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Abstract

A new bone modeling model is developed. The new modeling model is
based on Cowin’s external modeling and adopts the weighting factors to reflect
the different effects of different strain components on the bone modeling. The
new theory overcomes the flaw in Cowin’s external remodeling theory and is
approved to have flexibility over the existing modeling theories. The new theory
also reflects biological factors in the model which are not considered by the
existing theories.

By association of the new model with various numerical techniques, several
computer simulations are presented to validate model and simulate some
interesting idealized clinical problems. All example problems show an excellent
agreement to the analytical solution or qualitatively to the experimental facts.

The results obtained in those examples are very close to the real bone
modeling situation and provide very promising information on the method to

simulate the bone modeling in the real clinical practice.
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Glossary

Cancellous bone -- the sponge bone which predominates in the metaphyses and
epiphyses.

Cement line -- a line 1 to 5 um thick around Haverisan bone which separates
the osteon as a structural unit from extraosteonal bone matrix.

Cortical bone -- the compact bone which comprises the diaphysis of long bones
and thin shell that surrounds the metaphyses.

Diaphysis -- the shaft of a long bone which is a hollow tube.
Endosteum -- a thin layer of reticular cells, lining the walls of the bone marrow
cavities and of the haversian canals of compact bone and convering trabeculae

of cancellous bone.

Epiphyses -- the part that surmount the metaphysis and is united to its
metaphysis by a cartilaginous growth plate.

Haversian systems or osteons -- an irregularly cylindrical and branching
structure, with thick walls and a narrow lumen.

Metaphysis -- the expansion at the end of a long bone.
Ostectomy -~ removal of a section of a long bone.

Periosteum -- the connective tissue surrounding bone.



Chapter 1
Introduction

Functional adaptation is the term used to describe the ability of
organisms to increase their capacity to accomplish their function with the
increased demand and to decrease their capacity with lesser demand. It has long
been recognized that bone could sense its mechanical environment and in
certain situations adapt to it - collectively termed as “Modeling/Remodeling” or
“Adaptation” of bone. For example, it has been well known that bed rest and
weightlessness as in space flight, lead to a reduction in bone size and reduced
growth rate of bone while intensive loading of a bone can result in an increase
in bone mass. For example, arm bones of professional tennis players are larger
on the racket-holding side than on the other side.

The concept of bone adaptation is attributed to Julius Wolff, a
nineteenth century physician, and his original statement about the response of
bone to mechanical usage is called Wolff's law. In fact, Wolff’s law is a senes
of descriptions of the remodeling/modeling phenomenon. The translation of
Wolff’s law (Treharne, 1981) published in German back in 1892 is as follows:

“Every change in the ...function of a bone...is followed by certain
definite changes in ... internal architecture and external
conformation in accordance with mathematical laws.”

According to Wolff’s law, bone’s adaptation to its mechanical
environment includes two aspects: changing its internal structures (internal
remodeling or remodeling) and changing its external shape (external remodeling
or modeling). The former is achieved by osteonal remodeling and the laiter by
adding or removing bone from the bone surface.

There are two phases of adaptation. One is the embryonic phase during
which biological factors such as regulatory genes and chemical morphogenes

1
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play an important role on the bone growth. The pure biological influences
gradually disappear over time and the mechanical factors become more and
more dominant on the bone adaptation throughout the adult life. Wolff’s law
actually addresses the latter case.

Since Woff’s law was first proposed, the adaptive phenomenon of bone
has received considerable attention. The study of this phenomenon generally
falls into two broad classes: mathematical and biological. Biologists try to deal
with the problem microscopically and with mathematical simplicity. On the
other hand, mechanical engineers prefer to use more rigorous mathematical
tools to set up the model and neglect the details of how bone’s microstructure
and matenial constituents change.

The two approaches each have their advantages and shortcomings. The
biological one links bone cell activities and biomechanical conditions, thus
providing a useful framework for discussing experimental results. But its
attributing the experimental findings to some simple mechanical signal limits its
capacity to explain the problem locally and not globally. As for the mechanical
approaches, their comprehensive considerations of only the mechanical
environment and rigorous mathematical formulation provide them with the
potential capacity to globally predict the clinical results although at present it
seems to lack a good biological basis.

All adaptation theories are closely associated with the design of bone
implants and the explanation of experimental results. Procedures such as total
joint replacement are performed in large numbers and at significant cost each
year. Over 300,000 total hip and knee replacements occur annually in the U.S.
alone. Although orthopedic implants are designed to last for the life time, the
results are not satisfactory due to the fact that the implants often lose contact
with the bone, and undermine the mechanical stability of the implant leading to
implant failure. The explanation is that the ‘stress shielding’ plays an important
role in this problem. ‘Stress shielding’ implies that a load, originally carried by
bone itself, is now shared with an implant and as a result the bone stress
decreases and bone resorbs according to Wolff’s law.

The clinical importance of long term stability of implants, along with the
large number and high cost of the surgical procedures, indicates that computer
based simulation could be used to investigate the biomechanical behavior of a
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bone-implant system and predict the adaptive change of the bone around
prostheses. The objective of computer simulation is to predict the shape
changes as well as bone adaptation around the implant surface and thus simulate
the effects of the implant on the bone after years in the body thus assisting
implant designers in the refinement of the prostheses design.

Compared with the animal experiments, which have been traditionally
used to investigate bone response to implants, computer simulation is
inexpensive and fast (Cowin, 1993). According to Cowin, although computer
models can not take place of animal experiments, they have the potential to
reduce the number of animal experiments by focusing on experimental designs.

The objective of the current study is to develop a numerical bone
external remodeling simulation. The work can be divided into three phases: (1)
comparison and evaluation of the existing remodeling theories; (2) based on
those evaluations, development of an improved new remodeling/modeling
model; (3) and development of numerical techniques to validate this new model
by comparing the “outputs” with other theoretical and experimental resuits.

The current study focuses on the mathematical approaches but attempts
to consider the connection of biology and mechanics. In the remainder of this
chapter, the physiology and the mechanical properties of bone are briefly
discussed so that the mechanisms of bone adaptation can be discussed later.

1.1 Physiology of bone

Bone is a structure as well as metabolic tissue which is a highly
specialized form of connective tissue, composed of branching cells in an
intercellular substance and forming the skeleton or framework of the body of
most vertebrates.

As a structural material, bone is very different compared to engineering
structural materials since it is self-repairing and can alter its properties and
geometry in response to changes in mechanical demand. As a tissue, it has
certain characteristics that differentiate it from other forms of connective tissue.
The most striking one is that it is relatively hard which results from deposition,
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within a soft organic matrix (collagen fiber), of a complex mineral substance
(composed chiefly of calcium, phosphate etc.). Bone has its own specialized
forms of cells derived from those common to connective tissue.

The function of bone is to protect vital internal organs and provide a
mechanical framework that allows the skeleton to execute motions that are
necessary for survival. In many cases, bone microstructure will reflect the varied
and diverse mechanical needs of the particular organism. In addition to strength
and stiffness, it possesses a mechanism to avoid fatigue fracture.

While the shapes of whole bones are marvelously varied a large
proportion of them fall into three groups.

e Tubular bone (long bones): consisting of a shaft (diaphysis) with an
expansion (metaphysis) at each end. It includes most of the long
bones and ribs;

e Tabular bone (flat bones): one dimension is much less than the other
two such as scapula, the pelvis and etc ;

e Short bones: roughly the same size in all directions.

1.1.1 Structures of bone

To appreciate the behaviour of bone, it is necessary to consider its
structure from different views.

Bone is composed of cells and mineralized extracellular substance. This
interstitial substance includes the organic framework or matrix and the
inorganic parts of the mineral of bone and water.

Bone cells can be divided into three types which are associated with
specific functions: osteoblasts with the formation of bone; osteocytes with the
maintenance of bone as a living tissue, and osteoclasts with the resorption of
bone.
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Osteoblast is generally found as a continuous layer on the bone surface
where active bone formation takes place. These may be periosteum-covered
external bone surfaces or the internal (endosteal) surfaces. It is actively engaged
in the production of an extracellular matrix and has the characteristic
morphology of protein-secreting cells. Osteocyte is actually the remnants of
osteoblast that have secreted bone around themselves and serve to maintain an
extensive network of contacts of adjacent cells. It is the only type of bone cell
that are encased in the mineralized bone matrix (the other two are located on all
available extracellular matrix surfaces).

Osteoclasts are usually found on the surfaces of bone (that, at different
times, are occupied by osteoblasts), in close relationship to areas of resorption.
Osteoclasts are responsible for major bone tissue removal, following the
initiation of this process by osteoblasts. Developmentally and functionally, they
are totally different from the osteoblasts and osteocytes which are connected by
gap junctions (intercellular contacts, which permit electric coupling of cells, as
well as free movement of a common pool of small metabolites and ions ) of the
cell processes, forming a connected cellular network that allows direct cell-to-
cell communication. No gap junction contacts between osteoclasts and the
other bone cells have been reported.

In general, bone microstructure can be divided into three categones:
woven bone, primary bone and secondary bone.

e Woven Bone

Woven bone is a poorly organized, randomly oriented tissue. It is
associated with periods of rapid formation such as that of active growth or in
fracture repair. Woven bone can be deposited without any previous hard tissue.
The function of woven bone is primarily mechanical, rapidly providing both
temporary strength and scaffolding upon which lamellar bone may be deposited.

e Primary Bone

Unlike woven bone, primary bone must be deposited on a preexisting
substrate. This substrate may be a cartilaginous anlage (base), calcified or
uncalcified or may be preexisting bone.
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Primary bone can be divided two types—primary lamellar, and primary
osteons.
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Figure 1.1 The basic structure of compact bone (Fung 1993)
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e Secondary Bone

Primary bone is a new bone made in a space where bone has not existed
before. When bone is the product of resorption of previously existing bone
tissue and the deposition of new bone in its space, it is called secondary bone.
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In cortical bone, the replacement of preexisting bone by secondary bone
is initiated by resorption of whole bone by osteoclasts. The result of osteoclastic
resorption and subsequent formation by osteoblasts is a secondary osteon
(Haversian system). The two major distinguishing features of Haversian system
are the organization of lamellae around the central canal (Haversian canal) and
the presence of a cement line 1 to 5 um thick separating the osteon as a
structure unit of bone from the extraosteonal bone matrix (Figure 1.1).

The structure of secondary osteons is quite similar to primary osteons.
The main distinction is that primary osteons do not have the cement.

Bone consists of compact and sponge regions of hard-matter which are
called cortical bone and cancellous or trabecular bone respectively. Cortical
bone comprises the diaphysis of long bones and the thin shell that surrounds the
metaphyses. Cancellous bone predominates in the metaphyses and epiphyses
which is continuous with the inner surface of the metaphyseal shell and exists
as a three dimensional, interconnected network of trabecular rods and plates
(the short struts of trabecular bone are called trabeculae). Short bones tend to
have very thin cortices and to be mostly filled with cancellous bone. Figure 1.2
shows cortical bone and cancellous bone in the proximal femur.

1.1.2 Summary

Bone is composed of cells and mineralized extracellular matrix. The
extracellular matrix has two principal ingredients: fibrous collagen and an
inorganic mineral phase mainly composed of calcium phosphate. At the
macroscopic level, bone can be divided two major forms: compact bone
(cortical) and spongy bone (trabecular or cancellous bone). At the
microstructural level bone exits in three distinct forms: woven bone, primary
bone and secondary bone. Woven bone is poorly arranged and associated with
periods of rapid formation such as that of active growth or in fracture repair.
Primary and secondary bone are in the forms of lamellae. The trabeculae (short
struts) of spongy bone are generally composed of a collection of more or less
parallel lamellae. In compact bone, the lamellae may be arranged either in a
parallel fashion (circumferential lamellae) or concentrically in quasi-cylindrically
shaped structure called osteons (primary osteons and secondary osteons or
Haversian system, Figure 1.1). Control of primary bone apposition to periosteal
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Figure 1.2 A longitudinal section at the proximal femur reveals the
cortical bone at the diaphysis. At the femur head shows a thin shell
of cortical bone with the trabecular network (Hastings et al 1984)
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(outer) or endosteal (inner) bone surfaces is different from that replacing
preexisting bone by secondary bone . The former is associated with modeling
process whereas the latter is controlled by remodeling process.

Bone cells are responsible for the modeling and remodeling processes.
These cells form a continuous cellular layer that covers all the available
extracellular matrix surface. Among them, osteoblasts, associated with bone
formation and osteoclast, the bone resorbing cells are always located on bone
surtaces where active bone formation or resorption takes places. Osteocytes are
the only type of bone cells that are encased in the mineralized bone matrix (in
small spaces or lacunae). They are responsible for bone maintenance and
continue to maintain contacts with other osteocytes and osteoblasts via a
system of cell processes located in canaliculi (tiny tubes, project from all
surfaces of a lacuna, Figure 1.1) which functions as a single functional
osteocyte network. This connected cellular network is the primary candidate for
the communication system by which bone modeling and remodeling signals are
transmitted.

It is believed that bone cells are capable of responding to mechanical
stimuli and they do so in a predictable fashion (Wolff's law). This is the basis of
modeling and remodeling theories.

1.2 The Mechanical properties of bone

The mechanical properties of bone have been extensively studied. From
a mechanical theory perspective, bone is both anisotropic and heterogeneous. In
addition, the degree of anisotropy of bone can vary with position so that the
material properties of bone are functions of anatomical position. Due to these
features, the traditional engineering methods for material property
determination are difficuit to apply to bone. As a result other techniques, such
as ultrasonic methods have become more common.

[t was noted before that bone structurally can be divided into two
general types, i.e., cortical bone and cancellous bone. Because of their very
different structures, their mechanical properties are also different. As a result
their mechanical properties will be presented separately.
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1.2.1 The Mechanical properties of cortical bone

Figure 1.1 illustrates schematically the microcomponents of a cortical
bone. It consists of five parts. (1) periosteal bone having a lamellar structure
following the outer curvature of the cortex; (2) endosteal bone, also lamellar
but with the radius of the lamellae corresponding to the inner radius of the
cortex; (3) primary osteons; (4) secondary osteons (Haversian system); (5)
interstitial bone (the remodeled remains of primary or secondary bone lamellae).

The determination of the material symmetry of amorphous material such
as bone is more difficult than for a crystalline material. According to Cowin's
(Cowin and Mehrabadi, 1989a) definition, the elastic symmetry of bone falls
into the category of textural symmetry which is in contrast to crystallographic
symmetry. The latter is easily determined by the chemical constituents of the
material but textural symmetry can only generally be identified by experiment.

Based on the pioneering work of Katz and others (Yoon and Katz,
1976a,b, 1979, Katz, 1980, Ashman et al., 1984, Buskirk and Ashman, 1981a,
b) as well as the identification methods given by Cowin et al. (Cowin and
Mehrabadi, 1989a) for the elastic symmetry of bone, it is generally accepted
that cortical bone can be considered as an orthotropic material.

As the degree of textured anisotropy of bone can vary with anatomic
site (and from individual to individual), some cortical bone tissue may be
transversely isotropic or even isotropic. For example, the work on
microstructure shows that cortical Haversian bone is transversely isotropic if it
has a hexagonal packing, and as Ashman and Van Buskirk (Ashman and Van
Buskirk, 1987) reported, mandibular bone is essentially transversely isotopic.

The choice of material symmetry for an elastic model of bone depends
to a large extent on the intended application. Huiskes (1982) indicates that the
stress analysis of a human femur is adequately served with a transversely
isotropic elastic model. This is also justified by the data provided by Ashman
and Van Buskirk (1981) which showed that the percentage difference between
the orthotropic elastic constant values and the transversely isotropic constant
values are quite small, and are therefore unlikely to have a significant effect on
the stress analysis of a bone.
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Bone is basically a viscoelastic material, however, previous work
(Cowin, 1986, chpt. 6) has shown it is reasonable to consider the bone as a
linear elastic material.

Several studies have been done to determine the elastic properties of
cortical bone. Due to the different testing methods and approaches, the resuits
varied even for the same kind of cortical bone. This reflects the complexity of
determination of mechanical properties of bone that are functions of age, sex,
and anatomical site.

A typical result is given in Table 1.1 (Ashman et al. 1984) where
cortical bone is assumed to be an orthotropic material, and directions X, Xz, X;
indicate radial, circumferential and longitudinal directions respectively.

The data in Table 1.1 are all related to long bones. There is little
information about cortical bone in other positions where the shape of bone is
less regular such as the craniofacial area. Although some general data may be
available, more precise values are still needed.

1.2.2 The Mechanical properties of cancellous bone

The microstructural features of trabecular bone have received
considerably less attention than those of cortical bone. Individual trabecular
plate and rods are composed primarily from interstitial bone of varying
composition, although on occasion lamellar trabecular plates and osteonal
trabecular rods are found.

The architectural feature of cancellous bone are remarkably similar to
porous foams (Figure 1.3). Macroscopically its mechanical properties can be
studied as a whole or as individual trabeculae (i.e. a single strut taken from
cancellous bone). By doing both some confusion about the difference between
cortical bone and cancellous bone can be understood.

Depending upon whether the pores are connected or not, the theoretical
models for the mechanical properties of high porosity materials are generally
classified as open cell or closed cell models. The microstructure of cancellous
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Table 1.1 AVERAGE TECHNICAL CONSTANTS FOR

FEMORAL BONE

Human Canine
E1(GPa) 12.0 2.8
E2(GPa) 13.4 15.6
E3(GPa) 20.0 20.1
G12(GPa) 453 4.68
G13(GPa) 5.61 5.68
G23(GPa) 6.23 6.67
vi2 0.376 0.282
vl3 0.222 0.289
v23 0.235 0.265
v21 0.422 0.366
v3l 0.371 0.454
v32 0.350 0.341

VFire 1.3 The pous streuture of
cancellous bone (Cowin et al 1989a)
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bone does not exactly match either of these idealized models as it falls between
these two but is closest to the open celled case.

The studies of closed cell and open cell models suggest that both (all
models are assumed as isotropic) Young's modulus E and the shear modulus G
are proportional to the square of structural density for open cell material, and
to the cube of structural density for closed cell material (Note that the structural
density is the mass per unit bulk volume of porous bone tissue).

Although the cancellous bone is not an isotropic material and its cell size
is not uniform, the above discussion suggests that both the Young's and shear
modulus as well as strength of cancellous tissue should depend on the square of
the structural density (i.e. the open cell model).

There are several studies to determine the relationship between
structural density and Young's modulus for cancellous bone.

Carter and Hayes (1977) gave the following empirical relationship for
the dependence of the longitudinal Young's modulus upon structural density:

E= 3790(%)"-06 p’ (1-1)

where E is in MPa, p is in g/cm’ (10° kg/m®), and i—: is the strain rate in (1/s).

This relationship is called the combined data relationship because it is
derived from the data which included both bovine and human cancellous and
cortical bone data.

However this result is not consistent with that of Rice (Rice et al.,
1988). The latter analysis made the distinction between bovine and human bone
and the data for cortical bone were not included. Rice concluded that the axial
Young's modulus was proportional to the square rather than the cube of the
structural density and that the constants of proportionality between Young's
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modulus and structural density differ between human and bovine cancellous
bone.

Rice's results seem to be justified by the theoretical model mentioned
above (open cell model). Rice also used statistical methods to analyze several
sets of data from a number of previous experiments. It was concluded that
differences in the data are due to species, direction and stress rather than to
properties of particular bone or laboratory conditions. The empirical
relationship for human bone by Rice is given in Table 1.2.

Table 1.2 Realtionship betwee Young’s modulus and structural
density for cancellous bone

ORIENTATION OF AXIAL STRESS E
SPECIMEN CONDITION
longitudinal compression 0.06+0.9p>
longitudinal tension 0.06+1.65p°
transverse tension 0.06+0.6p"

where E is in GPa and p is in g/cm’ (10~ kg/m”) at strain rate 0.01s™.

1.2.3 Discussion

e Cortical Bone and Titanium

Most of implants are made from Titanium. The Young’s modulus of
titanium is about 103.4GPa. Compared with that of cortical bone which is
approximately 12 GPa, titanium is a much more stiff material than bone. This
big difference of two Young’s modulus explains that phenomenon of “stress

shielding”.
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e Material modulus of single trabecular

In 1892, Wolff suggested that cortical bone was simply more dense
cancellous bone. However, several investigators pointed out this assumption is
inaccurate when only the mechanical properties of these two tissues are
considered. The reasons for disputing Wolff's hypothesis include:

(1) the Young's modulus of individual trabeculae was significantly less
than that of cortical bone;

(2) the Young's modulus of cortical bone could not be extrapolated
from the relationship between density and Young's modulus of cancellous bone;

(3) the Young's modulus of trabecular material (not a single trabeculae)
could be extrapolated from that of cancellous bone by using a quadratic
relation.

These conclusions suggests that when considered mechanically, cortical
and cancellous bones are not the same material.

1.3 Thesis Outline

Chapter 2 describes some of existing remodeling/modeling theories
including both biological and mechanical ones. For each theory, its
characteristics, basic assumptions, equations, as well as its advantages and
shortcomings are discussed. As well, these mechanical theories are evaluated
by applying them to some simple problems. In this chapter, the relationship
between biological and mechanical theories are also discussed and why Cowin’s
external remodeling theory is chosen as the base model is explained.

Chapter 3 presents the development of new modeling model. The
difficulties with Cowin’s remodeling theories is presented and the background
of introducing weighting factors into the new model is discussed. Also, the
details of the new model is provided and its flexibility of conversion to other
existing modeling theories is described. This chapter also discusses the
limitation of weighting factors as a result of the tensor transformation rule.
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In chapter 4, the new model is used to investigate a variety of simple
bone modeling problems. The bone cross section is modeled as simple or
double connected which are assumed as a cylinder with a circle or elliptical
section, and loading varies from axial tension and compression, radial tension
and compression, and axial eccentric tension and compression. The numerical
techniques associated with those different problems are introduced and all
results are presented.

Chapter 5 associates the new modeling model with the finite element
methods. The new model is used to investigate the simple modeling problems
again but by using the finite element method as the numerical approach. The
numerical results of those problems are presented. Finally the FEM model
results and a real implant case are compared. The difficulties with a lack of
experimental data on bone modeling is discussed at the end of this chapter.

Chapter 6 summarizes the results of the current study on bone
modeling. The difficulties with this study is also discussed. The advantages and
shortcomings of new model are presented. As well, the future work in this area
is discussed.



Chapter 2

Discussion & Evaluation of
Remodeling Theories

Bone is able to adapt its internal and external structure to its mechanical
environment. This is so called Wolff’s law. Wolff’s original statement didn’t
contain any quantitative or mechanical information. How bone’s external shape
and internal structure responds to the mechanical demand has captured the
interest of biologists and mechanical engineers for a long time. However, the
basic questions as to what triggers the adaptive response, what stops it, how
quickly the bone response to a change in mechanical demand and how
completely it responds etc. are still unanswered. It was noted before that there
exist two kinds of bone remodeling and modeling theories: biological and
mechanical. The big difference between these two methods is that biological
ones explain the problem in a qualitative way while mechanical ones attempt to
predict modeling and remodeling results in a quantitative way. Thus far, both
kinds of theories are mostly phenomenological in nature.

The term remodeling was previously used to describe any adaptive
change in bone and included both internal and external remodeling. But the
distinction between modeling and remodeling in recent bone biology literature
has been generally accepted. As was stated before, the secondary osteon
(Haversian system) is very special from a histological point of view as its
formation follows well-defined phases which always begin with activation (A),
followed by resorption (R), and followed by formation (F). Remodeling is thus
defined as any A-R-F sequence while modeling is referred as a process which
only involves formation or resorption independently.

Thus, bone adaptation could be accomplished by: (1) remodeling, an A-
R-F process; (2) modeling, adding or removing lamellar bone from the bone

17
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surface; (3) a response in which woven bone is formed as a result of modeling
or repair response to damage.

Generally speaking, remodeling is related more to secondary osteons
and internal remodeling whereas modeling is an external process in which only
primary bone (circumferential lamellar bone and primary osteon) or woven bone
are involved. In modeling processes, resorption and formation of bone are
achieved by activation of osteoclast and osteoblast respectively, however, in
remodeling process, the secondary osteons are formed by activation of a group
of cells functioning as organized units called basic multicellular units ( BMUSs).

According to Wolff's law, bone has the ability to adapt its structure to
its mechanical environment. This implies that bone has internal sensors that
enable it to react to an actual state of deformation and to translate mechanical
signals to biomechanical ones that activate bone cells to cause a modeling or
remodeling process.

The question of which of stress or strain is this internal sensor has
triggered considerable discussion. This question is intrinsically difficult to
answer because stress and strain are related. However, as bone is a
nonhomogeneous and anisotropic material, the relationship between stress and
strain is quite complicated.

Based on the results of experiments employing in vivo strain gauge
techniques, it has been generally accepted that strain rather than stress is more
likely the candidate as this internal sensor. The main reasons behind this
conclusion are summarized as follows:

(1) Stress is an entity that can not be measured directly which means
that nothing could sense the stress, in other word, no stress receptor exists in
nature.

(2) The fact that measured peak strains are nearly constant in different
bones and in different animals while the corresponding stresses vary widely
suggests that adaptation occurs in response to factors in the strain environment.

(3) Electrical phenomena in bone are closely related to strain gradients.
It has been shown that bone cells have stretch and voltage receptors.
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All these arguments suggest strain as a primary mechanical sensor. In
fact, most of contemporary modeling and remodeling theories take strain or
some function of strain (such as strain energy density) as the mechanical signal
Sensor.

Most modeling and remodeling theories consider the adaptive process as
a feedback system. They assume there exists an adaptive equilibrium
environment. When this equilibrium is disturbed by changes in the mechanical
environment, the mechanical signal sensor triggers bone cells to encourage
modeling and remodeling until the adaptive equilibrium is again regained. This
equilibrium status is thus referred as the objective of bone modeling or
remodeling.

For different theories, the adaptive objectives are different. Biological
theories tend to use simple forms while mathematical theories prefer to take
complicated forms. These will be addressed below.

2.1 Biologically based theories

In this section, the remodeling/modeling theories developed by Frost,
who has a rich clinical experience as an orthopedic surgeon, will be introduced,
and some biological observations as well as various important concepts related
to bone adaptation will be discussed.

2.1.1 FNT theory

Frost's flexural neutralization theory (FNT) was proposed in 1963
(Frost 1963) and in fact was one of the first mathematical formulations of bone
modeling and remodeling as a function of mechanical variables.

FNT was triggered by the observation that fractures that heal in a bent
configuration tend to straighten themselves. In light of this model, if the bent
bone is to be straightened, bone must be removed from the convex side and
apposition must occur on the concave side. The objective of FNT is that a
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curved bone subjected to intermittent bending will drift actively towards the
load induced concavity until both cortices are arranged so as to neutralize the
bending and be subjected to overall compression. It predicts :

--Increased surface convexity (positive strain gradient)--> osteoclast
activity--> bone resorption;

--Decreased surface convexity (negative strain gradient )--> osteoblast
activity--> bone apposition.

In this instance, positive surface strain gradient is defined as that the
strains become more tensile nearer the surface as shown in Figure 2.1.

Resorption Deposition

Figure 2.1 A segment of a curved long bone.

FNT theory applies to both modeling and remodeling. In modeling, only
osteoclasts are activated on the convex surface and only osteoblasts are
activated on the concave surface. In remodeling, BMUs are activated on both
surfaces.

It is noteworthy that the FNT coincides well with observed electrical
phenomena in bone. It was found that the streaming potentials rather than
piezoelectricity are possible primary sources of strain generated electrical
potentials on the surface of bones. Streaming potentials occur when ionized
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liquids are made to flow through channels in a solid that has charged surfaces.
In the case the surface charge is negative, the positive ions in the liquid will be
attracted to the surface where the velocity of liquid is slower (dynamic slip
plane) while the ions far from the surface will be negative and move faster at
the center of the channel, constituting a flow of current through the channel.
This current causes a potential difference to be developed along the channel.
This potential difference is called the streaming potential.

Figure 2.2 schematically shows the streaming potential produced when a
bone is bent. In a bent bone, the internal channels will be distorted so as to
cause flow from the compressed side to the tensile side. As the potential
difference of bone is normally negative, so the tensile surface will be positive
relative to the compressive surfaces.

<ENSIQy
<+

Figure 2.2 Schematic diagram showing that the streaming
potential produced when a bone is bent (Martin et al. 1989).

It happens that positive potentials produced in the bone are associated
with positive strain gradient and negative potential with a negative strain
gradient. Because experiments concluded that bone formation is stimulated near
a cathode and resorption is stimulated near an anode, it is reasonable to
postulate that streaming potentials are caused by the strain gradients and
cellular activities are promoted by streaming potentials. It seems that streaming
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potentials play the role of a transducer that translates the mechanical signal to a
biochemical one.

Since the FNT was proposed, several experiments have been conducted
to verify it. However up to now, these studies have not resolved the
controversy over Frost's theory. More recently, Frost (1986) proposed another
theory which is called the Mechanostat theory.

2.1.2 Mechanostat theory

The Mechanostat theory differs from the FNT in that it seeks to predict
when and at what condition the modeling or remodeling will occur in response
to increased or decreased strain magnitudes whereas the FNT describes how the
modeling or remodeling will proceed (resorption or formation).

This theory suggests that there is a range of strain values (Minimum
Effective Strain, MES) that will evoke no adaptive response -- this is termed
modeling or remodeling equilibrium. Strain above this range will evoke a
positive adaptive response (increased bone) and strains below this range will
cause a negative adaptive response (loss of bone). Frost suggests that for the
equilibrium range the upper strain is 2,500 microstrain in compression and
1,500 microstrain in tension , the low limit is 200 microstrain for both tension
and compression.(See Figure 2.3) The objective of modeling/remodeling is to
keep strain within or below the threshold strain range.

oL PL TL PL OL
. POL

%modelingi equil. 1'remodellingg equil. Emodeling'

POL

-3000  -2500 -200 200 1500 ?

Figure 2.3 A diagram showing the relationship between average peak
strain and adaptive response. Where PL: physiological loading zone in
which bone is in equilibrium; OL: overload zone in which modeling is
stimulated; TL: trivial loading zone in which remodeling is stimulated;
POL.: pathological zone in which woven bone is formed.
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Mechanostat theory suggests that on the compression side modeling is
stimulated at strain magnitudes above 2,500 microstrain whereas remodeling is
stimulated when strain magnitudes fall below 200 microstrain. Because
modeling and remodeling are stimulated within different strain ranges , they are
not stimulated at the same time, on the same surface and do not work at cross
purposes (Table 2.1).

Table 2.1 Effects of strain on skeletal

Effects on skeletal Modeling Remodeling
envelopes
Increased Strain Activated Inhibited
Periosteal Expansion Expansion??
Endosteal Loss retarded Loss retarded
Trabecular Loss retarded Loss retarded
Intracortical No effect Activation retarded

bone increases mass

DECREASED STRAIN Inhibited Activated
Periosteal Apposition retarded??  Apposition retarded??
Endosteal Loss accelerated Loss accelerated
Trabecular Loss accelerated Loss accelerated

Intracortical No effect Activation stimulated

bone decreases mass-—--====sc——m—av

Although Mechanostat theory can explain some experimental results
with respect to disuse or overuse of bone in animals, it still fails to explain
other phenomena. Experiment evidence has supported some essential features
of the Mechanostat theory including (Martin et al. 1989):

e an upper strain threshold does exist;

e strains on the high side of this threshold inhibiting activation
of new BMUSs, depressing formation of new osteons and
initiating loss of bone from endosteal surfaces;
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e strains on the low side of the threshold enable activation of
new BMUs, increasing the number of new osteons and
permitting endosteal resorption.

2.1.3 Reparative response to bone microdamage

In Frost's mechanostat theory, the strain range can be divided into four
zones: (1) physiologic loading zone (PL), in which bone strains are tolerable
with no adaptive response; (2) trivial loading zone (TL) with strain magnitude
below those for PL, and in which the remodeling is initiated; (3) overload zone
(OL) with strain magnitude above those for PL, and in which the modeling
occur; (4) pathologic overload zone (POL) (Figure 2.3).

From Figure 2.3, we can see that the pathologic overload zone is above
the overload zone. In this zone, the adaptive response occurs by woven bone
formation because normal lamellar bone formation is too slow. Experimental
results show that woven bone is generally associated with fracture repair and
could also be found in rapidly growing children, so an occurrence of massive
proliferation of woven bone could be considered as a modeling response as well
as repair reaction to the microdamage caused by surgery or overload.

Generally speaking, adaptive response can be in four types: (1) normal
modeling; (2) remodeling; (3) a pathophysiologic modeling in which woven
bone is produced; (4) a reparative response to surgical intervention or bone
microdamage.

In addition to woven bone, it is also suggested that microdamage could
cause bone remodeling (osteons). Biologists (see Martin and Burr, 1989, 1992)
believe that the unique microstructural arrangement of the various components
of Haversian bone is adapted to prevent crack growth, and extend fatigue life.
Osteonal bone is specially designed so that microdamage itself initiates the
reparative remodeling process.

As a result it is conjectured that if the applied load is too high, the
microdamage in the bone caused by this load will initiate formation of woven
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bone and secondary osteons. This is confirmed to some degree by experiments
(Hoshaw et al. 1992, Lanyon et al. 1982).

2.1.4 Bone adaptation signal sensors

As already noted, strain is considered by most researchers as a
mechanical signal sensor. However, as strain is a tensor, then what aspects of
strain, in addition to its magnitude, are important enough to affect the modeling
and remodeling of bone? Putting the question another way, what will be
taken as the sensor, the strain magnitude itself, or combination of the magnitude
with other factors ?

There are several such factors that are associated with strain such as (1)
strain mode, tension, compression or shear; (2) strain direction; (3) strain
distribution -- the pattern of strain magnitude across a section of bone; (4)
strain energy density. These factors will be examined below.

(1) Strain mode

Before Frost's FNT, it was once simply believed that tension caused
bone resorption and the compression caused apposition. Although this
conclusion is too simplistic to be accepted, it is still felt that tension and
compression result in different adaptive responses. However, the work dealing
with the trajectory of trabeculae suggested that both compression and tension
could be osteogenic because predominant orientations of trabeculae coincide
with the principal compressive and tensile strain directions.

Experiments show the greatest density of osteons often appears within
the compression cortex and not within the tension cortex. But because the
compression cortex is also where the largest strains are generated, it is not clear
at all that large tensile strains are achieved in bone.

Experimental results have continued to show conflicting conclusions,
and this uncertainty about the effect on the modeling and remodeling of strain
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mode maybe indicates that knowledge of only strain mode (tension or
compression) can not predict the adaptation result. In other words, it is not the
key factor to be taken as an independent mechanical sensor. It should however
be considered when considering the adaptive behavior of bone.

(2) Strain direction

From Wolff's law, it is known that the axes of the trabeculae coincide
with the directions of principal stress and principal strain (Cowin 1985).
Although this observation is made for the trabecular bone, there is a similar
phenomenon for the cortical bone. Corresponding to the trabeculae, which are
the basic unit of trabecular bone, osteons can be considered as the basic
components of cortical bone. [t is generally considered beneficial for osteons to
be aligned with principal loading direction, and experiments (Lanyon and Boun,
1979) have shown that for long bones, secondary osteons are orientated close
to the principal strain direction (loading direction).

In vivo tests of single osteons also indicate that they are weak in
longitudinal shear which could be justified by the assumption that osteons align
with the principal strain direction in which the shear strain is zero. The
approximate alignment of osteons with the principal strain direction reduces the
shear strain developed in the cement line, and may reduce fatigue damage
during normal loading events (avoiding cracks caused by fatigue damage to
extend to the outside of the cement line).

From the fact that the principal strain direction is associated with the
basic material units in both cortical bone and cancellous bone, and the fact that
the secondary osteon is the result of the remodeling, as well as the fact that the
trajectory of trabeculae is the important characteristic of modeling and
remodeling equilibrium, it appears that the strain direction is a vital factor
affecting the bone modeling and remodeling. Both the strain direction and the
strain magnitude should be considered as mechanical sensors .
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(3) Strain distribution

In the field of orthopedics, it is believed that the transfer of load from
the prosthesis to the bone thus causing unnatural stress/strain will lead to the
adaptive modeling or remodeling of bone. The unnatural stress or unnatural
strain include both stress/strain patterns and their magnitude. This fact implies
that the strain pattern is also a very important factor regarding the bone's
adaptation.

Experiments (Rubin and Lanyon, 1984) also showed that adaptive
responses were more easily generated by a variety of different loading
conditions than by repetition of the normal pattern of loading. In this
experiment, ulna preparation of roosters received a load regime with the
magnitude similar to the intact ulna bone but the distribution of strain was
different. [t was found that physiological levels of strain imposed with an
abnormal distribution could produce an osteogenic stimulus that was capable of
increasing bone mass and the maximum osteogenic response was produced by a
relatively few strain reversals, occupying a very short time (thirty-six cycles in
seventy-two seconds a day). It is suggested that the strain required to elicit an
adaptive response may be lower if the manner of loading is markedly different
from the usual pattern (Martin and Burr, 1989).

This in fact suggests that the bone adaptive behavior is position
sensitive, i.e., every point of bone material can sense its own signal. If the
pattern of loading changes, the stress or strain at one point is therefore changed,
which results the modeling or remodeling of bone.

(4) Strain energy density

While several authors have used strain energy density as the overall
sensor, it contains less information than the strain. For example, the fact that it
is a scalar and is always positive does not allow a distinction in the direction of
loading. As discussed above, bone adaptation is sensitive to both strain
magnitude and strain direction. Strain energy has obviously no characteristic of
direction, so it is not a good candidate as a mechanical signal sensor. In fact,
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there is little experimental evidence that relates adaptive changes to strain
energy density.

2.1.5 Discussion

We have discussed Frost's FNT and Mechanostat theories and found
that they are straightforward, and relatively easy to be tested and compared to
experiments. This has meant that his theories are used by biologists and
researchers involved in experimental work. In fact, much of the research aimed
at studying bone's ability to adapt to its mechanical environment was promoted
by Frost's theories. However, the validation of these theories is still being
challenged as they are difficult to apply in a global sense. Some of these
shortcomings are illustrated in two examples below.

According to FNT, the process of "flexure drift" would ensure that each
bone cortex is subjected to overall compression. But Lanyon and Baggott
(1976) reported that the sheep's radius was bent during locomotion and that the
strain was consistently larger and of a different sign on the caudal than on the
cranial surface. If the controlling processes were those suggested by FNT, then
one would have expected this state to be unstable and accompanied by
hypertrophy of the caudal cortex or drift of the whole bone towards the caudal
facing concavity. However the experiment conducted by Lanyon and Boggott
showed that although the strains on the compressed cortex of the sheep radius
were nearly twice the magnitude of those on the tensile cortex, there was no
difference in the thickness of the two cortices.

As a second example, it was also observed (Uhthoff and Jaworski,
1978) that disuse osteopenia (high degree of porosity) in young adult dogs is
characterized by failure of the periosteal surface to expand. This is consistent
with disuse inhibition of periosteal expansion by modeling according to Frost's
Mechanostat theory (refer to Table 2.1), but the theory also predicts that the
endosteal surface should be remodeling, and one would have expected
endosteal expansion to be promoted by disuse. However, this was not the case.

It has been already noted that an adaptive theory should have two basic
features, one is the mechanical sensor, and the other is the objective of
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adaptation. Frost's theories are not completely successful regarding the former
aspect.

As discussed above, several factors associated with strain play an
important role in the adaptive behavior of bone. The mechanical sensor should
consider all these factors (strain magnitude, strain direction, strain distribution ).
However the FNT uses only the strain gradient (in a scalar sense, defined in the
section 2.1.1) as the sensor, and the Mechanostat theory takes the strain
magnitude as the sensor. Their lack of full considerations of the mechanical
signal could be one of reasons for their failure to explain certain experiments.

Moreover, FNT can only be applied to long bones and Mechanostat
theory does not specify the strain ranges for certain type (long, short or flat) of
bone in which modeling or remodeling is activated.

As these two theories have been developed for simple loading
conditions, for complicated cases such as the interaction between bone and an
implant, they can not be readily applied. There is need for a more general theory
which attempts to address these issues.

2.2 Mathematically based theories

It has been noted that the structure of bone can be divided into three
levels. At the molecular level, bone can be considered to be a composite
material consisting of a fibrous protein, collagen, stiffened by an extremely
dense filling of calcium phosphate; at the microscopic level, bone exists in three
distinct forms, woven bone, primary bone (lamellar bone and osteons), and
secondary bone (Haversian Systems). At the macroscopic level, there is an
extremely important mechanical distinction between compact and cancellous
bone which was described above. Unlike the biological remodeling theories and
experimental work which focuses on the bone at the molecular and microscopic
levels, mathematical theories study bone at the macroscopic level. In all these
theories, bone materials, both cortical bone and cancellous bone are assumed to
obey Hooke's law, which means the classical linear elasticity theory can be
applied to bone. Bone is modeled as either an isotropic or anisotropic
(orthotropic or transversely isotropic) material depending on the application.
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Another characteristic of mathematical theories is the computational
feature of their application. As the objectives of these theories are closely
associated with the design of bone implants or bone morphology investigations,
some numerical methods such as the finite element and the boundary element
method have to be employed to perform the stress analysis for the complicated
stress/strain environment caused by the shape of implant and bone. These
numerical methods are generally combined with an time stepping algorithm.

The application of elasticity theory to bone has a limit. This limit
comes from the continuum assumption. Because the bone is not a really a
continuous material, there exists a length scale below which the continuum
model is no longer applicable. For cortical bone, this is not a big problem,
however, when it is applied to the trabecular bone, special care must be taken
with the lack of existence of solution theorems as most of the existence of
solution theorems in elasticity do not extend to inhomogeneous materials such
as trabecular bone.

In addition to the elasticity, each mathematical theory is characterized
by their special remodeling rate equations which relate the rate of bone tissue
deposition and resorption to some measure of mechanical loading on the bone
(mechanical stimulus or sensor). Generally speaking, a remodeling theory is
formed from the set of equations consisting of remodeling and the equations of
linear elasticity.

As mentioned in the last section, most of the remodeling theories
consider bone to operate as a simple closed loop feedback control system. They
assume there exists a remodeling equilibrium (RE) state under which there is
no net deposition or resorption of bone tissue. The control system is shown in
Figure 2.4.

When the RE is disturbed, the mechanical signal sensor, which is
measured in some way from the strain field, deviates from its corresponding
value at RE. The error signal stimulates bone remodeling cells and their action
results in the modeling or remodeling of bone which changes its structure or
shape, and in turn, the strains.
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Figure 2.4 The schematic representation of remodeling control system

Different theories adopt different methods to deal with the problem of
remodeling equilibrium and employ different aspects of strain as the mechanical
signal sensor (stimulus). It has been already noted that there are several factors
to account for in choosing a candidate as the mechanical sensor. The theories
will be evaluated by examining these factors. Different theories are also
associated with different discrete-time computational algorithms. The
convergence and the stability of an algorithm are also crucial to the success of
the theory. Finally, there exist two different opinions considering the difference
between cortical and cancellous bone materials. One, which originates directly
from Wolff's law, is that cortical bone is simply more dense cancellous bone.
Another opinion suggests that cortical bone is a different material from
cancellous bone (this argument was highlighted in the section 1.2.3). The
different considerations of cortical and cancellous bone are reflected in the
different theories.

Consideration will be given to three prevailing mathematical remodeling
theories. Among them, Carter and Fyhre's theory (Carter et al. 1987) focuses on
the morphology of bone, in other words, their theory tries to predict bone
material properties of remodeling equilibrium under daily loading conditions.
Huiskes' theory (Huiskes 1982) is a special form of Cowin's (Cowin el al. 1976,
1979) theory, but its main thrust is in the application of the theory to
orthopedics. Cowin's theory is based on continuum mechanics and can be
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considered as the most rigorous formulation among the existing theories.
Recently a method of predicting bone adaptation using damage accumulation
has been provided by Prendergast and Taylor (Prendergast and Taylor, 1994).
They consider the adaptation behavior of bone from a fracture mechanics point
of view.

In the following sections, Carter and Fyhre's theory will be first
discussed , followed by Huiskes' and Cowin's theories. Finally Prendergast and
Taylor's theory along with several other miscellaneous interesting problems will
be mentioned. In the following discussion, only remodeling rate equations are
presented while the equations from the elasticity theory will be omitted.

2.2.1 Carter and Fhyre's theory

2.2.1.1 Hypothesis and objective

Carter and Fyhre's theory assumes there exists a relatively stable
(homeostatic) situation between bone stress and local bone density --remodeling
equilibrium. Its objective is to predict at this homeostatic condition the
relationship between the current trabecular bone apparent density and the
normal loading environment.

In their theory, cortical bone is considered as "densified" trabecular
bone, so that these two tissues are basically the same, differing only in their

porosity.

They argued that during daily activities, bone is repeatedly loaded under
many different loading conditions with a widely varying number of loading
cycles. They chose one day as the characteristic time period over which they
summarized the relevant loading history. In a homeostatic situation, they
assume that the daily stimulus to maintain a certain bone mass is related by a
linear superposition of the stimuli created by each loading condition.
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2.2.1.2 Formulation

They postulate that bone tissue is a self-optimizing material with the
objective of aligning trabecular architecture with principal stress orientation
(trajectory hypothesis from Wolff's law) and adapting its apparent density to an
"effective stress" which is determined from the strain energy density principle.
Based on the strain optimization criteria (use the least amount of bone to
maximize the bone's structural integrity), for multiple loading conditions, Carter
and Fhyre's theory assumes the local apparent density of cancellous bone can be
approximated by:

o= k(zc no",) = 2-1)

where the daily loading history has been summarized as ¢ discrete loading
conditions, n; the number of loading cycles, p is the bone apparent density, k
and m are constants, the cyclic peak effective stress 0;.g is defined as:

C.ar =y2EU (2-2)

where U is the strain energy density, E the elastic modulus which is calculated
from the relationship between the structural density and Young's modulus. For
quasi-static loading condition, they use

E =3790p° (2-3)
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2.2.1.3 Convergence of computational algorithm

Carter and Fyhre (Fyhre etc. 1986) applied their approach to calculate
the apparent density in a two-dimensional representation of the proximal adult
femur. Two loading conditions, which represent single-loading direction
solutions and multiple-loading direction solutions were assumed.

Their results showed that by using their computational algorithm, the
density distributions calculated for about the first three time steps were
reasonable but the distributions calculated for the seventh time step were not.
This indicates the solution does not appear to approach a reasonable limit. The
method employed appeared to be converging toward a condition in which most
of the bone elements will either be saturated with a density 1.8 g cm™ which
represents the fact that the bone become cortical or be completely resorbed.

Weinans and Huiskes ( Weinans et al., 1992) have used a modified form
(Eqn. 2-6, 2-7 below) of Carter and Fyhre's method to investigate the same
problem. They found that the solution obtained is generally a discontinuous
patchwork although the cortical and cancellous bone were described as
continuous material. They concluded that the discontinuous end configuration
was dictated by the nature of the differential equations describing the
remodeling process. The evolution of their method can be considered as a
nonlinear dynamic system with many degrees of freedom, which diverged from
the objective, leading to many possible solutions.

Cowin et al.(1993) also showed that the discrete time computational
algorithm employed by Weinans and Huiskes (1992) or Carter et al. (1986) has
a well-known chaos mechanism. They note the existence of an overshooting
calculation step in this discrete-time computational algorithm, which, when
coupled with the input from an inhomogeneous stress field, could deflect the
algorithm from a path prescribed by the bone-density stress adaptation model.

2.2.1.4 Discussion

The studies of Weinans et al. (1992) and Cowin et al. (1993) showed
that the mechanism of computational internal remodeling model based on Carter
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and Fyhre's theory can not be well understood and suggest caution in the
conclusions obtained from such models. The goal of Carter and Fyhre's theory
is to predict the bone apparent density at remodeling equilibrium rather than to
predict the remodeling process due to the disturbance of the load environment.
As a result no process of remodeling is involved in their theory although it can
be modified as was done by Weinans and Huiskes (1992).

Carter and Fyhre's theory assumes that the actual material of cancellous
bone is the same as that of cortical bone. As mentioned above, it is possible that
from the perspective of mechanical properties, this assumption is not
appropriate. The mechanical signal sensor or stimulus in their theory is strain
energy density. As discussed previously, strain energy density is a scalar
containing less information than the strain tensor and thus is not a good
candidate for a signal sensor.

2.2.2 Huiskes' theory

2.2.2.1 Hypothesis and objective

The goal of Huiskes' theory (1982) was to investigate the "stress
shielding" phenomenon in orthopaedics. This idea indicates that after
implantation of the prothesis, the surrounding bone is partially "shielded" from
load carrying and starts to resorb. This theory primarily attempts to describe the
adaptive behaviour of bone from one loading configuration to another. For this
purpose, it is assumed that bone tissue has a site-specific natural or homeostatic
remodeling equilibrium state and that the mechanical signal sensor is the strain
energy density. Change of load, or in fact, an abnormal strain energy density
will stimulate the bone tissue to adapt its mass in such a way that the
equilibrium strain energy density is again obtained. In this theory, internal and
external remodeling are separated (according to the definition above, internal
remodeling refers to remodeling whereas external remodeling refers to
modeling). Like Carter and Fyhre's theory, Huiskes' theory assumes that cortical
bone is the same material as the cancellous bone at a different density.



CHAPTER 2: DISCUSSION & EVAL OF REMODELING THEORIES 36

2.2.2.2 Formulation
(1) Modeling

According to the Mechanostat theory, modeling and remodeling are
stimulated within different strain ranges. They are not stimulated at the same
time on the same surfaces and do not work at cross purpose. As a result
theories about modeling and remodeling can be separated. In the theory of
surface remodeling, the chemical reactions occur only on the external surfaces
of bone and mass is added to or removed by changing the external shape of
bone. Huiskes’ theory postulates a causal relationship between the rate of
surface deposition or resorption and the strain energy density in the surface of
bone. This relationship can be expressed as:

£=CX(U—Un) (2-4)
dt

. . . dX . . .
where x is the location of surface point, and "y is the moving rate of x point
t

perpendicular to the surface, and C, is the modeling coefficient. U is the actual
strain energy density (SED), U, is the site-specific homeostatic equilibrium
SED.

(2) Remodeling

The theory of internal remodeling acknowledges the orthopaedic
principle that states the prolonged or strenuous straining of bone tends to make
the bone stiffer and more dense while prolonged bed rest or inactivity will tend
to make the bone less stiff and less dense. The theory postulates a causal
relationship between the rate of deposition or resorption of bone matrix at any
point and the strain energy at that point in the bone matrix. This relationship is:
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dE r )
I—Cc([’ Un) (25)

where U is the actual strain energy density (SED), U, is the site-specific
homeostatic equilibrium SED, E is the modulus, and C. is the coefficient of
remodeling.

2.2.2.3 Convergence of computational algorithm

Huiskes' theory was applied to investigate the relationship between
"stress shielding”" and adaptive cortical bone remodeling around an
intramedullary prothesis. The intramedullary fixation was simulated by an
axisymmetric straight stem (Figure 2.5).

. Roj
Dist. . | P
Figure 2.5 The simplified, general model of intra-medullary fixation
applied in the remodeling/modeling analysis.

In the calculations, modeling and remodeling were simulated separately.
The results showed that for modeling, the loss of bone increased with the
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increase of the thickness of stem in which case the degree of stress shielding is
much higher due to higher stem rigidity, and in most cases, the modeling
equilibrium strain energy density couldn't be obtained. This meant that the
computational process didn't converge. On the other hand, in the case in which
internal remodeling of the elastic modulus was simulated, the results turned out
to be much less effective. Because of their first unsatisfactory model, Huiskes
and his coworkers adopted another candidate as the feed-back variable (signal
sensor), which, in fact, is modified from Carter and Fyhre's theory. The
formulation is as follows:

Remodeling i9—: Be(g— K.) (2-6)
dt p

Modeling i-)iz Bx(-[i— K,) 2-7)
dt p

where p is the apparent density, U is the stain energy density, B., B« are the
remodeling and modeling coefficients respectively, K., K. are the remodeling
and modeling equilibrium sensors.

It was previously mentioned the application of this new model to the
proximal femur showed an interesting paradox because, in spite of the
underlying assumption of continuity, the discontinuous density distribution
predicted by their model appears to replicate the observed density distribution
in real bone. However the solution obtained by their computational algorithm
was unstable.

2.2.2.4 Discussion

In addition to what has been mentioned, the choice of SED as the feed-
back control variable in Huiskes' theory has other drawbacks. As an example,
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for the two changes in loading shown in Figure 2-6, no modeling or remodeling
would happen according to Huiskes's theory as the SED is the same. This may
be unrealistic.

Figure 2.6 Two loading cases used to test modeling theories where
EQ represents modeling equilibrium state, A refers to the actual
loading environment.

Just as with Carter and Fyhre's theory, Huiskes' theory also takes the
cortical bone as the "densified" cancellous bone although it separates the
adaptive behaviour of bone into modeling and remodeling. For cancellous bone,
the terms modeling and remodeling haven't been well defined.

Huiskes's theory may explain the densification or resorption of
cancellous bone around an implant, but it can't explain the densification of
secondary osteons, so it is not an ideal model to fully explain the experimental
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results. Moreover, the unstable solution of the computational algorithm of
Huiskes' model makes it difficult to accept.

2.2.3 Cowin's theory

2.2.3.1 Hypothesis and objective

Of all the remodeling theories, Cowin's theory is the most rigorous one.
Unlike Carter and Fyhre's theory or Huiskes' theory, Cowin et al. (1989b)
consider the cortical bone as a different material from the cancellous bone.
Thus his theories for cortical bone and cancellous bone are separated. The
following will mainly discuss his theory for cortical bone.

Cowin's theory uses the strain as the mechanical signal sensor. Like
Huiskes' theory, it also attempts to describe the adaptive behaviour of bone
from one loading condition to another. It is assumed that bone tissue has a site
specific natural or homeostatic equilibrium strain state. With a change of load,
an abnormal strain state will stimulate the bone tissue to regain the equilibrium.

Cowin's theory also separates internal remodeling (remodeling) and
external remodeling (modeling). While Cowin's theory allows large elastic
deformations, we will only address the small strain theory which is specialized
from the general theory.

2.2.3.2 Formulation

(1) Modeling (external remodeling)

The theory of surface remodeling acknowledges the observed fact that
external changes in bone shape are induced by changes in the loading
environment. The bone is considered to be an open system with regard to mass
transport and the mass of bone will vary as the external shape varies. The rate
of surface deposition or resorption is proportional to the change in the strain in
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the surface from a reference value of strain. The hypothesis for the surface
remodeling is that the speed of the remodeling surface is linearly proportional to
the strain tensor.

dx » )
I—C.,(é.,—qu) (2-8)

where c:i_X is the speed of modeling surface normal to the surface, C;j are the

modeling coefficients, &;; are the coponents of the actual strain tensor, and &3
are the equilibrium strains.

The time scale for the derivatives in the above constitutive equation are
for a very long time scale, on the order of the modeling time and not on the
order of the loading time for bone. These time scales differ by many orders of
magnitude (Cowin et al. 1993). Let T(r) denote the time that biological
processes take to complete significant growth (or modeling) associated with a
mechanical loading, and let T(I) denote the characteristic period of mechanical
loading. Rough estimates of these numbers are two weeks and one second,
respectively; thus T(1)/T(r) is a small number. The time scale for all modeling
rate equations is necessarily T(r). On the other hand, all modeling models
assume that the new increment of bone tissue that is added to the whole bone
(or subtracted from the whole bone) has exactly the same strain as the bone
tissue at the site where it is to be added or subtracted. This assumption may
seem unreasonable on the loading time scale, but on the modeling time scale
which covers million of loading cycles in the bone formation period, it is not an
unreasonable assumption (Cowin, private letter).

(2) Remodeling (internal remodeling)

In the theory of internal remodeling, the bone matrix, that is to say the
solid extra-cellular material and the bone cells, are modeled as a solid structure
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with interconnected pores. This solid is assumed to be a porous anisotropic
linear elastic solid. The extracelluar fluid and blood are modeled as a single
fluid. As a result of the chemical reactions, mass, momentum, energy and
entropy are transferred to or from the solid porous bone matrix. Because the
characteristic time of adaptation is so large compared to a characteristic time
for inertia effects, only mechanically quasi-static processes are considered.
Using the balance equations for mass, momentum, energy, and the entropy
inequality, Cowin and his co-workers have developed a rigorous
thermomechanical continuum theory as a model for the adaptation of cortical
bone (Cowin et al. 1976).

In the processes of remodeling, the mass of the porous elastic solid is
changed by increasing or decreasing its porosity but not by changing the overall
dimensions of bone. The bulk density p of the porous solid is written as the
product of y and v:

p=vv (2-9)
where v is the density of material that composes the matrix structure and v is

the volume fraction of that material present.

The change in volume fraction { from a reference volume fraction (o is
denoted by:

e=C-G, (2-10)

where  denotes the value of the volume fraction v of the matrix material in an
unstrained reference state, the conservation of mass yields the relationship
between v and C.

The governing system equations for the theory are:

2%, =u,, +u, (2-11)
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G, +YEs +e)b, =0 @-12)
G, = (" +e)Cljkm(e)ékm (2-13)
de
& _ae)+A,@x, @-14)
dt

where a(e), Ajj(e), and Cjim(e) are material coefficients. For the small strain, (2-
13) and (2-14) can be approximated by:

Glj = (Coczkm +eC|ljkm)§Lm (2-15)
(cii_:= a, +ae+a,e’ +ANE +eAE, (2-16)

where a,, a;, a;, Al Af, are remodeling coefficients, &; are components of

Y2

strain tensor, G are components of stress tensor, ijkm, ijkm are elastic
coefficients which are all constants, u; is the displacement in i direction.

2.2.3.3 Convergence of computational algorithm

(1) external remodeling

Hart et al. ( Hart et al. 1984; Hart, 1983) have applied Cowin's theory
to predict the surface movement in the central or diaphyseal region of the femur
due to changes in axial loading. A hollow circular cylinder, shown as Figure
2.7, is employed to represent the diaphyseal region of the femur. The problem is
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to determine the surface remodeling that would occur in the diaphyseal region
of a long bone if the compressive load carried by the bone were suddenly raised
to a new level and held there indefinitely. It has been shown that there are a
total eight stable modeling solution types for this kind of problem (Cowin et al.
1981, Figure 2.8). If the inner radius is initially equal to a,, and if the outer
radius is initially equal to by, then after remodeling, the inner radius is a .., and
the outer radius is b .

a(t) (L)

Figure 2.7 A cylinder representing the diaphysis of the femur

Hart et al. (1984b) developed a computational method based on Cowin's
theory to model the first three solution types (Figure 2.8) by changing the
modeling coefficients and equilibrium states. Numerical results showed good
agreement with the analytical ones.

(2) Internal remodeling

Cowin et al. (1981) applied their internal remodeling theory to get a



CHAPTER 2: DISCUSSION & EVAL OF REMODELING THEORIES

45

SOLUTION | SURFACE AREA

&
[~ 2~
8 8
A A
& &
| ]+
©

H
[~

[ S

g8 8

AP

(4]

{ %+

Wn
o QO
g8 8
\/. "
Qa Qn
+

= 9 _ o~
I N O — O
Tl s | ©— ©
bos = by _
8 %0 >% - @-_--
. by =b, @

Figure 2.8 An illustration of the first eight solution types of the
diaphyseal modeling problem. The concentric circles in the left
column represent the cross section before the additional load is
applied and the circles in the nght column represent the shape of
the cross section when modeling is complete (Cowin 1981).
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theoretical solution for a cylindrical section with material properties that
varied along its length. The initial inhomogeneity chosen was one cycle of a
sinewave (Figure 2.9). The cylinder was loaded axially and as time processed,
the amplitude of the sine wave decreased rapidly at first and then more slowly.
At large time the sine wave became a straight line signifying that the cylinder
had become homogeneous.

{1114

GISR

o258

ol 1]

Figure 2.9 Development of initial inhomogeneity e (Cowin, 1981)

Hart et al. (1984b) used a numerical solution to mimic Cowin's solution
for the same problem. The numerical solution for this internal remodeling
example gave the same results as the analytical solution.

2.2.3.4 Discussion

Biological studies and remodeling experiments have suggested that if
strain is the mechanical variable responsible for the adaptive response, there are
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several other strain-related factors, in addition to strain magnitude, that may
affect the generation of such signals. These are strain mode (tension,
compression, or shear), strain direction and strain distribution. Cowin's theory
adopts the strain tensor as the remodeling signal sensor to reflect these effects.
On the one hand, the strain tensor, unlike the strain energy density, itself has
features of both the magnitude and the direction and on the other hand, the

termC, (§, —éz) , with arbitrary coefficients C; can include the effect of the

strain mode and strain distribution (the effects of strain distribution can be
reflected by the fact that the adaptation is localized, and different C; at each
location accounts for this localization). At present, this complete strain tensor is
a better candidate as a remodeling signal sensor than the strain energy density.

While values of these coefficients are necessary if the theory is to be any
of use for predicting adaptive in vivo behaviour of bone these coefficients must
be determined from experiments. For surface remodeling as an example, they
were assumed to be different for the endosteal and periosteal surfaces, different
for deposition and resorption of tissue, and different depending on whether the
tissue is in tension or compression. By changing the magnitude of the
remodeling coefficients, the predicted cross sectional shape of the bone may be
made to approximate the experimental cross-section. The calculation which
predicts a cross-sectional shape which is closest to the experimental cross-
sectional shape could yield the calculated remodeling rate constant for that
experiment.

It is noted that different coefficients are required for different
experiments. This means the theory is incapable of describing adaptation to
mechanical usage in any sort of generalized way. However, due to the high
degree of complexity and uncertainty in adaptive behaviour of biomaterials,
(which depends on species, age, anatomical site etc.), there is perhaps no
generalized way to describe it from a practical application standpoint. For the
same bone in the same animal of same age with similar activity, one could
expect these coefficients to be similar. If we can determine these remodeling
coefficients for one of them, the adaptation of others could be predicted with
the same coefficients.

2.2.4 Miscellaneous
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In addition to the theories introduced above, there are several other
ways to study the adaptation of bone.

(1) Prediction of bone adaptation using damage
accumulation

Predergast and Taylor (1994) recently proposed an interesting method
to predict the adaptation of bone. They assumed that bone adapts to attain an
optimal strength by regulating the damage generated in its microstructural
elements.

In this method, two hypotheses are invoked. The first one is that there
exists damage in the form of inter-constituent microcracks present within the
bone even at remodeling equilibrium (RE). The stimulus for remodeling is the
change in damage from this equilibrium amount AW=W-W,, where W denotes
the actual damage in the microstructure, W, is the damage in remodeling
equilibrium. The second hypothesis is that the rate of repair of damage is
determined by the homeostatic stress.

If W denotes the rate of production of damage at a particular stress,

temperature, and bone density and W denotes the damage repair rate which,
as a first approximation, remains equal to the rate of production of damage at
remodeling equilibrium, then at remodeling equilibrium, there exists two
equalities.

W =W_(AW =0) W= We (2-17)

The remodeling equilibrium they proposed is quite similar to Cowin’s
external remodeling rate equation which is:

‘;—)t(zc-Aw:cf(v'V—\fvm)dt (2-18)

ty
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where X denotes the extent of bone deposition or resorption and C is a rate
constant.

In this approach damage is defined by the remaining life approach. In
the particular case of fatigue, failure occurring at a cyclic stress equal to Ao,

(some measurement of stress components), the damage increase is a function of
ny/Ng, where N is the number of cycles to failure at A, and n; is the number

of cycles accumulated at Aoc;. For a load history including various values
of A, :

w=3 1o (2-19)

where m is the number of loading blocks.

Because damage values range from O to 1, so the rate of damage can be
calculated as the reciprocal of the fatigue life, for a given Ac , as

W=— (2-20)

Ng is associated with Ac; by
log(Ns) = Hlog(Ac ) + JT +Kp + M (2-21)

where Ac, (in MPa), T (in °(C), and p (in gecm™) representing cyclic stress,
temperature, and density respectively. H, J, K and M are constants.

This model has been applied to an external remodeling problem of a
bone diaphysis under reduced torsional load. The bone is modeled as a right
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circular cylinder. The calculation gave a physically reasonable prediction which
corresponds to one of the solutions in Figure 2.8. The authors claim "it is not
known for certain whether accumulative damage is involved in stimulating the
bone adaptation process. However, it is known that damage (in the form of
microcracks in the nonhomogeneous bone tissue) will be generated and that
damage can accumulate, even in vivo. Therefore, under certain conditions, the
response of bone making and resorbing cells is not sufficient to repair the
damage and it accumulates. It is also known that cyclic loading generates a
greater remodeling stimulus than constant loading. From these two observations
alone, it is reasonable to infer that accumulative damage is a stimulus that will
bring us closer to the mechanism of bone remodeling than either strain or strain
energy density." This conclusion needs to be tested. On the other hand,
equation (2-21) does not indicate how to calculate the Ng for a complex stress
field and intrinsically assumed tensile stress and compressive stress have the
same effect on the damage life, and in turn on the remodeling. In addition, when

there is more than one load block, W is not defined.

(2) Bone ingrowth

Sadegh, Luo and Cowin (Sadegh et al., 1993) have combined the
Cowin's surface bone remodeling theory and the boundary element method to
investigate the microstructural remodeling of bone at the bone-implant
interface. In clinical applications of orthopaedics, many bone implants function
as load bearing structures. The screws used in the application of bone plate and
dental prothesis, transfer the load of the prothesis to the bone tissue. Other
bone prostheses have slots or ridges into which bone may grow. It is desirable
that the remodeling of the bone architecture, after the surgical placement and
adjacent to the implanted prothesis, create a strong mechanical interlocking
between bone and implant.

A model for the architectural changes that occurs in bone tissue around
or near an implant is developed based on the assumption that bone surface
strain controls the adaptive response. In their paper, three situations are
considered: remodeling induced penetration between the screw threads of an
implant screw, penetration of bone tissue into a slot or cavity in an implant, and
the interaction of individual trabeculae in the remodeling processes near an
implant. For comparison (1) in Figure 2.10 shows the result of adaptive bone
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Figure 2.10 (1) Remodeled cancellous architecture under the
femoral component of a hip joint. (2) Microradiograph of a
cross section through an implant and an incisor in the dog
mandible. Note the bony ingrowth into the implant (Sadegh el
al. 1981).
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remodeling in a canine hip experiment while (2) is a microradiograph of a cross
section through an implant and incisor in the dog mandible.

Because the concern is the position of the surface of bone ingrowth into
the screw or slot, surface remodeling theory is used, and the boundary element
method (BEM) was employed to reduce the dimension of the problem. As the
basic idea underlying BEM is that the governing differential equation of the
domain of interest is transformed into an integral equation on the boundary of
the domain, the amount of calculation could be largely reduced.

This is the first time that the surface remodeling theory of Cowin has
been used for cancellous bone. Although these results are preliminary and
restricted by an inadequate knowledge of the numerical values of certain
physical and biological parameters as well as being for two dimensional
isotropic case with a specific and a single RE strain as opposed to a range of
RE strains, the result is encouraging.

(3) Remodeling theory for cancellous bone

Unlike other remodeling theories developed by Carter and Fyhre or
Huiskes, which take the cortical bone as the same material as that of cancellous
bone at different density, Cowin's theories for cortical bone (especially for the
internal remodeling theory) are not suitable for cancellous bone. Cowin and
associates (Cowin el al. 1992) developed a continuum model to describe the
temporal evolution of both the density changes and the reorientation of the
trabecular architecture given the applied stress state in the bone and certain
material parameters of the bone.

The model they proposed is necessarily nonlinear, and associated with
many experimentally determined remodeling coefficients and quantitative
anisotropic elastic constant measurements of cancellous bone. A significant
limitation of the proposed continuum model is the length scale below which it
can not be applied (about 5 mm) because of the inhomogeneity of the porous
structure. This precludes application of the model at a bone implant interface.

2.3 Numerical Results of Evaluation
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Several simple problems have been employed to evaluate those
mathematically based theories. This allows an evaluation and comparison of the
ability of each to predict bone response as well as comparing them to specific
known results.

2.3.1 Evaluation of Huiskes’ theory

(1) External Remodeling (Modeling)

The problem considered was a classical cantilever beam with a
concentric force at the tip as shown in Figure 2.11. The finite element method
and Huiskes' modeling equation (2-7) are combined to investigate the external
remodeling of the beam. The 2-D beam was divided into four quadratic
isoparametic serendipity elements and the magnitude load is 4 KN. TheAt-C,

(whereAtis the time difference of each time step and C. is the modeling
coefficient at surface point x) is 0.1x107 and is the same at all surface points.
The bone is assumed as an isotropic material and Young’s modulus is 0.2x10"
Pa. Poisson’s ratio is 0.3. The objective was to develop uniform maximum
stress on the surfaces under the same loading environment which means that
equilibrium strain is the uniform axial strain equal to the axial strain at the fixed
end of the beam.

The final external shape is shown in Figure 2.11. The upper curve is the
theoretical solution while the bottom curve was predicted by the numerical
solution. The iteriation converged in 30 steps. It shows that two solutions are
very close. The positions of each surface point is also given in Table 2.2

Table 2.2 Final position of each surface point

Point |1 4 6 9 11 14 16 19 21
Analy. |7.071]6.614 | 6.124 | 5.592 | 5.000 | 4.330 | 3.536 | 2.500 | 0.000
(x10%)

Iterat. | 7.087 | 6.606 | 6.147 [ 5.575 | 5.039 | 4.307 | 3.827 | 2.271 | 1.009
(x107)

Error |0.226 | 0.121 [ 0.376 | 0.304 | 0.78 | 0.531 |8.23 [9.16 [«
(%)
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Figure 2.11 Adaptive shape optimization of a cantilever beam, loaded
at the end by a transverse force, using Huiskes’ external method.

Table 2.3 Final values of modulus at each Gauss point

Element Element 1 Element 2 Element 3 Element 4
Point 1,1 2,2 1.1 2.2 1,1 2,2 1,1 2.2
Thet;retical 0.538 | 0.386 | 0.292 | 0.183 {0.12 | 0.55 | 0.233 | 0.167
(x10"*

Numerical | 0.502 | 0.374 | 0.289 | 0.184 | 0.12 | 0.536 | 0.246 | 0.162
(x10")

Error (%) 6.691 | 3.108 | 1.027 | 0.546 | O 2.545 [ 1.3 2.99
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(2) internal remodeling

The size of the beam and loading were the same as that of the external
remodeling problem described in the last section. For internal remodeling, the
objective is to find the changes of modulus at Gauss points. An initial arbitrarily
chosen uniform strain energy density of 0.16x10° and initial uniform Young’s
modulus value of 0.2x10" were assigned to all Gauss points. At-C_ (C. is the
remodeling coefficient at a Gauss point) is chosen as 0.16x10°%. The final values
of modulus at each Gauss point are shown in Table 2.3. The time stepping took
350 steps to get this solution.

(3) remarks

For Huiskes' model, the adaptation coefficients control modeling or
remodeling rate. Fer the numerical calculations presented, At-C, and At-C_

were selected after a trial run, ensuring that the modulus change AE or position
change AX in the first iterative step was small relative to its actual value at the
location where (U-U,) had the highest value. The calculation results showed
that the convergence rate is high for the external remodeling but very low for
internal remodeling even for this simple problem.

2.3.2 Evaluation of Cowin’s Theory

(1) internal remodeling

Considering a cylinder with inner and outer radii a and b respectively,
the applied loads S; and S, were uniform on the inside and outside surfaces
respectively (Figure 2.12). The evolution of initial inhomogeneous volume
fraction e to the homogeneous one under different stress fields was
investigated.
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Figure 2.12 Bone model as a cylinder with uniform loading on inside and
outside surface. The right side is an illustration of knots used by finite difference
method.

¢ Governing equations

de(r,t)

it =C,+ Ce(r,t) + C,tr(%) (2-22)

~+[K,C, +Kk,e(r,t) +%G +

ce(r,t)

-

6 u

~.2

r*[k,G, +x,e(r,t) + iG]
4 (2-23)

cu
Icorae(-.r’t)] ——[kC, +K0e(r,t)+iG—K0r
cr cr 4

Ju, =0

where K, is the modulus of compression, G is the shear modulus,  is the
reference volume fraction, e(r,t) is the change in volume fraction of the point r
at time t, u, is the displacement at the point r, £ _is the strain tensor.

¢ Method
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Because the governing equations were first order differential equation
and second order partial differential equation, the finite difference method and
forward Euler method were used to solve them.

Cu, _ U, —U
(2-24)
(?2121)l u,, +ul;l -2u
or h
cu, u
e(r,,t,. ) =e(r,t)+A(C, +Cle(r‘,t,)+C2(—aT‘+—') (2-25)
r

Where / means the ith node on the radius, and j means jth time step. By
assuming initial e(r,0), the combination of equations (2-22), (2-23), (2-24), (2-
25) can be used to solve this initial value problem. The constants used in the
examples are as follows: ko = 0.744x10* GPa, G = 0.36x10*GPa, {o =0.8. The
bone inner radius a is 1.0mm and outer radius is 2.0mm. The stress boundary
condition is that ¢|-, = Si/2ra, and G~» = So/2nb.

¢ Results

Three different initial inhomogeneous volume fraction distributions
along the radius are assumed e(r, 0): a linear increase with radius, a parabolic
shape and a linear decrease with radius. As time step progressed, the initial
inhomogeneous e(r,0) finally became homogeneous (e(r, t) are all the same
along the radius) even under a inhomogeneous stress field (S| was not equal S,)
as shown in Figure 2.13-2.15. The convergence rate in all cases was rapid as
only 15-20 iterative steps were enough to make the solution converge. This
result has never been reported before. The relationship between the final
volume fraction and remodeling coefficients Co, C,, C; are also investigated.
When two of coefficients are fixed, the final e(r, t) vs. another coefficient are
shown in Figure 2.16-2.18 The results showed that the convergence rate was
not sensitive to the remodeling coefficients.
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Figure 2.13 Evaluation of an initial inhomogeneous volume fraction of e
(linear increasing along the radius) to a homogeneous one
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Figure 2.14 Evaluation of an initial inhomogeneous volume fraction of e
(parabolic along the radius) to a homogeneous one
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Figure 2.15 Evaluation of an initial inhomogeneous volume fraction of e
(linear decreasing along the radius) to a homogeneous one

e Via C2

0.07
0.06

0.05 + -
o 004+ | ~@— Point=1"
8.82 + | —a—Paint=2]|
0.01 -
0 - ‘ —
- o o o o (@) o (@] o Q o
N ¥ e ® 9o d 7 2 2 g
c2

Figure 2.16 The relationship between the final volume fraction
andremodeling coefficient C,
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Figure 2.17 The relationship between the final volume fraction and
remodeling coefficient Co
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Figure 2.18 The relationship between the final volume fraction
remodeling coefficient C,
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(2) external remodeling (modeling)

Cowin’s external remodeling theory is used to investigate the bending
problem as in shown in Figure 2.19.

Figure 2. 19 Bone modeled as a cylinder with a circle cross section. The
initial equilibrium stress is uniform, the actual loading is a bending moment.

The bone is assumed as an isotropic material and its surface was divided
into 72 sections. Each point at the connection of two sections serves as a node
to calculate geometric properties of the bone cross-section (Hrudey private
notes) and were also used to generate Lagrange interpolating polynomials
(Charpra 1988) which was employed to calculate the normal direction of each
surface point by fitting the curve through five adjacent points. The uniform
equilibrium strain is in tension or compression, and the actual loading is a
bending movement. No matter what value for the coefficient was chosen, no
equilibrium state could be reached on the compressive /tensile side.

2.3.3 Evaluation of Carter and Fyhre’s Theory

The internal remodeling theory modified from Carter and Fyhre’s theory
by Huiskes et al. (Weinans 1992) (Equation 2-6, 2-7) was used to investigate
the problem similar to Figure 2.12.
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¢ governing equations

OU @R BB 2, B P Py (2-26)
or r or r l-pu or r°

3 3790B x éu . u .. 2u u é&u
L P (T By + 2 e By 2-27)
. 2(0+u)(l-p) or r l-p cr

where p is the apparent density of bone, u; is the displacement at the point on
the radius. B is the remodeling coefficient.

& Method

The finite difference method and second order Runge-Kutta method
(Charpra 1988) were used to solve the coupled differential equations (2-24) and
(2-25) in the same manner as the method employed to solve Cowin’s internal
remodeling problem (Section 2.4.2). The radius was divided into ten sections.

& Results

No matter what value of remodeling coefficient B was chosen and how
small the time step was, all solutions diverged. When a bound was put on the
apparent density p, i.e., ps <p<0.0lgcm™ where ps is the cortical bone
density, value at each point along the radius converged to the boundary value--
either to that of cortical bone or to the minimum density 0.0lgcm™ (complete
resorption). There was no smooth transition between the two values, which
seems impossible. According to the theoretical study (Weinans el al. 1992),
stability criterion for this kind of problem is v < 1.0 where v is the value of
the exponent from the relationship E=Cp” . In the current model, v =2, and as
a result, no stable solution exists.
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2.4 Summary

Several modeling and remodeling theories from both a biological and
mechanical point of view have been discussed. The limitations and
shortcomings of these theories are briefly summarized as follows.

The biological approaches to adaptive behaviour of bone are essentially
the FNT and Mechanostat theories proposed by Frost. The FNT theory
suggests that increased surface concavity causes bone resorption whereas
decreased surface convexity initiates bone deposition. It does not however,
explain the behaviour of bone in other loading situations. The Mechanostat
theory tries to set up a more general rule for all bones and uses an absolute
value of strain rather than a value relative to some equilibrium state. Overall
these two theories attempt to link bone-cell activity and the biomechanical
loading conditions to explain experimental results. However, because of the
specific nature of these approaches, they can explain only some experimental
findings but not others.

As for mathematical theories, Carter and Fhyre's theory tries to predict
the bone apparent density at remodeling equilibrium rather than to predict the
modeling and remodeling process due to the disturbance of loading
environment. It uses strain energy density as the mechanical signal sensor. As
discussed previously, this is not a good candidate. The computational algorithm
based on Carter and Fyhre's theory has a well known chaos mechanism and the
numerical solution obtained by this algorithm is unstable.

The goal of Huiskes' theory is to investigate the "stress shielding"
phenomenon in total hip replacement. This theory is in fact modified from
Cowin's theory but adopts a different mechanical signal sensor, i.e. strain energy
density rather than strain tensor.

Cowin's theory may be the most rigorous one among all remodeling
theories. It uses the strain tensor as the mechanical signal sensor which can
reflect to some degree the effects of strain mode, strain direction, and strain
distribution on the adaptive behaviour of bone. From the published literature
and the current study presented here, all solutions obtained by the
computational algorithm based on Cowin's theory were convergent.



Chapter 3

Development of New Modeling
Model

As stated above the strain and the strain energy density have been
considered by most researchers as the mechanical signal sensor which triggers
the modeling/remodeling process. There are however several other strain-
related factors that may also affect the generation of such signals. These include
the strain mode (tension, compression, or shear), the strain direction, and the
strain distribution etc.

Obwviously the strain energy density contains less information than the
strain tensor because it has no characteristic of direction. The fact that it is
always positive basically assumes that the tensile and compressive strains play
like roles on the bone remodeling/modeling. This, as discussed in the last
chapter, is contradictory to the conclusion that the direction of strain is an
important factor affecting bone remodeling. In fact, little experimental evidence
has been found to relate the adaptive changes of bone to the strain energy
density.

Among all existing remodeling/modeling theories, only Cowin’s theory
adopts the strain tensor as the remodeling/modeling signal sensor. The strain
tensor can reflect more or less the effects of several strain-related factors. On
the one hand, the strain tensor, unlike the strain energy density, itself has
features of both the magnitude and the direction. On the other hand, equation
(2-8) with arbitrary coefficients Cj, intrinsically includes the effect of the strain
distribution (the effects of strain distribution can be reflected by the fact that the
adaptation is localized, and different C;; at each location accounts for the
localization).

A review by Cowin and his colleagues (Cowin et al. 1991) of the
existing experimental data on bone and bone cell response to mechanical

64
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loading suggests that either strain or an electrical charge system is the source of
bone cell excitation and, therefore, bone modeling and remodeling. Cowin
pointed out that since the principal electrical charge mechanism considered is
also strain-driven, strain emerges as the principle mechanical candidate for a
biological sensor system.

A rationale behind the argument that the strain tensor is a better than
strain energy is also provided by Cowin (Cowin et al. 1993). They argued that
bone cells have recently been shown to have stretch and voltage receptors
(Cowin et al. 1991) while there is no indication that bone cell have strain energy
receptors. A consideration of underlying physics or biophysics suggests that the
existence of strain energy receptor is unlikely.

Given all the facts mentioned above, it is believed at present that the
complete strain tensor is a better candidate as a remodeling/modeling signal
sensor than the strain energy density.

All mathematically based remodeling/modeling theories assume that
bone material obeys the Hooke’s law in the normal small strain range of
loading. It means that the bone material is modeled as a continuum although
the bone material itself is not a real continuous material. As a result, a length
scale over which material properties of bone are averaged should be
established.

In a recently published paper, Cowin (1993) gave more credibility to the
surface remodeling (modeling) theory. He claims that since all bone remodeling
occurs by deposition or resorption from surfaces, surface remodeling rate
equations have the potential advantage of mimicking the actual behaviour of
bone. Another important advantage of surface remodeling rate equations is that
homogeneous elasticity theory can be employed and thus one is more assured of
existence of the solutions. This conclusion is based on the fact that surface rate
equations require a length scale which is 100 times less than the length scale
required by the internal remodeling rate equation. The length scale is
determined by the homogenization volume (the volume in which
inhomogeneous stress and strain field are averaged). Taking cancellous bones
for example, the remodeling theory is supposed to be applied to a single
trabecular and the length scale has to be at least several trabeculae widths
(5mm) while the modeling theory is applied to trabeculum (the trabecular bone
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as the whole) and the length scale is determined by the hole within it (S0um)
which is much smaller.

For internal remodeling, if the loading is inhomogeneous, the internal
remodeling will make the associated adaptive elasticity nonlinear in time and
space. It has been the practice in computational bone stress adaptation studies
to employ the standard finite element techniques based on linear elasticity.
When these methods are applied to nonlinear adaptive elasticity problems for
materially inhomogeneous objects, there is no assurance that there is a solution.

Even though the current study only focuses on the modeling model and
chooses the strain tensor as a mechanical signal sensor, the use of Cowin’s
theory alone brings with it other problems.

Cowin’s external modeling theory is flawed in a different way to
Huiskes'. It fails to correctly predict the adaptation under two loading cases
shown in Figure 2.6. In contrast to Huiskes' theory which predicts that no
remodeling would happen, Cowin's theory predicts that either the bone
completely resorbs, or deposits indefinitely, thus modeling equilibrium would
never be regained. In fact, Cowin’s theory assumes that tension and
compression (the strain mode) have opposite effects on the bone adaptation. If
the compression is osteogenic, then the tension is bone destructive, and vice
versa.

As was discussed in the previous chapter, tension and compression play
different roles in bone adaptation. They could be both osteogenic but the degree
of their effects on bone adaptation may be different. Also, it appears that each
bone and each part of each bone has its own loading environment, appropriate
functional strain level and strain distribution. For example, the ovine radius
(Lanyon et al. 1979b, 1982) and the porcine radius (Goodship, et al., 1979) are
loaded in combined bending and compression, with the convex surface in
tension; the ovine tibia (Lanyon et al., 1979a) is subjected to combined bending
and torsion with the concave surface as the tension side, while the ovine
calcaneus (Lanyon, et al., 1973) is in bending with some direct shear. In view
of the diversity of strain fields observed on the various bones, it is reasonable to
ask whether all the strain components of bone in normal in vivo loading
(compression, bending with its implied tension and compression, and torsional
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and direct shear) promote functional adaptation, or whether a bone could be
sensitive to one strain component and less sensitive to another.

In order to help resolve the difficulty when Cowin’s external remodeling
theory is applied to the two loading cases in Figure 2.6, and to reflect the
different strain components on the modeling/remodeling, a new modeling model
is developed.

3.1 New Modeling Model

Basically the new model adopts all the assumptions that Cowin’s
external remodeling theory made, i.e. at the external surface of the solid bone
material there are chemical reactions which convert the body fluids to solid
bone material and vice versa. As a result of the chemical reactions mass is
transferred from the body fluid to the bone. In particular, bone is considered as
an open system with regard to mass transport.

From the biological point of view, the chemical reaction involves
activation of osteoblast which is associated with the formation of primary
lamellar bone (A-F process), or activation of osteoclast which is associated
with the resorption of lamellar bone from the surface (A-R process). The
formation and resorption of lamellar bone on the bone surface is independent to
each other. The whole modeling process is as follows: a local change in the
strain field is sensed by the bone (the motion of bone fluid is driven by strain),
and transferred by osteocytes and osetocyte network (cell processes surrounded
by a bone fluid space) to activate the osteoblast or osteoclast.

Another two basic assumptions are: (1) only modeling time scales which
are much larger than loading time scale) is considered; (2) the new increment of
bone tissue that is added to the whole bone (or subtracted from the whole bone)
has the exactly the same strain energy as the bone tissue at the site where it is to
be added or subtracted. The first assumption means that the inertia effects are
neglected while the second one assumes that the new bone material and old
bone material share the same referential unstrained state.
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Let Q denotes a surface point on the linear elastic body representing the
one tissue (Figure 2.7) and n denotes an outward unit normal vector of the
tangent plane to the surface of the body at Q.

The modeling model is presented as the modeling rate equation:

U=C,(QIK (&8, Q% (Q -E&,(Q)] (3-1)

where U is the speed of movement of the modeling surface normal to the
surface, i.e. n direction; &m(Q) is the Cartesian components of the strain tensor
at Q;€,(Q) is the equilibrium value of the strain where no modeling happens.

Cij(Q) are surface modeling rate coefficients which control the speed of
the modeling process. Generally speaking , they are dependent on the point Q.

Kijxm(E, g°, Q) are the weighting factors which reflect the effects of
different strain components, and are dependent on the actual and equilibrium
strain states. The physical meaning of each component of Kim(E, £°, Q)
is that if one unit of equilibrium strain component i‘; (Q) maintain the modeling

equilibrium, 1/ K€, £°. Q) units of actual strain component E,(Q) are
needed to regain the modeling equilibrium.

The surface modeling rate coefficients, weighting factors and
equilibrium strain components are phenomenological coefficients of the bone
surface point and must be determined by experiment. One would hope that
surface modeling rate coefficients and weighting factors are essentially
independent of the specific point, and in reality this could be the case.

By introducing alternative notations, equation (3-1) can be written in
another form:

U =C,(Q)IK, (&t Q)E, -] (3-2)
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where !
( E-'l =éu
€, =&
és =E.»33
< E,=2E,, =28, (3-3)
é5 =2§IS :2531
[ &6 =28, =28,

and assume Cy; = Cs;, Ci3 = Cs, and C2 = Cy;, which can be justified by the
fact that corresponding pair shear strains contribute the same to the modeling;

C, =C,

C,=C,

C;=C;

9 (3-4)

C,=C,;=C,,

C,=C; =C;

Cs=C\,=Cy

and

Kii = K (nosum, and i,j =1, 2, 3);
Kis= ( Kiizs + Kii52 )/ 2 (nosum, andi=1, 2, 3);
Kis= (Kiis + Kiiz1 Y/ 2 (nosum, andi=1, 2, 3);
Kis= (Kiiiz+ Kiz1 )/ 2 (nosum, andi=1, 2, 3);

' The notations C,(Q) and K; (€ . £° . Q) can be exchangeable with the notations C, and K,
in the text.
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Ky = ( Kai + Ksoi) (no sum, andi= 1,2, 3);
Ksi = ( Kii + Ksii) (nosum, andi=1,2,3);
Ksi = ( Kizi + Kauii) (no sum, andi=1, 2, 3);

Kus= ( Koz + Kassz + Ksaos + Kszsz )/2;
Kis= (Kaxis + Kassi + Ksais + Ksosn )/2;
Kis= (Kaiz2 + Kasa1 + Ksz12 + Kszz1 )/2;
Kss= (Kiszs + Kiza2 + Ksizs + K132 /2
Kss= (Kisis + Kisse + Ksns + Ksis )/2;
Kss= (Kisiz + Kizsz1 + Ksiiz + Ks121 /25
Ko = ( Kizzs + Kizsa + Kars + Kaisz )/2;
Kes = ( Kizi3 + Kizs1t + Kanis + Kais1 )/2;

Kés = ( Kiz12 + Kizz1 + K112 + Kai21 )/2;

3.2 Simplified form of new model

Introducing another new notation:

g, =K\,

(3-5)

where £ is a bulk strain component which reflects the comprehensive effect of

different strain components on the modeling equilibrium in the direction i.
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Generally speaking, Kjis a 6x6 matrix:

K K;: K3 Ki; Ki5 Kyg
K. K. Ky Ky Ky Ky

[K ]_ Ksl K:z K33 Ks-: K35 K36 (3-6)
Ky K K K Ky Ko
Ks Ky Ky Ky K5 Kyg
Ko Ke Ko Koy Kgs Kgg |

At present, there is no experimental data available for Kj;. For tsimplicity
and practicality, it could be assumed that only actual strain components &,

make the contribution to the &, which means that [Ku] is a diagonal matrix.

Kll

Ky (3-7)

This assumption will be justified in section 3.3.4. As a result, equation
(3-2) becomes:

U=C[§ -&] (3-8)

where
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£ =K., (no sum) (3-9)

For the axial loading or bending cases in which only &; is taken as the
variable, (3-2) can be simplified as:

U = C(KE; —£2) (3-10)

where K55 reflects the fact that the effects of strains in other two directions are
included.

(A) Remember that K3; is a function of &, and £ :
(B) If £, and &} are both compressive or both tensile, K, = I;

(C) If & is tensile, and g‘; is compressive, then K., < 0, and the
interpretation of K; is as following:

(1) K;; < -1, the adaptation of bone is more sensitive to the
tension than the compression;

(2) K;; =-1; the tension has the same effect on the modeling as
the compression does;

(3) -1 < K, < 0, the degree of the effect of tension on the
modeling is less than that of compression;

(D)The interpretation is similar for the situation that &; is compressive and
E] is tensile.
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For a loading case where only torsional load is applied on a bone
diaphysis, only T.e is taken as the variable, and (3-2) can be simplified as:

U=C4(K.ué4 _ég) (3'11)

If £, and £ have the same sign, then Ky = 1;

If the sign of &, is different from that of £}, Ky =-1.

There is no reason to assume that shear strains in an opposite direction
have the different effects on bone modeling. But if &, is direct shear and&} is
generated by a torsional load or vice versa, it can be assumed that [K,,|is not

necessary to be equal to 1. Up to now, no report on the effects of direct shear
on bone modeling has been found, and it is not known if direct shear and
torsional shear have the same effect on the adaptive behaviour of bone.

3.3 Restriction on the modeling coefficients and
weighting factors

Generally speaking,

Ku’l is a 6x6 full matrix. But by making certain

assumptions, the modeling surface rate equation (3-1) can be simplified just like
cases shown in last section. U in equation (3-1) is a scalar and the equation
must be independent of coordinate systems. As a result, the tensors such as
modeling coefficients C; and weighting factors Kju are subjected to some
restrictions. The restrictions on those tensors come from the symmetry of the
tensor as the bone is often modeled as a material which has certain material
symmetry. The choice of material symmetry for an elastic model of bone
depends to a large extent on the intended application although cortical bone is
generally considered as an orthotropic material as discussed in section 1.2.1.
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3.3.1 Bone modeled as an isotropic material

Let the coordinates x, y, z be transformed to x’, y, z’ according to the
orthogonal scheme:

X y z
X N my ng
y I> m; ny
z I5 m3 n;

where [;, m;, n; are the direction cosines associated with the transformation.

As bone is modeled as an isotropic material, any transformation of strain
components should not change the value of U on the left side of equation (3-
2). The transformation of strain components can be done by arbitrarily choosing
li, m;, and n; : (1) reflexion in a plane, (2) rotation about an axis, (3) rotation
about an axis combined with reflection in a plane at right angles to the axis. In
the case of isotropic material, every plane is a plane of symmetry and every axis
is an axis of symmetry.

Assume that the plane (x, y) is the plane of symmetry, and the axis of
symmetry is z.

The reflexion in the plane (x, y) is represented by the equations:
x7=&y’=y’ z’=-z
The rotation about z through an angle 6 is represented by equations:

x’=xcos0+ysin0, yy=-xsinb+ysin0, z2=z
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When only term C;E° is considered, it can be concluded by the above
transformations without changing U:

C,=C,=C,=C
(3-12)
C,=C,=C, =0

3

When the term CiK;g; is considered, the following relationships must
hold:

rKl-t +K,, +K;, =0
K;+K,; +K; =0
JKM +K,, +K; =0 (3-13)

K, +K, +K; = Kl: +K:: +K;,

kKu +K, +K; =K +K,; +K;;

3.3.2 Bone modeled as a transversely isotropic
material

For the transversely isotropic material if the plane of isotropy is assumed
to be the x , y plane, the operation of rotation about z and reflexion in the
plane (x,y), (x,z), and (y,z) must keep U unaltered.
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When only term C:E’ is considered, the following relationship must

hold:
C,=C.=C
(3-14)
C,=C,=C,=0
When the term CKg; is examined, the following relationships must
hold:

[CK,, +CK,, +C,K,, =0

{CK,; +CK,, +C,K, =0 (3-15)

(CK,, +CK,;, +CiK;, =CK,, +CK,, +CK;,

3.3.2 Bone modeled as an orthotropic material

For an orthotropic material, the coordinate system is chosen to be
coincident with the symmetry coordinate system of material. The operation
reflexion in the plane (x,y), (x,z), and (y,z) must keep U unaltered.

When only term C;E? is considered, the following relationship must
hold:



CHAPTER 3: DEVELOPMENT OF NEW MODELING MODEL 77

C,=C,=C, =0 (3-16)

When term CK;; is examined, the following relationships must hold:

[CK,+C.K;, +CK;, =0

1CiKys +C.Ky +CK 5 =0 (3-17)

~CIKIG +C:K36 +C3K36 =0

3.3.4 Remarks

The equations (3-13), (3-15) and (3-17) reveal that the independent
variables of K;; are 31, 33 and 33 respectively corresponding to the isotropic,
transversely isotropic or orthotropic bone material assumptions. That means
that subject to the constraints (3-13), (3-15), or (3-17) the components of Kj;
can be selected to produce specific effects. In particular K; matrix can be
assumed to be a diagonal matrix (3-7) in which only K (no sum and 1 =
1,2,3,4,5,6) exist. It is obvious that (3-13), (3-15) or (3-17) won’t be violated
by this assumption and it is justified in this sense. It implies that for an isotropic
material K,; = Kz = K33, for a transversely isotropic material K;; = Kp,.

Equation (3-2) is a general modeling rate equation. However, equations
(3-10) and (3-11) are more often used in practice. In addition, certain research
results about the effects of shear stresses on modeling can be used to reduce the
number of modeling coefficients for some problems.

For example, Moreland (1980) conducted an experimental study on the
effect of torsion on the immature rabbit. Radiographic and histological analyses
failed to show any evidence of cortical modeling. Cowin (1987) conducted a
theoretical study on this problem. He found that the predictions of the theory of
surface remodeling are different for small and large torsion. It was shown that
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the surface velocity can only depend upon the square of shear strains. For small
torsional loads, no modeling will be induced. For large torsional loads,
modeling will be induced but it is likely to occur at a slower rate than that for
axial loads.

Although there is no quantitative data on the degree to which long
bones are subjected to torsion, it is suggested that these bones do not carry
much torsional load (Moreland 1980, Cowin, 1987). As a result, if the shear
stress is induced by a torsional load the effect of shear strain will be neglected,
and the new modeling rate equation will become:

U=C, (K&, -E) (no sum forK , i=1,2,3) (3-18)

However Carter et al. (1980) found that significant longitudinal and
shear stress were present in the midshaft of the radius and ulna, and Lanyon et
al. (1979a) also found ovine tibia was subjected to combined bending and
torsion. As a result it is not clear if bones carry much torsion or not. In addition,
no report of the effects of direct shear on bone modeling has been found.

If bone is assumed to have some degree of material symmetry, (3-18)
can be definitely simplified no matter what kind of load caused the shear strain.
Of course the simplified form is based on the assumption that the K; matrix is a

diagonal one.

If bone is assumed as an isotropic material, (3-18) can be further
simplified as:

U=CI[K(E, +&, +&;) - (&) +E&3 +&3)] (3-19)

If bone is taken as an transversely isotropic material, (3-18) will
becomes:
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U=C [K,E, '*'Fa:)—(é? '*'ég)]*‘Cs(Kss&g —ég) (3-20)

Similarly, the modeling rate equation for orthotropic bone material is:

U=C, (K., -£&) (nosum forK; andi= 1, 2, 3) (3-21)

3.4 The advantage of the new model

The new model has several advantages as follows:

The new model can explain the adaptive behaviour of bone in the two
loading cases in Figure 2.6 while Cowin's theory can not explain them. For
example, for the loading case (1) in Figure 2.6, Cowin's theory predicts either
the bone resorbs completely (Cy, < 0) or deposits infinitely (Cy; > 0), which is
obviously unrealistic. Using the new model and if tension and compression
make no difference in their effects on the bone adaptation, it will predict that no
modeling will occur (K;,=-1).

A more plausible situation is that tensile and compressive strains affect
bone adaptation to different degrees. Under this condition, by choosing K;; as a
negative number whose absolute value is not 1 (JKy;| < 1.0 or > 1.0 depending
on the different roles of tensile and compressive strain on the bone adaptation),
the new theory will predict a finite modeling shape corresponding to modeling
coefficient C,; and weighting factor K;,.

The comprehensive comparison between the new model and Cowin’s
new theory is shown in Table 3.1. For the cases S5, 7, 9, and 11 which is
highlighted in the table, the new model is successful in predicting the bone
modeling while Cowin’s theory fails to do so.
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Table 3.1 Comparison between the new model and Cowin’s modeling
theory for one dimensional cases

Case | C; | Kn Ci(Ky;E; -E;% | Cowin's Theory | New Model
1 >0 | = E;>0.E°>0. | >0 Bone size same
E,>E’° increases
2 >0 { =1 E/>0.E">0. | <0 Bone size same
E, <E° decreases
3 <0 =1 E,<0.E,°<0. | >0 Bone size same
[Eil >|EY increases
4 <0 |=1 Ei<0.E.°<0. | <0 Bone size same
IEil <|E9 decreases
5 <0 |=-1 |E>0,E"<0, [>0 Bone resorbs to | Bone size
|E:| > | E nothing increases
6 >0 | =-1 |E>0.E’°<0. [>0 Bone size same
[Eil >|EY increase forever
7 <0 | =-1 E>0,E,"<0, | <0 Bone resorbs to | Bone size
|Eqf < | E nothing decrecases
8 >0 | =-1 E,>0.E\°<0. | <0 Bone size same
IE\| <|E increase forever
9 >0 | =-1 E;<0,E">0, | >0 Bone resorbs to | Bone size
[Eq| >[E nothing increases
10 <0 | =-1 |E<0.E’>0. [>0 Bone size same
|Ey] >|EY increase forever
11 >0 | =-1 E.;<0,E’>0, | <0 Bone resorbs to | Bone size
[E <|E% nothing decreases
12 <0 | =-1 E\<0.E;">0, | <0 Bone size same
IE\| <|E\9 increase forever

While some evidence supports the contention that tensile and

compressive strain affect the bone adaptation to different degrees (see Martin et
al., 1989) two experiments have been found that indirectly indicate tensile and
compressive strains are both osteogenic and their influences on bone adaptation

are the same.

In the first experiment (Hert et al. 1972), tibiae of rabbits were loaded in

bending. In the first series, the lateral side of the tibia was exposed to
compressive stress and the medial side to tensile stress. In the second series, the
load direction was reversed. Similar modeling results were obtained in both

series ( Figure 3.1).
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o7

Figure 3.1 Diagram of section of diaphysis of tibia illustrating
distribution of stress in compact bone. In both loaded sides (medial
and lateral), apposition of new bone occurred on the periosteal and
endosteal surfaces (+) (Hert et al. 1972).

Figure 3.2 Transverse undecalcified section from the midshaft of the
artificial loaded radius and ulna showing a substantial thickness of new
bone perosteally and a small amount endosteally(O'Conner et al.,
1982).
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Figure 3.3 Diagram of the radius and ulna of the adult sheep showing the
region of ulna removed in the osteomy experiments and distribution of
new bone deposited at the level A-A’ over 1 year period following. The
new bone formation was predominantly on the bone caudal surface
(Lanyon et al., 1982).

In the second experiment (O'Conner et al, 1982), bending and
compressive were applied intermittently on the radius and ulna of experimental
sheep. The plane of bending was the same as that imposed during locomotion.
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It was found that direction of bending (tension and compression) appeared to
have no effect on the course of the modeling observed (Figure 3.2).

The new model developed intrinsically embraces Cowin's external
remodeling theory and can be transformed to Huiskes’s and Carter’s external
remodeling theories. It also has much flexibility.

With K, =0 (i # j)and K, =1 (no sum), the new model automaticaily

becomes Cowin's external remodeling theory. Moreover, by changing the values
of Kjj, the new model can explain the modeling phenomenon for which Cowin's
theory failed to explain.

For example, in the famous experiment about ulnar osteotomy studies
(Lanyon et al., 1982, see Figure 3.3), mature sheep were subjected to an ulnar
osteotomy (removal of a section of the ulna diaphysis) which caused a slight
increase in peak principal walking strain in the radius. The increase of strain on
the cranial surface was 20% while it was 10% on the caudal. After the modeling
was complete, the principal peak strain showed a reduction in cranial region of
20% and in caudal of 10% compared to the strain in the control side.

This phenomenon can not be explained by Cowin's theory because
Cowin's theory predicts that there would be a recovery of radius strain from
larger value immediately after osteotomy to normal value once modeling was
complete. But by introducing K;; > 1, this overcompensation can be predicted
by the new model although the physical meaning is not clear (may be due to
biological effect or different effects of other strain components besides the peak
axial strain component)

By ChOOSil’lg C[ = Cz = C3 = C., K[[=K22=K33=K K;4=K55=K55 = 0,
and K, =0 (i#]), equation (3-2) becomes:

U=C[K(, +&, +&;) - (&) +&3 +E&3)] (3-22)
if K= /G¥8:%8) oo w=loe  wo= Lo,
W /(E° +E0 +E7) 2 U 2 v
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Then the new model becomes Huiskes’ external remodeling theory. As
the modified Carter and Fyhre’s external remodeling theory is actually the same
as Huiskes’ theory, the new model also can represent Carter and Fhyre’s
theory.

. W,
In addition, by choosing K:—;/—(—élol—), where W, =lckk§“ and
W, /(&) 2
W = %cgkiﬁ , then (3-2) becomes:
U=C(W, -W?°) (3-23)

The modeling objective is W, and the trigger of modeling is the bone
volume change.

By choosing a different modeling objective, the modeling equation (3-2)
can also have different forms. This model allows the introduction of more
flexibility in bone response than existing modeling theories.

The new model can reflect that different roles of the same strain
components in the modeling objective before modeling occurs and after
modeling completes.

The objective in Cowin's modeling theory is:

CE =CE’ =S (3-24)

where S is a constant, §, and &3 share the same weight in the total objective.
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While for the new model, the objective is:

CKE =CE’ =S (3-25)

for the same strain component, say j, if K, #0(=jorK #1l(i=}),

& and E£° will be different in their weight to the modeling objective.
) ¥

On the other side, if the bone is assumed to be an isotropic or a
transversely isotropic or an orthotropic material, Cowin’s theory automatically
rules out any effects of shear strains on the modeling. But for the new model,
the effects of shear strain on the bone modeling can be reflected as long as one
of K, is not equal to zero (i # j) .

The new model can reflect the effects of other factors such as
diseases, drugs, toxic agents etc. on modeling.

Each mechanism of bone adaptation should have a mathematical and a
biological aspect. Mechanical load (L) on a bone (B) generates a primary
mechanical signal (S;) that in effect monitors the mechanical usage. Some kinds
of cells should then detect (D) that signal and react by delivering another signal
(S;) to the responding modeling (R,) and remodeling (R,) system. The
mechanical aspect includes process L to S; whereas D-->8,-->(Rq, R() can be
considered as the biological aspect.

Frost (1987) proposed that some circulating and local agents such as
hormones, drugs, diseases and genetics might act on cells in the biological
aspect of MES mechanism to make Mechanostat either insensitive or somewhat
overactive to a mechanical usage. The mode of action would deceive the
Mechanostat into perceiving a spurious excess or deficit by raising or lowering
respectively effective MES setpoints. Many clinical-pathological facts and
situations strongly suggest that biological action on MES setpoints do occur
(Frost, 1987).

The new model can explain to some degrees the biological effects on
bone adaptation but Cowin's theory fails to do so. According to Cowin's theory,
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if the loading condition does not change, there will be no bone adaptation. If
bone disease or other biological agents take action while the loading condition
does not change, the new model can predict the bone adaptation by changing
the Kj to account for the new equilibrium strain (MES setpoint) caused by
diseases or other factors.

3.5 Summary

In this chapter, the new modeling model is developed. Compared with
other modeling theories, the new model has much flexibility and can be
transformed to other modeling theories easily.

The proposed new model can not only solve the problem showed in
Figure 2.6 that Cowin’s theory fails to explain but also can explain to some
degrees the biological effects on bone adaptation which Cowin and other
modeling theories also fail to explain.

The new model has the basic form (3-2) which can be simplified under
certain conditions. If bone material is assumed to be isotropic, transversely
isotropic or orthotropic, and bone is loaded in bending or axial tension and
compression, the number of modeling coefficients and weighting factors are
dramatically reduced.

Actually, it is generally accepted that cortical bone can be considered as
an orthotropic material. Our study focuses on the cortical bone and emphasize
on the loading cases such as combined bending and axial tension and
compression which are the most common loading environment for long bones.

As a result, the modeling rate equation (3-10) is the most commonly
used form.

In this chapter, the restrictions on the modeling coefficients and
weighting factor have been considered. In addition, the implications of the
model and comparison with existing theories have been discussed.



Chapter 4
Modeling Model Examples

This chapter is concerned with the methods for applying the new
modeling theory to describe and predict the shape changes of bone when its
loading environment is changed. The primary goal is to test the new modeling
theory and evaluate its flexibility.

It was mentioned in previous chapters that one characteristic of
mathematical modeling theories is the computational feature of their
applications. The computational modeling of the bone adaptation process
involves two aspects: one is the theoretical “model” of the bone adaptation
mechanism which includes modeling rate equations; the other is the computer
simulation which is basically thought of as a computer program and its
associated numerical methods.

The first feature of the computational modeling was described in the last
chapter, and the second aspect will be addressed in this chapter. The new
modeling theory is validated by incorporating it with the numerical methods to
predict the shape changes of bone. The reason that numerical techniques are
employed is that bones is considered to have irregular geometry and variable
material properties. Numerical methods have to be used to perform the stress
analysis for the complicated stress/strain environment caused by the shape of
the bone and its material properties. For different problems, different numerical
techniques are employed. These numerical methods are discussed later with
specific problems.

The solution procedures based on adaptive elasticity are time stepping:
the bone surface points are relocated in each time step according to the
prediction of the new modeling model. The direction of change is assumed to be
normal to the old surface. With the time step increasing, the bone modeling
continues until the iteration converges and modeling equilibrium is reached.

87
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The modeling coefficients are found by a trial-and-error approach. After
several tnal calculations, only those coefficients that guarantee the iteration to
converge are used. The weighting factor values are essentially fixed to reflect
the effects of different strain components on the modeling along certain
direction. At present, there is no specific data to determine the values of those
factors.

In this chapter, the bone is considered as an isotropic or an orthotropic
material. The parameter studies are undertaken in several aspects:

¢ Model studies which include
(1) different bone shapes: circle or elliptical cylinder;
(2) different bone cross-sections: single or double connected;

¢ Loading studies which include:
(1) different stress analysis types: 2D or 3D;
(2) different loading environment: axial, radial, bending or
combined loading;

¢ Modeling parameters
(1) different modeling coefficients;
(2) different weighting factors;

There are three kinds of problems and they will be discussed separately.

4.1 Bone modeled as a right cylinder with a circular
cross-section

The bone is modeled as a right cylinder with a circular double connected
cross-section as shown in Figure 4.1. The inner and outer radii are represented
as a(t) and b(t) and equal to Imm and 2mm respectively at modeling
equilibrium. The bone is loaded in the radial direction and on both inner and
outer surfaces. The load on both surfaces are uniformly distributed. The
magnitude of total load on the inner and outer surfaces are 1T(N) and 2n(N)
respectively at the modeling equilibrium state. As in this case the purpose is to
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test the new model, the bone is assumed as an isotropic material and weighting
factors are all equal to 1. The Young’s modulus E is 0.0000115GPa and
Poisson’s ratio is equal to 0.3.

The problem here is similar to the problem described in section 2.2.3.3.
The difference is that the loading environment is different. The load applied in
this problem is in the radial direction while the load in the problem presented by
Hart et al. (1993) is in the axial direction.

Pa any b(t)

Figure 4.1 A cylinder representing the diaphysis of bone. The
surface a(t) is the endosteal surface and b(t) is the periosteal
surface. P, is the magnitude of the tctal distributed applied load on
the endosteal surface and Py, is the magnitude of the total distributed
load on the periosteal surface.

(1) Governing equations :

Assuming K, = Kgg = K, = 1, the modeling rate equation in the
coordinate becomes:

U=C.E, +Cy&, _Crég —Ceég (4-1)
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Hooke’s law:
-y’ 1
= - 4-2
ér E (cr l_uce) ( )
1-p’ p
= G, — G 4-3
G =~ ~(Ce =700 4-3)
and substituting (4-2) and (4-3) into (4-1), (4-1) becomes:
U=B,c, +B,c, ~C° (4-4)
where
C* =C,&; +Cy&g (4-5)
-y’ W I-p
B, = c.-—C,), By=—"(C,- 4-6
=€ C) Bo= (G (4-6)

The solution (Timoshenko and Goodier, 1951)for the problem at time t

shown in Figure 4.1 is:

b* a’
s —1 l-—
Cc, = r: X P, + r, X )
b‘_1 2ma l_b_‘ 2ma
a’ a’
b* a’
+1 1+
2 2 P
Ge - _ I" Pa + r" b
b- 27nta b* 2nma

4-7)
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By combining (4-7), (4-4) with stress boundary conditions:

2 2 ) 2
da_p Bip2tt B By o gy
dt 27a b —-a- 2ma b-—-a- 2mb
o) 2 2 2
LIS LT W G L & W (4-9)
dt 2nb b-—-a~ 2ma b - -a- 2mb
where
C: =C,§? a '*'Ceég a» Cg =Cr§?lb "'CeE.vglb

(2) Numerical method

The coupled differential equations are solved by using the fourth order

Runge-Kutta method.

a,, =a, +é(k‘ +2k. +2k; +k,) (4-10)

b,.,=b, +—é~(ll +21, +2I, +1,) (4-11)
where

k, =hf(a,,b,) 1, =hg(a,,b,)

k, =hf(a, 4-221(—’,bn +%) I, = hg(a, +P%,bn +%)

k, =hf(a, +312(—2-,bn +%2—) I, =hg(a, +hzﬁ,bn + h;)
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k, =hf(a, +hk,,b_, +hl;) 1, =hg(a, +hk,,b, +hl;)
here h is the time step and

P : p 2
f(a, b) = B, 2+ By(- 22y 2o 20 By
2ma b-—-a~ 2ma b -a~ 2mb

(3) Results

It is assumed that P, and P, are always uniformly distributed on the
surfaces they apply at during the modeling process. By changing the magnitude
of actual P, and P, the loads raised from the equilibrium loads, and modeling
coefficients, totally five group of solutions are obtained as shown in Figure 4.2.
In the first solution, the cross-sectional area decreases due to inward movement
of the periosteal surface (b < by) and outward movement of the endosteal
surface (a > ao), one example is that if P, = 2r(N), P, = 3*(N), and C, = Cg =
1000 mm/day, the final a = 1.28572 mm (@, = 1.0 mm) and b = 1.71428 mm (b,
= 2.0 mm). In the second solution, the endosteal and periosteal surfaces move
out, and the area can either increases or decreases depending on the relative
rate of movement of the two surfaces. For example, P, = 3n(N), P, = 5T(N),
and C, = Cg= 100 mm/day, the final a = 1.49998 mm and b = 2.49994 mm. The
third solution, the endosteal surface moves in and the periosteal surface moves
out, and the area increases. The example is: P, = 2t(N), P, = 5°t(N), and C, =
Ce = 1000 mm/day, the final a = 0.59998 mm and b = 2.40002 mm. Solution
four is just a special sub class of the solution three. Both surfaces move in. The
fifth solution and the cross-sectional area either increases or decreases
depending on the load and modeling coefficients.

[t is interesting to know that the solution types in this case are quite
similar to the solution types in Figure 2.8 in which loading is in the axial
direction. As B, and Bpg are chosen to be the same for both inner surface and
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1 a>al f\\\
b < b0 > N,
o TR N )
a<a0 ,/\\ \
3 b > bO : C , ———-?\ C,
4 a=90 @\\ L /\\
LN ! ;
b > b0 \/ "
s <0 N (0)
b < b0 N =/

Figure 4.2 Five solution types of diaphyseal modeling problem
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outer surfaces, the number of solution types are limited. The different B, and
Be may provide other solution types.

All solutions in the calculation converge very quickly.

z
Eccentric Axial Load
-P
‘p g ty
.................................... :'v’-xc
¥p

v

< |

Figure 4.3 Cross-sectional bone model. Global coordinate system
(x,y). The coordinates of centroid are given by (x., y.). The point of
load is given in the global coordinates by (x,, Yp)-
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4.2 Combined axial and bending loading for an
elliptical cross-section

The bone is modeled as a right cylinder with an elliptical cross-section
oriented in a global coordinate system (x,y) as shown in Figure 4.3. The
coordinates of centroid are given by (x., y.), and the centroid is the origin of the

centroidal coordinates system (x, y ) with axes parallel to the global coordinate

axes. The long and short axes of the ellipse are 4.0mm and 2.0mm respectively.
For the cases in which bone has a doubly connected cross-section, the long and
short axes of the inner ellipse are 2.0mm and 1.0mm respectively and the long
and short axes of the outer ellipse are 4.0mm and 2.0mm respectively. The bone
is loaded by a distributed load which is equivalent to an axial compressive or
tensile force at (x,, yp). If (Xp, yp) are (0, 0), the bone is subjected to the uniform
compression or tension along the z direction, and when the yp, xp are nonzero ,
the bone is subjected to the compression/tension and bending.

4.2.1 Computer formulation and the numerical
technique to solve problems

Substitution of Hooke’s law into equation (3-10), yields

U =B,;(Kj;0; —03) (4-12)

O3 is calculated by using beam theory (Cowin et. al. 1985):

B L A ) L e e )

G,
bend - -1
XXy oy
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(4-13)

Where o3 is the magnitude of the axial stress at the point (x, y), P is the
magnitude of the equivalent axial load which acts in the z direction, A is the
total cross-sectional area of bone in the x-y plane, x,, y, are the coordinates of
the point of load application, x., y. are the coordinates of the centroid of bone
lying in the x-y plane. I_ is the area moment of inertia of the cross-sectional

area with respect to the centroidal x axis, I is the area moment of inertia of

the cross-sectional area with respect to the centroidal 3—/ axis, and I_ is the

area product of inertia of the cross-sectional area with respect to the centroidal
and x and y axes.

For this calculation, the bone tissue is assumed to be orthotropic and
therefore only axial stresses exist (see Cowin et al., 1985). The bone surfaces (
periosteal and endosteal surfaces) are divided into fifty sections. Each point at
the conjunction of any two sections is used as the knot for the cubic spline
calculation which is employed to fit the bone surfaces. Since the bone surfaces
are closed curves, the end conditions for the spline are periodic. The geometric
properties of the cross-section and the normal direction at each knot are
calculated by the combination of the cubic spline and the Gaussian integration
method.

Let S(x) represent the bone surface, then:
N+l N+l
S(x) =3 @,(x)f, + ¥, (x)m, (4-14)
1=1 1=

where f; , m; are prescribed values and slopes at knots xy, Xz ...... Xy-1 and
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®,(x,)=8, ®x)=0 W(x,)=0

For k=2,----N, define:

—m, +bm +p.m, =C, (k

\Fl’(xj) = 61;

(4-15)

Another two conditions (periodic condition) S'(x,)=S'(x.,)and

S"(x,) = S"(xy.,) produce:
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where

m;, =my,,

Hy.m, +A, me+by mg, =Cg,

The final equations are:
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The algorithm for solving the equation (4-9) (see Ahlberg 1967) is:

for k=2, --- N+1, define

rpk =A.q, +b, (9, =0)

— M
W=7,

J _
p = CemMbea)f = 0)

Then

Cu BV — Ay, vy

My = A b

u.\"ltl + .\"ltN + N-1
m =t my, K +V, k=2, --- N)
m, =my;

where

t =quty, 85 (ty, =1

Ve = Qe Vi e (Vya =1

The geometric properties are calculated by combining spline equation
and Gausian integration:

Area:

S

\S"Q)

(y)dA = Iy xn dS = J-psine x (—p'cosB + psinB)do
S
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Figure 4.4 Polar coordinate

The static moment:
A = Zl_fp2 sin” @ x (—p’cosO + psinB)do
e s . )
A, = ;J'p“ cos” O x (p’sin® + pcosH)do
and the moment of inertia are:
I = %J.p3 sin” 8 x (—p’cosO + psin0)do
b

I, = éjps cos” 8 x (p’sinB + pcosB)do
) S

Ixy

—71—_|‘p3 sin” Bcosd x (p’ cosB + psinH)do
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In all above integrals, p is the distance from the original point of polar
coordinate (Figure 4.4) and can be represented by using the spline equation in
terms of 6, and the integrals can be calculated by three-point Gauss-Legendre
formula.

The time stepping method is used to simulate the modeling process. The
procedure can be divided into several steps:

A. Calculate the geometric properties of the bone cross-section;

B. Calculate the axial stress at each knot by using (4-13);

C. Calculate the surface speed at each point by (4-12) which is
multiplied by the prescribed time step to get the magnitude of
the surface modeling;

D. Find the normal direction at each knot (actually get from m; );

E. Relocate each point by the magnitude of surface modeling in the
normal direction;

F. Increase the time by the time step;

G. Repeat the step 1 to step 6 until the time stepping converges.

In the calculation, the different modeling coefficients are chosen to
guarantee the convergence. The units used in the examples are: P (N), x;, yp
(mm), Bs; (mm day™ GP,™"), Ks;3(1).

4.2.2 Modeling model examples

In order to examine the capabilities of the new model to deal with the
problems in Figure 2.6 for which the Cowin’s theory fails, it is assumed that
the equilibrium strain is negative, and the actual strain is positive (see section

ELTY PN

The bone is modeled as a right cylinder with a single connected elliptical
cross-section. The equilibrium load is P° = 1.0 (compression) with x,= 0 and v,
= 0, and the actual load is P = -1.5 with x, = 0 and y, = 0. B; = -2.0, three
different weighting factors K55 = 0.5, 1.0, and 1.5 are used, and three cases
converged. The results are shown in Figure 4.5. It can be seen from the results
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Figure 4.5 The final shapes of bone cross-section after the modeling
complete. P =1.5 (tension), y, = 0.0, weighting factors K35 = 0.5, 1.0, 1.5.

that with a small weighting factor (Ks; = 0.5), the bone resorbed which
means that, even with [P| > [P%, it is not enough to maintain the bone mass,
and with a large weighting factor (for example, K3; =1.5 or 1.0), the deposition
of bone occurred.

In Figure 4.5, w05 represents Ks; = 0.5, wl0, wlS represent K53 = 1.0,
and Ks; = 1.5 respectively.

To further examine the loading cases which are inconsistent in Cowin’s
theory, the following problem is considered. At the equilibrium state, the load is
centric, and the equilibrium strain is thus uniformly compressive while the actual
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load is eccentric, and the strain has two parts: one is uniform axial compression
and the other is the strain caused by eccentricity. In this case, the bone is also
modeled as a right cylinder with a single connected elliptical cross-section.
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Figure 4.6 The final shapes of bone cross-section after modeling. The
equilibrium loading is uniform axial compression and the actual
loading is an eccentric compression. P = 1.0, y, =1.0, K33 = 0.1, 1.0,
and 0.5, B3 =-10.0.

The equilibrium load is P® = 1.0 (compression), the actual load is the
same but with x, = 0 and y, =1.0, B; = -10.0. In this case, on the one side of
bone, the actual strain is tensile, and on the other side, compressive. Also, three
different weighting factors K33 = 0.1, 0.5, and 1.0 are adopted, all cases
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converged. Even though the change in point of application y, = 1.0 is quite big
compared to the short axis of the ellipse, the new model can still handle it.

It can be seen from the Figure 4.6, for the three different weighting
factors, the differences between the final shapes are not prominent in
comparison with the cases in Figure 4.5. This is because most points at bone
surface have the same sign for the actual strains and the corresponding
equilibrium strains, the effect of Ks; is not obvious.
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Figure 4.7 The effect of modeling coefficient B; on the speed of
convergence. P=1.0,y,=0.1, K53 =1

To investigate the effect of modeling coefficient B; on the speed of the
convergence, a similar problem but with a small y, = 0.1 is considered. The
relationship between B; and the time steps to converge are shown in Figure 4.7.
This suggests that the larger the modeling coefficient, the faster the speed of the
convergence. There is quite a large range of Bs; which can guarantee the
convergence of the modeling process. However if the coefficient is too large,
the convergence might not be possible.
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Final vs. original bone cross-sections
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Figure 4.8 The final shape and position of cross-section of bone. The
magnitude of actual load is smaller than that of equilibrium load. P® =
2.0,P=1.0and y, =0.1 (rO1), 1.0(r10), the original cross-section is
a circle and the radius =4, K53 =0.5, B; =-3.0
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Figure 4.9 The final shape and position of cross-section of bone after
modeling complete. The magnitude of actual load is larger than that
of equilibrium load. P’ = 0.5, P = 1.0 and x, = 0.1(t01), 1.0(r10), the
original cross-section is a circle and the radius = 2, K53 = 0.5, B; = -
3.0
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In the previous two examples above, the actual load had the same
magnitude as the equilibrium load. The problem in which not only the loading
position of the actual load changes (from the equilibrium load), but also the
magnitude of the actual load changes, is considered. The bone considered here
is a right cylinder with a single connected circular cross-section.

The first case is one when the magnitude of the actual load is smaller
than that of the equilibrium value and the point of application of the actual load
is different from that of equilibrium load in the y direction. The equilibrium load
is P° =1.0 (compression) with y, = 0 and xp = 0, and the actual load is P = 0.5
with y, = 0.1, and 1.0 and x, = 0. The modeling coefficient B; =-3.0, and the
radius of the original circle is 2.0.

The second case assumes the magnitude of the actual load is larger than
that of the equilibrium value and the point of application is different from that of
the equilibrium load in the x direction. The equilibrium load is P’ = 0.5
(compression) with y, = 0 and x, = 0, and the actual load P = 1.0, with y, =0,
and x,= 0.1, and 1.0. The modeling coefficient B; = -3.0, and the radius of the
original circle is 2.0.

Figure 4.8 shows that with smaller actual load (compared with
equilibrium load) and small eccentricity y, = 0.1, the final area of the bone
cross-section decreases but the centroid of the bone cross-section remains near
the original position. With larger eccentricity y, = 1.0, the whole bone cross-
section moves, and the area of the cross-section also decreases.

From Figure 4.9, it can be seen that with a small eccentricity x, = 0.1,
the final area of the bone cross-section increases while the centroid moves little.
With a large eccentricity x, =1.1, the bone cross-section not only swells a lot
but also drifts considerably.

In all cases, the weighting factor Ks; = 0.5. The final shapes of the bone
cross-section are circular. This is different with the cases that have the original
shape of bone cross-section elliptical. Generally speaking, if the original shape
of bone cross-section is elliptical, the final shape won’t be elliptical again.
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Figure 4.10 The final shapes of the bone cross-section after the modeling.
The original bone cross section is elliptical. P =P’ = 1.0, x, = 0.1, y, =

0.1 (r01) and x, = L.I(r11), y, = 1.0, K53 = 0.5, B3 =-3.0.

As up to the present, only cases in which the load eccentricity is in one
direction is considered. To consider the load applied at an arbitrary point,
another problem is examined. The equilibrium load is P° = 1.0 (compression)
with x, = 0 and y, = 0, the actual load P = 1.0, with x, = 0.1, y,=0.1
(represented by rO1), and x, = 1.0, y, =1.0 (represented by ril1). Bs; = -3.0, the
weighting factor is 0.5. The final shapes of bone cross-section after modeling is

shown in Figure 4.10.
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For most of cases, the area of the bone cross-section remains constant
during the iteration if the actual load has the same magnitude with the
equilibrium load. But for the problem considered here, the situation is a little bit
different. The modeling predicts ‘overshoot’ of the bone cross-sectional area at
the beginning, then gradually converge to the target area.(see Figure 4.11). The
overshooting of bone cross-section area is also reported by Prendergas and
Taylor (1993).
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Figure 4.11 The bone cross-section area changes during the
modeling. At the time step S to step 20, the area ‘overshoot’ the
equilibrium area and gradually converge to the target area.



CHAPTER 4: MODELING MODEL EXAMPLES 110

A more realistic representation of long bone is a right cylinder with a
doubly connected elliptical cross-section. The long and short axes of the outer
ellipse are taken as 4.0 and 2.0 while for the inner ellipse, they are 2.0 and 1.0
respectively. The equilibrium load is 1.0 with x, = 0, and y, = 0. The actual load
1s 2.0 with x, = 1.0 and y, = 1.0. The modeling coefficient B; = -3.0 for both
surfaces. The weight factor K53 =-0.5.
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Figure 4.12 The final shapes of the bone cross-section after the
modeling. The original bone was doubly collected. At outer surface,
long axis A =4, and short axis B =2, at the inner surface, A= 2.0, B
=1.0. Load P=P"=1.0,x,=1.0and y, = 1.0. B3 =-3.0, K53 =-0.5.
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The final shape of bone cross-section is shown in Figure 4.12. It is
interesting to note that there is a section along the bone surface in which the
outer surface coincides with the inner surface. This is to be expected as on the
region that is close to the point of application, the strain is composed by two
compressive parts, one is from the uniform compressive strain, and the other
comes from bending due to an eccentric load. The magnitude of compressive
strain is increased and causes the bone deposit on this side while for the side
that is far from the load, the strain composes of a compressive part which
comes from the uniform compressive strain, and a tensile part which is
introduced by the bending. As a result, the resultant strain on the far end is
tensile. As the weight factor is 0.5, the effect of actual tensile strain is less than
that of equilibrium compressive strain on the modeling, the bone gradually
resorbs.

4.3 3D Modeling Model Examples

Po

Figure 4.13 The diaphysical region of bone represented by a hollow
circular cylinder.
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All the examples above are loaded in one direction and therefore the
simplified formulation (3-10) is used. To more fully examine the new modeling
theory, a 3D problem is considered.

The bone is modeled as a right cylinder with a circular doubly connected
cross-section. As before, the bone is considered as an isotropic material, and a
cylindrical coordinate system (r, 6, z) is employed to describe the orthotropic
elastic stress-strain relationship. P, is axial load on the top and bottom surfaces,
and P,, Py are radial loads on the inner and outer surfaces. They are all
uniformly distributed.

The problem is to determine the surface modeling that would occur if
the loads carried by the bone on three different surfaces were suddenly raised or
lowered to a new level.

The modeling equation becomes:
U=B,(K,0,-0))+B, (Ko, -04)+B,(K_0,-06)) (4-17)
And the stress-strain relationships:

on the inner surface are:

P P
0:': a_ r(Yz "z . Zixo-ela)
2na E, =n(b--a’) E,
Y P, P,
%o =0, E"(Eze (b* —a%) 11(5i 2ma)



CHAPTER 4: MODELING MODEL EXAMPLES 113

on the outer surface are:

P P
csr = 2 — r(‘er - 2 £ 2 Y_ef, 0'Blb)
2nb E, mn(b -a") E,
Y P, Y P
Gy —ce'b Eq( = 3 = )

where

_ b+a® P, 2b° P,
Gﬂla - Tz z tTT
b-~-a~ 2ma b -a"~ 2nb
2a° P, b*+a P,
SN P T M.

b*-a* 2ma b*-a 2ub

The problem is solved by the same method used in last section. The only
difference is that the modeling equation is different. In the calculation, E =
21.5GP, y = 0.24 ( as the solutions for ¢*s are for an isotropic material).

The initial inner and outer radii ap and by are 2.0mm and 4.0mm

respectively. The magnitude of equilibrium axial load and radial load on inner
and outer surfaces are all 1.0 N.
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Table 4.1 3D Modeling Results
Case Brla! Bela! lea P p
, P, P K a b
Brlb’ Belb! leb : : ®
1 (N) (mm) | (mm)
(mm day GP,")
1 50, 50, 50 1.5, 1.5, 1.5 1.0 4.466 * | 6.037*
50, 50, -50
2 50, S0, -50 -1.5, 1.5, 1.5 1.0 |9.057 ¢} 10.99¢%
-50, -50, 50
3 50, 50, 50 -1.5, 1.5, 1.5 1.0 |2.409 *| 4.874%
-50, -50, -50
4 50, 50, 50 -1.5, 1.5, 1.5 0.5 |2.418 1| 4.833¢
-50, -50, -50
S 50, 50, -10 -1.5, 1.5, 1.5 1.0 |5.270 ¢+| 6.541%
-50, -50, -10
6 50, 50, 10 -1.5, 1.5, 1.5 1.0 |3.622% | 6.111%
-50, -50, -10
7 50, 50, -10 -1.5, 1.5, 1.5 1.0 |5.467 % 7.012%
-50, -50, 10
8 50, 50, 10 -L.5, 1.5, 1.5 1.0 |0.533% | 9.479¢
-50, -50, 10
9 20, 20, 10 0.5, 0.5, 0.5 1.0 1.051V | 1.959+
-20, -20, -10
10 20, 20, 100 0.5, 0.5, 0.5 1.0 |[2.591* | 3.661+
-20, -20, -100
11 20, O, 100 1.5, 0.5, 0.5 1.0 1.728% | 4.849+¢
-20, 0, -100
Table 4.2 Area changes
Case | 1 2 3 4 5 6 7 8 9 10 11
Area [ 4.5 [268 |59 |55|3.0(12.2 |7.2 |77.5 |-9.3|-5.7 | 8.5
diff | T T T [T |W 1o T Y18 |3 1
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With different actual loading environment, the final shapes of bone
cross-section will be different. In the calculation, choosing the right B,, Bg and
B, are crucial. They are chosen by a trial and error method to guarantee the
convergence of problems.

The result is shown in table 4.1. The a and b are the final inner and outer
radii after the modeling finishes. The symbol* and$ mean increase and decrease
from the equilibrium values. B,, Bg and B, are the modeling coefficients of
modeling rate equations for the inner and outer surfaces. The symbol (-) means
that the actual load has the different sign from its corresponding value in
equilibrium state. K represents the weighting factor where K= Kgo = K., =K.

Table 4.2 lists the area changes for eleven cases of 3D modeling
examples. In the one dimensional problem, the modeling coefficient B; do not
affect the final shape of bone cross-section. But for the 3D problems, the B; do
have the effects on them.

For the first modeling example, the actual loads are raised to 1.5N from
the equilibrium load 1.0N. The modeling coefficients are all 50 (mm day'GPa™)
except for B, on the outer surface. The final radii a and b increase from their
original values.

In the second example, the actual axial load has the different sign as the
equilibrium axial load and it is assumed that the tension has the same the effect
as the compression (K = 1). By choosing different B,, B¢ and B, on the inner
and outer surfaces, the final a and b also increase.

The third example indicates that different modeling coefficients may
have quite different effects on the final a and b by comparing it with the second
case.

The fourth example examined the difference that the different weighting
factor will make on the modeling. It shows that cases three and four have no big
difference on the modeling in terms of a and b under this special circumstance.

The fifth, sixth and seventh examples basically examine the effects of
different modeling coefficients on the final shape of bone cross-section.
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The eighth example shows a different behavior of bone modeling. For
the seven examples shown before it, all a and b increase from their equilibrium
values. But the eighth case indicates that a decreases from its original value
while b still increases.

The ninth and tenth examples examined the modeling of bone assuming
that the actual loads decrease to 0.5N and are held there. The ninth case
indicates that a and b both decrease from their equilibrium values while the
tenth example shows that a increases but b decreases from their original values.

In the eleventh example, the actual axial load increases while another
two are reduced. The final a decreases while b increases.

Basically, when the magnitude of loads is raised from their equilibrium
values, the final areas of bone cross-section increase and vice versa. This can be
concluded from the table 4.2.

4.4 Summary

In this chapter, the new modeling theory is fully examined by quite a
few examples under different loading environment. Several parameters that
affect the modeling , such as different bone shape, different loading, different
modeling coefficients as well as different model structure (2D, 3D) are studied.

All results of examples shown in this chapter are very satisfactory. Most
of examples can only be solved by the new modeling model while Cowin’s
modeling theory failed to explain them due to changing direction of load or
bending load as a result of eccentric loadings.

Some examples in this chapter are very close to the real bone modeling
situation. The capability of new modeling model to predict the final shape of
those examples proves the flexibility of new modeling model.

It can be concluded from the examples that for the one dimensional
problem, the final shape of bone cross-section is insensitive to the modeling
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coefficients but quite sensitive to the weighting factors. For 3D problems, it is
reversed.



Chapter 5

FEM Modeling Examples

The last chapter discussed the methods to predict strain-history-
dependent modeling in long bones by utilizing the new modeling theory.
However, all examples examined in that chapter were concerned with the initial
regular boundary geometry of long bones..

In reality, the irregular shape, the inhomogeneity of bone material and
the anisotropy of structural material properties render the problem of
determining bone strain history in terms of closed form solution impossible.
This is why the numerical methods are employed to tackle the modeling
problems.

The numerical methods adopted in last chapter have their limits. With
the complicated bone shape or material properties, the problem of calculating
snode position on the surface as well as bone strains at those points are often
intractable. Historically the finite element method (FEM) has been used for the
stress/strain analysis of solids with the complicated shape or material properties
and this is also the case for biomechanics. The FEM has become the method of
this choice for computational bone modeling especially for bones with irregular
shape or material properties.

In this chapter, several examples are examined by applying the new
modeling theory combined with FEM. The assumption underlying this
computational model is that the stress-strain behavior at any point at any time is
linear in stress and strain, with coefficients dependent only on the current state
of modeling, and not on modeling rate. The solution of the problem can be
solved iteratively estimating the current modeling state, and then calculating the
corresponding strain distribution using the FEM. The modeling rate equations
(new modeling theory) can then be used to obtain the values for the new

118
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surface, and the bone shape as well as the FEM model will be updated
accordingly. This process will go on until the modeling equilibrium is reached.

Like the examples in the last chapter, the parameter study for this FEM
model are also undertaken in several aspects:

(1) different sizes of bone cross-section;

(2) different loading (tension, compression, bending , combined tension
and bending;

(3) different meshing;

In this chapter, all bones are assumed as isotropic materials and
elements are 8-nodes quadratic isoparametric serendipity elements although the
program developed in this study can deal with anisotropic linear elastic two-
dimensional stress analysis as well as modeling processing for both plane
stress or plane strain problems using linear, quadratic or cubic isoparametric
serendipity elements. The development of our own FEM program is because
most commercial FEM packages can not handle modeling processes as for each
time stepping the bone shape will change and requires the update of surface
values and may need re-meshing the bone model if the surface elements are out
of shape.

5.1 Computer formulation

The FEM model is constructed by combining the FEM with new
modeling theory. The assumption underlying the model is that bone obeys
Hooke’s law in the normal small strain physiological range of loading:

o, = Eulu (5-1)
where ©jj = stress tensor components; i,j=1, 2, 3
E; = strain tensor components;ij=1, 2, 3
Eijuu= elastic coefficients tensor

The strain is defined in terms of the displacement as
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-~ 3u.
ai‘ — _l_(gu_‘.*._")

5-2
i T208X, X, >-2)

where X =(X,,X,,X;) represents a material point while u =u (X,t)=
displacement; i =1,2,3.

The stress at any point, X, time t, must satisfy the equilibrium equations

L LF =0 (5-3)

where F =F (X,t) = body force, i=1,2,3. The boundary conditions for the
problem can be expressed as

T™(Q,t)=T(Q,t) onS; (5-4a)
u (Q,t) =u (Q,t) on S, (5-4b)

where T™ = o, n, = stress vector component / corresponding to direction n =

(ny, n, n3), T = applied boundary traction component i, @, = applied boundary
displacement component i, Q = point on boundary

and the surface S is a function of time
S(t) = Sy(t) + Sa(t) (5-5)

The relation between S(t) and &;(t) is defined by the new
modeling theory
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U=C, (Ky&y ~ ég) (5-6)

where U = surface velocity of bone normal to bone surface at point Q and is a
function of S(t).

Since the FEM is a widely recognized procedure that is presented in a
number of references, the description here is abbreviated to include only those
details of particular relevance to the modeling procedure presented.

Global Coordinate System
s

4 7 3

8 —’—G—’I‘
— o
1 5 2

Generic Coordinate System

Figure 5.1 8-node modeling finite element shown in global and
generic coordinates
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The integration of the stiffness matrix is accomplished by using 2x2
Gausian integration rules. In order to calculate the strain and stress at the
surface points, Jacobian matrices are not only evaluated at Gauss points but
also at surface points, the strain displacement matrix and stress-strain matrix are
also evaluated at surface points. If there are two elements which share the same
point, the strain or stress at this point will be averaged.

[J]= (5-7)

PR PR
P |

The direction of surface modeling is taken to be the normal direction to
the element’s surface at a node.

Ya

-4

Figure 5-2 one element in global coordinate system
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For the point on the r surface, the components of unit normal direction
can be determined by
oy

. =cos(n,,x) = a, r=1)
(5-8)

m, —_-COS(Er,X):— (l‘=l)

For the point on the s surface, the components of unit normal direction
can be determined by:

24
ér

I, = cos(n,,x) = -

- =1
XKy (Y
)+

(5-9)

m, = cos(n,,y) =

Those values can be obtained from the Jacobian matrix evaluated at the
node. In the case where two elements meet at the same node, the unit normal
vectors are averaged by summing them and renormalizing.



CHAPTER 5: FEM MODELING EXAMPLES

A 2D program has been developed to study the FEM modeling model
discussed above. The program can be used to do the static stress analysis as

well as surface modeling process.

The flow chart of the computational algorithm is shown in Figure 5.3.

Input Data

v
FEM

v

Compute Nodal modeling

Stop

Increment Time

Figure 5-3 Flow chart for computational algorithm
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5.2 Applications

The program has been used to solve several examples of adaptive
elasticity problems. The FEM model (Figure 5.4) is two dimensional. This is
accomplished by choosing its element characteristics in such a way that the
dimensions in the mid-longitudinal section and the moments of inertia of the
bone in the axis symmetric model are precisely reproduced in the two
dimensional model.

| w

Pl P,

AN
S
|

Figure 5.4 The FEM model of simplified bone

In the examples, w is chosen as 1 so that the radius of bone simulated by

the model is equal to ‘,/‘3—’. The bone is assumed as an elastic isotropic

EX:4

material. The examples are classified by their loading environment: (1) Py, = 0,
P, =0; (2) P, #0,P,=0; 3) P, #0,P, #0; For all examples, the FEM
results (Figure 5.3) for the first time step are compared with the results
obtained with ANSYS in order to guarantee that stress/strain analysis of the
model is correct.

For the loading along the y direction, the load distribution is assumed to
be parabolic while for the loading in the x direction, a uniform load distribution
is enforced. The units used in the examples are: P, P, N); w, L, d (mm), E
(GPa).
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(1) Loading only in the x direction (Py = 0)

Two examples are examined under this kind of loading environment.
For the first example, P_f = 2000, P, = 4000, L = 1.0, d = 0.01. E(Young’s
modulus ) = 0.2x10', v (Poisson’s ratio) = 0.3, C, =2.0, C; =C; =0, K;; =
1.0, other Kj’s = 0. In order to simulate the real bone matenal, all data for the
second example are chosen in a way that the strains produced are within the
normal strain range. Pf = 55000, P, = 110000, L =10,d =001. E =
0.12x10", v = 0.376 (Cowin et al. 1989), C, =20, C,=C; =0, K;; = 1.0,
other K;’s = 0.

The FEM model is shown in Figure 5.5. The beam is divided into four
elements and the uniform loading is evenly distributed at three nodes.

- |

]

]
|

F
—

Figure 5.5 The FEM model of cantilever beam with axial loading

In examples, the magnitude of actual strains are twice as big as that of
equilibrium strain, bone is supposed to be added simultaneously from both
surfaces and the final d is two times of original depth d°. This is just the case
obtained with two examples. The final shape is illustrated in Figure 5.6. During
the modeling process, the magnitude of the geometry change is the largest after
the first time step and smaller with each succeeding step. This is because the
difference between the axial strain in the structure and the axial equilibrium
strain is smaller after each time step until the difference is equal to zero, and
modeling stops. In the figure, the added bone material is shown by the shaded
areas.
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original bone

NN
NN
&a&\\i&x&\\\:

Figure 5.6 Final vs. original bone geometry after modeling

Generally speaking, by changing the constants (C,, C;, C;), the
predicted bone shape is made to approximate the experimental or analytic
results. The calculations that predicts a final shape closest to the
experimental/analytic results yield the modeling rate constants. The choice of
C,, C,, C; also determines the speed at which the modeling process will
approach modeling equilibrium. In the calculations of our examples involved in
FEM model, only C, is used and its value is determined by values which cause
the modeling processes to converge.

(2) Loading only in the y direction (Px=0)

To illustrate another potential modeling problem, the bone subjected to
a bending load is studied. Three types of problem are modeled. The first one
studies the bone response to an actual load whose magnitude is twice of that of
the equilibrium load and in the same direction. The load is uniformly distributed
at three end points P,, P>, and P;. The second problem is included here to
validate the new modeling model. It is similar to the first one but the actual
load 1s in the opposing direction of the equlibrium load and its magnitude is also
twice of that of the equlibrium load. The third example is to examine the effect
of different weighting factors on the final shape of bone after modeling
equilibrium is reached for the second example.

The FEM is shown in Figure 5.7. The bone is also divided into four
elements. The load is lumped to three nodes at the end of the beam.

For the first example, P, = P; = -100, P, = -200,
P’ =P) =-50, P} =-100, L=1.0,d=0.01. E=0.2x10",v=0.3, C,=-0.5,
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Figure 5.7 The FEM model of a cantilever beam with bending load

C,=C;=0, K1 = 1.0, other K;’s =0. The second example is almost the same
except that the actual load is reversed (P, = P; = 100, P, = 200,
P’ =P] =-50, P, =-100, ), and K;; = 1, other Kj’s = 0, The third model
assumes that K;; = -0.8 and all other data are the same as those of the second

example.

The assumption behind the third example is that as long as the strain
mode changes (the actual strain is tensile and the equilibrium strain is
compressive or the actual strain is compressive and the equilibrium strain is
tensile), the magnitude of the actual strain has to be larger than that of the
equilibrium strain to regain the equilibrium state because the weighting factor is
0.8.

Since for the first and second examples, the magnitude of actual load is
twice as much as that of the equilibrium load, the final depth d; of the bone

should be+/2 times original d° in order to maintain the equilibrium strain. For
the third examples, d, should be ,/ZK“ times original d (Figure 5.8).

All examples gave results very close to the analytical solutions. The
errors are less than 1/10000.

Figure 5.8 Final & original geometry of bone where d° is the
original depth, while d, is the final depth for the first and second
examples and d, is the final depth for the third example
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(3) Loading in both the x and the y directions

In order to fully validate the new modeling theory under a more
complicated loading environment, the third group of problems are examined.
The beam was loaded at the free end in both the x direction and the y direction
while the equilibrium strain at all points are tensile. Cowin’s theory can not
solve this problem because the actual strains at the bottom of the beam are
compressive which are opposite in the direction to the equilibrium strains at the
same place. The beams of different size under different loading environment are
modeled. The first example is shown in Figure 5.9.

9 Pyl’ le

wn
[ =)
2
=]

M 1 ) ? ¢+—> Py, P
\ P_v3’ Px3

Figure 5.9 The FEM model of a cantilever beam with tip loads at
both the x and y directions

The actual loads: Py, = Pxx = Ps = 20000, Py, = Py; = 0, Py, = -100. The
equilibrium loads: Py, = P/, = P}, = 20000, P, =P, =P, =0. The size of
beam: L =1.0, d° = 0.01. The coefficient and weights: C, = 0.2, C, = C; = 0,
K1 = -1, other K;;’s = 0. The material properties: E = 2x10°, v =0.3.

The result of strains at different surface nodes after first time step is
compared with the result obtained from ANSYS. Two results are listed in Table
5.1 and shows good agreement between the two formulations.
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Table 5.1 Strains at different surface points obtained from FEM model

and ANSYS in Figure 5.9

x10° 1 2 3 4 5 6 7 8 9
FEM | -4.3533 |374 | 750 | 1124 | 4500 | 4124 | 3751 | 3376 | 3003
ANSYS | 4.3288 | N/A | 750 |N/A [ 4500 | N/A [ 3750 | N/A | 3001
ERR 0.6% |N/A |0.0% |N/A |0.0% | N/A | 02% | N/A | 0.6%

The final shape Vs original geometry are shown in Figure 5.10.

0.0 0.2 0.4 0.6 0.8 10
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| —a—
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0.000 - —v— bottom .
. —— i
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V— v
-0.004 A \'\'\v v
- ®

'0.006 L4 v L} ] M L v )

0.0 0.2 0.4 0.6 0.8

X axis

Figure 5.10 The original geometry of bone (between two parallel
straight lines: upper.ori and bottom.ori) vs. final geometry (between
two arch lines: upper and bottom) for problem in Figure 5.9

1.0

The final shape of bone indicates that while the points at which the load
was applied did not move much, the surface at the top of the bone moved up in
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order to reduce the strains to return to the equilibrium strains while the nodes at
the bottom of bone also moved up so that the actual strain at those bottom
points gradually change the strain pattern from the negative to the positive.

The second example in third group is the similar to the first but the
depth of beam is different. The d° of the first example is 0.01 while the d° of the
second example is 0.1. As a result, finer meshing is needed for the second FEM
model. By trial and error, the 10x4 meshing as shown in Fgure 5.11 is adopted.

1 2 3 4 5 6 7 8 9 10 1ll_p,p,

— °
I— —> | .
= =ik
= — .
" ng, P}q

Figure 5.11 The FEM model of cantilever beam with parabolically
load distribution in the y direction and uniformly load distribution in
the x direction

For the second example, the size of bone: L = 1.0, d® = 0.1; The actual
loading: Py =Py =37500, and P, = Pys = Py = Pys = Pys = P7= P = 75000,
P_vl = Pyg = -78125, Pyz = Pyg = -53125, Pys = Py7 = -484375, Py4 = P_v5 = -
1156.25, Pys = -640.625. The equilibrium loading: PJ =P =-37500,

xl
P\ =P), =P, =P, =P, =P =P, =P, =P), =0, The coefficients and
weight factors: C; =2, C; = C; =0, K;; = -1, other Kj’s = 0. The material
properties: E = 2x10°, v =0.3.

The total amount of actual load in x direction is 600000, and the total
amount of actual load in y direction is -5000. The total amount of equilibrium
load in x direction is -600000, and the total amount of equilibrium load in y
direction is 0. The actual load distribution in the y direction is parabolic while
both actual and equilibrium load distribution in the x direction are uniform.
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The result of strains at different surface nodes after the first time step is
also compared with the result obtained from ANSYS. Two results are listed in
Table 5.2. It is obvious that the results for the middle surface points from FEM
and ANSYS are very close while the difference between two results are
relatively large at the end surface points of the beam (2%).

The final and original geometry of bone are shown in 5.12. The pattern
is quite similar to the one in Figure 5.10.

006 0.0 02 0.4 06 0.8 10
k F o Y v T T T T B
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0.04 4 J0.04
0.03 - J o003
0.02 - —e— upper.orn Joo2
0.01 4 —a— upper d0.01
% 0.00 —&— bottom.ori Jo.00
> 001 —v— bottom 1 001
0.02 - 4 -0.02
-0.03 - {-003
0047 yyy Y YV e - -0.04
-0.05 - BB @ BB B BN Y EEw—yy o -005
B N — Y, -
0.0 02 0.4 06 08 1.0
X Axis

Figure 5.12 The original geometry of bone (between two parallel straight
lines: upper.ori and bottom.ori) vs. final geometry (between two arch
lines: upper and bottom) for problem in Figure 5.11
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Table 5.2 Strains at different surface points obtained from FEM model

and ANSYS in Figure 5.11
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5.3 Comparison between FEM model results and
Experimental data

As stated by Cowin (1993), there is significant lack of quantitative data
on the relationship between the strain history a bone tissue experiences and the
resulting bone tissue modeling. The strain history data should extend over a
time period on the order of a year since the time required to complete a major
bone modeling may be this long or longer. Even for some famous experiments
done by Lanyon et al.(1982), the extent of the data base is not sufficient to
select among the various proposed modeling rate equations and bone stimuli.
Most modeling experiments are qualitative rather than quantitative. These
qualitative studies do not give much help to quantitatively oriented modeling
theories.

Due to limits of quantitative experimental data available, the comparison
between FEM model results and the experiments in this section is only
qualitative rather than quantitative and the comparison is also relatively loose.

A study was conducted by Hoshaw (1992) to investigate the hypothesis
that mechanical loading of implants and the consequent stress and strain fields
influence bone modeling and remodeling at the bone-implant interface. Two
implants were placed in each of 20 canine tibiae, allowed to heal for one year,
and then subjected to a controlled loading protocol. Implants in the left limb
were loaded in axial tension and implants in the right limb served as unloaded
control (Figure 5.13)

C Pl iﬁ[ ]

Figure 5.13 Schematic diagram of two implants placed in the bone

A single implant FEM model is shown in Figure 5.14. The fixed end
boundary condition was adopted to account for “missing bone” and a couple
was introduced which equaled the applied bending moment.
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Figure 5.14 Schematic diagram of single implant finite element model.

Figure 5.15 shows scanning electron micrographs of the bone-implant
interface and the schematic diagram of bone-implant interface indicating regions
of interest for modeling measurements

The bone modeling pattern shown in Figure 5.15 is qualitatively similar
to the FEM model results in Figure 5.10 and Figure 5.12. Figure 5.15 shows
the bone resorbed around the implant neck while the new bone was added to
the endosteal surface around the bottom of the implant. Assuming the boundary
condition of the beam end at which the implant is located were fixed, it is equal
to the case that the load would be applied at the other end which would become
the free end and the load would reverse in direction. This loading pattern is
similar to those shown in Figure 5.9 and Figure 5.11 and the modeling pattern
in Figure 5.15 is therefore similar to the cases shown in Figure 5.10 and 5.12.
This similarity proves that qualitatively the modified modeling theory can more
or less be used to explain the experimental results although the much work
should be done to exactly match the bone geometry and loading environment.

5.4 Summary

In this chapter, the FEM model was developed to validate the modified
modeling theory. Several examples are studied to show the capabilities of new
theory when different loading conditions are considered while under those
loading environment, the Cowin’s modeling theory failed to explain the bone
modeling patterns of those examples.
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Figure 5.15 Schematic diagram of bone implant interface indicating regions
of interest for modeling measurements. P+ means periosteal bone increase
and P- indicates that periosteal bone resorption. E means endocortical sur-
faces (Hoshaw, 1992)
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The FEM model results are also compared with the experiment results.
The similarities between those results indicates that the new modeling theory
can qualitatively be used to explain certain modeling phenomenon.



Chapter 6

Discussion and Conclusion

The investigation of bone as a material that can adapt its architecture as
a consequence of its functional requirement was initiated over a century ago.
And yet, the solutions to practical clinical problems in orthopedics and
orthodontics still await an understanding of the functional adaptation of bone.

Progress toward the solution of these clinical problems will come from
the development of theoretical models which fall in two categories: biological
and mathematical. Traditionally two kinds of theory are developed separately.
Biological ones focus on explaining the bone adaptive behavior qualitatively
while the mathematical models try to provide the quantitative solution to those
clinical problems with little consideration of the biologic basis.

The mathematical models can be also divided into remodeling theories,
which describe the internal modeling of bone, and modeling theories which are
used to explain the external modeling of bone. The research described in the
previous five chapters put emphasis on the mathematical model and modeling
theory specifically but integration of the biological basis with the theory is also
considered.

The reason why only modeling theory is studied is that the remodeling
theory which focuses on the cancellous bone is much more complicated due to
the lack of understanding of adaptive behavior of cancellous bone and
associated nonlinear elasticity. Up to now, there has been little success with the
internal remodeling models.

In this work a new modified modeling model is developed. The new
theory is based on Cowin’s modeling theory and adopts the strain tensor as a
mechanical sensor which is demonstrated to be a rational choice. By association
of the new model with various numerical techniques, several computer
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simulation models are presented to validate the new model and simulate some
interesting idealized clinical problems.

The difference between the new theory and Cowin’s one is that the new
theory introduces weighting factors to reflect the different effects of different
strain components on adaptation while Cowin’s theory intrinsically assumes that
tensile strains and compressive strains play the same role in bone modeling and
does not have experimental support.

The new theory has its advantages and drawbacks. Since weighting
factors are introduced to the model, the unknowns have increased due to the
lack of data from the experiments. But as long as the manner in which the
internal transducer signal affects cellular activity and recruitment is identified,
the values of weighting factors will become available. At this stage, the new
theory can be in a relatively simple form which requires only one or two weight
factors to be assumed because of very regular nature of loading pattern on long
bones.

The new model presented is shown to have some advantages including:

overcomes the flaw in the existing modeling theories

has flexibility over existing theories

reflects biological factors in the model which are not
considered by the existing theory

The new model is very capable of handling bone modeling with different
bone geometries and complicated loading environment. All examples presented
in Chapter 4 and Chapter 5 show an excellent agreement to the analytical
solutions or qualitatively to the experimental facts. The results obtained in those
examples are very close to real bone modeling situation and provide very
promising information on the method to simulate the bone modeling in the real
clinical practice. Most of examples can not be solved by Cowin’s or other
existing theories.

The difficulty with the current study is that there are no enough
quantitative animal studies which can be used to determine the bone strain
history. In many animal model studies a statement like “the animals were placed
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on a treadmill for one hour each day for six months” is the extent of the
documentation of the bone tissue history (Cowin, 1993). The need of
quantitative experimental data is crucial to the development of new modeling
theories which also requires the thorough understanding the mechanism of bone
modeling signal transducer. These are proved to be roadblocks to the current
study.

The stability of numerical methods adopted over the iterative modeling
process is another crucial fact to apply the modeling theory to the real clinical
problems. In the current study, only one dimensional modeling (the modeling
only happens on the surfaces parallel to axis of long bone) are modeled. When
two dimensional modeling (modeling occurs on all surfaces as shown in Figure
6.1) are considered, the FEM can not guarantee the convergence of the time

stepping.

Figure 6.1 Double modelings (in slot area, three surfaces) example.
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The quantitative animal modeling studies such as implants put in the dog
leg and stability of FEM on double modeling problems are the further work to
be done.
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