University of Alberta

T cell-mediated inflammation is stereotyped: mouse delayed-type hypersensitivity reaction and mouse T cell-mediated rejection of renal allografts share common molecular mechanisms

by

Jeffery M. Venner

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of

> Master of Science in Experimental Medicine

Department of Medicine

©Jeffery M. Venner Fall 2011 Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.

Dedicated to those who have inspired me: My family and friends, my teachers and mentors. You laid the foundation – my success is guaranteed

ABSTRACT

Genome-wide gene expression analysis of diseases has revealed large-scale changes in the expression of thousands of genes (transcripts) representing biological processes. The processes that occur during T cell-mediated rejection (TCMR) of renal allografts in mice and humans have been previously delineated, and they appear to be independent of cytotoxic mechanisms; thus, TCMR is analogous to delayed-type hypersensitivity (DTH). Since TCMR and DTH involve similar mechanisms, we hypothesized the molecular changes in TCMR are stereotyped; thus, they are qualitatively the same as those in DTH. Using microarrays to compare the transcript expression changes of both diseases in mice, we found they share the same processes: T cell and macrophage infiltration, IFNG-effects, alternative macrophage activation, and a coordinated injury-repair response of the tissue parenchyma. Additional analysis revealed IFNG is vital for stabilizing the injury-repair response in TCMR and DTH. We conclude the molecular changes in TCMR and DTH involve stereotyped, coordinated processes.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

PAGE

1.1	Background	1
1.2	Transplantation and Allograft Rejection Overview	2
1.3	Revealing the Herd-Movement in TCMR of Renal Allografts	8
1.4	Delayed-Type Hypersensitivity	13
1.5	Project Synopsis and Justification	15

CHAPTER 2: MATERIALS AND METHODS

2.1	Overview 17
2.2	Mice 17
2.3	Mouse Experiments 18
2.4	Tissue RNA Extraction and RNA Expression Analysis 20
2.5	Mouse Histology and Immunohistochemistry 23
2.6	Tables

CHAPTER 3: COMPARISON OF THE MOLECULAR CHANGES IN MOUSE CONTACT HYPERSENSITIVITY AND T CELL MEDIATED REJECTION IN MOUSE RENAL ALLOGRAFTS

3.1	Overview	29
3.2	Establishment of the CHS Model	30
3.3	The Inflammatory Phenotype is Shared Between CHS and Renal	
	Allografts with TCMR	31

3.4	Transcripts Related to Injury-Repair Processes are Tissue-Selective,
	but Represent Similar Pathways 34
3.5	Summarizing the Transcript Changes as Transcript Set Scores
	Reveal Parallel Molecular Changes in CHS and TCMR 37
3.6	Tables
3.7	Figures 82

CHAPTER 4: INTERFERON-GAMMA-DEPENDENT MOLECULAR CHANGES IN

OXAZOLONE-INDUCED CONTACT HYPERSENSITIVITY

4.1	Overview	93
4.2	IFNG-Dependent Changes in a Cutaneous Oxazolone-Challenge in	
	Mice	94
4.3	Tables	101
4.4	Figures	107

CHAPTER 5: DISCUSSION

5.1	Study Summary Part 1: A Comparison of DTH and TCMR 120
5.2	Molecular Changes of T Cell-Mediated Inflammation 121
5.3	The Active Injury-Repair Response Reflects a Large-Scale Anti-
	Parallel Shift in the Expression of Transcripts 125
5.4	Conclusions Part 1: Molecular Changes are Stereotyped 127
5.5	Study Summary Part 2: IFNG-Dependent Changes 128
5.6	Conclusions Part 2: IFNG-Dependent Changes in CHS 131
5.7	Additional Conclusions and Future Directions

REFERENCES	13	34
------------	----	----

LIST OF TABLES

CHAPTER 3: COMPARISON OF THE MOLECULAR CHANGES IN MOUSE CONTACT HYPERSENSITIVITY AND T CELL MEDIATED REJECTION IN MOUSE RENAL ALLOGRAFTS

3.1	Histological data of mouse renal allografts 39
3.2	Unique cytotoxic T cell-associated transcripts found in both
	oxazolone-challenged skin versus sham-treated skin, and CBA into
	B6 renal allografts at day 7 versus normal CBA kidneys 40
3.3	Unique IFNG-induced transcripts (IFNG-effects) found in both
	oxazolone-challenged skin versus sham-treated skin, and CBA into
	B6 renal allografts at day 7 versus normal CBA kidneys
3.4	Unique macrophage-associated transcripts found in both
	oxazolone-challenged skin versus sham-treated skin, and CBA into
	B6 renal allografts at day 7 versus normal CBA kidneys
3.5	Unique AMA-associated transcripts found in both oxazolone-
	challenged skin versus sham-treated skin, and CBA into B6 renal
	allografts at day 7 versus normal CBA kidneys

3.6	691 unique skin-selective injury- and repair-induced transcripts and
	their annotation 44
3.7	Overlapping skin-selective IRITs and the kidney-selective IRITs
	gene ontology (GO) annotations 58
3.8	465 unique skin-associated transcripts and their annotation
3.9	Kidney-associated transcripts (KTs) top gene ontology (GO)
	annotations74
3.10	Skin-associated transcripts (STs) top gene ontology (GO)
	annotations77
3.11	Overlapping skin-associated (STs) and kidney-associated
	transcripts (KTs) gene ontology (GO) annotations

CHAPTER 4: INTERFERON-GAMMA-DEPENDENT MOLECULAR CHANGES IN OXAZOLONE-INDUCED CONTACT HYPERSENSITIVITY

4.1	30 unique IFNG-induced transcripts (IFNG-effects) differentially	
	expressed in oxazolone-challenged GRKO skin over oxazolone-	
	challenged B6 skin	102
4.2	GRKO enriched skin-selective IRITs top gene ontology (GO)	
	annotations	103
4.3	GRKO enriched skin-associated transcripts top gene ontology (GO)	
	annotations	105

LIST OF FIGURES

CHAPTER 3: COMPARISON OF THE MOLECULAR CHANGES IN MOUSE CONTACT		
HYPERSENSITIVITY AND T CELL MEDIATED REJECTION IN MOUSE RENAL		
ALLOGRAF	rs	PAGE
3.1	Histopathology of sham-treated B6 skin and oxazolone-challenged	
	B6 skin	. 83
3.2	Oxazolone-challenged skin experiences greater inflammation than	
	sham-treated controls	. 84
3.3	Ifng transcript expression and expression of IFNG-induced	
	transcripts (Cxcl9, Aif1 and Ubd) within sham-treated and	
	oxazolone-challenged B6 mouse skin assessed by real time	
	RT-PCR	. 85
3.4	Transcript expression of the macrophage surface markers Cd68	
	and Mrc1 within sham-treated and oxazolone-challenged B6 mouse	
	skin assessed by real time RT-PCR	. 86
3.5	Transcript expression of II4, Chi3l3 and Arg1, AMA-associated	
	transcripts, within sham-treated and oxazolone-challenged B6	
	mouse skin assessed by real time RT-PCR	. 87
3.6	PBT annotated transcripts in oxazolone-challenged skin are also	
	found in TCMR of kidney allografts	. 88
3.7	Expression of the general macrophage marker CD68, and the AMA	
	marker MRC1, by immunohistochemistry in mouse skin sham-	
	treated or oxazolone-challenged	. 89
3.8	Algorithm for selection of the skin-selective injury- and repair-	
	induced transcripts (SIRITs)	. 90
3.9	Algorithm for selection of the skin-associated transcripts (STs)	. 91

CHAPTER 4: INTERFERON-GAMMA-DEPENDENT MOLECULAR CHANGES IN OXAZOLONE-INDUCED CONTACT HYPERSENSITIVITY

4.1	Histopathology of sham-treated GRKO skin and oxazolone-
	challenged GRKO skin
4.2	Oxazolone-challenged B6 and B6.GRKO skin appear histological
	similar to each other, despite being significantly more inflamed than
	sham-treated controls
4.3	Ifng transcript expression within sham-treated and oxazolone-
	challenged B6 and GRKO mouse skin assessed by real time
	RT-PCR
4.4	Transcript expression of the IFNG-induced transcripts, Cxcl9, Aif
	and Ubd within sham-treated and oxazolone-challenged B6 and
	GRKO mouse skin assessed by real time RT-PCR 111
4.5	Cd68 transcript expression within sham-treated and oxazolone-
	challenged B6 and GRKO mouse skin assessed by real time
	RT-PCR 112
4.6	Mrc1 transcript expression within sham-treated and oxazolone-
	challenged B6 and GRKO mouse skin assessed by real time
	RT-PCR
4.7	Arg1 transcript expression within sham-treated and oxazolone-
	challenged B6 and GRKO mouse skin assessed by real time
	RT-PCR

4.8	Chi3l3 transcript expression within sham-treated and oxazolone-	
	challenged B6 and GRKO mouse skin assessed by real time	
	RT-PCR	;
4.9	II4 transcript expression within sham-treated and oxazolone-	
	challenged B6 and GRKO mouse skin assessed by real time	
	RT-PCR	;
4.10	Inhba transcript expression within sham-treated and oxazolone-	
	challenged B6 and GRKO mouse skin assessed by real time	
	RT-PCR	,
4.11	Transcript set scores of the inflammatory and injury-repair response	
	PBTs in oxazolone-challenged B6 and GRKO skin 118	}
4.12	IFNG-suppressed transcript set score in oxazolone-challenged B6	
	and GRKO skin 119)

LIST OF ABBREVIATIONS

- ABMR antibody-mediated rejection
- AMA..... alternative macrophage activation
- AMATs...... alternative macrophage activation-associated transcripts
- CD cluster of differentiation
- CHS..... contact hypersensitivity
- CMA classical macrophage activation
- DTH delayed-type hypersensitivity
- ESRD end-stage renal disease
- ETC effector T cell
- GKO interferon-gamma deficient mouse (Ifng^{-/-})
- GO..... gene ontology
- GRITs...... interferon-gamma- and rejection-induced transcripts
- GRKO...... interferon-gamma receptor 1 deficient mouse (Ifngr1^{-/-})
- GSTs gamma-interferon-suppressed transcripts
- IFNG..... interferon-gamma
- IRITs..... injury- and repair-induced transcripts (kidney- or skin-selective, injury-up)
- KTs..... kidney-associated transcripts (kidney-selective, injury-down)
- MHC major histocompatibility complex
- mRNA..... messenger ribonucleic acid
- PBT pathogenesis-based transcript set
- PMN polymorphonuclear cell
- QCAT quantitative cytotoxic T cell-associated transcripts
- QCMAT quantitative constitutive macrophage-associated transcripts
- STs skin-associated transcripts (skin-selective, injury-down)
- TCMR T cell-mediated rejection

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Tissue injury and antigenic insult induces a large-scale, coordinated cascade of changes; ultimately leading to a state of inflammation and injury-repair processes. The cardinal signs of inflammation, described as stereotyped gross pathological changes, were first recorded by Celsus in ancient Rome as; calor (heat), dolor (pain), tumor (swelling), and rubor (redness) (1). Later, functio laesa (loss of function) was added by Virchow, or debatably, Galen (2). Since these descriptions, efforts have largely been focussed on picking apart the individual genetic and molecular differences between various inflammatory diseases or disease states. With the advent of genome-wide gene expression microarrays, it has been revealed that transcript expression changes behave in concerted, stereotyped 'herd-movements' that correspond to major biological processes (3-5). This has changed our interpretation of diseases and disease processes: instead of describing tissue abnormalities through the expression of single molecules such as messenger RNA (mRNA) transcripts, the tip of the iceberg; microarrays are able to reveal concerted changes in transcript expression involving hundreds of transcripts related to specific biological processes. Our laboratory has been particularly interested in studying the genome-wide molecular changes that occur during organ transplant rejection, with kidney transplant rejection as the focus of our past studies (recently reviewed in (6,7)).

To simplify by excluding other conditions such as de novo diseases or recurrent primary disease, transplanted organs can fall to one of, or combination of two diseases; T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR). Using microarray expression data we have annotated changes in transcript expression in

mouse and human renal allograft rejection that correspond with biological processes, such as T cell and macrophage infiltration, as pathogenesis-based transcript sets (PBTs) (6-8). Our PBTs demonstrate that hundreds of transcripts experience expression changes in TCMR and ABMR as a highly stereotyped, concerted pattern. These changes are not disease specific qualitatively, but rather differentiation of TCMR and ABMR can be demonstrated quantitatively: TCMR, as T cell- and macrophage-associated transcripts (9); ABMR, as NK- and endothelial-associated transcripts (10,11); with strong interferon-gamma (IFNG)-effects (12), and an active injury-repair response (13,14) in both TCMR and ABMR.

Mouse models of kidney transplantation have revealed that mice largely develop TCMR and do not manifest ABMR (15). Rejection of kidney transplants in nonimmunosuppressed mice across full major histocompatibility complex (MHC) and minor disparities is T cell-dependent, and involves the development of histological lesions seen in TCMR of kidney transplants in humans (described below) (15). Therefore, mouse models of transplantation have permitted us to explore TCMR, independent of ABMR mechanisms. Indeed, through various knockout mouse models our laboratory found that TCMR is independent of cytotoxic mechanisms (16), which has led to the theory that TCMR mechanisms are analogous to a delayed-type hypersensitivity (DTH) reaction involving the contact-dependent communications of T cells and macrophages. Applying our understanding of transcript expression changes as herd-movements, we hypothesize the molecular changes that occur during a mouse model of DTH would resemble those changes seen in TCMR of mouse renal allografts.

1.2 TRANSPLANTION AND ALLOGRAFT REJECTION OVERVIEW

1.2.1 Transplantation in the real world. For patients with end-stage renal disease (ESRD), kidney transplantation offers an improved quality-of-life and reduced risk of

cardiovascular disease and mortality compared to long-term dialysis. In 2009 there were 1,222 kidney transplants in Canada; however, by the end of 2009 there were approximately 3,200 still on the waitlist. The waitlist is exponentially larger in the United States, where upwards of 90,000 patients are waiting for a kidney transplant (17). As demand for donor kidneys outstrips supply, in addition to increasing the donor pool, it is important that steps are taken to ensure long-term graft survival in transplant recipients.

Transplantation can either be xenogeneic, allogeneic, or syngeneic. In xenotransplantation, grafts are transplanted between species, and thus, they offer a route towards increasing the donor pool. However, xenotransplantation is currently impractical due to species-specific growth factor receptors, immunological disparities, and a fear of zoonosis (18,19). Allogeneic and syngeneic transplantation is between individuals of the same species; the former between genetically non-identical individuals, and the latter involving genetically identical individuals (such as monozygotic twins). The first successful human organ transplant was a kidney transplant performed between monozygotic twins in 1954 by Joseph Murray. Thus there was no immunological (alloimmune) barrier to overcome. Nonetheless, identical twins are scarce; leaving allogeneic transplantation as the only viable option. The synergistic development of efficacious immunosuppressive regimens along with an improved immunological knowledge base has made allogeneic transplantation a realistic therapy for ESRD.

1.2.2 Non-specific graft injury. Surgical-mediated disruptions from nephrectomy and anastomosis, and ischemia/reperfusion cause non-specific injury to grafts. Necrosis and ischemia/reperfusion injury results in the release of endogenous damage-associated molecular patterns which bind to various, putative pattern-recognition receptors largely found on resident epithelial cells, polymorphonuclear (PMN) leukocytes, or myeloid cells (macrophages and dendritic cells) (20). One, example includes the release of DNA as a result of loss of cell and membrane integrity during necrosis; free endogenous DNA sections are able to bind to Toll-like receptor (TLR)-9. Subsequent intracellular signalling

from TLRs leads to the translocation of transcription factors, such as nuclear factor (NF)- κ B and interferon-regulatory factor (IRF) proteins, into the nucleus where transcription of cytokines and chemokines begins (21). In particular, expression of IFNG can lead to increased antigen processing, subsequent MHC surface expression and lymphocyte chemotaxis (22,23). While these processes evoke a non-specific, alloimmune-independent inflammatory response, they foster the development of adaptive immune responses by inducing the expression of MHC, co-stimulatory molecules, and the diapedesis-supporting selectins and integrins on the host parenchyma and microvascular endothelium (22,24); and thus, conceivably promote an alloimmune response against the allograft. However, this is counterintuitive to the observation that a kidney allograft recipient who 5 years post-transplant (who would have recovered from any surgical and ischemia/reperfusion injury), can begin to reject the graft at any time, particularly if they discontinue the immunosuppressive drugs.

1.2.3 Generating the alloimmune response. Activation of naïve cognate T cells occurs within secondary lymphoid organs. The T cell receptor (TCR) recognises donor antigen on the surface of dendritic cells and triggers "signal 1" through the CD3 complex. CD80 or CD86 on the surface of dendritic cells then ligate with CD28 on T cells, providing "signal 2." Together, these two signals activate three signal transduction pathways within T cells (25): the calcium-calcineurin pathway, the RAS-mitogen-activated protein (MAP) kinase pathway, and the NF-κB pathway. Consequently, the transcription of numerous molecules is initiated, including interleukin (*II*)-2, *Cd*154 and *Cd*25. IL-2 provides "signal 3," activating the mammalian target of rapamycin (mTOR) pathway, and subsequent T cell proliferation and differentiation. This activation process also involves the increased expression of chemokine receptors, such as CXCR3 and CXCR6, so activated effector T cells (ETCs) can home to local sites of inflammation. Alternatively, naïve T cells can differentiate to become central and effector memory T cells, identified by the respective presence or absence of surface L-selectin and CCR7 (26).

Through CXCR3 and CXCR6, ETCs home to sites of inflammation releasing the chemokine ligands, CXCL9/10/11 and CCL16 for the above receptors, respectively. Interestingly, without killing the activated donor endothelium, ETCs then migrate across the microvascular endothelium. ETCs express P-selectin glycoprotein ligand 1 (PSGL-1) which binds to E- or P-selectin on the endothelium, and they also express the integrins VLA-4 that binds VCAM-1, and LFA-1 that binds ICAM-1 and -2 (24). Characteristic of TCMR, entry of ETCs and other mononuclear cells (largely macrophages) into the interstitial space presents itself histologically as interstitial inflammation (8). Over time, or by days 7-14 post-transplant in mouse renal allografts, ETCs then enter the tubular epithelium, termed tubulitis (8). Marked interstitial inflammation with tubulitis are associated with a clinical loss in renal function; indicated by rising serum creatinine or decreasing glomerular filtration rate (GFR) (27). Interstitial inflammation and tubulitis are prototypical histological lesions for diagnosing TCMR (8); and in mouse renal allografts, interstitial inflammation develops at approximately day 5 post-transplant, with mild tubulitis at day 7 and becoming severe by day 21 post-transplant (28).

1.2.4 Potential effector mechanisms of TCMR. Although tubulitis is the principal histological diagnostic lesion for TCMR, the cellular mechanisms required for tubulitis and associated allograft deterioration are not completely understood. In mouse renal allografts, tubulitis is T cell-dependent; it is absent in nude (*nu/nu*, athymic) mice which lack T cells, but develops in hosts lacking B cells and antibody (*lgh-6* deficient) (15). As well, because nude mice failed to develop TCMR lesions, this rules out a potential role of NK cells. Nonetheless, both CD4 and CD8 ETCs express a plethora of cytotoxic mediators (29), including; granzymes (*Gzma/b*), perforin (*Prf1*), Fas (*Fas*) and Fas-ligand (*FasI*). Expression of *Gzma/b* and *Prf1* has been detected in mouse and human renal allografts with TCMR (30,31), and FAS and FASL mediated cytotoxicity has been demonstrated *in vitro* (32). Additionally, because integrin CD103 (*Itgae*) is commonly found on intestinal intraepithelial lymphocytes, and is also expressed within renal

allografts; it has also been considered a mediator for T cell entry into the tubular epithelium (33,34), possibly leading to epithelial injury.

Perforin, which is structurally related to the complement C9 protein is released with granzymes from secretory granules on NK cells and ETCs into the leukocyte-target cell synapse. Perforin forms a pore on target cells which allows for the passage of granzymes into the target cells (35). Granzymes are serine proteases that once inside the target cell cytosol, they activate caspases and BID; ultimately leading to the release of cytochrome C from the mitochondria, DNA fragmentation and apoptosis (36). Ligation of FASL (CD95) on ETCs and NK cells to FAS on target cells induces recruitment of FADD proteins to the cytosolic FAS death domains, which in turn leads to caspase activation and cytochrome C release within the target cell (37). Interestingly, neither of these molecules, host *Perf* and/or *Gzma/b*, and/or donor *Fas* are required for the development of tubulitis or allograft deterioration, in mouse renal allografts (16,28,38).

CD103 (*Itgae*) which forms a heterodimer with ITGB7, and binds to E-cadherin, is highly expressed on intestinal intraepithelial T cells and CD8⁺ T cells within rejecting human renal allografts (33,34). The ITGAE/B7 dimers on T cells ligate to E-cadherin between epithelial cells; however the exact function of this interaction is yet to be determined, as entry and retention of intestinal intraepithelial T cells in mucosal tissues is not dependent of *Cd103* (39). Likewise, *Cd103* is not required for tubulitis and renal allograft dysfunction (16).

Unlike B cells and NK cells, the myeloid cells are present in all human and mouse TCMR of renal allografts (9), and their presence is quantitatively associated with poor allograft function (9). However, determining a functional significance for these cells has been difficult, as there are no robust depletion mechanisms for macrophage or dendritic cells. Nonetheless, one study demonstrated that interstitial infiltration and tubulitis were significantly attenuated in a rat model of renal allograft rejection, after a 70% monocyte and macrophage depletion via liposomal-clodronate treatment (40). Therefore, the lack for a direct necessity of cytotoxic mechanisms in the development of

TCMR has led to the proposal that the dominant effector function in TCMR involves interactions between alloantigen-specific T cells and antigen presenting cells (macrophages and dendritic cells); thus TCMR is analogous to the mechanism of DTH.

1.2.5 IFNG prevents cytotoxic mechanisms in TCMR. While the need for IFNG within renal allografts may appear counterintuitive due to its pro-inflammatory effects, namely MHC class I induction (22,23); various mouse models of renal allograft rejection would suggest IFNG is more of a necessity rather than a burden. In mouse renal allografts where the graft is unable to receive IFNG, for example, *Ifng* deficient (GKO) hosts with wild type allografts or wild type hosts with *Ifngr1* deficient (GRKO) allografts; these grafts develop severe necrosis and microvasculature congestion by day 5 to 7 post-transplant (41). A similar phenotype is seen in *Tap* or *B2m* deficient allografts (which are unable to express MHC class I on the cell surface) in wild type hosts; furthermore the necrotic phenotype is dependent on host perforin and granzymes A and B (41). Interestingly, alternative macrophage activation and injury-repair processes are highly induced in the above deficient allografts. AMA and the injury-repair response are discussed in more detail below.

It has yet to be shown, but one explanation for the above observations entails: IFNG induced MHC class I surface expression on the donor allograft microvascular endothelium. T cells then receive an inhibitory signal from binding class I products on the endothelium; perceivably this is carried out via class Ib products binding the inhibitory heterodimer NKG2A/CD94. In separate experiments, it has been shown that programmed death ligand-1 (PDL-1) and CD80-dependent interactions may also play a key role in allograft stabilization and subsequent prevention of necrosis (42). Consequently, these interactions may allow microvascular sparing and subsequent T cell diapedesis into the interstitium (41). When IFNG is unable to induce MHC class I expression or other co-inhibitory molecules, or the graft is deficient in these molecules, the utilization of cytotoxic mechanisms on T cells is not prevented.

1.2.6 Antibody-mediated rejection (ABMR). ABMR is not a focus of this thesis; therefore it will not be discussed in detail. In brief, ABMR is histologically characterized by microcirculation inflammation (glomerulitis and peritubular capillaritis), and variable vasculitis (7). Immunologically, ABMR is mediated through donor specific antibodies (DSA) that ligate to donor human leukocyte antigens (HLA) on the graft endothelial vasculature and microcirculation (43). Subsequent ligation is associated with complement cascade activation, and it is associated with positive C4d staining (a split product of the C4 component) (44). In brief, complement components C3a and C5a can act as neutrophil, monocyte, and macrophage chemotactins; as well, they can bind to receptors on endothelial cells, inducing endothelial activation (43). Endothelial activation promotes thrombus formation and diapedesis of leukocytes. Additionally, components C5b through C9 form the membrane attack complex which can cause lyses of targeted cells (45). A form of C4d negative ABMR has also been reported (43); in these cases it has been proposed that complement is not a likely agent of injury, but rather antibody-dependent cell-mediated cytotoxicity is the putative effector mechanism. Cells that express Fc receptors, such as monocytes and NK cells are capable of binding to antibody-coated target cells and releasing the cytotoxic granules, perforin and granzymes (43).

1.3 REVEALING THE HERD-MOVEMENT IN TCMR OF RENAL ALLOGRAFTS

To better understand the biology of rejecting renal allografts in humans and mouse models our laboratory has studied the changes in expression of thousands of mRNA transcripts (6). What we found is a stereotyped pattern that exists across all diseases, such as TCMR, ABMR or ischemia/reperfusion injury; thus, there is no single molecule specific for rejection. Nonetheless, we can demonstrate disease specificity

through the quantitative assessment of stereotyped biological processes annotated through our PBTs (6).

Presented below is a brief description of the PBTs relevant to this thesis, how they were derived, the biological processes they asses, and how they have built upon our understanding of disease processes. In brief, members of each PBT were chosen on the basis of microarray assessed expression within (or absent from); healthy nephrectomised kidneys, various cell cultures, transplant animal models using select knock outs, and/or other cell types based on literature searches. Depending on the species, the transcripts are translated from human to mouse, or vice versa. (For detailed instructions on their exact derivation, please see the indicated references.)

1.3.1 Quantitative cytotoxic T cell-associated transcripts (QCATs) (31). Referred to as cytotoxic T cell-associated transcripts from herein; the transcript members of this PBT were: one, had a higher signal intensity in cultured human primary $CD8^+$ T cells than nephrectomy, B cells, and macrophages; two, had a low signal intensity (<200) in nephrectomy, B cells, macrophages, and IFNG-treated macrophages; and three, had a high signal intensity (>1000) when the $CD8^+$ T cell mRNA was spiked with nephrectomy mRNA, and correlated ≥ 0.98 (Pearson correlation coefficient) between the signal intensity and dilution ratio.

The cytotoxic T cell-associated transcripts are expressed in mouse renal allografts by day 1 post-transplant (6); therefore, a T cell burden is established before tubulitis lesions appear on day 7 post-transplant or later. Because most of the cytotoxic T cell-associated transcripts are not CD8⁺ T cell specific, such as *Gzmb* or *Klrd1 (Cd94)*, they can represent a plethora of cytotoxic-cell phenotypes homing to the allograft, including ETCs, memory T cells and NK cells. Furthermore, as discussed above, the presence of certain transcripts, such as *Prf1* or *Gzma/b*, does not necessitate the utilization of select mechanisms. Regardless, the cytotoxic T cell associated transcript set can robustly quantify TCMR of human and mouse renal allografts (31).

1.3.2 Quantitative constitutive macrophage-associated transcripts (QCMATs) (9). Referred to as macrophage-associated transcripts from herein; this transcript set was selected in a similar manner to that of the cytotoxic T cell-associated transcripts. Probesets had to have: one, a higher signal intensity in human primary macrophages than nephrectomy, $CD4^+$ and $CD8^+$ T cells, B cells, and NK cells; two, a low signal intensity (<200) in the same excluding cells; and three, a high signal intensity (>1000) of spiked macrophage mRNA with nephrectomy mRNA, with a ≥0.98 Pearson correlation coefficient between the raw signal and dilution ratio.

Expression of the macrophage-associated transcripts is strongly associated with TCMR of human and mouse renal allografts (9). Moreover, increased expression of the macrophage-associated transcript, *Cd68*, corresponds with CD68 protein expression within rejecting renal allografts (46). Thus, an indication that macrophages are involved in the process of TCMR.

1.3.3 IFNG- and rejection-induced transcripts (GRITs) (47). Herein referred to as IFNG-induced transcripts or IFNG-effects; probeset members of this PBT had to: one, increase signal intensity in native kidneys within mice treated with recombinant-IFNG intravenously ("IFNG-induced"); two, increase in mouse renal allorgrafts day 5 post-transplant compared to normal kidneys ("rejection-induced"); and three, be rejection-induced and have a decreased signal intensity (compared to normal kidneys) in wild type renal allografts within *Ifng* knock out hosts on day 5 post-transplant.

Some of the IFNG-induced transcripts included *B2m*, *Cd74* (class II invariant chain), *Tapbp* (tapasin), *Cxcl9* and various transcripts that code for H2 or HLA molecules (depending on the species being analysed). Therefore, IFNG-effects largely reflect antigen processing, antigen presentation, and chemotaxis.

1.3.4 Alternative macrophage activation-associated transcripts (AMATs) (48). Referred to AMA-associated transcripts from herein; this PBT represents the macrophage phenotype of AMA. Analogously to the Th1/Th2 paradigm, macrophages can be skewed to a classical macrophage activation (CMA) phenotype or an AMA phenotype. The division of CMA and AMA has become cloudy, as features of AMA can be found on dendritic cells, or features of both CMA and AMA can co-exist in various inflammatory compartments (46,49,50). In brief, cytokines such as IL-1, TNF and IFNG can induce a CMA phenotype, which characteristically leads to the production of TNF, IL-6 and nitric oxide. These molecules have been associated with DTH reactions, and they can activate the endothelium to express MHC and adhesion molecules to promote diapedesis (50). Not mutually exclusive from CMA, AMA is induced via IL-4/13 and potentially activin A (46,50). Alternatively activated macrophages express the C-type lectin mannose receptor, MRC1 (CD206); and furthermore, IL-4/13 can inhibit IFNGinduced nitric oxide production by utilizing arginase (Arg1) which promotes L-ornithine formation from L-arginine; this is a step used in collagen production for extracellular matrix repair (50).

In addition to *Mrc1* and *Arg1*, the AMA-associated transcripts also include *Thbs1* (thrombospondin) and the chitinase-like molecule *Chi3l3*. Together, the IFNG-induced transcripts and the AMA-associated transcripts are the two PBTs that can most robustly quantify TCMR in human renal allografts. Thus, AMA is a feature of TCMR, despite the strong IFNG-effects.

1.3.5 Injury-repair response (injury-up): injury- and repair-induced transcripts (IRITs) (13). The IRITs were defined in mouse renal isografts; that is, they represent the increased expression of transcripts involved in reversible injury ("injury-up"), in the parenchyma, stroma and endothelium. More specifically, IRITs represent a number of preprogrammed processes, including; collagen and extracellular matrix remodelling,

promotion of secondary inflammation, and the expression of embryonic genes signifying dedifferentiation.

1.3.6 Injury-repair response (injury-down): kidney-associated transcripts (KTs) (14). The counter-arm to the IRITs (injury-up), are the KTs (injury-down). This PBT was defined by probesets that had: a signal intensity (>50) in normal mouse kidneys, but also had a signal intensity that was 5x higher that the signal intensity in mixed lymphocyte reactions, CD8⁺ T cells, B cells, thioglycolate-induced macrophages and fibroblasts and had no overlapping members with the IRITs.

These transcripts represented the functional aspect of the kidney parenchyma, which is largely transporter activity and basic metabolic activities. During a disease state (for example, ischemia/reperfusion or TCMR), KTs will decrease expression; this represents a programmed loss of function (14). Histologically, loss of function can be demonstrated by reduced Ksp-cadherin and E-cadherin staining on tubular epithelium during TCMR (16).

1.3.7 Gamma-interferon-suppressed transcripts (GSTs) (48). Also referred to as IFNG-suppressed transcripts or effects; this PBT represented those transcripts putatively suppressed by IFNG-effects. The IFNG-suppressed transcript set was derived from our GKO and GRKO renal allograft experiments described above. In brief, probesets were increased in GRKO allografts into wild type hosts and in wild type allografts into GKO hosts, at both days 5 and 7 post-transplant, compared to wild type allograft controls.

As mentioned above, renal allografts unable to receive IFNG undergo sever necrosis, hence many of the IFNG-suppressed transcripts share overlapping membership with the IRITs. Interestingly, IFNG-suppressed transcripts also have members associated with AMA. What is even more perplexing, is that AMA still develops in GRKO allografts in *Prf1* or *Gzma/b* deficient hosts (non-necrotic grafts) and in *B2m* or *Tap* deficient allografts

in wild type hosts (necrotic grafts) (41). In other words, the necrosis phenotype or deficient IFNG-signaling is not required for AMA.

1.4 DELAYED-TYPE HYPERSENSITIVITY (DTH)

DTH, also known by the Coombs and Gell classification as type IV hypersensitivity, received these labels due to its relative "delayed" immunological cellulardependent response to specific antigen; as supposed types I, II and III which are "immediate" humoral (antibody)-dependent immunological responses. DTH is a T cellmediated inflammatory reaction and is typically modelled in the skin; because it appears to involve a similar pathology of clinical allergic contact dermatitis, such as the reaction to urushiol from poison ivy. Similar to TCMR of renal allografts, DTH is T cell-dependent and B cell-independent as DTH reactions are unable to be elicited in SCID mice reconstituted with B cells or antibody depleted T cells (51-54). There are three subtypes of DTH; all of which involve two phases; a sensitization phase, followed by an elicitation or challenge phase.

1.4.1 DTH subtypes. Three types or models of DTH are differentiated based on the type of antigen, or antigen source: one, classical DTH (the tuberculin reaction); two, protein-adjuvant reactions; and three, contact hypersensitivity (CHS). Classical DTH was first described by Robert Koch in 1882, who discovered the tubercule bacillus when he attempted to use the killed tuberculin as a vaccine (55). The protein-adjuvant reaction involves the administration of a protein that is not normally immunogenic, such as ovalbumin, along with an immunogenic protein (the adjuvant). Subsequently, the individual becomes sensitized to the "nonimmunogenic" protein. In CHS, chemical haptens are applied to the surface of the skin where they are absorbed into the tissue and subsequently covalently bind to carrier self-proteins (56). The target carrier proteins

are typically cell surface proteins, or even intracellular proteins which bind to the hapten after it is diffuses through the cell membrane (56). Examples of haptens include trinitrochlorobenzene, oxazolone, or urushiol from poison ivy. The end result is that the modified self-proteins are treated as any foreign antigen; thus they are capable of inducing a T cell-mediated response. Despite reports on minor difference in the ratio of infiltrating PMNs (basophils versus neutrophils), in the three subtypes (57); there is no conclusive report that the types of antigens used induce disparate ratios of CD4⁺ or CD8⁺ T cell infiltrates (57,58). It is likely that both CD4⁺ and CD8⁺ T cells have some effector mechanisms.

1.4.2 Mechanism of DTH. Sensitization involves the cutaneous or subcutaneous exposure to antigen. Antigen can be quickly carried by the afferent lymphatic vessels to secondary lymphoid organs, where dendritic cells then take up the antigen (59). Alternatively, antigen at the site of exposure can be processed by local Langerhans (CD207⁺, EPCAM⁺, CD11b/c⁺) or dendritic cells (CD207^{+/-}, EPCAM⁻, CD11b/c⁺). These antigen presenting cells undergo maturation, marked by the increased surface expression of MHC class I and II and CCR7, and migration to secondary lymphoid organs follows (60). As described above, antigen is presented to naïve T cells, and subsequent proliferation and differentiation would occur.

The mechanisms of the elicitation phase of DTH are poorly understood. Upon antigenic-challenge it is likely that Langerhans cells do not act as a local antigen presenting effector cell with cognate ETCs or effector memory T cells; as Langerhans leave the skin and home to lymphoid organs when they encounter antigen (61). Instead, resident dendritic epidermal cells (CD11b⁺ and CD206⁺) and/or macrophages (CD68⁺ and CD206⁺) may be involved in the elicitation phase (62). Resident dermal T cells of gamma-delta TCR lineage may be involved in DTH reactions, but their involvement may be more mediative through their involvement in dermal wound repair by releasing keratinocyte growth factor-1, or enhancing the immunosurveillance of local cells by

secreting IFNG (63). In a mouse model of psoriasis using skin xenografts, it has been shown that alpha-beta memory T cells (CD45RO⁺) will home to the epidermis by translocating across the collagen IV rich epithelial basement membrane in a VLA-1 (ITGA1B1)-dependent fashion (64). Despite the shortcomings in our understanding of DTH mechanisms, it is known that within DTH reactions and TCMR of renal allografts, IFNG and tumor necrosis factor (TNF) are capable of activating macrophages, which are a prominent component of TCMR and DTH (65,66). Activated macrophages could then putatively trigger a parenchymal and stromal injury-repair response, including parenchymal dedifferentiation and the promotion of secondary inflammation (6). Additional studies are needed on the mechanisms of DTH, including ones that test the employment of cytotoxic mechanisms (*Prf1* and *Gzma/b*). Indeed, one study showed PRF1 and GZMB expression were associated with allergic contact dermatitis lesions in humans (67), however; we know from our renal allograft studies that despite transcript expression (16), these mechanisms are not necessary for allograft rejection.

1.5 PROJECT SYNOPSIS AND JUSTIFICATION

Renal allograft rejection in mice mirrors the histological and molecular changes seen in TCMR of human renal allografts; thus, mouse renal allograft rejection serves as an excellent experimental model for which the mechanisms of TCMR can be studied. The large-scale, coordinated molecular changes that occur in TCMR, of both human and mouse renal allografts, has been well characterized: T cell and macrophage infiltration, IFNG-effects with the development of AMA, and a preprogrammed injury-repair response. The injury-repair response involves: one, increased expression of transcripts involved in tissue remodeling, secondary inflammation, and embryonic transcripts; and two, decreased expression of tubular epithelium solute carriers, manifesting as a loss of function and dedifferentiation. Since the mechanisms of TCMR appear to resemble those of DTH, we hypothesized that the molecular changes seen in TCMR of mouse renal allografts would be stereotyped to DTH. We also hypothesized that IFNG would act on a local tissue compartment with DTH as it does in TCMR; that is, we predicted we would observe an increased injury-repair response with increased AMA when DTH is induced in mice with deficient IFNG-signaling. The aims of this study was: one, to compare the transcriptome of DTH to the transcriptome of renal TCMR, to determine if there is a stereotyped response of the epithelium to inflammation caused by these different stimuli; and two, to characterize the IFNG-dependent molecular changes of DTH.

CHAPTER 2

MATERIALS AND METHODS

2.1 OVERVIEW

In the following project, we used microarrays to study and compare large, coordinated changes in gene expression within hapten-induced T cell mediated inflammation and TCMR of kidney allografts in mice. We further characterized the IFNG-dependent gene expression changes in hapten-induced inflammation. The material sources, experimental methods, and the analyses performed are described in the following sections.

In brief, we established a working model of hapten-induced cutaneous inflammation in wild type and *lfngr1^{-/-}* mice, and utilized a previously established model of mouse kidney transplantation. We furthered the study by challenging with hapten, *lfngr1^{-/-}* skin isografts onto wild type hosts. Changes in gene expression were analysed by real time RT-PCR and microarrays. Further histological analyses were performed by hematoxylin and eosin staining and immunohistochemistry.

2.2 MICE

2.2.1 Mouse strains. CBA/J (H-2^k, abbreviated CBA), C57BL/6J (H-2^b, abbreviated B6), and B6.129S7-Ifngr^{tm1Agt}/J (*Ifngr1*-deficient B6, abbreviated B6.GRKO) mice were purchased from the Jackson Laboratory (Bar Harbor, ME). All mice used in this project were male between 9 – 12 weeks of age. Mouse maintenance and experiments were approved by the Animal Care and Use Committee for the Health Sciences at the University of Alberta.

2.3 MOUSE EXPERIMENTS

I gratefully acknowledge Dr. Lin-Fu Zhu for performing the mouse transplants. I performed all other experiments discussed within this section. In addition to the descriptions below, the mouse experiments are also summarized in **Table 2.1** and **Table 2.2**.

2.3.1 Mouse renal transplantation. Details of the mouse model for renal transplantation has been described previously (15). Briefly, donor kidneys were anastomosed heterotopically to the vena cava and abdominal aorta of recipient mice. In order to study the natural course of rejection, the left kidney in recipient mice is not removed and immunosuppressive therapy is not used. The kidney allografts were examined histologically, and those with evidence of infection or surgical complications were precluded from the study.

2.3.2 Contact hypersensitivity. Naïve B6 and B6.GRKO mice were sensitized and challenged with the hapten, oxazolone (4-ethoxymethylene-2-phenyl-2-oxazolin-5-one; Sigma-Aldrich, Canada), as previously described (68). Oxazolone was chosen as a suitable hapten because of our laboratory's previous experience with the chemical (69). In brief, mice were sensitized epicutaneously on the shaved abdomen with 100 μ L of 3% oxazolone suspended in 100% ethanol on day 0. On day 5, primed mice were challenged epicutaneously on the shaved isografts) with 50 μ L of 1.5% oxazolone. Control naïve B6 and B6.GRKO mice were sham-treated on days 0 and 5 using the ethanol vehicle only.

2.3.3 Mouse skin transplantation. To study the pure injury-repair response in skin, as we had in kidney isografts (13), B6 recipients received B6 full thickness skin isografts as

described below, but received no oxazolone or sham treatments. To mirror the oxazolone time course, these isografts were harvested on day 6 post-transplant.

Mouse skin grafting was performed based on the technique previously reported (70). Donor isografts were prepared by recovering full thickness dorsal flank skin from B6 donors, which were fitted to recipient graft beds approximately 1 cm². Each recipient received two B6 isografts that were placed into contralateral dorsal flank graft beds. The mice were housed individually and the grafts were bandaged until day 6 post-transplant to aid in graft healing.

2.3.4 Mouse tissue harvesting. At the time of harvesting, mice were sacrificed by cervical-dislocation after isoflurane (Halocarbon Laboratories, NJ, USA) anesthetisation.

Sections of native skin and skin isografts approximately 1 cm², were harvested and then divided into thirds. One third was preprocessed for RNA extraction by further sectioning the skin, quickly, into fine pieces (approximately 2 mm²) and the pieces were immediately placed into a 14 mL polypropylene tube which was snap frozen in liquid nitrogen and stored at -70°C prior to RNA extraction. If the skin was not preprocessed, the Polytron (described below) was not able to efficiently homogenize the fibrous skin tissue and the RNA would degrade. Another one third-section was snap frozen in Optimal Cutting Temperature (OCT) compound and stored at -70°C prior to frozen sectioning on a microtome. The last one third-section was formalin fixed and embedded in paraffin.

Normal kidneys and kidney allografts were harvested and also divided into thirds. However, because kidneys are much more tender than skin, they did not require the further sectioning. As such, one third-section was snap frozen in liquid nitrogen and stored at -70°C prior to RNA extraction, another was snap frozen in OCT compound and stored at -70°C prior to frozen sectioning on a microtome, and the last third-section was formalin fixed and embedded in paraffin.

2.4 TISSUE RNA EXTRACTION AND RNA EXPRESSION ANALYSES

2.4.1 RNA extraction. Tissue (skin and kidney) RNA was extracted using TRIzol (Invitrogen, Burlington, ON, Canada) according to the manufacturer's directions. Briefly, frozen tissue sections were suspended in 1mL (for kidney) and 2mL (for skin) of TRIzol and were immediately homogenized using a Polytron, while simultaneously keeping the polypropylene tube contained in an ice bath. Immediately after homogenization, sample RNA was extracted using the RNAse Easy Micro kit (Qiagen, Toronto, ON, Canada) as per the manufacturer's directions. Briefly, the aqueous phase of each sample was transferred to a fresh 1.5 mL tube where 100% ethanol was used to precipitate the RNA. The contents of each sample were transferred to Qiagen columns where they underwent washes with RW1 and RPE buffers and 80% ethanol. The purified RNA was collected in a fresh RNAse free 1.5 mL tube by diluting each sample in 15 mL of molecular grade RNAse free water.

RNA yield and purity was assessed by UV absorbance using the absorbance ratio between absorbance at 260 nm and 280 nm, respectively, using a NanoDrop (Thermo Scientific, Wilmington, DE). RNA quality was assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Total RNA was stored at -70°C until needed.

2.4.2 Reverse transcriptase polymerase chain reaction (RT-PCR). 2 μ g of RNA (0.2 μ g/ μ L) were reverse transcribed in a 20 μ L reaction containing 4 μ L 5x first strand buffer, 1 μ L 10x dNTPs, 0.2 μ L BSA (10 mg/mL), 2 μ L DTT (0.1 M), 0.8 μ L RNAsin RNase inhibitor (Invitrogen), 0.15 μ L random primers (3 μ g/ μ L), and 1 μ L M-MLV reverse transcriptase (200 U/ μ L; Invitrogen). The reaction was held at 37 °C for 60 minutes, after which it was heated to 95 °C for 5 minutes. Each cDNA preparation was diluted to 10 ng/ μ L by adding 180 μ L of RNAse-free water (Qiagen).

2.4.3 Real time polymerase chain reaction (real time RT-PCR). The resulting cDNA was amplified and detected in triplicates using forward and reverse gene-specific primers and labeled probes (Table 2.3), on an ABI PRISM 7900HT Sequence Detector (AB Applied Biosystems, Foster City, CA). Each 10 µL reaction consisted of 20 ng cDNA template, TaqMan quantification probe and forward and reverse primers at their optimized concentrations. The PCR amplification conditions were as follows: 50 °C for two minutes, 95 °C for 10 minutes, then 40 cycles of 95 °C for 15 seconds and 60 °C for one minute. Amplification plots were constructed using ABI 7900HT Sequence Detection System version 2.2.2 (AB Applied Biosystems). Threshold cycle numbers (Ct) were determined and transformed using the ddCt method as described by the manufacturer, using the murine glyceraldehyde 3-phosphate dehydrogenase (Gapdh) as the internal reference. To calculate the relative amount of mRNA as a fold change, the following equation was used to derive ddCt values: 2^{-[(Ct target gene -Ct Gapdh})-(Ct target gene calibr calibr where 'calibr' refers to the values obtained from the control sample in the experiment. Alternately, relative amounts of mRNA were expressed as a percentage of Gapdh transcript expression (%Gapdh): [2^{-[(Ct target gene -Ct Gapdh})][100].

Statistical analysis of the real time RT-PCR data was performed using SPSS software (SPSS Incorporated, Chicago, IL), that used an Analysis of variance (ANOVA) with a Bonferroni correction. Statistical analyses of the real time RT-PCR data used the dCt values to calculate significance between groups expressed as relative %Gapdh transcript expression; unless comparing the fold change, in which case ddCt values were used.

2.4.4 Microarray sample preparation. I gratefully acknowledge Anna Hutton and Karyn Berry-Wynne for preparing and processing the RNA samples for microarray analysis. The Agilent 2100 Bioanalyzer (Agilent Technologies) was used to assess RNA quality; only those samples with an RNA integrity number equal to or greater than seven were used. Mouse kidney and skin RNA was prepared for labeling and hybridization to

MM9_EXP_HX12 12x135K Arrays (Roche NimbleGen, Madison, WI) according to the manufacturer's directions (www.nimblegen.com).

2.4.5 Microarray data analysis. NimbleGen .NDF files were preprocessed (normalized) by Robust Multi-array Average (RMA) in Nimblescan version 2.5. Kidney and skin samples were preprocessed as two separate batches. The non-specific filtering, interquartile range (IQR<0.5; log₂ units), was used to remove genes with little or no variation across the kidney or skin samples. The data was imported into Partek (St. Louis, Missouri) Genomics Suite version 6.5, here gene expression was calculated as fold change relative to the control samples in the experiment, and the significance was tested by a one-way ANOVA with false discovery rate (FDR) set to 0.05. Unlike a standard t-test which relies solely on transcript-specific variance, the Bayes t-test combines transcript-specific variance with the variances over all transcripts. This reduces type-I error, which may be misleadingly small by chance alone given the small sample size seen in most microarray analysis.

2.4.6 PBT analysis of microarrays. PBTs provide a convenient method to assess the molecular changes associated with inflammation and injury-repair processes. As such, we applied our transcript sets to the microarray data to reflect the following biological processes: cytotoxic t cell infiltration, IFNG-effects, macrophage infiltration and the injury-repair response. To assess these biological processes in TCMR of kidney allografts and oxazolone-induced inflammation, we used the following PBTs (**Table 2.4**): quantitative cytotoxic T cell-associated (QCATs); IFNG induced (GRITs); IFNG suppressed (GSTs); quantitative macrophage-associated (QCMATs); alternative macrophage activation-associated (AMATs); and epithelial injury-repair induced (IRITs) and deterioration (KTs, STs). All of the PBTs, with the exception of the skin-derived injury-repair transcript sets (**Table 2.4**), were previously derived on the Affymetrix platform. Therefore, we identified the PBT members on the NimbleGen platform using a combination of the Entrez gene

name and GenBank ID, in order to obtain the greatest number of transferred members from the Affymetrix platform to the NimbleGen platform.

To summarize the burden of biological processes present in tissue, a transcript set score is calculated for each PBT. The transcript set (PBT) score is the geometric mean of the normalized signal across all IQR filtered members of a PBT. Significance of difference in transcript set scores between experimental conditions or an experimental condition and respective control was tested by the two-tailed Welch t-test. Enrichment of unique transcripts, using the GenBank ID, in gene ontology (GO) categories was estimated by DAVID Analysis Wizard (DAVID Bioinformatics Resources 6.7, http://david.abcc.ncifcrf.gov/).

2.5 MOUSE HISTOLOGY AND IMMUNOHISTOCHEMISTRY

Paraffin embedded tissue sections (2 μm) were stained with Hematoxylin and Eosin (H&E) and periodic acid-Schiff and subject to histologic analysis as described previously (15). Briefly, in kidneys interstitial inflammation and tubulitis were assessed and scored as the rejection lesions following the Banff criteria for diagnosing TCMR in human renal allografts (71). Skin inflammation was scored semi-quantitatively on a scale from 0 through 4: 0, no infiltrate; 1, mild focal mononuclear dermal infiltrate; 2, moderate dermal infiltrate; 3, dermal infiltrate with focal epithelial ulcerations; and 4, multiple erosive epithelial ulcerations.

Immunohistochemistry was performed as previously described (46). Briefly, previously frozen sections of skin and kidney in OCT were cut to 4 μ m using a microtome. The cut sections of skin and kidney were fixed and stained using rat-anti-mouse CD68 (clone FA-11, Serotec, Raleigh, NC) and MRC1 (clone MR5D3, Serotec) antibodies. The total number of positive cells for each marker in kidney peritubular interstitium were counted in 5 ocular grid areas at 400x (=0.5 mm² total). Because the

skin had a higher density of positive cells for each marker, this made it harder to distinguish the cells at 400x; as such, the dermis was counted in 10 ocular grid areas at 600x (=0.67 mm² total).

2.6 TABLES
Donor strain(s)	Host strain (Number used)	Time of oxazolone sensitization and challenge	Time of skin or isograft harvest
_*	Naïve B6 skin (4)	No treatment given	N/A
-	B6 (6)	Sham-treated, day 0 and day 5	Day 6
-	B6 (6)	Oxazolone-treated, day 0 and day 5	Day 6
-	B6.GRKO (6)	Sham-treated, day 0 and day 5	Day 6
-	B6.GRKO (6)	Oxazolone-treated, day 0 and day 5	Day 6
B6 + B6 contralateral	B6 (6)	No treatment given	Day 6 post-transplant

 Table 2.1: Summary of mice used in the contact hypersensitivity experiments.

*-, not applicable

Table 2.2: Summary	of mice used in the kidney	allograft experiments.

Donor strain(s)	Host strain (Number used)	Time of kidney allograft harvest (post-transplant)	
_*	Naïve CBA (2)	N/A	
СВА	B6 (6)	Day 7	

*-, not applicable

Table 2.3: Mouse gene-specific primers and probes used in real time RT-PCR, using anABI PRISM 7900 Sequence Detector.

Gene Name		Sequence (5'-3')	
Aif1	Applied Bi	osystems, Assay on Demand Mm00479862_g1, RefSeq: NM_019467.2	
Arg1	Applied Bi	osystems, Assay on Demand Mm00475988_m1, RefSeq: NM_007482.3	
Cd68	fwd	ATGGCGGTGGAATACAATGTG	
	rev	GGAGCTCTCGAAGAGATGAATTCT	
	probe	AGGCAGCACAGTGGACATTCATGGC	
Chi3l3	Applied Bi	osystems, Assay on Demand Mm0657889_mH, RefSeq: NM_009892.2	
Cxcl9	fwd CCTTTTGGGCATCATCTTCCT		
	rev	AGGAGCATCGTGCATTCCTT	
	probe	AGCAGTGTGGAGTTCGAGGAACCCTAGTG	
Gapdh	Applied Biosystems, Assay on Demand 4352932E, RefSeq: NM_008084.2		
lfng	fwd	AGCAACAGCAAGGCGAAAAA	
	rev	AGCTCATTGAATGCTTGGCG	
	probe	ATTGCCAAGTTTGAGGTCAACAACCCACA	
114	fwd	GGCATTTTGAACGAGGTCACA	
	rev	AGGACGTTTGGCACATCCA	
	probe	AGAAGGGACGCCATGCACGGAG	
Inhba	Applied Biosystems, Assay on Demand Mm00434339_m1, RefSeq: NM_008380.1		
Mrc1	Applied Bi	osystems, Assay on Demand Mm00485148_m1, RefSeq: NM_008625.2	
Ubd	fwd	GCAGACACAAGGATCTTTTCTTATTCA	
	rev	GGTCATTAACCGCCATTGGT	
	probe	TGTCCGCACCTGTGTTGTCCGTTCA	

 Table 2.4: Pathogenesis-based transcript sets (PBTs).

Inflammatory and Interferon-gamma PBTs

Acronym (# unique members)	PBT Name	Biological Description	References
QCATs (21)	Quantitative Cytotoxic T cell-associated	Burden of effector/effector-memory T cells	(31)
GRITs (47)	Interferon-gamma-induced	Interferon-gamma-effects on the tissue and inflammatory cells	(47)
GSTs (185)	Gamma-interferon-suppressed	Tissue and inflammatory cell transcripts suppressed by interferon-gamma	(48)
QCMATs (46)	Quantitative constitutive macrophage- associated	Burden of macrophages	(9)
AMATs (20)	Alternative macrophage activation- associated	Alternatively activated macrophages	(48)

Active Injury-Repair Response PBTs

Acronym (# unique members	PBT Name	Biological Description	References
(K)IRITs (509)	Injury- and repair-induced	Active injury-repair response (injury-up):	(13)
	(kidney-selective)	Increased in kidney isografts, peaking day 3 or day 5	
(S)IRITs (691)	Injury- and repair-induced	Active injury-repair response (injury-up):	This paper
	(skin-selective)	Increased in skin-isografts on day 6	
KTs (610)	Kidney-associated	Active injury-repair response (injury-down):	(14)
		Kidney parenchymal transcripts	
STs (465)	Skin-associated	Active injury-repair response (injury-down):	This paper
		Skin parenchymal transcripts	

CHAPTER 3

COMPARISON OF THE MOLECULAR CHANGES IN MOUSE CONTACT HYPERSENSITIVITY AND T CELL MEDIATED REJECTION IN MOUSE RENAL ALLOGRAFTS

3.1 OVERVIEW

The evolution of the molecular changes within rejecting human and mouse renal allografts has been well described (6,7), especially those changes which occur within the specific disease, TCMR (8). However, these molecular changes are likely not restricted to the immunological processes of renal allograft rejection. The purpose of this study was to compare the molecular changes of TCMR of mouse renal allografts to the molecular changes of a T cell mediated disease outside the kidney and allograft compartment. Therefore, we compared the molecular changes of CHS, a model of DTH, to the molecular changes of TCMR in mouse renal allografts. First, histology and real time RT-PCR were used to verify our induction of CHS by testing the efficacy of oxazolone to induce cutaneous inflammation. Second, we used microarrays to study the genome wide gene expression changes within: oxazolone-challenged mouse skin compared to shamcontrols; and mouse renal allografts with TCMR compared to normal kidneys. For each of these two comparisons, we annotated the differentially expressed transcripts belonging to our PBTs, and qualitatively compared overlapping PBT memberships in order to assess the sharing of the following biological processes: one, the inflammatory burden, including T cell and macrophage infiltration, alternative macrophage activation and IFNG-effects; and two, the active injury-repair response within the local parenchymal and stromal cells.

3.2 ESTABLISHMENT OF THE CHS MODEL

To reiterate, sham-treated (control) B6 skin was sham "sensitized" and sham "challenged" with 100% ethanol on days 0 and 5. Oxazolone-challenged (experimental) B6 skin was sensitized to oxazolone in an ethanol vehicle on day 0, and was challenged on day 5. All skin samples, sham-treated and oxazolone-challenged were harvested for analysis on day 6.

3.2.1 Mouse histology. Sham-treated (control) B6 skin displayed normal gross appearance and histology. Oxazolone-challenged B6 skin showed evidence of edematous dermatosis with ulceration and sloughing of the epidermis, as previously described (72). This resulted in a higher histological score depicted by greater dermal inflammation than was seen in the sham-controls (*p*<0.0001, **Figures 3.1-3.2**). Therefore, challenge with the hapten oxazolone led to mononuclear infiltration of the dermis and epithelial ulceration.

3.2.2 Molecular assessment of oxazolone-induced cutaneous inflammation by real time RT-PCR. We compared transcript expression in sham-treated skin to oxazolone-challenged B6 skin samples by quantitative real time RT-PCR as a preliminary assessment of the inflammatory molecular changes occurring within the skin. We measured the relative expression levels of the following transcripts that represented prominent biological processes in inflammation (46,47): *Ifng* and IFNG-effects (*Cxcl9*, *Aif1* and *Ubd*); macrophage burden (*Cd68*); and AMA burden (*Mrc1*, *II4*, *Arg1*, and *Chi3l3*).

Ifng transcript expression was significantly increased in oxazolone-challenged skin compared to respective sham-controls (p<0.05, **Figure 3.3A**). In agreement with an increased expression of *Ifng*, expression of the IFNG inducible transcripts *Cxcl9*, *Aif1* and *Ubd* also increased in oxazolone-challenged skin (p<0.05, **Figure 3.3B-D**).

Transcript expression of the macrophage marker, *Cd68*, and the marker of AMA, *Mrc1*, both increased in oxazolone-challenged skin (p<0.05, **Figure 3.4A-B**), indicating an overall influx of macrophages and AMA, respectively. There was also an increased expression of *II4* and *Chi3I3* in the oxazolone-challenged skin (p<0.05, **Figure 3.5A-B**). Expression of *Arg1* did not significantly change in the oxazolone-challenged skin over the sham-treated controls (p>0.05, **Figure 3.5C**).

The histological and real time RT-PCR data suggest that we successfully induced an inflammatory reaction or compartment within the skin. Thus, we were ready to further examine the histological and molecular changes of oxazolone-challenged skin, and compare these changes to those seen in rejecting mouse allografts with TCMR.

3.3 THE INFLAMMATORY PHENOTYPE IS SHARED BETWEEN CHS AND RENAL ALLOGRAFTS WITH TCMR.

3.3.1 Mouse histology. Control (CBA) kidneys displayed normal histology with no inflammation, while all CBA allografts into B6 hosts at day 7 had diffuse interstitial mononuclear infiltration with edema and focal tubulitis, representing the features of TCMR (**Table 3.1**). The histology of the mouse skin was described above (**section 3.2.1**).

3.3.2 Comparison of the genome wide gene expression changes in oxazoloneinduced cutaneous inflammation in mice to that of TCMR of mouse renal allografts. We used Roche NimbleGen MM9_EXP_HX12 12x135K Arrays to compare the genome wide gene expression in oxazolone-challenged B6 skin to sham-treated controls. Analysis with Partek Genomics Suite revealed 4192 unique transcripts (IQR>0.5, FDR<0.05) to be differentially expressed (from 15997 unique transcripts pre-IQR and statistical filtering). Using our inflammatory PBTs, of these 4192 transcripts nine (of 21)

were annotated as cytotoxic T cell-associated, 27 (of 47) as IFNG-induced, 21 (of 47) as macrophage-associated, and seven (of 20) as AMA-associated transcripts (**Figure 3.6A**). The unique members of the inflammatory PBTs above were all increased in the oxazolone-challenged skin compared to the sham-treated controls (fold change >1.0; FDR<0.05), except for the cytotoxic T cell-associated transcript *Nell2* (fold change 0.39; FDR=0.04). Although highly expressed in cultured T cells, as was defined by our cytotoxic T cell-associated transcripts (31), *Nell2* is not T cell specific (73). The expression of the *NELL2* transcript in the human skin diseases, atopic dermatitis and psoriasis, differs greatly; and additionally, its transcript expression level can depend on specific local cytokine milieus (74). Therefore, *Nell2* may not be a reliable transcript marker for T cell mediated inflammation. Furthermore, the raw signal for the *Nell2* probeset in the sham-treated skin was very weak (<50, **Table 3.2**), which makes it difficult to assess a meaningful decrease of expression in the oxazolone-challenged skin, thus *Nell2* may not be a good cytotoxic T cell-associated transcript.

Similar to the oxazolone-challenged and sham-treated skin, we compared the genome wide gene expression of TCMR in day 7 CBA into B6 renal allografts to that of kidney-controls (normal CBA kidneys) and found 10276 differentially expressed unique transcripts (IQR>0.5, FDR<0.05). Next, we wanted to compare the transcripts that were differentially expressed in both TCMR of renal allografts and oxazolone-challenged skin. Of the 10276 differentially expressed transcripts in oxazolone-challenged skin, 1770 of these transcripts overlapped (**Figure 3.6B**). These skin-kidney overlapping transcripts contained many members belonging to our inflammatory PBTs, representing T cell and macrophage infiltration, IFNG-effects and AMA. In total there were: nine overlapping (of 21) cytotoxic T cell-associated, 26 overlapping (of 47) IFNG-induced, 20 overlapping (of 46) macrophage-associated, and seven overlapping (of 20) AMA-associated transcripts (**Figure 3.6B**). Therefore, all of the differentially expressed transcripts belonging to the inflammatory

PBTs found in oxazolone-challenged skin versus sham-treated controls were also found in renal allografts with TCMR.

3.3.3 T cells and IFNG-effects. Nine of the 21 cytotoxic T cell-associated transcripts which were differentially expressed in both oxazolone-challenged skin and TCMR of renal allografts included increased expression of common T cell markers, *Tcra*, *Cd8a*, and *Cxcr6* (**Table 3.2**). Thus, both oxazolone-challenged skin and TCMR of renal allografts have a similar molecular phenotype indicating the presence of cytotoxic-potentiating T cells.

There were 26 of 47 IFNG-induced transcripts that were found in both oxazolonechallenged skin and TCMR of renal allografts; these included increased expression of *Cxcl9/10*, *Psmb8/9*, and *Tapbp* (Tapasin) (**Table 3.3**). Hence, IFNG acts in a similar manner in both inflamed skin and rejecting kidneys.

3.3.4 Macrophage burden and features of alternative macrophage activation (AMA).

There were 20 unique transcripts identified within our macrophage-associated transcripts (n=46) which were differentially expressed in both oxazolone-challenged skin and TCMR of renal allografts. Some of these differentially expressed transcripts included prototypical myeloid markers such as, *Cd300lf*, *Cd68* and *Pirb* (*Lilrb3*) (**Table 3.4**). To verify the increase of macrophages within the skin, skin-tissue sections were immunostained for CD68. The number of CD68⁺ cells increased in oxazolone-challenged skin (122/0.67 mm²), versus controls (73/0.67 mm², *p*<0.001) (**Figure 3.7A-B**). We previously published that the number of CD68⁺ cells and *Cd68* transcript expression also increases in rejecting renal allografts (46).

Despite the effects of IFNG expression in the inflamed skin and rejecting kidneys, there were molecular and histological features of AMA. Seven of 20 AMA-associated transcripts were found to be differentially expressed in both oxazolone-challenged skin and TCMR of renal allografts. Three of these transcripts included *Chi3l3*, *Adam8* and

Clec7a (Dectin-1) (**Table 3.5**). We then immunostained skin-tissue sections for MRC1 (CD206). And analogous to a previous report in rejecting renal allografts (46), we observed an increase in the number of MRC1⁺ cells in oxazolone-challenged skin (121/0.67 mm²), versus controls (64/0.67 mm², p<0.001) (**Figure 3.7C-D**).

3.4 TRANSCRIPTS RELATED TO INJURY-REPAIR PROCESSES ARE TISSUE-SELECTIVE, BUT REPRESENT SIMILAR PATHWAYS

3.4.1 Injury-up: the injury- and repair-induced transcripts (IRITs). The IRITs (injuryup) were defined as reversible injury that occurs in mouse isografts (13). However, these PBTs could not differentiate the oxazolone-challenged from the sham-treated skin as most probesets did not meet the statistical cutoff (FDR<0.05); nor was the transcript set score significantly higher in oxazolone-challenged skin (data not shown). This could have resulted from the comparatively small number of epithelial nuclei in skin versus kidney and/or the biological differences of these two tissues.

As such, we derived a PBT that had members related to injury in skin isografts; hence, this transcript set would represent the tissue-selective injury and repair response in skin injury. Transcripts were defined by taking probesets that had an increased expression (fold>1; FDR<0.01) in skin isografts at day 6 post-transplant versus normal (native and untreated) B6 skin. We then further reduced the total transcript count to a final 691 unique transcripts by: one, imposing a fold increase of \geq 2 on the isografts versus normal skin; and two, as was carried out with the kidney-selective injury and repair induced transcripts (13), we excluded 291 probesets which belonged to the inflammatory PBTs (cytotoxic T cell, IFNG-induced, macrophage, and AMA-associated transcripts) (**Figure 3.8, Table 3.6**).

We then found that the skin-selective IRITs and kidney-selective IRITs shared very few members; however, their annotated biology was similar. Only 9% (n=64) of the

691 skin-selective IRITs overlapped with the kidney-selective IRITs. On the other hand, in gene ontology (GO) annotations there were many commonly overrepresented categories that were found in both the skin-selective and kidney-selective IRITs (**Table 3.7**); including: angiogenesis, defense response, response to wounding, wound healing, extracellular matrix parts, and cell-cell adhesion. Additionally, kidney-selective IRITs are enriched in transcripts who's expression is associated with embryonic developing kidneys and kidney-development (13). Therefore, we looked for GO annotations within the skin-selective IRITs, and subsequently found; epithelial development, epidermis development, and ectoderm development. However, only epithelial development met the statistical cutoff of the hypergeometric test (p<0.05, **Table 3.7**). Nonetheless, all three annotations were enriched with small proline-rich region (*Sprr*) transcripts from the skin-selective IRITs (**Table 3.6**). *Sprr* expression is highly expressed in developing ectoderm (75). Therefore, the expression of individual IRITs may vary in different tissues, however, they all represent similar functional annotations and pathways.

3.4.2 Injury-down: the kidney- and skin-associated transcripts (KTs/STs). We previously defined the KTs, a PBT who's members had high expression in normal kidneys, but decreased in kidney allografts manifesting the loss of function (6). These transcripts represent the injury-down component of the injury-repair response. However, the KTs performed similar to the kidney-selective IRITs in the skin; expression of the injury-down KTs in the oxazolone-challenged skin were largely unchanged, based on the transcript set score (data not shown). Thus, they did not exemplify a change or loss of function in the oxazolone-challenged skin.

To interrogate the transcripts involved in skin parenchymal function we took all probesets with a high expression (raw signal ≥500) in normal B6 skin and that changed expression, increased or decreased (to prevent bias) (FDR<0.01), in day 6 skin isografts versus normal B6 skin. We then removed any transcripts which had overlapping membership with the above skin-selective injury and repair induced transcripts and the

inflammatory PBTs, and were left with 465 unique STs. These represented a skinselective injury-down injury-repair response (**Figure 3.9, Table 3.8**). Moreover, the majority or 80% (n=373) of the 465 transcripts had decreased expression in the day 6 skin isografts; suggesting a loss of parenchymal function in the skin, as occurs in injured kidneys (6).

Similar to the skin and kidney injury and repair induced transcripts, less than 10% (n=39) of the 465 STs had overlapping membership with the KTs. When we examined the GO annotations for the ST and KT sets, we found: one, the KTs were overrepresented with more nephron-specific biological processes such as ion transport (including sodium) and the cellular component, brush border membrane (Table 3.9); and two, the STs were overrepresented with annotations relevant to epidermal function such as regulation of actin and keratin components, extracellular matrix and cell-junction components (Table 3.9). Nonetheless, there were still overlapping GO annotations between these two transcript sets; many of which were involved in cell metabolism. For example, various carboxylic and amino acid catabolic processes, as well as fatty acid oxidation (Table 3.10). To see if the 39 unique transcripts which were shared between the ST and KT sets, were accounting for the overlapping GO annotations, we analyzed the GO annotations of these 39 transcripts. In total, they accounted for five, or 20%, of the overlapping categories (**Table 3.10**). Thus, 80% of the overlapping GO annotations were from non-overlapping probesets of the ST and KT sets. As such, despite the differential functions of skin and kidney that is represented by these two tissueassociated transcript sets, the skin and kidney (and conceivably other tissues), share some basic functions, especially metabolic processes.

3.5 SUMMARIZING THE TRANSCRIPT CHANGES AS TRANSCRIPT SET SCORES REVEAL PARALLEL MOLECULAR CHANGES IN CHS AND TCMR

We expressed the inflammatory and injury-repair response PBTs as individual transcript set scores, which are the geometric means of the normalized signals across all members of a PBT. Overall, the oxazolone-challenged skin showed a similar molecular phenotype to TCMR of renal allografts (Figure 3.10). Both, oxazolone-challenged skin and renal allografts with TCMR had increases in the inflammatory response, as shown by the increased cytotoxic T cell score (p < 0.05); macrophage burden score (p < 0.05); Ifngeffects (p<0.05); and alternative macrophage activation (p=0.2) (Figure 3.10A-D). Concurrent with the inflammatory burden, the summarized transcript set score of the kidney- and skin-selective injury and repair induced transcripts both increased in their respective tissues compared to controls (injury-up) (p < 0.05), indicating similar active injury-repair processes in both tissues (Figure 3.10E). In a similar fashion, the summarized transcript set score of both STs and KTs were decreased in kidneys with TCMR and oxazolone-challenged skin (injury-down) (p<0.05), indicating an essentially identical loss of parenchymal and stromal function in both tissues (Figure 3.10F). Thus, the cutaneous application of the hapten oxazolone induced the molecular changes which also occurred in TCMR of mouse renal allografts and could be quantified using respective PBTs.

3.6 TABLES

Experiment	Individual Mouse	Histological Assessment	
		Banff i-score	Banff t-score
Normal CBA Kidney	1	0	0
(control)	2	0	0
	1	2	1
	2	3	1
Day 7 CBA in B6	3	3	1
Renal Allografts	4	3	1
	5	3	1
	6	3	1

Table 3.1: Histological data of mouse renal allografts. Assessment of the rejection lesions interstitial inflammation (i-score) and tubulitis (t-score) according to the Banff criteria for diagnosing TCMR in human renal allografts (71).

Table 3.2: Unique cytotoxic T cell-associated transcripts found in both oxazolonechallenged skin versus sham-treated skin, and CBA into B6 renal allografts at day 7 versus normal CBA kidneys. Raw signal is calculated from the average probeset signal on the NimbleGen arrays and was normalized using the robust multi-array average.

Transcript	Fold Change (oxa-skin)	Raw Signal (sham-skin)	Fold Change (renal allograft)	Raw Signal (normal kidney)
Gzmb	17.1	113	89.2	132
Gzma	8.5	36	15.3	122
Cst7	2.8	299	12.7	231
Tcra	2.5	176	11.3	1006
<i>Tcra</i> (<i>V-15</i> predicted)	2.4	129	48.3	402
Cd8a	2.3	91	164.7	47
Klrk1	2.2	363	2.8	714
Cxcr6	2.2	50	6.9	109
Nell2	0.4	19	0.5	68

Transcript	Fold Change (oxa-skin)	Raw Signal (sham-skin)	Fold Change (renal allograft)	Raw Signal (normal kidney)	
Cxcl9	15.5	390	74.3	275	
Tgtp	10.0	156	25.3	541	
Gbp4	9.8	99	28.2	144	
ligp1	9.5	944	12.8	1094	
Gbp3	9.1	118	14.3	335	
lgtp	8.4	182	23.7	417	
Cxcl10	5.8	201	43.7	307	
lrgm1	5.0	591	9.6	1724	
lfit1	4.9	264	7.1	315	
Psmb8	4.7	1623	18.7	1339	
Psmb9	4.6	646	13.2	1899	
Mpeg1	3.6	1051	16.8	688	
Oasl2	3.6	699	13.7	440	
lrgm2	3.4	2453	14.9	2123	
Ripk3	3.3	246	7.5	131	
Bst2	3.3	865	19.9	305	
Xdh	2.9	173	5.4	127	
Erap1	2.8	9	3.6	16	
lrf7	2.7	1039	14.9	596	
Lgals3bp	2.6	2690	8.9	1927	
Herc5	2.4	738	5.6	943	
Pla2g16	2.3	37	4.3	176	
H2-T23	2.2	3428	5.2	3615	
Tapbp	2.0	11437	3.4	10952	
H2-T10	2.0	2669	4.2	2628	
ll18bp	1.3	1299	7.4	686	

Table 3.3: Unique IFNG-induced transcripts (IFNG-effects) found in both oxazolonechallenged skin versus sham-treated skin, and CBA into B6 renal allografts at day 7 versus normal CBA kidneys. Raw signal is calculated from the average probeset signal on the NimbleGen arrays and was normalized using the robust multi-array average. **Table 3.4:** Unique macrophage-associated transcripts found in both oxazolonechallenged skin versus sham-treated skin, and CBA into B6 renal allografts at day 7 versus normal CBA kidneys. Raw signal is calculated from the average probeset signal on the NimbleGen arrays and was normalized using the robust multi-array average.

Transcript	Fold Change (oxa-skin)	Raw Signal (sham-skin)	Fold Change (renal allograft)	Raw Signal (normal kidney)
Cd300lf	26.8	28	7.5	193
Pilra	23.9	45	40.6	71
Pira3	10.9	145	20.1	79
Slamf8	8.2	136	31.5	253
Siglec1	6.3	56	5.2	10
Hk3	6.0	1023	65.3	237
Fpr1	5.5	225	5.6	178
lfi204	4.4	710	9.7	214
Gp49a	4.2	1082	13.0	207
Fcer1g	3.8	2268	31.0	308
Lilrb4	3.4	3851	11.1	786
C5ar1	2.5	2826	18.9	435
Mnda	2.4	3608	22.9	233
Pla2g7	2.3	897	6.6	621
Dmxl2	2.3	469	0.5	1930
TIr8	2.1	286	33.4	11
Tlr2	1.9	401	8.1	335
Emilin2	1.9	6038	7.4	483
Cd68	1.8	7512	12.8	979
Ncf2	1.8	657	7.8	279
Lilrb3	1.8	1253	13.8	201

Table 3.5: Unique AMA-associated transcripts found in both oxazolone-challenged skin versus sham-treated skin, and CBA into B6 renal allografts at day 7 versus normal CBA kidneys. Raw signal is calculated from the average probeset signal on the NimbleGen arrays and was normalized using the robust multi-array average.

Transcript	Fold Change (oxa-skin)	Raw Signal (sham-skin)	Fold Change (renal allograft)	Raw Signal (normal kidney)
Chi3l3	45.0	52	111.0	10
Clec7a	7.9	279	4.2	472
Ear11	7.2	35	0.5	112
Adam8	5.1	352	14.6	62
Clec4a2	3.5	437	4.8	121
Clec4n	3.3	470	11.5	123
Thbs1	1.9	2195	4.1	1157

Table 3.6: 691 unique skin-selective injury- and repair-induced transcripts and their annotation. Top 30 annotated transcripts are listed by fold change in oxazolone-challenged skin versus sham-treated controls (FDR<0.05). The remaining 661 are listed in alphabetical order by gene name. (Table continued on next page.)

	GenBank	Gene Name	Fold Change	Raw Signal (sham- controls)	Roche NimbleGen Annotation
1	BC055885	Saa3	98.8	267	serum amyloid A 3 (acute phase)
2	BC024606	Saa2	76.2	59	serum amyloid A 2 (acute phase)
3	BC127035	Trem3	63.6	19	triggering receptor on myeloid cells
4	AK036935	Sirpb1	52.5	34	Signal-regulatory protein beta-1
5	BC052681	Sell	44.3	60	L-selectin
6	BC044865	Slfn4	39.8	16	schlafen 4
7	BC024392	Cxcl5	39.6	5	chemokine (C-X-C motif) ligand 5
8	BC011437	ll1b	38.4	61	interleukin 1 beta
9	AK089891	lrg1	38.3	16	immunoresponsive gene 1
10	AB034730	Prg4	38.1	145	proteoglycan 4 (lubricin)
11	BC060281	Lce3f	32.3	8	late cornified envelope 3F
12	BC116199	Defb14	23.7	48	defensin beta 14
13	BC028509	Slpi	20.7	738	secretory leukocyte peptidase inhibitor
14	BC140340	Trem1	16.4	77	triggering receptor expressed on myeloid cells
15	BC051677	ll8rb	16.1	188	interleukin 8 receptor, beta (Cxcr2)
16	AK170692	Clec4d	15.5	83	NOD-derived CD11c +ve dendritic cells
17	BC115865	Csf3r	14.8	80	colony stimulating factor 3 receptor
18	BC078629	S100a8	13.7	402	S100 calcium binding protein A8, calgranulin A
19	BC003218	Clec4e	13.2	48	C-type lectin domain family 4, member e
20	BC022176	Ptx3	13.2	384	pentraxin related gene
21	BC146301	Mmp1b	12.9	9	matrix metallopeptidase 1b, collagenase
22	BC008107	Timp1	12.8	525	tissue inhibitor of metalloproteinase 1
23	BC145867	Ccl2	11.5	178	chemokine (C-C motif) ligand 2
24	BC119291	Epgn	11.4	449	epithelial mitogen
25	BC011092	Ccr1	11.2	58	chemokine (C-C motif) receptor 1
26	BC012639	Gsta4	11.0	452	glutathione S-transferase, alpha 4
27	BC103574	Ccr5	10.4	188	chemokine (C-C motif) receptor 5
28	BC119228	Hgf	10.2	40	hepatocyte growth factor
29	BC090258	lfitm1	9.6	914	interferon induced transmembrane protein 1
30	AK085667	Tnc	9.3	61	tenascin C

	GenBank ID	Gene Name	Roche NimbleGen Annotation
31	BC051545	1190003J15Rik	RIKEN 1190003J15 gene
32	AK004674	1200009106Rik	adult male lung
33	XM_001472371	1200016E24Rik	RIKEN 1200016E24 gene
34	BC002254	1500015O10Rik	RIKEN 1500015O10 gene
35	AK005678	1700006J14Rik	adult male testis
36	BC050753	1700010l14Rik	RIKEN 1700010114 gene
37	AK080676	1700017B05Rik	10 days neonate cortex
38	AK006734	1700048O20Rik	adult male testis
39	XM_358452	1810011H11Rik	RIKEN 1810011H11 gene
40	BC141466	1810033B17Rik	RIKEN 1810033B17 gene
41	BC012898	2010002N04Rik	RIKEN 2010002N04 gene
42	AK149943	2310014H01Rik	bone marrow macrophage
43	BC083056	2310016C08Rik	RIKEN 2310016C08 gene
44	BC115655	2310042E22Rik	RIKEN 2310042E22 gene
45	AK141402	2610203C20Rik	12 days embryo spinal cord
46	AK012157	2610528A11Rik	10 days embryo whole body
47	AK169506	4732465J04Rik	3 days neonate thymus
48	AK160248	4930503L19Rik	adult male testis
49	BC049556	4930583H14Rik	RIKEN 4930583H14 gene
50	AK137010	5330426P16Rik	12 days embryo embryonic body between diaphragm
51	BC027126	6430548M08Rik	RIKEN 6430548M08 gene
52	AK020205	8030451 A03Rik	15 days embryo male testis
53	XM 982329	0530050014Rik	RIKEN 9530059014 gene (9530059014Rik)
54	BC115873	99300131 23Rik	RIKEN 9930013L23 gene
55	BC118611	9930032022Rik	RIKEN 9930032022 gene
56	BC023483	A730054J21Rik	RIKEN A730054J21 gene
57	XM 986184	Aadacl2	arvlacetamide deacetvlase-like 2 (Aadacl2)
58	AK137593	AB124611	adult male bone
59	AK172420	Abcc3	activated spleen
60	BC024677	Abpb	androgen binding protein beta
61	BC023343	Acp2	acid phosphatase 2. lysosomal
62	DQ288940	Actn1	alpha actinin 1a (Actn1a)
63	AK051780	Adam12	12 days embryo spinal ganglion
64	BC093480	Adam19	a disintegrin and metalloproteinase domain 19 (meltrin)
65	BC034739	Adamts16	a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin
66	BC027773	Adamts4	a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin
67	AK030315	Adamts6	11 days pregnant adult female ovary and uterus
68	AY551090	Adamts7	ADAMTS7B (Adamts7)
69	BC027165	Adap2	centaurin, alpha 2
70	BC052665	Adm	adrenomedullin
71	AK046802	Adra2a	10 days neonate medulla oblongata
72	BC006801	AF251705	Cd300D antigen
73	AK036733	AI839979	adult male bone
74	BC005789	Akr1b8	aldo-keto reductase family 1, member B8
75	BC034259	Akr1c18	aldo-keto reductase family 1, member C18
76	AF246711	Aldh1a3	retinaldehyde dehydrogenase 3
77	BC046597	Aldh3b1	aldehyde dehydrogenase 3 family, member B1
78	BC027216	Angpt2	angiopoietin 2
79	BC006611	Angptl4	angiopoietin-like 4
80	AK013850	Anxa3	adult male hippocampus
81	BC020015	ApIn	apelin
82	BC031786	Apoa2	apolipoprotein A-II
83	BC003792	Apobec1	apolipoprotein B editing complex 1

	GenBank ID	Gene Name	Roche NimbleGen Annotation
84	AK046043	Apol8	adult male corpora quadrigemina
85	NM_001109914	Apold1	apolipoprotein L domain containing 1 (Apold1)
86	BC034832	Apon	apolipoprotein N
87	BC005667	Aprt	adenine phosphoribosyl transferase
88	BC027400	Aqp3	aquaporin 3
89	AK154151	Aqp9	NOD-derived CD11c +ve dendritic cells
90	AF469622	Arap3	ankyrin repeat and plekstrin homology domains-
04	ALCA 47757	A	containing protein 3
91	AK147757	Arngap30	ADD vite soulation factor like 44
92	BC064093	Ariiii Ammani	ADP-ribosylation factor-like 11
93	BC054839	Armcx2	armadilio repeat containing
94 05	BC003441	Arpc1D	Actin related protein 2/3 complex, subunit TB
95	AK154874	Arroz	NOD-derived CD11C +ve dendritic cells
90	AK 100001	Arun Ao2mt	adult mala tangua
97	AKUU9014	Assint	
90	BC0000002	ASIIS	asparagine synthetase
99 100	AKU49000	Aspri	VOD derived CD11a Lve dendritie celle
100	AK 100072	Alpiin Atp1o2	ATPage Ne+///+ transporting alpha 2 polypoptide
101	BC037200	Alp Tas	ATPase, Na+/K+ transporting, april 3 polypeptide
102	BC007099	Alpovuuz Atmehd	ATPase, H+ transporting, Tysosomai vo subunit D2
103	BC117940 DC107250	ALIDADEE4	ATPase, class I, type ob
104	BC107230 BC026419	A0042031 B2ant2	UDD CloNA experience A0042051
105	BC020410	Бзупіз	acetylolucosaminyltransferase 3
106	BC146437	B430306N03Rik	RIKEN B430306N03 gene
107	BC027582	BC027582	sequence BC027582
108	BC106195	BC055004	sequence BC055004
109	NM 001001332	BC117090	sequence BC1179090 (BC117090)
110	BC052032	Bcan	brevican
111	BC028762	Bcl2a1a	B-cell leukemia/lymphoma 2 related protein A1a
112	BC100462	Bcl2a1b	B-cell leukemia/lymphoma 2 related protein A1b
113	BC120720	Bcl2a1c	B-cell leukemia/lymphoma 2 related protein A1c
114	BC027536	Bcl2a1d	B-cell leukemia/lymphoma 2 related protein A1d
115	AK037885	Bcl2l11	16 days neonate thymus
116	BC117780	Bcl2l15	Bcl2-like 15
117	BC021610	Bcl3	B-cell leukemia/lymphoma 3
118	BC090998	Bcl6b	B-cell CLL/lymphoma 6, member B
119	BC057378	Bend6	RIKEN B230209C24 gene
120	BC057580	Bfsp1	beaded filament structural protein in lens-CP94
121	BC057185	Bgn	biglycan
122	BC010720	Bhlhe40	basic helix-loop-helix domain containing, class B2
123	XM_001000082	Bin2	bridging integrator 2 (Bin2)
124	BC148547	Bst1	bone marrow stromal cell antigen 1
125	NM_001040631	C1qtnf5	C1q and tumor necrosis factor related protein 5 (C1qtnf5)
126	BC003728	C3ar1	complement component 3a receptor 1
127	AK089981	C430002N11Rik	RCB-0559 K-1 . F1
128	AK021262	C430049B03Rik	7 days embryo whole body
129	AK083339	C920009B18Rik	2 days neonate thymus thymic cells
130	L06233	Cacna1c	dihydropyridine sensitive cardiac calcium channel
131	AB086123	Cacna1d	calcium channel alpha 1D subunit
132	BC003480	Capg	capping protein (actin filament), gelsolin-like
133	BC054726	Capn2	calpain 2
134	BC120544	Car9	carbonic anhydrase 9
135	Y17138	Cask	mCASK-B.
136	BC006737	Casp8	caspase 8
137	BC092229	Casq2	calsequestrin 2

	GenBank ID	Gene Name	Roche NimbleGen Annotation
138	BC095987	Ccdc126	coiled-coil domain containing 126
139	BC002274	Ccdc23	coiled-coil domain containing 23
140	BC028487	Cck	cholecystokinin
141	BC111443	Ccl3	chemokine (C-C motif) ligand 3
142	BC061126	Ccl7	chemokine (C-C motif) ligand 7
143	BC148418	Ccr7	chemokine (C-C motif) receptor 7 (Ccr7)
144	BC057889	Cd14	CD14 antigen
145	AK155114	Cd276	NOD-derived CD11c +ve dendritic cells
146	BC107352	Cd300lb	CD300 antigen like family member B
147	X66081	Cd44	Pgp-1 CD44 (clone M1).
148	BC006799	Cd5l	CD5 antigen-like
149	AK154329	Cd80	NOD-derived CD11c +ve dendritic cells
150	BC156050	Cd93	CD93 antigen (Cd93)
151	CT010326	Cd97	CD97 antigen
152	BC046314	Cdh11	cadherin 11
153	BC054790	Cdh5	cadherin 5
154	BC046823	Cdk5r1	cyclin-dependent kinase 5, regulatory subunit (p35) 1
155	AK152437	Cdk6	bone marrow macrophage
156	NM 029441	Cdv/2	chromodomain protein. Y chromosome-like 2 (Cdvl2)
157	BC085106	Cep170	centrosomal protein 170
158	BC003780	Chi3l1	chitinase 3-like 1
159	BC051963	Chst2	carbohydrate sulfotransferase 2
160	AF401530	Cklf	chemokine-like factor 6 (CKLF6)
161	AK166218	Clcf1	mammary gland RCB-0526 Jvg-MC(A)
162	BC036347	Clcn5	chloride channel 5
163	BC019452	Clec14a	C-type lectin domain family 14 member a
164	BC051091	Clec2e	C-type lectin domain family 2 member e
165	BC104364	Clec5a	C-type lectin domain family 5
166	BC063058	Clstn2	calsyntenin 2
167	BC066106	Cntn2	contactin 2
168	AK028536	Col12a1	0 dav neonate skin
169	AK030038	Col27a1	adult male testis
170	AF034136	Col6a3	collagen alpha3(VI) (Col6a3)
171	BC011061	Col8a1	collagen, type VIII
172	BC011068	Cotl1	coactosin-like 1 (Dictvostelium)
173	BC012663	Csrp2	cysteine and glycine-rich protein 2
174	AK150917	Ctla2b	bone marrow macrophage
175	AK150274	Ctss	bone marrow macrophage
176	BC119511	Cxcl2	chemokine (C-X-C motif) ligand 2
177	BC117014	Cxcl3	chemokine (C-X-C motif) ligand 3
178	BC031665	Cxcr4	chemokine (C-X-C motif) receptor 4
179	AK154184	Cyba	NOD-derived CD11c +ve dendritic cells
180	BC023241	Cvp2d26	cvtochrome P450
181	BC013494	Cvp4f18	cvtochrome P450
182	AK170301	Cvtip	NOD-derived CD11c +ve dendritic cells
183	AK032662	Cvtsb	10 days neonate cerebellum
184	BC145673	D14Ertd668e	DNA segment
185	BC027314	D17H6S56E-5	DNA segment
186	AK048080	Dchs1	16 days embryo head
187	AY968048	Dclk1	CLICK-I beta
188	BC034505	Ddah1	dimethylarginine dimethylaminohydrolase 1
189	AK078287	Ddx58	adult male olfactory brain
190	BC003751	Degs1	degenerative spermatocyte homolog 1 (Drosophila)
191	BC016427	Degs2	degenerative spermatocyte homolog 2 (Drosophila), lipid
		-	desaturase
192	AK158187	Dennd4a	adult inner ear

	GenBank ID	Gene Name	Roche NimbleGen Annotation
193	BC029209	Dhx58	DEXH (Asp-Glu-X-His) box polypeptide 58
194	BC118526	Disp2	dispatched homolog 2 (Drosophila)
195	BC042497	DII4	delta-like 4 (Drosophila)
196	AK122347	Dock10	mKIAA0694 protein.
197	AK169871	Dok1	NOD-derived CD11c +ve dendritic cells
198	AK171155	Dpep2	NOD-derived CD11c +ve dendritic cells
199	BC031382	Dpy19l1	dpy-19-like 1 (C. elegans)
200	AK151184	Dram1	bone marrow macrophage
201	NM_001099297	Duox1	dual oxidase 1 (Duox1)
202	BC010207	Dusp7	dual specificity phosphatase 7
203	BC100309	Dusp9	dual specificity phosphatase 9
204	BC087877	E030010A14Rik	RIKEN E030010A14 gene
205	AK054221	E230032D23Rik	2 days pregnant adult female oviduct
206	AK017841	E2f1	8 days embryo whole body
207	AK051521	E2f7	12 days embryo spinal ganglion
208	AK158295	E2f8	adult inner ear
209	BC052196	E330016A19Rik	RIKEN E330016A19 gene
210	AK075585	Efemp2	adult male kidney
211	BC044926	Egln3	EGL nine homolog 3 (C. elegans)
212	AK089917	Ehbp1l1	RCB-0559 K-1 . F1
213	BC016422	Eif2ak2	eukaryotic translation initiation factor 2-alpha kinase 2
214	BC055735	Elk3	ELK3
215	BC017134	Eltd1	EGF
216	BC003706	Emcn	endomucin
217	BC005481	Emilin1	elastin microfibril interfacer 1
218	BC062927	Enah	enabled homolog (Drosophila)
219	BC085098	Eno1	enolase 1, alpha non-neuron
220	BC009018	Eno2	enolase 2, gamma neuronal
221	AK166220	Entpd7	mammary gland RCB-0526 Jyg-MC(A)
222	AK173080	Epb4.113	mKIAA0987 protein.
223	BC043088	Ephb2	Eph receptor B2
224	BC011224	Ercc1	excision repair cross-complementing rodent repair
225	AB073079	Era	Era
226	BC104406	Erp27	endoplasmic reticulum protein 27
227	BC046766	Esd	esterase D/formylglutathione hydrolase
228	BC020038	Esm1	endothelial cell-specific molecule 1
229	BC010588	Ets1	E26 avian leukemia oncogene 1, 5' domain
230	BC004741	Ext1	exostoses (multiple) 1
231	BC050219	F10	coagulation factor X
232	BC061149	F7	coagulation factor VII
233	AK076887	Fam126a	adult male testis
234	AK163654	Fam131b	10 days neonate medulla oblongata
235	BC010826	Fam162a	RIKEN 2310056P07 gene
236	AK034722	Fam38b	12 days embryo embryonic body between diaphragm
237	AK075613	Fam49b	region and neck adult male spleen
238	BC005443	FbIn2	fibulin 2
239	AK080935	Fbn1	4 days neonate male adipose
240	AK082008	Fbn2	16 days embryo head
241	AK080885	Fcgr2b	4 days neonate male adipose
242	BC052819	Fcgr3	Fc receptor, IgG
243	BC148640	Fcrlb	Fc receptor-like B
244	BC129919	Fes	feline sarcoma oncogene
245	BC018341	Fetub	fetuin beta
246	BC132340	Fgd3	FYVE

TUN		<i>)</i>	
	GenBank ID	Gene Name	Roche NimbleGen Annotation
247	BC060654	Fhod1	formin homology 2 domain containing 1
248	BC027250	Fibin	RIKEN 1110018M03 gene
249	BC029546	Fkbp10	FK506 binding protein 10
250	BC049596	Fkbp1b	FK506 binding protein 1b
251	AF510860	Flg	profilaggrin (Flg)
252	BC029674	Flt1	FMS-like tyrosine kinase 1
253	AK020206	Fmnl1	15 days embryo male testis
254	BC099411	Fmr1nb	fragile X mental retardation 1 neighbor
255	AK147346	Fndc3b	14 days pregnant adult female placenta
256	BC052917	Fosl1	fos-like antigen 1
257	BC052408	Fscn1	fascin homolog 1
258	NM 001111073	Fxyd5	FXYD domain-containing ion transport regulator 5
	-	•	(Fxyd5)
259	AK137907	Fyb	16 days neonate thymus
260	BC090962	Galnt1	UDP-N-acetyl-alpha-D-galactosamine:polypeptide
261	AK036523	Galnt7	adult male bone
262	AF334736	Gfpt1	glutamine: fructose-6-phosphate amidotransferase 1
263	AK087160	Gimap5	0 day neonate lung
264	BC053054	Gja5	gap junction membrane channel protein alpha 5
265	BC050840	Gjc1	gap junction membrane channel protein alpha 7
266	BC025083	Glipr1	GLI pathogenesis-related 1 (glioma)
267	BC031750	Glipr2	GLI pathogenesis-related 2
268	AY220846	Glis3	GLIS3 (Glis3)
269	BC012642	GIrx	glutaredoxin
270	XM_001478803	Gm10639	similar to Gsta2 protein (LOC100042314)
271	XM_001474265	Gm10784	similar to immediate early response 3 interacting protein
			1 (LOC100040099)
272	AK157218	Gm14005	activated spleen
273	XM_001480842	Gm14010	protein LOC100043729 (LOC100043729)
274	XM_001472704	Gm2194	similar to gag protein (LOC100039378)
275	XM_001472866	Gm2251	similar to gag protein
276	XM_001473270	Gm2326	similar to gag protein (LOC100039583)
277	XM_001474216	Gm2627	similar to gag protein (LOC100040148)
278	XM_001475021	Gm2718	similar to ribosomal protein L36a (LOC100040331)
279	XM_001475316	Gm2904	similar to sid478p (LOC100040682)
280	XM_001475592	Gm3073	protein LOC100040977 (LOC100040977)
281	XM_001476237	Gm3245	similar to gag protein (LOC100041274)
282	XM_001478461	Gm3914	similar to CG4877-PA (LOC100042581)
283	XM_001480672	Gm4569	similar to gag protein (LOC100043650)
284	XM_001481052	Gm4589	protein LOC100043687 (LOC100043687)
285	XM_001481020	Gm4610	protein LOC100043726 (LOC100043726)
286	XM_001480862	Gm4618	similar to meltrin alpha (LOC100043741)
287	XM_001476895	Gm4887	similar to Twinfilin
288	BC146444	Gm5416	MGC:180367 predicted gene
289	XM_484341	Gm5456	EG432817 (EG432817)
290	NR_002868	Gm5476	EG432985 (EG432985) on chromosome 15.
291	BC089539	Gm5506	EG433182
292	XM_486686	Gm5637	EG434782 (EG434782)
293	XM_889601	Gm6551	EG625060 (EG625060)
294	XM_001003594	Gm8570	EG667314 (EG667314)
295	XM_001477646	Gm9790	similar to hypoxia induced gene 1
296	XM_001476885	Gml	GPI anchored molecule like protein
297	BC061207	Gmppb	GDP-mannose pyrophosphorylase B
298	BC111437	Gng8	guanine nucleotide binding protein (G protein)
299	BC061005	Gngt2	guanine nucleotide binding protein (G protein)
300	BC011152	Golm1	golgi membrane protein 1

	GenBank ID	, Gene Name	Roche NimbleGen Annotation
301	AK155580	Gn49a	B6-derived CD11 +ve dendritic cells
302	BC061225	Gnihbn1	GPL-anchored HDL-binding protein 1
303	AK173020	Gpr116	mKIAA0758 protein
304	BC003212	Gpr137b	G protein-coupled receptor 137B
305	NR 003568	Gpr137b-ns	G protein-coupled receptor 137B
306	BC052037	Gpr176	G protein-coupled receptor 1776
307	NM 001104529	Gpr75	G protein-coupled receptor 170
308	AK155863	Gproo Gpsm3	B6-derived CD11 +ve dendritic cells
300	BC070005	Gpsills Grom2	gremlin 2 homolog
310	DC073505	Grid2in	alt '-
310	DQ193333	Grin1	alt -
312	BC1/151/	Gripi Gedma	asdermin C1
312	BC113155	Gsdmc2	gasdermin C2
313	BC061134	Gsuncz Gstał	glutathiono S transforaso
314	BC001134	Gstaf	glutathione S-transferase
315	BC085165	Gsto1	glutathione S-transferase amoga 1
310	DC003103	GSIOT Cff2ird2	0 day poprato corobollum
210	AK002400	Guzhaz	o day neonate cerebendin
210	AC041030		bistocompatibility 2. M ragion loove 0
220	DC 140400		histocompatibility 2, Millegion locus 9
320	BC042077	пора	dehydrogenase)
321	BC089607	Hbegf	heparin-binding EGF-like growth factor
322	BC010478	Hck	hemopoietic cell kinase
323	BC007469	Hcls1	hematopoietic cell specific Lyn substrate 1
324	BC052833	Hdc	histidine decarboxylase
325	BC113773	Hhipl1	RIKEN 1600002004 gene
326	AK017853	Hif1a	8 days embryo whole body
327	BC090259	Higd1a	HIG1 domain family, member 1A
328	BC085085	Hmga2	high mobility group AT-hook 2
329	BC010757	Hmox1	heme oxygenase (decycling) 1
330	BC095961	Homer3	homer homolog 3 (Drosophila)
331	AK143943	Hoxa1	adult male kidney
332	BC096612	Ноха3	homeo box A3
333	AK087283	Hpse	0 day neonate lung
334	AK083281	Hs6st2	adult male hippocampus
335	DQ266428	Hspg2	perlecan
336	BC119129	Htr1b	5-hydroxytryptamine (serotonin) receptor 1B
337	BC108972	Htr2a	5-hydroxytryptamine (serotonin) receptor 2A
338	BC008626	lcam1	intercellular adhesion molecule
339	BC006950	ler3	immediate early response 3
340	BC018233	lfi202b	interferon activated gene 202B
341	BC043935	lfnar1	interferon (alpha and beta) receptor 1
342	BC071225	lfnar2	interferon (alpha and beta) receptor 2
343	AK044984	lgf2bp2	9.5 days embryo parthenogenote
344	BC052425	ll13ra1	interleukin 13 receptor, alpha 1
345	BC003723	ll13ra2	interleukin 13 receptor, alpha 2
346	BC120598	ll18rap	interleukin 18 receptor accessory protein
347	BC003727	ll1a	interleukin 1 alpha
348	BC132600	ll1f5	interleukin 1 family, member 5 (delta)
349	AK081783	ll1f9	16 days embryo head
350	BC051445	ll1rl1	interleukin 1 receptor-like 1
351	BC019953	ll23a	interleukin 23, alpha subunit p19
352	AF235006	1124	melanoma differentiation associated gene-7
353	AK075849	1133	adult male stomach
354	BC112911	ll4ra	interleukin 4 receptor, alpha

	GenBank ID	Gene Name	Roche NimbleGen Annotation
355	BC053416	Impdh1	inosine 5'-phosphate dehydrogenase 1
356	BC053527	Inhba	inhibin beta-A
357	AK050913	lqgap3	9 days embryo whole body
358	BC085324	lrak2	interleukin-1 receptor-associated kinase 2
359	BC031424	lsg15	ISG15 ubiquitin-like modifier
360	AF217484	lsg20	DnaQL
361	AK137169	ltga1	adult male urinary bladder
362	BC050943	ltga5	integrin alpha 5 (fibronectin receptor alpha)
363	AK159653	ltga6	osteoclast-like cell
364	AK089521	ltgam	B6-derived CD11 +ve dendritic cells (CD11B)
365	AK135521	ltgb1	12 days embryo female mullerian duct includes
		-	surrounding region
366	BC145644	ltgb2	integrin beta 2 (LFA-1)
367	BC125518	ltgb3	integrin beta 3
368	AF115376	ltgb6	integrin beta-6 subunit
369	BC054807	Jak2	Janus kinase 2
370	AK088365	Jak3	2 days neonate thymus thymic cells
371	BC004629	Kcne3	potassium voltage-gated channel
372	BC003729	Kcnk1	potassium channel
373	AK158645	Kcnk13	visual cortex
374	AK135059	Kcnq2	adult male olfactory brain
375	BC028748	Kctd4	potassium channel tetramerisation domain containing 4
376	BC020530	Kdr	kinase insert domain protein receptor
377	AK077868	Kif17	13 days embryo forelimb
378	BC120791	Kif26b	RIKEN D230039L06 gene
379	AK150559	Klf7	bone marrow macrophage
380	AK009217	Klk12	adult male tongue
381	BC152778	Klk13	kallikrein related-peptidase 13
382	BC031119	Klk6	kallikrein 6
383	BC055895	Klk8	kallikrein related-peptidase 8
384	BC109326	Kik9	kallikrein related-peptidase 9
385	BC064711	Kira2	killer cell lectin-like receptor, subfamily A
386	BC103666	Krt16	keratin 16
387	BC119554	Krtob	keratin 6B
388	BC043030	Krtcap2	keratinocyte associated protein 2
389	BC025901	Lairi	leukocyte-associated Ig-like receptor 1
390	X84013	Lama3	iaminin-5, aipna3A chain
391	BC115942	Lama4	laminin, alpha 4
392	BC 1404 17	Lamcz	Mhaar15 protoin (Mhaar15)
204	AF237130		late corpified envelope 1C
305	YM 001479524	LCCTY	
395	AM_001470521	Lceik	LOCOSTIUT (LOCOSTIUT)
390	BC100538 BC115817	Lce3b	late cornified envelope 3R
308	BC110230		late cornified envelope 3C
300	BC132060	L cp2	linocalin 2
400	BC006948	L cn2	lymphocyte cytosolic protein 2
400	BC053041	l dir	low density linonratein recentor
402	BC003754	Laals9	lectin galactose binding
403	AK148104	Lamn	B16 F10Y cells
404	AK052969	_g I hfpl2	15 days embryo head
405	BC005621	Lims1	LIM and senescent cell antigen-like domains 1
406	AK164007	Lipa	7 days embryo whole body
407	XM 001471956	LOC100038947	similar to SIRP beta 1 cell surface protein
	_		(LOC100038947)
408	XM_994308	LOC668101	similar to SIRP beta 1 (LOC668101)

	GenBank ID	Gene Name	Roche NimbleGen Annotation
409	BC086801	Loxl2	lysyl oxidase-like 2
410	BC011298	Lox/3	lysyl oxidase-like 3
411	AK076555	Lrp8	adult male testis
412	BC025473	Lrrc8c	leucine rich repeat containing 8 family
413	AF000428	Lst1	B144
414	BC064063	Ltb4r1	leukotriene B4 receptor 1
415	BC119785	Ltbp2	latent transforming growth factor beta binding protein 2
416	BC025135	Ly6d	lymphocyte antigen 6 complex, locus D
417	NM_001111096	Lyn	Yamaguchi sarcoma viral (v-yes-1) oncogene homolog
418	BC058581	Maged2	melanoma antigen
419	BC113154	Mal2	mal, T-cell differentiation protein 2
420	AK129191	Map4k4	mKIAA0687 protein.
421	BC048779	Mapk6	mitogen-activated protein kinase 6
422	BC132338	Marco	macrophage receptor with collagenous structure
423	AB049755	Masp1	masp3 MBL-associated serine protease-3
424	AK046702	Mast4	4 days neonate male adipose
425	BC026985	Mcam	melanoma cell adhesion molecule
426	BC146373	Mdfic	MyoD family inhibitor domain containing
427	BC139762	Mecom	ecotropic viral integration site 1
428	BC108993	Mefv	Mediterranean fever
429	AF482999	Mest	mesoderm-specific transcript isoform 2 (Mest)
430	BC025131	Mfap5	microfibrillar associated protein 5
431	BC094604	Mgat5b	mannoside acetylglucosaminyltransferase 5
432	BC023755	Miki	mixed lineage kinase domain-like
433	BC130027	Mmp10	matrix metallopeptidase 10
434	BC125320	Mmp13	matrix metallopeptidase 13
435	AK136517	Mmp19	matrix metallopeptidase 19
436	BC042742	Мтр8	matrix metallopeptidase 8
437	BC132153	Morc4	microrchidia 4
438	AK150204	Mov10	bone marrow macrophage
439	AK165261	Мрр1	6 days neonate spleen
440	BC060043	MrpI52	mitochondrial ribosomal protein L52
441	XM_357051	Ms4a14	gene model 1276
442	BC027496	MS4a4C	membrane-spanning 4-domains
443	BC018331	MS4a6d	membrane-spanning 4-domains
444	BC047366	Msn	moesin
445	BC003814	Msr1	macrophage scavenger receptor 1
446	BC053039	Mtap6	microtubule-associated protein 6
447	AK 151013	Mtap/01	S collo
448	AKU75931	Mithia11 Mixa	ES Cells
449	NIVI_010646	IVIX I Myrra9	myxovirus (initidenza virus) resistance T (ivixT)
450	BC002140	WX120 Muadm	matrix-remodelling associated o
451	NIVI_001093704	Myaum Myati	myetoraet 1
452	BC090559 BC005501	MyCli Myd88	myclaid differentiation primany response gone 88
455	DC005591	Myaoo Myaf2	10 days ombryo whole body
454	AK012133	Myerz Myo1f	adult fomale vagina
456	AY821853	Myon Myo7a	auur isiriais vayiria mvosin VIIA
457	AK021000	Myora	15 days embryo head
458	AF192382	N/A	nrion protein-like protein
450	BC116626	Nain?	NI R family, apontosis inhibitory protein 2
460	AK158038	Nav1	adult inner ear
461	AK122404	Nav3	mKIAA0938 protein
462	X15052	Ncam1	Mouse 3'-end of NCAM-140 and NCAM-180 isoforms

	GenBank ID	Gene Name	Roche NimbleGen Annotation
463	AK170854	Ncf4	NOD-derived CD11c +ve dendritic cells
464	AK129207	Nfasc	mKIAA0756 protein.
465	AK029360	Nfe2l2	0 day neonate head
466	AK155969	Nfkbid	activated spleen
467	AB047549	Nfkbiz	IkappaB-zeta
468	BC156604	Ngf	nerve growth factor
469	BC120715	Niacr1	G protein-coupled receptor 109A
470	BC131669	Nid1	nidogen 1
471	BC054746	Nid2	nidogen 2
472	BC116391	Nkain1	Na+/K+ transporting ATPase interacting 1
473	BC116175	NIrp3	NLR family, pyrin domain containing 3
474	BC062378	Nos2	nitric oxide synthase 2, inducible
475	AK141037	Nrg1	0 day neonate cerebellum
476	BC008272	Nsg1	neuron specific gene family member 1
477	BC031848	Nsmce1	non-SMC element 1 homolog (S. cerevisiae)
478	NM_001085502	Nt5c1a	5'-nucleotidase, cytosolic IA (Nt5c1a)
479	BC003223	Nus1	nuclear undecaprenyl pyrophosphate synthase 1
			homolog (S. cerevisiae)
480	BC025514	Oaf	OAF homolog (Drosophila)
481	BC013715	Oas1a	2'-5' oligoadenylate synthetase 1A
482	AK049218	Oas2	ES cells
483	AK158392	Oas3	adult inner ear
484	AF426289	Oasl1	oligoadenylate synthetase-like protein-2
485	AK135844	Odz3	in vitro fertilized eggs
486	BC026021	Opn1sw	opsin 1 (cone pigments), short-wave-sensitive
487	BC099866	Osm	oncostatin M
488	BC119043	P2ry13	purinergic receptor P2Y, G-protein coupled 13, G-protein coupled 13
489	BC082538	P4ha3	procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase)
490	AK005563	Parp14	adult female placenta
491	BC156141	Pcdh12	protocadherin 12
492	BC042454	Pcdh21	protocadherin 21
493	BC013068	Pcsk5	proprotein convertase subtilisin/kexin type 5
494	BC031778	Pctk2	PCTAIRE-motif protein kinase 2
495	AK039249	Pde10a	adult male spinal cord
496	AK004772	Pde1b	adult male lung
497	BC071259	Pde4b	phosphodiesterase 4B, cAMP specific
498	AK035501	Pdgfra	adult male urinary bladder
499	BC009151	Pdia5	protein disulfide isomerase associated 5
500	BC026551	Pdpn	podoplanin
501	AK169431	Pecam1	17 days embryo stomach
502	BC020097	Pfkl	phosphofructokinase, liver
503	BC016567	Pgf	placental growth factor
504	BC128291	Pglyrp3	peptidoglycan recognition protein 3
505	BC120840	Pglyrp4	peptidoglycan recognition protein 4
506	BC023843	Picalm	phosphatidylinositol binding clathrin assembly protein
507	BC113141	Pik3ap1	phosphoinositide-3-kinase adaptor protein 1
508	AK089348	Pik3r5	B6-derived CD11 +ve dendritic cells
509	AK083076	Pkm2	12 days embryo spinal cord
510	AK004232	Pla2g2d	18-day embryo whole body
511	BC113770	Pla2g4d	phospholipase A2
512	BC060600	Pla2g4e	phospholipase A2
513	BC011256	Plat	plasminogen activator, tissue
514	BC120709	Plau	plasminogen activator, urokinase

	GenBank ID	Gene Name	Roche NimbleGen Annotation
515	U87868	Pld1	phosphatidylcholine-specific phospholipase D1b
			(mPLD1)
516	BC047268	Pld2	phospholipase D2
517	AK038804	Plek	adult male hypothalamus
518	BC024792	Plekhg4	pleckstrin homology domain containing, family G (with
			RhoGef domain)
519	AK158288	Plekho2	adult inner ear
520	BC054766	Plin2	adipose differentiation related protein
521	BC050821	Pmaip1	phorbol-12-myristate-13-acetate-induced protein 1
522	BC031449	Postn	periostin, osteoblast specific factor
523	AK042123	Ppp1r16b	3 days neonate thymus
524	AK169990	Pram1	NOD-derived CD11c +ve dendritic cells
525	BC003349	Prdx4	peroxiredoxin 4
526	BC033408	Prei4	preimplantation protein 4
527	BC119251	Prelid2	PRELI domain containing 2
528	AK043023	Prnd	7 days neonate cerebellum
529	BC117009	Prss27	protease, serine 27
530	BC075675	Prss35	protease, serine
531	BC087878	Prss46	RIKEN 1700112C13 gene
532	AK163576	Prune2	adult male corpora quadrigemina
533	BC110462	Psca	prostate stem cell antigen
534	BC024960	Ptges	prostaglandin E synthase
535	AK154272	Ptgir	NOD-derived CD11c +ve dendritic cells
536	BC052900	Ptgs2	prostaglandin-endoperoxide synthase 2
537	BC020155	Ptplad2	protein tyrosine phosphatase-like A domain containing 2
538	BC079621	Ptprm	protein tyrosine phosphatase, receptor type
539	BC013673	Pvr	poliovirus receptor
540	AK010185	Pxdn	adult male tongue
541	BC013063	Rab31	RAB31, member RAS oncogene family
542	BC132022	Raet1b	retinoic acid early transcript beta
543	NM_009018	Raet1c	retinoic acid early transcript gamma (Raet1c)
544	BC132308	Raet1e	retinoic acid early transcript 1E
545	BC006907	Ralb	v-ral simian leukemia viral oncogene homolog B (ras
546	AK161416	Dhmo1	related)
540	AC 101410	RUIIIS I Bhn2	adult Indie lesus
547	AK217026	Rupz Robth2	alone: Y2C0140C10
540	ANZ 17030	RCDIDZ	cione. 1200 1400 19
549	BC014021	Renop Bre 20	adult male elfecter chrein
55U	ANU/0200	Ryszu Bhoo	adult male ollacioly brain
551	DC004027	Riluc Dinka	recenter (TNEDSE) interacting series threening kinese 1
552	BC0000102	Ripki	
555	BC003073	RildSei	dependent)
554	BC048531	Rnd1	Rho family GTPase 1
555	XM 001477846	Rnf213	LOC672511 (LOC672511)
556	BC057868	Rsad2	radical S-adenosyl methionine domain containing 2
557	BC024872	Rtp4	receptor transporter protein 4
558	AK143826	S100a9	6 days neonate spleen
559	BC064007	S1pr3	endothelial differentiation, sphingolipid G-protein-coupled
			receptor
560	BC119383	Samd12	sterile alpha motif domain containing 12
561	AK152815	Samhd1	bone marrow macrophage
562	BC054795	Sdc3	syndecan 3
563	NM_001098227	Sdcbp	syndecan binding protein (Sdcbp)
564	AK031307	Sema6d	13 days embryo male testis
565	BC037673	Sept4	septin 4
566	BC062134	Serpinb12	serine (or cysteine) peptidase inhibitor, clade B Table 3.6 continued on next page.

	GenBank ID	Gene Name	Roche NimbleGen Annotation
567	BC054091	Serpine1	serine (or cysteine) peptidase inhibitor, clade E
568	BC044853	Sestd1	SEC14 and spectrin domains 1
569	AF325264	Sfxn5	sideroflexin 5 (Sfxn5) precursor RNA
570	NM_001099631	Sh2d5	SH2 domain containing 5 (Sh2d5)
571	AK156912	Sh3bp2	activated spleen
572	AK159617	Sirpa	osteoclast-like cell
573	AK076000	Skap2	10 days embryo whole body
574	BC030031	Slamf6	SLAM family member 6
575	BC109137	Sic11a1	solute carrier family 11 (proton-coupled divalent metal ion transporters)
576	BC080678	Slc16a2	solute carrier family 16 (monocarboxylic acid transporters)
577	BC046525	Slc16a3	solute carrier family 16 (monocarboxylic acid transporters)
578	AK079757	SIc16a5	0 day neonate thymus
579	AK089184	SIc20a1	NOD-derived CD11c +ve dendritic cells
580	BC010472	SIc28a3	solute carrier family 28 (sodium-coupled nucleoside transporter)
581	BC055340	SIc2a1	solute carrier family 2 (facilitated glucose transporter)
582	BC058811	SIc2a3	solute carrier family 2 (facilitated glucose transporter)
583	BC063326	SIc37a2	solute carrier family 37 (glycerol-3-phosphate
584	BC003845	SIc5a1	solute carrier family 5 (sodium/glucose cotransporter)
585	AK077593	SIc7a3	8 days embryo whole body
586	BC079673	Sic8a1	solute carrier family 8 (sodium/calcium exchanger)
587	BC052869	Slfn1	schlafen 1
588	BC1/1535	Silfn10	schlafen 10 (Slfn10)
580	BC132627	Slin 10 Slin 2	schlafen 3
500	AK050355	Slfnû	adult male liver tumor
501	RC020007	Smurf1	SMAD specific E3 ubiquitin protein ligase 1
502	AK138230	Smulli	adult male hypothalamus
502	AK150250	Shpil Shv10	bono marrow macrophago
593	AC 150070 BC052031	SIIX IU Socs?	suppressor of outoking signaling 3
505	BC032031 BC110067	50CS5 Sox15	Suppressor of Cytokine signaling 5
595	AK146054	S0X15 Sp100	14 days program adult fomals placents
590	AK 140004	Spill	
597	ANUU0001	Spalao	
590 500	BC014704 BC020521	Spaiszi	RINEN 2010022L02 gene
599	BC020531	Spont	spondin I, (I-spondin) extracellular matrix protein
600	BC062119	Spreas	sprouty-related, EVHT domain containing 3
001		Sprind	small proline-rich protein 18
602	BC010818	Sprrza	small proline-rich protein 2A
604	DCU99393	Sprrzas	sman proline-rich protein 2A
604	BC132518	Sprrzb	small proline-rich protein 28
605	BC130233	Sprr2g	smail proline-rich protein 2G
606	BC037076	Srgn	sergiycin
607	BC028307	Srpx2	susni-repeat-containing protein, X-linked 2
608	BC049247	Stab1	stabilin 1
609	AB010122	Stambp/1	AMSH-LP
610	AK157263	Stat1	activated spleen
611	BC119354	Stfa2l1	stetin A2 like 1
612	BC107224	Stfa3	stetin A3
613	BC003789	Stom	stomatin
614	XM_001472888	Stx11	syntaxin 11 (Stx11)
615	BC034547	Sulf1	sulfatase 1
616	AK045217	Svep1	9.5 days embryo parthenogenote
617	AK049207	Syk	ES cells
618	NM_177340	Synpo	synaptopodin (Synpo), transcript variant A

1001		u)	
	GenBank ID	Gene Name	Roche NimbleGen Annotation
619	BC145691	Tbx18	T-box18
620	BC029014	Tbxas1	thromboxane A synthase 1, platelet
621	BC119346	Tcf23	transcription factor 23
622	BC098494	Tcfec	transcription factor EC
623	AF218254	Tcirq1	vacuolar proton-translocating ATPase 100 kDa subunit
		Ū	isoform a3
624	BC010465	Tes	testis derived transcript
625	AF016313	Tfpi	TFPIbeta (TFPIbeta)
626	BC021639	Tfpi2	tissue factor pathway inhibitor 2
627	BC013738	Tgfb1	transforming growth factor, beta 1
628	DQ143894	Tgfb1i1	transforming growth factor beta 1 isoform alpha-C
			(Tgfb1i1)
629	BC019154	Thbd	thrombomodulin
630	BC053702	Thbs2	thrombospondin 2
631	BC046452	Tie1	tyrosine kinase receptor 1
632	BC005738	Tinagl1	tubulointerstitial nephritis antigen-like
633	BC068173	Tiparp	TCDD-inducible poly(ADP-ribose) polymerase
634	AK052301	Tin2	13 days embryo heart
635	AK143721	Tir1	6 days neonate spleen
636	BC117913	TIr13	toll-like receptor 13
637	AK154253	TIr6	NOD-derived CD11c +ve dendritic cells
638	BC120596	TIr7	toll-like receptor 7
639	XM 205829	Tm4sf19	transmembrane 4 L six family member 19 (Tm4sf19)
640	BC025600	Tmem119	transmembrane protein 119
641	AK158458	Tmom173	adult inner ear
642	BC132482	Tmom202	RIKEN 4930425N13 gene
6/3	AK045675	TmomAA	adult male corpora quadrigemina
644	RC018222	Tmom45b	transmombrano protoin 45b
645	BC010222	Tmom40	transmembrane protein 455
646	BC004013	Tmom54	transmembrane protein 49
040		Tmemb1	
647	NM_001085521	Tmem900	predicted gene
648	BC115419	Tmprss11b	transmembrane protease, serine 11b
649	BC117057		tumor necrosis factor
650	AK1/0/19	Tnfaip2	NOD-derived CD11c +ve dendritic cells
651	BC021155	Tnfaip6	tumor necrosis factor alpha induced protein 6
652	AK170464	Tnfrsf1b	NOD-derived CD11c +ve dendritic cells
653	AY165627	Tnfrsf22	decoy TRAIL receptor 2 long form (Dctrailr2)
654	BC106828	Tnfrsf23	tumor necrosis factor receptor superfamily, member 23
655	BC152358	Tnfrsf26	tumor necrosis factor receptor superfamily, member 26
656	BC014809	Tpm2	tropomyosin 2, beta
657	AF317223	Трт3	tropomyosin 3
658	BC058239	Трр2	tripeptidyl peptidase II
659	BC012401	Tram1	translocating chain-associating membrane protein 1
660	BC018212	Tram2	translocating chain-associating membrane protein 2
661	BC033485	Trem2	triggering receptor expressed on myeloid cells 2
662	AY465532	Treml4	alt '5031403H21Rik#BB137214#IDCP1#TLT4#TremI3'
663	BC006908	Trim25	tripartite motif protein 25
664	AK142316	Trp53i11	13 days embryo heart
665	AK134735	Trpm2	adult male medulla oblongata
666	AK053973	Tsku	2 days pregnant adult female oviduct
667	BC130230	Tslp	thymic stromal lymphopoietin
668	BC002055	Tspo	translocator protein
669	BC056616	Ttc12	tetratricopentide repeat domain 12
670	BC156421	Tto 37	tetratricopentide repeat domain 37
671	AK007856	Tto 20h	10 day old male paperoas
670	ANUU/000 BC015001	1 (C390 Twf1	tu uay ulu IIIdie palicieds
0/2	DC015081	1 WT1	twinning, actin-binding protein

	GenBank ID	Gene Name	Roche NimbleGen Annotation
673	BC053436	Ubash3b	RIKEN 2810457106 gene
674	BC050828	Ugcg	UDP-glucose ceramide glucosyltransferase
675	BC006749	Ugdh	UDP-glucose dehydrogenase
676	NM_029975	Ulbp1	UL16 binding protein 1 (Ulbp1)
677	AY771616	Umodl1	alt 'D17Ertd488e'
678	AK039526	Unc93b1	adult male spinal cord
679	BC086688	Vash1	vasohibin 1
680	AK157021	Vasp	activated spleen
681	AK169478	Vav1	3 days neonate thymus
682	AK016465	Vcam1	adult male testis
683	AK014525	Vcan	0 day neonate skin
684	BC008520	VcI	vinculin
685	AY263146	Vegfa	FVB/N vascular endothelial growth factor A splice variant VEGF 102
686	BC052677	Wisp1	WNT1 inducible signaling pathway protein 1
687	BC020033	Zbp1	Z-DNA binding protein 1
688	AK143568	Zc3hav1	6 days neonate spleen
689	BC052028	Zfp57	zinc finger protein 57
690	BC050889	Zic1	zinc finger protein of the cerebellum 1
691	AK163477	Zic4	adult male corpora quadrigemina

END Table 3.6.

 Table 3.7: Overlapping skin-selective IRITs and the kidney-selective IRITs gene ontology (GO) annotations within biological process, molecular function and cellular compartment categories. *P*-value is representative of a hypergeometric test from selecting the skin or kidney IRITs found within each GO category by chance alone. (Table continued on next page.)

		•	Skin-selective IRITs			Kidney-selective IRITs			
Tern	n (Biological Process Category)	Genes in Category	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value	
GO:0009611	response to wounding	347	52	7.5	0.000	36	7.0	0.000	
GO:0006952	defense response	448	57	8.3	0.000	30	5.8	0.000	
GO:0006954	inflammatory response	225	40	5.8	0.000	23	4.5	0.000	
GO:0006928	cell motion	367	42	6.1	0.000	21	4.1	0.005	
GO:0016477	cell migration	240	32	4.6	0.000	17	3.3	0.002	
GO:0048870	cell motility	284	33	4.8	0.000	17	3.3	0.009	
GO:0051674	localization of cell	284	33	4.8	0.000	17	3.3	0.009	
GO:0001817	regulation of cytokine production	139	22	3.2	0.000	12	2.3	0.002	
GO:0006935	chemotaxis	109	19	2.8	0.000	8	1.6	0.039	
GO:0042330	taxis	109	19	2.8	0.000	8	1.6	0.039	
GO:0001944	vasculature development	250	29	4.2	0.000	23	4.5	0.000	
GO:0001568	blood vessel development	244	28	4.1	0.000	22	4.3	0.000	
GO:0050900	leukocyte migration	43	12	1.7	0.000	7	1.4	0.001	
GO:0001525	angiogenesis	133	20	2.9	0.000	13	2.5	0.000	
GO:0030595	leukocyte chemotaxis	27	10	1.4	0.000	5	1.0	0.007	
GO:0060326	cell chemotaxis	27	10	1.4	0.000	5	1.0	0.007	
GO:0048514	blood vessel morphogenesis	198	24	3.5	0.000	17	3.3	0.000	
GO:0001775	cell activation	246	27	3.9	0.000	14	2.7	0.027	
GO:0001819	positive regulation of cytokine production	62	13	1.9	0.000	7	1.4	0.009	
GO:0045321	leukocyte activation	219	23	3.3	0.000	14	2.7	0.012	
GO:0042060	wound healing	112	15	2.2	0.000	13	2.5	0.000	
GO:0030334	regulation of cell migration	92	13	1.9	0.000	10	1.9	0.001	
GO:0040012	regulation of locomotion	110	14	2.0	0.000	11	2.1	0.001	
GO:0050764	regulation of phagocytosis	25	7	1.0	0.000	5	1.0	0.005	

			Skin-selective IRITs		Kidney-selective IRITs			
		Genes in Category	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value
GO:0051240	positive regulation of multicellular	163	17	2.5	0.000	14	2.7	0.001
GO:0044236	organismal process multicellular organismal metabolic process	26	7	1.0	0.000	5	1.0	0.006
GO:0016337	cell-cell adhesion	236	21	3.0	0.000	13	2.5	0.043
GO:0051130	positive regulation of cellular component organization	122	14	2.0	0.000	10	1.9	0.009
GO:0051270	regulation of cell motion	107	13	1.9	0.000	10	1.9	0.004
GO:0030155	regulation of cell adhesion	94	12	1.7	0.000	13	2.5	0.000
GO:0060429	epithelium development	271	22	3.2	0.001	16	3.1	0.013
GO:0060627	regulation of vesicle-mediated transport	83	11	1.6	0.001	7	1.4	0.033
GO:0032963	collagen metabolic process	23	6	0.9	0.001	5	1.0	0.004
GO:0009967	positive regulation of signal transduction	172	16	2.3	0.001	14	2.7	0.002
GO:0044259	multicellular organismal macromolecule metabolic process	24	6	0.9	0.001	5	1.0	0.005
GO:0006909	phagocytosis	49	8	1.2	0.002	6	1.2	0.013
GO:0030100	regulation of endocytosis	52	8	1.2	0.002	6	1.2	0.017
GO:0030574	collagen catabolic process	17	5	0.7	0.002	4	0.8	0.012
GO:0043122	regulation of I-kappaB kinase/NF- kappaB cascade	40	7	1.0	0.003	5	1.0	0.028
GO:0035295	tube development	264	20	2.9	0.003	18	3.5	0.002
GO:0010647	positive regulation of cell communication	189	16	2.3	0.003	15	2.9	0.001
GO:0035239	tube morphogenesis	171	15	2.2	0.003	13	2.5	0.004
GO:0044243	multicellular organismal catabolic	18	5	0.7	0.003	4	0.8	0.014
	process							
GO:0002697	regulation of immune effector process	88	10	1.4	0.004	7	1.4	0.042
GO:0044057	regulation of system process	201	16	2.3	0.005	12	2.3	0.033
						Table 3	3.7 continued or	n next page.

			Skin-selective IRITs			Kidney-selective IRITs			
		Genes in Category	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value	
GO:0048584	positive regulation of response to stimulus	186	15	2.2	0.006	15	2.9	0.001	
GO:0010627	regulation of protein kinase cascade	155	13	1.9	0.009	10	1.9	0.037	
GO:0008219	cell death	507	29	4.2	0.012	25	4.9	0.013	
GO:0032680	regulation of tumor necrosis factor production	27	5	0.7	0.014	5	1.0	0.007	
GO:0016265	death	519	29	4.2	0.017	26	5.1	0.009	
GO:0045785	positive regulation of cell adhesion	43	6	0.9	0.017	10	1.9	0.000	
GO:0050778	positive regulation of immune response	136	11	1.6	0.022	10	1.9	0.018	
GO:0043123	positive regulation of I-kappaB kinase/NF-kappaB cascade	33	5	0.7	0.028	5	1.0	0.015	
GO:0002684	positive regulation of immune system process	206	14	2.0	0.030	12	2.3	0.038	
GO:0001763	morphogenesis of a branching structure	125	10	1.4	0.032	10	1.9	0.011	
GO:0042981	regulation of apoptosis	553	29	4.2	0.034	27	5.3	0.011	
GO:0060322	head development	21	4	0.6	0.036	4	0.8	0.022	
GO:0007596	blood coagulation	70	7	1.0	0.036	7	1.4	0.016	
GO:0050817	coagulation	70	7	1.0	0.036	7	1.4	0.016	
GO:0051781	positive regulation of cell division	36	5	0.7	0.037	5	1.0	0.020	
GO:0007599	hemostasis	71	7	1.0	0.038	7	1.4	0.017	
GO:0043067	regulation of programmed cell death	560	29	4.2	0.039	27	5.3	0.012	
GO:0010941	regulation of cell death	563	29	4.2	0.042	27	5.3	0.014	
GO:0048754	branching morphogenesis of a tube	93	8	1.2	0.045	8	1.6	0.018	

			Skin-selective IRITs			Kidney-selective IRITs			
Term (Molecular Function Category)		Genes in Category	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value	
GO:0001871	pattern binding	128	20	2.9	0.000	20	3.9	0.000	
GO:0003779	actin binding	288	21	3.0	0.003	24	4.7	0.000	
GO:0004857	enzyme inhibitor activity	243	18	2.6	0.006	16	3.1	0.005	
GO:0004866	endopeptidase inhibitor activity	161	15	2.2	0.002	12	2.3	0.008	
GO:0005201	extracellular matrix structural constituent	30	5	0.7	0.020	9	1.8	0.000	
GO:0005509	calcium ion binding	840	61	8.8	0.000	52	10.1	0.000	
GO:0005539	glycosaminoglycan binding	114	16	2.3	0.000	19	3.7	0.000	
GO:0008092	cytoskeletal protein binding	414	26	3.8	0.007	26	5.1	0.000	
GO:0008201	heparin binding	83	8	1.2	0.027	13	2.5	0.000	
GO:0030246	carbohydrate binding	317	34	4.9	0.000	30	5.8	0.000	
GO:0030247	polysaccharide binding	128	20	2.9	0.000	20	3.9	0.000	
GO:0030414	peptidase inhibitor activity	176	16	2.3	0.001	12	2.3	0.014	

			Skin-selective IRITs			Kidney-selective IRITs		
Term	(Cellular Component Category)	Genes in Category	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value
GO:0005578	proteinaceous extracellular matrix	297	36	5.2	0.000	45	8.8	0.000
GO:0031012	extracellular matrix	309	37	5.4	0.000	46	9.0	0.000
GO:0044420	extracellular matrix part	92	14	2.0	0.000	22	4.3	0.000
GO:0044421	extracellular region part	774	80	11.6	0.000	73	14.2	0.000

END Table 3.7.
	GenBank ID	Gene Name	Roche NimbleGen Annotation
1	AK028217	0610010O12Rik	embryo whole body
2	XM 001474332	1110025L11Rik	RIKEN 1110025L11 gene (1110025L11Rik)
3		1700021C14Rik	RIKEN 1700021C14 gene
4	BC025637	1700029G01Rik	RIKEN 1700029G01 gene
5	AK039052	2010300C02Rik	adult male hypothalamus
6	BC065789	2310007H09Rik	RIKEN 2310007H09 gene
7	BC043033	2310057J16Rik	RIKEN 2310057J16 gene
8	BC133700	2310061N02Rik	RIKEN 2310061N02 gene
9	AK019114	2400009B08Rik	ES cells
10	BC052467	2410066E13Rik	RIKEN 2410066E13 gene
11	BC099613	2610019F03Rik	RIKEN 2610019F03 gene
12	AK162965	2610507l01Rik	adult male spinal cord
13	BC013800	2810432L12Rik	RIKEN 2810432L12 gene
14	AK015576	4930474M22Rik	adult male testis
15	BC085508	4930481A15Rik	RIKEN 4930481A15 gene
16	BC049703	4933411K16Rik	RIKEN 4933411K16 gene
17	XM_001478748	4933423P22Rik	RIKEN 4933423P22 gene (4933423P22Rik)
18	BC060136	4933431E20Rik	RIKEN 4933431E20 gene
19	AK017319	5430419D17Rik	6 days neonate head
20	AK133718	5430421N21Rik	6 days neonate head
21	AK036974	5930430L01Rik	adult female vagina
22	NM_001101461	9130204L05Rik	RIKEN 9130204L05 gene (9130204L05Rik)
23	AK034141	9330159F19Rik	adult male diencephalon
24	XM_001471948	A230103O09Rik	RIKEN A230103O09 gene (A230103O09Rik)
25	BC075684	A430105l19Rik	RIKEN A430105I19 gene
26	BC096642	A530016L24Rik	RIKEN A530016L24 gene
27	AK040806	A530026G17	adult male aorta and vein
28	BC079617	Abca3	ATP-binding cassette, sub-family A (ABC1)
29	BC026770	Abhd3	abhydrolase domain containing 3
30	AK154494	Ablim2	NOD-derived CD11c +ve dendritic cells
31	BC019882	Acaa1b	acetyl-Coenzyme A acyltransferase 1B
32	AK008207	Acbd4	adult male small intestine
33	BC108959	Acot10	acyl-CoA thioesterase 10
34	BC030930	Acss1	acyl-CoA synthetase short-chain family member 1
35	BC080806	Actr3	ARP3 actin-related protein 3 homolog (yeast)
36	AK035798	Actr3b	16 days neonate cerebellum
37	AK142441	Adam17	13 days embryo stomach
38	BC013477	Adh1	alcohol dehydrogenase 1 (class I)
39	BC047267	Adh7	alcohol dehydrogenase 7 (class IV)
40	BC026584	Adhfe1	alcohol dehydrogenase, iron containing
41	BC028770	Adipoq	adiponectin, C1Q and collagen domain containing
			Table 3.8 continued on next page.

Table 3.8: 465 unique skin-associated transcripts and their annotation, listed in alphabetical order by Gene Name. (Table continued on next page.)

Table 3.8: (continued...)

	GenBank ID	Gene Name	Roche NimbleGen Annotation
42	BC052061	Aff3	AF4/FMR2 family
43	AF057287	Agfg1	RAB/Rip protein
44	BC063086	Agps	alkylglycerone phosphate synthase
45	AK134826	Agrn	adult male medulla oblongata
46	AK144241	Aldh3a1	colon RCB-0549 Cle-H3
47	BC031148	Aldh6a1	aldehyde dehydrogenase family 6
48	BC013751	Alox12e	arachidonate lipoxygenase, epidermal
49	BC011110	Amd1	S-adenosylmethionine decarboxylase 1
50	NM_001110505	Amy1	amylase 1, salivary (Amy1)
51	M11896	Amy2b	Mouse pancreatic amylase B-1
52	BC140357	Ang2	angiogenin
53	BC023373	Angptl7	angiopoietin-like 7
54	AK144563	Apol6	adult male vesicular gland
55	AK037070	Ar	adult female vagina
56	AK039617	Arhgap24	adult male spinal cord
57	AK167978	Arpc1b	CRL-1722 L5178Y-R
58	BC060143	Arpc5	actin related protein 2/3 complex
59	BC052393	Arvcf	armadillo repeat gene deleted in velo-cardio-facial syndrome
60	BC013479	AU018778	expressed sequence AU018778
61	BC119613	AY026312	sequence AY026312
62	BC019406	Bbox1	butyrobetaine (gamma), 2-oxoglutarate dioxygenase 1
63	BC038904	BC006965	sequence BC006965
64	AK031825	Bcas1	adult male medulla oblongata
65	M99492	Bche	Mouse butyrylcholinesterase
66	BC003787	Bckdha	branched chain ketoacid dehydrogenase E1
67	BC036998	Bdh2	3-hydroxybutyrate dehydrogenase
68	AK147534	Bmp1	RIKEN full-length enriched library
69	BC013459	Bmp4	bone morphogenetic protein 4
70	BC011251	C6	complement component 6
71	BC058676	Cachd1	cache domain containing 1
72	BC056389	Cacna2d2	calcium channel, voltage-dependent
73	BC079837	Cadm3	immunoglobulin superfamily
74	BC054783	Calcoco1	calcium binding and coiled coil domain 1
75	BC016232	Capza1	capping protein (actin filament) muscle Z-line
76	AK051470	Cbara1	12 days embryo spinal ganglion
77	AK045714	Cbx7	adult male corpora quadrigemina
78	BC006583	Ccdc136	coiled-coil domain containing 136
79	BC096547	Ccdc67	coiled-coil domain containing 67
80	BC107226	Ccl27a	chemokine (C-C motif) ligand 27
81	AK011412	Ccnd2	10 days embryo whole body
82	NM_001097644	Ccnyl1	cyclin Y-like 1 (Ccnyl1)

Table 3.8: (continued...)

	GenBank ID	Gene Name	Roche NimbleGen Annotation
83	AK007973	Ccpg1	10 day old male pancreas
84	AY072796	Ccrl1	chemokine receptor CCX CKR
85	BC054759	Cd200	Cd200 antigen
86	BC146457	Cd207	CD 207 antigen, Langerin (Langerhans cells)
87	BC141546	Cd209b	CD209b antigen, DC-SIGN
88	AK007638	Cd209f	10 day old male pancreas
89	AK137770	Cd27	16 days neonate thymus
90	AK135381	Cd82	12 days embryo female mullerian duct includes surrounding region
91	AK044291	Cdc37/1	adult retina
92	BC013638	Cdo1	cysteine dioxygenase 1
93	BC019198	Ces3	carboxylesterase 3
94	AK018143	Cgn	adult male medulla oblongata
95	BC099676	Cidec	cell death-inducing DFFA-like effector c
96	BC019860	Cisd1	CDGSH iron sulfur domain 1
97	BC010260	Clca1	chloride channel calcium activated 1
98	AK040195	Clic5	0 day neonate thymus
99	AB059646	Clmn	calmin isoform e calmin delta
100	BC053843	Clstn1	calsyntenin 1
101	BC079897	Cltc	clathrin, heavy polypeptide (Hc)
102	AK049730	Cobl	12 days embryo spinal cord
103	BC057648	Col4a6	collagen, type IV
104	BC085498	Coro1c	coronin, actin binding protein 1C
105	BC018397	Crabp2	cellular retinoic acid binding protein II
106	BC006668	Crat	carnitine acetyltransferase
107	BC116360	Crip3	cysteine-rich protein 3
108	BC094033	Cryab	crystallin, alpha B
109	BC045159	Crym	crystallin, mu
110	AK140960	Ctnnd2	16 days embryo head
111	AK081137	Cttnbp2	10 days neonate cerebellum
112	BC055353	CU104690.1	clone IMAGE:5054356
113	BC056974	Cyfip2	cytoplasmic FMR1 interacting protein 2
114	AK029227	Cyp2b19	0 day neonate head
115	BC013451	Cyp2e1	cytochrome P450
116	BC011089	Cyp2f2	cytochrome P450
117	NM_001100182	Cyp2j12	cytochrome P450
118	BC119556	Cyp2j9	cytochrome P450
119	BC051993	Dab1	disabled homolog 1 (Drosophila)
120	BC024378	Dad1	defender against cell death 1
121	BC116916	Dapl1	death associated protein-like 1
122	BC005583	Darc	Duffy blood group, chemokine receptor
123	BC022712	Dci	trans-enoyl-Coenyme A isomerase)

Table 3.8: (continued...)

	GenBank ID	Gene Name	Roche NimbleGen Annotation
124	BC024380	Defb1	defensin beta 1
125	BC119422	Defb6	defensin beta 6
126	BC075715	Dmpk	dystrophia myotonica-protein kinase
127	AK122431	Dock9	mKIAA1058 protein.
128	AK168478	Dynlt1	13 days embryo liver
129	AJ537610	Dyrk1b	dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1b
130	BC044854	E330016A19Rik	RIKEN E330016A19 gene
131	BC140220	Ear10	eosinophil-associated, member 10
132	BC148661	Ear3	eosinophil-associated, member 3
133	BC117776	Ear5	eosinophil-associated, member 5
134	NM_001110195	Echdc1	enoyl Coenzyme A hydratase domain containing 1 (Echdc1)
135	BC065151	Ecm2	extracellular matrix protein 2
136	BC117702	Egfl6	EGF-like-domain
137	BC049160	Elmod1	ELMO domain containing 1
138	BC022911	Elovl5	ELOVL family member 5, elongation of long chain fatty acids (yeast)
139	BC041670	Emp2	epithelial membrane protein 2
140	AK177529	Enpp2	clone:Y0G0103A19
141	AJ245853	Epb4.112	partial 4.1G protein (Epb4.1l2 gene).
142	AK165783	Epb4.1I4b	adult male intestinal mucosa
143	BC057857	Ephx1	epoxide hydrolase 1
144	BC019558	Erp44	thioredoxin domain containing 4 (endoplasmic reticulum)
145	BC120890	Extl1	exostoses (multiple)-like 1
146	U61110	Eya1	Eya1 homolog
147	BC050213	Fads6	fatty acid desaturase domain family
148	BC010767	Fah	fumarylacetoacetate hydrolase
149	BC030182	Fahd2a	rumarylacetoacetate nydrolase domain containing 2A
150	BC038020	Fam111a	RIKEN 4632417K18 gene
151	BC093505	Fam57b	RIKEN 1500016O10 gene
152	BC005745	Fam96a	RIKEN 5730536A07 gene
153	BC027211	Fbxo32	F-box protein 32
154	AK077773	Fcgbp	adult male thymus
155	BC033436	Fermt2	(with FERM domain)
156	BC048229	Fgf10	fibroblast growth factor 10
157	BC152852	Fgf18	fibroblast growth factor 18
158	BC119135	Fgf22	fibroblast growth factor 22
159	BC065069	Fgfr2	fibroblast growth factor receptor 2
160	L23636	FIt3I	Mouse flt3 ligand
161	AK135758	Fmn1	in vitro fertilized eggs
162	AK133675	Fmo5	adult male pituitary gland
163	AK081259	Fyco1	adult male corpus striatum

Table 3.8: (continued...)

	GenBank ID	Gene Name	Roche NimbleGen Annotation
164	BC056990	Gabbr1	gamma-aminobutyric acid (GABA-B) receptor
165	AK082864	Gas2l1	ES cells
166	AK156634	Gata3	activated spleen
167	BC006663	Gba	glucosidase, beta
168	BC011148	Gjb5	gap junction protein, beta 5
169	AK143057	Glb1l2	0 day neonate eyeball
170	BC082561	Glt8d2	glycosyltransferase 8 domain containing 2
171	XM_001474426	Gm10061	similar to MGC58416 protein (LOC100040281)
172	XM_001474297	Gm10228	similar to keratin associated protein 6-1 (LOC100040214)
173	XM_001474256	Gm10229	(LOC100040201)
174	XM_001474347	Gm11563	similar to Keratin associated protein 4-7 (LOC100040248)
175	XM_001474444	Gm11564	similar to 2300006N05Rik protein (LOC670496)
176	NM_001101613	Gm11567	similar to ultra-high sulphur keratin (LOC670533)
177	XM_001474404	Gm11595	similar to 2300006N05Rik protein (LOC100040276)
178	NM_001099311	Gm11596	novel member of the keratin associated protein 4 (Krtap4) family (LOC670464)
179	XM_001477787	Gm11937	similar to Krtap2-4 protein (LOC100041488)
180	BC118042	Gm12568	RIKEN 2810416G20 gene
181	NM_001085536	Gm13178	similar to arylacetamide deacetylase (LOC546849)
182	AK005520	Gm13306	adult female placenta
183	XM_001474208	Gm13667	protein LOC100040172 (LOC100040172)
184	XM_001481030	Gm14066	protein LOC100043792 (LOC100043792)
185	XM_891736	Gm1614	gene model 1614
186	XM_001472234	Gm2069	protein LOC100039151 (LOC100039151)
187	XM_001473717	Gm2472	protein LOC100039880 (LOC100039880)
188	XM_001474192	Gm2640	similar to Ubtf protein (LOC100040164)
189	XM_001474181	Gm2692	similar to MGC58416 protein (LOC100040288)
190	XM_001474233	Gm2724	similar to keratin associated protein 20-2 (LOC100040346)
191	XM_001474267	Gm2740	similar to MGC58416 protein (LOC100040374)
192	XM_001474343	Gm2758	similar to MGC58416 protein (LOC100040415)
193	XM_001474371	Gm2764	similar to MGC58416 protein (LOC100040425)
194	XM_001474418	Gm2782	similar to keratin associated protein 21-1 (LOC100040456)
195	XM_001475284	Gm2957	similar to Ubtf protein (LOC100040768)
196	XM_001480779	Gm4552	similar to keratin associated protein 5-5 (LOC100043616)
197	XM_001480790	Gm4559	protein LOC100043627 (LOC100043627)
198	XM_001480974	Gm4653	protein LOC100043795 (LOC100043795)
199	XM_001475540	Gm5509	similar to zinc finger
200	XM_990264	Gm577	LOC667386 (LOC667386)
201	XM_001472135	Gm6127	similar to dentin sialophosphoprotein precursor (LOC620104)
202	XM_896406	Gm6217	EG621362 (EG621362)

Table 3.8: (continued...)

	GenBank ID	Gene Name	Roche NimbleGen Annotation
203	XM_897326	Gm6358	EG622794 (EG622794)
204	XM_897455	Gm6381	EG622998 (EG622998)
205	XM_897466	Gm6383	EG623011 (EG623011)
206	XM_897479	Gm6385	EG623026 (EG623026)
207	XM_897498	Gm6388	EG623049 (EG623049)
208	XM_890670	Gm6525	EG624713 (EG624713)
209	XM_001474703	Gm7262	EG639116 (EG639116)
210	XM_924640	Gm7288	EG640223 (EG640223)
211	XM_978919	Gm7303	EG640636 (EG640636)
212	XM_001474284	Gm7304	similar to MGC58416 protein (LOC640652)
213	XM_001474324	Gm7305	similar to MGC58416 protein (LOC640654)
214	XM_974788	Gm7510	EG665134 (EG665134)
215	XM_975463	Gm7544	similar to keratin associated protein 5-2 (LOC665225)
216	XM_975542	Gm7548	EG665236 (EG665236)
217	XM_978513	Gm7735	EG665661 (EG665661)
218	AK142214	Gm8113	13 days embryo heart
219	XM_001474147	Gm9789	ENSMUSG00000044227 (ENSMUSG00000044227)
220	XM_001477636	Gm9790	similar to hypoxia induced gene 1
221	XM_001474241	Gm9829	similar to sequence AY026312 (LOC100040191)
222	BC059712	Gng13	guanine nucleotide binding protein 13, gamma
223	AK168707	Gsn	16 days embryo kidney
224	BC003822	Gstm1	glutathione S-transferase, mu1
225	BC008206	Gstm5	glutathione S-transferase, mu 5
226	BC012254	Gstt1	glutathione S-transferase, theta 1
227	BC062201	Gstt3	glutathione S-transferase, theta 3
228	AB041613	Gstz1	brain
229	BC086927	H2-Ke6	H2-K region expressed gene 6
230	AK083190	Hhip	adult male hippocampus
231	BC132371	Higd1a	HIG1 domain family
232	BC057693	HIf	hepatic leukemia factor
233	BC118008	Hrnr	hornerin
234	BC094508	Hspa13	stress 70 protein chaperone, microsome- associated
235	BC011219	Hspb8	heat shock protein 8
236	M83997	Hspg2	
237	BC017372	Htatip2	HIV-1 tat interactive protein 2, homolog (human)
238	BC006921	ld2	inhibitor of DNA binding 2
239	NM_001110498	lfnar2	interferon (alpha and beta) receptor 2 (Ifnar2)
240	BC053409	lgh-6	immunoglobulin heavy chain 6 (heavy chain of IgM)
241	BC145791	ll10rb	interleukin 10 receptor, beta
242	BC013518	Inmt	indolethylamine N-methyltransferase

Table 3.8: (continued...)

	GenBank ID	Gene Name	Roche NimbleGen Annotation
243	AY162380	lrak2	interleukin-1 receptor-associated kinase 2c (Irak2)
244	BC156076	lrs1	insulin receptor substrate 1
245	AK077398	lsm1	6 days neonate head
246	BC058095	ltga6	integrin alpha 6
247	BC050906	ltgb1	integrin beta 1 (fibronectin receptor beta)
248	BC043314	ltih5	inter-alpha (globulin) inhibitor H5
249	AK049015	ltpr1	0 day neonate cerebellum
250	BC018325	lvd	isovaleryl coenzyme A dehydrogenase
251	AK147945	Kank1	melanocyte
252	AK155095	Kazald1	NOD-derived CD11c +ve dendritic cells
253	BC033442	Kcnj16	potassium inwardly-rectifying channel, subfamily J
254	NM_001109040	Kif21a	kinesin family member 21A (Kif21a)
255	BC013486	Klf15	Kruppel-like factor 15
256	BC052438	Kpnb1	karyopherin (importin) beta 1
257	BC057934	Krt15	keratin 15
258	BC003472	Krt23	keratin 23
259	BC129847	Krt24	keratin 24
260	BC029257	Krt33a	keratin 33A
261	BC125420	Krt34	keratin 34
262	BC156168	Krt72	keratin 72
263	AF312018	Krt81	type II hair keratin
264	BC132658	Krtap16-10	keratin associated protein 16-10
265	BC156156	Krtap16-8	keratin associated protein 16-8
266	NM_001099774	Krtap17-1	keratin associated protein 17-1 (Krtap17-1)
267	XM_896462	Krtap19-7	EG621595
268	XM_897414	Krtap20-2	EG622935 (EG622935)
269	XM_897249	Krtap22-2	RIKEN 1110032D16 gene (1110032D16Rik)
270	XM_001477761	Krtap2-4	keratin associated protein 2-4 (Krtap2-4)
271	XM_896478	Krtap28-10	similar to keratin associated protein 5-2 (LOC621495)
272	D86424	Krtap3-1	high-sulfur keratin protein
273	BC117058	Krtap3-2	keratin associated protein 3-3
274	BC120760	Krtap3-3	keratin associated protein 3-3
275	BC016249	Krtap4-16	predicted gene
276	BC156698	Krtap4-2	keratin associated protein 4-2
277	NM_026834	Krtap4-6	RIKEN 1110054P19 gene (1110054P19Rik)
278	BC115508	Krtap4-7	keratin associated protein 4-7
279	NM_001085547	Krtap4-8	novel member of the keratin associated protein 4 (Krtap4) family (LOC665992)
280	NM_001085548	Krtap4-9	novel member of the keratin associated protein 4 (Krtap4) family (LOC665998)
281	BC156385	Krtap5-1	keratin associated protein 5-1
282	BC107313	Krtap6-1	keratin associated protein 6-1

Table 3.8: (continued...)

	GenBank ID	Gene Name	Roche NimbleGen Annotation
283	XM_001474473	Krtap7-1	RIKEN 5430433J05 gene (5430433J05Rik)
284	AK133727	Krtap8-1	10 days neonate head
285	BC116210	Krtap9-1	keratin associated protein 9-1
286	BC030890	Lgals12	lectin, galactose binding
287	AK029526	Lgals8	adult male testis
288	BC055741	Lhx2	LIM homeobox protein 2
289	AK170166	Limk1	NOD-derived CD11c +ve dendritic cells
290	DQ003608	Lims1	LIM and senescent cell antigen-like domains 1
291	BC021642	Lipe	lipase
292	AK013259	LOC100189605	embryo whole body
293	AK051967	Lrp4	12 days embryo eyeball
294	AK008713	Lrrc28	adult male stomach
295	BC006877	Lrrc59	leucine rich repeat containing 59
296	AK157031	Ltbp4	activated spleen
297	BC115521	Lxn	latexin
298	AJ315547	Ly6g6c	truncated Ly6g6c protein (Ly6g6c gene), splice variant 2.
299	BC031461	Maged1	melanoma antigen, family D
300	AK036505	Manba	adult male bone
301	BC054754	Map2k1	mitogen activated protein kinase kinase 1
302	BC040381	Map4k5	mitogen-activated protein kinase kinase kinase kinase kinase 5
303	AK075781	Mcfd2	10 day old male pancreas
304	BC111520	MgI2	macrophage galactose N-acetyl-galactosamine specific lectin 2
305	BC057965	Mgll	monoglyceride lipase
306	BC027526	MIf1	myeloid leukemia factor 1
307	AK160235	Мтаа	embryo whole body
308	BC013444	Мрр1	membrane protein, palmitoylated
309	AK161666	Mpped2	8 days embryo whole body
310	BC012221	Mup1	major urinary protein 1
311	AJ309921	Мир10	major urinary protein (group 1 major urinary protein gene).
312	AK013972	Mup11	13 days embryo head
313	XM_001472149	Mup12	similar to major urinary protein 1 (LOC100039054)
314	XM_001472190	Mup13	similar to major urinary protein 1 (LOC100039089)
315	XM_001472299	Mup16	similar to major urinary protein 1 (LOC100039177)
316	XM_001472354	Mup17	similar to major urinary protein 1 (LOC100039206)
317	XM_001472374	Мир18	similar to major urinary protein 1 (LOC100039228)
318	BC012259	Mup2	major urinary protein 2
319	BC132310	Мир5	major urinary protein 5
320	XM_001471958	Mup9	similar to major urinary protein 1 (LOC100038948)
321	BC048518	N/A	protein LOC622866
322	BC003307	Nans	N-acetylneuraminic acid synthase (sialic acid synthase)

Table 3.8: (continued...)

	GenBank ID	Gene Name	Roche NimbleGen Annotation
323	AK049772	Nfib	12 days embryo spinal cord
324	AB196497	Nfkbiz	IkappaB-zeta IkappaB-zeta(D)
325	AK087325	Nipal2	0 day neonate lung
326	AK165116	Nkd2	2 days pregnant adult female ovary
327	BC002019	Nmi	N-myc (and STAT) interactor
328	AB004048	Nnat	neuronatin
329	AK079196	Npr3	adult male urinary bladder
330	BC060532	Nrcam	neuron-glia-CAM-related cell adhesion molecule
331	AK076951	Ntrk3	adult male testis
332	BC076581	Opcml	opioid binding protein/cell adhesion molecule-like
333	BC012725	Orm1	orosomucoid 1
334	AY038074	Osr2	odd-skipped related 2
335	XM_001474519	Gm11559	OTTMUSG0000002191 (OTTMUSG0000002191)
336	XM_991213	Otud1	OTU domain containing 1 (Otud1)
337	BC015297	Palm	paralemmin
338	BC156243	Pappa	pregnancy-associated plasma protein A
339	AK161542	Paqr7	10 days neonate intestine
340	AK008055	Pard3b	adult male small intestine
341	BC051174	Pcolce2	procollagen C-endopeptidase enhancer 2
342	AK172320	Рсх	activated spleen
343	BC004809	Pdlim1	PDZ and LIM domain 1 (elfin)
344	BC115886	Pdzd2	PDZ domain containing 2
345	AK036345	Per3	16 days neonate cerebellum
346	AK076776	Pex11a	adult male testis
347	EU034675	Pfkfb3	6-phosphofructo-2-kinase/fructose-2,6- biphosphatase 3
348	BC024363	Pfn2	profilin 2
349	AK008665	Pgam1	adult male stomach
350	BC108372	Pgk1	phosphoglycerate kinase 1
351	AK207773	Pgs1	clone:Y2G0109B09
352	NM_001102613	Phidb3	pleckstrin homology-like domain, family B
353	BC011470	Picalm	phosphatidylinositol binding clathrin assembly protein
354	BC085501	Pik3r2	phosphatidylinositol 3-kinase, regulatory subunit
355	AK034517	Pisd-ps3	adult male diencephalon
356	BC070452	Pitpnm2	phosphatidylinositol transfer protein
357	BC030899	Pla2g5	phospholipase A2, group V
358	BC025841	Plekha6	pleckstrin homology domain containing
359	BC058945	Pnkd	paroxysmal nonkinesiogenic dyskinesia
360	BC019188	Pnpla2	patatin-like phospholipase domain containing 2
361	BC028792	Pnpla3	patatin-like phospholipase domain containing 3
362	AK014771	Pnpla5	0 day neonate head

Table 3.8: (continued...)

	GenBank ID	Gene Name	Roche NimbleGen Annotation
363	AK149460	Ppara	adult male liver tumor
364	BC066868	Ppargc1a	peroxisome proliferative activated receptor, gamma
365	BC052769	Ppp1r3c	protein phosphatase 1, regulatory (inhibitor) subunit 3C
366	BC059811	Ppp2r2c	protein phosphatase 2 (formerly 2A), regulatory subunit B (PR 52)
367	AK087749	Prir	2 days pregnant adult female ovary
368	BC125327	Prodh	proline dehydrogenase
369	XM_001480001	Prr24	RIKEN 2610014I16 gene
370	AK021185	Prss36	ES cells
371	AK153093	Psat1	bone marrow macrophage
372	BC056196	Psmd10	proteasome (prosome, macropain) 26S subunit
373	BC002064	Ptn	pleiotrophin
374	AK086515	Ptpn14	15 days embryo head
375	D83072	Ptpn21	PTP-RL10b
376	AK045359	Rapgefl1	adult male corpora quadrigemina
377	AK077393	Rarres1	6 days neonate head
378	AK133054	Rbms1	adult male testis
379	BC026811	Rdm1	RAD52 motif 1
380	BC029741	Reep6	receptor accessory protein 6
381	AK167648	Renbp	15 days pregnant adult female placenta
382	BC051196	Retn	resistin
383	AK161129	Rgs12	10 days neonate skin
384	BC033271	Riok3	RIO kinase 3 (yeast)
385	BC146014	Rnase12	ribonuclease, RNase A family
386	AK141351	Rnh1	7 days embryo whole body
387	AF163668	Rorc	RORgamma t
388	BC100690	S100a3	S100 calcium binding protein A3
389	BC016096	Scara5	scavenger receptor class A
390	BC118033	Scd3	stearoyl-coenzyme A desaturase 3
391	BC112380	Scel	sciellin
392	BC063328	Scin	scinderin
393	BC019400	Sdcbp	syndecan binding protein
394	BC064820	Sdr9c7	orphan short chain dehydrogenase/reductase
395	BC026948	Sec14l4	SEC14-like 4 (S. cerevisiae)
396	BC034610	Sec23a	SEC23A (S. cerevisiae)
397	AK134412	Sema3d	13 days embryo male testis
398	BC057956	Sema3e	sema domain, immunoglobulin domain (lg)
399	AK141915	Sept3	12 days embryo spinal ganglion
400	BC125418	Serpina3b	serine (or cysteine) peptidase inhibitor, clade A, member 3B
401	BC116724	Serpina3c	serine (or cysteine) peptidase inhibitor, clade A, member 3C
402	BC132647	Serpina3h	serine (or cysteine) peptidase inhibitor, clade A, member 3H

Table 3.8: (continued...)

	GenBank ID	Gene Name	Roche NimbleGen Annotation
403	BC156605	Sh3kbp1	SH3-domain kinase binding protein 1
404	BC036172	Shc1	src homology 2 domain-containing transforming protein C1
405	BC049934	Skil	SKI-like
406	AK040044	Skint10	0 day neonate thymus
407	EU099306	Skint7	selection and upkeep of intraepithelial T cells 7
408	EU099308	Skint8	selection and upkeep of intraepithelial T cells 8
409	AJ493663	SIc11a2	divalent metal transporter
410	BC058711	Slc1a3	solute carrier family 1 (glial high affinity glutamate transporter)
411	BC017615	SIc24a3	solute carrier family 24 (sodium/potassium/calcium exchanger)
412	AK018566	SIc26a3	adult male colon
413	BC116314	Slc2a12	solute carrier family 2 (facilitated glucose transporter)
414	AK002607	SIc38a3	adult male kidney
415	BC005474	Slc39a1	solute carrier family 39 (zinc transporter)
416	BC027516	Slc7a10	solute carrier family 7 (cationic amino acid transporter, y+ system)
417	AK132394	Slco2b1	1 day pregnant adult female mammary gland
418	AK031280	SIco3a1	13 days embryo male testis
419	AK040931	Smoc1	adult male aorta and vein
420	AK172312	Smoc2	activated spleen
421	AK147087	Snap91	RIKEN full-length enriched library
422	BC003748	Sntb1	syntrophin, basic 1
423	BC085245	Socs6	suppressor of cytokine signaling 6
424	AK217459	Sorbs1	clone:Y2G0141N17
425	AK004941	Spr	adult male liver
426	BC003227	Sptlc2	serine palmitoyltransferase, long chain base subunit 2
427	BC056392	Srrm4	serine/arginine repetitive matrix 4
428	BC019168	Stat3	signal transducer and activator of transcription 3
429	BC005413	Sult1a1	sulfotransferase family 1A
430	BC012677	Sult5a1	sulfotransferase family 5A
431	BC003280	Surf4	surfeit gene 4
432	AK082445	Syn3	0 day neonate cerebellum
433	AK004560	Tanc1	adult male lung
434	BC128306	Tcf7l1	transcription factor 3
435	AK035827	Tcfap2b	16 days neonate cerebellum
436	XM_001000857	Tchh	trichohyalin (Tchh)
437	AK027965	Tef	18-day embryo whole body
438	AK010463	Tesc	ES cells
439	AK015337	Tgfbr1	adult male testis
440	BC014713	Timp3	tissue inhibitor of metalloproteinase 3
441	BC039182	Ticd1	TLC domain containing 1
442	BC004641	Tmem111	transmembrane protein 111

	GenBank ID	Gene Name	Roche NimbleGen Annotation
443	BC006689	Tmem159	transmembrane protein 159
444	NM_001085508	Tmem8b	transmembrane protein 8B
445	BC082588	Tob1	transducer of ErbB-2.1
446	BC069857	Tpcn2	two pore segment channel 2
447	AK168843	Трт3	17 days pregnant adult female amnion
448	BC023701	Tpm4	tropomyosin 4
449	BC054803	Тррр	tubulin polymerization promoting protein
450	BC106114	Trappc6a	trafficking protein particle complex 6A
451	BC034276	Trim25	tripartite motif protein 25
452	NM_001110202	Trim9	tripartite motif protein 9 (Trim9)
453	BC018317	Tspan13	tetraspanin 13
454	BC043072	Tspan3	tetraspanin 3
455	BC030922	Tspyl4	TSPY-like 4
456	BC005644	Tst	thiosulfate sulfurtransferase, mitochondrial
457	AK016396	Ttll10	adult male testis
458	BC066058	Tyro3	TYRO3 protein tyrosine kinase 3
459	XM_885266	Vmn2r72	EG244114 (EG244114)
460	NM_001110015	Wdr36	WD repeat domain 36 (Wdr36)
461	BC060187	Wnk2	WNK lysine deficient protein kinase 2
462	AK164356	Ywhag	12 days embryo spinal ganglion
463	BC080272	Zfp365	zinc finger protein 365
464	BC108353	Zfp772	sequence BC023179
465	AK047931	Zfp826	16 days embryo head

END Table 3.8.

	Top 20 Annotations in Biological Process Category (total n=113, <i>p</i> <0.05)	Genes in Category	Genes in KTs in Category	% of Genes in KTs in Category	<i>p</i> -value
GO:0055085	transmembrane transport	460	48	7.8	0.000
GO:0046395	carboxylic acid catabolic process	81	19	3.1	0.000
GO:0016054	organic acid catabolic process	81	19	3.1	0.000
GO:0006814	sodium ion transport	125	21	3.4	0.000
GO:0006006	glucose metabolic process	140	21	3.4	0.000
GO:0009063	cellular amino acid catabolic process	54	13	2.1	0.000
GO:0005996	monosaccharide metabolic process	191	24	3.9	0.000
GO:0009310	amine catabolic process	65	14	2.3	0.000
GO:0019318	hexose metabolic process	169	22	3.6	0.000
GO:0001655	urogenital system development	146	20	3.3	0.000
GO:0001822	kidney development	107	17	2.8	0.000
GO:0006811	ion transport	712	52	8.5	0.000
GO:0015672	monovalent inorganic cation transport	303	29	4.7	0.000
GO:0006570	tyrosine metabolic process	10	6	1.0	0.000
GO:0008202	steroid metabolic process	161	19	3.1	0.000
GO:0006090	pyruvate metabolic process	25	8	1.3	0.000
GO:0006812	cation transport	515	39	6.4	0.000
GO:0006559	L-phenylalanine catabolic process	6	5	0.8	0.000
GO:0006094	gluconeogenesis	20	7	1.1	0.000
GO:0009069	serine family amino acid metabolic process	22	7	1.1	0.000

Table 3.9: Kidney-associated transcripts (KTs) top gene ontology (GO) annotations within biological process, molecular function, and cellular compartment categories. *P*-value is representative of a hypergeometric test from selecting the KTs found within each GO category by chance alone. Sorted by increasing *p*-value. (Table continued on next page.)

Table 3.9: (continued...)

Table 3.9: (continued)							
	Top 20 Annotations in Molecular Function Category (total n=51, <i>p</i> <0.05)	Genes in Category	Genes in KTs in Category	% of Genes in KTs in Category	<i>p</i> -value		
GO:0031402	sodium ion binding	103	21	3.4	0.000		
GO:0031420	alkali metal ion binding	206	28	4.6	0.000		
GO:0015293	symporter activity	132	22	3.6	0.000		
GO:0048037	cofactor binding	226	28	4.6	0.000		
GO:0019842	vitamin binding	121	19	3.1	0.000		
GO:0046906	tetrapyrrole binding	151	20	3.3	0.000		
GO:0016712	oxidoreductase activity	44	11	1.8	0.000		
GO:0050662	coenzyme binding	160	20	3.3	0.000		
GO:0009055	electron carrier activity	202	22	3.6	0.000		
GO:0020037	heme binding	144	18	2.9	0.000		
GO:0016229	steroid dehydrogenase activity	29	8	1.3	0.000		
GO:0008509	anion transmembrane transporter activity	130	16	2.6	0.000		
GO:0016836	hydro-lyase activity	42	9	1.5	0.000		
GO:0033764	steroid dehydrogenase activity, acting on the CH- OH group of donors, NAD or NADP as acceptor	23	7	1.1	0.000		
GO:0015103	inorganic anion transmembrane transporter activity	24	7	1.1	0.000		
GO:0015103	inorganic anion transmembrane transporter activity	24	7	1.1	0.000		
GO:0004089	carbonate dehydratase activity	18	6	1.0	0.000		
GO:0015101	organic cation transmembrane transporter activity	11	5	0.8	0.001		
GO:0005506	iron ion binding	343	27	4.4	0.001		
GO:0016620	oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor	29	7	1.1	0.001		

	Top Annotations in Cellular Component Category (total n=19, <i>p</i> <0.05)	Genes in Category	Genes in KTs in Category	% of Genes in KTs in Category	<i>p</i> -value
GO:0000267	cell fraction	596	56	9.1	0.000
GO:0005792	microsome	176	26	4.2	0.000
GO:0042598	vesicular fraction	182	26	4.2	0.000
GO:0005626	insoluble fraction	528	46	7.5	0.000
GO:0005624	membrane fraction	510	44	7.2	0.000
GO:0044421	extracellular region part	774	51	8.3	0.000
GO:0005759	mitochondrial matrix	163	18	2.9	0.000
GO:0031980	mitochondrial lumen	163	18	2.9	0.000
GO:0005615	extracellular space	511	37	6.0	0.000
GO:0044429	mitochondrial part	524	36	5.9	0.000
GO:0005576	extracellular region	1680	87	14.2	0.001
GO:0005743	mitochondrial inner membrane	296	23	3.8	0.001
GO:0005783	endoplasmic reticulum	838	48	7.8	0.002
GO:0019866	organelle inner membrane	312	23	3.8	0.003
GO:0031966	mitochondrial membrane	368	25	4.1	0.005
GO:0005740	mitochondrial envelope	391	25	4.1	0.010
GO:0031526	brush border membrane	14	4	0.7	0.013
GO:0005604	basement membrane	73	8	1.3	0.017
GO:0005905	coated pit	32	5	0.8	0.029

Table 3.9: (continued...)

END Table 3.9.

Table 3.10: Skin-associated transcripts (STs) top gene ontology (GO) annotations within biological process, molecular function, and cellular compartment categories. *P*-value is representative of a hypergeometric test from selecting the STs found within each GO category by chance alone. Sorted by increasing *p*-value. (Table continued on next page.)

	Top 20 Annotations in Biological Process Category (total n=117, <i>p</i> <0.05)	Genes in Category	Genes in STs in Category	% of Genes in STs in Category	<i>p</i> -value
GO:0032271	regulation of protein polymerization	57	11	2.5	0.000
GO:0044087	regulation of cellular component biogenesis	89	13	3.0	0.000
GO:0043254	regulation of protein complex assembly	65	11	2.5	0.000
GO:0030833	regulation of actin filament polymerization	45	9	2.1	0.000
GO:0008064	regulation of actin polymerization or depolymerization	50	9	2.1	0.000
GO:0030832	regulation of actin filament length	51	9	2.1	0.000
GO:0009719	response to endogenous stimulus	184	15	3.4	0.000
GO:0009725	response to hormone stimulus	165	14	3.2	0.000
GO:0032956	regulation of actin cytoskeleton organization	60	9	2.1	0.000
GO:0032970	regulation of actin filament-based process	61	9	2.1	0.000
GO:0051493	regulation of cytoskeleton organization	99	10	2.3	0.000
GO:0007167	enzyme linked receptor protein signaling pathway	273	16	3.6	0.000
GO:0043062	extracellular structure organization	149	11	2.5	0.000
GO:0016054	organic acid catabolic process	81	8	1.8	0.001
GO:0046395	carboxylic acid catabolic process	81	8	1.8	0.001
GO:0032535	regulation of cellular component size	161	11	2.5	0.001
GO:0048545	response to steroid hormone stimulus	60	7	1.6	0.001
GO:0010033	response to organic substance	505	21	4.8	0.001
GO:0001655	urogenital system development	146	10	2.3	0.001
GO:0045893	positive regulation of transcription, DNA- dependent	416	18	4.1	0.001

Table 3.10: (continued...)

	Top Annotations in Molecular Function Category (total n=15, <i>p</i> <0.05)	Genes in Category	Genes in STs in Category	% of Genes in STs in Category	<i>p</i> -value	
GO:0003779	actin binding	288	18	4.1	0.000	
GO:0008092	cytoskeletal protein binding	414	22	5.0	0.000	
GO:0005509	calcium ion binding	840	33	7.5	0.001	
GO:0004522	pancreatic ribonuclease activity	20	5	1.1	0.001	
GO:0016892	endoribonuclease activity, producing 3'- phosphomonoesters	23	5	1.1	0.001	
GO:0001871	pattern binding	128	10	2.3	0.001	
GO:0030247	polysaccharide binding	128	10	2.3	0.001	
GO:0008201	heparin binding	83	8	1.8	0.002	
GO:0016894	endonuclease activity, active with either ribo- or deoxyribonucleic acids and producing 3'- phosphomonoesters	26	5	1.1	0.002	
GO:0030246	carbohydrate binding	317	15	3.4	0.006	
GO:0005539	glycosaminoglycan binding	114	8	1.8	0.009	
GO:0004521	endoribonuclease activity	52	5	1.1	0.022	
GO:0019900	kinase binding	85	6	1.4	0.031	
GO:0004806	triacylglycerol lipase activity	14	3	0.7	0.033	
GO:0046983	protein dimerization activity	340	13	3.0	0.050	

Table 3.10: (continued...)

	Top Annotations in Cellular Component Category (total n=23, <i>p</i> <0.05)	Genes in Category	Genes in STs in Category	% of Genes in STs in Category	<i>p</i> -value
GO:0005882	intermediate filament	137	32	7.3	0.000
GO:0045111	intermediate filament cytoskeleton	140	32	7.3	0.000
GO:0005856	cytoskeleton	1122	70	15.9	0.000
GO:0045095	keratin filament	64	18	4.1	0.000
GO:0044430	cytoskeletal part	774	48	10.9	0.000
GO:0043228	non-membrane-bounded organelle	1919	78	17.8	0.000
GO:0043232	intracellular non-membrane-bounded organelle	1919	78	17.8	0.000
GO:0005912	adherens junction	106	10	2.3	0.001
GO:0015629	actin cytoskeleton	205	14	3.2	0.001
GO:0016323	basolateral plasma membrane	141	11	2.5	0.001
GO:0070161	anchoring junction	123	10	2.3	0.002
GO:0030054	cell junction	470	22	5.0	0.002
GO:0005924	cell-substrate adherens junction	61	7	1.6	0.002
GO:0030055	cell-substrate junction	66	7	1.6	0.003
GO:0044420	extracellular matrix part	92	8	1.8	0.004
GO:0005604	basement membrane	73	7	1.6	0.006
GO:0005578	proteinaceous extracellular matrix	297	15	3.4	0.007
GO:0005925	focal adhesion	57	6	1.4	0.009
GO:0031012	extracellular matrix	309	15	3.4	0.009
GO:0000267	cell fraction	596	23	5.2	0.014

END Table 3.10.

Table 3.11: Overlapping skin-associated (STs) and kidney-associated transcripts (KTs) gene ontology (GO) annotations within biological process, molecular function and cellular compartment categories. *P*-value is representative of a hypergeometric test from selecting the skin or kidney IRITs found within each GO category by chance alone. (Table continued on next page.)

¥		,	Skin-associated (ST)			Kidney-associated (KTs)			
Overlapping GO Biological Process Categories		Genes in Category	Genes in STs in Category	% of Genes in STs in Category	<i>p</i> -value	Genes in KTs in Category	% of Genes in KTs in Category	<i>p</i> -value	
*GO:0009725	response to hormone stimulus	165	14	3.2	0.000	12	2.0	0.037	
*GO:0016054	organic acid catabolic process	81	8	1.8	0.001	19	3.1	0.000	
GO:0046395	carboxylic acid catabolic process	81	8	1.8	0.001	19	3.1	0.000	
GO:0001655	urogenital system development	146	10	2.3	0.001	20	3.3	0.000	
GO:0001822	kidney development	107	8	1.8	0.003	17	2.8	0.000	
GO:0044242	cellular lipid catabolic process	56	6	1.4	0.003	9	1.5	0.001	
GO:0006820	anion transport	130	8	1.8	0.009	15	2.4	0.000	
GO:0060688	regulation of morphogenesis of a branching structure	25	4	0.9	0.010	6	1.0	0.002	
GO:0009309	amine biosynthetic process	73	6	1.4	0.010	10	1.6	0.001	
GO:0016053	organic acid biosynthetic process	141	8	1.8	0.014	15	2.4	0.001	
*GO:0046394	carboxylic acid biosynthetic process	141	8	1.8	0.014	15	2.4	0.001	
*GO:0009063	cellular amino acid catabolic process	54	5	1.1	0.016	13	2.1	0.000	
GO:0007155	cell adhesion	561	18	4.1	0.026	31	5.1	0.021	
GO:0022610	biological adhesion	562	18	4.1	0.026	31	5.1	0.021	
GO:0010817	regulation of hormone levels	128	7	1.6	0.028	10	1.6	0.042	
*GO:0009310	amine catabolic process	65	5	1.1	0.030	14	2.3	0.000	
GO:0006635	fatty acid beta-oxidation	16	3	0.7	0.033	4	0.7	0.018	
GO:0019318	hexose metabolic process	169	8	1.8	0.034	22	3.6	0.000	
GO:0051384	response to glucocorticoid stimulus	19	3	0.7	0.045	4	0.7	0.029	

*indicates the five GO categories annotated from the 39 overlapping transcripts found in both, skin-associated and kidney-associated transcript sets.

Table 3.11: (continued	Table	3.11: (continued
------------------------	-------	---------	-----------

	Skin-selective IRITs			Kidney-selective IRITs		
Overlapping GO Genes in Molecular Function Categories Category	Genes in STs in Category	% of Genes in STs in Category	<i>p</i> -value	Genes in KTs in Category	% of Genes in KTs in Category	<i>p</i> -value

There were no overlapping molecular function categories within the STs' and KTs' GO annotations.

	Skin-selective			-selective IR	ective IRITs		Kidney-selective IRITs		
Cel	Overlapping GO Ilular Component Categories	Genes in Category	Genes in STs in Category	% of Genes in STs in Category	<i>p</i> -value	Genes in KTs in Category	% of Genes in KTs in Category	<i>p</i> -value	
GO:0005604	basement membrane	73	7	1.6	0.006	8	1.3	0.017	
GO:0000267	cell fraction	596	23	5.2	0.014	56	9.1	0.000	
GO:0005792	microsome	176	9	2.1	0.043	26	4.2	0.000	
GO:0005626	insoluble fraction	528	19	4.3	0.048	46	7.5	0.000	

END Table 3.11.

3.7 FIGURES

Figure 3.1: Histopathology of sham-treated B6 skin and oxazolone-challenged B6 skin. Sham-treated skin day 6 with a histological score of 0, show no inflammatory cell infiltrate, 100x (**A**) and 200x magnifications (**B**). Oxazolone-challenged skin day 6 (**C-H**); example of histological score of: 2, showing moderate dermal inflammatory infiltrate but intact epithelium, 100x (**C**) and 200x magnifications (**D**); histological score of 3, showing dermal inflammatory infiltrate with focal epithelial ulcerations, 100x (**E**) and 200x magnifications (**F**); histological score of 4, showing dermal inflammatory infiltrate with multiple erosive epithelial ulcerations, 100x (**G**) and 200x magnifications (**H**). No samples received a histological score of 1. (H&E stain.)

Figure 3.3. *Ifng* transcript expression and expression of IFNG-induced transcripts (*Cxcl9, Aif1* and *Ubd*) within sham-treated and oxazolone-challenged B6 mouse skin assessed by real time RT-PCR. Transcript expression was expressed as fold change in the oxazolone-challenged mice (N=6) and normalized to the relative levels in sham-treated mice (N=6) using the ddCt formula. Within the oxazolone-challenged skin, transcript expression of: *Ifng* increased 9.1x ±4.8 (A); *Cxcl9* increased 29.8x ±14.9 (B); *Aif1* increased 4.5x ±1.9 (C); and, *Ubd* increased 4.3x ±3.6 (D). Data is ± standard deviation and includes three PCR replicates for each mouse. Transcript expression is significantly different, as determined by a one-way ANOVA and adjusted with Bonferroni correction, *p*<0.05 between oxazolone and sham conditions is indicated by *.

Figure 3.4: Transcript expression of the macrophage surface markers *Cd68* and *Mrc1* within sham-treated and oxazolone-challenged B6 mouse skin assessed by real time RT-PCR. Transcript expression was expressed as fold change in the oxazolone-challenged mice (N=6) and normalized to the relative levels in sham-treated mice (N=6) using the ddCt formula. Within the oxazolone-challenged skin, transcript expression of: *Cd68* increased 2.0x \pm 0.6 (A); and, *Mrc1* increased 4.1x \pm 1.6 (B). Data is \pm standard deviation and includes three PCR replicates for each mouse. Transcript expression is significantly different, as determined by a one-way ANOVA and adjusted with Bonferroni correction, *p*<0.05 between oxazolone and sham conditions is indicated by *.

Figure 3.5: Transcript expression of *II4*, *Chi3I3* and *Arg1*, AMA-associated transcripts, within sham-treated and oxazolone-challenged B6 mouse skin assessed by real time RT-PCR. Transcript expression was expressed as fold change in the oxazolone-challenged mice (N=6) and normalized to the relative levels in sham-treated mice (N=6) using the ddCt formula. Within the oxazolone-challenged skin, transcript expression of: *II4* increased 10.3x ±15.7 (A); *Chi3I3* increased 2.8x ±6.6 (B); and, *Arg1* did not change 0.5x ±0.2 (C). Data is ± standard deviation and includes three PCR replicates for each mouse. Transcript expression is significantly different, as determined by a one-way ANOVA and adjusted with Bonferroni correction, p<0.05 between oxazolone and sham conditions is indicated by *. (NS, not significant by p>0.05.)

Figure 3.6: PBT annotated transcripts in oxazolone-challenged skin are also found in TCMR of kidney allografts. (A) 4192 unique transcripts are differentially expressed in oxazolone-challenged skin versus sham-treated controls, and many of these transcripts are annotated as members of PBTs. (B) Of these 4192 unique transcripts, 1770 unique transcripts are also differentially expressed in rejecting kidney allografts. Many of these transcripts found in both the inflamed skin and kidney tissues are also PBT annotated.

Figure 3.7: Expression of the general macrophage marker CD68, and the AMA marker MRC1, by immunohistochemistry in mouse skin sham-treated or oxazolone-challenged. Higher number of CD68 positive cells (A, B) and a higher number of MRC1 positive cells (C,D), are seen in the oxazolone-challenged skin than the sham-treated skin. (Immunoperoxidase, original magnification, x600.)

Starting list:

Day 6 skin isografts > normal skin (≥2-fold, FDR<0.01) *n=947* Inflammatory transcript sets (QCATs, GRITs, QCMATs and AMATs) n=291

Skin-Selective Injury- and Repair-Induced Transcripts n=908 Unique SIRITs n=691

Figure 3.8: Algorithm for selection of the skin-selective injury- and repairinduced transcripts (SIRITs). SIRITs were defined by probesets that had a fold change of ≥ 2 in day 6 B6 skin isografts over normal B6 skin (FDR<0.05). All members belonging to the inflammatory PBTs were removed from this list to give a final list of 908 transcripts (691 unique transcripts).

Figure 3.9: Algorithm for selection of the skin-associated transcripts (STs). 465 unique STs were defined by probesets that had a high expression (>500 raw signal) in normal B6 skin, and also were differentially expressed (up or down) in day 6 B6 skin isografts over normal B6 skin (FDR<0.05); but, were not a member of the inflammatory or skin-selective injury- and repair-induced transcript sets.

Figure 3.10: Transcript set scores of the inflammatory and injury-repair response PBTs in oxazolone-challenged skin and kidney allografts. Inflammatory PBTs have increased expression (increased score) within the inflamed skin or kidney tissue (A-D): cytotoxic T cell associated (A); IFNG-induced (B); macrophage associated (C); and, AMA-associated (D). The skin- and kidney-selective injury- and repair-induced PBTs increase expression in the inflamed tissues (E), and the skin- and kidney-associated PBTs decrease expression in the inflamed tissues (F). Values are mean \pm SEM. Significance of difference is determined by a student's T-test, *p*<0.05, sham-treated skin and oxazolone-challenged skin, or normal kidneys and day 7 kidney allografts.

CHAPTER 4

INTERFERON-GAMMA-DEPENDENT MOLECULAR CHANGES IN OXAZOLONE-INDUCED CONTACT HYPERSENSITIVITY

4.1 OVERVIEW

Mouse renal allografts unable to receive IFNG (deficient in IFNG-signaling), either because the donor graft lacks the IFNG-receptor-1 (Ifngr1 deficient, GRKO) or because the host is unable to produce IFNG (Ifng deficient, GKO) experience severe necrosis and microvascular congestion (41). This is unlike the typical TCMR lesions, interstitial infiltrate and tubulitis seen in rejecting mouse (wild type) renal allografts. The renal allografts which are unable to respond to IFNG experience an increased burden of kidney-selective IRITs and AMA-associated transcripts. These IRITs and AMAassociated transcripts were originally defined as IFNG-suppressed transcripts (48). The purpose of this study was to describe the histological and molecular changes of CHS in GRKO skin. Our aim was to assess the burden of IFNG-suppressed transcripts and their relationship with injury and AMA within CHS on a GRKO background. As we did the previous chapter, we used histology and real time RT-PCR to assess the initial inflammatory burden and phenotype. We then used microarrays to study the genome wide gene expression changes in oxazolone-challenged GRKO skin compared to oxazolone-challenged B6 (wild-type) skin. We annotated changes in transcript expression to the following PBTs: IFNG-induced transcripts, IFNG-suppressed transcripts, injuryrepair response (both injury-up and injury-down) and AMA-associated transcripts.

4.2 IFNG-DEPENDENT CHANGES IN A CUTANEOUS OXAZOLONE-CHALLENGE IN MICE

4.2.1 Histology of oxazolone-challenged GRKO skin does not differ to that of oxazolone-challenged wild type mouse skin. We described the gross and histological appearance of B6 sham-treated and oxazolone-challenged skin previously (**Section 3.2.1**). Similar to the sham-treated B6 skin, sham-treated GRKO skin appeared normal with no gross or histological abnormalities. Oxazolone-challenged GRKO skin displayed marked gross-superficial and histological changes which included edematous dermatosis with ulceration and epidermal sloughing, as was described in the oxazolone-challenged B6 skin (**Section 3.2.1**). As a result the GRKO oxazolone-challenged skin had a significantly higher histological score than the GRKO sham-treated skin (p<0.0001, **Figure 4.1-4.2**). However, the degrees of inflammation observed in oxazolone-challenged B6 and GRKO skin did not differ as assessed by histology (p=0.34).

4.2.2 Real time RT-PCR analysis of IFNG-effects and AMA in oxazolone-challenged GRKO native skin. IFNG-effects and AMA are two active biological processes that our laboratory has previously described which are active during mouse renal allograft rejection (6,47). Interestingly, these two processes undergo marked transcript expression changes during the rejection of GRKO renal allografts in wild type hosts (41). As such, we wanted to observe which changes in cutaneously oxazolone-challenged skin are IFNG-dependent. To begin, we used real time RT-PCR to assess transcript expression changes relating to IFNG-effects and AMA in oxazolone-challenged GRKO skin, and compared these changes to the relative transcript expression changes in GRKO shamtreated skin and B6 oxazolone-challenged skin. The transcripts we chose to measure included: *Cxcl9, Aif1* and *Ubd*, that represent IFNG-effects; *II4* and *Inhba*, inducers of AMA; *Mrc1, Chi3I3* and *Arg1*, which represent AMA. We also measured the transcript expression of *lfng* and the general macrophage marker *Cd68*, as was done in the wild type B6 oxazolone-challenged and sham-treated mice (**Section 3.2.2**).

The induction of *lfng* in oxazolone-challenged GRKO mice was nearly as robust as that observed in WT mice. *lfng* transcript expression was significantly increased in GRKO oxazolone-challenged skin compared to sham-treated (GRKO) controls (p<0.05, **Figure 4.3**) However, *lfng* expression within the oxazolone-challenged GRKO skin was not as strongly induced as that observed in oxazolone-challenged B6 skin (p<0.05, **Figure 4.3**). Although, the reduced induction is very small, thus, more experimentation is necessary to determine a true biological significance.

The Ifng-induced transcripts, *Cxcl9*, *Aif1* and *Ubd* all failed to increase in the GRKO oxazolone-challenged skin compared to the sham-treated controls (p>0.05, **Figures 4.4A-C**). Thus, IFNG was unable to act on the cells within the oxazolone-challenged skin compartment.

Transcript expression of the macrophage marker, *Cd68*, increased in oxazolonechallenged GRKO skin compared to sham-treated GRKO controls (p<0.05, **Figure 4.5A**), indicating infiltration of macrophages into the skin. Albeit, the normalized fold change from sham-treated to oxazolone-challenged skin, was essentially equal in both GRKO and B6 skin (p>0.05, **Figure 4.5B**).

AMA mannose receptor, *Mrc1*, also increased in oxazolone-challenged GRKO skin compared to sham-treated GRKO controls (p<0.05, **Figure 4.6A**). The normalized fold change of *Mrc1* transcript expression, was greater in GRKO oxazolone-challenged skin than the increase in B6 oxazolone-challenged skin when compared with respective sham-treated controls (p<0.05, **Figure 4.6B**).

Arg1 transcript expression also increased in GRKO oxazolone-challenged skin compared to GRKO sham-treated skin (p<0.05, **Figure 4.7A**). Similarly, the normalized fold change in *Arg1* expression was greater in GRKO oxazolone-challenged skin than it was in the B6 oxazolone-challenged skin, when compared to the respective sham-treated controls (p<0.05, **Figure 4.7B**).

Chi3l3 transcript expression increased in GRKO oxazolone-challenged skin compared to GRKO sham-treated controls (p<0.05, **Figure 4.8A**). the normalized fold change was significantly greater in GRKO oxazolone-challenged skin than it was in B6 oxazolone-challenged skin when compared to respective sham controls (p<0.05, **Figure 4.8B**).

Last, we assessed transcript expression levels of inducers of AMA, *II4* and *Inhba*. *II4* transcript expression increased in GRKO oxazolone-challenged skin versus oxazolone-challenged B6 skin (p<0.05, **Figure 4.9A**). The normalized fold change was also larger in the GRKO oxazolone-challenged skin than it was in the B6 oxazolonechallenged skin when compared to respective sham-treated controls (p<0.05, **Figure 4.9B**). Nonetheless, it is difficult to conclude any biological effects *II4* expression may have had in the oxazolone-challenged skin, as the changes in transcript expression observed were so minimal and the actual Ct values for both transcripts were relatively high (>30, data not shown); in other words *II4* cDNA levels were not detectable until the last few PCR amplification cycles. *Inhba* transcript expression did increase in GRKO oxazolone-challenged skin (p<0.05, **Figure 4.10A**); although it is interesting that the normalized fold change was less in the oxazolone-challenged GRKO skin than it was in the B6 skin compared to sham-treated controls (p<0.05, **Figure 4.10B**).

4.2.3 Genome wide gene expression analysis of oxazolone-challenged GRKO native skin. Using the Roche NimbleGen MM9_EXP_HX12 12x135K Arrays, we compared genome wide gene expression changes in the oxazolone-challenged GRKO native skin to oxazolone-challenged B6 native skin in order to study IFNG-dependent changes in global transcript expression. Analysis revealed 1279 differentially expressed unique transcripts (IQR>0.5, FDR<0.05), that originated from a total list of 17472 unique transcripts before the IQR and statistical filters were applied.

To identify the biological processes which were affected by the deficient *lfngr1*, we identified transcripts from the list of 1279 differentially expressed unique transcripts

that were annotated as members belonging to our inflammatory PBTs; cytotoxic T cellassociated, IFN-gamma induced, macrophage-associated and AMA-associated. We also identified transcripts with memberships in the PBTs depicting the active injury-repair response, by selecting transcripts that were annotated as injury- and repair-induced, or skin-associated. Last, we also identified transcripts that were annotated as IFNGsuppressed transcripts (48). In addition, we summarized the burden of the biological processes represented by the PBTs, by comparing the transcript set scores in the GRKO oxazolone-challenged skin to the scores in the B6 oxazolone-challenged skin.

4.2.4 T cells and macrophages. Of the 1279 differentially expressed unique transcripts there were no transcripts that were annotated as cytotoxic T cell-associated, macrophage-associated, or AMA-associated. In accordance with this observation, the summarized expression of each of these transcript sets as the transcript set score was not significantly different between the oxazolone-challenged GRKO and B6 skin (**Figure 4.11A, C-D**)

4.2.5 IFNG-effects. Unlike the T cell-, macrophage-, and AMA-associated transcript sets, there were significant expression changes in transcripts annotated as IFNG-induced transcripts. Of the 1279 differentially expressed unique transcripts were annotated as IFN-gamma-induced transcripts (total n=47), and furthermore; all 30 unique transcripts decreased expression in the oxazolone-challenged GRKO skin compared to the oxazolone-challenged B6 skin (FDR<0.05, **Table 4.1**). Some of these transcripts included (with fold change): the chemotactins, *Cxcl9* (-16.9x) and *Cxcl10* (-5.3x); and those involved in antigen processing and presentation, such as *Psmb8* (-3.6x), *Psmb9* (-5.1x), *Tapbd* (tapasin, -2.4x) and *Cd74* (class II invariant chain, -1.8x).

In the real time RT-PCR analysis (**Section 4.2.2**), we described detectable and significant changes in *Aif1* and *Ubd* transcript expression; however, these transcripts were not found within these 30 IFNG-induced transcripts. *Aif1*, although IFNG-inducible,
is not a member of this PBT due to the initial defining restrictions for members (47). Though, according to the microarray data, its expression did decrease (-1.9x) in the oxazolone-challenged GRKO skin compared to the oxazolone-challenged B6 skin (FDR=0.04). *Ubd* however, is a member of the IFNG-induced transcript set, and although *Ubd* transcript expression did not meet the FDR<0.05 cut-off, *Ubd* did experience a fold decrease (-2.0, FDR=0.34) in the oxazolone-challenged GRKO skin compared to the oxazolone-challenged B6 skin. Concomitant with the individual changes in expression of the IFNG-induced transcripts, transcript set score was significantly less in the GRKO oxazolone-challenged skin than it was in the B6 oxazolone-challenged skin (*p*<0.05, **Figure 4.11B**).

4.2.7 Injury-repair response. Of the 1279 differentially expressed transcripts in the oxazolone-challenged GRKO skin over the oxazolone-challenged B6 skin, we assessed the active injury-repair response by identifying the presence of the skin-selective injury and repair induced transcripts (IRITs, injury up) and the skin-associated transcripts (STs, injury down).

Of the 691 unique skin-selective IRITs, there were 124 unique transcripts that were differentially expressed (FDR<0.05) in the oxazolone-challenged GRKO skin compared to the oxazolone-challenged B6 skin. Of these, 103 (83%) unique transcripts increased expression in the oxazolone-challenged GRKO skin compared to the oxazolone-challenged B6 skin. Furthermore, some of the most overrepresented GO annotations from the 103 increased IRITs included: defense and inflammatory response; as well as chemotaxis and angiogenesis (**Table 4.2**). In accordance with these observations, the IRIT set score was significantly higher in the oxazolone-challenged GRKO skin versus the oxazolone-challenged B6 skin (p<0.05, **Figure 4.11E**).

Of the 465 unique STs, there were 104 unique transcripts that were differentially expressed (FDR<0.05) between oxazolone-challenged GRKO skin compared to the oxazolone-challenged B6 skin. Compared to the injury and repair induced transcripts

where the majority of these increased expression in the GRKO oxazolone-challenged skin, 100 (96%) unique STs decreased expression in the oxazolone-challenged GRKO skin compared to the oxazolone-challenged B6 skin. GO analysis of the 100 decreased transcripts revealed many overrepresented annotations, including: keratin and intermediate filament components; response to endogenous (hormone) stimulus; various epithelial development processes (such as epithelial, and mammary gland development); and various metabolic gene expression regulatory processes (such as regulation of gene expression, and transcription, and metabolic processes) (**Table 4.3**). The ST set score significantly decreased in the GRKO oxazolone-challenged skin, compared to the B6 oxazolone-challenged skin (p<0.05, **Figure 4.11F**). Thus, oxazolone-induced inflammation within GKRO mouse skin appears to induce a greater active injury-repair response than what is observed in the wild type B6 oxazolone-challenged skin.

4.2.8 IFNG-suppressed effects. Our laboratory previously defined a transcript set who's members increased expression within mouse renal GRKO allografts into wild type hosts and wild type allografts into GKO hosts (48). Of the 185 unique IFNG-suppressed transcripts, 33 unique transcripts were differentially expressed (FDR<0.05) between the oxazolone-challenged GRKO skin and the oxazolone-challenged B6 skin. Of these 33 transcripts, 26 (79%) increased expression in the oxazolone-challenged GRKO skin over oxazolone-challenged B6 skin. Accordingly, the IFNG-suppressed transcript set score also significantly increased in the GRKO oxazolone-challenged skin over the B6 oxazolone-challenged skin (p<0.05, **Figure 4.12**). Therefore, IFNG suppresses similar transcripts in oxazolone-induced cutaneous inflammation, as it does in rejecting mouse renal allografts (48). Furthermore, our laboratory previously showed that in rejecting GRKO renal allografts, or rejecting wild type renal allografts in GKO hosts, IFNG-suppressed transcripts have overlapping memberships with the kidney-selective IRITs and the AMA-associated transcripts (48). Here, in the oxazolone-challenged GRKO skin we also observed a similar phenomenon; 13 (39%) of the 33 differentially expressed

transcripts were also members of the skin-selective IRITs. However, there were no overlapping differentially expressed IFNG-suppressed and AMA-associated transcripts in the oxazolone-challenged GRKO skin; but this was expected given that the AMA burden did not show any gross increase in the GRKO oxazolone-challenged skin over the B6 oxazolone-challenged skin.

4.3 TABLES

GenBank	Gene Name	Fold Change	Roche NibleGen Annotation	
BC034256	Tgtp	-48.2	T-cell specific GTPase	
BC003343	Cxcl9	-16.9	chemokine (C-X-C motif) ligand 9	
BC019195	Gbp3	-14.8	guanylate nucleotide binding protein 3	
AJ007971	ligp1	-14.2	IIGP protein	
AK165065	lgtp	-13.3	interferon gamma induced GTPase	
EF494423	Gbp4	-11.1	guanylate binding protein 4	
BC050835	lfit2	-5.6	interferon-induced protein with tetratricopeptide repeats 2	
BC030067	Cxcl10	-5.3	chemokine (C-X-C motif) ligand 10	
BC116364	Psmb9	-5.1	proteasome (prosome, macropain) subunit, beta type 9	
NM_019440	lrgm2	-4.0	interferon inducible GTPase 2	
BC013785	Psmb8	-3.6	proteasome (prosome, macropain) subunit, beta type 8	
BC087949	Bst2	-3.6	bone marrow stromal cell antigen 2	
BC003768	lfit1	-3.6	interferon-induced protein with tetratricopeptide repeats 1	
M35246	H2-T10	-3.4	Mouse MHC class I H2-TL-T10-b mRNA (b haplotype)	
AK002830	lrf7	-3.4	interferon regulatory factor 7	
BC145957	lrgm1	-2.7	immunity-related GTPase family, M	
BC034361	Oasl2	-2.6	2'-5' oligoadenylate synthetase-like 2	
BC005648	H2-T23	-2.5	histocompatibility 2, T region locus 23	
BC090658	Lgals3bp	-2.4	lectin, galactoside-binding, soluble, 3 binding protein	
BC011086	C2	-2.4	complement component 2 (within H-2S)	
BC015074	Tapbp	-2.4	TAP binding protein	
AK147960	Herc5	-2.3	hect domain and RLD 6	
BC001996	H2-DMa	-2.1	histocompatibility 2, class II, locus Dma	
BC129843	Mpeg1	-2.0	macrophage expressed gene 1	
BC019721	H2-Aa	-1.9	histocompatibility 2, class II antigen A, alpha	
BC088981	Psme1	-1.8	proteasome (prosome, macropain) 28 subunit, alpha	
BC046610	Erap1	-1.8	endoplasmic reticulum aminopeptidase 1	
BC010322	H2-Ab1	-1.8	histocompatibility 2, class II antigen A, beta 1	
BC003476	Cd74	-1.8	CD74 antigen (invariant polypeptide)	
AK003370	ll18bp	-1.6	interleukin-18 binding protein	

 Table 4.1: 30 unique IFNG-induced transcripts (IFNG-effects) differentially expressed in oxazolone-challenged GRKO skin over oxazolone-challenged B6 skin. Ordered by fold change.

Tound within each GO category by chance alone. Softed by increasing p-value. (Table continued of next page.)						
	Top 20 Annotations in Biological Process Category (total n=67, <i>p</i> <0.05)	Genes in Category	Genes in IRITs in Category	% of Genes in IRITs in Category	p-value	
GO:0006952	defense response	448	21	17.1	0.000	
GO:0009611	response to wounding	347	18	14.6	0.000	
GO:0016477	cell migration	240	15	12.2	0.000	
GO:0048870	cell motility	284	15	12.2	0.000	
GO:0051674	localization of cell	284	15	12.2	0.000	
GO:0006928	cell motion	367	16	13.0	0.000	
GO:0006954	inflammatory response	225	13	10.6	0.000	
GO:0006935	chemotaxis	109	9	7.3	0.000	
GO:0042330	taxis	109	9	7.3	0.000	
GO:0007626	locomotory behavior	239	11	8.9	0.000	
GO:0007610	behavior	405	13	10.6	0.000	
GO:0030595	leukocyte chemotaxis	27	5	4.1	0.000	
GO:0060326	cell chemotaxis	27	5	4.1	0.000	
GO:0001817	regulation of cytokine production	139	8	6.5	0.000	
GO:0042060	wound healing	112	7	5.7	0.000	
GO:0050900	leukocyte migration	43	5	4.1	0.000	
GO:0050865	regulation of cell activation	156	7	5.7	0.001	
GO:0001819	positive regulation of cytokine production	62	5	4.1	0.001	
GO:0001568	blood vessel development	244	8	6.5	0.002	
GO:0001944	vasculature development	250	8	6.5	0.002	

Table 4.2: GRKO enriched skin-selective IRITs top gene ontology (GO) annotations within biological process, molecular function, and cellular compartment categories. *P*-value is representative of a hypergeometric test from selecting the IRITs found within each GO category by chance alone. Sorted by increasing *p*-value. (Table continued on next page.)

... Table 4.2 continued on next page.

Table 4.2: (continued...)

	Annotations in Molecular Function (total n=7, <i>p</i> <0.05)	Genes in Category	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value
GO:0008009	chemokine activity	38	4	3.3	0.002
GO:0042379	chemokine receptor binding	39	4	3.3	0.002
GO:0005125	cytokine activity	180	6	4.9	0.008
GO:0004713	protein tyrosine kinase activity	164	5	4.1	0.027
GO:0032553	ribonucleotide binding	1796	20	16.3	0.037
GO:0032555	purine ribonucleotide binding	1796	20	16.3	0.037
GO:0032559	adenyl ribonucleotide binding	1460	17	13.8	0.042

Molecula	Annotations in ar Function and Cellular Component Category (total n=2, <i>p</i> <0.05)	Genes in Category	Genes in IRITs in Category	% of Genes in IRITs in Category	<i>p</i> -value
GO:0005886	plasma membrane	2906	36	29.3	0.000
GO:0005615	extracellular space	511	9	7.3	0.020

END Table 4.2.

Table 4.3: GRKO enriched skin-associated transcripts top gene ontology (GO) annotations within biological process, molecular function, and cellular compartment categories. *P*-value is representative of a hypergeometric test from selecting the STs found within each GO category by chance alone. Sorted by increasing *p*-value. (Table continued on next page.)

Top 20 Annotations in Biological Process Category (total n=34, <i>p</i> <0.05)		Genes in Category	Genes in STs in Category	% of Genes in STs in Category	<i>p</i> -value	
GO:0005882	intermediate filament	137	20	21.1	0.000	
GO:0045111	intermediate filament cytoskeleton	140	20	21.1	0.000	
GO:0045095	keratin filament	64	13	13.7	0.000	
GO:0005856	cytoskeleton	1122	29	30.5	0.000	
GO:0044430	cytoskeletal part	774	22	23.2	0.000	
GO:0043228	non-membrane-bounded organelle	1919	30	31.6	0.000	
GO:0043232	intracellular non-membrane-bounded organelle	1919	30	31.6	0.000	
GO:0009725	response to hormone stimulus	165	6	6.3	0.000	
GO:0009719	response to endogenous stimulus	184	6	6.3	0.000	
GO:0045893	positive regulation of transcription, DNA-dependent	416	7	7.4	0.003	
GO:0051254	positive regulation of RNA metabolic process	419	7	7.4	0.003	
GO:0030879	mammary gland development	86	4	4.2	0.003	
GO:0043434	response to peptide hormone stimulus	95	4	4.2	0.005	
GO:0045941	positive regulation of transcription	475	7	7.4	0.006	
GO:0010604	positive regulation of macromolecule metabolic process	633	8	8.4	0.006	
GO:0010628	positive regulation of gene expression	488	7	7.4	0.007	
GO:0008285	negative regulation of cell proliferation	224	5	5.3	0.008	
GO:0045944	positive regulation of transcription from RNA polymerase II promoter	358	6	6.3	0.008	
GO:0045935	positive regulation of nucleic acid metabolic process	510	7	7.4	0.009	
GO:0060429	epithelium development	271	5	5.3	0.010	

... Table 4.3 continued on next page.

Table 4.3: (continued...)

	Annotations in Molecular Function (total n=2, <i>p</i> <0.05)	Genes in Category	Genes in IRITs in Category	% of Genes in STs in Category	p-value
GO:0019900	kinase binding	85	3	3.2	0.044
GO:0005509	calcium ion binding	840	8	8.4	0.044

	Annotations in Cellular Component Category (total n=7, <i>p</i> <0.05)	Genes in Category	Genes in STs in Category	% of Genes in STs in Category	<i>p</i> -value
GO:0005882	intermediate filament	137	20	21.1	0.000
GO:0045111	intermediate filament cytoskeleton	140	20	21.1	0.000
GO:0045095	keratin filament	64	13	13.7	0.000
GO:0005856	cytoskeleton	1122	29	30.5	0.000
GO:0044430	cytoskeletal part	774	22	23.2	0.000
GO:0043228	non-membrane-bounded organelle	1919	30	31.6	0.000
GO:0043232	intracellular non-membrane-bounded organelle	1919	30	31.6	0.000

END Table 4.3.

4.4 FIGURES

Figure 4.1: Histopathology of sham-treated GRKO skin and oxazolonechallenged GRKO skin. Sham-treated GRKO skin day 6 with a histological score of 0, show no inflammatory cell infiltrate, 100x (A) and 200x magnifications (B). Oxazolone-challenged GRKO skin day 6 (C-H); showing dermal inflammatory infiltrate with focal epithelial ulcerations, 100x (C) and 200x magnifications (D); histological score of 4, showing dermal inflammatory infiltrate with multiple erosive epithelial ulcerations, 100x (E) and 200x magnifications (F). No samples received a histological score of 1 or 2. (H&E stain.)

Figure 4.2: Oxazolone-challenged B6 and B6.GRKO skin appear histological similar to each other, despite being significantly more inflamed than sham-treated controls. Skin tissue sections were stained with H&E, and lesions were scored semi-quantitatively on a scale of 0 through 4. Skin from sham-treated B6 and B6.GRKO mice (N=6 each) was absent of inflammation, while inflammation in the skin of oxazolone-challenged B6 and B6.GRKO mice (N=6 each) resulted in a mean histological score of 3.0 and 3.3, respectively. Significance of difference in histology scores were determined by a two-way ANOVA; NS, not significant (*p*>0.05).

Figure 4.3: *Ifng* transcript expression within sham-treated and oxazolonechallenged B6 and GRKO mouse skin assessed by real time RT-PCR. Transcript expression is expressed as %*Gapdh* transcript expression using the dCt formula. Transcript expression is significantly different, as determined by a two-way ANOVA and adjusted with Bonferroni correction: p<0.05 between oxazolone and respective (strain controlled) sham condition is indicated by *; horizontal bars indicate level of significance between B6 and GRKO mouse strains of the same treatment, oxazolone or sham (NS, not significant p>0.05).

Figure 4.4: Transcript expression of the IFNG-induced transcripts, *Cxcl9*, *Aif* and *Ubd* within sham-treated and oxazolone-challenged B6 and GRKO mouse skin assessed by real time RT-PCR. Transcript expression is expressed as %*Gapdh* transcript expression using the dCt formula. Compared to the oxazolone-challenged B6 skin, transcript expression of: *Cxcl9* (A); *Aif1* (B); and, *Ubd* (C) decreased within the oxazolone-challenged B6.GRKO skin. Transcript expression is significantly different, as determined by an ANOVA and adjusted with Bonferroni correction: p<0.05 between oxazolone and respective (strain controlled) sham condition is indicated by *; horizontal bars indicate level of significance between B6 and GRKO mouse strains of the same treatment, oxazolone or sham (NS, not significant p>0.05).

Figure 4.5: *Cd68* transcript expression within sham-treated and oxazolonechallenged B6 and GRKO mouse skin assessed by real time RT-PCR. *Cd68* transcript expression is expressed as: %*Gapdh* transcript expression using the dCt formula (A); or is normalized as a fold change in the oxazolone-challenged mice to the sham-treated controls using the ddCt formula (B). Transcript expression is significantly different, as determined by a two-way ANOVA and adjusted with Bonferroni correction using the dCt values (A) or the ddCt values (B): p<0.05 between oxazolone and respective (strain controlled) sham condition is indicated by *; horizontal bars indicate level of significance between B6 and GRKO mouse strains of the same treatment, oxazolone or sham (NS, not significant p>0.05).

Figure 4.6: *Mrc1* transcript expression within sham-treated and oxazolonechallenged B6 and GRKO mouse skin assessed by real time RT-PCR. *Mrc1* transcript expression is expressed as: %*Gapdh* transcript expression using the dCt formula (A); or is normalized as a fold change in the oxazolone-challenged mice to the sham-treated controls using the ddCt formula (B). Transcript expression is significantly different, as determined by a two-way ANOVA and adjusted with Bonferroni correction using the dCt values (A) or the ddCt values (B): *p*<0.05 between oxazolone and respective (strain controlled) sham condition is indicated by *; horizontal bars indicate level of significance between B6 and GRKO mouse strains of the same treatment, oxazolone or sham (NS, not significant *p*>0.05).

Figure 4.7: Arg1 transcript expression within sham-treated and oxazolonechallenged B6 and GRKO mouse skin assessed by real time RT-PCR. Arg1 transcript expression is expressed as: %Gapdh transcript expression using the dCt formula (A); or is normalized as a fold change in the oxazolone-challenged mice to the sham-treated controls using the ddCt formula (B). Transcript expression is significantly different, as determined by a two-way ANOVA and adjusted with Bonferroni correction using the dCt values (A) or the ddCt values (B): p<0.05 between oxazolone and respective (strain controlled) sham condition is indicated by *; horizontal bars indicate level of significance between B6 and GRKO mouse strains of the same treatment, oxazolone or sham (NS, not significant p>0.05).

Figure 4.8: *Chi3l3* transcript expression within sham-treated and oxazolonechallenged B6 and GRKO mouse skin assessed by real time RT-PCR. *Chi3l3* transcript expression is expressed as: %*Gapdh* transcript expression using the dCt formula (A); or is normalized as a fold change in the oxazolone-challenged mice to the sham-treated controls using the ddCt formula (B). Transcript expression is significantly different, as determined by a two-way ANOVA and adjusted with Bonferroni correction using the dCt values (A) or the ddCt values (B): p<0.05 between oxazolone and respective (strain controlled) sham condition is indicated by *; horizontal bars indicate level of significance between B6 and GRKO mouse strains of the same treatment, oxazolone or sham (NS, not significant p>0.05).

Figure 4.9: *II4* transcript expression within sham-treated and oxazolonechallenged B6 and GRKO mouse skin assessed by real time RT-PCR. *II4* transcript expression is expressed as: %*Gapdh* transcript expression using the dCt formula (A); or is normalized as a fold change in the oxazolone-challenged mice to the sham-treated controls using the ddCt formula (B). Transcript expression is significantly different, as determined by a two-way ANOVA and adjusted with Bonferroni correction using the dCt values (A) or the ddCt values (B): *p*<0.05 between oxazolone and respective (strain controlled) sham condition is indicated by *; horizontal bars indicate level of significance between B6 and GRKO mouse strains of the same treatment, oxazolone or sham (NS, not significant *p*>0.05).

Figure 4.10: *Inhba* transcript expression within sham-treated and oxazolonechallenged B6 and GRKO mouse skin assessed by real time RT-PCR. *Inhba* transcript expression is expressed as: %*Gapdh* transcript expression using the dCt formula (A); or is normalized as a fold change in the oxazolone-challenged mice to the sham-treated controls using the ddCt formula (B). Transcript expression is significantly different, as determined by a two-way ANOVA and adjusted with Bonferroni correction using the dCt values (A) or the ddCt values (B): p<0.05 between oxazolone and respective (strain controlled) sham condition is indicated by *; horizontal bars indicate level of significance between B6 and GRKO mouse strains of the same treatment, oxazolone or sham (NS, not significant p>0.05).

Figure 4.11: Transcript set scores of the inflammatory and injury-repair response PBTs in oxazolone-challenged B6 and GRKO skin. Cytotoxic T cell associated (A); IFNG-induced (B); macrophage associated (C); and, AMA-associated (D). Only expression of the IFNG-induced transcripts is grossly affected by the deficient *lfngr1* (B). Skin-selective injury- and repair-induced PBTs increase expression in the GRKO oxazolone-challenged skin over challenged B6 skin (E). The opposite affect is seen in the skin-associated PBTs (F). Values are mean \pm SEM. Significance is determined by a student's T-test, *p*<0.05, sham-treated skin and oxazolone-challenged skin of B6 and GRKO mice.

Figure 4.12: IFNG-suppressed transcript set score in oxazolone-challenged B6 and GRKO skin. IFNG-suppressed transcripts have increased expression when IFNG-signalling is deficient within Ifngr1 deficient (GRKO) oxazolone-challenged mice compared to sham-controls or B6 (wild type) oxazolone-challenged mice, which have the Ifngr. Values are mean \pm SEM. Significance is determined by a student's T-test, *p*<0.05, sham-treated skin and oxazolone-challenged skin, or oxazolone-challenged skin of B6 and GRKO mice.

CHAPTER 5

DISCUSSION

5.1 STUDY SUMMARY PART 1: A COMPARISON OF DTH AND TCMR

The broad molecular changes that occur over the time course in TCMR of mouse renal allografts have been previously described (6). We sought to characterize the breadth of these changes in TCMR by qualitatively analyzing, and comparing them to the molecular changes that occur in another T cell mediated disease outside of a rejecting allograft. As such, the first aim of this study was to analyze whether DTH and TCMR experience the same molecular changes. Because the immunological mechanisms of TCMR are thought to be similar to that of DTH, we hypothesized that the histological changes, but especially the molecular changes in TCMR and DTH would be qualitatively similar.

We setup an experimental method for inducing CHS, a model of DTH, by challenging mice epicutaneously with oxazolone; and compared the histological and molecular phenotype of oxazolone-challenged skin to that of TCMR of mouse renal allografts. As in TCMR (8), the histology of CHS presents itself as mononuclear infiltration and epithelial injury (ulcer and necrosis in skin and tubulitis and necrosis in kidney). In combination with histological analysis, we utilized real time RT-PCR and gene expression microarrays to assess and compare molecular features in both CHS and TCMR involved in T cell and macrophage infiltration, AMA, IFNG-effects, and parenchymal injury-repair processes. While skin and kidney tissue are structurally and functionally very dissimilar; we found that CHS, induced by oxazolone, shows many molecular features that are shared with TCMR.

5.2 MOLECULAR CHANGES OF T CELL-MEDIATED INFLAMMATION

5.2.1 T cells. Nine cytotoxic T cell-associated transcripts were found in the oxazolonechallenged skin and rejecting renal allografts. Some of these transcripts included *Cxcr6*, *Tcra* and *Cd8a*, which are common markers associated with T cells (76). Additionally, these transcripts were previously annotated by our laboratory as typical rejection transcripts which robustly quantify TCMR in human and mouse allografts (31).

While some of T cell-associated transcripts, such as *Gzma* and *Gzmb*, are directly involved in cytotoxic mechanisms, we know these mechanisms are not necessarily employed despite their presence; because TCMR of mouse renal allografts progresses in *Gzma* and *Gzmb* deficient hosts as it would in wild type hosts (16). In other words, renal allografts in *Gzma* and *Gzmb* deficient hosts still develop the classic histological lesions of TCMR, including interstitial inflammation and tubulitis. It has been proposed in TCMR, within the rejecting allograft cognate T cells recognize specific antigen on antigen presenting cells and recruit noncognate T cells, which express transcripts for GZMA and GZMB, and macrophages(8); presumptively similar mechanisms exist in CHS. Naturally therefore, we looked for the overlapping macrophage-associated transcripts.

5.2.2 Macrophages. We found that 20 members of our macrophage-associated transcripts were found in both oxazolone-challenged skin and TCMR of renal allografts. Many of the differentially expressed macrophage-associated transcripts code for molecules that ultimately have a diverse array of functions; some of these include: *Cd300lf* and *Pirb* which code for immunoglobulin (Ig)-superfamily, immunoreceptor tyrosine-based inhibitory motifs (ITIM s) cell surface receptors (77,78). CD300LF is a recently described inhibitory receptor, and its ligand and biological function is yet to be determined (77). PIRB, binds to MHC class I molecules and plays a role in determining CMA or AMA lineage during development in the bone marrow (78). Another two

macrophage-associated transcripts included in the above lists were *Tlr2/8*. TLRs are pattern-recognition receptors, and the protein products of these two recognise beta-glucan and viral RNA particles, respectively (79). Another transcript that exemplifies the diverse functions of the macrophage-associated transcripts was *Emilin2*. EMILIN2 has been shown to putatively associate with platelets, and aid in thrombus formation (80).

The general macrophage marker *Cd68* was also increased in both oxazolonechallenged skin and TCMR of renal allografts. Our laboratory previously confirmed the increased macrophage presence through positive immunohistochemical stains for CD68 in TCMR of mouse renal allografts (46,81). Not surprisingly, when we stained the shamtreated and oxazolone-challenged skin for CD68, we also observed an increase in the number of CD68⁺ cells within the oxazolone-challenged skin. Thus, these results would suggest there was a paralleled influx of macrophages into the inflamed skin and kidney tissues.

5.2.3 IFNG-effects. IFNG-induced transcripts were similar in both oxazolone-challenged skin and the rejecting renal allografts. In total there were 26 IFNG-induced transcripts that were shared in these two inflammatory states, and not surprisingly many of these transcripts included: the chemokine ligands for CXCR3 which is found on T cells, *Cxcl9* and *Cxcl10* (82); and the immunoproteasome subunits (*Psmb8* and *Psmb9*) and tapasin (*Tapbp*), which have a roles in antigen processing and presentation (83,84). Other shared transcripts included a number of IFNG-inducible GTPases, including *Tgtp* and *ligp1*. Both of these molecules appear to play a direct role in the defense against the intracellular parasitic protozoa (85,86). However, *Tgtp* and *ligp* were still significantly expressed in the rejecting mouse kidneys and oxazolone-challenged skin. Thus, the effects of IFNG are broad, regardless of the inflammatory stimuli.

5.2.4 Alternative macrophage activation. Features of AMA that were revealed by the microarray analysis of the oxazolone-challenged skin and TCMR of renal allografts, included expression of: the chitinase like protein *Chi3l3*; the C-type lectin and beta-glucan pattern recognition receptor *Clec7a* (Dectin-1); and, *Thbs1* and *Adam8*, both of which play numerous roles in tissue (basement membrane) remodeling and are capable of releasing cytokines from their inactive form, such as TGF-beta and TNF-alpha (87,88).

The signature markers of AMA include IL-4/13 induced expression of *Chi3l3*, *Arg1* and *Mrc1* (89). While our microarray analysis only indicated a significant increase of *Chi3l3* transcript expression; *Mrc1* was not present because there is no probeset for *Mrc1* (*Cd206*) on the NimbleGen MMP_EXP_HX12 12x135K Arrays, and *Arg1* did not meet the statistical cut off (FDR<0.05) of the arrays. However, we were able to verify increased transcript expression of *Mrc1* in the oxazolone-challenged skin by real time RT-PCR. Furthermore, by immunohistochemical stains for MRC1, we verified increased protein expression of MRC1 within the oxazolone-challenge skin over sham-treated controls. This parallels our observed increase of CD68⁺ macrophages, and our previous report of increased MRC1⁺ cells within TCMR of mouse renal allografts (46). Real time RT-PCR analysis of *Arg1* expression indicated that there was no change in expression within the oxazolone-challenged skin, thus verifying the microarray results. In agreement with the above findings, the summarized burden of AMA depicted by the AMA-associated transcript set score was increased in the oxazolone-challenged skin compared to sham-treated controls; but the finding was not statistically significant.

It should be noted that in rejecting mouse allografts expression of *Arg1* (as detected by real time RT-PCR) is not significantly increased until after day 21 post-transplantation (46). Therefore, visualization of the complete AMA phenotype may be a feature of perpetual inflammation or injury; consequently we would not have seen a strong AMA presence in the skin only 6 days after the first sensitization, or 24 hours post-challenged. Indeed, hairless mice receiving repeated hapten treatments (up to 10) develop severe epidermal hyperplasia which has been associated with clinical chronic

atopic dermatitis in humans; a disease that has been associated with a Th2- and AMAtype dermal infiltrate (72,90).

5.2.5 Macrophage marker promiscuity. We have assumed that the macrophage- and AMA-associated transcripts are expressed in macrophages that have infiltrated the rejecting renal allografts and oxazolone-challenged skin. However, it is well known that other cell types express many of these markers, as they are shared between cells of the myeloid lineage which include macrophages and dendritic cells. Both CD68 and MRC1 can be found on subsets of Langerin⁻ (CD207⁻) epidermal-dendritic-like cells that are DC-SIGN⁺ (CD209⁺) (91). Moreover, this provides a hypothesis driven explanation of why the number of MRC1⁺ cells in our oxazolone-challenged skin almost equaled the number of CD68⁺ cells. Thus, some of the MRC1⁺ cells in inflamed skin may have been epidermal-dendritic cells.

Nevertheless, the collective presence of the macrophage- and AMA-associated transcripts, along with the many IFNG-induced transcripts involved in antigen processing and presentation implies that TCMR and DTH involve myeloid cells which are involved in mediating the local adaptive, inflammatory response, and remodelling the injured tissue.

5.2.6 Conclusion. We summarized the burden of our inflammatory transcript sets within the oxazolone-challenged skin and rejecting renal allografts with TCMR by calculating the transcript set score, and comparing that score to their respective controls (sham-treated skin or normal kidneys). There were significant gains in the cytotoxic T cell-associated, IFNG-induced, and macrophage-associated transcript set scores in both the oxazolone-challenged skin and renal allografts with TCMR. As previously mentioned, there was also a nominal increase in the AMA-associated transcript set score within the oxazolone-challenged skin. This is in addition to increases in *II4, Mrc1* and *Chi3I3* transcript expression, select markers of AMA, assessed by PCR. Our microarray data of oxazolone-induced CHS and TCMR of mouse renal allografts has revealed that changes

in transcript expression are stereotyped and therefore predictable, in a T cell-mediated inflammatory compartment.

5.3 THE ACTIVE INJURY-REPAIR RESPONSE REFLECTS A LARGE-SCALE ANTI-PARALLEL SHIFT IN THE EXPRESSION OF TRANSCRIPTS

While it could be expected that the molecules representing the inflammatory phenotype are widely shared in different diseases, we found that the molecules involved in injury and repair processes are more organ or tissue specific. Our original (kidneyselective) IRITs, which represented the injury-repair response's increased transcript expression (injury-up); and our KTs, which represented decreased (injury-down) parenchymal and stromal function were derived in mouse renal isografts (13,14). Moreover, these transcript sets were also validated to accurately assess the injury-repair response in human renal allografts after finding their human orthologs (6,7). However, neither of these transcript sets, the IRITs or KTs, could qualitatively assess the injuryrepair response in oxazolone-challenged mouse skin. Consequently, using similar algorithms as we did in the kidney, we derived two transcript sets to assess the active injury-repair response in mouse skin: the skin-selective IRITs (injury-up); and the STs (injury-down). In suit with their independent derivations and tissue specificity, these transcript sets had very little overlap with the kidney-selective IRITs and KTs. Nevertheless, in both inflamed skin and kidney, the skin- and kidney-selective IRITs, and STs and KTs, were associated with a similar injury-repair response pattern: tissue remodelling, promotion of secondary inflammation and dedifferentiation (re-expression of transcripts related to embryonic development and loss of function.

5.3.1 Injury-up: the injury- and repair-induced transcripts (IRITs). Despite the relatively small number of transcripts that overlapped between our skin- and kidney-

selective IRITs, these transcript sets shared some common functionalities. GO analysis indicated both transcript sets were enriched in: response to stress related categories, including response to wounding and wound healing (examples include TLRs, TGF-beta, and epithelial derived *Cxcl5*); and, extracellular matrix remodelling, including matrix catabolism (examples include matrix metalloproteinase, and a disintegrin and metalloproteinase families) and synthesis of matrix components (examples include collagens, laminins, tanascin and versican).

Our laboratory also published that kidney-selective IRITs within isografts and allografts were overrepresented with transcripts involved in mesenchymal and embryonic kidney development (13); this suggested a de-differentiation event as the kidney tissue went through the repair processes. Interestingly, the skin- IRITs also contained a set of transcripts belonging to small proline-rich region (*Sprr*) proteins that were overrepresented in the GO epithelial development annotation. Although very little is known about SPRR functions, high *Sprr* transcript (and protein) expression is associated with developing ectoderm derived tissues and epithelial-mesenchymal transition (75,92).

In accordance with the above results, the transcript set scores for the skin- and kidney-selective IRITs indicated an overall increase in the injury-up in both the oxazolone-challenged skin and TCMR of renal allografts, respectively. Therefore, despite the moderate differential transcript representation, the presence of skin- and kidney-selective IRITs indicates a convergence of injury-repair response functional processes in these two tissues.

5.3.2 Injury-down: skin- and kidney-associated transcripts (STs and KTs). Akin to the skin- and kidney-selective IRITs, the STs and KTs had a relatively little overlapping transcripts; and as expected, GO analysis of these transcripts sets revealed their distinct, tissue-selective, molecular biology. The KTs were overrepresented with numerous transporter activities that were enriched with solute carrier (*Slc*) transcripts including *Slc5a1* and *Slc5a2*, which code for renal sodium-glucose cotransporters (93).

Conversely, the STs were overrepresented with filament synthesis, largely involving the keratin (*Krt*) keratin-associated (*Krtap*) proteins. Keratins are intermediate filaments, produced by keratinocytes in the epithelium, and help form an epithelial extracellular matrix (49). Notwithstanding these differences, both KTs and STs were enriched with many metabolic pathway annotations, such as fatty acid beta-oxidation, amino acid catabolic process, and hexose metabolic process. In suit of these observations, the ST and KT transcript set scores decreased in the oxazolone-challenged skin and TCMR of renal allografts, respectively. Hence, the loss of STs and KTs represent a large-scale epithelial response encompassing the loss of parenchymal and stromal function.

However, unlike TCMR, we observed extensive epithelial necrosis in our oxazolone-challenged skin; thus, this could have contributed to the loss of STs. Nevertheless, the enrichment of metabolic pathway annotations and the re-emergence of IRIT developmental transcripts, in both renal allografts with TCMR and oxazolone-challenged skin, suggest a decrease in ST expression is not purely the result of lost nuclei. Repeating these experiments and applying a repeated hapten-challenge protocol (as mentioned above) may result in epidermal hyperplasia (72), instead of necrosis.

5.4 CONCLUSIONS PART 1: MOLECULAR CHANGES ARE STEREOTYPED

Here we have shown that T cell-mediated inflammation induced from antigenicchallenge via the purportedly creation of hapten adducts, or through the reaction with alloantigen such as MHC, induces large-scale molecular changes. Gene expression microarrays revealed stereotyped biological processes involved in inflammation (T cell and general macrophage infiltration, AMA, and IFNG-effects), and active injury-repair response. We reason that the loss of function and dedifferentiation of the local parenchyma and stroma is the molecular equivalent of *functio laesa*; a necessary

response of the tissue while it mounts efforts towards repairing basement membranes and extracellular matrices.

5.5 STUDY SUMMARY PART 2: IFNG-DEPENDENT CHANGES

The second aim of this study was to analyze experimentally induced CHS within GRKO (*Ifngr1* deficient) mice. Our laboratory previously showed that IFNG plays a critical role in the stabilization of mouse renal allografts (41). When IFNG is unable to act on the donor renal allograft, either because of *Ifng* deficient hosts or *Ifngr1* deficient allografts, the grafts fail by day 5-7 post-transplant due to massive necrosis and collapse of the microcirculation (41). Gene expression microarray analysis of these allografts revealed increased expression of IFNG-suppressed transcripts enriched with AMA-associated transcripts and kidney-selective IRITs. In other words, during the normal (wild type) course of rejection IFNG directly suppresses the expression of transcripts that are IRIT or AMA annotated; or alternatively, IFNG stabilized the graft, ultimately preventing necrosis and subsequent increased injury-repair response from the adjacent viable cells. It is difficult to explain the increased AMA phenotype however; because AMA is still a feature of allografts lacking MHC class I (*Tap* or *B2m* deficient), but have functional IFNG-signalling (41).

Since the first part of our study indicated that oxazolone-challenged (wild type) mouse skin underwent similar molecular changes as wild type mouse renal allografts; we hypothesized that oxazolone-challenged GRKO skin would exhibit similar histological and molecular changes as previously reported in our GRKO renal allografts. While we found an analogous increase of IFNG-suppressed transcripts enriched with skin-selective IRITs, there was little enrichment of AMA-associated transcripts within the oxazolone-challenged GRKO skin compared to oxazolone-challenged B6 skin. However, the canonical AMA markers, *Arg1* and *Chi3l3*, were both increased in the oxazolone-

challenged GRKO skin, as assessed by real time RT-PCR. Thus, a robust increase of AMA in inflamed skin may be dampened by a high basal presence of AMA and myeloid cells in normal skin (described below), compared to a lower presence in kidneys.

5.5.1 IFNG-effects within GRKO skin. Real time RT-PCR analysis of the oxazolonechallenged GRKO skin revealed that, as expected, expression of the IFNG-inducible transcripts, Cxcl9, Aif1 and Ubd was significantly reduced in the oxazolone-challenged GRKO skin compared to the oxazolone-challenged B6 skin. By the same comparison, these findings were mirrored by the microarrays: all IFNG-induced transcripts were decreased in the oxazolone-challenged GRKO skin compared to the oxazolonechallenged B6 skin. Interestingly, real time RT-PCR assayed expression of Ifng revealed slightly lower expression levels within the oxazolone-challenged GRKO skin than the oxazolone-challenged B6 skin; this is indicative of IFNG autoinduction. As previously reported, Ifng autoinduction has been implicated in mouse kidneys resulting from systemic effects of local T cell-mediated inflammation (69), and in *in vitro* experiments within PBMCs and T cell depleted PBMCs (94). The reduced levels of Cxc/9, Aif1 and Ubd within the sham-treated GRKO skin points towards basal effects of IFNG in uninflamed tissue. Similar basal effects have been reported in GKO (Ifng deficient) mice, which have reduced MHC class I expression within GKO kidneys compared to wild type (95).

5.5.2 GRKO kidney derived IFNG-suppressed transcripts are enriched with IRITs in GRKO skin. The IFNG-suppressed transcripts, which were derived from a series of GKO and GRKO renal allografts (48), were also found within the oxazolone-challenged GRKO skin: individual IFNG-suppressed transcripts and the summarized transcript set score were both increased in oxazolone-challenged GRKO skin over the oxazolone-challenged B6 skin. Moreover, over a third of the IFNG-suppressed transcripts differentially expressed in the oxazolone-challenged GRKO skin were annotated as skin-selective

IRITs; denoting the oxazolone-challenged GRKO skin was undergoing a greater active injury-repair response. Indeed, there were many individual skin-selective IRITs that were increased within the oxazolone-challenged GRKO skin compared to the oxazolonechallenged B6 skin. By the same comparison, the skin-selective IRIT set score was also increased in the GRKO skin. Literature review of the other non-IRIT IFNG-suppressed transcripts revealed these transcripts are largely involved in the acute-phase response and tissue remodelling. Contrasting with the increased presence of IRITs, the STs were reduced in the oxazolone-challenged GRKO skin. Despite these observations that imply a greater injury-repair response in the oxazolone-challenged skin, there was no histological evidence of increased injury. Another group has looked at CHS in GKO mice using the haptens, picryl chloride and fluorescein isothiocyanate (FITC) (96). While they found that an increase in ear thickness (swelling) zero to 24 hours post-FITC-challenge in GKO skin did not differ from FITC-challenged B6 skin; ear thickness increased significantly in picryl chloride-challenged skin over challenged B6 skin, zero to four hours post-challenge, but increased thickness was equivalent by 24 hours post-challenge (96). Therefore, the efficacy for haptens to covalently bind to proteins could vary; and/or different haptens might induce various MHC-restricted hapten-determinants that result in varied TCR binding affinity.

Our laboratory's previous analyses of rejecting GRKO renal allografts revealed a strong AMA phenotype and injury-repair response along with severe necrosis of the GRKO graft (41,48). However, unlike the injury-repair response, AMA was not dependent on the necrosis; as AMA was still present in GRKO allografts into *Prf1* and *Gzma/b* deficient hosts, where rejection progresses similar to wild type allografts (41). That is, these allografts develop interstitial infiltrate and tubulitis, not severe necrosis. Thus, the lack of increased AMA within the oxazolone-challenged GRKO skin was unexpected and puzzling. Markers associated with AMA may be such a robust feature of the skin microenvironment, that deficient IFNG-signaling is unable to grossly affect expression of AMA-associated markers. As described above, MRC1 (*Cd206*) and Dectin-1 (*Clec7a*)

can also be found on epidermal dendritic cells (91). There is also evidence that Langerhans (CD207⁺) cells may exhibit features of AMA (97). However, a more preferred explanation is that AMA may be a more robust feature of repeated oxazolone challenges; similar to the inflammatory compartment of an allograft, where antigen is constitutively presently. Thus the level of immunogenic-challenge or injury was not great enough in our model to induce a strong AMA phenotype.

5.6 CONCLUSIONS PART 2: IFNG-DEPENDENT CHANGES IN CHS

Here we described the IFNG-dependent changes within CHS, a model of DTH. CHS in GRKO skin displayed stereotyped changes; decreased IFNG-effects with increased IFNG-suppressed transcripts. The IFNG-suppressed response was largely a representation of the skin-selective IRITs. Taking into consideration the results from the first study (CHS in wild type skin), we have shown that IFNG-dependent molecular changes are very robust, despite the disparate tissues and antigens, alloMHC versus haptenized self-proteins. In wild type inflamed skin and kidney allografts, IFNG-effects qualitatively manifest as antigen processing and presentation processes, and lymphocyte chemotaxis. Additionally, IFNG appears to ameliorate or stabilize the injury-repair response, as inflamed skin and kidneys with deficient IFNG-signalling manifest as increased expression of IFNG-suppressed transcripts, which are enriched with skin- or kidney-selective IRITs. Unlike rejecting renal allografts with IFNG-deficient signaling (host GKO or allograft GRKO), CHS in GRKO did not manifest robust features of AMA (assessed by microarrays) in addition to CHS in wild type skin. As described above, this is likely due: one, to the single sensitization and challenge with hapten, rather than the constitutive presence of antigen; and/or two, the different residential myeloid populations in normal skin and kidney.

5.7 ADDITIONAL CONCLUSIONS AND FUTURE DIRECTIONS

5.7.1 Real time RT-PCR and microarrays offer similar results. A previous report on the comparison of real time RT-PCR and microarray performance concluded that both platforms offer almost equivalent performance (98). Indeed, we observed similar results in our oxazolone experiments; changes in transcript expression *Cxc/9* were mirrored by both real time RT-PCR and microarrays. In both wild type and GRKO CHS studies, significant changes in *Ubd* transcript expression were only detected by real time RT-PCR, as it did not meet the FDR cut-off (FDR<0.05) within the microarray analysis. Real time RT-PCR is relatively more sensitive than microarrays, as real time RT-PCR has been shown to have a lower limit of detection (98). Nevertheless, microarrays are an efficient way of measuring large-scale transcript changes. Microarrays can conceal select outliers of the transcript set herd-movement: one, where a single probeset becomes a false negative, as was our case with *Ubd*; or two, where even real time RT-PCR fails to detect transcripts due to a poorly functioning primer/probe or an outlier in the sample population, such as a patient biopsy (98).

5.7.2 Versatility of pathogenesis based transcript sets (PBTs). Our transcript sets that assess the inflammatory burden such as T cells, macrophages, IFNG-effects and IFNG-suppressed-effects are not restricted to assessing inflammation within the one tissue compartment they were derived from. Here we have shown these transcript sets can qualitatively assess inflammation in a CHS reaction; in addition, many of these transcript sets can quantitatively assess allograft rejection of human renal allografts (9). Contrary to the versatility of our inflammatory PBTs, individual members of the IRITs and tissue-associated transcripts (STs and KTs) are more tissue- or organ-selective. For example, the kidney is enriched with solute carriers for ion transport, and the skin is enriched with keratins that constitute a barrier function against pathogens, toxins and

moisture loss. Nevertheless, these individual transcripts enrich overlapping functional annotations: upon injurious insult, tissues lose their primary function and dedifferentiate (*functio laesa*), enabling the damaged tissue to engage in concerted mechanisms that prevent further damage and infection, while undergoing injury-repair. Thus, even tissue-selective transcripts manifest a herd-movement through the sharing of common biological processes.

Above, we demonstrated the applicability of our PBTs to assess the active biological processes present in a CHS reaction at a single time point. In addition, our laboratory previously demonstrated that PBTs can robustly quantify TCMR and ABMR of renal allografts (6,7), as well as cardiac allografts (99), and ulcerative colitis (unpublished data), in human patients. With the development of our skin-selective injury-repair transcript sets, it would be pragmatic to apply our PBTs to human cutaneous diseases such as psoriasis, atopic eczema and allergic contact dermatitis; diseases that we understand very little of. These inflammatory diseases are prevalent and they grossly influence the quality of life of those affected; therefore, they also have economic implications (100,101).Revealing and quantifying the coordinated, large-scale biological processes (the herd-movement) involved in cutaneous diseases will undoubtedly lead to more precise diagnoses and therefore, improved treatment regimens.
REFERENCES

- (1) Spencer WG. Celsus, De Medicina. [Volume I, Books 1-4]. 1935. Cambridge, Mass. and London, The Loeb Classical Library. On Medicine.
- (2) Macartney J. A treatise of inflammation. British Library, Historical Print Editions; 2011.
- (3) Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102(43):15545-50.
- (4) Chang HY, Nuyten DS, Sneddon JB, Hastie T, Tibshirani R, Sorlie T, et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci U S A 2005;102(10):3738-43.
- (5) Mueller TF, Einecke G, Reeve J, Sis B, Mengel M, Jhangri.G., et al. Microarray analysis of rejection in human kidney transplants using pathogenesis-based transcript sets. Am J Transplant 2007;7(12):2712-22.
- (6) Halloran PF, de Freitas DG, Einecke G, Famulski KS, Hidalgo LG, Mengel M, et al. The molecular phenotype of kidney transplants. Am J Transplant 2010;10(10):2215-22.
- (7) Halloran PF, de Freitas DG, Einecke G, Famulski KS, Hidalgo LG, Mengel M, et al. An integrated view of molecular changes, histopathology, and outcomes in kidney transplants. Am J Transplant 2010;10(10):2223-30.
- (8) Halloran PF. T Cell Mediated Rejection of Kidney Transplants: A Personal Viewpoint. Am J Transplant 2010;10(5):1126-34.
- (9) Famulski KS, Einecke G, Sis B, Mengel M, Hidalgo LG, Kaplan B, et al. Defining the Canonical Form of T-Cell-Mediated Rejection in Human Kidney Transplants. Am J Transplant 2010;10(4):810-20.
- (10) Sis B, Jhangri G, Bunnag S, Allanach K, Kaplan B, Halloran PF. Endothelial gene expression in kidney transplants with alloantibody indicates antibodymediated damage despite lack of C4d staining. Am J Transplant 2009;9(10):2312-23.
- (11) Hidalgo LG, Sis B, Sellares J, Campbell PM, Mengel M, Einecke G, et al. NK cell transcripts and NK cells in kidney biopsies from patients with donor-specific antibodies: evidence for NK cell involvement in antibody-mediated rejection. Am J Transplant 2010;10(8):1812-22.
- (12) Reeve J, Einecke G, Mengel M, Sis B, Kayser N, Kaplan B, et al. Diagnosing rejection in renal transplants: a comparison of molecular- and histopathologybased approaches. Am J Transplant 2009;9(8):1802-10.

- (13) Famulski KS, Broderick G, Hay K, Cruz J, Sis B, Mengel M, et al. Transcriptome analysis reveals heterogeneity in the injury response of kidney transplants. Am J Transplant 2007;7(11):2483-95.
- (14) Einecke G, Broderick G, Sis B, Halloran PF. Early loss of renal transcripts in kidney allografts: relationship to the development of histologic lesions and alloimmune effector mechanisms. Am J Transplant 2007;7(5):1121-30.
- (15) Jabs WJ, SedImeyer A, Ramassar V, Hidalgo LG, Urmson J, Afrouzian M, et al. Heterogeneity in the evolution and mechanisms of the lesions of kidney allograft rejection in mice. Am J Transplant 2003;3(12):1501-9.
- (16) Einecke G, Fairhead T, Hidalgo LG, Sis B, Turner P, Zhu LF, et al. Tubulitis and Epithelial Cell Alterations in Mouse Kidney Transplant Rejection Are Independent of CD103, Perforin or Granzymes A/B. Am J Transplant 2006;6(9):2109-20.
- (17) Wynn JJ, Alexander CE. Increasing organ donation and transplantation: the U.S. experience over the past decade. Transplant Int 2011;24:324-32.
- (18) Cozzi E, Seveso M, Hutabba S, Fabris S, Cavicchioli L, Ancona E. An update on Xenotransplantation. Veterinary Research Communications 2007;31:15-25.
- (19) Fishman JA, Patience C. Xenotransplantation: infectious risk revisited. Am J Transplant 2004;4(9):1383-90.
- (20) Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010;10:826-37.
- (21) Medzhitov R, Horng T. Transcriptional control of the inflammatory response. Nat Rev Immunol 2009;9(10):692-703.
- (22) Medzhitov R, Janeway CA, Jr. Innate immune recognition and control of adaptive immune responses. Semin Immunol 1998;10(5):351-3.
- (23) Goes N, Urmson J, Ramassar V, Halloran PF. Ischemic acute tubular necrosis induces an extensive local cytokine response: evidence for induction of interferon-g, transforming growth factorb-1, granulocyte-macrophage colonystimulating factor, interleukin-2 and interleukin-10. Transplant 1995;59:565-72.
- (24) von Andrian UH, MacKay CR. T-cell function and migration. Two sides of the same coin. N Engl J Med 2000;343(14):1020-34.
- (25) Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med 2004;351(26):2715-29.
- (26) Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999;401(6754):708-12.
- (27) Waiser J, Schreiber M, Budde K, Bohler T, Kraus W, Hauser I, et al. Prognostic value of the Banff classification. Transpl Int 2000;13 Suppl 1:S106-S111.

- (28) Halloran PF, Urmson J, Ramassar V, Melk A, Zhu LF, Halloran BP, et al. Lesions of T-cell-mediated kidney allograft rejection in mice do not require perforin or granzymes A and B. Am J Transplant 2004;4(5):705-12.
- (29) Hidalgo LG, Einecke G, Allanach K, Halloran PF. The transcriptome of human cytotoxic T cells: similarities and disparities among allostimulated CD4(+) CTL, CD8(+) CTL and NK cells. Am J Transplant 2008;8(3):627-36.
- (30) Strehlau J, Pavlakis M, Lipman M, Maslinski W, Shapiro M, Strom TB. The intragraft gene activation of markers reflecting T-cell-activation and -cytotoxicity analyzed by quantitative RT-PCR in renal transplantation. Clin Nephrol 1996;46(1):30-3.
- (31) Hidalgo LG, Einecke G, Allanach K, Mengel M, Sis B, Mueller TF, et al. The transcriptome of human cytotoxic T cells: measuring the burden of CTLassociated transcripts in human kidney transplants. Am J Transplant 2008;8(3):637-46.
- (32) Du C, Jiang J, Guan Q, Yin Z, Masterson M, Parbtani A, et al. Renal tubular epithelial cell self-injury through Fas/Fas ligand interaction promotes renal allograft injury. Am J Transplant 2004;4(10):1583-94.
- (33) Cerf-Bensussan N, Jarry A, Brousse N, Lisowska-Grospierre B, Guy-Grand D, Griscelli C. A monoclonal antibody (HML-1) defining a novel membrane molecule present on human intestinal lymphocytes. Eur J Immunol 1987;17(9):1279-85.
- (34) Robertson H, Wong WK, Talbot D, Burt AD, Kirby JA. Tubulitis after renal transplantation: demonstration of an association between CD103+ T cells, transforming growth factor beta1 expression and rejection grade. Transplant 2001;71(2):306-13.
- (35) Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA. Perforin: structure, function, and role in human immunopathology. Immunol Rev 2010;235:35-54.
- (36) Choy JC. Granzymes and perforin in solid organ transplant rejection. Cell Death Differ 2010;17:567-76.
- (37) Strasser A, Jost PJ, Nagata S. The Many Roles of FAS Receptor Signaling in the Immune System. Immunity 2009;30(2):180-92.
- (38) Kayser D, Einecke G, Famulski KS, Mengel M, Sis B, Zhu LF, et al. Donor Fas is not necessary for T-cell-mediated rejection of mouse kidney allografts. Am J Transplant 2008;8(10):2049-55.
- (39) Lefrancois L, Parker CM, Olson S, Muller W, Wagner N, Puddington L. The role of beta 7 integrins in CD8 T cell trafficking during an antiviral immune response. J Exp Med 1999;189(10):1631-8.
- (40) Jose MD, Ikezumi Y, van Rooijen N, Atkins RC, Chadban SJ. Macrophages act as effectors of tissue damage in acute renal allograft rejection. Transplant 2003;76(7):1015-22.

- (41) Sis B, Famulski KS, Allanach K, Zhu L-F, Halloran PF. IFN-g prevents early perforin-granzyme-mediated destruction of kidney allografts by inducing donor class I products in the kidney. Am J Transplant 2007;7(10):2301-10.
- (42) Yang J, Riella LV, Chock S, Liu T, Zhao X, Yuan X, et al. The novel costimulatory programmed death ligand 1/b7.1 pathway is functional in inhibiting alloimmune responses in vivo. Journal of Immunology 2011;187(3):1113-9.
- (43) Sis B, Halloran PF. Endothelial transcripts uncover a previously unknown phenotype: C4d-negative antibody-mediated rejection. Curr Opin Organ Transplant 2010;15(1):42-8.
- (44) Mauiyyedi S, Pelle PD, Saidman S, Collins AB, Pascual M, Tolkoff-Rubin NE, et al. Chronic humoral rejection: identification of antibody-mediated chronic renal allograft rejection by C4d deposits in peritubular capillaries. J Am Soc Nephrol 2001;12(3):574-82.
- (45) Colvin RB, Smith RN. Antibody-mediated organ-allograft rejection. Nat Rev Immunol 2005;5(10):807-17.
- (46) Famulski KS, Kayser D, Einecke G, Allanach K, Badr D, Venner J, et al. Alternative macrophage activation-associated transcripts in T-cell-mediated rejection of mouse kidney allografts. Am J Transplant 2010;10(3):490-7.
- (47) Famulski KS, Einecke G, Reeve J, Ramassar V, Allanach K, Mueller T, et al. Changes in the transcriptome in allograft rejection: IFN-g induced transcripts in mouse kidney allografts. Am J Transplant 2006;6(6):1342-54.
- (48) Famulski KS, Sis B, Billesberger L, Halloran PF. Interferon-gamma and donor MHC class I control alternative macrophage activation and activin expression in rejecting kidney allografts: a shift in the Th1-Th2 paradigm. Am J Transplant 2008;8(3):547-56.
- (49) Nestle FO, Meglio PD, Qin J, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol 2009;9:679-91.
- (50) Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003;3(1):23-35.
- (51) Gocinski BL, Tigelaar RE. Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion. Journal of Immunology 1990;144(11):4121-8.
- (52) Wang B, Fujisawa H, Zhuang L, Freed I, Howell BG, Shahid S, et al. CD4+ Th1 and CD8+ type 1 cytotoxic T cells both play a crucial role in the full development of contact hypersensitivity. Journal of Immunology 2000;165:6783-90.
- (53) Taube M, Carlsten H. Cutaneous delayed type hypersensitivity in SCID mice adoptively transferred with lymphocytes is B cell independent and H-2 restricted. Scand J Immunol 1997;45(5):515-20.
- (54) Grabbe S, Schwarz T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today 1998;19(1):37-44.

- (55) Koch R. Die aetiologie der tuberculose. Berl Klin Wsch 1882;19:221-30.
- (56) Weltzien HU, Moulon C, Martin S, Padovan E, Harmann U, Kohler J. T cell immune responses to haptens. Structural models for allergic and autoimmune reactions. Toxicology 1996;107:141-51.
- (57) Black CA. Delayed Type Hypersensitivity: Current Theories with an Historic Perspective. Dermatol Online J 1999;5(1):7.
- (58) Martin SF, Dudda JC, Delattre V, Bachtanian E, Leicht C, Burger B, et al. Fasmediated inhibition of CD4+ T cell priming results in dominance of type 1 CD8+ T cells in the immune response to the contact sensitizer trinitrophenyl. Journal of Immunology 2004;173(5):3178-85.
- (59) Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E, Rudensky AY, et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 2003;19(1):47-57.
- (60) Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerinexpressing dendritic cells. Nat Rev Immunol 2008;8:935-47.
- (61) Kimber I, Cumberbatch M. Stimulation of Langerhans cell migration by tumor necrosis factor alpha (TNF-alpha). J Invest Dermatol 1992;99:48S-50S.
- (62) McLachlan JB, Catron DM, Moon JJ, Jenkins MK. Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatory T cells in inflamed skin. Immunity 2008;30(2):277-88.
- (63) Girardi M. Immunosurveillance and Immunoregulation by gammdelta T Cells. J Invest Dermatol 2006;126(1):25-31.
- (64) Conrad C, Boyman O, Tonel G, Tun-Kyi A, Laggner U, de Fougerolles A, et al. a1b1 integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nature Medicine 2011;13(7):836-42.
- (65) Eardley KS, Zehnder D, Quinkler M, Lepenies J, Bates RL, Savage CO, et al. The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int 2006;69(7):1189-97.
- (66) Girlanda R, Kleiner DE, Duan Z, Ford EAS, Wright EC, Mannon RB, et al. Monocyte infiltration and kidney allograft dysfunction during acute rejection. Am J Transplant 2008;8(3):600-7.
- (67) Yawalkar N, Nunger RE, Buri C, Schmid S, Egli F, Brand CU, et al. A comparative study of the expression of cytotoxic proteins in allergic contact dermatitis and psoriasis: spongiotic skin lesions in allergic contact dermatitis are highly infiltrated by T cells expressing perforin and granzyme B. Am J Pathol 2001;158(3):803-8.
- (68) Gaspari A, Katz SI. Contact Hypersensitivity. Current Protocols in Immunology 1991;1:4.2.1-4.2.5.

- (69) Halloran PF, Autenried P, Ramassar V, Urmson J, Cockfield S. Local T cell responses induce widespread MHC expression. Evidence that IFN-g induces its own expression in remote sites. Journal of Immunology 1992;148:3837-46.
- (70) Billingham RE, Medawar PB. The technique of free skin grafting in mammals. J Exp Med 1951;28(3):385-402.
- (71) Sis B, Mengel M, Haas M, Colvin RB, Halloran PF, Racusen L, et al. Banff '09 Meeting Report: Antibody Mediated Graft Deterioration and Implementation of Banff Working Groups. Am J Transplant 2010;10(3):464-71.
- (72) Man M-Q, Hatano Y, Lee SH, Man M, Chang S, Feingold KR, et al. Characterization of a hapten-induced, murine model with multiple features of atopic dermatitis: structural, immunologic, and biochemical changes following single versus multiple oxazolone challenges. J Invest Dermatol 2008;128:79-86.
- (73) Jeong JK, Kim HR, Hwang SM, Park JW, Lee BJ. Region- and neuronal phenotype-specific expression of NELL2 in the adult brain. Mol Cell 2008;26(2):186-92.
- (74) Kamsteeg M, Bergers M, de Boer R, Zeeuwen PL, Hato SV, Schalkwijk J, et al. Type 2 helper T-cell cytokines induce morphologic and molecular characteristics of atopic dermatitis in human skin equivalent. Am J Pathol 2011;178(5):2091-9.
- (75) Demetris A, Specht S, Nozaki I, Lunz JG, Stolz DB, Murase N, et al. Small proline-rich proteins (SPRR) function as SH3 domain ligands, increase resistance to injury and are associated with epithelial–mesenchymal transition (EMT) in cholangiocytes. J Hepatol 2008;48:276-88.
- (76) Kim CH, Kunkel EJ, Boisvert J, Johnston B, Campbell JJ, Genovese MC, et al. Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential. J Clin Invest 2001;107(5):595-601.
- (77) Can I, Tahara-Hanaoka S, Hitomi K, Nakano T, Nakahashi-Oda C, Kurita N, et al. Caspase-independent cell death by CD300LF (MAIR-V), an inhibitory immunoglobulin-like receptor on myeloid cells. Journal of Immunology 2008;180(1):207-13.
- (78) Ma G, Pan P, Eisenstein S, Divino CM, Lowell CA, Takai T. Paired Immunoglobin-like Receptor-B Regulates the Suppressive Function and Fate of Myeloid-Derived Suppressor Cells. Immunity 2011;34(3):385-95.
- (79) Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011;34(5):637-50.
- (80) Sa Q, Hoover-Plow JL. EMILIN2 (Elastin microfibril interface located protein), potential modifier of thrombosis. Thromb J 2011;11(9):1-8.
- (81) Einecke G, Mengel M, Hidalgo LG, Allanach K, Famulski KS, Halloran PF. The early course of renal allograft rejection: Defining the time when rejection begins. Am J Transplant 2009;9(3):483-93.

- (82) Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 1998;101(4):746-54.
- (83) Driscoll J, Brown MG, Finley D, Monaco JJ. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 1993;365:262-4.
- (84) Van Kaer L, Ashton-Rickardt PG, Ploegh HL, Tonegawa S. TAP1 mutant mice are deficient in antigen presentation, surface class I molecules, and CD4-8+ T cells. Cell 1992;71:1205-14.
- (85) Zhao Y, Ferguson DJ, Wilson DC, Howard JC, Sibley LD, Yap GS. Virulent Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole disruption within primed macrophages. Journal of Immunology 2009;182(6):3775-81.
- (86) Pawlowski N, Khaminets A, Hunn JP, Papic N, Schmidt A, Uthaiah RC, et al. The activation mechanism of Irga6, an interferoninducible GTPase contributing to mouse resistance against Toxoplasma gondii. BMC Biology 2011;9(7):1-15.
- (87) Lee HS, Song CY. Differential role of mesangial cells and podocytes in TGFbeta-induced mesangial matrix synthesis in chronic glomerular disease. Histol Histopathol 2009;24(7):901-8.
- (88) Yamamoto S, Yasunori H, Yoshiyama K, Shimizu E, Kataoka M, Hijiya N, et al. ADAM family proteins in the immune system. Immunol Today 2011;20(6):278-84.
- (89) Gordon S, Martinez FO. Alternative Activation of Macrophages: Mechanism and Functions. Immunity 2007;32:593-604.
- (90) Jin J, He R, Oyoshi M, Geha RS. Animal Models of Atopic Dermatitis. J Invest Dermatol 2009;129:31-40.
- (91) Ochoa MT, Loncaric A, Krutzik SR, Becker TC, Modlin RL. "Dermal dendritic cells" comprise two distinct populations: CD1+ dendritic cells and CD209+ macrophages. J Invest Dermatol 2008;128(9):2225-31.
- (92) Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003;112(12):1776-84.
- (93) Wright EM. Renal Na+-glucose cotransporters. Am J Physiol Renal Physiol 2001;280:F10-F18.
- (94) Hardy KJ, Sawada T. Human g interferon strongly upregulates its own gene expression in peripheral blood lymphocytes. J Exp Med 1989;170:1021-6.
- (95) Goes N, Sims T, Urmson J, Vincent D, Ramassar V, Halloran PF. Disturbed MHC regulation in the interferon-g knockout mouse. Journal of Immunology 1995;155:4559-66.
- (96) Mori T, Kabashima K, Yoshiki R, Sugita K, Shiraishi N, Onoue A, et al. Cutaneous hypersensitivities to hapten are controlled by IFN-gamma-

upregulated keratinocyte Th1 chemokines and IFN-gamma-downregulated langerhans cell Th2 chemokines. J Invest Derm 2008;128:1719-27.

- (97) Dupasquier M, Stoitzner P, Wan H, Cerqueira D, Van Oudenaren A, Voerman JS, et al. The dermal microenvironment induces the expression of the alternative activation marker CD301/mMGL in mononuclear phagocytes, independent of IL-4/IL-13 signaling. J Leukoc Biol 2006;80(4):838-49.
- (98) Allanach K, Mengel M, Einecke G, Sis B, Hidalgo LG, Mueller T, et al. Comparing microarray versus RT-PCR assessment of renal allograft biopsies: similar performance despite different dynamic ranges. Am J Transplant 2008;8(5):1006-15.
- (99) Mengel M, Sis B, Kim D, Chang J, Famulski K, Hidalgo L, et al. The molecular phenotype of heart transplant biopsies: relationship to histopathological and clinical variables. Am J Transplant 2010;10(9):2105-15.
- (100) Nestle FO, Kaplan D, Barker J. Mechanisms of disease: psoriasis. N Engl J Med 2009;361(15):496-509.
- (101) Eyerich S, Onken AT, Weidinger S, Franke A, Nasorri F, Pennino D, et al. Mutual antagonism of T cells causing psoriasis and atopic eczema. N Engl J Med 2011;365(3):231-8.