimation using a different number of validation folds (nfolds)
and different goodness of fit measures (measure).

larger, thus picking the smallest model within one standard error can lead to models

that only include a minimal number of variables.

2.4.4 Cross Validation with Binary Reference Series

Cross validation with a binary reference series such as a recession indicator brings
about several problems. Recessions are rare events and amount for around 12%
of the sample period. Additionally, the data suffers from structural instability as
different recessions have different origins. When using the standard cross validation
procedure, the sample is divided randomly into k subsamples where k — 1 are used for
estimation and the left out subsample is used to evaluate the fit. Due to the structural
instability, the models estimated from different random subsets can be quite different
depending on which recessions are by chance not included in the estimation sample.
An example of this inconsistency is displayed in figure 2.4. When full sample lasso
estimation is repeatedly cross validated using random subsampling with replacement,

the optimal number of variables as indicated by the cross validation procedure varies.
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Table 2.2: Variability of Cross Validation with Random Subsampling

AUC3 AUC6 AUC10 DEV3 DEV6 DEVI10

Mean 9.1 13.8 15.2 11.6 16.6 17.6
SD 2.7 4.4 2.9 6.4 4.6 3.0

Notes: Mean and standard deviation of the optimal number of vari-
ables associated with the cross validation procedures described in fig-
ure 2.4.

The figure demonstrates that a wide range of outcomes is possible for different num-
bers of cross validation folds £ as well as different goodness of fit measures. The
problem is somewhat mitigated with a larger amount of cross validation folds. I
address this problem by determining the split of observations for k-fold cross valida-
tion a priori. The k subsamples are constructed such that subsequent observations
are assigned to different subsets. Specifically, when z; and y; are assigned to fold
k;, observation z;,, and y;.1 are assigned to fold k;,;. This guarantees the most
even split of recession periods between the k cross validation folds and eliminates the
randomness.

The second problem is that as recessions only make up 12% of the sample, the
selected model will be biased towards predicting non-recession months if the average
deviation from the reference series is used as a goodness of fit measure as is the case
with the LPS and QPS. This can be counteracted by either giving recession and non-
recession months equal weight in the cross validation procedure or by making use of
classification type errors such as the MCE or AUC.

Alternatively, time series cross validation can be applied. This also eliminates
randomness, however due to structural instability, models estimated from different
number of folds change significantly. Additionally, the observations in each validation
subsample are consecutive, making it possible for validation subsamples to include
only non-recession months. The AUC can therefore not be calculated for time series
cross validation as the measure cannot be calculated without positive events in the

validation sample. Finally, when the sample size is small and barely exceeds the
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initialization sample t;,;, not enough validation samples exist to form a measure of
the standard error. The ‘within one standard error’ rule can therefore not be applied.
Section 2.5.2 compares the out-of-sample forecast using time series cross validation

to the results obtained from standard cross validation.

2.5 Estimation Results

This section presents historic recession probabilities obtained by direct recursive out-
of-sample forecasting. To determine the out-of-sample forecasting power of the lasso
and boosting algorithms, I divide the data into a training and a hold-out sample. For
each observation in the hold-out sample a forecast is produced using only data up to
the point in time the forecast is made. The estimation using all data including the
last observation in the hold-out sample naturally is equivalent to in-sample or full
sample estimation. The following subsection presents the results for the default lasso
and boosting model, followed by a subsection examining the fit of alternative model

specifications.

2.5.1 Recursive Out-of-Sample Forecasting

For each observation in the hold-out sample I produce direct h step ahead forecasts
for h = (1,3,6,12) made at the end of each month. A forecast is equivalent to the
probability of a certain observation in the hold-out period being a recession month.
Assume lasso and boosting can be reduced to produce a predicted probability through
the function F(y, z) as described in section 2.3, then the probability of month ¢ being

a recession month is determined by

Pr(yeen = Uzy) = pran = Fyr, 1—p),

where z; includes up to 12 lags of each variable. A 6-step ahead probability forecast
Peop for 1980:7 made in ¢ =1980:1, uses data x; , up to 1979:7 and the reference

series y; up to 1980:1, to estimate the model.
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Figure 2.5: Estimated out-of-sample probabilities of the default lasso and boosting models
validated by cross validation at different forecast horizons (h). Best Subset depicts out-of-
sample probabilities derived from best subset selection logit regression.

Figure 2.5 depicts estimated out-of-sample recession probabilities for the stan-
dard lasso and boosting models using 5-fold AUC cross validation. The models are
contrasted to a naive best subset selection model that chooses a model of up to five
variables from a subset of 15 variables obtained from hard thresholding as described
in Bai and Ng (2008).

Boosting and best subset appear to be more responsive than the lasso model that
produces lower recession probabilities throughout the sample. On the other hand,
the lasso model also produces fewer false positive predictions. Note that especially
for boosting, estimated probabilities seem to spike with a delay of h. This is due to
the structural instability of the model. Some recessions are only recognized once the
according observation becomes part of the estimation since variables that were good
predictors in previous recessions are not necessarily good predictors for the current
recession. If a recession starts at ¢, in ¢ + h the first observation of the recession
is included in the estimation and the out-of-sample estimates indicate an increased

recession probability. This naturally makes for a bad forecast. Subsection 2.5.2
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Table 2.3: Goodness of Fit of Default Models

bss.15.5  boost.cv.b.auc lasso.cv.5.auc

_hO-

QPS 0.02 0.01 0.05
LPS 0.15 0.11 0.32
MCE 0.06 0.04 0.07
AUC 0.01 0 0.02
n.var 5 61 44
“hi-

QPS 0.09 0.07 0.07
LPS 2.76 0.58 0.46
MCE 0.14 0.11 0.10
AUC 0.20 0.10 0.05
n.var 5 59 39
-h3-

QPS 0.13 0.09 0.09
LPS 4.04 0.69 0.58
MCE 0.19 0.13 0.12
AUC 0.28 0.14 0.08
n.var 4 9 31
-h6-

QPS 0.13 0.13 0.10
LPS 3.28 1 0.65
MCE 0.14 0.19 0.13
AUC 0.30 0.25 0.12
n.var 5 15 50
-h12-

QPS 0.16 0.15 0.11
LPS 3.28 1.48 0.74
MCE 0.23 0.27 0.15
AUC 0.53 0.57 0.22
n.var 5 7 22

Notes: ‘bss.15.5” refers to best subset selection choosing the best model of
up to 5 variables from a set of 15 preselected potential predictors. The
default lasso and boosting models are validated via 5-fold cross validation
using the auc as goodness of fit measure for validation. ‘n.var’ refers to the
number of non-zero coefficients obtained from full sample estimation.
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discusses alternative model specifications that exhibit better fit. Table 2.3 presents
the goodness of fit for the default models depicted in figure 2.5. Due to the lowest
amount of false positive signals, lasso estimates dominate boosting estimates slightly.
The number of selected variables will change over the sample period as the models
are reestimated for each t, so the number of variables stated here is the number of
variables used in the last out-of-sample estimation which is equivalent to full sample

estimation. The change of selected variables over time is discussed in section 2.6.

2.5.2 Alternative Model Specifications

This subsection discusses alternative model specifications to the default models from
2.5.1. First, I will discuss the effect of different validation procedures on the out-of-
sample fit. Then, I will introduce some changes to the lasso and boosting procedure
that theoretically improve the fit. Lastly, I will present estimates that take into
account that the reference series is only available with substantial delay.
Alternative Validation Procedures. As discussed in 2.4, different validation pro-
cedures will lead to different numbers of variables being picked within the same model
family. Note that within cross validation, the variation in out-of-sample forecasts is
minimal. Figure 2.6 shows that the probabilities from 5-fold and 10-fold cross val-
idation as well as using AUC or LPS for validation are nearly identical. The same
results are true for Boosting but to a lesser extent.

Time series cross validation does not yield any improvement in fit but does take
significantly longer to estimate and leads to the problems discussed in 2.4.4.
Adaptive Lasso and FElastic Net. As described in section 2.3.1, the default
lasso is not model selection consistent. Two modification should therefore yield an
improvement of out-of-sample fit. The elastic net estimator is an extension of the lasso
that allows for a mix between L1 and L2 penalty. « is the proportion of L1 penalty
in the estimation. I choose a by cross validation so the optimal alpha varies over the

out-of-sample period. I also set a arbitrarily equal to 0.6 and 0.8. The adaptive lasso
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Figure 2.6: Estimated out-of-sample probabilities using 5-fold and 10-fold cross validation
with AUC and LPS as selection criterion at different forecast horizons

weighs the penalty term for each coefficient proportional to a consistent estimate of
the coefficients. v determines the strength of the penalty relative to the absolute size
of the consistent coefficient estimate. I choose v € [0.5,0.75,1].

Note in figure 2.7 that there is barely any difference between the default lasso and
the elastic net with cross validated . However, the adaptive lasso is significantly
more responsive and the problem of a delayed response to recessions is mitigated.
It is noteworthy that all adaptive lasso estimates predict a recession in 1986, when
Canada was hit harshly by a decline in oil prices. The C.D. Howe business cycle
committee however, does not classify this period as recession. It is known that the
adaptive lasso has a relatively high false positive rate. Sampson et al. (2013) discuss
and address this problem. These false positives lead to higher prediction errors for
the adaptive lasso forecasts. For the nowcasts (h = 0), the adaptive lasso models
however produce near perfect predictions.

Stochastic and Pairwise Boosting. The boosting algorithm can be extended

to allow for pairwise interaction between the covariates. The algorithm lets each
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Figure 2.7: Estimated out-of-sample probabilities of the FElastic Net and Adaptive Lasso
compared to the default lasso model at different forecast horizons

function derived from a boosting step become a two variable logit regression. This
reduces interpretability but potentially increases the model’s predictive power. With
stochastic boosting, only a fraction of the observations are used for estimation. This
is useful to avoid overfitting. Changing the bagging fraction barely alters estimated
probabilities. Allowing for pairwise interaction improves the fit slightly but takes
significantly longer to estimate.

Publication Lag for the Reference Series. So far the analysis has assumed that
up to the current month it is known wether the economy is in a state of recession
or not. In reality however, it can take up to one year until recessions are officially

declared. With a publication lag of [ = 12 for 1, the forecast equation now becomes

Pr(yeen = Yat) = peon = F(yr—t, Te—p—i).

For a forecast horizon of 12 this means that a forecast made at the end of ¢ = 1980 : 1
uses data x;_j,_; up to 1978:1 and the reference series y;_; up to 1979:1 to estimate
a model that produces a probability forecast p; ., for 1981:1. Figure 2.9 depicts the

predicted probabilities for the standard models as well as the adaptive lasso. The
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Figure 2.8: Estimated out-of-sample probabilities of stochastic boosting (with bagging frac-
tions (BF) of 0.6 and 0.8) and pairwise boosting compared to the standard boosting model,
validated via 5-fold cross validation using the AUC as model selection criterion at different
forecast horizons.
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Figure 2.9: Estimated out-of-sample probabilities of default boosting and lasso model, as
well as adaptive lasso considering a 12 month publication lag for reference series at different
forecast horizons.

29



nowcast and the 1 month ahead forecast reliably identify recessions with no extended
periods of false positives. Predictions at longer forecast horizons give mixed signals

with often significantly delayed response and would be hard to interpret in reality.

2.6 Variable Selection

One advantage of not aggregating the data space is in the interpretability of the es-
timated coefficients. This section presents the variables carrying most conditional
predictive power using the default lasso and boosting model. While section 2.6.1 dis-
cusses the most important predictors for the complete sample, section 2.6.2 describes
the development of this set of variables over time. A short description of the variables
presented in this section can be found in the appendix A.1. Before beginning to dis-
cuss the selected variables, a word of caution is in order. The analyses in this paper
are of purely predictive nature and do not generally allow for causal inference. That
being said, the conditional correlation of specific variables with Canadian recessions

is worthwhile exploring in itself.

2.6.1 Full Sample Variable Selection

Using all the information available at the end of the sample window makes it possible
to identify the most important leading indicators in the data set. While cross valida-
tion identifies up to 60 variables with relevant predictive power, most of the data’s
explanatory power is concentrated in only a handfull of variables. Table 2.6 presents
lasso coefficient estimates for the ten variables with largest absolute magnitude. The
absolute magnitude of coefficients can be used as a measure of the importance of the
variables as all variables have been standardized. For boosting, ranking coefficients
is problematic as variables are likely picked in more than one iteration step. Instead,

Friedman (2001) constructs a measure of relative importance I 32 for variable j. In
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particular,

m=1

where 2, describes the least-squares improvement of x; in step m. Table 2.7 presents
the 10 variables with the highest relative influence in the boosting model. In both
tables, capitalized variable names indicate US variables, subscripts indicate lags. In
table 2.6, real variables have the highest impact at short horizons. Surprisingly, for
the 1-month forecast, the Canadian 10-year yield spread (ys10) is surpassed by US
housing market variables (housing starts: HOUST and building permits: PERMITS)
in both, the lasso and the boosting model. Unlike lasso, boosting puts the highest
weight on 3 month treasury bills (itre3). With employment in transport & utilities,
employment in the financial sector, as well as male unemployment (USTPU, USFIRE,
USFIRE, UEMP150V), the US labour market figures prominently into short and
medium term forecasts. At longer horizons, yield spreads are the dominant predictors.
Additionally to the 5 year yield spread, both forecasting models include IMF currency
reserves (resvimf). The boosting model also features the Canadian exchange rate with
the swedish and norwegian krona (exswe, exnor).'? Note that US yield spreads are
represented less than one would expect considering previous literature, with only the
AAA corporate bond - federal funds spread (AAAFFM) being included in the 6 and

12-months boosting model.

2.6.2 Out-of-Sample Variable Selection

This section examines the explanatory power of variables over time throughout the
hold-out sample. Figure 2.10 and 2.11 present non-zero lasso coefficients for each
out-of-sample estimation for 1 and 12 months ahead forecasts. Darker values depict

coefficients with higher absolute value. Following lasso coefficients over time makes

12Tt should be noted that these results do not imply causality but rather predictive power. Athey
(2015), Athey and Imbens (2016) and Chernozhukov et al. (2015) are currently spearheading a
promising research agenda aiming at combining the predictive and computational power of machine
learning with causal inference that is the goal of econometric analysis.
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Table 2.6:

Top 10 Variables Lasso

h=1 h=3 h=6 h=12
1 USTPU, -0.47 ys10s -0.46  ys10, -0.44  resvimfiz -0.59
2 HOUSTy -043 HOUST -0.36  ys109 -0.30  ysHy -0.59
3 ysl0g -0.42  ys104 -0.29  ys10g -0.28  ysbs -0.27
4 fundpurg 0.36 USFIRE, -0.21 ys10g -0.27 ys107 -0.22
5 ys1019 -0.33  ys105 -0.16 USTRADE; -025 NAPMSDIy -0.20
6 housty -0.28  ys107 -0.16 USTRADE, -0.23 bondpruvs -0.12
7 USFIRFE, -023 SRVPRD, -0.16 USTRADE; -0.23 ysl0; -0.12
8  fpus3s 0.18 loanliy 0.13 NAPMSDI;, -0.21 bondprug -0.11
9 bondb10y  -0.17 BAA; 0.10  ys10qq -0.19  ysby -0.11
10 loanliy 0.14 fpus3g 0.10 USFIRL, -0.18  ys104 -0.10

Notes: Top 10 variables with largest absolute coefficient selected by full sample lasso estimation

at different forecast horizons.

indicate lag.

Table 2.7: Top 10 Variables Boosting

Upper case variable names refer to US variables, subscripts

h=1 h=3 h==6 h =12

1 dtre3s 34.91 bondb510, 51.33  ysHg 35.85  ysbs 42.87
2 PAYEMS, 16.86  ysbis 20.05  ibocs 12.54  exsweys 17.03
3 fpus3is 10.78 morressy 6.74 resvimfy 11.05 resvimfig 14.72
4 PERMITS, 6.79 resvimfio 5,68 NONBOR, 6.70 resvimfs 8.41
5 UEMP150V; 4.26  ibocg 5.64 ys104 6.38 exnorg 6.84
6 housty 3.17  ys10g 3.84 ys10g 4.14 ysl10, 5.78
7 GSlg 2.77 NONBOR; 3.31 resvimfig 387 AAAFFMg  4.36
8 ibocy 2.71  ibocy 1.76  icbprbuy 3.56
9 ysl0g 2.66 USTRADE, 166 AAAFFM, 291

10 NONREVSLg 2.29 frus3is 2.81

Notes: Top 10 variables with largest relative importance selected by

Upper case variable names refer to US variables, subscripts indicate lag.
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it possible to examine which variables were important leading indicators at specific
points in time. First, note that the coefficients are not at all stable over time illus-
trating the structural instability of the forecasting model. The composition of the
model changes specifically at the beginning and end of periods of recession providing
evidence that different recessions stem from different areas of the economy. Since the
end of the mid 1980’s recession, 1-step ahead forecasts are dominated by US building
permits and housing starts (PERMITMW, HOUST). These indicators seem to be
particularly good at predicting the end of Canadian recessions. Note also that while
US yield spreads were good predictors of the 1980’s recession (TB6SMFFM) and the
10-year yield spread was the single best predictor of the 1990’s recession, non of the
yield spreads was able to predict the 2007/2008 recession.

For the 12 months ahead forecasts, the beginning of the hold-out sample estima-
tions is characterized by spurious regression, such as the value of the Swedish Krona
(exsweq) sharply decreasing a year before the 1976 recession. During the great mod-
eration yield spreads become the most important predictors by far. The only other
variable that is consistently featured in the model throughout the hold-out sample is
Canada’s reserve position with the IMF (resvimf;2). The only notable US variable
is the supplier delivery index (NAPMSDIy).

The grouping of the variables also allows for a more aggregate description. Vari-
ables from the US housing and labour market complement Canadian yield spreads
in short term forecasts. However, US variables are not good long term predictors of
Canadian recessions that only feature financial variables and yield spreads from the
Canadian economy. Contrary to popular belief, Canadian variables relating to oil and
gas production are not correlated with recessions at any forecast horizon. Further
note that Canadian monthly gdp does not appear as leading indicator in any of the

model specifications.
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Figure 2.10: Out-of-sample variable selection using lasso at forecast horizon h = 1. Darker
shading illustrates coefficients of higher absolute value.
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Figure 2.11: Out-of-sample variable selection using lasso at forecast horizon h = 12. Darker
shading illustrates coefficients of higher absolute value.
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2.7 Conclusion

The advent of big data opens up new opportunities for empirical research. With it
come new statistical methods that are able to analyse large datasets. In this paper,
I make use of two machine learning procedures that are able to select a few relevant
predictors out of a dataset of over 5000 potential variables. Due to the nature of
these methods, manipulating the regularization parameter can lead to a near perfect
in-sample fit. Out-of-sample, the optimal value of the regularization parameter is
found by cross validation to balance the bias vs. variance trade-off.

I find that lasso and boosting out-perform a naive best subset selection model.
Modifications to the standard models are able to improve the out-of-sample fit slightly,
but not for free. Adaptive lasso comes at the cost of a higher false positive rate,
pairwise boosting comes at the cost of reduced interpretability as well as higher com-
putational demands. Changing the validation procedure or specification, however,
does not change model performance significantly.

In line with Atta-Mensah and Tkacz (1998), I find that Canadian yield spreads
are important predictors at any forecast horizon. US and Canadian real activity
variables add predictive power at shorter forecast horizons. In particular, while the 6
months lag of the 10-year yield spread had been the most important predictor of the
1990s recession, yield spreads lose most of their short term predictive power during
the 2008/2009 recession. Instead this period is marked by a sharp decline in US
housing starts. This broadens the findings of Ng and Wright (2013) by including the
Canadian economy.

My results negate the finding of Bernard and Gerlach (1998), Hao and Ng (2011)
and Fossati et al. (2017) that US yield spreads are important leading indicators of
Canadian recessions. By considerably extending the number of potential predictors,
the predictive power of US yield spreads appears to be picked up by financial variables

from the Canadian economy. The absence of variables from the Canadian oil and
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gas sector is also worth discussing. One can interpret this finding as the Canadian
economy being less resource dependent than previously thought. Alternatively it can
be argued that recessions can coincide with periods of steep rises and steep declines
in oil production or prices and therefore a quadratic transformation of these variables
should be included in the estimation. I leave this exercise to future research.
Finally, while this paper uses traditional macroeconomic data, future work could
easily incorporate non-traditional data such as online search results or electronic pay-
ment data. Tkacz (2013) finds some preliminary evidence in favour of the predictive

power of this kind of data.
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Appendix

A.1 Description of Selected Variables

Table 2.8 gives a short description of the data presented in section 2.6. This is only a

small subset of the data used for analysis. The complete data set can be downloaded

at http://bit.do/maxsties.

Table 2.8: Short Description of Selected Variables

Canada United States

ysH 5 year - 3 month yield spread HOUST housing starts

ys10 10 year - 3 month yield spread PERMITS building permits

houstsg housing starts single units USFIRE employment in financial sector

exswe exchange rate Swedish krona USTRADE employment in retail sector

exnor exchange rate Norwegian krona UEMP150V male unemployment rate over 15 weeks
fundpur purchase funds USTPU employment in trade, transp. and util.
morres residential mortgage rate SRVPRD employment in service industries
bond510 5-10 year gov. of Canada bond yield NAPMSDI ISM: supplier deliveries

loanli life insurance loans GS1 1-Year Treasury Rate

itre3 interest rate 3 month treasury bill NONREVSL nonrevolving Credit and busloans
fpus3 3 month US dollar forward premium NONBOR bank reserves

icbprbu interest prime bus. chartered banks AAAFFM aaa corporate bond - fedfunds spread
bondprv provincial bond issues TB6SMFFM 6m treasury - fedfunds spread

resvimf imf currency reserves CES3000000008 avg hourly earnings : manufacturing
loanliu life insurance loans unadjusted REALLN real estate loans at all com. banks
credcu consumer credit credit unions CLAIMSx initial unemployment claims

currfor foreign currency reserves IPFUELS industrial production: fuels

debtfor debt held abroad USGOOD employment goods-prod. industries
bankacplm bankers’ acceptance rate 1 month BAA moodys seasoned baa corporate bond yield
houstot housing starts total
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A.2 Data Transformation Algorithm

1. Internal missing values are imputed linearly
2. Test for exponential growth (ols on time trend; Hy: no exponential growth)
= if positive, apply logarithm

3. Test for heteroscedastic errors (ols of errors on moving average; Hp: no het-

eroscedastic)
= if positive, apply logarithm

4. Test for seasonality (trend, cycle, seasonal decomposition; Hy: no seasonal com-

ponent)
= if positive, seasonal trend is removed
5. Test for trend stationarity (ADF; Hy: no trend stationarity)
= if positive, linear trend is removed
6. Test for stationarity (ADF; Hy: no stationarity)
= if negative, first difference is applied
7. Test for stationarity (again; Hy: no stationarity)
= if negative, second difference is applied

8. All variables are standardized to have zero mean and variance of one (z-score)
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A.3 Boosting Algorithm

This algorithm describes the application of non-stochastic gradient boosting using
univariate regression trees employed in this paper.

Let f (x) be the function that predicts the binary reference series y.

1. Initialization: Set residuals equal to reference series and set boosting function

equal to the constant log odds ratio

Zthl Yt
Zf:l 1 —y

Zy = y; and f(fft)o =In

2. Stepwise Boosting: For m =1,..., M, repeat

(a) Update residuals not explained in previous step

_— ef™ )

,%Zn =Yy — ﬁ;n_l, where p} = m

(b) Find univariate regression tree that minimizes the negative binomial like-

lihood

T
g™ (z?) = argmin —— E <zt g" —In(1+ ¢ (t))) jeK

t=1

(c¢) Update f by adding a shrunken version of the new tree
Jr@) e @) + pgn (x)

3. Average Boosted Model:

M A
=3 (@) = ()
m=1
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Figure 2.12: ROC curve derived from in-sample lasso estimation with h =0

A.4 More on AUC and ROC

The AUC is the area under the Receiver-Operator curve that plots the true positive
rate (TPR) against the false positive rate (FPR). For low values of the threshold ¢
most estimated probabilities will be higher than the threshold even for non-recession
months. The FPR will be close to one as will be the TPR. As the threshold in-
creases, the FPR will increase faster than then TPR when estimated probabilities
for non-recession months are lower than for recession months. If probabilities cannot
distinguish between recession and non-recession months, FPR and TPR fall at the
same rate producing a 45 line through the receiver-operator plain. The area between
the actual ROC and the 45 degree line is the area under the curve (AUC), it mea-
sures how well the estimated recession probabilities are able to distinguish between
recession and non-recession months. The AUC is a standard measure in the machine
learning literature, I refer to Lobo et al. (2008) for a more detailed discussion and

critique of the AUC.
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Conclusion

This thesis examines the predictability of Canadian recessions using different empiri-
cal modeling techniques with an emphasis on which variables should be employed to
produce recession forecasts.

Traditionally, researchers face to problem of either selecting specific variables to
be included in a predictive binary regression or to aggregate the data space via factor
analysis. Recently, machine learning algorithms have received increasing attention
in the field of econometrics that perform variable selection and model estimation
simultaneously.

The first paper in this thesis combines the two traditional approaches by compar-
ing predictions obtained from models including only individual variables to models
also allowing for factors obtained from these variables. Additionally models including
only Canadian data are compared to models allowing for US data. Our findings con-
firm the importance of domestic yield spreads in making predictions at any forecast
horizon (Atta-Mensah and Tkacz, 1998). Canadian yield spreads are best comple-
mented with real activity indicators at short forecast horizons and with financial
indicators at long forecast horizons. Including US data in the predictive regression
function can improve long term forecasts marginally but is not useful at shorter fore-
cast horizons. This result is in Bernard and Gerlach (1998) who find that US yield
spreads add predictive power to Canadian recession forecasts at medium and long
forecast horizons, but not at shorter ones. Additionally, we find that our estimated
factor of Canadian real activity can be used to accurately predict recessions in the

short term. This provides more evidence to support the finding of Castle et al. (2013)
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who show that dynamic factors perform better than observable data at short forecast
horizons. Our last result is that Bayesian model averaging assigns significant weight
only to few but similar models. The best individual models receive the highest weight
within the in-sample BMA forecast. Out of sample, BMA forecasts perform signif-
icantly worse than the best individual models. This provides some evidence that
model averaging does not necessarily improve forecast accuracy when the reference
series is binary.

The second paper increases the amount of potential data in two dimensions. First,
with 134 US variables and 445 Canadian variables, a much larger set of macro series
is considered; second, up to 12 lagged values of each variable are added to the dataset.
The paper makes use of two machine learning procedures that are able to select a few
relevant predictors out of a large dataset of over 5000 covariates. I find that lasso and
boosting generally out-perform traditional methods. Modifications to the standard
models are able to improve the out-of-sample fit slightly. As in the previous paper,
Canadian yield spreads are important predictors at any forecast horizon. US and
Canadian real activity variables add predictive power at shorter forecast horizons. In
accordance with Ng and Wright (2013), who show that domestic yield spreads lost
their predictive power for US recessions, I find that while the 10-year yield spread had
been the most important predictor of the 1990s recession in Canada, yield spreads lose
most of their short term predictive power during the 2008/2009 recession. Instead
this period is marked by a sharp decline in US housing starts. By allowing for a
much larger set of potential predictors, my results contradict the finding of Bernard
and Gerlach (1998), Hao and Ng (2011), that US yield spreads are important leading
indicators of Canadian recessions. The predictive power of US yield spreads found
in previous papers appears to be picked up by financial variables from the Canadian
economy.

Another interesting distinction between the two paper in this thesis is that the

variables picked at different points in time in the first paper were generally very
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similar for a specific forecast horizon. However, once a larger amount of predictors is
available, the selection of variables over time becomes much more inconsistent. This
points to the biggest limitation in any recession forecasting exercise: Any forecast is
always backwards looking. Since only previous information can be utilized to produce
forecasts, recessions that originate from a sector of the economy that previously had
not been associated with periods of recession, like the US housing market during

2007/2008, are extremely hard if not impossible to predict.
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