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Abstract

In recent years, deep neural networks (DNNs) have revolutionized the field of artificial

intelligence (AI), leading to breakthroughs in areas such as computer vision, natural

language processing, and robotics. Despite their superior performance, studies have

demonstrated that they are susceptible to input data changes, making them vulnera-

ble to adversarial attacks, where malicious inputs are designed to deceive the DNNs

and cause incorrect outputs. This can be a serious weakness for deploying DNNs in

safety-critical scenarios, such as autonomous driving, medical diagnosis, face authen-

tication, intruder detection and aircraft control.

More recently, we have witnessed the tremendous success of Transformer as a

representative DNN architecture. Vision Transformer (ViT), a particular variant ap-

plied for vision tasks, has achieved state-of-the-art performance on various benchmark

datasets, demonstrating its effectiveness in learning from large amounts of visual data.

However, its robustness is still a major limitation. Its record-breaking performance

comes at the cost of extreme sensitivity with respect to the inputs. Relevant studies

also demonstrate that its ability to defend against a particular type of attack: physi-

cal patch attack, is even weaker than classical convolutional neural networks (CNNs).

This poses a serious threat to the deployment of ViT in industries, especially in

safety-critical domains.

In this work, we propose PatchCensor, a systematic approach that aims to im-

prove the patch robustness of ViT in a black-box manner. By assuming the attackers

have the maximum capability, we design a warning system that can detect the adver-

sary’s presence under the worst condition. Our methodology falls into the category
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of certified defense. Unlike empirical defenses, such approaches can provide a strong

guarantee for the inference result. Existing certified defense methods often require

substantial efforts in training and usually inevitably sacrifice the base model’s perfor-

mance. To bridge the gap, PatchCensor aims to improve the robustness of the whole

system by detecting anomalous inputs rather than relying solely on training a robust

model to provide accurate results for all inputs, which could potentially compromise

its overall accuracy.
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Some of the research conducted for this thesis forms part of an international research

collaboration, supervised by Professor Lei Ma at the University of Alberta, Canada

and Professor Yuanchun Li at the Institute for AI Industry Research (AIR) at Ts-

inghua University, China.

The method, as well as the majority of experiment results, including the pre-

liminary study and four research questions, have been published as Yuheng Huang,

Lei Ma, and Yuanchun Li, “PatchCensor: Patch Robustness Certification for Trans-

formers via Exhaustive Testing,” ACM Transactions on Software Engineering and

Methodology, 2023.

Citations will be provided for all non-original images used in this work.

iv



Acknowledgements

I am supported by Canada CIFAR AI Chairs Program, the Natural Sciences and Engi-

neering Research Council of Canada (Funding reference numbers: NSERC No.RGPIN-

2021-02549, No.RGPAS-2021-00034, No.DGECR-2021-00019)

I would like to express my sincere gratitude to Professor Lei Ma at the University

of Alberta for his invaluable guidance, support, and encouragement throughout my

research. His expertise and insight are instrumental in shaping my research project

and helping me to develop as a researcher.

I am also deeply grateful to Professor Yuanchun Li at Institute for AI Industry

Research (AIR), Tsinghua University, China. His insights and suggestions are critical

in helping me to formulate my research questions and methodology and in guiding

me toward more robust and meaningful conclusions.

v



Table of Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Digital Adversarial Attack . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Physical Adversarial Attack . . . . . . . . . . . . . . . . . . . 3
1.1.3 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Defense of Adversarial Attack . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Empirical Defense . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Certified Defense . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Our Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Organization of The Paper . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Related Work 18

3 Preliminary Study 23
3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Experiment Design and Results . . . . . . . . . . . . . . . . . . . . . 24

4 Method 30
4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 The Testing-based Defense . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Mutation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Certification Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Experiment 39
5.1 RQ1: Performance under Normal Setting . . . . . . . . . . . . . . . . 42
5.2 RQ2: Performance under Small ROI . . . . . . . . . . . . . . . . . . 45
5.3 RQ3: Performance under Strong Adversaries . . . . . . . . . . . . . . 48
5.4 RQ4: Overhead of PatchCensor . . . . . . . . . . . . . . . . . . . . . 54

vi



6 Discussion 58
6.1 A Special Case for Certified Detection . . . . . . . . . . . . . . . . . 58
6.2 A Possible Way to Improve Certified Recovery . . . . . . . . . . . . . 61

7 Conclusions and Future Work 63

Bibliography 65

vii



List of Tables

5.1 The clean and certified accuracy of different certified defenses on Ima-
geNet and CIFAR-10. The numbers of IBP, DS, PG, BC, MR, PG++,
and SC are directly copied from their paper. Note that the results of
IBP and MR on ImageNet are not available, because they are compu-
tationally intensive or even infeasible on high-resolution images. . . . 43

5.2 The clean and certified accuracy of different certified defenses on GT-
SRB and Food-101. We fine-tune the models on GTSRB for 30 epochs
and Food-101 for 60 epochs. All the models are fine-tuned with respect
to the given patch size. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 The clean accuracy, certified accuracy, and accuracy in trust domain
achieved by PatchCensor (PC), PatchGuard (PG) and De-randomized
Smoothing (DS) for 2.4%-pixel adversarial patch attack. . . . . . . . 46

5.4 Clean accuracy & certified accuracy achieved by PatchCensor and
MR+ on CIFAR-10 under different adversarial patch sizes without
fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Clean accuracy & certified accuracy achieved by PatchCensor and
MR+ on CIFAR-10 under different adversarial patch sizes with fine-
tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6 Clean accuracy & certified accuracy achieved by PatchCensor and
MR+ on GTSRB under different adversarial patch sizes without
fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Clean accuracy & certified accuracy achieved by PatchCensor and
MR+ on GTSRB under different adversarial patch sizes with fine-
tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.8 Clean accuracy & certified accuracy achieved by PatchCensor and
MR+ on Food-101 under different adversarial patch sizes without
fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

viii



5.9 Clean accuracy & certified accuracy achieved by PatchCensor and
MR+ on Food-101 under different adversarial patch sizes with fine-
tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.10 Clean accuracy & certified accuracy achieved by PatchCensor and
MR+ on ImageNet under different adversarial patch sizes without
fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.11 Clean accuracy & certified accuracy achieved by PatchCensor and
MR+ on ImageNet under different adversarial patch sizes with fine-
tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.12 Choosed ViT variants for latency measurement. The base model is
what we use for evaluation in RQ1, RQ2, and RQ3. . . . . . . . . . . 56

6.1 Adding additional information can improve the performance of PatchSmooth. 62

ix



List of Figures

1.1 Adversarial attack can deceive DNNs with imperceptible small pertur-
bations [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Example of adversarial patch attack [14]. . . . . . . . . . . . . . . . . 4
1.3 Adversarial patch can influence the decision-making of autonomous

driving [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Mechanism of Vision Transformer (ViT) [20]. . . . . . . . . . . . . . . 6
1.5 Illustration of certified defense . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Example of PatchSmoothing inference . . . . . . . . . . . . . . . . . . 21

3.1 Illustration for image rescaling. The left one is the original image, and
the right one is the image after rescaling. . . . . . . . . . . . . . . . . 26

3.2 Rescale experiment on De-randomnized Smoothing. The X-axis de-
notes the difference in value between the top two votes, while the Y-axis
represents the frequency of samples yielding the voting result. . . . . 27

3.3 Rescale experiment on PatchGuard. The X-axis denotes the difference
in value between the top two votes, while the Y-axis represents the
frequency of samples yielding the voting result. . . . . . . . . . . . . 28

3.4 Confusion matrix for test instances that are unable to certify but pre-
dicted correctly. Y-axis indicates the ranked-1 class and X-axis indi-
cates the ranked-2 class . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Illustration for the input used by certified recovery (DS) and Patch-
Censor. Certified recovery approaches are based on small local regions.
Our method is based on the whole image with a small region occluded. 29

4.1 The overall architecture and workflow of PatchCensor. . . . . . . . . 33
4.2 Number of ViT patches affected by different sizes of adversarial patches.

P and Wadv represent the widths of the ViT input patch and adver-
sarial patch respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Illustration of the annotation . . . . . . . . . . . . . . . . . . . . . . 46

x



5.2 Certified accuracy and accuracy in the robust domain of PatchCensor,
PatchGuard and De-randomized Smoothing on rescaled CIFAR-10. . 47

5.3 Certified accuracy and accuracy in the robust domain of PatchCensor,
PatchGuard and De-randomized Smoothing on ImageNet . . . . . . . 47

5.4 Certified accuracy and accuracy in the robust domain of PatchCensor,
PatchGuard and De-randomized Smoothing on PartImageNet . . . . 48

5.5 Certified accuracy and latency for ViT variants of different model sizes 56
5.6 Certified accuracy and latency for ViT variants of different input and

patch sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 An illustration that certified detection may fail at test time - the
method may return ‘certified’ for attacked images. . . . . . . . . . . . 60

6.2 A real example that can “crack” the certified adversarial patch detection. 61

7.1 Our masking strategy works on abstract feature level and can be ap-
plied to both images and text. . . . . . . . . . . . . . . . . . . . . . . 64

xi



Abbreviations

AI Artifical Intelligence.

CNNs Convolutional Neural Networks.

CV Computer Vision.

DL Deep Learning.

DNNs Deep Neural Networks.

GTSRB German Traffic Sign Recognition Benchmark.

IBP Interval Bound Propagation.

LLM Large Language Model.

NLP Natural Language Processing.

RNNs Recurrent Neural Networks.

RQ Research Question.

SE Software Engineering.

SOTA State-of-the-Art.

ViT Vision Transformer.

xii



Glossary of Terms

Area of Interest (AOI) Area of Interest (AOI) refers to a specific region containing
the target object of interest.

Black-box Black-box refers to a system or device whose internal workings are hidden
from the user and cannot be easily understood or modified.

Certification We use this term with “verification” interchangeably. Certification de-
notes a formal and rigorous process of verifying that the target system possesses
a specific property.

Classifier This term refers to a machine learning model employed to determine the
class to which a given input belongs.

Full-coverage Testing Full-coverage testing is a software testing technique that
aims to test all possible inputs and execution paths of a program.

Mutation In software engineering, the term mutation typically refers to a small
intentional change made to the source code. In this paper, we employ the term
mutation to denote the systematic modification of the input data.

xiii



Chapter 1

Introduction

1.1 Background

1.1.1 Digital Adversarial Attack

In 1989, a well-known paper demonstrated the great potential of artificial neural

networks by proving that they are theoretically universal approximators [1]. The rapid

development of computational capability soon makes it a reality. As computing power

grew exponentially, it became increasingly feasible to train and deploy complex deep

neural networks (DNNs). Over the last decade, we have witnessed DNNs revolutionize

many domains with their superior pattern recognition ability. Learning complex

relationships from vast amounts of data and achieving human-level performance across

modalities makes it possible to implement complex intelligent systems. Today, DNNs

are the key components of many real-world applications, including computer vision,

natural language processing, and robotics.

As Deep Learning (DL) techniques continue to advance, there is also a growing

trend to deploy DL models in safety-critical scenarios, e.g., intruder detection on

surveillance cameras [2], face authentication on smartphones [3], and driving assis-

tance on autonomous cars [4]. Nonetheless, the astonishing learning capability of

DNNs also comes with drawbacks. It is well-known that the activation function in-

side DNNs introduces non-linearity, which is the key property to the success of DNNs

but also makes them highly sensitive to input perturbations [5]. This sensitivity,
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on the one hand, makes it hard for researchers to understand the real underlying

mechanism of DNNs, and on the other hand, leaving room for adversarial behaviors.

The latter is formalized as adversarial attack [5–7] where related work found that

it is possible to modify the prediction of image classifiers using only imperceptible

perturbations. Such perturbations can deceive DNNs into confidently identifying an

image of a panda as a gibbon (as shown in Fig.1.1).

Figure 1.1: Adversarial attack can deceive DNNs with imperceptible small perturba-
tions [8].

Such adversarial attack can be formally defined as an optimization problem [9]:

X∗ = X + argminδ{||δ|| : F (X + δ) ̸= F (x)} (1.1)

Where X stands for the input, F stands for the DNN, and δ represents the per-

turbation. The goal of attackers is to identify the minimum perturbation that can

change the prediction of neural networks. If there is a specific target to alter the pre-

diction, the attack can be categorized as a targeted attack; otherwise, it is considered

an untargeted attack. The magnitude of the perturbation δ is generally constrained

by the Lp norm, which quantifies the imperceptibility of the perturbation mathemat-

ically. The choice of norm constraint can significantly affect how the optimization is

performed, and the most popular constraints are the L0, L1, L2, and L∞ norm. This

whole-image, norm-constrained attack is later categorized as the digital attack, and
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how to improve the corresponding model robustness has received much attention ever

since.

1.1.2 Physical Adversarial Attack

More recently, scholars have discovered that executing attacks with small perturba-

tions applied to the entire image in real-world scenarios is difficult. There are four

reasons for this: Firstly, noisy physical environments in practical situations can dis-

tort digital attacks’ perturbations [10]. Secondly, camera sensors’ imperfections may

cause them to miss the small-scale perturbations [11]. Thirdly, in the real world, it is

challenging to execute an attack that modifies the whole background [11]. Fourthly,

printing perturbations in small magnitude is less effective [11, 12]. Due to these prac-

tical issues, physical attacks [11–17] have been proposed, which is considered to be a

real threat and presents a more practical attacking scenario than digital attacks.

The first attempt at physical attacks was to place accessories, such as glasses,

on one’s face to deceive state-of-the-art face recognition systems into identifying the

person as someone else [13]. Later, Brown et al. [14] introduce a special kind of

physical attack as a patch format, as shown in Fig.1.2. The generation of adversarial

patch can be formally defined as:

p̂ = argmaxpEx∼X,t∼T,l∼L[logPr(ŷ|A(p, x, l, t))] (1.2)

Here, X are images in the training set, T represents the distribution over trans-

formations of the patch, and L denotes the patch’s location in the image. p̂ is the

generated patch, and the target of the attack is to maximize the probability of a

given class ŷ (hence this is a targeted attack) across all images, with the relatively

high successful attack rate under different possible real-world transformations (e.g.,

scale, rotation, light condition, etc.). The patch size is often an important indicator

of how strong the attack is, measured by the proportion of the original image. The
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Figure 1.2: Example of adversarial patch attack [14].

attackers’ aim is to find a valid patch with a given size to fool the model.

Related patch attacks may relax the constraint here, with an adversarial patch

only corresponding to a single instance (instead of an universal patch used for all

images in [14]). Still, the adversarial generation process can be roughly summarized

as finding a restricted size patch with no magnitude constraint on any position of

the input image, so the prediction of the victim DNN will be altered. Following

such definition, researchers have discovered that an attacker can deceive the DNN in

a self-driving vehicle by affixing a printed sticker onto road signs [11] or bypassing

facial authentication by presenting a customized object in front of the camera [18].

An example of such attack is demonstrated in Fig 1.3. Given the challenge posed by

physical patch attacks, appropriate defenses are in need. However, since the patch

attack has a completely distinct attack model from digital attacks, it is often difficult

to directly apply defenses designed for digital attacks. Therefore, it is crucial and

pressing to devise a defense mechanism against patch attacks specifically.
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Figure 1.3: Adversarial patch can influence the decision-making of autonomous driving [12].

1.1.3 Transformer

Most adversarial attack research describes neural networks as abstract functions that

map input features to output predictions, omitting the actual architecture in mathe-

matical formulations. However, in practice, architecture is a crucial factor when im-

plementing adversarial attacks. For example, convolutional neural networks (CNNs)

and recurrent neural networks (RNNs) both have unique computation operators, and

their robustness against adversarial attacks may have obvious differences in some

cases. The former heavily utilizes convolutional operations, which process the entire

input of an instance at one time, while the latter learns the dynamic temporal relation

along the timeline, giving output for every point of a sequence. As such, deciding

which model architecture to study in particular is important.

This research primarily focuses on a recent state-of-the-art (SOTA) model architec-

ture, the Transformer [19, 20], which is the core of several cutting-edge applications,

including Large Language Model (LLM) in the text domain and Vision Transformer

(ViT) in the vision domain. We focus on ViT since the adversarial attack research is

more mature for computer vision (CV) tasks.

ViT is a model architecture inspired by the success of self-attention-based archi-

tectures, particularly the Transformer. In ViT, an image is divided into patches and

converted to a sequence of linear embeddings of these patches, which is then fed into

a Transformer as the input. Similar to tokens in an NLP application, image patches

are treated equally. Recent studies [21–23] have demonstrated that the Transformer
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architecture can achieve SOTA performance on most CV tasks. The mechanism of

ViT is shown in Fig.1.4.

Figure 1.4: Mechanism of Vision Transformer (ViT) [20].

Despite ViT’s remarkable success, its resilience against adversarial attacks remains

uncertain. According to recent studies [24–26], ViT exhibits robustness to occlusion

and natural perturbations. However, it is vulnerable to adversarial attacks [27–30]

because of its attention mechanism. Bai et al. [27] suggest that transformers are

not more robust than CNNs in defending digital-domain adversarial perturbations,

whereas Gu et al. [28] observe that ViT is considerably more susceptible to physical-

domain adversarial patches. Furthermore, Fu et al. [30] introduce Patch-Fool, an

attack framework that targets ViT’s self-attention mechanism specifically. They also

report that, in this scenario, ViTs perform worse than CNNs, emphasizing the need

to enhance ViT’s robustness.

1.2 Defense of Adversarial Attack

This section presents the problem definition for defense of adversarial attack. The

major goal of this work is to design a defense mechanism that could improve the

robustness of AI-enabled systems so their vulnerability with respect to adversarial
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attack could be alleviated in a real-world deployment.

The issue of adversarial robustness has been extensively studied in both the Soft-

ware Engineering (SE) community [12, 31–41] and the Artificial Intelligence (AI)

community [42–55] through means of training, testing, and verification. In digital-

domain adversarial defense work, a model is considered robust if its prediction remains

unchanged in the presence of an adversarially generated global Lp-bounded perturba-

tion (where p = 0, 1, 2,∞, and so on). Mathematically, the robustness property can

be represented by:

∀δ. ||δ|| ≤ R → F (X + δ) = F (X) (1.3)

This corresponds to the formula 1.1 where the predictions of DNNs remain un-

changed in the neighborhood of the input X. The range of the neighborhood is

categorized by the threshold R, where a higher value indicates greater robustness.

1.2.1 Empirical Defense

There are numerous approaches to improve models’ robustness against digital attacks,

with one of the most prominent being adversarial training [56]. In this technique, the

training loss function is formulated as follows:

minθρ(θ),where ρ(θ) = E(x,y)∼D[maxδ∈SL(θ, x+ δ, y)] (1.4)

where L is the original loss function computed on perturbed input x + δ. The

magnitude of δ is restricted and in the above formula the allowed perturbations are

denoted as S ⊆ Rd.

Intuitively, the adversarial training first finds the point in the neighborhood of an

input that the model performs worst, which is the goal of adversarial attack (inner

max), and subsequently optimizes the model’s parameters to minimize the loss at
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that point (outer min). This is the famous min-max equation, and it is the core

of adversarial training. Although adversarial training could greatly improve robust

accuracy (e.g., from 3.5% accuracy to 45.8% [57]), the normal performance, as well

as the model’s generalizability, could be substantially reduced [57, 58]. As a result,

there is an important tradeoff between models’ robustness and performance.

Beyond adversarial training, various empirical defense techniques exist in AI com-

munity, including gradient hiding [59], which makes it harder for attackers to solve

the optimization in equation 1.1, defense distillation, which aims to train a surrogate

model which is harder to be fooled, and feature squeezing, which aims to smooth the

input and filter out the influence made by the adversary. However, these heuristic

approaches are not capable of ensuring robustness against unforeseen adaptive at-

tacks [47]. All these empirical defense has been broken by stronger attack [60–62].

This dilemma is well-known as Cat and Mouse Game in adversarial attack research,

where attackers constantly develop new methods to evade defenses, and defenders

constantly adapt to catch up with the latest attacks. It is a back-and-forth struggle

between the attacker and the defender.

Improving the quality and robustness of DNNs, as well as guaranteeing their cor-

rectness during deployment, is also an important problem within the SE community.

Related efforts can be roughly classified into two types : (1) those that seek to eval-

uate the quality of DNNs before deployment by generating test inputs and (2) those

that aim to understand model behaviors with respect to individual input in the de-

ployment stage and present a warning when the system may fail on the input.

The motivation behind the former is that testing data are costly and frequently

inadequate for assessing the quality of DNNs. Consequently, some testing techniques

have been devised to generate test inputs that can more thoroughly test DNNs [12,

63–68]. This generation process can be guided by some DNN coverage criteria, such

as those proposed in DeepXplore [69] and DeepGauge [70]. Once the inputs that

DNNs are incapable of processing are identified, model developers can apply repair
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methods accordingly (e.g., fine-tuning on the error inputs).

Despite the fact that the above methods have been proven successful in many

applications, they still require prior knowledge of potential failure cases and thus fall

into the category of empirical defense to some extent.

The latter approach aims to explore the limits of a DNN’s capabilities with a single

input. This analysis of abnormal model behavior seeks to determine when the model

might produce erroneous predictions [31–37] and warn the users accordingly. The

problem of detecting adversarial inputs is typically formulated as a binary classifica-

tion task, where the goal is to classify inputs as either natural or adversarial. Various

approaches have been proposed to address this problem. One approach involves uti-

lizing a separate machine learning model, such as a deep neural network (DNN), to

directly analyze the input and classify it as natural or adversarial [71–73]. Alterna-

tively, some methods extract features from the DNN and use them for detection [74–

76]. Another line of research involves analyzing the internals of DNNs to gain insight

into their behavior and use this knowledge to develop detection methods [39, 77, 78].

Finally, some techniques focus on the input itself and attempt to detect adversar-

ial inputs through input reconstruction [79, 80] or feature squeezing [81]. However,

such empirical attacks are not reliable in safety-critical scenarios and may fail against

strong adaptive attacks [47, 82].

1.2.2 Certified Defense

Another line of research seeks to solve the adversarial defense problem once and for

all. The related work is called certified defense. This approach is based on overap-

proximation, wherein, under a specified attacker model, the adversary is assumed to

possess the maximum capability (e.g., the ability to alter the prediction by modify-

ing just one pixel), which is often extremely hard (if not impossible) to have. If the

target model can still be robust under the circumstance, we could say this model is

adversary-free. Otherwise we claim that we are uncertain about models’ robustness.
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An illustration is shwon in Fig. 1.5.

Certified Prediction:
It is a cat, and I assure the 
prediction is adversary-free

I can not guarantee 
robustness on this input

Rejection:
ModelInput

Figure 1.5: Illustration of certified defense

The neighborhood of one input has infinite points to cover, and the computation

models of DNNs are highly complex. Because of this, providing a certification after

enumerating all cases is an impossible mission. To tackle this issue, abstraction and

overapproximation are the key ideas in all related work. Abstraction makes infinite

points into finite states, and overapproximation simplifies the computation so the

black box can be analyzed. As such, an efficient method for computing the overap-

proximation over abstractions for verification is crucial in certified defense. Related

work needs to present a carefully designed test such that when the target model with

respect to one particular input passes the proposed test, the model is said to be surely

robust in the neighborhood of the input. Such certification generally requires rigor-

ous analysis. After designing the test, developers can design an adversarial training

method to train a model so its loss under the test can be minimized.

Early attempts on the certified defense of digital domain adversarial attacks rely

on traditional software engineering techniques, such as building a linear programming

model for DNNs and leveraging satisfiability modulo theories (SMT) solvers to prove

the properties of DNNs [83] or reasoning the models’ robustness through abstract

interpretation [84]. However, these methods are computationally heavy and only

capable of small DNNs (approximately 100 to 50000 neurons) with a large amount

of time (days to weeks). There is still a huge gap to real-world SOTA models (with

billions of neurons).
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Later, two other certified defense methods were developed that can scale to rela-

tively larger models. One approach is based on the observation that the non-linear

nature of DNNs is the primary obstacle to performing certification computations. To

tackle this issue, researchers find it possible to apply linear relaxation for non-linear

components (e.g., activation function). After such relaxation, it is possible to prop-

agate input as an interval instead of a single point. Recall from equation 1.3 the

robustness property states that the model is robust to a given input if its prediction

remains unchanged in the neighborhood of that input. By forwarding an interval

instead of a point through DNNs, we are able to verify whether the property holds.

This method is called interval bound propagation (IBP), where the propagation is

defined mathematically as:

z̄(k) = W (k) z̄
(k−1) +

¯
z(k−1)

2
+ |W (k)| z̄

(k−1) −
¯
z(k−1)

2
+ b(k) (1.5)

¯
z(k) = W (k) z̄

(k−1) +
¯
z(k−1)

2
− |W (k)| z̄

(k−1) −
¯
z(k−1)

2
+ b(k) (1.6)

In the above equations, z(k) is the output of kth layer in the DNN, z̄(k) and
¯
z(k)

correspond to the upper bound and lower bound of z(k). W (k) is the weight and b(k)

is the bias of kth layer of the DNN. Such computation makes it possible to estimate

the output range given an input interval. If the lower bound of a particular class c is

higher than the upper bound of any other classes, we can claim that the prediction of

this model will remain unchanged in the input interval. This method can successfully

verify an image classifer trained on CIFAR-10 dataset [85]. Nonetheless, this approach

has some limitations. Linear relaxation must be implemented for each type of non-

linear component, and the quality of the relaxation will significantly impact the final

certification outcome.

Another approach takes a probabilistic perspective, aiming to determine the lower

and upper bounds of each label’s probability via statistical inference. This method is

called random smooth, which originates from pixelDP [86], which connects differential
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privacy with model robustness. Later, Cohen et al. [87] provided a more formal

definition of the problem with rigorous proof. Roughly speaking, it first adds Gaussian

noise to one input image and repeats this process thousands of times. These generated

images are sent to the classifier, and statistical inference is performed based on the

results. If the lower bound of a class probability is larger than the upper bound of any

other classes, the classifier is said to be robust for this input. More images will yield

a more accurate estimation. The added Gaussian noise can be regarded as a form of

feature squeezing, while the statistical inference provides a rigorous guarantee for the

models’ robustness. However, this method is also computationally heavy, with nearly

1000x to 10000x overhead because of the repeated inference.

While certified defense against digital domain attack is relatively mature, related

study on patch robustness is still in the nascent stage. Although, as we mentioned

in section 1.1.2, the physical attack in the patch format is a real threat to the deep

learning system. This threat is especially urgent for Transformer as related papers

claim their adversarial patch robustness is even weaker than CNN [27–30].

Keen readers may ask whether the digital domain certified defense could be ap-

plied to patch attack. The IBP method could be transferred to the patch robustness.

However, it will be harder to do the propagation as shown in equation 1.5 and equa-

tion 1.6, and we will show later in the related work section this method could perform

poorly in certifying patch robustness. For the random smooth, the way it adds noise

to the entire image makes it naturally improper to defend the attack in a region with

no magnitude restriction.

To address the threat model of patch attacks, researchers have developed several

heuristic defenses to improve patch robustness [42, 43]. However, they also suffer from

the Cat and Mouse dilemma and could be broken in the future. In contrast, certified

defense assumes that attackers possess the utmost capability of a particular type of

attack, and if the defense is still effective against such an attack, it is theoretically

invulnerable to adversaries and is resilient to unforeseen attacks. Several provable

12



defenses have been recently introduced for adversarial patches. We will discuss them

in detail in the related work section. The majority of these defenses [48–51] aim to

develop a model that can ensure consistent predictions on images, or determine the

presence of adversarial patch. These approaches called certified recovery, are based

on the insight that prediction can be made by combining local features extracted from

small, independent receptive fields. Certified robustness is attained by guaranteeing

that the aggregated outcome is not controlled by a small number of possibly adver-

sarial receptive fields. Yet, this secure aggregation paradigm comes at a cost. Related

methods seriously compromise the models’ accuracy because of the lack of global fea-

tures. A recent study [48] in this category was able to attain a certified accuracy of

only 26.0% on ImageNet [88] with 2%-pixel adversarial patches.

To this end, we raise the major research question of this work:

Is there an efficient way to certify the patch robustness of a complex

transformer architecture without much loss on models’ performance?

1.3 Our Method

Preserving robustness can be extremely difficult when the perturbation is an unre-

stricted patch. Models’ performance can drop to nearly zero when adding the digital,

imperceptible perturbations. It could be more severe when the perturbation is actu-

ally visible to human eyes. Furthermore, since DNNs are highly non-linear, the effects

of a patch of limited size will quickly propagate to all neurons.

Rather than attempting to make imprecise predictions in the presence of abnor-

mal patches, we argue that it may be more reasonable to alert the user if the input

is potentially harmful. For instance, consider a scenario where a DNN is used for

medical imaging. In such a case, it would be desirable for the model to warn the

doctors that the model is incapable of providing a truthful prediction and it requires

human intervention. Certified detection is specifically designed for this purpose.

Several approaches, such as Minority Reports Defense [53], PatchGuard++ [54], and
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ScaleCert [55], aim to detect the presence of an adversarial patch by partially occlud-

ing the image around each candidate patch location and analyzing the predictions of

all occluded images. However, the Minority Reports Defense is not scalable to high-

resolution images like ImageNet due to the challenges of training and the heavy com-

putation overhead it incurs. PatchGuard++ and ScaleCert rely on CNN backbones

with small receptive fields, such as BagNet [89], which cannot effectively leverage

global features. Therefore, obtaining accurate and scalable robustness certification

for complex transformers against adversarial patches remains an open problem.

To this end, we present PatchCensor, a testing-based method for certifying the

robustness of DNNs against adversarial patches that can scale flexibly to complex

images of varying sizes. PatchCensor falls within the category of certified detection

and aims to alert the user when an abnormal patch appears. As a testing-based

method, PatchCensor is zero-shot and directly reuses a pretrained ViT backbone for

certification. Furthermore, our approach can be used to detect corrupted natural

patches by providing a provable guarantee for worst-case patch attacks.

The reason for PatchCensor being explicitly designed for the Transformer archi-

tecture is that:

• The Transformer architecture has demonstrated SOTA performance in tasks related

to both Natural Language Processing (NLP) and Computer Vision (CV).

• There is a need to defend Transformers, as suggested from recent studies [28] that

they are vulnerable to physical-domain adversarial patches

• Prior work has has indicated that neural network architectures based on Trans-

formers are resilient to the absence of blocks [24, 26], making it more reasonable to

design occlusion rules that explicitly mask some blocks.

In the remainder of this paper, we will concentrate on the Vision Transformer

(ViT) despite the fact that our defense strategy is intended for Transformers and
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functions at the abstract feature block level. There are two reasons for this choice:

firstly, the majority of relevant research has been designed and assessed in the context

of visual tasks, and thus it is more sensible to compare our method with these works

in the same domain. Secondly, both adversarial patch attacks and the corresponding

defenses are formally defined in the context of visual tasks rather than in the natural

language domain.

The ViT architecture divides the input image into small patches, which are subse-

quently processed by several transformer encoder layers that exchange local informa-

tion by attending to one another. The final global feature is obtained following the

transformer layers and is used to classify the entire image. The attention mechanism

employed in ViT allows for an efficient approach to exclude local patches from an

inference pass, whereby a patch can be removed by masking the attention of other

patches directed towards it. The remaining patches can still interact with one another,

thereby obtaining adequate global information for accurate prediction.

PatchCensor examines the input image to determine whether an adversarial patch

can control its prediction by testing it with various mutations. Each mutation ex-

cludes a region of the image by modifying the attention mask of the ViT, and we

verify whether the mutated inference can generate the same result as the original

prediction. Exhaustive testing is performed by examining all possible locations of

the adversarial patch, and an input is deemed robust if all tests produce a consis-

tent prediction. By designing an optimal strategy for generating the attention mask,

PatchCensor can achieve full test coverage with a minimal number of mutations. The

robustness certification of PatchCensor is achieved by subjecting samples from a given

data distribution to exhaustive testing. Similar to most certification approaches [86,

90], the certified accuracy is calculated as the ratio of correctly predicted samples

that are certifiably robust.
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1.4 Contribution

In summary, this paper contributes in the following ways:

• The primary contribution of this paper is the introduction of a testing-driven cer-

tified defense mechanism against adversarial patch, which leverages the unique

characteristics of Transformer-based deep neural network (DNN) architecture.

• We implement and evaluate our proposed method on widely-used datasets, includ-

ing CIFAR-10, GTSRB, Food-101 and ImageNet, and demonstrate that it achieves

SOTA certified accuracy on these datasets.

• Furthermore, we discuss the fundamental distinctions between certified recovery

and certified detection, which elucidates the better practicality of our approach.

To the best of our knowledge, PatchCensor represents one of the early attempts to

explore the certification of machine learning software security from the perspective of

the Transformer architecture and exhaustive testing. We demonstrate that this ap-

proach shows considerable promise and practical usefulness compared to other SOTA

techniques, which could inspires future research aimed at enhancing the security of

data-driven intelligent software.

1.5 Organization of The Paper

In the introduction section, we provide the necessary background information, define

the problem, and briefly overview our proposed method. The related work section

provides a more comprehensive overview of existing certification techniques for patch

robustness. In the preliminary study, we highlight the limitations of current certified

recovery approaches. The methodology section presents a formal description of our

method. In our evaluation, we apply PatchCensor to commonly-used datasets, includ-

ing CIFAR-10, GTSRB, Food-101 and ImageNet, and evaluate its performance under
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adversarial patch sizes ranging from 0.4% to 25%. Our experimental results demon-

strate that PatchCensor surpasses existing certified defense methods in both clean

accuracy and certified accuracy metrics. We also compare the advantages and disad-

vantages of PatchCensor with certified recovery approaches to determine whether we

have mitigated the issues identified in the preliminary study. We present empirical

evidence of the superior ability of PatchCensor in handling images with small re-

gions of interest (ROIs). Moreover, we examine the difference between the statistical

certificate obtained by PatchCensor and traditional certificates, a topic that has not

been extensively explored in previous literature. Finally, we conclude our work and

outline potential directions for future research.
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Chapter 2

Related Work

In this section, we discuss related certified defense work in detail. The primary

objective of certified defenses is to ensure the robustness of a given model against

patch attacks in a rigorous manner.

The primary objective of certified defenses is to ensure the robustness of a given

model against patch attacks in a rigorous manner.

Notably, for model robustness we have discussed so far, we mainly discuss adver-

sarial robustness. However, in reality, there is also robustness against natural pertur-

bation. As research continues to explore the robustness of machine learning models

against adversarial distribution shifts, efforts are also being made to investigate the

natural distributional robustness of deep neural networks (DNNs). The motivation

behind this research is the recognition that the worst-case adversarial perturbation is

unlikely to occur in the real world, whereas the corruptions commonly encountered

in natural environments can have a substantial impact on model performance.

Natural corruption can affect either the entire image or a limited patch region,

similar to the adversarial scenario. For example, motion blur and Gaussian noise [91]

can be used as natural perturbations applied to the entire image. Alternatively,

natural perturbations confined to a patch can be used, as seen in sudden occlusion in

object detection [92] and out-of-distribution objects in the open-set video setting [93].

In contrast to whole-image perturbations, where natural and adversarial pertur-
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bations are difficult to analyze in a consistent framework because the latter does not

impose constraints on perturbations, it is feasible to unify both types of perturba-

tions in the patch setting. More precisely, when considering a fixed patch size, if the

model’s robustness against the worst-case adversarial scenario is assured, then safety

against natural perturbations can also be guaranteed.

At a high level, existing certified defenses can be classified into two categories:

certified recovery [47–52] and certified detection [53–55, 94]. Certified recovery aims

to recover the correct prediction on images with adversarial patches, while certified

detection aims to detect adversaries with a provable detection rate. In the following,

we briefly introduce four representative certification workflows that are closely related

to ours: three for certified recovery and one for certified detection. It is worth noting

that the success of the patch attack arises from the non-linear property of neural

networks, where a small local region can impact the prediction of the global input.

As a result, these works share a similarity in that they all aim to isolate or block the

influence of the adversarial patch through different approaches.

The first work to address certified defense for patch attacks is the IBP method

adapted for the patch scenario [47]. It follows the same basic workflow as introduced

in Section 1.2.2. However, instead of imposing a constraint in a linf ball around the

input point (the digital-domain defense approach), the constraint is applied to all

images obtained by placing a patch over all possible positions of the original input.

Mathematically:

B(x0) = {A(x0, p, l)|p ∈ P and l ∈ L} (2.1)

In the equation above, the operator A places the adversarial patch p on a given

image x0 at location l. To verify the robustness property of a neural network, this

method applies IBP over all possible locations and aggregates a lower bound of prob-

ability for the target class and an upper bound for other classes. This method is
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thus computationally heavy and yields relatively poor performance (24.9% certified

accuracy on the CIFAR-10 dataset with 2.4% patch size). Nonetheless, this work

makes certification on patch robustness possible and can serve as a baseline.

An early endeavor in the domain of certified recovery is (De)Randomized Smooth-

ing (PatchSmoothing) [49]. The primary innovation of this technique involves se-

lecting a specific portion of the image as input and conducting multiple inferences

throughout the entire image. Two selection strategies are presented in the paper:

block smoothing and band smoothing. In the block smoothing approach, a square

of dimensions s × s is used as input, with all h × w positions enumerated, where h

represents the image’s height and w its width. When the block’s center reaches the

image boundary, PatchSmoothing employs a wrap-around mechanism, utilizing pixels

from the other three corners if the center is situated in one corner. Subsequently, the

inference results for all squares are tallied, and the difference between the top two

classes is computed. If for these two classes we have:

∆ ≥ 2(m+ s− 1)2 (2.2)

PatchSmoothing proceeds to certify the input with the label of the top-1 class. In

this context, ∆ denotes the difference, while m signifies the adversarial patch size, and

s represents the square size. This threshold is determined by the maximum number of

patches the adversary can manipulate. Band smoothing operates in a similar manner;

however, it selects a column of size s as the input. The corresponding threshold for

this method is expressed as:

∆ ≥ 2(m+ s− 1) (2.3)

An example for digital number prediction is shown in Fig. 2.1.

PatchGuard [48] advances the field by employing a specific CNN, known as bag-

net [95], which possesses small receptive fields. These constrained receptive fields
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(a) Input

(b) Input patches sent to model

Figure 2.1: Example of PatchSmoothing inference

serve to limit the impact of adversarial patches. Building on this structure, Patch-

Guard introduces an element-wise linear aggregation method as a replacement for the

original, insecure fully-connected layer, which blends the prediction results from both

benign and adversarial patches. The aggregation mechanism functions as follows: It

examines the prediction vectors of all sliding windows with a predefined size (adver-

sarial patch size), and if a sliding window with the highest score for a particular class

surpasses a predefined threshold, PatchGuard masks that window, employing the re-

maining windows to predict the class. This approach is motivated by the observation

that an adversarial patch significantly increases the score of the target class to surpass

the original prediction.

Both certified recovery methods employ a voter mechanism; the former ensures

that the majority remains uninfluenced by the adversary, while the latter guarantees

that suspicious voters cannot control the outcome. These two parallel methods are

examined in detailed in our work because we aim to discuss the distinctions between

certified recovery and certified detection, offering both practical considerations and

experimental results to support our preference for certified detection.

Conversely, Minority Report (MR) [53] serves as a representative work in certified

detection. For each input, MR also conducts multiple inferences, with each masked

by an occlusion region of s× s that is two pixels larger than a predefined adversarial
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patch. As the occlusion region slides across the image (of size h × w), MR collects

results for (h−s+1)(w−s+1) inferences. MR certifies the result only if all predictions

yield the same class. In their implementation, however, this requirement is relaxed

by initially discarding the lowest score to accommodate outliers and subsequently

providing certified results when the supported votes surpass a predefined threshold.

This relaxation may result in false negatives but improves the overall performance.

The primary emphasis of this paper is on certified detection. Our proposed system,

PatchCensor, distinguishes itself from existing certified detection methods in three

distinct aspects:

• Firstly, PatchCensor is founded upon a comprehensive testing strategy without

the need for additional efforts to train a model that exhibits robustness against

adversarial patches.

• Secondly, the certification process of PatchCensor operates on a range of patch sizes

rather than a single fixed size, offering increased flexibility in its application.

• Lastly, PatchCensor is applicable for patch sizes up to 25% (whereas most related

work is evaluated on 2%-pixel attacks), rendering it more practical for detecting

natural patch perturbations in real-world scenarios.
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Chapter 3

Preliminary Study

In this section, our focus lies on examining the potential issue related to the certified

recovery approach. The goal of this method is to preserve accurate predictions despite

the presence of adversarial inputs. We argue that accomplishing such a goal can be

challenging in certain cases. We will first outline the evaluation metrics (which will

also be used in following sections), followed by presenting the experimental designs

and results.

3.1 Evaluation Metrics

The objective of the defender is to enhance the defended model’s quality by improving

both clean accuracy and certified accuracy. Let the abstract function of a model as f .

Clean accuracy, denoted as accclean, refers to the accuracy of f on the original dataset

X without considering verification (please note that our clean accuracy definition

deviates from previous certified detection work; we report accclean to enable readers

to understand the influence of pre-training on the base model). Meanwhile, certified

accuracy, represented by acccertified, corresponds to the images in X that are both

correctly and provably classified. Formally,

accclean = Ex∈X [l(f(x), y)] (3.1)

acccertified = Ex∈X [l(f(x), y) v(x)] (3.2)
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where l is the indicator function for correctness. It will return 1 if the result is

correct and 0 otherwise. v(x) is the certification result, while 1 indicates certified and

0 otherwise.

acccertified is usually the most important metric in related study. It can be divided

into two components: the proportion of inputs that can be verified, and the accuracy

of the model’s predictions for those verifiable inputs. The former is defined as:

rrobust =
|Xtrust|
|X |

(3.3)

and the model accuracy in the trust (certified) domain is:

accin-robust = Ex∈Xtrust [l(f(x), y)] (3.4)

The aim is to maintain high test accuracy and ensure dependability for the majority

of inputs (Xrobust) while issuing a warning if the input x is potentially malicious

(v(x) = 0). This concept bears similarity to selective prediction approaches that

attempt to incorporate a reject option within neural networks [96]. Such a rejection

mechanism proves beneficial in a variety of perception tasks where a fallback solution

is available. For instance, in the context of driving assistance models, the human

driver may be prompted to take over or execute a conservative action when the model

lacks confidence in the current situation.

3.2 Experiment Design and Results

Certified recovery typically relies on a specialized model (e.g., BagNet[95]) that gen-

erates predictions using small receptive fields. They require first dividing the input

image into smaller regions, each of which is input into the model to produce a local

prediction. The defended prediction is determined by voting across all local predic-

tions, and an input sample’s certification is achieved if a sufficient number of local
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predictions vote for the same label, thereby ensuring that an arbitrary adversarial

patch will not alter the prediction. In other words, for a given set of Y classes, an

image is certified as classA if the following condition is met:

VoteclassA − VoteclassB > threshold

where VoteclassB = max ∀i∈Y,i ̸=A(Voteclassi)
(3.5)

Threshold design, which is usually the key, differs between different methods.

While certified recovery is generally anticipated to provide a more rigorous and

formal guarantee, we argue that a lightweight and statistical guarantee regarding the

presence of an attack may be more applicable in real-world scenarios. The reasons

are threefold:

• Firstly, a notable drawback of certified recovery is its limited performance (e.g., a

mere 26.0% certified accuracy on ImageNet for a recent work [51]), often rendering

such defenses impractical for real-world applications.

• Secondly, the optimization of the model for both clean and adversarial inputs in-

escapably reduces the model’s accuracy across all existing certified recovery ap-

proaches, potentially negatively affecting user experience. Nevertheless, attaining

moderate certified performance without such optimization proves difficult for cur-

rent certified recovery techniques. Additionally, this optimization, often realized

through re-training or even training from scratch, may take more computational

resources and time.

• Lastly, we observe that recovering the correct prediction in the presence of adver-

sarial patches can be difficult or even impossible in certain cases, such as when an

adversarial patch conceals the critical region of interest (ROI). Addressing this issue

may be particularly challenging for images with a small ROI, where the majority

of local voters might need more information to generate the correct prediction.
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Figure 3.1: Illustration for image rescaling. The left one is the original image, and the
right one is the image after rescaling.

With advancements in camera technology, high-resolution images are becoming in-

creasingly common, resulting in significantly smaller ROIs in practice compared to

popular datasets like MNIST and CIFAR-10.

In order to further support our observations and hypotheses, we conduct a pre-

liminary study examining two certified recovery approaches, namely PatchGuard [48]

(abbreviated as PG) and De-randomized Smoothing [49] (abbreviated as DS). Specif-

ically, we rescale each image in CIFAR-10 to a smaller size and pad the image to its

original dimensions, as demonstrated in Fig. 3.1. This process allows us to control the

size of each image’s region of interest (ROI). We gradually rescale the image, reducing

its size from the original dimensions of 32 to 20 with a 2-pixel interval. Given that

the images differ from their original versions after resizing, we need to retrain the

models. We train the De-randomized Smoothing ResNet (DS-ResNet) from scratch

for 200 epochs, utilizing common settings found in De-randomized Smoothing[49] and

PatchGuard [48]. We assess these two methods to certify a 2.4% patch size and record

the distribution shift of the voting differences (VoteRank1_class−VoteRank2_class). The

result for DS is shown in Fig. 3.2, and the result for PG is shown in Fig. 3.3.

It is evident that as the ROI becomes smaller, the margin between Rank-1 voting

and Rank-2 voting decreases. If the voting margin for a sample falls below a certain

threshold, the model does not provide a certified result for that sample. The threshold

is more intuitively understood for Randomized Smoothing (since PatchGuard is based

on a weighted sum and the voting value is continuous), in which the threshold is

calculated using equation 2.3. For instance, if m (the target size to certify) is 5
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(a) Voting distribution on Resize scale
from 32 to 26

(b) Voting distribution on Resize scale
from 24 to 20

Figure 3.2: Rescale experiment on De-randomnized Smoothing. The X-axis denotes the
difference in value between the top two votes, while the Y-axis represents the frequency of
samples yielding the voting result.

(corresponding to a 2.4% patch size), and s (the column size) is 4 (the default setting),

then the threshold is 16. In Figure 3.2b, it is clear that the distribution of De-

randomized Smoothing for size 20 has shifted just to the left of 16. Consequently,

there is a significant decline in certified accuracy at size 20. Detailed results can be

found in Figure 5.2 (refer to section 5).

This scenario of PatchGuard is similar to De-randomized Smoothing, where we can

observe a clear distribution shift when the resize scale equals 20, as shown in Fig. 3.3b.

Consequently, we can also observe a significant performance drop in Figure 5.2.

We also examine test instances in the CIFAR-10 dataset that are correctly predicted

but cannot be certified, demonstrating that relying solely on local features as input

may lead to confusion for certified recovery methods. In other words, the difference

between the top-2 classes for these instances does not surpass the threshold defined in

these algorithms. The confusion matrix for those instances is shown in Fig. 3.4, where

the y-axis represents the true class and the x-axis indicates the ranked-2 class. It is

evident that for both methods, dog vs cat, car vs truck, and frog vs bird are classes

that are challenging to certify. Moreover, these classes can sometimes be difficult

to differentiate, even for humans, when given only a small patch of the image, as
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(a) Voting distribution on Resize scale
from 32 to 26

(b) Voting distribution on Resize scale
from 24 to 20

Figure 3.3: Rescale experiment on PatchGuard. The X-axis denotes the difference in value
between the top two votes, while the Y-axis represents the frequency of samples yielding the
voting result.
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Figure 3.4: Confusion matrix for test instances that are unable to certify but predicted
correctly. Y-axis indicates the ranked-1 class and X-axis indicates the ranked-2 class

illustrated in Fig.3.5.

Our preliminary study’s findings confirm that certified recovery methods relying

on local features may have inherent limitations when dealing with small-ROI im-

ages, making it challenging to achieve satisfactory certified accuracy in practice.

Conversely, using as many patches as possible during the inference pass can sup-

ply sufficient information for the models to make predictions. This can enhance clean

accuracy, particularly in the case of a small ROI. However, increasing the number

of patches in a single inference will inevitably raise the likelihood of including ma-
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Dog

Cat Certified recovery PatchCensor

Figure 3.5: Illustration for the input used by certified recovery (DS) and PatchCensor.
Certified recovery approaches are based on small local regions. Our method is based on the
whole image with a small region occluded.

licious patches and, consequently, increase the defense’s difficulty. Our work seeks

to address this dilemma by proposing a defense mechanism in a detection-oriented

manner, which can utilize more patches to improve certified accuracy.
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Chapter 4

Method

This section proposes a certified defense methodology against adversarial patches,

which relies on testing and is denoted as PatchCensor. First, the problem is formu-

lated, and the intended properties for certification are formally defined. Subsequently,

our approach is introduced, accompanied by a high-level theoretical analysis.

4.1 Problem Formulation

To be general, our work shares the same threat model as existing recent SOTA cer-

tified defense work against adversarial patches [47–50] (The attack and defense are

both focused on image classification context.). We use X ⊂ RW×H×C to denote the

distribution of images where each image x ∈ X has width W , height H, number of

channels C. We take Y = {0, 1, · · · , N − 1} as the label space, where the number of

classes is N . We use f : X → Y to denote the model that takes an image x ∈ X as

input and predicts the class label y ∈ Y .

Attacker capability. The attacker has the ability to arbitrarily modify pixels

within a constrained region, which may include the target object. For the purpose of

our analysis, we assume that all manipulated pixels lie within a square-shaped region,

the size of which is conservatively estimated by the defender (i.e., upper bound of the

region size). While our proposed technique can be extended to other patch shapes,

we have chosen to focus on square-shaped patches for the sake of simplicity. It should
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be noted that our method is applicable as long as the patch can be contained within

a restricted rectangle.

Formally, we assume the attacker can arbitrarily modify an image x within a con-

straint set A(x). We use a binary pixel block p ∈ P ⊂ {0, 1}W×H to represent the re-

stricted region, where the pixels within the region are set to 1. Then, the constraint set

A(x) can be expressed as {x′ = (1−p)⊙x+p⊙x′′}|x, x′ ∈ X , x′′ ∈ RW×H×C , p ∈ P},

where ⊙ refers to the element-wise product operator, and x′′ is the content of the

adversarial patch.

Attack objective. We focus on adversarial patch attacks against image classifi-

cation models. Given a deep learning model f , an image x, and its true class label

y, the goal of the attacker is to find an image x′ ∈ A(x) ⊂ X such that f(x′) = y′,

where y′ is an arbitrary incorrect class label defined by the attacker and y′ ̸= y.

We note that the attack objective of inducing misclassification into any wrong class

is referred to as an untargeted attack. In contrast, when the goal is to misclassify the

image to a particular target class y′ ̸= y, it is called a targeted attack. Our attack

model is defined as untargeted, as it encompasses a broader range of attacks from

the defender’s perspective. However, it is worth noting that our proposed method is

capable of effectively countering both untargeted and targeted attacks.

Defense objective. The role of the defender is to design a defended model

g = (f, v) : X → Y × {0, 1}, where g(x) = f(x), v(x), f(x) ∈ Y is the classification

result, and v(x) ∈ {0, 1} is the verification result indicating whether the prediction

f(x) can be verified (1 stands for “verified”). A verified inference means this inference

is not influenced by any attacker, and we can trust the prediction made by the model.

The property to be certified. Based on the defense objective, we formulate

the property to be certified as follows: Given a model M and a data distribution D,

we certify that for any x ∈ D, the prediction M(x) is correct and robust (cannot be

falsified by an arbitrary attacker with ability A) with a probability of θ.

The concept of providing statistical guarantees through certification for neural
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networks is not novel. Numerous certified defense techniques in the digital attack

domain [86, 87] offer such assurances (the random smooth, as shown in section 1.2.2).

Nevertheless, this formulation has the potential to generate confusion, as the major-

ity of prior certification research related to patch attacks, including certified detec-

tion—the central focus of this paper—yield deterministic certification outcomes. We

discover that, in actuality, PatchCensor and all preceding certified detection efforts

provide a statistical guarantee (discussed in Section 6), and we contend that it is both

necessary and crucial to reformulate the problem. Furthermore, we argue that such

statistical assurances hold greater practical value in real-world applications, a point

to be discussed in more detail later.

The classification and verification result of D(x) are represented as Dy(x) and

Dv(x) respectively.

The predictions of PatchCensor should be resistant to adversarial patches in the

robust domain, i.e.any adversarial example generated by the attacker either is inef-

fective or can be detected (cannot pass the verification). Formally, for any certified

clean data point x ∈ Xrobust and any adversarial example x′ ∈ A(x), we ensure either

f(x′) = f(x) or v(x′) = 0.

(f, g)(x) ≜

⎧⎨⎩ f(x), if g(x) = 1;

don’t know, if g(x) = 0.
(4.1)

4.2 The Testing-based Defense

Our adversarial patch defense technique is designed upon the Vision Transformer

(ViT) architecture, by utilizing its input partition nature and self-attention mecha-

nism.

The summarized workflow of PatchCensor are shown in Figure 4.1. It can be viewed

as a paired function g = (f, v), where f is a pretrained ViT model for prediction,

and v is a verification function based on the ViT model. Given an input image x,
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Figure 4.1: The overall architecture and workflow of PatchCensor.

PatchCensor produces a pair (f(x), v(x)), where f(x) is the predicted class of x and

v(x) represents whether the prediction is verified.

In PatchCensor, the input image is split into non-overlapping patches as in vanilla

ViT models. Suppose the input patch size is P × P in pixels, then the input image

x ∈ X ⊂ RW×H×C is partitioned into a sequence of patches P = {pi|i = 1, 2, ..., n},

where n = nw × nh = W
P

× H
P

is the number of patches. Each patch pi is then

flattened, passed through a linear projection layer, and added a position embedding

to generate a patch embedding qi. A learnable [class] embedding q0 is prepended

to the sequence of embeddings, which is used to produce the class prediction after

passing through later layers.

Specifically, the patch embeddings are fed into multiple parallel Transformer en-

coder layers T = {t0, t1, ..., tk} to exchange information between local patches. The

encoders share the same weights of the ViT model f , while being used with different

attention masks. Each Transformer encoder tj produces an encoding of the [class]

node, which is then passed through the MLP head to produce a class prediction yj.

We call the predictions produced with the masked attention maps (i.e.y1, y2, ..., yk)

as masked predictions.
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To test whether there is an adversarial patch, we design a special mutation operator

that directly masks the attention maps. The predictions with different masks can be

seen as different mutations. The presence of the patch can be detected once we

find anomalies among the test results. We call the predictions produced with the

masked attention maps (i.e.y1, y2, ..., yk) as mutations. The class prediction f(x) is

produced by the Transformer encoder without mutation (i.e.y0), which is equivalent to

a direct inference using the base ViT model. The verification result v(x) is produced

by voting over all of the testing results (y1 to yk). We ensure that at least one of

the mutations is benign (i.e.can completely mask the adversarial patch out), which

vetoes the adversary’s target output even if all other predictions are compromised.

The prediction is verified if all Transformer encoders reach consensus (i.e., agreeing

on the same class prediction).

As we enumerate all possible positions for the potential adversarial patch in this

test generation process before masking, this test can exhaustively cover all corner

cases, meaning that we complete a full-coverage testing.

Ideally, if testing can be done on all possible situations and these test cases are

all passed (producing correct and consistent output), the exhaustive testing would

be equivalent to a rigorous verification. However, directly testing all possible adver-

sarial patch positions is computationally infeasible and impractical considering its

combinatorial complexity.

Our mask strategy plays a role similar to the abstract set in abstract interpre-

tation [97], providing a convenient (due to the natural robustness of self-attention

architecture) and efficient (due to the reduced search space) way to achieve exhaus-

tive full-coverage testing.

As a concrete example, we illustrate our method in Figure 4.1. Suppose we use

a ViT model with 30×30 input resolution and 10×10 input patch resolution as the

base model.

An input image will be partitioned into 3×3 patches. To defend against adversarial
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patches with 5×5 resolution, we let each mask exclude 2×2 local patches, i.e., a square

region with 20×20 resolution. By sliding the 2×2 mask over all local patches in the

image, we can obtain four (2×2) possible mask locations and guarantee at least one of

the mask locations can completely hide the 5×5-pixel adversarial patch. A certified

prediction is produced if the four masked predictions vote for the same class as the

non-masked prediction.

Our technique shares some similarities with Partition Analysis [98], where they first

partition the tested domain into sub-domains (just like we partition the input space

by enumerating different mask positions) and combine both testing and verification

techniques to evaluate program reliability. However, one key difference is that Patch-

Censor attempts to do full-coverage testing to achieve verification-level guarantee,

while Partition Analysis complements verification with testing.

4.3 Mutation Strategy

The certification capacity of PatchCensor is realized through testing various muta-

tions, guaranteeing that a minimum of one mutation results in an unaffected pre-

diction (i.e., the associated attention mask can effectively exclude the adversarial

patch). This concept bears a resemblance to Byzantine Fault Tolerance [99], in which

a benign voter can determine the ultimate outcome.

For inference, each mutation employs a distinct attention mask. The critical as-

pect of designing these attention masks involves discerning the number of local input

patches potentially contaminated by the adversarial patch (i.e., containing pixels from

the adversarial patch). Given the fixed input partition plan and the arbitrary location

of the adversarial patch within the image, it is necessary to consider the worst-case

scenario, which is the maximum number of input patches that could be affected by

the adversarial patch.

Our masking strategy is based on the observation that, in an image that is parti-

tioned into non-overlapping P×P -pixel patches, an adversarial patch with Wadv×Hadv
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(a) 0 < Wadv < P (b) P < Wadv < 2P (c) 2P < Wadv < 3P

Figure 4.2: Number of ViT patches affected by different sizes of adversarial patches. P
and Wadv represent the widths of the ViT input patch and adversarial patch respectively.

resolution can affect at most NW × NH input patches, where NW = ⌈Wadv

P
⌉ + 1 and

NH = ⌈Hadv

P
⌉+ 1.

For example, as illustrated in Figure 4.2, if the width Wadv of a square adversarial

patch is smaller than the input patch width P , four input patches may be tainted

(if the adversarial patch is at the joint of 2×2 input patches). Similarly, a square

adversarial patch with Wadv ∈ (2P, 3P ) may affect at most 4×4 input patches.

It is important to highlight that our masking approach guarantees that for any

object, irrespective of its location or shape, as long as it can be confined within a

rectangle of dimensions NW ×NH , there must be a masking configuration capable of

excluding this object. This adaptability allows for the detection of both adversarial

patches and irregular objects in real-world applications, whereas prior research often

necessitated fine-tuning the model to accommodate a specific patch size.

Specifically, given the maximum rectangle shape Wadv × Hadv of the adversarial

patch, we can compute the minimum size NW × NH for the attention mask. By

sliding the mask over the whole input patch grid with a stride of 1, we can enumerate

all k possible locations of the mask, where

k = (
W

P
−NW + 1)× (

H

P
−NH + 1) (4.2)

We can guarantee that at least one of the k masks can cover the arbitrary adver-

sarial patch.

As we only mask a small proportion of the image and our base model is the powerful

ViT, it is relatively easy for all voters to reach a consensus for a correct prediction
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on clean data.

4.4 Certification Analysis

In this subsection, we provide analysis to show that PatchCensor can achieve the

defender’s objective.

After obtaining the regular prediction of the ViT base model f(x), the verification

result of PatchCensor is obtained by

v(x) ≜

⎧⎨⎩ 1, if f1(x) = f2(x) = ... = fk(x) = f(x);

0, otherwise
(4.3)

where fj(x) represents the prediction obtained by the ViT base model with the j-th

mask position on the attention map.

For any verified clean data point x ∈ Xtrust and any adversarial example x′ ∈

A(x), we need to ensure the adversarial patch is either ineffective or can be detected.

Specifically, assuming x′ can pass the verification, we have

f1(x
′) = f2(x

′) = ... = fk(x
′) = f(x′) (4.4)

Based on our masking strategy (Section 4.3), at least one of the masked predictions

will exclude the adversarial patch in x′, i.e.

∃j ∈ {1, 2, ..., k}, s.t. fj(x′) = fj(x) (4.5)

Since x is a verified input, we have f(x) = fj(x), and thus

f(x′) = fj(x
′) = fj(x) = f(x) (4.6)

meaning the adversarial patch attack on x′ is ineffective.
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However, it is still possible that the benign voter(s) make mistakes. This will

eventually lead to an error as described in Section 6. However, such an error originates

from the insufficient capability of the base model and is not influenced by the attacker.

This error can also be estimated before model implementation as long as the data

distribution for the benign patches (i.e.patches that do not contain OOD objects or

are not adversarially influenced) is similar before and after implementation. Notice

that the similar distribution assumption is one of the key assumptions in statistical

machine learning theory [100, 101]

The estimated upper bound of the proportion of instances that the benign voters

make mistakes is just (1−acccertified) on clean data. In other words, the probability of

a correct and robust inference θ as we mentioned earlier is acccertified. This estimated

confidence can serve as an indicator of how much we can trust the model when the

full-coverage testing is passed.
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Chapter 5

Experiment

To gain a comprehensive understanding of PatchCensor performance and its rela-

tionship with state-of-the-art (SOTA) methods from diverse perspectives, we have

devised four research questions.

In RQ1, we first examine the performance of our technique and contrast it with

both certified recovery and certified detection methods:

RQ1: How does the proposed system PatchCensor perform in terms of

clean accuracy and certified accuracy?

The objective of this research question is to provide a comprehensive comparison

of all methods discussed thus far. We choose the CIFAR-10 [102] and ImageNet [103]

datasets under varying adversarial patch sizes as our evaluation subjects, as these

datasets are extensively employed in prior adversarial patch defense studies. The

CIFAR-10 dataset is a collection of 60,000 small images. Each image has 32x32

pixels, and they are classified into ten different classes. The ImageNet dataset is a

large-scale image database containing 1,431,167 images with an average resolution of

469× 387 in various categories, including animals, people, objects, and scenes. Each

image is labeled with one of 1,000 different object categories. In addition to these

two default evaluation datasets in related literature, we also conduct experiments on

the German Traffic Sign Recognition Benchmark (GTSRB) dataset [104] and Food-

101 dataset [105]. The GTSRB dataset is a collection of 51,839 images with 48× 48
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resolution. Each image is annotated with the class of the traffic sign it represents.

The Food-101 dataset is a collection of 101,000 images of food items with 101 different

classes. Each image is annotated with the class of the food item it represents, and

the maximum side length is 512 pixels. The resolution and number of instances in a

dataset often serve as indicators of its difficulty. In order to represent various levels

of computer vision tasks, we select these four datasets with varying characteristics.

Following the general evaluation, we aim to validate the observations from our

preliminary study (Chapter 3) and examine the distinctions between our method

(certified detection) and certified recovery when the area of the region of interest

(ROI) is small, as addressed in RQ2:

RQ2: Does the proposed system PatchCensor achieve moderate certified

performance even for images with a small area of the region of interest

(ROI)?

RQ2 aims explicitly to discuss the rationale behind choosing certified detection over

certified recovery, as mentioned in the preliminary study. This discussion is a crucial

aspect of this paper, with RQ2 serving as a foundation for further analysis in Section

6. It is also worth mentioning that we have compared PatchCensor performance

with that of MR+ in RQ1, demonstrating that PatchCensor achieves state-of-the-

art results as a certified detection method. In RQ2, our goal is to compare certified

detection with certified recovery at the category level. Consequently, we select the

most competitive methods from each category, excluding the second-best MR+ from

this research question.

Following the discussion on certified detection and certified recovery, we seek to

provide a detailed analysis of certified detection. Our evaluation then shifts to a

comparison between PatchCensor and the previous state-of-the-art method, MR+.

One advantage of certified detection is its capability to defend against adversarially

controlled patches with exceptionally large sizes (e.g., up to 25% of the entire image).

Thus, in RQ3, we aim to investigate PatchCensor performance under such formidable
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adversaries on CIFAR-10, GTSRB, Food-101, and ImageNet:

RQ3: How does the proposed PatchCensor perform under strong adver-

saries?

Specifically, we increase the adversarial patch size from 0.5% to up 25%. Notice that

it is possible to detect natural abnormal objects under such a setting. Also, when

the size of dropped patches is large, fine-tuning may greatly influence the models’

performance. So we also discuss the influence of fine-tuning in this RQ. We do not

report the results of certified recovery because they are incapable of dealing with such

large adversarial patches. In our experiments, the training is even hard to converge

when the patch size is large.

Lastly, performance improvement is typically accompanied by some cost. Our ob-

jective is to comprehend the computational overhead for PatchCensor across various

adversarial patch sizes in comparison to the previous SOTA method, MR+. The

overhead can be split into two components: training time and inference latency. In

this research question, we primarily focus on inference latency, as it is a crucial factor

in practical implementations:

RQ4: What is the computational overhead of PatchCensor compared with

the state-of-the-art certified detection technique?

It is worth noting that, as the mechanism described in Section 4, the larger the

target patch size, the fewer inferences are required for PatchCensor. This relationship

presents a trade-off, as a larger patch results in reduced certified accuracy but lower

inference latency. To explore this connection, RQ4 encompasses experiments designed

to guide the selection of an appropriate target patch size during runtime. We also

present experiments demonstrating the impact of different ViT variants. Similar to

RQ3, certified recovery methods yield only trivial results when the patch size is large.

Additionally, as the fundamental certification objectives differ, we do not conduct

evaluations in this research question.

PatchCensor is implemented in Python based on a pre-trained ViT-Base model
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variant with 16 × 16 input patch size (ViT-B/16) [106], which achieves 81.8% test

accuracy on ImageNet.

To support our large-scale evaluation, experiments were conducted on a Linux

server with 4 Nvidia V100 GPUs. All the experiments take around 1,200 GPU hours.

In the rest of this section, we summarize the key results for each of the studied research

questions.

5.1 RQ1: Performance under Normal Setting

Experimental Settings. In order to assess the performance of the proposed sys-

tem (PatchCensor), abbreviated as PC, it is compared with eight certified adversarial

patch defense techniques within the well-established settings of CIFAR-10 and Ima-

geNet datasets, as they are the default benchmarks in the relevant literature. The

comparison encompasses four recovery-based methods, namely Interval Bound Prop-

agation (IBP) [47], De-randomized Smoothing (DS) [49], PatchGuard (PG) [48], and

BagCert (BC) [51], as well as four detection-based methods, including Minority Re-

port (MR) [53], PatchGuard++ (PG++) [54], and ScaleCert (SC) [55].

The MR method employs direct training (fine-tuning) of a CNN model to clas-

sify images with an obscured square region, resulting in higher clean and certified

accuracy. However, the original MR design requires the enumeration of numerous oc-

clusion positions, making it computationally demanding for high-resolution images.

Consequently, we implemented an enhanced version of MR, designated as MR+, by

incorporating our masking strategy to decrease the number of occlusion positions to

the same level as in Equation 4.2. Additionally, the CNN backbone of MR+ was

replaced with a pre-trained ResNet50 [106] that exhibits comparable performance

(81.1% accuracy on ImageNet) to the ViT backbone (ViT-B/16) employed in Patch-

Censor.

Subsequent to the CIFAR-10 and ImageNet experiments, evaluations were ex-

tended to GTSRB and Food-101 datasets. Four methods were included: De-randomized
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Table 5.1: The clean and certified accuracy of different certified defenses on
ImageNet and CIFAR-10. The numbers of IBP, DS, PG, BC, MR, PG++, and
SC are directly copied from their paper. Note that the results of IBP and MR
on ImageNet are not available, because they are computationally intensive or even
infeasible on high-resolution images.

Method

ImageNet CIFAR-10

(2% patch size) (2.4% patch size)

accclean acccertified accclean acccertified

Recovery

Interval Bound Propogation (IBP) [47] N/A 47.8 30.8

De-randomized Smoothing (DS) [49] 44.4 14.0 83.9 56.2

PatchGuard (PG) [48] 43.6 15.7 84.6 57.7

BagCert (BC) [51] 45.2 22.9 86.0 60.0

Detection

Minority Reports (MR) [53] N/A

92.5 77.6

92.5 62.1

92.5 43.8

PatchGuard++ (PG++) [54]

62.96 28.0 91.32 68.9

62.96 32.0 91.32 71.7

62.96 35.5 91.32 74.3

62.96 39.0 91.32 76.3

ScaleCert (SC) [55] N/A.1 55.4 N/A.1 75.3

Minority Reports Adapted (MR+) 75.5 56.3 97.7 83.3

PatchCensor (PC, our approach) 81.8 69.4 98.7 84.1

Smoothing (DS), PatchGuard (PG), advanced Minority Report (MR+), and Patch-

Censor. The selection of these methods was based on three criteria: (1) their compet-

itive performance on CIFAR-10 and ImageNet, (2) their representation of methods

in the relevant fields, and (3) the availability of their open-source implementations.

Result. We first compare our approach with existing certified defense approaches

in terms of clean accuracy and certified accuracy. As shown in Table 5.1 and Table 5.2,

our approach is able to obviously outperform the SOTA techniques with a clean

accuracy of 81.8% and a certified accuracy of 67.1% on the challenging ImageNet
1We are unable to find corresponding clean accuracy with respect to the best certified accuracy

claimed by the authors
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Table 5.2: The clean and certified accuracy of different certified defenses on
GTSRB and Food-101. We fine-tune the models on GTSRB for 30 epochs and
Food-101 for 60 epochs. All the models are fine-tuned with respect to the given
patch size.

Method

GTSRB Food-101

(2% patch size) (2% patch size)

accclean acccertified accclean acccertified

Recovery
De-randomized Smoothing (DS) [49] 52.73 15.97 50.15 17.33

PatchGuard (PG) [48] 68.64 33.61 76.15 46.57

Detection
Minority Reports Adapted (MR+) 96.36 54.65 84.68 64.80

PatchCensor (PC, our approach) 99.89 83.71 83.39 67.61

with 32×32-pixel adversarial patches. Due to the design of PatchCensor, its clean

accuracy remains the same as the base ViT model, which can be even further improved

by using better base models.

The results of detection-based approaches (including ours) are not directly com-

parable with the recovery-based approaches because they are designed for different

goals. However, we notice that our approach was able to achieve a much higher cer-

tified accuracy than recovery-based methods, so it may be more practical to use in

the real world. The main reason is that the certified detection is based on voting

over predictions with a small region excluded, which can still provide sufficient global

information, rather than in recovery-based approaches where each voter is based on

a small local patch.

As compared to other SOTA certified detection approaches, PatchCensor could

achieve higher certified accuracy on all four datasets. The results of clean accuracy are

similar except for MR+ on Food-101, which means ViT-base performs slightly worse

than ResNet-50. Notice that here we train both models with the same configuration

(randomly occluded patches in the same size), to be relatively fair for comparison.

The results indicate that the training configuration might not be optimal for ViT,

which could still have some room for further improvement. Even though, under such
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a non-optimized configuration, the experiment results still confirm the effectiveness of

our method in terms of certified accuracy. The result shows that the superior certified

accuracy of PatchCensor comes not only from the better base performance of ViT

but is also a result of the combination of PatchCensor’s defense mechanism and ViT’s

robustness against the absent patch.

Answer to RQ1: PatchCensor outperforms existing certified recovery methods
by a large margin and also achieves higher clean accuracy and certified accuracy
compared with other certified detection methods in most settings.

5.2 RQ2: Performance under Small ROI

Experimental Settings. In this research question, we want to evaluate the per-

formance of PatchCensor under small ROI, as compared with the certified recovery

methods mentioned in section 3. The adversarial patch size we aim to certify in this

RQ is 2.4%, which is 5 × 5 patch in a 32 × 32 image. We choose this patch size as

it is the default setting in certified recovery work. We first perform rescaling for

each image in the CIFAR-10 dataset so the ROI can be controlled. Then we retrain

the DS-ResNet on the rescaled image following the default setting in De-randomized

Smoothing [49] and PatchGuard [48]. To further validate the PatchCensor can per-

form well on small ROI, we additionally design two experiments on the ImageNet

visual object detection [107] and PartImageNet dataset [108]. The former includes

bounding box annotations for the target object (as shown in Fig 5.1a) in the image

and could serve as an indicator of how large the Region of interest(ROI) is. We

compute the ROI by dividing the bounding box’s area by the whole image’s area.

The latter includes more fine-grained per-pixel part annotations, and each object is

partitioned into smaller parts (as shown in Fig 5.1b). As current certified recovery

methods usually rely on local features for inference and verification, the area of object

parts could also stand for ROI. The ROI of PartImageNet is obtained by dividing the

area of the largest part by the area of the whole image. The model architectures we
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(a) ImageNet with bounding box (b) PartImageNet

Figure 5.1: Illustration of the annotation

Table 5.3: The clean accuracy, certified accuracy, and accuracy in
trust domain achieved by PatchCensor (PC), PatchGuard (PG) and De-
randomized Smoothing (DS) for 2.4%-pixel adversarial patch attack.

Rescaling size
accclean acccertified accin-robust

PC PG DS PC PG DS PC PG DS

32 (original size) 98.8 83.35 83.35 88.85 53.23 51.85 99.83 97.87 97.08

28 98.3 80.80 80.29 84.48 44.66 42.19 99.85 96.92 97.06

26 97.81 77.47 77.65 80.44 38.24 35.94 99.79 96.3 96.43

24 97.79 77.05 76.85 77.94 33.21 30.96 99.76 93.79 96.99

22 97.14 76.26 75.63 71.45 28.70 23.24 99.68 92.11 97.44

20 96.67 69.38 67.35 66.56 10.81 1.03 99.75 78.73 83.06

used for all the methods here remain the same with RQ1.

Result. For the rescaled CIFAR-10 experiment, detailed result is shown at Ta-

ble 5.3. We also plot the changing trend of acccertified and accin-robust for PatchCensor

and other two techniques in Figure 5.2.

One interesting observation is that certified recovery techniques (both the Patch-

Guard and De-randomized Smoothing) experience a quick drop for both rrobust and

accin-robust when the image size scales from 32×32 to 20×20. The rrobust of De-

randomized Smoothing even drops to nearly 0 (1.24%) with the rescaling size 20,

unable to give certified prediction anymore. The reason behind this is the voting

mechanism discussed in section 3. While PatchCensor is able to remain a high certi-

fied accuracy even with very small ROI.
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Figure 5.2: Certified accuracy and accuracy in the robust domain of PatchCensor, Patch-
Guard and De-randomized Smoothing on rescaled CIFAR-10.
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Figure 5.3: Certified accuracy and accuracy in the robust domain of PatchCensor, Patch-
Guard and De-randomized Smoothing on ImageNet

For experiments on ImageNet object detection and PartImageNet, we first sort

the image according to ROI in ascending order and compute certified accuracy in

5-quantiles. The result for the former is shown in Figure 5.3, and the result for the

latter is shown in Figure 5.4. It can be observed that PatchCensor can still have

51.0% certified accuracy on ImageNet object detection and 72.6% on PartImageNet

in the 0-20% region, while PatchGuard and De-randomized Smoothing can only yield

18.7% (24.2%), and 11.0% (16.2%) certified accuracy, respectively.

It is worth noticing that accin-robust of PatchCensor has some overlaps across differ-

ent ROI on ImageNet object detection and PartImageNet. This may be due to the

fact that pre-trained models on ImageNet may utilize other features in the image,

such as texture instead of shape, as pointed out by Geirhos et al. [109]. In such cases,

using only local features may be enough. However, this can be a kind of overfitting.
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Figure 5.4: Certified accuracy and accuracy in the robust domain of PatchCensor, Patch-
Guard and De-randomized Smoothing on PartImageNet

Our controlled experiments on CIFAR-10 have no such issue. Despite this, extra in-

formation such as texture could provide performance gain for certified recovery, and

we will discuss more in Section 6.

Answer to RQ2: PatchCensor is able to achieve moderate performance when
ROI is small. It can even maintain relatively good performance under small ROI
at more complex and challenging ImageNet dataset.

5.3 RQ3: Performance under Strong Adversaries

Experimental Settings. In this research question, we evaluate the certification per-

formance of PatchCensor and MR+ with large adversarial patches whose size is up

to 25.0%. We ignore certified recovery work because they only focus on small patches

and are unable to handle large patches. On the one hand, the certification technique

yields few certified instances once the patch size becomes large. On the other hand,

it is much harder to train the model under such a setting. However, our defense and

other SOTA certified detection work focus mainly on masking strategy. It is possible

to certify instances even when the adversarial patches are large in size. Being able

to certify inputs with large patch sizes would also make it possible to detect abnor-

mal scenarios other than the adversarial setting, such as natural perturbation [110],

occlusion in object detection [92] and open-set detection [93]. As natural objects

are often larger than commonly evaluated 2.0% patch size. In the experiments, we
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select CIFAR-10, GTSRB, Food-101 and ImageNet as the subject datasets for evalu-

ation. For the models, ViT-B/16 (the same architecture in RQ1, RQ2) and ResNet50

pre-trained on ImageNet are selected for PatchCensor and MR++ accordingly. Addi-

tionally, as we target a large adversarial patch size in this RQ, fine-tuning on randomly

dropped patches can potentially improve the certified accuracy for both methods. As

a result, we report the performance with/without such fine-tuning to provide a more

comprehensive analysis of both methods. This leads to eight groups of experiments

in total as shown below.

Result. We tested the defense effectiveness of PatchCensor and MR+ under dif-

ferent adversarial patch sizes on four datasets, with a total of 112 configurations. The

results for for CIFAR-10 are summarized in Table 5.4 and Table 5.5, results for GT-

SRB are summarized in Table 5.6 and Table 5.7, results for Food-101 are summarized

in Table 5.8 and Table 5.9, and the results for ImageNet are summarized in Table 5.10

and Table 5.11.

For all four datasets, PatchCensor achieves better performance on the most im-

portant certified accuracy metric than MR+ in most of the settings. The maximum

difference is 40.73% on CIFAR-10 without fine-tuning, and the minimum difference

is 2.57% on GTSRB without fine-tuning. The only exceptions are on the CIFAR-10

dataset with fine-tuning, where MR+ surpasses PatchCensor when the patch size is

larger or equal to 18.4%. From the result, we infer that CNN, specifically fine-tuned

for patch drop, can be more robust than ViT on a simper dataset such as CIFAR-10.

As for the clean accuracy, PatchCensor is higher than MR+ on nearly all settings

(ranging from 1.18% on ImageNet to 8.31% on fine-tuned GTSRB) except for Food-

101 with fine-tuning. Still, even under such a circumstance, PatchCensor has higher

certified accuracy than MR+ across all adversarial patches on Food-101.

Interestingly, both methods have the worst performance on the GTSRB dataset

when the adversarial patch size is large. It can be surprising that the certified accuracy

of GTSRB is even lower than that of ImageNet, which is believed to be far more
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complex than GTSRB. Also, fine-tuning plays an important role in the performance,

giving 26.87% improvement for PatchCensor and 19.02% improvement for MR+ on

certified accuracy. The reason may be that, compared with ImageNet, the target

object in GTSRB occupies most of the image. It is more likely that the dropped

patch is inside the target object and thus has more effect on the data distribution,

interfering with the model’s prediction. When the size of the dropped patch becomes

large, important details may be missed, causing a sharp decrease in performance. As

such, we suggest fine-tuning the models under a similar situation.

For other subject datasets we evaluated besides the GTSRB dataset, the fine-tuning

process does not influence the performance of PatchCensor too much. The average

increase after fine-tuning for PatchCensor in certified accuracy across all patches is

5.39%, -0.73 %, and 4.44% for CIFAR-10, Food-101, and ImageNet, respectively.

However, MR+ relies heavily on fine-tuning. The corresponding increase in certified

accuracy is 33.23%, 19.02%, and 4.72% for CIFAR-10, Food-101, and ImageNet.

Furthermore, the certified accuracy of PatchCensor without fine-tuning is higher than

that of MR+ with fine-tuning on 16 of 21 cases on these three datasets. We can thus

conclude that PatchCensor can yield moderate performance on datasets similar to

these three, even without fine-tuning. This means that the pre-trained models can

be directly combined with PatchCensor to increase its patch robustness.

Meanwhile, it is interesting to notice that the accuracy of PatchCensor in the trust

domain (accin-trust) remained high (even slightly increases) under larger adversarial

patch sizes for all datasets. This means that PatchCensor can retain high usability

under strong adversaries - even though PatchCensor may raise more warnings (i.e.,

report more unverifiable input images) when defending against stronger adversaries,

it can still promise a high accuracy when it gives verified predictions.
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Table 5.4: Clean accuracy & certified accuracy achieved by PatchCensor and MR+ on
CIFAR-10 under different adversarial patch sizes without fine-tuning

Max Adv Patch Size
accclean acccertified rrobust accin-robust

PC MR+ PC MR+ PC MR+ PC MR+

0.5% 98.74 96.80 94.57 79.48 94.89 79.84 99.66 99.55

2.0% 98.74 96.81 90.13 68.52 90.29 68.78 99.82 99.62

4.6% 98.74 96.80 84.12 54.90 84.24 55.07 99.86 99.69

8.2% 98.74 96.79 76.20 41.37 76.28 41.53 99.90 99.61

12.8% 98.74 96.81 67.41 31.32 67.46 31.53 99.93 99.33

18.4% 98.74 96.81 58.90 23.79 58.97 24.01 99.88 99.08

25.0% 98.74 96.79 48.52 18.50 48.57 18.63 99.90 99.30

Table 5.5: Clean accuracy & certified accuracy achieved by PatchCensor and MR+ on
CIFAR-10 under different adversarial patch sizes with fine-tuning

Max Adv Patch Size
accclean acccertified rrobust accin-robust

PC MR+ PC MR+ PC MR+ PC MR+

0.5% 98.77 97.61 95.70 90.59 96.05 90.97 99.64 99.58

2.0% 98.80 97.73 92.84 86.77 93.06 87.00 99.76 99.74

4.6% 98.81 97.70 88.29 83.30 88.42 83.46 99.85 99.81

8.2% 98.77 97.51 82.90 79.78 83.04 79.82 99.83 99.82

12.8% 98.76 97.35 75.52 74.91 75.99 75.04 99.91 99.83

18.4% 98.76 96.90 66.68 71.03 66.77 71.19 99.87 99.78

25.0% 98.75 95.57 55.89 65.60 55.95 65.77 99.89 99.74

Table 5.6: Clean accuracy & certified accuracy achieved by PatchCensor and MR+ on
GTSRB under different adversarial patch sizes without fine-tuning

Max Adv Patch Size
accclean acccertified rrobust accin-robust

PC MR+ PC MR+ PC MR+ PC MR+

0.5% 97.43 92.49 70.26 36.13 71.01 36.32 98.94 99.48

2.0% 97.43 92.48 40.89 22.04 41.31 22.06 98.97 99.93

4.6% 97.43 92.48 26.04 11.94 26.08 11.94 99.85 100

8.2% 97.43 92.49 18.39 7.19 18.42 7.21 99.87 99.78

12.8% 97.43 92.48 12.49 5.65 12.50 5.69 99.87 99.30

18.4% 97.43 92.49 8.99 4.73 9.02 4.79 99.74 98.68

25.0% 97.43 92.49 6.71 4.14 6.73 4.22 99.76 98.12
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Table 5.7: Clean accuracy & certified accuracy achieved by PatchCensor and MR+ on
GTSRB under different adversarial patch sizes with fine-tuning

Max Adv Patch Size
accclean acccertified rrobust accin-robust

PC MR+ PC MR+ PC MR+ PC MR+

0.5% 96.84 91.31 83.10 56.79 83.97 58.42 98.96 97.21

2.0% 97.09 92.53 70.33 48.35 71.21 49.43 98.77 97.81

4.6% 96.88 91.09 61.29 36.48 61.88 37.61 99.05 97.01

8.2% 97.65 91.23 49.29 27.78 49.89 28.35 98.79 97.96

12.8% 97.32 89.96 43.93 21.77 44.36 22.33 99.02 97.48

18.4% 96.52 90.15 35.61 18.38 36.08 18.65 98.71 98.51

25.0% 96.33 88.02 28.31 15.39 28.86 15.86 98.08 97.05

Table 5.8: Clean accuracy & certified accuracy achieved by PatchCensor and MR+ on
Food-101 under different adversarial patch sizes without fine-tuning

Max Adv Patch Size
accclean acccertified rrobust accin-robust

PC MR+ PC MR+ PC MR+ PC MR+

0.5% 86.46 84.45 77.08 66.28 81.04 68.62 95.11 96.59

2.0% 86.46 84.46 72.30 60.38 74.91 61.85 96.52 97.63

4.6% 86.46 84.46 66.60 53.36 68.26 54.38 97.56 98.12

8.2% 86.46 84.46 60.02 45.89 61.15 46.55 98.15 98.58

12.8% 86.46 84.46 52.82 38.71 53.61 39.17 98.52 98.82

18.4% 86.46 84.46 44.93 31.71 45.52 32.05 98.70 98.94

25.0% 86.46 84.46 36.61 24.74 37.09 25.03 98.73 98.83

Table 5.9: Clean accuracy & certified accuracy achieved by PatchCensor and MR+ on
Food-101 under different adversarial patch sizes with fine-tuning

Max Adv Patch Size
accclean acccertified rrobust accin-robust

PC MR+ PC MR+ PC MR+ PC MR+

0.5% 83.28 84.77 72.56 70.57 77.66 73.67 93.44 95.79

2.0% 83.39 84.68 67.61 64.80 70.93 66.86 95.32 96.91

4.6% 84.02 84.82 63.35 59.16 65.42 60.40 96.84 97.95

8.2% 84.80 84.47 58.65 53.24 59.96 54.18 97.81 98.27

12.8% 84.90 85.06 53.53 48.58 54.42 49.21 98.37 98.73

18.4% 84.97 85.30 47.22 44.33 47.92 44.83 98.55 98.88

25.0% 85.62 85.33 42.32 38.57 42.81 39.02 98.85 98.84

52



Table 5.10: Clean accuracy & certified accuracy achieved by PatchCensor and MR+ on
ImageNet under different adversarial patch sizes without fine-tuning

Max Adv Patch Size
accclean acccertified rrobust accin-robust

PC MR+ PC MR+ PC MR+ PC MR+

0.5% 81.8 80.62 72.0 62.68 80.3 68.27 89.73 91.81

2.0% 81.8 80.62 67.2 56.02 73.5 60.24 91.35 92.99

4.6% 81.8 80.62 61.9 49.52 67.0 52.75 92.44 93.88

8.2% 81.8 80.62 56.4 42.94 60.4 45.46 93.29 94.46

12.8% 81.8 80.62 50.5 36.16 53.7 38.22 93.96 94.62

18.4% 81.8 80.62 44.1 30.05 46.7 31.70 94.57 94.78

25.0% 81.8 80.62 37.1 24.07 39.1 25.37 94.80 94.88

Table 5.11: Clean accuracy & certified accuracy achieved by PatchCensor and MR+ on
ImageNet under different adversarial patch sizes with fine-tuning

Max Adv Patch Size
accclean acccertified rrobust accin-robust

PC MR+ PC MR+ PC MR+ PC MR+

0.5% 82.70 75.59 73.67 61.84 81.88 70.99 89.98 87.12

2.0% 82.73 75.51 69.41 56.31 75.92 63.05 91.43 89.32

4.6% 82.67 75.49 64.97 51.23 70.27 56.56 92.45 90.57

8.2% 82.66 76.34 60.54 48.17 64.92 52.55 93.26 91.66

12.8% 82.55 76.20 55.38 43.39 59.08 46.99 93.73 92.35

18.4% 82.51 75.81 50.66 38.77 53.76 41.63 94.23 93.12

25.0% 82.49 75.50 45.62 34.79 48.24 37.34 94.56 93.19
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Answer to RQ3: PatchCensor outperforms MR+ in most scenarios on CIFAR-
10, GTSRB, Food-101 and ImageNet datasets. It also retains high accuracy in
the robust domain (accin-robust) even with large adversarial patches. Being capable
of detecting large abnormal patches makes it possible to use PatchCensor in more
complex natural perturbation settings.

5.4 RQ4: Overhead of PatchCensor

Experimental Settings. In this research question, we investigate how much compu-

tation overhead PatchCensor may incur. Typically, there are two kinds of overhead for

DNN models when conducting the certification. One is overhead for retraining/fine-

tuning the model for the designed property. The other is the certification latency.

For training overhead, we have already provided results and analysis with/with-

out fine-tuning on four datasets in RQ3. For CIFAR-10, Food-101, and ImageNet,

PatchCensor can yield moderate results without any fine-tuning efforts. Another

particular feature of PatchCensor regarding the training overhead we want to empha-

size here is that for both fine-tuning and certification, PatchCensor targets adversarial

patches whose size is in a specific range (i.e., for all patches whose size is smaller than

a threshold). In contrast, MR and most other patch certification methods only target

adversarial patches with only one size.

For verification latency, we measured the latency of PatchCensor to verify an input

image against different adversarial patch sizes. Here we compare our technique with

the previous SOTA MR+, as mentioned in the design goal of RQ4.

Results. We measure the verification latency of PatchCensor to see whether

it is acceptable in this RQ. As ViT has many variants, and the latency for them

may have a high variance, we independently provide results on each of them. We

choose Vit_s16_224 (small), ViT_b16_224 (base), and ViT_l16_224 (large) for

investigating the influence of model size. We choose ViT_b16_224 (base), ViT_-

b32_224 (base), and ViT_b32_384 (base) for investigating the influence of patch

and input size. Model details are shown in table 5.12. We additionally provide the
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results on clean accuracy and certified accuracy evaluated on 1,000 randomly sampled

images from ImageNet without fine-tuning for defense. We hope this can serve as a

guide for deployment in practice.

The results of the performance regarding the model sizes are shown in figure 5.5.

It is surprising that the smallest model achieves both the best certified accuracy and

lowest latency (similar latency with MR+) among all the three variants. The reason

may be that this smallest model does not overfit the dataset compared to the other

two bigger models and is thus more robust towards masking. A similar result is also

reported in [24], where the smallest ViT has a high accuracy for random patch drop

when the information loss is high. For the other two variants, stronger backbones

produce slightly higher certified accuracy as we expected.

The results of the performance regarding the input and patch sizes are shown in

figure 5.6. These three variants have similar certified accuracy with quite different

latency. Given the same input size, a higher patch size for the base model will

drastically lower the latency. The ViT_b32_224 achieves even lower latency than

MR+. However, a smaller base patch will provide a more subtle control of the certified

patch size. As PatchCensor certifies the patch in range, its certified accuracy is in

the format of the step function, such as 0-16, 16-32, 32-48, ... for base patch equals

to 16 and 0-32, 32-64, 64-96, ... for base patch equals to 32. If one wishes to certify

a patch with a size 47, it is better to choose a small base patch (32-48) rather than

a big base patch(32-64) because the former can yield a better certified accuracy.

The results demonstrate that PatchCensor is better when using a smaller model

with a large base patch. Under such a scenario, PatchCensor can achieve lower latency

than MR+ while providing higher certified accuracy on a complex dataset.

Still, we want to emphasize that PatchCensor is not restricted to any kind of ViT

variant. Even with a large ViT with a small base patch, the higher latency incurred

by PatchCensor is also a meaningful tradeoff in some realistic scenarios because of

the various benefits it provides, such as no need for fine-tuning and higher certified

55



Table 5.12: Choosed ViT variants for latency measurement. The base model is what we
use for evaluation in RQ1, RQ2, and RQ3.

ViT Variants Number of Parameters Clean Accuracy Patch Size Input size

ViT_s16_224 22,050,664 80.5 % 16 224

ViT_b16_224 (base) 86,567,656 80.9 % 16 224

ViT_l16_224 304,326,632 82.2 % 16 224

ViT_b32_224 88,224,232 80.8 % 32 224

ViT_b32_384 88,297,192 80.8 % 32 384
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Figure 5.5: Certified accuracy and latency for ViT variants of different model sizes

accuracy. PatchCensor is also a flexible detection framework that can work parallel

with other methods. For real-time scenarios where the latency constraint is tight,

PatchCensor can be combined and play as a nice complement to other low-latency

algorithms, where it focuses on those critical frames that need rigorous analysis.
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Figure 5.6: Certified accuracy and latency for ViT variants of different input and patch
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56



Answer to RQ4: PatchCensor requires much less effort in the training (fine-
tuning) process and can yield good performance even without fine-tuning. Patch-
Censor can provide high certified accuracy with low latency when the base model
is small, or its patch size is large. Even when defending a large model, we argue
the higher latency is an acceptable compromise to the advantage it brings.
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Chapter 6

Discussion

In this section, we delve deeper into the distinctions between certified detection and

certified recovery. First, we examine a situation where the defense of certified de-

tection might be “bypassed.” This aspect has been ignored in previous research, po-

tentially leading to misconceptions among readers. Nevertheless, we argue that such

exceptional cases will not affect the practicality of certified detection. Subsequently,

we explore a potential avenue for enhancing certified recovery.

6.1 A Special Case for Certified Detection

The certified properties of certified recovery and certified detection differ significantly.

Certified recovery adheres to the conventional definition found in the digital adver-

sarial defense literature, where a model is considered robust if its inference remains

consistent within the vicinity of a given input. The sole distinction lies in the defini-

tion of the “neighborhood,” which is specified as the Lp norm for a digital adversarial

attack and a restricted-size patch for an adversarial patch attack. In order to certify

such robustness, certified recovery necessitates the development of intricate strategies

to guarantee that the model produces consistent results based on local features alone.

In contrast, PatchCensor and other certified detection approaches merely strive to

identify the existence of abnormal input by ensuring that at least one benign voter

has the ability to influence the inference. The underlying philosophy of certified
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detection can be encapsulated as follows:

Truth always rests with the minority, and the minority is always stronger than the

majority.

However, What if the minority is wrong?

This is the point at which the exceptional case arises and the reason why a test-

time robustness guarantee cannot be provided for PatchCensor and all other certified

detection work thus far. A demonstrative example can be found in Figure 6.1. The

prediction is accurate when the majority voting result corresponds to the “correct

class,” and the other votes unanimously support another class (class B). However,

due to the lack of consensus in the voting process, the certified detection method

returns a “not certified” outcome. Following the attackers’ perturbation of the image,

the majority voting may shift to class B entirely. As a result of the original incor-

rect voting, a consensus is achieved, and the certified detection method erroneously

returns a “certified” outcome. This subtle discrepancy has been ignored in most ex-

isting certified detection approaches [53–55], as the base classifier is presumed to be

sufficiently robust to circumvent such situations. We also found a real example in

our experiments in Fig. 6.2. In this example, the original image has 69 votes for

class 35 (mud turtle) and 53 votes for class 36 (terrapin). The perturbed image has

122 votes for class 36. The ground truth of this image is class 35. As a result, the

model is correct but not certified on the clean image and wrong but certified on the

perturbed image. Nonetheless, it is hard to distinguish mud turtles from terrapin

even for non-expert humans.

The potential consequences of this issue are significant, as a certified detection

method could falsely reassure users of system integrity despite the presence of ma-

licious behavior. However, Before drawing the conclusion that certified detection

can be circumvented, we would like to delve deeper into this issue and ask another

question: when will the minority make mistakes?

The mistakes made by benign voters are not influenced by any attacker or natural
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to performclassification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).
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Figure 6.1: An illustration that certified detection may fail at test time - the method may
return ‘certified’ for attacked images.

perturbation, as their impact is entirely masked. Such errors arise solely due to the

imperfection of deep learning models and their inability to fit the original distribu-

tion accurately. In other words, it is just like other normal errors where the model

presents erroneous predictions for a clean image. Furthermore, this type of error can

be estimated by assessing the instances in which the detection method returns a cer-

tified and correct result on the clean dataset. This evaluation can offer a statistical

guarantee, where we can inform the users how likely this model would be correct.

It is also worth noting that in certified recovery techniques, “certified robust” does

not necessarily imply “certified to be correct.” That is, images that pass the cer-

tification might still be incorrect due to the imprecision of the models. From this

viewpoint, although the common-sense robustness property (i.e., model prediction

remaining unchanged within the vicinity of a given input) can be certified, the guar-

antee of the model’s correctness is accompanied by uncertainty. In fact, it can be

observed that the accin-robust of PatchCensor consistently surpasses that of the other

two SOTA methods in Figure 5.2. It is also noteworthy that in the same experiment

when the region of interest (ROI) is small, the accuracy of both certified recovery
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(a) The original image. (b) The perturbed image.

Figure 6.2: A real example that can “crack” the certified adversarial patch detection.

techniques experiences a rapid reduce.

In conclusion, while the certification of PatchCensor (along with other certified

detection techniques) offers a statistical guarantee for a data distribution, its practical

value is enhanced by its superior performance.

6.2 A Possible Way to Improve Certified Recovery

Certified recovery methods strive to utilize only local features to generate reliable

predictions. As demonstrated in both Chapter 3 and Chapter 5, this can significantly

impact their certified accuracy. However, incorporating additional features such as

texture, material, and color of the object might aid the classifier in making accurate

predictions, even when solely relying on local features. To validate this hypothesis,

we conducted an experiment using a toy example.

MNIST is intrinsically a single-channel image dataset. We expanded these grayscale

images into RGB images by adding two channels and assigned different colors to dis-

tinct digits. We then assessed the performance of PatchSmooth. The certification

was executed with a band size of 2 and an adversarial patch size of 5. The results are

presented in Table 6.1.

While this is a toy example, it illustrates a potential avenue for enhancing the

performance of certified recovery methods. In real-world scenarios, the robustness

of camera-based autonomous driving systems could be improved by diversifying the
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Table 6.1: Adding additional information can improve the performance of PatchSmooth.

Single Channel Three Channel

Clean Accuracy 96.66 % 100 %

Certified Image Proportion 52.84 % 86.03 %

Accin−robust 99.9 % 100 %

texture of traffic signs or incorporating other supplementary information. Securely

integrating additional information into local patches may represent a promising di-

rection for future certified recovery research.
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Chapter 7

Conclusions and Future Work

In this paper, we introduce a straightforward yet efficient certified defense against

adversarial patches, capitalizing on the novel relationship between adversarial patches

and input patches in Vision Transformers. This method can function as a pure

testing strategy, delivering moderate performance even without fine-tuning. It also

enables the detection of abnormal patches by up to a size of 25% of the original

image, significantly exceeding previous certification efforts. This flexibility allows for

the detection of issues beyond adversarial attacks (e.g.natural corruption in patches

or out-of-distribution (OOD) objects). We demonstrate the defense’s effectiveness

and practicality on CIFAR-10, GTSRB, Food-101, and ImageNet datasets, as well

as its adaptability to support varying sizes of adversarial patches. We show that

PatchCensor is able to alleviate the issues of a small area of interest (AOI) in certified

recovery and its acceptable overhead.

There are several possible directions for future research. First, our application

focuses on classification tasks within the computer vision domain. Investigating other

applications is a viable option. Given that our masking strategies operate at an

abstract level, it is feasible to apply this method to natural language processing

(NLP) tasks, as illustrated in Fig. 7.1. Additionally, it would be worthwhile to explore

alternative tasks beyond classification, such as regression.

Exploring the scenarios of multiple adversarial patches from both the attacker’s
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TO BE OR
NOT TO BE

TO BE OR NOT TO BE

Figure 7.1: Our masking strategy works on abstract feature level and can be applied to
both images and text.

and defender’s perspectives presents an intriguing area of study. The existing defense

framework is tailored to address a single adversarial patch, leaving other patch shapes

and multiple patches unaddressed. One potential issue with multiple patches could be

the necessity for an excessive number of mutations in order to guarantee that at least

one mutation can effectively exclude the adversarial patches. Addressing this issue

from the AI perspective by developing more fine-grained attention masking strategies

constitutes an interesting direction. Alternatively, adopting a systems perspective

and designing a more complex voting mechanism, similar to managing Byzantine

faults in distributed systems, is another viable option.

Finally, as natural corruptions (e.g.motion blur of cameras) and out-of-distribution

(OOD) objects are much more common in practice, there is also an urgent need to de-

velop an efficient detection mechanism for AI-based intelligent systems. Understand-

ing the capability boundary of an AI model and predicting when it would possibly

provide erroneous results are vital for the quality assurance of AI enabled systems.
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