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Abstract

Nowadays, the volume of collected data and the size of datasets raise various

challenges in the field of data mining. One of such challenges is to, given a

dataset, monitor a set of data points and its changes over a period of time.

Previously, this monitoring has been done using pattern matching, spatial and

velocity data profiling, and transition extraction, among others. Variations of

this problem are found in many fields, such as social network analysis, social

sciences, finance, environmental sciences, and epidemics. Monitoring sets of

data can give insights into how a subset of data behaves and help explaining

what happened to that set over a period of time. For instance, in behavioral

sciences, it might explain how groups of individuals behave. Another example

is that in finance, insights might help analysts to trace a set of companies and

their behaviors in a portfolio, which can help them in their decision-making

process.

In this thesis we address the problem of cluster monitoring over time. We

tackle this problem by proposing a pattern-based framework. The state-of-

the-art addresses the problem of cluster monitoring by finding transitions to

describe changes in the data over time. Our approach instead detects much

more complex patterns by mining for patterns instead of using a set of rules

to detect a set of transitions.

While transitions are an effective way to describe change, they might be

restrictive when describing complex behaviors. To tackle this problem, our

pattern-based framework monitors the evolution of a cluster using an evo-
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lution graph rather than transitions. This graph can then be mined using a

subgraph detection algorithm to find useful patterns. One of the advantages of

a pattern-based framework over a transition-based framework is the capacity of

detecting more complex behaviors of data. We evaluate our approaches using

two real-world datasets. Experiments show that our pattern-based framework

detects both simple and complex transitions. We also show that our proposed

framework detects patterns that would not be detected otherwise.
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The increase of disorder or entropy with time is one example of what is called

an arrow of time, something that distinguishes the past from the future,

giving a direction to time.

– Stephen Hawking, A brief history of time, 1988.
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Chapter 1

Introduction

In the last decades we find that the amount of data and the speed in which

it flows is growing faster than ever. Millions of queries and transactions are

processed every second by search engines, online marketplaces, and other ser-

vices. With the paradigm of data streams, the interest in tracking the flow

of data and its changes over time has caught the interest of scientists. This

interest started with the study of data streams and the paradigm of change

mining. An early work in the field points out that the mining of change in

data streams is one of the core problems in data mining [15]. The problem

of change mining was later tackled by many researchers, and one of the main

features deemed valuable in this problem by many scientists is time [9]. The

traditional methods of data mining consider the data to be static, which is

not the case in many scenarios. Data is changing, and new information is

continuously incoming, which requires new techniques for the analysis of data.

The field of change mining studies the evolving nature of the data over

time. The goal of change mining is to discover the changes that happen in the

data and extract information from these changes. The detection of change in

data can help in the adaptation of learned models, such as clusters, in dynamic

datasets. Moreover, change mining could help detecting important features in

real-world datasets, e.g. fake transactions, network intrusion, social influence,
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topics in textual datasets, and migration patterns in a population. Despite

its general importance, the term change mining became less popular in this

decade, being substituted by terms that address specific sub-fields, e.g. outlier

detection, novelty detection, concept drift, and cluster monitoring.

Cluster monitoring is a sub-field of change mining that is concerned with

tracing clusters over time, identifying transitions and extracting insights from

the discovered transitions. These goals are shared with other sub-fields of

change mining, e.g. complex networks and community mining. Moreover,

monitoring clusters over time might help in the knowledge discovery process,

e.g. the discovery of different groups involved in a data stream, observing

when groups form, come together and fall apart. These observations are im-

portant for fields like Finance, Marketing and Social Networks. For instance,

in Finance it is possible to monitor a portfolio and market sectors.

A closely related field to cluster monitoring is community mining. This field

is concerned with describing networks, especially social networks, its events

and evolution over time. Differently from cluster monitoring, datasets in com-

munity mining are graphs, where nodes represent individuals and edges rep-

resent some kind of relationship between those individuals. This field became

very popular in the last few decades, but it tackles a problem that is some-

what different from cluster monitoring. While cluster monitoring addresses

the problem of tracking clusters, community mining addresses the problem of

discovering and tracking communities. Communities are groups of data points

that have a relationship among them, e.g., in social network a friendship is a

relationship. Data in community mining is commonly represented by a graph,

while in cluster monitoring it is represented by a set of data points.

This thesis proposes a flexible framework for cluster tracking. We tackle

the problem of cluster monitoring where our goals are: a) to discover frequent-

patterns of arbitrary size; and b) to monitor a cluster evolution over time.
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To tackle this problem, we propose a pattern-based framework for monitoring

clusters over time. In this framework we can use different functions to compute

similarity between nodes. Different parameters can be adapted in order to

improve the knowledge discovery process w.r.t. a dataset.

1.1 Contributions

The main contributions of this thesis are:

• a pattern-based framework, that detects patterns of arbitrary size (Sec-

tion 3.2);

• an extension the current transition-base framework for cluster monitor-

ing (Section 3.3);

1.2 Dissertation Layout

This thesis contains five chapters organized as follows: Chapter 2 introduces

the necessary background concepts to understand this thesis as well as the

related work. In Chapter 3, I discuss the three proposed frameworks for cluster

monitoring. Chapter 4 contains experiments that were performed to evaluate

the proposed frameworks. Finally, in Chapter 5, I present the conclusions and

avenues for future work.
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Chapter 2

Background and Related Work

2.1 Clustering

Clustering is the process of finding groups in a dataset such that elements in

the same group are more similar to each other than to elements in the other

groups. In this section I briefly discuss clustering techniques that are relevant

for this dissertation, namely: partitional clustering, hierarchical clustering,

density-based clustering, spectral clustering and graph clustering.

2.1.1 Partitional Clustering

The goal of partitional clustering is to divide a set of data points into k disjoint

sets (clusters) while minimizing an objective function. Partitional clustering

can be parametric or non-parametric. Parametric means that the clustering

algorithm must fit a distribution, e.g., EM clustering, while non-parametric

means that the clustering algorithm does not have to fit a distribution, e.g.,

mean-shift. In this thesis I only use parametric partitional clustering, which I

discuss further below.

2.1.1.1 K-means

The most well-known partitional clustering algorithm is k-Means [22]. K-

means divides the space into k partitions, where k is a user-provided parame-

ter. A pseudo-code of k-means is presented in Algorithm 1.
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Algorithm 1 K-means

1: procedure k-means(D, k)
2: Place k centroids in the clustering space using a predefined criterion;
3: Assign each data point d ∈ D to its nearest centroid;
4: Update the centroid to the mean of its attributed data points;
5: repeat 3-4 until a stopping criterion is met.

There are several criteria that can be used to initially place the centroids in

step 1, e.g. random, or grid. The most common stopping criterion for k-means

are: i) when a number of iterations is reached; ii) when data points do not

change clusters after update. We illustrate k-Means in Figure 2.1.

Figure 2.1: An example of k-means, circles represent data points and squares
represent centroids. (a) The centroids initial placement. (b) Result after the
algorithm has converged.

2.1.2 Hierarchical Clustering

Hierarchical clustering is a technique that seeks to establish a hierarchical rela-

tionship between data points and clusters. There are two common approaches

to hierarchical clustering: agglomerative, also called bottom-up; and, divisive,

also called top-down.

In agglomerative clustering, each point in the dataset is initially consid-

ered a singleton cluster. Each cluster is then merged to another following a

linkage criterion. A linkage criterion is a function that computes the distance

between two sets of datapoints as a function of the pairwise distance between
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observations in each set. The merging process is repeated until a single clus-

ter that contains all data points in the dataset is created [53]. To obtain flat

clusters from a hierarchy, it is necessary to choose a cut threshold that will be

used to select what data points will be part of each cluster based on the final

dendrogram.

In divisive clustering, the whole dataset is initially a singleton super cluster,

which is then divided into two smaller clusters given a division criterion. The

new smaller clusters are then recursively divided until all clusters contain a

single data point [31], [47].

One of the most common approaches among hierarchical clustering algo-

rithms is Hierarchical Agglomerative Clustering (HAC). In HAC the clusters

are initially represented by each point in the dataset. The distance between

each pair of clusters is then computed and clusters are merged according to a

linkage criterion. For example, when using Euclidean distance as the distance

function and single linkage as the linkage criterion the algorithm computes the

distance between clusters as the minimum distance between any two points

in the clusters. Other examples of linkage criteria are complete linkage, aver-

age linkage, centroid linkage and Ward’s method. I illustrate a dendrogram

resulting from the execution of HAC with Ward’s method as criterion to the

Iris Dataset1 [19] in Figure 2.2.

2.2 Density-Based Clustering

Density-based clustering is a non-parametric clustering approach that takes

into account the density of the data, finding high-density regions separated

by low-density regions in the clustering space to find clusters. Among the ad-

vantages of density-based methods is their ability to distinguish cluster points

from outliers, as well as to find arbitrarily shaped clusters. The most popular

1The Iris dataset is composed of characteristics of three different species of flowers.
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Figure 2.2: Iris dataset plotted using the first two attributes of the dataset
(left) and a dendrogram created from that dataset by the HAC algorithm using
Euclidean distance and Ward’s method (right).

density-based clustering algorithm is DBSCAN [17], which uses the concept

of density-reachability to find clusters. DBSCAN requires two parameters:

minPts, which indicates the minimum number of points q that are within a

distance ε of a point p for p to be considered a core point; and ε, which in-

dicates the maximum distance from a point q to another core point q to be

considered directly reachable. Points that do not have at least minPts points

within distance ε but are reachable from a core point are called border points

and are still part of a cluster. However, if a point is not a border point nor a

core point, then it is labeled as an outlier or noise.

2.3 Spectral Clustering

Spectral clustering is a non-parametric clustering technique that can find clus-

ters of arbitrary shape [35], [52]. This technique is commonly composed of

three steps: i) create a similarity graph from the data; ii) compute the first

k eigenvectors from the graph’s Laplacian matrix; iii) run a clustering algo-

rithm (normally k-means) to find k clusters. This approach is efficient when

searching for a small number of clusters.

Spectral Clustering is most commonly used in the fields of community

tracking and social network analysis. This is because in these fields the dataset
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is commonly represented by a graph where the edges are relationships between

data points. Figure 2.3 illustrates the application of k-means, spectral clus-

tering and DBSCAN on a synthetic dataset. The approaches present different

results w.r.t. the presented dataset. The choice of a clustering algorithm is

dependent on the type of data and the challenges to be addressed.

(a) (b) (c)

Figure 2.3: Example of clustering algorithms applied to a synthetic dataset.
(a) k-means with k = 2; (b) spectral clustering with k = 3; (c) DBSCAN.

2.4 Graph-based Clustering

An influential clustering technique in the field of community mining and so-

cial networks, as well as biological sciences, is the Markov Cluster Algorithm

(MCL) [10], [51], which is a graph clustering technique. MCL creates a matrix

to represent the graph and then performs consecutive expansion and inflation

of the matrix until convergence. The expansion process is controlled by a

number e, where the matrix’s e-th power is computed. This process controls

the connection between different regions of the graph. The inflation process

is controlled by a non-negative number r and consists in computing the r

exponent of a column, followed by a normalization of the said column. The

inflation process is responsible for strengthening strong connections and weak-

ening weak connections in a graph. The parameter r controls the granularity

of the clusters by adjusting how fast the weakening and strengthening will
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occur. The expansion and inflation processes are repeated until convergence.

The result is a graph to be interpreted where the clusters are a set of connected

components.

One drawback of this approach is that convergence is not guaranteed,

although it occurs in most of the cases [51]. Moreover, this technique has

problems in detecting clusters with large diameter, which might also increase

convergence time.

2.5 Cluster Monitoring

Cluster monitoring is fundamentally about the detection of changes in datasets

using clusters as change indicators. Researchers have long been curious to ex-

plain and extract insights from datasets that change over time [2]. Various

paradigms and interpretations have been presented to this problem. In this

section I cover topics related to the problem of cluster monitoring, namely:

change detection, transition detection, cluster evolution, summarization of

transitions, and community mining.

2.5.1 Change Detection

One of the simplest approaches to the problem of change detection is the

FOCUS framework [20]. FOCUS uses statistical analysis to compare the dif-

ference between distinct datasets. The framework collects measures of devia-

tion between models learned from the datasets and then use these measures

to evaluate if two datasets are statistically different.

The PAM framework [7] proposes to monitor patterns, such as association

rules, sequences and clusters, that might occur in data. The framework first

mines the dataset in order to find frequent patterns and association rules. The

mined patterns and rules are then modelled as data points with a temporal

variable, called temporal objects. The mined patterns are then searched for
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in the data that arrives in the future. There is the assumption that the mined

patterns are recurrent and occur in the future because they happened in the

past. This might not be the true in cases where the patterns in a dataset are

changing constantly or where patterns captured are noise.

The PANDA framework [8] computes the similarity value between patterns,

such as association rules, cluster and keywords. PANDA defines a simple pat-

tern as a pattern that cannot be decomposed, and a complex pattern as a

pattern that is composed of multiple simple patterns and/or other complex

patterns. The framework compares simple and complex patterns to find re-

cursive characteristics in complex patterns.

2.5.2 Transition-based Change Detection

The concept of change and transitions in data is one of the central ideas in

cluster monitoring. Several authors have discussed both change and transi-

tions, proposing different methods to explore the change and nomenclatures

for the transitions. In [11] the authors proposed an approach based on the

summarization of a data stream using a HE-Tree (Hierarchical Entropy Tree).

The work is concerned with detecting change in the structure of the data by

finding the optimal number of clusters in subsequent snapshots, i.e. finding

the best clustering at each snapshot. They then compare the number of clus-

ters in subsequent snapshots, labeling a change when the number is different

or when the change is larger than a threshold.

In [1], [2] the author proposes an analysis based on velocity and spatial

profiles of the data, finding three types of transitions: coagulation, dispersion

and shift. A coagulation occurs when the data moves in the direction of a

single point in the space, making the cluster larger in terms of density and

number of data points. The opposite of a coagulation is the dispersion that

occurs when the data moves in the opposite direction of a point in the space,
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making the cluster less dense and smaller in terms of number of data points.

Finally, when the dispersion and coagulation occur in adjacent areas, if there

is data that moves from one central point of dispersion towards a central point

of coagulation the data is said to be shifting from one point to another.

Further, in [56] the authors propose a framework that extracts frequent

spatial object association patters (SOAP). To find SOAPs they propose two

measures: support, that measures the number of snapshots that a given SOAP

occurs in; and realization, that measures the smallest count of a given SOAP

in all snapshots where it appears. The support measure is used to determine

if a SOAP is frequent, given a user defined threshold. The realization measure

is used to determine if a SOAP is prevalent in the dataset given another user

defined threshold. These conditions are then used to find three different kinds

of transitions: formation, when a SOAP count changes from zero to non-zero;

dissipation, when the SOAP count changes to zero; and continuation, when at

least one SOAP exists in two subsequent snapshots.

Falkowski et al. [18] propose a different view on transitions and how to

extract them. They first use a graph dataset, using betweenness as a parameter

for a hierarchical clustering algorithm. Then, four types of transitions can be

detected: growing, declining, merging and splitting. These transitions are

found by structurally comparing the clusters using several characteristics such

as density, Euclidean distance, and correlation.

2.5.2.1 MONIC

The MONIC framework [48] is one of the main approaches in the field of

cluster monitoring, building up on PAM and PANDA. Unlike its predecessors,

it offers a more general idea on how to track cluster changes over time. The

idea developed in MONIC is that a cluster exhibit simple state transitions that

can be detected using different thresholds.
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MONIC makes very few assumptions about a clustering, proposing only

that the clusters are mutually exclusive and that the set of all clusters, covers

the entire dataset. In the case of clustering algorithms that generate outliers,

MONIC assumes a cleaning step is performed, where all outliers are removed

from the dataset.

MONIC also defines an ageing function over the data. This function en-

sures that the data obtained at a timestep ti−1 is less important than data

obtained at ti. MONIC allows the ageing process to be performed by a decay

function or by a sliding window. When using the decay function approach, a

mathematical function will define the age of a given data point w.r.t its time

t. In contrast, a sliding window method consists of defining a window of width

w and attributing the same age value to all the data points within the defined

window.

Given a clustering, MONIC monitors the change over time by comparing

clusters in subsequent clusterings using a similarity function. Using these sim-

ilarity values, MONIC extracts transitions based on a set of rules and thresh-

olds. MONIC authors propose an asymmetrical similarity measure between

clusters, measuring the best match (if any) of a cluster at timestep ti when

compared to all clusters at timestep ti+1.

MONIC starts the analysis of the clustering over time by extracting the

similarity between all pairs of clusters in subsequent clusterings and storing

the computed similarity values in a matrix that is later used to extract the

cluster transitions. Another concept in the MONIC framework is the cluster

match. A cluster match is the event in with two subsequent clusters have

similarity greater than a match threshold τ .

Because of how MONIC defines the match, two scenarios are possible: i)

a cluster matches with only one cluster; or ii) a cluster matches with exactly

two clusters. In MONIC, the match threshold is set in the interval [0.5, 1],
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therefore, two clusters may equally overlap by 0.5 with a previous cluster. In

this event MONIC states that a tie breaking method is applied.

Furthermore, MONIC defines external transitions using the similarity ma-

trix and cluster matches. Before setting a cluster as a survival it verifies a

secondary match using a threshold λ to check if that cluster is involved in a

split transition. A cluster is said to have split if it matches with two or more

clusters given a threshold λ and the sum of the similarity values of all matched

clusters are at least τ .

To find transitions, MONIC first searches for the external transitions. Ex-

ternal transitions are those that might change the clustering space itself. There

are five different external transitions in MONIC: survival, split, absorption,

disappearance, and emergence.

MONIC searches for external transitions between clusters iterating the

snapshots created from a dataset. The process first searches for the existence

of survival. A cluster is said to have survived if it matches one and only one

cluster in the next clustering. If more than one cluster in the current clustering

matches a cluster in the next clustering, each cluster that matches the same

cluster in the next snapshot is said to have been absorbed by the cluster which

they have matched. Survival and absorption are not possible at the same

time, as survival is a one-to-one match and absorption is a many-to-one match.

After searching for survival and absorption, the framework searches for splits.

A threshold λ is established and the similarity value between the clusters in

two subsequent clusterings are searched for mappings one-to-many. When one

cluster in the current clusterings matches to multiple clusters in a subsequent

clustering with similarity of at least λ, and the sum of all similarity values

is at least τ , then its said that the matched cluster has split into the set of

clusters it matched to in the next clustering. MONIC requires that λ < τ

at all times to prevent degenerate cases. Finally, if a cluster in the current
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clustering does not have an external transition it is said to have disappeared.

Likewise, a cluster in the current clustering that is not a result of a transition

is said to have emerged.

MONIC also searches for internal transitions, in which a cluster changes

its size, structure, or location. There are four possible internal transitions:

size, compactness, location and no change.

A change in size, i.e. shrinking, or expanding, happens when the number of

data points of the cluster changes. The compactness of a cluster is represented

by the standard deviation. If the cluster’s standard deviation changes by more

than δ, it is said to have become more compact or more diffuse. For the location

transition MONIC covers two cases: metric spaces and non-metric spaces. In

a metric space the location transition indicates that a cluster has shifted,

indicated by a change of its mean value by more than τ1. On the other hand,

if the cluster is represented in a non-metric space, then the skewness is used as

the measure of location. A cluster is said to have changed its distribution if its

skewness has changed by more than τ2. The authors evaluate MONIC using

the ACM library section H.2.8 dataset and shows that MONIC is capable of

tracking clusters over time.

2.5.2.2 MONIC+

In a later paper, Ntoutsi et. al. [37] extended MONIC to exploit the char-

acteristics of particular types of clusters in a framework named MONIC+.

According to the authors, MONIC was incapable of exploiting the character-

istics of specific cluster types that were generated by the different clustering

methods proposed in the literature. In MONIC+ the authors explored three

specific types of clusters: i) metric dataset-independent clusters; ii) non-metric

set of data-dependent records; and iii) distribution clusters. These types of

clusters are exploited in order to provide a more specific analysis, proposing
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different similarity functions for each of them. The authors also noted that

not all transitions can be detected for all cluster types, having an in-depth dis-

cussion of type dependent transitions. Finally, they experimented with their

approach in two different datasets: a synthetic dataset and the KDDCup 1999

Network Intrusion dataset [14]. The authors noted that evaluating a frame-

work of cluster tracking is a challenge, and that there is no gold standard in

the literature. The current evaluation method consists of running experiments

in both synthetic and real-world data for empirical and qualitative evaluation.

2.5.2.3 MEC

An approach for monitoring cluster transitions similar to MONIC was pre-

sented in MClusT [39], where the framework uses a different similarity function

based on conditional probabilities. Moreover, because the authors identified

the need of a more straightforward way to visualize the results of the clus-

ter tracking and insight extraction, they proposed a visualization tool using

bipartite graphs. The MClusT framework builds upon MONIC, proposing a

new taxonomy for the transitions that are found by cluster tracking and a

new similarity function. First, MClusT separates the data into snapshots and

then clusters each snapshot, finding the similarity between clusters from two

subsequent snapshots using a similarity function. The result of this process

is then visualized using a bipartite graph where the nodes are the clusters

discovered by k-means or HAC. The edges of the bipartite graph indicate a

connection between the generated nodes. Using a weighing function, MClusT

weighs the edges of the bipartite graph based on the similarity between two

given clusters. A pruning process is then applied to the bipartite graph where

edges that have weight below a given threshold are removed. The framework is

applied to a dataset from macroeconomics and two case studies: a) Portuguese

activity sectors; and b) Portuguese regional development index.
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MEC [41] is a framework for cluster monitoring that was built on the foun-

dations of MONIC. In its early version, we find a more general approach which

allows for enumerated data, which is uncompressed data where all the data

points are preserved; and generalized data, which uses statistical methods, like

the mean, to represent the dataset in compressed form [40]. However, because

of data loss, the latest version of MEC uses the enumerated representation

only.

The overall method is similar to MONIC: The data is collected, segmented,

clustered and then analyzed. MEC extends MONIC in two ways: i) it uses

a new weight function; and ii) it includes a visualization tool in the form of

a bipartite graph [39]. Moreover, MEC proposes the standardization of the

transition nomenclature found in eight previous different schemes [1], [2], [6],

[11], [18], [48], [56]. We reproduce the proposed taxonomy in Table 2.1 and

use it when we refer to transitions henceforth.

Table 2.1: Cluster transitions in MEC

Mathematical Notation Description
∅ → C ′tj Cluster’s Birth

Cti → ∅ Cluster’s Death

Cti
⊂→ {C ′1,tj , ..., C

′
r,tj
} Split of a Cluster into r clusters

{C1,ti , ..., Cp,ti} → C ′tj Merge of p clusters into one cluster

Cti → C ′tj Cluster’s Survival

While MONIC authors prefer term absorption that represents a transition

w.r.t. a single cluster in the current clustering, MEC authors prefer a set

approach, adopting the term merge that represents a transition w.r.t. a subset

of clusters in the current clustering. Another major difference is that MEC

does not track internal transitions, focusing only on the changes that happen

in the clustering space over time and not on the internal changes in each cluster

composition.

MEC has the main goal of tracking clusters in labeled datasets. Because of
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this goal, MEC uses a conditional probability function which requires that the

labels are consistent over all snapshots. This makes MEC less general than

MONIC since it requires a more specific type of data. The MEC similarity

value is computed as:

Sim(C,C ′) = P (X ∈ C ′|X ∈ C) =

∑
P (x ∈ C ∩ C ′)∑
P (x ∈ C)

(2.1)

This value is computed for pairs of clusters (C,C ′) where C ∈ ξ and,

C ′ ∈ ξ′, where ξ and ξ′ are clusterings. These weights are the equivalent

to the values created by the similarity function in MONIC. In contrast to

MONIC, MEC does not compute a similarity matrix, storing the processed

dataset in a bipartite graph. MEC maps each clustering to be a color in the

bipartite graph, e.g. the current clustering would be a color and the subsequent

clustering would be a distinct color. Further, each cluster in a given clustering

is mapped into a node in the bipartite graph. Finally, given two subsequent

clusterings, an edge is added between all clusters in the current clustering and

all clusters in the subsequent clustering, weighed by the similarity function

(Equation 2.1).

The computed bipartite graph (Figure 2.4), is used for visualization of

the transitions extracted by the MEC framework. This tool allows for the

data scientist to better understand the behavior of the clusters over time.

The visualization also provides a more intuitive tool to visualize the data,

aiding the process of knowledge discovery [41]. One of MEC’s visualization

tool drawbacks is that the bipartite graph model does not represent internal

transitions, such as expansion and shrinking.

MEC is evaluated using two distinct datasets: a) Portuguese activity sec-

tors, also discussed in the MClusT paper; and b) European companies’ dataset.

The evaluation consisted in running experiments using the framework in the

process of knowledge discovery, tuning parameters and manually looking for
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Figure 2.4: The bipartite graph representation proposed by MEC.

insights based on prior knowledge. The authors claim that no strong conclu-

sions are drawn from the second dataset since specific knowledge from finance

was needed.

2.5.3 Cluster Evolution Summarization

In FINGERPRINT [36], [38] the authors propose a model to summarize the

evolution of clusters through the compression of external transitions found

with the MONIC framework. FINGERPRINT uses two different approaches

to summarize the transitions: batch summarization and incremental summa-

rization. The batch summarization approach takes the entire dataset as a pa-

rameter. On the other hand, the incremental method can continually process a

data stream. When comparing the aforementioned methods, the performance

of the batch method is more robust to information loss and performs more

data compression than the incremental method.

To summarize the cluster tracking, FINGERPRINT clusters the data stream,

separating it into snapshots and applying k-means to each snapshot. Further,

it transforms the clustered dataset into a structure named Evolution Graph
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(EG) that is the equivalent of the bipartite graph introduced by MEC. Each

node of an EG represents a cluster, and each edge between clusters in an

EG represents an overlap between two clusters in adjacent snapshots. FIN-

GERPRINT focuses only on the compression survival transition, and datasets

where this transition does not occur often do not benefit from this technique.

2.5.4 Community Mining

Community mining is the field of study that investigates Communities, e.g., So-

cial Networks, its properties and characteristics. The main difference between

community mining and cluster monitoring is that in community mining the

data is modeled as a graph, where the edges represent a relationship between

data points. Moreover, community mining is also concerned with monitoring

the behaviour of specific data points, while cluster monitoring addresses the

changes in clusters. One of the open questions in community mining is “How

to track a community over time?”. The referred question is similar to the

one I am trying to tackle in this dissertation; therefore I discuss research in

community mining that is related to this work.

In [6] the authors identified events in a community evolution over time with

the goal of discovering insights. Events are change indicators, equivalent to

MONIC transitions. The communities are modelled as a graph, where each

data point is a node and if there is a relationship between two given data

points in a community there is an edge between them, e.g. in a social network

a relationship would be a friendship. The similarity between two communities

is computed by finding the percentage of data points in common between them.

The proposed framework converts a given dataset into snapshots, obtaining

communities at each snapshot using the MCL algorithm. In the next step,

several events, both in the community and entity level, are extracted using

binary operations using similarity matrices. A similarity matrix is a structure
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filled with similarity values between communities. In the community level, the

proposed framework extracts the following events: a) Continue, b) k-Merge,

c) k-Split, d) Form and e) Dissolve. In the entity level, the framework extracts

the following events: i) Appear, ii) Disappear, iii) Join and iv) Leave.

Additionally, the authors propose three indexes for the analysis of the

performance on the entity level, namely:

• Stability indicates the degree of interactions with the same set of entities

over a given time t.

• Sociability indicates the amount of interactions that an entity has with

different entities over time.

• Influence indicates the amount influence that an entity has over others.

For example, when entity x moves to another community, how many of

the entities will follow x’s lead?

In the community level, the authors propose an index for the measure of

the popularity of a community at time t, named Popularity index.

The final contribution is a diffusion model for evolving networks. A dif-

fusion model is a method from the field of complex networks that aims at

identifying the key nodes of a social network for effective information prop-

agation [5], [13]. The authors demonstrate that their approach can generate

accurate predictions specially in the Sociability index.

When comparing the similarity function of this framework to the similarity

function of MONIC and MEC, we observe that the former does not include the

notion of spatial overlap nor data ageing. Moreover, the k value in the k-Merge

and in the k-Split transitions are a threshold that should be respected in the

context of the event to be considered valid, much like the match threshold in

MONIC.
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FacetNet [28] is a framework that uses a different approach to detect and

analyze community evolution. Instead of analyzing the sequence of snapshots

containing communities, it fits a temporal evolution model by computing two

structures: a community network and an evolution network. To compute

those structures they use the concept of Q-Modularity and unify the process

of analyzing communities and evolution. They showed that their approach is

more robust to noise. Moreover, the authors suggested that a dramatic chance

in a short period of time is unlikely. Therefore, a temporal evolution that

takes that information in account yields a descriptor that is more significant

of a real evolution.

Although FacetNet considers the whole sequence of snapshots to find the

description of the evolution, the analysis considers consecutive pairs of snap-

shots. Besides, the generation of the communities is done using soft clustering,

meaning that a given data point can be part of multiple clusters, and weights

each individual (equivalent of a data point) differently. FacetNet also provides

a visualization tool that is similar the one proposed in MEC.

MODEC is a framework proposed to model transitions in the context of

dynamic community mining [49], [50]. It takes a sequence of graphs and seg-

ments the input sequence into snapshots. The data within each snapshot is

then transformed into a graph by executing a community detection algorithm.

The authors of MODEC use the same terminology for transitions as [6], and

their framework detects five types of transitions, namely: form, dissolve, sur-

vive, split and merge.

The overall MODEC framework is similar to MONIC and its derivatives.

However, MODEC has a different similarity function and transition detection

algorithm. Two communities are similar if and only if the intersection of the

compared communities is k% proportional to the size of the largest of the two,

where k is a user provided variable. The match detection however is done in
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an iterative form: if a community at time t does match with any community

in t − 1 then the algorithm iteratively searches past snapshots in a reverse

order. If no match is found until t0 then a form event is discovered w.r.t. the

analyzed community.

All datasets used for MODEC evaluation were temporal textual datasets.

Therefore, the authors use the topic continuity to evaluate the framework’s

performance, showing better results than most algorithms w.r.t. that met-

ric. Finally, MODEC also uses a visualization tool that is similar to the one

proposed by MEC authors.

22



Chapter 3

Methodology

The main goal of cluster monitoring is to track data over time with the intent

of performing knowledge discovery w.r.t data behavior and data change. In

this section I propose an approach to tackle the problem of change detection

using a pattern-based cluster monitoring framework. I motivate this work

in Section 3.1. I propose a pattern-based framework for pattern discovery

in Section 3.2. Finally, I extended a transition-based framework for cluster

monitoring in Section 3.3.

3.1 Motivation

Analyzing changes between two timestamps is the standard in the clustering

monitoring field [6], [28], [39], [48], [50]. While transitions are a simple way to

describe change in data, we hypothesize that changes might occur over multiple

timestamps. Furthermore, it is hard to find values to the set of thresholds

used in cluster monitoring frameworks so that we can find transitions that are

meaningful [41].

One way to find changes that span multiple timestamps is to combine dis-

covered transitions. This approach was initially developed by Ntoutsi et. al.

[36] where they summarize survival transitions, but the authors argue that it is

much harder to combine multiple split and merge transitions. Combining tran-
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sition is even more challenging when thresholds are taken into consideration,

since different thresholds might lead to different transitions. Lower threshold

values might also increase the detection of noisy transitions, besides increasing

the number of transitions detected.

Consider the following examples that illustrate the issues. The diagram in

Figure 3.1 depicts a scenario where the circles represent clusters, the weights

over the arrows represent similarity values and t1 and t2 represent two con-

secutive timestamps. We have two parameters that need to be set: τ , which

represents a match threshold; and λ, which represents a split threshold. In

these examples we follow the conventions of MONIC and MEC.

Figure 3.1: Diagram with clusters and its respective similarity values between
two timestamps.

Example 1. When we set τ = 0.5 and λ = 0.25, we find two transitions:

a death transition for a, and b splits into c and d. The death transition is

detected since the only cluster that a is similar to is c and the similarity is

smaller than τ . The split transition is detected since the similarity between b

and both c and d are larger than λ and the sum of these similarities is larger

than τ .

Example 2. Using the same diagram and setting τ = 0.5 and λ = 0.3 we
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find the following transitions: survival of b into c, death of a and birth of d.

The survival is detected because the similarity between b and c is at least τ .

The death is detected because the similarity of a to any cluster in t2 is smaller

than τ . Finally, the birth is detected since there is no cluster in t1 which the

similarity to d is larger than τ . No split is detected this time since λ = 0.3,

preventing the similarity between b and d being taken in consideration.

Example 3. We set τ = 0.4 and λ = 0.3 and detect two transitions: a and

b merge into c; and the birth of d. The merge transition is found since both a

and b have similarity values w.r.t. c that are at least τ . The birth transition

is found since there is no cluster that is at least λ similar to d in t1.

Example 4. We set τ = 0.4 and λ = 0.25, detecting two transitions: a

and b merge into c and d is born in t2.

Comparing examples 1 and 2 we find that a change in λ results in tran-

sitions of different types and a change in the number of transitions detected.

This example shows that the transition detection process is dependent on (and

often quite sensitive to) the thresholds set. Example 3 and 4 detect the same

transitions while having different parameters. In example 4, b could also split

into c and d, however, because of the conventions established in the state-

of-the-art in cluster monitoring, it is not possible to detect split and merge

transitions simultaneously. One of the first works to address this problem was

MODEC [50], where survival, splits and merges are not mutually exclusive.

To exemplify the issues of transition detection in multiple timestamps we

use the diagram in Figure 3.2. We use the same conventions established by

MONIC and MEC again where we have two thresholds τ and λ.

Example 5. We set τ = 0.5 and λ = 0.3. In this case one split is detected

where a splits into b and c. No split is detected from t2 to t3, since although

the similarities from b to d and e sum to be greater than τ , the similarity

between b and e is less than λ. The death transition of c is detected at t2 and
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Figure 3.2: Diagram with clusters and its respective similarity values between
three timestamps.

the birth transitions of d and e are detected at t3.

Example 6. We set τ = 0.5 and λ = 0.25. In this case two splits are

detected: a splits into b and c; and, b splits into d and e.

When comparing examples 5 and 6 we observe that changing threshold

values can cause a transition to not be detected. To tackle this problem,

a change detection method that is robust to changes in similarity values is

necessary.

Motivated by the problem of detection of change in datasets where the

similarity between clusters is dynamic, we propose a change detection frame-

work based on frequent patterns. With our framework we can detect frequent

patterns of any size or shape that are frequent enough to be representative

w.r.t. a minimum frequency.

For our next example, we set a labeling scheme to the graph edges where

each node label is a tuple composed of the number of incoming edges and the

number of outcoming edges. For instance, node a in Figure 3.2 is labeled (0, 2),

since it has no incoming edges and two outcoming edges. We also label the

edges based on their values. We label edges with weight in the range [0, 1
3
) as
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low, [1
3
, 2
3
) as medium, and [2

3
, 1] as high. For brevity we shorten these labels as

l, m, and h, respectively. In Figure 3.3 we show the diagram from Figure 3.1

in (a) and the diagram from Figure 3.2 in (b). With our proposed framework

we can distinguish between different kinds of patterns and present them as

part of the knowledge discovery process.

(a) (b)

Figure 3.3: Labeled Diagram derived from figures 3.1 (a) and 3.2 (b)

Example 7. Let us search for all patterns that are composed of three nodes

and span exactly two segments. In Figure 3.3 (a) we find the pattern where

nodes (0, 1) and (0, 2) have each one edge with label m (medium) pointing at

node (2, 0). We also find the pattern where node (0, 2) have two edges: one

with label m pointing at node (2, 0); and another with label l (low) pointing at

node (1, 0). These two patterns appear once in the diagram and are equivalent

to a merge transition and a split transition, respectively. Moreover, using

our framework both patterns can be detected simultaneously, which does not

happen in the transition detection framework, as shown in Example 4.

Example 8. Let us search for patterns that are composed of at least

four nodes and span at least three segments using the diagram in Figure 3.3

(b). We show the discovered patterns in Figure 3.4. Using a transitions-based
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approach, none of the patterns presented in Figure 3.4 can be discovered by

a single transition. Moreover, when using a combination of transitions, these

patterns cannot be discovered simultaneously without changing of thresholds

τ and λ, as shown in Examples 1-6. In contract, our proposed pattern-based

approach can discover all these patterns simultaneously, besides allowing us

to find patterns based on frequency. We present our pattern-based framework

in the next section.

(a) (b)

(c) (d)

Figure 3.4: Patterns with four or more nodes and that span at least three
segments found in the diagram in Figure 3.3 (b)
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3.2 A pattern-based framework for cluster mon-

itoring

In this section I propose a framework to track a set of data points over a time

interval. To continuously match these sets, I use a notion of similarity between

the data contained in each set. Tracking sets of points is an important task

in in many fields, such as Social Sciences, Computer Vision, Social Network

Analysis, among others. This task is challenging because the data collection

might not be fast enough, the data might have high velocity profile, or it might

be hard to find natural groups (clusters) in data that changes over time.

In this section I propose a framework for detecting patterns in temporal

dataset that is pattern-based. Differently from the state-of-the-art transition-

based methods, I propose to extract patterns that are frequent in the EG

through mining patterns. This approach allows us to discover not just one-

step patterns but patterns of any kind and shape that are frequent in the data.

In datasets where there is a pattern that spans into multiple timestamps, it

might be hard to detect with a transition-based approach.

The framework is composed of six steps:

1. collecting the data;

2. segmenting the collected data into smaller parts;

3. clustering each segment;

4. finding similarity values between the discovered clusters over time;

5. building an evolution graph from the clusters and similarities;

6. pattern mining using frequent subgraphs;

I discuss these steps in detail further in the next sections. In each section I

first introduce a more general concept and then a specific temporal version of
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the given concept. This is because this thesis is focused on detecting patterns

that have a temporal characteristic.

3.2.1 Segmentation

A dataset D is a collection of data points di, where I assume that the collected

dataset is segmented into smaller parts, named segments (ζ). Data in a specific

segment may, e.g., contain data from a specific time interval. We define the

segmentation of a dataset D as follows:

Definition 3.2.1 (Segmentation). A dataset segmentation, w.r.t. some seg-

mentation criterion is a sequence of segments 〈ζ0, ζ1, ..., ζk〉 where
⋃k
i=0 ζi = D.

I assume that a criterion of segmentation is given. For example, in a tem-

poral dataset a segmentation criterion is a series of intervals, or in a geospatial

dataset the segmentation criterion might be determined by geographic char-

acteristics or along a spatial dimension.

Because I segment the dataset into a sequence 〈ζ0, ζ1, ..., ζk〉 I assume that

there exists a linear order 0, 1, ..., k, such as time, in the dataset. The linear

order of the segments is introduced so that: a) tracking of an evolution can be

established w.r.t the linear order of the segments; b) clusters can be discovered

within the segments instead of within the entire dataset.

3.2.1.1 Temporal Segmentation

Definition 3.2.2 (Temporal Dataset). A Temporal Dataset is a dataset com-

posed of tuples p = (d, t), which we call elements, over a domain D with d ∈ D

and t ∈ T , where T is a set of timestamps. Given an element p = (d, t) of a

temporal dataset TD, we call t the timestamp of p or timestamp(p) = t, and

we call d the data point of p, or datapoint(p) = d.

Differently from a regular dataset composed of only points, in a temporal
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dataset, for clarity, I make the distinction between the data and the timestamp

associated to the data.

A segmentation of a temporal dataset can be obtained by partitioning the

temporal dimension into intervals. This segmentation is beneficial because:

• analyzing smaller chunks of temporal information can give insights that

are more meaningful for the covered time period;

• temporal datasets can be large, which requires batch processing, since

they might not fit into memory all at once;

• the segmentation process enables the description of transitions.

The smaller parts that result from the segmentation are called temporal

segments (Figure 3.5) and contain all elements of TD which timestamp falls

within a given time window.

Definition 3.2.3 (Time window). A time window is an interval [tstart, tend]

defined by two timestamps tstart and tend such that tstart ≤ tend. The window

size ∆w of a time window w = [tstart, tend] is given by:

∆w = tend − tstart

Definition 3.2.4 (Temporal Segment). A Temporal Segment ζw of a temporal

dataset TD with respect to a time window w = [tstart, tend] is defined as the

set ζw = {e ∈ TD : tstart ≤ timestamp(e) ≤ tend}. The width of a segment ζw

is the size of its time window, ∆w.

Definitions 3.2.3 and 3.2.4 allow us to describe a temporal dataset as a

sequence of consecutive temporal segments 〈ζw0
0 , ζw2

1 , ζw2
2 ..., ζwk

k 〉.

Definition 3.2.5 (Temporal Segmentation). A temporal dataset segmenta-

tion, w.r.t. a time window size ∆, is a sequence of temporal segments 〈ζw0
0 , ζw1

1 , ζw2
2 ..., ζwk

k 〉,

where k > 1 and wi = [tistart, t
i
end], satisfying the following the conditions:
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Figure 3.5: An illustrated temporal segment and its elements. In green the
tstart, in blue the time window size ∆ and in orange the tend.

•
⋃N
i=0 ζi = TD;

• the width of every temporal segment ζi is ∆, i.e. ∆wi
= ∆;

• ti+1
start = tiend + 1, for all 0 ≤ i < k.

The sequence that results from a segmentation consists of non-overlapping

elements (Figure 3.6), since tstart for all elements must be different, and k > 1.

This is a special case of non-overlapping intervals where all intervals have the

same size and the union of all intervals cover the entire timeline.

                (a) 

Figure 3.6: Example of a segmentation of a temporal dataset TD.

The proposed approach consists of making the length of all temporal seg-

ments w.r.t. its time windows equal. This condition guarantees that we an-

alyze consistent periods of time. It also makes the analysis and visualization

simpler, since we are looking at equal time periods. On the other hand, this

approach may not be efficient in data streams where the data does not ar-

rive continuously, since we might find segments with too much, too little or
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no data at all. Such scenarios might require a data-oriented approach, where

the dataset is segmented according to the amount of data collected. While

the data-oriented approach provides a solution for such streams, it might not

provide consistent time periods which makes the analysis more difficult. In

this work we focus on a time-consistent segmentation approach.

3.2.2 Clustering

So far, I have separated the data into smaller segments. Further, I compute

the clusters within each segment with the goal of simplifying the tracking of

the data over time. I define a clustering as follows:

Definition 3.2.6 (Clustering). A clustering ξ of a segment ζ is a partition of

ζ into k non-empty clusters or k non-empty clusters plus a set of outliers, i.e.,

ξ = {C1, C2, ..., Ck} or ξ = {C1, C2, ..., Ck} ∪ {C0} (where {C0} is the set of

outliers), so that:

• ∀Ci∀C ′j[(Ci ∈ ξ ∧ C ′j ∈ ξ ∧ Ci 6= C ′j)→ Cti ∩ C ′j = ∅];

•
⋃|ξ|
k=0Ck = ζ;

• some clustering criterion is satisfied, e.g. the members of each cluster

are more similar to each other than to the other data records, or they

form a density connected set.

I will be using hard clustering in this framework, i.e., each data point is

part of only one cluster or is an outlier. Moreover, the clusters and the outliers

partition the whole set of points in partition ζ. Lastly, the clustering needs to

satisfy some clustering criterion, meaning that the partition is not “random”.

For example, in k-means the optimization is to find the optimal locations of

the centroids.
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One distinct characteristic of our definition is that we allow a group of

outliers in the clustering space. Groups of outliers are only generated in spe-

cific types of clustering, e.g. density-based clustering. In the state-of-the-art

methods for tracking sets of data we find that the group of outliers is removed.

However, by removing this group of data points we might be discarding valu-

able information, such as shifts in the data points over the space and the

influence of outliers over the remaining data points.

The applied clustering algorithm has influence in the process of pattern

discovery because of two main factors:

1. distinct clustering techniques have different assumptions about the data

and generate different cluster representations;

2. distinct clustering techniques might return different clusterings.

Factor 1 influences the computation of similarity values, since cluster repre-

sentations might be used by a similarity function. Factor 2 inherently changes

the pattern discovery process, since a different clustering might lead to differ-

ent patterns to be detected.

3.2.3 Similarity

The clustering process results in a sequence of segments with data which is now

divided into groups. The data within each group is similar among themselves

given a clustering criterion. The framework computes the similarity between

all pairs of clusters (C,C ′), where C ∈ ξi and C ′ ∈ ξi+1. A similarity function

is used to compute the similarity value:

Definition 3.2.7 (Similarity Function). A similarity function is a function

that computes a measure of relatedness, e.g. similarity, between two sets of

data points C and C ′ where all points in C and all points in C ′ are part of a
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dataset D, i.e. Sim(C,C ′) = w : w ∈ R≥0. Moreover, the similarity function

is symmetric, i.e. Sim(C,C ′) = Sim(C ′, C).

In other words, the framework uses a symmetric function that returns non-

negative values. I chose to use only symmetric functions to be able to use the

same similarity in reverse order w.r.t the sequence of segments, allowing for

tracking sets of data both forward and backwards.

An example of a similarity function is the Jaccard Coefficient:

Jaccard(C,C ′) =
C ∩ C ′

C ∪ C ′
,

which is commonly used to measure similarity between two sets of data. The

framework uses a similarity function to compute the λ-similarity between two

sets of data points.

Definition 3.2.8 (λ-Similarity). Two sets of data points C and C ′ are λ-

similar if and only if Sim(C,C ′) > λ, where λ ≥ 0 is a relatedness threshold.

I use the concept of λ-similarity to express the relatedness between two

sets. Moreover, to discover whether two sets are indirectly related I use a

λ-similarity chain:

Definition 3.2.9 (λ-Similarity chain). A λ-similarity chain between two clus-

ters Cstart and Cend (denoted as λ-Sim(Cstart, Cend)) is a sequence of clus-

ters W = 〈C1, C2, ..., Cj−i〉 such that Ci ∈ ξi and Ci is λ-similar to Ci+1 for

1 ≤ i ≤ j − i.

With these definitions, we establish the following relationships between two

distinct sets C and C ′ given a value for λ.

• Related: λ-related(C,C ′) iff |λ-Sim(C,C ′)| ≥ 1;

• Directly Related: relateddirect(C,C
′) iff |λ-Sim(C,C ′)| = 1;
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• Transitively Related: relatedtransitive(C,C
′) iff |λ-Sim(C,C ′)| > 1;

• Ancestor and Descendant: a) λ−ancestor(C,C ′) iff λ-related(C,C ′) 6=

∅. b) λ− descendant(C ′, C) iff λ− ancestor(C,C ′).

Henceforth, I will refer to λ-related(C,C ′) as related(C,C ′) when λ =

0. Combining the order of the segments and the relatedness I establish a

relatedness hierarchy between sets in different segments.

3.2.4 Evolution Graph

Definition 3.2.10 (Evolution Graph). Given a segmented dataset D, where

each segment ζi has been clustered resulting in a clustering ξi, we have a

sequence of clusterings ξi, ξi+1, ..., ξn. An evolution graph EGξi,...,ξn is a di-

rected acyclic weighed k-partite graph EG(V,E,w), where w is a function

w : E → R≥0 assigning a weight to each edge. An evolution graph satisfies

the following conditions:

• there is a node v ∈ V for each cluster C ∈ ξi, where 1 ≤ i ≤ n

• there is a node v ∈ V for each outlier group in ξi, where 1 ≤ i ≤ n, if

any

• there is a directed edge ev,v′ for all related clusters in consecutive clus-

terings ξi and ξi+1, i.e.,

ev,v′ ∈ E iff

1) v ∈ ξi, and

2) v′ ∈ ξi+1, and

3) related(cluster(v), cluster(v′)),

where cluster(x) represents the cluster C correspondent to node x.

• for all ev,v′ ∈ E, w(ev,v′) = Sim(cluster(v), cluster(v′))
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The EG contains information about the data evolution in the dataset w.r.t.

the proposed linear order of the segments and the clustering. It expresses

similarities between clusters in neighboring segments and that can be tracked

along the linear order.

3.2.5 Tracking Sets

Tracking a set of data points is an important task in many fields, however,

most of the past literature in cluster monitoring focuses on identifying change

in the data as a whole, not focusing on tracking the changes happening to a

single set. In this thesis, besides identifying general trends, I propose a filtering

to the evolution graph for tracking a single set of data points. Let Q be a set

of data points that one is interest in tracking in the EG, which I call a tracked

set :

Definition 3.2.11 (Tracked set). A tracked set is a set of data points Q =

{d1, d2, ...dn} where Q ⊆ ζ and where ζ is a single segment in D.

The framework restricts the origin of a tracked set to one segment in order

to follow the linearity criterion present in a sequence. A tracked set can be a

subset of one or more clusters, as long as these clusters are within the same

segment. The problem of cluster tracking is a special case of set tracking,

where the tracked set is equal to one of the clusters in a given segment.

A filtered EG w.r.t. Q can be derived from the EG that was built from

the whole dataset:

Definition 3.2.12 (Q-Evolution Graph). A filtered evolution graph w.r.t. Q,

EGQ(V ′, E ′, w′), is an evolution graph that contains only nodes that are re-

lated toQ. An EGQ(V ′, E ′, w′) is computed from an evolution graphEG(V,E,w)
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as follows:

V ′ = {v ∈ V : ancestor(Q, cluster(v)) ∨ descendant(Q, cluster(v))} ∪ {vQ}
E ′ ={ev,v′ ∈ E : v, v′ ∈ V ′}∪

{ev,vQ : cluster(v) ∈ ξi−1}∪

{evQ,v : cluster(v) ∈ ξi+1}
w′ev,v′ = Sim(cluster(v), cluster(v′))

Where vQ is a node representing the set Q.

In other words, the set of nodes V ′ is composed of nodes that correspond

to clusters that are either ancestors or descendants of a set Q plus a node that

represents Q. The set of edges E ′ is composed of all edges that connect to

nodes that are either ancestors or descendants of Q and the new edges between

the direct ancestors to Q and between Q and the direct descendants of Q. An

example of an EGQ is shown in Figure 3.7.

Figure 3.7: Example of an EG, nodes that precede the tracked set Q point to
Q, and Q points to the sets that succeed it.

With a general EG it is possible to discover information about the whole

dataset through careful inspection of the graph. However, more detailed in-

sights can be extracted from a filtered evolution graph EGQ. For instance, it

is possible to separate the EGQ into a backward-tracking graph, which consists
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of nodes that are ancestors of a tracked set Q and Q itself; and a forward-

tracking graph, which consists of nodes that are descendants of a tracked set

Q and Q itself.

3.2.6 Pattern Discovery

The problem of pattern discovery in graph structured data consists finding a

pattern that is frequent in either a graph composed of a single connected com-

ponent or a graph that is composed of multiple, smaller connected components.

The later problem has larger attention from the graph mining community since

it can be solved as a frequent transaction problem [27]. The problem of pattern

discovery in graphs is known to be NP-Complete, while some instances are GI-

Complete1, when it is necessary to prove that two graphs are isomorphic [12].

To the best of our knowledge, most of the literature in graph pattern discover

is based on labeled graphs [26], [55]. The only known exception is [25], where

the authors use relabeling to discover topological patterns in graphs.

Given an evolution graph following the same concepts introduced in Def-

inition 3.2.10, our goal is to mine patterns that are frequent in an evolution

graph or a collection of Q-evolution graphs. We define a frequent pattern as

follows:

Definition 3.2.13 (Frequent Pattern). Given a set of evolution graphs G,

which could be a singleton containing just a single an evolution graph EG(V,E,w)

or a collection of Q-evolution graphs, a pattern p is a graph G′(V ′, E ′, w′) and

that consists of a single connected component and that occurs in the elements

of G more frequently than a threshold ε.

In other words, a frequent pattern is a subgraph of the evolution graph

that occur frequently given a threshold.

1Graph-Isomorphism Complete.
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Since the EG is computed from clusters, we can consider that: a) the EG

is not labeled; or, b) the EG is uniquely labeled, i.e. each node v ∈ V has a

unique label. Since the EG is a DAG, we propose a labeling function based

on the in and out degree of a node. The in-degree of a node v is the number

of edges that are incident to v, i.e. the number of edges that point to v and

is denoted d−(v). Similarly, the out-degree of a node v is the number of edges

that are incident from v, i.e. the number of edges that point away from v and

is denoted d+(v).

A labeling function is based on a relation m ⊆ V × V ′ between the nodes

of two graphs G(V,E) and G′(V ′, E ′).

We define the node labeling function as f : V → N× N where

f(vi) = (d−(vi), d
+(vi)), (3.1)

where d−(v) ∈ N is the in-degree of a node and d+(v) ∈ N is the out-degree

of a node. The result is a tuple composed of the in-degree and out-degree

of the node. Because in-degree and out-degree are invariants of a DAG, the

labeling function defined above can be used to label (or re-label) a graph

without changing its structure.

We define the edge labeling function as g : E → N, where

g(evi,vj) = lI iff lImin < w(evi,vj) ≤ lImax.

where lI is a label, and I = [lImin, l
I
max] is an interval in a set of intervals that

partition the range of values of w. lImin ∈ R is the minimum value of a range

lI and lImax ∈ R is the maximum value of a range of weights that will imply

the same label. With this definition we can create several ranges of values and

label edges w.r.t. these ranges.

Example. Let G(V,E,w) be an evolution graph where V = {a, b, c, d},

E = {ea,b, ea,c, eb,d} and w(ea,b) = 0.2, w(ea,c) = 0.4, w(eb,d) = 0.7. We illus-
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trate the described graph in Figure 3.8 (a). We use our definitions above to

label this graph, where

g(ev,v′) =


0, if 0.0 < w(ev,v′) ≤ 0.3

1, if 0.3 < w(ev,v′) ≤ 0.6

2, if 0.6 < w(ev,v′)

(3.2)

The evolution graph G(V,E,w) is then mapped into a graph G′(V ′, E ′, w′)

where V ′ = {(0, 2), (1, 1), (1, 0), (1, 0)}, E ′ = {e(0,2),(1,1), e(0,2),(1,0), e(1,1),(1,0)}

and w′(e(0,2),(1,1)) = 0, w′(e(0,2),(1,0)) = 1, w′(e(1,1),(1,0)) = 2. The labeled graph

is illustrated in Figure 3.8 (b).

Figure 3.8: Two isomorphic graphs, where (a) is the initial EG that is labeled
into (b).

With the new labeling we can mine the graph for patterns using a subgraph

mining algorithm that finds frequent patterns, if they exist, in the evolution

graph. Most subgraph detection algorithms assume that the input is a set

of connected components, in which they simply count the occurrence of the

mined patterns [24]. This is because these algorithms detect subgraphs based

on a support measure. Given a set of connected components CG of a graph G,

support is defined as:

supp(x) =
|{c ∈ CG : x ⊆ c}|

|CG|
,
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in words, the support of a subgraph x is the count of connected components c

that contains x divided by the number of connected components in G.

A naive way to search for subgraphs is to generate all candidate subgraphs

and search for them in the evolution graph. One can use an Apriori-based

approach [23] to detect frequent patterns, where patterns are modeled as rules

and connected components are modeled as transactions. Most algorithms for

subgraph detection, however, rely on a heuristic search, since the search space

is huge [24].

Evaluating knowledge extracted by an automatic process remains an open

challenge in the field of knowledge discovery. Many metrics have been studied

in this context and there is a general agreement that most of the evaluation

depends on the user’s goal [21].

In [32] the authors define a taxonomy of interestingness measures, where

they discuss that a pattern can be deemed interesting based on its complexity

and how representative of the data it is. In contrast, they show that a pattern

can also be “unexpected” and this interesting, meaning, however, that it is

not frequent but is rather an outlier.

Other interestingness measures, such as “actionable” or “novel”, are con-

sidered subjective, since they require background knowledge from the user.

Moreover, such measures constrain the discovery process to what the users

anticipate or hypothesize.

In this thesis we do not claim that the patterns created by our framework

are “interesting” in terms of subjective measures. We do however evaluate the

data based on support, meaning that our patterns are frequent w.r.t. some

user defined minimum support.
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3.2.6.1 Tracking Sets and Pattern Discovery

Using definition 3.2.12 we can create an EGQ w.r.t. an external criterion, i.e.

a criterion that was not used for computing the clusters or the similarity values

of the EGQ. With multiple criteria, we can create a collection of Q-evolution

graphs. We can then use this collection of Q-evolution graphs to search for

patterns that are common between different filtered graphs. For example, we

can select different nodes in the same segment which may result in different

Q-evolution graphs.

Instead of using different criteria in the same segment, we can also derive

multiple Q-evolution graphs using the same criterion in different segments.

With the generated Q-Evolution Graphs we can compute the trends of the

same criterion when applied to different segments of the data. For example, we

can select a node in each segment and filter the evolution graph with respect to

the nodes that are similar to the select node. The filtered Q-evolution graphs

can then be mined for frequent patterns using a subgraph mining algorithm.

3.2.7 Discussion

The framework proposed in this section is substantially different from the

literature in cluster monitoring. This is because, to the best of our knowledge,

we are the first to successfully propose a cluster monitoring framework to

detect multi-step temporal patterns of arbitrary length.

While transitions are a simple way to describe changes in data, there might

exist more complex patterns that might explain the behavior of data in a more

comprehensive way. Our proposed approach detects those patterns through

the modelling of the temporal data into a graph that is then labeled according

to a node’s degree. This labeling then allows us to mine a graph for patterns

using a subgraph mining algorithm.
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3.2.8 Summary

Figure 3.9: Diagram showing the pipeline of the pattern-based framework.

In summary the pattern-based framework has six steps: data collection,

segmentation, clustering, extraction of similarity values, computing evolution

graph and pattern discovery. A diagram containing the steps and their order

is shown in Figure 3.9.

3.3 A transition-based framework for cluster

monitoring

In this section I describe a transition-based framework. It is composed of

a pipeline that allows for the generalization of existing cluster monitoring

approaches using transitions as its main tool to detect change.

In this section I assume that a dataset was collected, segmented, clustered

and an evolution graph was computed. With this evolution graph we can

perform the process of transition extraction, which I discuss further.

3.3.1 Similarity and transition extraction

Cluster transitions are indicators of change in this approach, showing whether

clusters involved in the transitions are changing or not. The proposed method

extracts the following external transitions: birth, death, split, merge and, sur-

vival. Moreover, it extracts the following internal transitions: expansion,

shrinkage, diffusion, contraction and, shift. External transitions are those
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that affect the clustering space. Internal transitions are those that affect the

cluster internal aspects. I define two thresholds to be used in the transition

detection: i) τ is the threshold used to detect higher similarity between two

clusters; and, ii) λ to detect relatedness between two clusters.

The external transitions are defined as follows:

• Survival: a cluster C ∈ ξti has a similarity value greater than or equal

to τ with only one cluster C ′ ∈ ξti+1
:

survival(C, ξti+1
) iff |{C ′ ∈ ξti+1

: Sim(C,C ′) > τ}| = 1

• Birth: a cluster has no ancestors:

birth(C, ξti−1
) iff {C ′ ∈ ξti−1

: Sim(C,C ′) > τ} = ∅

• Death: a cluster has no descendants:

death(C, ξti+1
) iff {C ′ ∈ ξti+1

: Sim(C,C ′) > τ} = ∅

• Split: a cluster C ∈ ξti is related to multiple clusters C ′k ∈ ξti+1
by at

least λ and the sum of the similarity values is greater than τ , where λ is

called the split threshold and τ is called the match threshold:

split(C, ξti+1
) iff

∃Z : 1) Z ⊆ ξti+1
, and

2) ∀C ′ ∈ Z : Sim(C,C ′) > λ, and

3)
∑
C′∈Z

Sim(C,C ′) > τ

• Merge: a set of clusters Z = {Ck ∈ ξti} have similarity greater than τ
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to a single cluster C ∈ ξti+1
:

merge(Z, ξti+1
) iff

Z ⊆ ξti , and

∃C ′ : 1) C ′ ∈ ξti+1
, and

2) ∀C ∈ Z : Sim(C,C ′) > τ

 ξi+1 ξi  ξi+2  ξi+3  ξi+4

7

5 5

5

5
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5
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Figure 3.10: A toy evolution graph illustrating transitions

Example. I illustrate external transitions in Figure 3.10. In ξi, the nodes

with dashed outlines indicate a birth transition. In ξi+1, the nodes with solid

outline are part of a merge transition into the only node in ξi+2. In ξi+2, the

single node splits into two nodes in ξi+3. The two nodes in ξi+3 survive into

the nodes in ξi+4. Finally, a death transition happens for each node in ξi+4,

indicated by a double solid line.

Internal transitions are those that affect the internal structure of the clus-

ters. Let C ∈ ξti be a cluster that survives as C ′ ∈ ξti+1
, we define the following

internal transitions:

• Count-increase: The number of data points in a cluster C ′ ∈ ξti+1
, is

larger than the number of data points in C ∈ ξti :

count+(C,C ′) iff |C| < |C ′|
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• Count-decrease: The number of data points in a cluster C ′ ∈ ξti+1
, is

smaller than the number of data points in C ∈ ξti :

count−(C,C ′) iff |C| > |C ′|

Figure 3.11: Example of count change transition. Size indicates the cardinality
or a cluster, the larger the node the higher the cardinality. On top a count+
transition, in the bottom a density− transition.

• Density-increase: the data distribution in C is less dense than in C ′,

where Den(X) is some density measure:

density+(C,C ′) iff Den(C) < Den(C ′)

• Density-decrease: the data distribution in C is denser than in C ′,

where Den(X) is some density measure:

density−(C,C ′) iff Den(C) > Den(C ′)

• Shift: the representation of a cluster C changed position in the clus-

tering space w.r.t C ′, where Repr(X) is a cluster representation and

Dist(X) is a function that measures the distance between two cluster

representations:

shift(C,C ′) iff Dist(Repr(C), Repr(C ′)) > 0

The count and density transitions are directly related, as the density is mea-

sured by the ratio of data points per volume of a cluster representation.
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Figure 3.12: Example of density change transition. Color indicates the density,
the darker the denser. On top a density+ transition, in the middle a density−
transition and, in the bottom an extreme density− going from dense to outlier
group (represented by a square).

3.3.2 Discussion

The proposed transition framework has similar foundations to the ones found

in the previous literature [41], [48]. We however propose a more robust flexible

framework since the current state-of-the-art: a) uses non-symmetric similarity

functions; b) allow for more than one cluster to match; and c) does not allow

for a cluster to participate in possible non-mutually exclusive transition, e.g.

split and merge simultaneously.

This flexible definition generalizes the current proposed frameworks in clus-

ter monitoring. Furthermore, we extend them by using outliers in the process

of knowledge discovery.

3.4 Final remarks

In this chapter I presented an approach to the problem of monitoring clusters

using frequent patterns as indicators of change. In the context of temporal

cluster monitoring, I proposed a pattern-based framework with focus on mining

frequent patterns of arbitrary size, in contrast to the state-of-the-art that

mines transitions. I also extended the cluster monitoring frameworks proposed

in MONIC and MEC to use any type of symmetric function and to detect
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concurrent transitions.
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Chapter 4

Experiments

We have experimented with two real-world datasets: The NSERC research

proposals dataset1 and the S&P500 dataset. We started our experiments with

the NSERC dataset, where we first analyzed the data and then experimented

with MONIC and our pattern-based framework. We then experimented with

the S&P500 dataset, a larger dataset with stock prices over the years. Further

we applied MONIC and our framework and showed that our pattern-based

framework detected both transitions-like and complex patterns that would

not be discovered with a traditional approach.

Our implementation was done using Python with clustering algorithms

from Scikit-Learn Library [42] and the implementation of HDBSCAN by McInnes

et al. [33]. We implemented our visualizations using GraphViz [16].

4.1 NSERC Dataset experiments

In this set of experiments, we used a dataset of research proposals that were

funded by Natural Sciences and Engineering Research Council (NSERC), Canada’s

largest scientific research funding agency. Firstly, we tried to identify topics

that are recurrent and that, through transitions, evolve into other topics over

time. Second, we investigated if the funding granted by NSERC was diversi-

1Part of the results of this experiment have been reported in a late CASCON 2019 paper
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fied. Lastly, we use MONIC and our proposed framework to detect patterns

in the data and performing a comparison between the two approaches.

All the experiments described in this section were implemented using the

Python3 language, Scikit-Learn [42] for general machine learning tasks, NLTK

[29] for Natural Language Processing (NLP) related tasks, and GraphViz [16]

for drawing visualizations. For HDBSCAN*, we used the implementation by

McInnes et al. [33], [43].

4.1.1 Dataset

The dataset was publicly available on NSERC’s website2 and was collected

by researchers from the software engineering laboratory at the University of

Alberta. The dataset contained funded proposals submitted between 1991

and 2018, from several areas of knowledge adjudicated by 270 committees

from 4014 institutions.

For the purpose of this research, I have narrowed down the dataset to only

Computing Science themed proposals. And, because many proposals prior to

2006 did not contain metadata, including the research proposal, I used only

proposals from 2006 to 2017. The proposals were written in English or French.

Initially I have experimented using automatically translated proposals, but

that approach showed to be too noisy since the directly translated words were

not always related to the text meaning. Therefore, I discarded all proposals

where the original text is written in French. The final dataset contained 1253

proposals written in English and adjudicated by eleven different committees

over eleven years.

2https://tinyurl.com/y3bcojmu
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4.1.2 Experiment Overview

In this experiment I only used the research summaries to represent each pro-

posal. These summaries are short texts up to one page that briefly describe

the proposed work. Since this was textual data, I had to represent the data

in a form that it can be clustered. Common approaches are bag-of-words,

term-frequency and tf-idf vectors, that are then clustered using algorithms

such as K-means [3], [4]. I chose tf-idf as the representation of the documents,

since the other approaches are simple counts of a collection of the words con-

tained in each document. In contrast, tf-idf takes into account the frequency

of each word in the document and the frequency of that same word across all

documents, then weighing words according to the amount of information it

provides. The tf-idf value is calculated as follows:

tfidf (t, d,D) = tf (t, d)× idf (t,D) (4.1)

where:

tf (t, d) = ft,d (4.2)

and:

idf (t,D) = − log
|d ∈ D : t ∈ d|

N
(4.3)

Where f is the term frequency, or raw count, in a document. The result

is a vector with n dimensions where n is the size of the vocabulary of the

document. Because the algorithm needs to calculate similarities, I defined n

as the length of the vocabulary of the whole dataset.

I then segmented the data w.r.t. the year that the proposal was submit-

ted, creating a total of eleven segments. I repeated the process of weighting

the words by tf-idf values using only the documents within a segment. This
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approach provided more accurate weighting w.r.t. the proposals in the year

that they were submitted. I then used HDBSCAN* to cluster the documents

within each segment. I computed the mean of the tf-idf vector of each cluster

to be its representation. I compared clusters in two subsequent segments pair-

wise, using the Cosine Similarity measure. I then computed an EG where each

cluster corresponded to a node and there was an edge with weight w for each

pair of nodes in consecutive years if their similarity is non-zero. This evolution

graph was then analyzed by hand for insights. To aid in the visualization, I

developed a tool that plots each cluster as a word cloud in the visualization of

a node in the EG.

Additionally, because I wanted to discover frequent patterns, I labeled

each node w.r.t. its in-degree and out-degree. Finally, I executed the gSpan

algorithm [55] over the labeled evolution graph to search for frequent patterns

that could be interesting to explore.

4.1.3 Data Processing

Transforming the data into a representation required that we cleaned the data

to create a representation that was less likely to contain noise. In the cleaning

process, punctuation and stop words were filtered out from the dataset. Stop

words are terms that are frequent but most likely not meaningful, such as

the word “the”. The NLTK collection of English stop words was used in this

process. We also identified that the words “research” and “use” were frequent

and high-ranked in these documents, receiving high tf-idf scores. However,

since they were not specific to proposals, we included both mentioned words

in the list of stop words, removing them from the data.

After the data was free from stop words, each word was tagged using a

Part-of-Speech Tagger and then lemmatized. Lemmatization is the process of

transforming each word to its lemma, or dictionary form, by removing any in-

53



flections, e.g. “eating” and “ate” become the lemma “eat”. A Part-of-Speech

Tagger (POS Tagger) is an analysis tool that labels each word automatically

with a token such as “noun”, “verb”, “adjective” or “adverb”. Because the

words were tagged, the lemattizer had more information, performing better

than on untagged text [34]. In this process I used the NLTK POS and WordNet

lemmatizer, part of the NLTK toolkit. The final dataset vocabulary was com-

posed of 12286 words.

4.1.4 Document representation

I have explored document representations such as bag of words and tf-idf.

The simplest form of a bag of words is the set of words that appear in a given

document. Another approach is a bag of words with frequency counts, which

is represented by a vector where each word represents a dimension and its

value is the raw count of occurrences of that word in the document.

Another representation of a document is to transform this document into a

term-frequency inverse-document-frequency (tf-idf) vector. This kind of rep-

resentation weighs the words based on the amount of information provided.

It first computes the raw frequencies of each word given a document. Then,

it computes the negative logarithm of the number of documents divided by

the number of documents where the computed word occurs. The final value is

the product of the term-frequency and the inverse document frequency values.

This representation was chosen to find words that were more meaningful w.r.t.

a document, with an elegant and simple computation [44]. Finally, a group of

documents was represented by the mean of the tf-idf vector of each document

in the group.

We computed the tf-idf vectors of all documents in the data, and then

computed the mean vector of these documents, creating an average summary

of the tf-idf vectors w.r.t the whole dataset. Finally, we plotted the mean tf-
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idf vector as a word cloud (Figure 4.1). We observed that general Computing

Science terms, such as “data”, “model” and “system”, had high tf-idf values.

However, terms that are specific to sub-fields of Computing Science, such as

“wireless” and “network” had surprisingly high tf-idf scores as well.

Figure 4.1: A word cloud w.r.t. the tf-idf representation of the whole data.

4.1.5 Segmentation

The dataset was segmented w.r.t. the competition year, creating eleven seg-

ments that contained the proposals that were funded in a given year. On

average, each segment contained 104 documents, with a minimum of 48 doc-

uments in 2006 and a maximum of 237 documents in 2017.

4.1.6 Clustering

The documents within each segment were clustered using HDBSCAN*. Other

algorithms were used for experimentation, such as the K-means algorithm.

However, k-means assigns each document to a cluster, and requires a k value,

making it not ideal for our approach since we wanted the topics to be discovered

automatically and to separate documents that were not necessarily related to

each other. We experimented with HAC using Ward’s method, obtaining good
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results, however, just as in k-means, it assigned each document to a cluster,

and, with this method, it was hard to find a cut that creates clusters with

documents that belong to the same topic. Further, we experimented with

DBSCAN, but because of the different densities in the data it was hard to

find a parametrization for each segment. Finally, HDBSCAN* was chosen to

cluster the data, because it was able to detect clusters and outliers using a

hierarchical approach and finding local cuts automatically.

Since HDBSCAN* can detect noise, our goal with the clustering was to

reduce the number of noise points while discovering the maximum number of

clusters with specific topics. More specifically, we maximized the following

function:

Z = |ξ| − |C0|
|D|

,

where |ξ| is the number of clusters discovered, |C0| is the number of outliers

discovered and |D| is the number of data points in the dataset. To satisfy these

conditions, we set the parameter min points = 2, making the smallest cluster

possible to be composed of two documents, and the parameter min samples

= 1, allowing for a larger number of smaller clusters [33].

We firstly clustered the whole dataset without segmentation, finding a total

of 221 clusters and 44.4%(555) outliers. We experimented with HDBSCAN*

parameters to understand how they affected the clustering, since our goal

was to minimize the number of outliers while maximizing clusters with unique

topics. The two parameters are, min cluster size and min samples. We first

studied the min cluster size parameter, that defines the minimum number

of data points that are required to form a cluster. We clustered the whole

dataset fixing the parameter min samples = 1 and varying min cluster size

between 2 and 10. The results for the number of clusters and percentage

of outliers discovered are shown in Figure 4.2. As expected, the number of

outliers increased w.r.t. the minimum number of data points required to form
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a cluster, while the number of clusters decreased rapidly. Since the value

that minimizes the percentage of outliers is 2, we set min cluster size =

2 and proceeded to investigate the next parameter by clustering the entire

dataset with min cluster size = 2 and varying min samples between 1 and

10. Results are shown in Figure 4.3.

(a) (b)

Figure 4.2: percentage of outliers w.r.t. min cluster size(a), and number of
cluster w.r.t min cluster size(b)

(a) (b)

Figure 4.3: percentage of outliers w.r.t. min samples(a), and number of cluster
w.r.t min samples(b)

The clustering algorithm found a local minimum when min samples = 5,

illustrated in Figure 4.3 (a), with a small number of outliers, but also a small

number of clusters. We illustrate this case in Figure 4.4 using TSNE [30] to

reduce dimensionality of the data.

Henceforth, we clustered the data using min cluster size = 2 and

min samples = 1, since these are the values that maximize the proposed func-
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Figure 4.4: Clustering of the dataset using HDBSCAN* with
min cluster size = 2 and min samples = 5. Data projected using
TSNE.

tion Z for this specific dataset.

4.1.7 Similarity

We compared clusters in each pair of consecutive years within the analyzed

period. This comparison was done in a pairwise manner using Cosine similarity

as the similarity metric. Firstly, we computed the mean of each collection of tf-

idf vectors that represented the documents within each cluster and computed

the cosine similarity between the mean vectors. Cosine similarity returns a

value between -1 and 1, where -1 means that the vector representation of the

compared documents are divergent, 0 means that they are not similar and 1

means that they are very similar or equal. We used the similarity values to

compute the evolution graph, creating an edge between pairs of clusters with

positive similarity values.

4.1.8 Evolution Graph

We computed an evolution graph using the clusters and similarity values.

A node was created for every cluster in a segment and an edge between two

nodes was created for every positive weighed relationship between two clusters

in consecutive segments.
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This EG could be visualized in the form of a Directed Acyclic Graph

(DAG). For a better visualization, we computed a word cloud of each cluster

representation that was used for visualizing individual nodes. A word cloud is

a popular technique where a bag of words is plotted inside a geometric shape.

Words that have a larger weight are plotted larger, while words that have a

lower weight are plotted smaller. Most commonly, word clouds weights are

simply the raw frequencies, in this work we used the tf-idf weights. We also

modified the thickness of an edge based on the similarity value. Since the

graph was huge and plotting all edges made the visualization cluttered, we

only plotted nodes from 2013 to 2017 and edges that had similarity values of

at least 0.5. We illustrate this graph in Figure 1, in Appendix A.

4.1.9 Experiment 1 - Frequent Topic

The first question that we addressed in this dataset was: “Is there a topic

that is frequent over time?”. This question was motivated by the initial data

exploration performed and described in Section 4.1.4, where we found that

topic specific words had high tf-idf values.

To address this question, we first investigated the dataset as a whole, look-

ing at frequent words after clustering it with HDBSCAN*. We found that

when we clustered the dataset without segmentation a collection of words had

higher tf-idf scores than the rest of the vocabulary. The top 10 words w.r.t.

tf-idf score are: data, system, model, network, application, design, software,

wireless, device and program. Since, the tf-idf gives higher score to words that

are more significative w.r.t. the data [44], we investigated further.

We used the computed Evolution Graph to analyze each cluster’s top 5

words w.r.t the tf-idf score. We find that the words “wireless” and “network”

appear in the top 5 words of at least one cluster in all years but 2013 (91% fre-

quency). We also find that the remainder words (“data”, “system”, “model”,
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“application”, “design”, “software”, “device” and “program”) are mostly jar-

gon from the computing science field, most commonly appearing in the outlier

group. Our conclusion with this experiment was that the terms “wireless” and

“network” were frequent w.r.t. both the whole dataset and to the discovered

temporal clusters. We proceeded to investigate the evolution graphs of these

two terms.

4.1.9.1 Monitoring “wireless” and “network”

Using the evolution graph, we could monitor one or more clusters. Since

we found that the terms “wireless” and “network” were representative of the

dataset w.r.t. the tf-idf values, we explored the Evolution Graph searching

for clusters that contained any of the two terms in its top words. We used

our method described in Section 3.2.5 to compute a collection of Q-evolution

graphs that contained the aforementioned terms. We filtered the EG keeping

any clusters that contained any of the two terms, applying the same criteria

to different timestamps. We also found that these two terms do not appear

separately, thus, extracting the EGQ using a criterion that found one of the

terms also found the EGQ of the other term. Without the evolution graph

this process would be tedious, requiring extensive manual analysis of the data.

Because of the huge size of the graph we did not plot the whole EG3 in thesis,

but we show two highlights in Figure 4.5.

In Figure 4.5 (a) we found two concurrent topics of research in 2007 and

2008. A closer inspection of the data in those clusters showed that one topic

was related to “network infrastructure”, while the other topic was related to

“algorithms and optimization of wireless networks”.

In (b) we monitored the topics from 2015 to 2017, finding that they nar-

rowed down in 2016 but generated several subtopics in 2017. Another inter-

3The full evolution graph is available at https://tinyurl.com/yyag27wl
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esting observation is that a different field with words like “power” and “fre-

quency”, in 2015, was highly similar to “wireless network”, and has “wireless

network” as descendant. In 2017, when the topic of “wireless network” has

several subtopics, we observed that topics like “5G network” appear, which

are known to be related to both of the aforementioned topics.

(a) (b)

Figure 4.5: Monitoring of the terms “wireless” and “network” from 2006 to
2009 (a); and, from 2015 to 2017 (b). The edges that show evolution of the
topic are coloured in red.

4.1.9.2 Noise group

The research proposals that we part of the noise group were those which did

not have any other proposal related to them w.r.t cosine similarity. This is

true since we set the minimum size of a cluster to be two, and the cluster-

ing criterion min samples = 1, which allowed HDBSCAN* to discover smaller

clusters [33]. We also found that the word cloud of a group of outliers was com-

monly represented by general terms of Computing Science such as “system”,

“application”, “model” and “design”. This was because tf-idf weighed words

that were more representative of the document, and since these documents

had unique characteristics, their commonalities received higher scores.

4.1.10 Experiment 2 - Investigating Topics and Funding

We investigated whether or not the dataset was dominated by a topic, which

could help us answer questions such as: “Is there a research topic that receives
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most of the funding provided by NSERC?”. To answer this question, we defined

that a research topic that received most of the funding would be a dominant

topic. We define dominant as

has dominant topic(D) iff {S ∈ D : |S ∩
⋃

D| > |
⋃
D|

2
} 6= ∅.

In other words, a collection of sets D contains a dominant set S if and only

if there is a set S ∈ D that contains more than half of the datapoints in the

collection D. In our dataset, D is each clustering ξ and each cluster C ∈ ξ is

a set S.

Firstly, we addressed the question:“Is there a dominant research topic in

the dataset?”. We clustered the whole dataset without segmentation and we

found that 44% of the data was labeled as noise. The remaining 219 clusters

shared 66% of the data, which showed that there was not a single topic that

covered at least 50% of the data. We then clustered the data per year. We

found that no cluster or group of outliers represented more than 44% of a

segment.

Further, we investigated if the funding was mostly concentrated in a single

research topic. We found that the amount of funds invested in different clusters

was proportional to the number of proposals in that cluster, thus, funding also

was diverse, with no large concentrations of investments in one single cluster.

For example, the “Deep Learning” topic cluster was the most well funded in

2017. It accounted for 5.3% of the year’s investments and contained 5.06%

of the awarded proposals. In Figure 4.6 we illustrate the number of funded

proposals (a) and the total amount awarded (b) in a given year to the noise

group, labeled as “other” (orange) and clusters that had a theme, labeled as

“thematic” (blue).
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(a) (b)

Figure 4.6: Number of funded proposals per year (a) and Amount of funding
awarded per year, in millions of dollars (b)

4.1.11 Experiment 3 - Transition-based cluster moni-
toring

In this experiment we used MONIC to discover transitions in the NSERC

dataset. We first computed an evolution graph using Cosine similarity and

used MONIC to detect transitions. Adjusting MONIC parameters for the

NSERC dataset was challenging, since small changes in τ or λ caused the

number and type of discovered transitions to change. We investigated the

mean similarity value and its respective deviation, illustrated in Figure 4.7.

We found that the variability of the similarity value was high, and when we

applied the standard values, τ = 0.5 and λ = 0.3, suggested in both [48] and

[41] we did not detect any survival transitions. That was because the similarity

never reached a value over 0.5. Consequently, the only type of transition that

could be detected was split, since the similarity values could sum up to higher

than τ .

To investigate the applicability of MONIC to the NSERC dataset further,

we focused on survival, split and merge transitions when applying MONIC to

the NSERC dataset. We studied the effect of the parameters τ and λ on the

transitions discovered. We first set τ = 0.5 and vary λ from 0.1 to 0.5 with

a step of 0.1. Table 4.1 shows the results obtained. We found that, because
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Figure 4.7: Average cosine similarity value and standard deviation.

split and merge transitions are mutually exclusive in MONIC, we most likely

find one type or the other.

λ Survival Split Merge
0.1 0 209 0
0.2 0 201 0
0.3 0 146 0
0.4 12 50 0
0.5 34 0 9

Table 4.1: Transitions detected by MONIC when varying λ

We explored the thresholds further, by setting λ = 0.5 and varying τ from

0.5 to 1 with a step of 0.1. Table 4.2 shows the results obtained. We found that,

in the NSERC dataset, we could not discover splits and merges simultaneously.

That was because the similarities between clusters were low, the variability of

the similarity values was high and, split and merge are mutually exclusive,

preventing both transitions to be detected if they have a common cluster.

τ Survival Split Merge
0.5 12 50 0
0.6 3 59 0
0.7 0 61 0
0.8 0 61 0
0.9 0 55 0
1 0 44 0

Table 4.2: Transitions detected by MONIC when varying τ
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4.1.11.1 Discovering transition-like patterns

We applied out framework to the NSERC dataset to search for patterns that

were like transitions. We first segmented the graph into tuples of two consecu-

tive timestamps, which resulted in a collection of bipartite graphs, where each

graph in the collection that was a subgraph of the original evolution graph.

We then labeled each node in each bipartite graph in the created collection

using Equation 3.1, and then labeled each edge using Equation 3.2.

To detect a pattern that is equivalent to a survival transition, we set the

minimum number of nodes of a pattern, kmin = 2 and the maximum number of

nodes of a pattern, kmax = 2, since a survival pattern only involves two nodes

(one at time ti and one at time ti+1). We set the minimum support ε = 1,

since a transition has to occur only once to be detected. We then executed

gSpan on the collection of bipartite graphs to search for subgraphs that were

equivalent to a survival transition. We found a total of 35 patterns in the

dataset where 31 of those patterns were distinct from the others. We then

classified each pattern w.r.t. the edge label. We found 16 patterns that were

classified as “low”, since the edge weight was in the range from 0 to 0.3; 11

patterns were classified as “medium”, since the edge weight was in the range

from 0.3 to 0.6; and, 4 patterns were classified as “high”, since the edge weight

was in the range from 0.6 to 1. When we raised the support value to 2, only

8 patterns were found. From those patterns 4 were distinct. We classified 2

patterns as “low”, 2 patterns as “medium” and, 1 pattern as “high”. Observe

that, instead of giving a threshold, we classified the patterns into buckets.

If we were to use MONIC with the standard value τ = 0.5, patterns in the

“low” bucket would not be discovered, patterns in the “medium” bucket were

not very likely to be discovered, and patterns in the “high” bucket would be

discovered.
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To detect split and/or merge transitions we set the minimum number of

nodes of a pattern, kmin = 3 and the maximum number of nodes of a pattern,

kmax =∞, since a split involves at least three nodes (one node at time ti and

at least two nodes at time ti+1). Similarly, a merge transitions involves at

least three nodes (at least two nodes at time ti and one node at time ti+1). If

a pattern contained more than one node in both timestamps it meant that it

was equivalent to simultaneous split and merge transitions. We used the same

collection of bipartite graphs that were used to detected survival transitions, as

described above. We stop the ex With ε = 2 we discover only 10 patterns. The

discovered patterns indicated that many of the similar patterns happened in

the biennium of 2010-2011, and 2014-2015. We illustrate one of the discovered

patterns in Figure 4.8, where a cluster had high similarity value to two other

clusters in the subsequent year.

(a) (b)

Figure 4.8: In both diagrams a cluster had high similarity value to two other
clusters in the subsequent year. The pattern is detected even though the topics
are different.

In addition, we investigated the NSERC dataset for larger patterns that

could be discovered by our framework with support larger than one. However,

because of the small size of the dataset, we were not able to find any of such

patterns. We then investigated a larger dataset searching for larger patterns

with frequency higher than one.
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4.2 S&P 500 Dataset

The Standard & Poor’s 500 or simply S&P500 is an index that is used as a

benchmark in Economics. It is composed by approximately 500 stocks from

both the New York Stock Exchange (NYSE) and Nasdaq Stock Market (NAS-

DAQ). The stocks that compose the index are curated by the S&P Dow Jones

Indices.

I collected the S&P500 dataset using DataStream [46], a global economics

platform that provides data and fundamental information about a number of

companies. The S&P500 index exists since 1923, and each stock in the index

has a symbol associated with it. A symbol is an abbreviation or a unique

id that refers to a given stock information, e.g., one of Google’s symbols is

GOOG. For the purpose of this research I used a subset of the data from

1973 to 2017, collecting weekly price information about the stocks. I did so

because before 1973 many companies did not have associated symbols, making

it challenging to retrieve stock prices for those companies. The final dataset

was composed of 646 stocks that were part of the S&P500 index at least once

during the specified time period and the dataset contained 2360 data points.

4.2.1 Data Processing

To process the dataset, we used a similar process to the one proposed by Wu

et. al. [54] and used by many other authors to cluster time series data [45].

Since we accounted for different prices and stocks that joined or left the index

over time, we represented a stock in a general form. Firstly, we collected

the adjusted closing price, which is a monetary value of a stock that takes in

account dividends and the release of new shares, allowing for a more precise

pricing and avoiding abrupt price changes.

Since many companies joined or left the index, we filled the non-existent
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information about those companies by making their price constant w.r.t the

last known price. For companies that have joined the index, we filled the

previous time stamps with the first known price. For instance, a company

that was created in the year 2000 at a price of $50.20 had all previous registers

filled with the initial price [54].

4.2.2 Stock Representation

We normalized the values of a stock by computing the z-score of its values

w.r.t. all companies that were within a segment. A z-score represents how

distant a value is from the mean of a population, and is calculated as

z-score(x) =
x− µ
σ

.

In other words, a z-score or standard score of a value x is x minus the

mean (µ) of the population divided by the standard deviation (σ) of that

population. This score provided a standardization of the price and made it

independent of price fluctuations over time. The representation of a stock

was the standardized vector of values of that stock w.r.t. a time period [54].

Figure 4.9 illustrates a stock representation using a vector of values within

time period of four weeks.

Figure 4.9: A stock was represented by its vector of prices given a segment
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4.2.3 Segmentation

We experimented with segmentation of the S&P500 dataset according to three

different windows: month (4 weeks), quarter (13 weeks), and year (54 weeks).

These windows were defined according to established methods from the field

of accounting and finance4. The segments were subsets of the dataset without

overlap. Thus, a company C was represented by a sequence of prices C =

〈p0, p1, ..., pn〉 and the cardinality of C was indicated by the length of the

segment. We obtained 589, 181 and, 43 segments for 4, 13 and, 54 weeks

segments, respectively.

Finally, we decided to run our experiments the dataset segmented into

quarters based on two arguments: i) the portfolio of stocks in the S&P500 is

updated quarterly; and, while the segmentation into years created an evolution

graph of small size, weekly data generated a huge graph, that had a lot of noise

and was computationally expensive to process.

4.2.4 Clustering

The stocks within each segment were clustered using HDBSCAN*. We ex-

plored other algorithms for clustering, however, because of density changes,

HDBSCAN* showed better results. Our goal with clustering in this data was

to find stocks that had similar price changes in the same segment. To define

the minimum cluster size, we researched about Sectors and Industries5 within

the S&P500 context, which provided us with information on the different types

of stock involved in the index. We found that a sector contained at least 6

stocks, therefore, we set the minimum cluster size to 6. Moreover, we set

min samples = 1, which allowed HDBSCAN* to discover a larger number of

small clusters [33]. Euclidean Distance was the distance metric used in the

4https://www.irs.gov/publications/p538
5https://ca.spindices.com/index-family/us-equity/sector-industry
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clustering process.

The content of a cluster was the collection of stocks and its respective prices

within a segment. We could visualize a cluster by plotting all stock pricing

within that cluster. Figure 4.10 illustrates two examples of cluster contents.

In (a) we observe a cluster where the stock prices rose then lowered; in (b) we

illustrate a cluster where stock prices rose consistently.

We used two distinct cluster representations: i) the price representation of

a cluster was the mean vector of price of all stocks in that cluster; and, ii) the

stock representation of a cluster was the collection of all stock symbols within

that cluster. The price representation does not rely on object identity and

simply on the prices of all stocks given a time period. The stock representation

relies on the object identity only, since each stock had an associated symbol

which was used to compute the similarity value.

(a) (b)

Figure 4.10: Cluster contents in the S&P500 dataset

4.2.5 Similarity

We used two distinct similarity functions in our experiments. The first was

Jaccard Similarity, where we used the stock symbols in each cluster to find a

similarity value. To compute the similarity values using the Jaccard similarity

we used the stock representation. The second similarity metric used was the

Cosine Similarity, where we used the price vectors of two clusters. To compute

similarity values using the Cosine Similarity we used the price representation.
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By computing similarity values using object identities we could infer in-

formation about stocks that perform similarly. On the other hand, by using

only the prices for similarity computation we could compute a similarity value

based on price vectors, not taking in account what stocks were part of a cluster.

We investigated the characteristics of both similarity metrics in terms of

mean similarity and variability. When we computed the similarity values us-

ing Cosine Similarity, we found that, on average, the clusters in consecutive

segments were distinct, indicated by the average value close to 0. Also, we

found a large variability in the similarity value, while indicated that clusters

in consecutive segments could be very different or very similar. Figure 4.11

(a) illustrates the mean and the variability of the computed Cosine Similarity.

(a) (b)

Figure 4.11: Cluster contents in the S&P500 dataset

Differently from Cosine Similarity, Jaccard Similarity only produces pos-

itive values. The values computed by the second metric were small, which

indicated low similarity between clusters. Moreover, just as Cosine Similarity,

the variability of the similarity values was high. We investigated the cor-

relation of both similarity metrics by computing the Pearson correlation of

their respective mean vectors. We found that the metrics were not strongly

correlated, with a correlation coefficient of 0.11.
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4.2.6 Evolution Graph and Visualization

Using the computed similarity values, we contructed two distinct evolution

graphs, one using Jaccard Similarity values and one using Cosine Similarity

values. In these EGs, we created a node for each cluster and an edge between

two consecutive clusters if the similarity value between the two clusters was

positive.

For the visualization of this dataset we implemented a tool that plots the

EG as a DAG. Moreover, we used circle nodes for clusters and squares for

noise groups. The nodes were scaled w.r.t. the amount of data points in that

given node. Edges had its thickness scaled to reflect the similarity value that

they represented. Because of the huge size of the EG by quarters we were not

able to include it in full in this thesis6.

4.2.7 Experiment 1 - Transition-based Pattern Detec-
tion

In this experiment we executed MONIC in the S&P500 dataset to perform

transition detection. We studied its parameters and how they affect the tran-

sition detection process. We first experimented with Cosine Similarity study-

ing both MONIC and our framework. Further, because of the low similarity

values computed by Jaccard Similarity, MONIC is not capable of detecting

transitions. We show that, when using Jaccard similarity, our framework can

detect transition-like patterns in addition to other complex patterns.

4.2.7.1 Cosine Similarity Evolution Graph

Firstly, we experimented with MONIC in an EG computed using Cosine Sim-

ilarity. We discovered that, because of the high-variability and low similarity

values, we were not able to detect many transitions, except for survivals. For

6https://tinyurl.com/y6qceyoz
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λ Survival Split Merge
0.0 131 21 0
0.1 407 18 4
0.2 411 15 4
0.3 416 3 4
0.4 420 1 6
0.5 425 0 7

Table 4.3: Transitions detected by MONIC when varying λ

τ Survival Split Merge
0.5 407 18 4
0.6 393 18 1
0.7 383 17 0
0.8 378 16 0
0.9 365 19 0
1 0 22 0

Table 4.4: Transitions detected by MONIC when varying τ

both similarity functions, we set τ = 0.5 and varied λ from 0.0 to 0.5 using

a step of 0.1. Table 4.3 shows the results obtained for Cosine Similarity. We

found that MONIC detected more splits and merge transitions when λ = 0.1.

Moreover, λ strongly affected the number of split transitions discovered, since

the similarity values are mostly low.

Further, we investigated the effects of τ over MONIC transition detection.

We set λ = 0.1 and varied τ from 0.5 to 1, with a step of 1. Since in MONIC

τ ≥ 0.5, and because the similarity values found in the S&P500 dataset were

low, the threshold change did not strongly affect the number of transitions

detected.

After experimenting with MONIC, we used our framework to detect transition-

like patterns without threshold restrictions. We segmented the evolution graph

into a collection of bipartite graphs composed of subsequent segments. This is

because are detected in two consecutive segments. We then label each bipartite

graph using Equation 4.4.
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g(ev,v′) =


0, if 0.0 < w(ev,v′) ≤ σ

2

1, if 0.23 < w(ev,v′) ≤ σ

2, if σ < w(ev,v′)

(4.4)

In Equation 4.4 we set values that were higher than the standard deviation

as high, represented by the value 2. Values smaller than half of the standard

deviation were labeled as low, represented by the value 0. The remaining

values were labeled as medium, represented by the value 1. We did not search

for survival transition equivalent patterns, since the graph was huge and such

patterns are abundant.

We set kmin = 3, since a split or a merge transition is composed by at

least three nodes. We set kmax = ∞, since there is no limit for the number

of nodes in a transition. We investigated the number of patterns discovered

w.r.t. ε. Our framework detected more transition-like patterns than MONIC

because it scans the bi-graphs for different patterns when ε = 1. When we

searched for patterns that appeared more than once we find 130 patterns

that are meaningful w.r.t. ε. When compared to MONIC, our framework

detected all transitions, with the option of filtering frequent transitions. The

most frequent transition-like pattern discovered, with ε = 56, is illustrated in

Figure 4.12.

4.2.7.2 Jaccard Similarity Evolution Graph

We experimented with our framework on a Jaccard Similarity Evolution Graph.

In this setting MONIC could not detect any transitions because of the low

similarity values. On the other hand, our framework detects transition-like

patterns.

We set kmin = 3, since a split or a merge transition are composed of at

least three nodes. We set kmax = ∞, since there is no limit for the number
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Figure 4.12: Most frequent transition-like pattern detected by our framework
when using Cosine Similarity

of nodes in a transition. We investigated the number of patterns discovered

w.r.t. ε.

When we investigate for patterns that appeared more than once (ε = 2),

we find 68 patterns that are meaningful w.r.t. ε. The most frequent transition-

like pattern discovered, with ε = 56, is illustrated in Figure 4.13. This pattern

is composed of three nodes and indicate that there is a strong relationship

between the node in t1 and at least one of the nodes in t2. Also, there exists

a weak relationship between the node in t1 and the other node in t2. Both

nodes in t2 indicate that there is another node influencing them, indicated

by the labeling 2, 0. The Cosine Similarity function compares the vector of

the two nodes, which means that both clusters in t2 have vectors that are

somewhat similar to the vector of the node in t1 but significantly different

among themselves.

4.2.8 Experiment 2 - Transition-free Pattern Detection

To explore the dataset further with our framework, we searched the evolution

graph by segmenting it into a collection of k-partite graphs where k > 2. We

set kmin = n + 1, kmax = ∞ and ε = 3. We chose these values because we

had a partition of n segments, by setting kmin = n+ 1 we guaranteed that the

75



Figure 4.13: Most frequent transition-like pattern detected by our framework
when using Jaccard Similarity

pattern was not a λ − chain of n nodes, and at least one of the nodes had a

relationship to two other nodes. We illustrate the most frequent pattern for

k = 3 in Figure 4.14. The Figure shows a patterns composed of three nodes

where the similarity values in both edges are low but sufficient to establish a

relationship between the nodes. Since the similarity function compares the set

of stock symbols contained in each node, this pattern indicates that, often, a

group of nodes of arbitrary size is similar to two other groups of companies.

Moreover, the lower node in the figure indicates two inputs, one of which is

not part of the pattern, meaning that there is some external influence from

other clusters, but less frequently than this three node pattern.

Figure 4.14: Most frequent pattern when ε = 3

To understand the meaning of these patterns we investigated the represen-
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tation of the clusters and the changes that were occurring in the prices. We

find a general trend that shows subtle changes in the prices, maintaining the

vectors similar enough so the similarity value is positive. That means that our

framework found mostly patterns that indicate small price changes in stocks,

not accounting for significant changes.

4.3 Discussion

In this section we have experimented with our proposed framework using two

real-world datasets: NSERC and S&P500. We demonstrated that, when de-

tecting transitions, our framework could detect transitions detected by the

state-of-the-art and transitions that would not be detected because of differ-

ent similarity value ranges.

We showed that our framework can track the evolution of a cluster, tracking

a set of words in the NSERC dataset. Moreover, we showed that our framework

could aid on extracting insights from temporal datasets.

When we explored a dataset where the similarity values were low, our

framework could still find patterns, while a traditional approach could not.

We also showed that our framework could discover patterns that are more

complex than transitions. These patterns could not be detected by a tradi-

tional approach because of low similarity values, or significant variability of the

similarity values over time. This is because the state-of-the-art looks for one-

step patterns, while our framework mines a graph for multiple-step patterns.

Moreover, our framework is not limited by a threshold value for the similar-

ities, rather using bucketing of that similarity to label the patterns, search

for the most frequent ones. Finally, because of the bucketing, our framework

can adapt to variability in the similarity values, which traditional approaches

cannot.
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Chapter 5

Conclusion

In this thesis we addressed the problem of Cluster Monitoring. The problem

consists in, given a dataset, trace the evolution of clusters over time so that in-

sights about the changes occurring in the data over time can be extracted. We

tackled this problem by proposing a pattern-based framework and extracting

patterns that are more complex than transitions.

We experimented with our pattern-based framework in two real-world datasets:

the NSERC dataset the S&P500 dataset. We show that our framework is capa-

ble of detecting both transitions and complex patterns. Moreover, our frame-

work is flexible in terms of accepting different types of similarity functions,

clustering algorithms, and both labeled and unlabeled data.

5.1 Future Work

There are many avenues that can be explored to improve this work. Our

framework can be used to detect frequent temporal patterns and summarize

an evolution graph. Moreover, our framework can be used to compress a graph

not only in terms of the survival transitions but in terms of complex patterns.

In the field of community mining, our framework can be applied to de-

tect changes in both the entity level and the community level. By detecting

frequent changes in the community, our framework can be further extended
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to predict future changes in the community structure. Finally, in the field of

Economics, an avenue is to explore other similarity functions, or the use of

the negative values computed by the Cosine Similarity function to investigate

market shifts.
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Appendix A

Year: 2013
 Total Award: 3745618

Year: 2014
 Total Award: 3854873

Year: 2015
 Total Award: 4625727

Year: 2016
 Total Award: 5050998

Year: 2017
 Total Award: 7962577

Figure 1: Evolution Graph of the NSERC Dataset from 2013 to 2017 and
edges with similarity values of at least 0.5. A black word cloud represents an
outlier group.
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