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Abstract

We give an explicit criterion for when a toric GIT quotient is a stacky vector bundle

over a projective base. That is given a charge matrix satisfying a certain property, we

construct a projective base such that the semi-stable locus of the original GIT quotient

is a G-equivariant vector bundle over the semi-stable locus of this base. We also relax

this criterion to classify toric GIT quotients which differ from a stacky vector bundle

by a finite map. As an application, we recover the Herbst Criterion established by

Guffin and Clarke. In addition, we prove that when the G-action is quasisymmetic,

there is a finite toric morphism from a product of projective spaces to the base.
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1 Introduction

Toric Geometry is a branch of Algebraic Geometry where roughly we assume the varieties

contain a torus. This simple assumption has wonderful implications, most importantly that

the variety itself is encoded in a combinatorial object called a fan. The setting for this thesis

will be Toric Geometry. An introduction to the subject will be given in Section 2.

The varieties we study will be those obtained as Geometric Invariant Theory (GIT) quotients.

Geometric Invariant Theory is a tool used to create and study quotients of algebraic varieties

by certain groups. A problem is that this quotient might not be well-defined or well-behaved

as a variety. Geometric Invariant Theory corrects this by taking the quotient on certain

maximal open subsets. Through this process we end up with several different quotients

which, in the toric setting, depend on a choice of character of the group [CLS11, Section 14;

Dol03, Introduction]. This variation can be described by what is called the secondary fan,

originally described in [GKZ94]. We treat the secondary fan in Section 3.

One of the motivations for our study comes from considerations in string theory. Namely,

in physics there is a well-known duality called the Landau-Ginzburg/Calabi-Yau correspon-

dence (See e.g. [FJR15]). In the process of generalising this correspondence to toric varieties,

Edward Witten invented the Gauged Linear Sigma Model (GLSM). A full mathematical de-

scription of GLSMs was also described in [FJR15].

[FJR15, Section 7] gives a number of examples of their mathematical GLSM, one being

what they call the hybrid model. The hybrid model consists of a toric GIT quotient and

a so-called R-charge with special properties. In this document, we will consider only the

GIT quotient and the properties it needs to be a hybrid model. In Section 4, we discuss the

toric construction of a vector bundle, a generalisation called a stacky vector bundle, and a

relaxation of the stacky vector bundle description to what we call an almost stacky vector

bundle. As a simplification of [FJR15, Definition 7.1.1], we will say a toric GIT quotient is

a hybrid model if it is a stacky vector bundle over a projective base. The goal of this paper

is to investigate when a given GIT quotient is a hybrid model.

In Section 5.1, we determine a criterion for when a GIT quotient is a hybrid model. As

described in Section 3, a toric GIT quotient can be described completely by a closed subgroup

G ⊆ (C∗)n and a choice of character χ ∈ Ĝ. Equivalent to a choice of a group G is a choice
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of a matrix Q : Zn → Ĝ, called the charge matrix. Given the matrix Q, we describe a set

called β whose elements are βi = QR(ei). Similarly we define βZ
i = Q(ei). These sets will be

needed to define our condition. In Section 3.2, we describe a combinatorial object called a

secondary fan, composed of “chambers” which lie in ĜR. We use the notation ΓΣ,I∅ to denote

a chamber of the secondary fan. The choice of a chamber ΓΣ,I∅ is equivalent to a choice of

a character χ ∈ Ĝ. Then in Theorem 5.11 and Corollary 5.12 we show that the choice of

Q and ΓΣ,I∅ gives a hybrid model of rank r if and only if the following conditions on β and

ΓΣ,I∅ are satisfied.

1. There exists βΓ ⊆ (β ∩−ΓΣ,I∅) and aji ∈ Z such that |βΓ| = r and for each βi ∈ βΓ we

have −βZ
i =

∑
βj 6∈βΓ

ajiβ
Z
j .

2. βi 6= 0 for each βi ∈ β0 := β \ βΓ

3. Cone(β0) = {
∑
ciβi | βi ∈ β0 and ci ≥ 0} is strongly convex.

Furthermore if we reduce part 1 of the condition to be “there exists ∅ 6= βΓ ⊆ (β ∩−ΓΣ,I∅)”,

we show in Theorem 5.15, that the GIT quotient is an almost stacky vector bundle. Then

parts 2 and 3 are equivalent to the almost stacky vector bundle being over a projective base.

In Section 5.2, we compare our results to two other conditions from the literature. We

determine that the Herbst condition from [CG15] is a special case of being an almost stacky

vector bundle. We also show that in the hybrid model case, if the G-action G × Cn → Cn,

given by group multiplication, is quasisymmetric in the sense of [ŠV15], there is a finite toric

morphism from a product of projective spaces to the base.

2 Toric Geometry

We will assume a basic knowledge of algebraic geometry, such as that can be found in

Chapters I and II of [Har77].

2.1 The Algebraic Torus

Toric Geometry is the study of special types of algebraic varieties called toric varieties. The

“toric” in toric variety refers to what is called the algebraic torus.
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Definition 2.1. (C∗)n, with the structure of an algebraic variety and a multiplicative group,

is called the algebraic torus. We similarly call any algebraic varieties isomorphic to (C∗)n

a torus, as it is endowed with a group structure through the isomorphism [CLS11, Page 10].

Every torus comes equipped with a group action (C∗)n × (C∗)n → (C∗)n given by group

multiplication.

Definition 2.2. We call an algebraic variety X a toric variety if it satisfies the following

three conditions.

1. X is irreducible

2. X contains a torus as a Zariski open subset

3. The natural action of the torus on itself extends to an algebraic group action (C∗)n ×
X → X.

[CLS11, Definition 3.1.1]

Notation 2.3. We will use the standard notation OX to denote the structure sheaf of X.

Notation 2.4. We will use the standard notation C(X)C(X)C(X) to denote the field of rational func-

tions on X.

2.2 Cones and Fans

Every sufficiently “nice” toric variety can be expressed using a combinatorial object called

a fan. In this section we will provide the necessary information to define a fan, as well as

some facts and definitions related to fans.

Definition 2.5. A lattice is any group isomorphic to Zn for some n ∈ Z. [CLS11, Page

13]

It is often useful to consider a lattice as a subset of a vector space.

Notation 2.6. Let L be a lattice. Then LRLRLR := L⊗Z R is a vector space containing L. Note

that for L isomorphic to Zn, LR is isomorphic to Rn and L is a subgroup of LR via the

inclusion l 7→ l ⊗ 1. This construction also works for arbitrary Z-modules L, but if L is not

a lattice then L is not a subgroup of LR.

3



Following [CLS11], unless otherwise stated we will be working in the lattice N , with dual

lattice M . Since N and M are assumed to be dual lattices there is a natural inner product

〈M,N〉.

The basic building blocks of fans are called cones, which are positive linear spans of vectors.

Definition 2.7. Let {v1, ..., vn} be a set of points in a vector space V . Then Cone (v1, ..., vn) =

{x ∈ V | x =
∑
aivi for some ai ≥ 0} . [CLS11, Definition 1.2.1]

In particular, we will study the following class of cones.

Definition 2.8. A rational convex polyhedral cone in NR (referred to as a cone for

the rest of this document) is any set of the form Cone(S) for some finite set S ⊆ N . [CLS11,

Definitions 1.2.1, 1.2.4]

Definition 2.9. The dimension of a cone is the dimension of the vector space it spans.

[CLS11, Page 24]

Definition 2.10. The relative interior of a cone σ, is the interior of σ ∩ V where V =

span(σ). This is denoted Relint (σ). [CLS11, Page 27]

For each m ∈MR we can define the following hyperplanes. [CLS11, Page 25]

Notation 2.11.

Hm = {u ∈ NR | 〈u,m〉 = 0}

H+
m = {u ∈ NR | 〈u,m〉 ≥ 0}

Roughly speaking a face of a cone is a smaller dimensional subcone. More formally we can

define a face as followed.

Definition 2.12. Let σ be a cone of dimension n in NR.

• A face of σ is a cone of the form τ = σ ∩Hm for any m ∈MR.

• A facet of σ is a face of dimension n− 1.

• An edge of σ is a face of dimension 1.

[CLS11, 25]

The following proposition highlights the use of the term facet.
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Proposition 2.13. Every cone σ can be written as H+
m1
∩ ... ∩H+

mn, where σ ∩Hmi are the

facets of σ. [CLS11, Proposition 1.2.8]

An important class of cones is those which are strongly convex. To define the four equivalent

definitions of strong convexity, we first introduce the notion of a dual cone.

Definition 2.14. Let σ be a cone in NR. Then the dual cone of σ is a cone in MR given

by σ∨ = {m ∈MR | 〈m,u〉 ≥ 0 for all u ∈ σ}. [CLS11, Definition 1.2.3]

Definition 2.15. A cone in NR ∼= Rn is called strongly convex if it satisfies one of the

following four equivalent conditions.

1. {0} is a face of σ.

2. σ contains no positive-dimensional subspace of NR.

3. σ ∩ −σ = 0.

4. dimσ∨ = n.

[CLS11, Proposition 1.2.12]

As mentioned at the beginning of this section, every sufficiently “nice” toric variety can be

expressed via a combinatorial object called a fan. Thus the following definition is central to

the study of Toric Geometry.

Definition 2.16. A fan Σ in NR is a finite set of cones in NR satisfying the following

conditions.

1. Each σ ∈ Σ is strongly convex.

2. If σ ∈ Σ, then τ ∈ Σ for every τ that is a face of σ.

3. If σ1, σ2 ∈ Σ, then σ1 ∩ σ2 is in Σ and a face of both σ1 and σ2.

Σ is called a generalized fan if we drop the assumption that the cones are strongly convex.

[CLS11, Definition 3.1.2, Definition 6.2.2]

The following theorem due to Sumihiro provides the correspondence between toric varieties

and fans, making it the fundamental theorem in Toric Geometry.

5



Theorem 2.17. Let Σ be a fan, then there exists a normal, separated toric variety XΣ con-

structed from Σ, as below. Similarly every normal, separated toric variety can be constructed

this way. [Sum74; Sum75; CLS11, Page 107-109]

Construction of XΣ

Since XΣ is a variety, it is locally affine. Therefore to construct XΣ, it is sufficient to provide

the affine cover and associated gluing data. To build the cover, we need the concept of an

affine semigroup.

Definition 2.18. An affine semigroup is a set S with an associative, commutative, binary

operation +, and an identity element 0. Unlike in groups, we do not assume elements in

affine semigroups have inverses. S is called finitely generated if every s ∈ S can be written

as
∑n

i=1 aisi for some finite set {s1, ..., sn} ⊆ S and ai ∈ N. [CLS11, Page 16]

Definition 2.19. Let S be an affine semigroup. Then we define the semigroup algebra

of S as followed. Let C[S]C[S]C[S] be the C-vector space with basis elements {xs | s ∈ S}. We define

multiplication in this ring by saying xs1xs2 = xs1+s2. Therefore for S finitely generated, the

ring C[S] is generated by {xs | s is a generator of S}. [CLS11, Page 16-17]

We use semigroup algebras to define the affine cover for XΣ. For each σ ∈ Σ we define a

semigroup Sσ = σ∨ ∩M . Then Uσ = Spec(C[Sσ]) is an affine variety, and {Uσ | σ ∈ Σ}
provides the affine cover for XΣ.

One can show that if τ is a face σ1 ∩ σ2, then there exists m ∈ (σ∨1 ∩ (−σ2)∨ ∩M) such

that C[Sτ ] is a localization given by C[Sτ ] = C[Sσ1 ]xm = C[Sσ2 ]x−m . Taking the spectrum of

these rings reverses the diagram and provides the gluing data for XΣ. For more details, see

[CLS11, Page 106].

Example 2.20. The fan Σ in Figure 1 gives the variety XΣ = P2. We will show this by

calculating Uσ for each σ ∈ Σmax and showing that this provides the standard affine open

cover Ui = {[x0 : x1 : x2] ∈ P2 | xi 6= 0} = Spec(C[
xj
xi
| j ∈ {0, 1, 2} \ i]).
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Figure 1: The Fan for P2.

In order to calculated Uσi , we must calculate the dual cones. Recall for any cone σ ∈ NR,

we have σ∨ = {u ∈MR | 〈u, s〉 ≥ 0 for all s ∈ σ}. Therefore as in Figure 2 we have

• σ∨0 = Cone([1, 0], [0, 1])

• σ∨1 = Cone([−1, 0], [−1, 1])

• σ∨2 = Cone([0,−1], [1,−1]).

Figure 2: Dual Cones for the Fan of P2

(a) σ∨
0 (b) σ∨

1 (c) σ∨
2

If [a, b] is a semigroup generator of Sσ, we will denote the associated semigroup algebra

generator by xayb. Therefore

• C[Sσ0 ] = C[x, y]
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• C[Sσ1 ] = C[x−1, yx−1]

• C[Sσ2 ] = C[y−1, xy−1].

To show that this affine cover corresponds to the standard affine cover for P2, we will use

the change of basis x→ x1

x0
, y → x2

x0
.

Therefore

• C[Sσ0 ] = C[x1

x0
, x2

x0
]

• C[Sσ1 ] = C[x0

x1
, x2

x0

x0

x1
] = C[x0

x1
, x2

x1
]

• C[Sσ2 ] = C[x0

x2
, x1

x0

x0

x2
] = C[x0

x2
, x1

x2
]

Therefore Spec(C[Sσi ]) = Ui = {[x0 : x1 : x2] ∈ P2 | xi 6= 0}, the standard affine cover for

P2.

Standing Assumption 2.21. For the rest of this document we will assume that every toric

variety is normal and separated, and thus has the form XΣ.

The remainder of this section will be dedicated to providing additional facts and definitions

about fans that will be used later in the thesis.

It is often not necessary to consider every cone in a fan.

Notation 2.22. Let Σ be a generalized fan. Then Σmax is the set of cones in Σ that aren’t

proper subsets of another cone in Σ. [CLS11, Page 180].

Just as we can completely describe a toric variety from just its fan, we can completely

describe the structure of a fan with known rays, using only what is called its irrelevant ideal.

Definition 2.23. Let Σ be a fan. Then the irrelevant ideal of Σ, denoted B(Σ), is given

by B(Σ) = 〈
∏

ρ6∈σ(1) xρ | σ ∈ Σmax〉 ⊆ C[xρ | ρ ∈ Σ(1)]. [CLS11, Page 207]

Example 2.24. As in Example 2.20, the fan for P2 has three maximal cones, each generated

by two of the three rays. Therefore for XΣ = P2, B(Σ) = 〈x1, x2, x3〉 ⊆ C[x1, x2, x3].

Often when studying fans, it is useful to veiw them as a subset of NR as opposed to just a

collection of cones. This yeilds the following definition.
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Definition 2.25. If Σ is a fan, then the support of Σ, denoted |Σ| is the union of all of

its cones. [CLS11, Page 106]

Definition 2.26. A support function is a map φ : |Σ| → R such that φ is linear on

each cone σ ∈ Σ. φ is called integral with respect to the lattice N if φ(|Σ| ∩ N) ⊆ Z.

[CLS11, Definition 4.2.11]

Notation 2.27. If Σ is a fan, then the set of r dimensional cones of Σ is denoted by Σ(r).

[CLS11, Page 106]

One of the reasons strongly convex cones are useful, is that they can be described completely

in terms of their edges.

Definition 2.28. Let σ be a strongly convex cone, then we call the edges of σ rays. For

each ray ρ, there is a unique semigroup generator of ρ∩N which we refer to as uρ. Similarly

for a fan Σ we call the set Σ(1) the rays of Σ. [CLS11, Page 29]

Proposition 2.29. A strongly convex cone can be written as Cone(uρ | ρ is a ray of σ).

[CLS11, Lemma 1.2.15]

We conclude the section with five definitions needed for propositions later in the document.

Definition 2.30. A toric variety XΣ is called quasiprojective if it is isomorphic to an

open subset of a projective variety. It is called semiprojective if it is quasiprojective such

that |Σ| is convex and full dimensional in NR. [CLS11, Definition 7.0.1, Proposition 7.2.9]

Definition 2.31. A cone is called simplicial if it has a set of minimal generators that are

linearly independent over R. [CLS11, Definition 1.2.16]

Definition 2.32. A fan Σ is called simplicial if all of its cones are simplicial. Similarly XΣ

is called simplicial if Σ is simplicial. [CLS11, Definition 3.1.8] Note: There is another con-

dition on varieties called being QQQ-factorial that is equivalent to being simplicial on normal

toric varieties. [CLS11, Page 549] We use this condition in Proposition 5.18.

2.3 Divisors

The divisors of a toric variety have some nice properties that are used in the definition of a

toric vector bundle. In this section we will review the definition of different types of divisors

and discuss their special properties in the toric case.
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Definition 2.33. Let X be an irreducible algebraic variety. A prime divisor of X is

subvariety of codimension 1. [Har77, Page 130; CLS11, Page 157]

Definition 2.34. Div (X) is the free abelian group generated by the prime divisors of X.

We call the elements of Div(X) Weil divisors. [Har77, Page 130; CLS11, Definition 4.0.8]

Notation 2.35. Let X be a variety and D a prime divisor.

Then OX,D = {f ∈ C(X) | U ∩D 6= ∅, where U is the open set on which f is defined.} [Har77,

Page 130; CLS11, Definition 4.0.5]

Proposition 2.36. Let X be a normal variety. Then for every prime divisor D, the

ring OX,D is a discrete valuation ring. This gives a corresponding discrete valuation νD :

C(X)∗ → Z. [Har77, Page 130; CLS11, Page 156]

Definition 2.37. Let f ∈ C(X)∗. Then the divisor of f is defined as

div (f) =
∑

D a prime divisor of X νD(f) ∈ Div(X). We call any divisor of this form a princi-

pal divisor and denote the subgroup of principal divisors by Div0(X). [Har77, Page 131;

CLS11, Definition 4.0.10]

Definition 2.38. A Cartier divisor is a Weil Divisor that is locally principal. That is

there exists an open cover Ui of X on which D|Ui is a principal divisor. The group of Cartier

divisors is denoted CDiv(X). [Har77, Page 141; CLS11, Definition 4.0.12]

Definition 2.39. The class group of X is defined as Cl (X) = Div(X)/Div0(X) and

the Picard group is defined as Pic (X) = CDiv(X)/Div0(X). [Har77, Page 131; CLS11,

Definition 4.0.13] (See also [Har77, Page 143] for an equivalent definition of Pic(X).)

Proposition 2.40. For each D ∈ Div(X), there is a coherent sheaf of OX modules OX(D) :=

{f ∈ C∗(X) | (div(f) +D)|U ≥ 0} ∪ {0}. [Har77, Page 144; CLS11, Page 167]

Definition 2.41. Let ρ be a ray of Σ. Then as described in [CLS11, Section 4.1], there is a

divisor Dρ corresponding to ρ.

These divisors are called torus invariant. Let TN be the torus associated with the variety

XΣ. Recall that XΣ comes equipped with an action TN × XΣ → XΣ. Then Dρ is torus

invariant means that TN ·Dρ = Dρ.

Proposition 2.42. Any torus invariant divisor of XΣ can be written as
∑

ρ∈Σ(1) aρDρ.

[CLS11, Page 172]
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Proposition 2.43. A divisor D =
∑

ρ∈Σ(1) aρDρ is Cartier if and only if for each σ ∈ Σ

there exists mσ ∈M such that 〈mσ, uρ〉 = −aρ for all ρ ∈ σ(1). [CLS11, Proposition 4.2.8]

Proposition 2.44. Let D =
∑

ρ∈Σ(1) aρDρ be a Cartier divisor with mσ as in Proposi-

tion 2.43. Then there is an integral support function φD : |Σ| → R given by φD(u) = 〈mσ, u〉
for all u ∈ σ. Furthermore φD(uρ) = −aρ for all ρ ∈ Σ(1). [CLS11, Theorem 4.2.12]

Definition 2.45. Let S be a convex set and f : S → R. Then f is called convex if and

only if f(tu+(1− tv)) ≥ tf(u)+(1− t)f(v) for all u, v ∈ S and t ∈ [0, 1]. [CLS11, Defintion

6.1.4]

[CLS11, Section 6.3] defines a special property of a Cartier divisor called being a nef divisor.

For the sake of this document we will use the following equivalent definition which holds for

fans of convex support. [CLS11, Lemma 9.2.1]

Definition 2.46. Let XΣ be a toric variety such that |Σ| is convex. A Cartier divisor D

is nef if and only if the support function φD : |Σ| → R is convex. (See [CLS11, Definition

6.3.10] for an equivalent definition and [Zar62, Definition 7.6] for the original reference.)

Definition 2.47. Two Cartier divisors C and D are called numerically equivalent if

C − D is a nef divisor. [CLS11, Definition 6.3.16] (See [Har77, 364] for an equivalent

definition.)

Notation 2.48. N1(X) is defined as (CDiv / ≡)⊗ZR where C ≡ D if they are numerically

equivalent. Note that if Σ has full dimensional convex support, we have N1(XΣ) = Pic(XΣ)R.

[CLS11, Definition 6.3.17, Page 294]

Definition 2.49. We define Nef (X) to be the cone generated by nef divisors of X in

N1(X). This is called the nef cone. [CLS11, Defintion 6.3.18]

Definition 2.50. Let XΣ be a simplicial, semiprojective toric variety. Then Eff (XΣ) =

Cone(Dρ | ρ ∈ Σ(1)) is called the pseudoeffective cone and Nef(XΣ) ⊆ Eff(XΣ) ⊆ N1(XΣ).

[CLS11, Lemma 15.1.8]

3 Toric Geometric Invariant Theory

The main setting for this thesis is the world of toric GIT. We will consider different quotients

of an algebraic torus by its closed subgroups.
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3.1 Setup

As described in Chapter 14 of [CLS11], we can create toric varieties using something called

Geometric Invariant Theory. Consider a closed subgroup G ⊆ (C∗)n. Let Ĝ = Hom(G,C),

the set of algebraic group homomorphisms. Then Ĝ is called the group of characters

of G, and χ ∈ Ĝ is called a character. Through the process described in Chapter 14.1 of

[CLS11], for every character χ ∈ Ĝ, we get a toric variety Cn //χ GCn //χ GCn //χ G, and by Corollary 14.2.16

of [CLS11], Cn //χG is a semiprojective toric variety. This variety is called a GIT (geometric

invariant theory) quotient.

As described in [CLS11, Page 686], from our choice of G, we can construct an exact sequence.

Consider the inclusion

G ↪→ (C∗)n.

For any torus (C∗)n, the dual space Hom((C∗)n,C) is Zn. This gives us a dual map

Zn → Ĝ.

By Lemma 14.2.1 in [CLS11], this map is surjective. Therefore we get an exact sequence

0→M → Zn → Ĝ→ 0

where M is defined as the kernel of the map Zn → Ĝ. Note that M is also a lattice. Indeed

any subgroup of Zn is a lattice as any element in the subgroup with torsion would also have

torsion in Zn.

Lemma 3.1. Inclusions G ↪→ (C∗)n are in bijection with surjective matrix maps Q : Zn →
Ĝ.

Proof. First assume we have an inclusion G ↪→ (C∗)n. Then as described above, we get an

exact sequence of algebraic groups

0→M → Zn → Ĝ→ 0

Any group homomorphism Zn → Ĝ is a matrix map. Therefore we have a surjective matrix

map Q : Zn → Ĝ.

12



Similarly, assume we start with such a map Q. By including the kernel, we get an exact

sequence

0→M → Zn Q−→ Ĝ→ 0

Since the Hom functor is right to left exact, dualizing gives the exact sequence

0→ G ↪→ (C∗)n → M̂

which gives us the necessary inclusion.

Since the map M → Zn is also a group homomorphism it can also be described with a

matrix map. We will use the convention in [CG15] and refer to the maps as Q and A as

in the following exact sequence. In some contexts, such as [CG15], Q is referred to as the

charge matrix.

0 M Zn Ĝ 0A Q

We will also use the convention in [CLS11] for referring the image of Zn under Q and A∨.

Let e1, ..., en be the generators of Zn, then we will use the notation νi = A∨(ei) = A∨R(νi),

βi = QR(ei), and βZ
i = Q(ei). We will let ν be the set {ν1, ..., νn}, β = {β1, ..., βn}, and

βZ = (βZ
1 , ..., β

Z
n).

Each βZ
i lies in Ĝ and βi lies in ĜR. We will also define Cβ to be the cone generated by β

in ĜR. Similarly each νi lies in the dual lattice of M , which we will call N . Then Cν is the

cone generated by ν in NR.

Often we will need to consider special subsets of β.

Definition 3.2. A β-basis is any subset βJ of β such that Cone(βi | βi ∈ βJ) is simplicial

and has full dimension in ĜR. [CLS11, 734]

Definition 3.3. A βk-basis is a subset βJ of β such that Cone(βi | βi ∈ βJ) is simplicial

and has dimension k in ĜR.

3.2 The Secondary Fan

Associated with every GIT quotient is a fan called the GKZ (Gel’fand, Kapranov, Zelevin-

sky) decomposition, or the secondary fan. The secondary fan is a fan ΣGKZ in ĜR with
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support |ΣGKZ | = Cβ. [CLS11, Theorem 14.4.7] For a detailed description of the construc-

tion of this fan see Chapter 14.4 of [CLS11].

By construction in [CLS11], every cone in the secondary fan of Cn //χ G comes from a

generalized fan Σ and a set I∅ ⊆ {1, ..., n} that satisfy the following conditions:

• |Σ| = Cν

• XΣ is semiprojective

• σ = Cone(νi | νi ∈ σ, i 6∈ I0) for every σ ∈ Σ.

[CLS11, Proposition 14.4.1]

Therefore cones will be written as ΓΣ,I∅ , following the convention in [CLS11].

Definition 3.4. The maximal dimension cones of the secondary fan are called chambers.

[CLS11, Page 718]

Proposition 3.5. A cone ΓΣ,I∅ of the secondary fan is a chamber if and only if Σ is a

simplicial fan and there is a bijection {1, ..., n} \ I∅ → Σ(1) given by i 7→ Cone(νi). [CLS11,

Proposition 14.4.9]

Note that Σ must be a fan, not just a generalized fan, for ΓΣ,I∅ to be a chamber as simplicial

cones are always strongly convex.

As described in [CLS11], β-bases, have some nice properties with regards to the secondary

fan.

Proposition 3.6. Let ΓΣ,I∅ be a chamber of the secondary fan and βJ any β-basis. Then

either Cone(βJ) contains the chamber, or the interior of ΓΣ,I∅ and Cone(βJ) are disjoint.

[CLS11, Page 735]

[CLS11, 735] also describes a more explicit way to consider the secondary fan.

Proposition 3.7. Let ΓΣ,I∅ be a chamber of the secondary fan. Then:

(a) If σ ∈ Σmax then Jσ = {i | νi 6∈ σ or i ∈ I∅} is a β-basis.

(b) if J is a β-basis, then ΓΣ,I∅ ⊆ Cone(βJ) if and only if J = Jσ for some σ in Σmax.
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(c) ΓΣ,I∅ =
⋂
σ∈Σmax

Cone(βJσ)

[CLS11, Proposition 15.2.1]

Corollary 3.8. The chambers of the secondary fan are exactly the maximal full dimensional

intersections of cones over β-bases. That is ΓΣ,I∅ =
⋂
A Cone(βJ) for some set A of β-bases

such that
⋂
A∪a Cone(βJ) is not full dimensional for any a 6∈ A.

Proof. First let ΓΣ,I∅ be a chamber of the secondary fan. Then by part (c) in Proposition 3.7,

we have that ΓΣ,I∅ =
⋂
σ∈Σmax

Cone(βJσ). Therefore ΓΣ,I∅ is an intersection of cones over

β-bases, and for this direction we need only show that this intersection is maximal.

Let βJ be another β-basis that is not βJσ for some σ ∈ Σmax. Then by Proposition 3.6,

Cone(βJ) either contains ΓΣ,I∅ , or is disjoint with its interior.

If Cone(βJ) contains ΓΣ,I∅ , then by part (b) of Proposition 3.7, J = Jσ for some σ ∈
Σmax, a contradiction. Alternatively if Cone(βJ) is disjoint with the interior of ΓΣ,I∅ , then

Cone(βJ) ∩ ΓΣ,I∅ is a subset of ∂ΓΣ,I∅ and not full dimensional.

Therefore indeed ΓΣ,I∅ =
⋂
σ∈Σmax

Cone(βJσ) is a maximal full dimensional intersection of

cones over β-bases.

Conversely, let Γ be maximal full dimensional intersection of cones over β-bases, Γ =⋂
Cone(βJi). We want to show that Γ is a chamber of the secondary fan.

Since |ΣGKZ | = Cβ, and Γ ⊆ Cβ, Γ must have a maximal dimension intersection with

one of the chambers of the secondary fan ΓΣ,I∅ . Since Γ =
⋂

Cone(βJi), Cone(βJi) ∩ ΓΣ,I∅

have maximal dimension for each i. Therefore Cone(βJi) intersects the interior of ΓΣ,I∅ , so

Cone(βJi) ⊇ ΓΣ,I∅ for each i. Therefore Γ ⊇ ΓΣ,I∅ .

In fact, Γ = ΓΣ,I∅ . Assume for the sake of contradiction that this is not the case. Then

Γ ⊃ ΓΣ,I∅ . Then Γ ∩ ΓΣ,I∅ = ΓΣ,I∅ is a maximal, full dimensional intersection of cones of β

bases, that is strictly smaller than Γ, a contradiction.

Therefore Γ = ΓΣ,I∅ is a chamber of the secondary fan.
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The preceding corollary shows that the secondary fan depends only on the β’s or equivalently

the matrix Q, and not on the particular GIT quotient we chose. In fact the secondary fan

notifies variations in the GIT quotient as we vary the character χ.

The choice of a GIT quotient depends on a character χ ∈ Ĝ. By Proposition 14.3.5 of

[CLS11], the GIT quotient for χ is distinct from the empty set if and only if χ⊗ 1 is in Cβ.

For simplicity of notation we will use χ to denote both χ ∈ Ĝ and χ ⊗ 1 ∈ ĜR. Then by

[CLS11, 14.4.7], for any cone ΓΣ,I∅ in the secondary fan, if χ ∈ Relint(ΓΣ,I∅), then Cn //χ G

is isomorphic to XΣ. Therefore

Proposition 3.9. Any non trivial GIT quotient can be determined by Cn //χ G = XΣ for

χ ∈ Relint(ΓΣ,I∅). Therefore the GIT quotient changes as we move between cones of the

secondary fan, and is constant within the relative interior of a cone.

We can also describe the GIT quotient using what is called the irrelevant ideal. There

are a variety of ways to describe the irrelevant ideal, and we will use the one given in

[CLS11, Proposition 14.4.14].

Definition 3.10. For any character χ ∈ Relint(ΓΣ,I∅), the irrelevant ideal can be defined

as B(χ) = 〈
∏

νi 6∈σ or i∈I∅ xi | σ ∈ Σmax〉 ⊆ C[xi | νi ∈ ν].

Note the similarity to the irrelevant ideal defined in Definition 2.23. Indeed for any χ ∈
Relint(ΓΣ,I∅), we have B(χ) = B(Σ)× I∅.

Definition 3.11. For any character χ ∈ Relint(ΓΣ,I∅) we define the vanishing locus to

be V (χ) = {x ∈ Cn | f(x) = 0 for all f ∈ B(χ)} and the semi-stable locus to be U(χ) =

Cn \ V (χ). [CLS11, Page 679, Page 698]

The semi-stable locus defined above is useful as it can be used to demonstrate the quotient

nature of GIT quotients.

Proposition 3.12. The inclusion G ↪→ (C∗)n induces a group action G× Cn → Cn, where

the action is given by group multiplication in Cn. For each character χ ∈ Relint(ΓΣ,I∅), there

is an isomorphism Cn //χ G
∼= U(χ) // G, where the group action is as described above and

the quotient is as described in [CLS11, Chapter 5] . [CLS11, Corollary 14.2.22]

Lemma 3.13. For any chamber ΓΣ,I∅ of the secondary fan, the rays of Σ are exactly the set

{Cone(νi) | νi ∈ ν \ I∅}.
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Note: While the νi generate the rays, they may not be minimal ray generators.

Proof. By [CLS11, Proposition 14.4.9], there is a bijection ν \ I∅ → Σ(1); therefore the two

sets have the same cardinality

As described in [CLS11, Proposition 14.4.1], the cones of Σ are generated by {νi | νi ∈ σ, i 6∈ I∅}.
Therefore Σ(1) ⊆ {Cone(νi) | νi ∈ ν \ I∅}.

Then by the bijection, we know that every generator is needed, so Σ(1) = {Cone(νi) | νi ∈ ν \ I∅}.

Proposition 3.14. The GIT quotients coming from Q are projective if and only if each βi

is nonzero and Cone(β) is strongly convex. [CLS11, Proposition 14.3.10]

In the best cases, the set ν corresponds to the rays of Σ, for a chamber ΓΣ,I∅ . By Lemma 3.13,

this happens exactly when I∅ = ∅. The following definition and proposition make this more

precise.

Definition 3.15. The set ν is called geometric if νi 6= 0 for each νi ∈ ν and the νi generate

distinct rays in NR. It is called primitive geometric if in addition each νi is primitive.

[CLS11, Page 729-730]

Proposition 3.16. The set ν is geometric if and only if there is a chamber ΓΣ,I∅ such that

I∅ = ∅. [CLS11, Proposition 15.1.6]

In this best case scenario, where ν corresponds directly to Σ(1), we can describe the nef and

pseudoeffective cones of XΣ using only the set β and the chamber ΓΣ,I∅ .

Proposition 3.17. If ΓΣ,I∅ is a chamber with I∅ = ∅ then there is an isomorphism N1(X)→
ĜR that takes Eff(XΣ)→ Cβ and Nef(XΣ)→ ΓΣ,I∅. This isomorphism takes Dρ → βi where

νi corresponds to the ray ρ as in Lemma 3.13. [CLS11, Theorem 15.1.10]

Example 3.18. P2 can be constructed as a GIT quotient C3 //χ C∗. In this example will

show this fact in different ways to demonstrate our theorems.

Consider the inclusion C∗ ↪→ (C∗)3 given by x→

 1

1

1

x.
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Dualizing this map yields Q =
[

1 1 1
]

: Z3 → Z and A =

 1 0

0 1

−1 −1

 : Z2 → Z3.

We can consider the secondary fan in two different ways. First by Proposition 3.5, we know

that every chamber ΓΣ,I∅ in the secondary fan comes from a simplicial fan Σ such that

|Σ| = Cone(ν) and Σ(1) = {Cone(νi) | νi ∈ ν \ I∅}. As in Example 2.20, the fan for P2 sat-

isfies these conditions. Removing any ray from this fan results in a fan with support strictly

less than Cone(ν); therefore, no other fan exists that satisfies these properties. Thus the

secondary fan must have only one chamber.

By Corollary 3.8, we can calculate the chambers of the secondary fan by taking maximal

intersections of β-bases. Since β1 = β2 = β3 are all the same, there is only one β-basis.

Therefore as shown in Figure 3, ΓΣ,I∅ = Cone(β1) = Cone(β2) = Cone(β3) is the only

chamber of the secondary fan.

Figure 3: The Secondary Fan for Q = [1, 1, 1]

Since the only chamber ΓΣ,I∅ has XΣ = P2, we know that for χ ∈ Relint(ΓΣ,I∅), C3//χC∗ = P2

by Proposition 3.9.

One of the standard descriptions of P2 is as a quotient (Cn \ 0) //C∗. Here the group action

is group multiplication, where C∗ is considered a subgroup of Cn by the inclusion described

at the beginning of this example. That is t · (x1, x2, x3) = (tx1, tx2, tx3).

We can use our theorems to recover this description of P2. By Proposition 3.12, we know

that C3 //χ C∗ = (C3 \ U(χ)) // C∗. As calculated in Example 2.24, we know that for

χ ∈ Relint(ΓΣ,I∅), B(Σ) = B(χ) = 〈x1, x2, x3〉 ⊆ C[x1, x2, x3]. Therefore U(χ) = 0. This

yields C3//χC∗ = Cn \ {0}//C∗, where the action is induced by the inclusion as required.
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4 Vector Bundles

Definition 4.1. In algebraic geometry a vector bundle of rank n is a morphism between

varieties π : V → B that satisfies the following conditions.

1. There is an open cover Ui of B such that π−1(Ui) ∼= Ui × Cn

2. Let πi : Ui × Cn → Ui be the projection onto Ui and φi : π−1(Ui) → Ui × Cn the

isomorphism. Then πi ◦ φi = π|π−1(Ui).

3. For each i, j there are transition functions φij = φi ◦φ−1
j : Ui∩Uj×Cn → Ui∩Uj×Cn.

These functions must be of the form 1×gij where gij is an invertible matrix with entries

in OB(Ui ∩ Uj). That is φij(x, v) = (x, gij(x)v).

[Har77, 128, Exercise 5.18; CLS11, Definition 6.0.14]

Definition 4.2. A line bundle is a vector bundle of rank 1. [CLS11, Page 253]

Proposition 4.3. There is a one to one correspondence between line bundles and sheaves

OX(D) for Cartier divisors D. Therefore we will use OX(D) to refer to both the sheaf, and

the line bundle. [Har77, Proposition 6.13; CLS11, Proposition 6.0.18, Proposition 6.0.20]

As described in [CLS11, Chapter 7.3, 377], there is a nice description for vector bundles such

that the base and bundle are both toric varieties.

Let Σ0 be the fan of a toric variety in Cl which will form the base of the bundle. Let u0
ρ be

the ray generators for rays ρ0.

Then for any matrix C =


aρ11 aρ12 · · · aρ1r

...
...

...

aρl1 aρl2 · · · aρlr


we can create the fan Σ ⊆ Cl ⊕ Cr of a vector bundle of rank r as followed.

Let e1, ..., er be the standard basis of Cr.

For each ray generator u0
ρi

of Σ0 , define uρi = u0
ρi
⊕
∑r

j=1 aρijej.
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For each cone σ0 of Σ0, we get a cone σ ∈ Σ given by

σ = Cone(uρ | ρ0 ∈ σ0(1)) + Cone(e1, ...er).

Then Σ is the fan formed from these cones and their faces.

Proposition 4.4. When each Dj =
∑r

i=1 aρijDρi is a Cartier divisor, the fan Σ is the rank

r toric vector bundle OXΣ0
(−Dρ1)⊕ ...⊕OXΣ0

(−Dρr) over XΣ0. [CLS11, Page 337]

In our setting, these vector bundles are the only vector bundles possible. This is illustrated

by the following theorem of Oda.

Theorem 4.5. All equivariant vector bundles π : V → B, which are themselves toric vari-

eties, are of the form described above. [Oda78, Page 41]

We can generalize our notion of vector bundle with the following definition.

Definition 4.6. Regardless of whether the Dj are Cartier, the set of cones Σ constructed

above is a fan. We shall call any toric variety of such a fan a stacky vector bundle over

Σ0. See Remark 5.13 for comments on the motivation behind this name.

Lemma 4.7. For each σ0 ∈ Σ with ray generators u0
1, ..., u

0
l , the ray generators of σ are

u1, ..., ul, e1, ..., er.

Proof. We already know that these vectors generate the cone, so we just need to show that

they are minimal generators. That is we need to show that for any ui ∈ {u1, ..., ul}, ui 6∈
Cone(u1, ..., ûi, ..., ul, e1, ..., er), and for any ei ∈ {e1, ..., er}, ei 6∈ Cone(u1, ..., el, e,..., êi, ..., er).

Here ·̂ denotes the element has been removed from the set.

First assume that u1 =
∑r

i=1 biei +
∑l

i=2 ciui for bi, ci ≥ 0. Then restricting to coordinates

on Cl we have u0
1 =

∑l
i=2 ciu

0
i . This contradicts the fact that u0

1, ..., u
0
l are ray generators for

σ0.

An identical argument holds for u2, ..., ul, so each of these is a ray generator.

Assume for the sake of contraction that e1 =
∑r

i=2 biei +
∑l

i=1 ciui. Again restricting to Cl

coordinates, this gives us
∑l

i=1 ciu
0
i = 0. Since all the ci are non-negative, this contradicts

the strong convexity of the cone. Note that all the ci cannot be zero, otherwise we would
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have e1 =
∑r

i=2 biei which is impossible.

An identical proof holds for e2, ..., er, so e1, ..., er are all ray generators of the cone.

Corollary 4.8. Let Σ0 have ray generators u0
1, ..., u

0
l . Then if Σ is a stacky vector bundle

as described above, it has ray generators u1, ..., ul, e1, ..., er.

Let N and N ′ be a pair of lattices such that N is a sublattice of finite index N ⊆ N ′. Then

any fan Σ in NR can also be seen as a fan in N ′R, which we will call Σ′. As described in

[CLS11, Proposition 3.3.7], this induces a toric morphism XΣ → XΣ′ such that we can view

XΣ′ as XΣ/(N
′/N). This motivates the following definition.

Definition 4.9. Let XΣ be a toric variety with lattice N . If there exists an overlattice

N ′ ⊇ N such that XΣ is a stacky vector bundle with respect to N ′, then we will call XΣ an

almost stacky vector bundle.

Example 4.10. In this example, we will construct a vector bundle over P2. We calculated the

fan of P2 in Example 2.20. We will label the rays {ρ1, ρ2, ρ3}, so that uρ1 = [1, 0], uρ2 = [0, 1]

and uρ3 = [−1,−1].

Consider the stacky vector bundle given by the divisor D = −Dρ1 −Dρ2 −Dρ3 . Since P2 is

smooth, all Weil divisors are Cartier, which implies all stacky vector bundles over P2 are in

fact vector bundles [CLS11, Theorem 4.0.22]. One can show that D gives the vector bundle

O(−3) over P2. The fan of this vector bundle is shown in Figure 4. It has three rays lifted

from the original rays, which are drawn in blue. These rays are ρ1 = [1, 0, 1], ρ2 = [0, 1, 1],

ρ3 = [−1,−1, 1]. The additional ray, given by ρ4 = [0, 0, 1], is drawn in green. Note that if

we take the projection of the fan of bundle onto the plane normal to the additional ray, we

recover the fan of the base.
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Figure 4: The Vector Bundle O(−3).

(a) The Fan Σ̃ of O(−3) (b) The Projection of Σ̃ Normal to ρ4

5 Results

5.1 Main Results

Definition 5.1. Let ΓΣ,I∅ be a chamber of the secondary fan. We will call ΓΣ,I∅ a hybrid

model if there exists a projective toric variety XΣ0 such that XΣ is a stacky vector bundle

over XΣ0. Similarly we will call the variety XΣ a hybrid model if ΓΣ,I∅ is a hybrid model.

As described in the introduction, this definition is based on Definition 7.1.1 in [FJR15]. The

goal of this project is to determine when ΓΣ,I∅ is a hybrid model. The following two results

give the answer to that question.

Theorem 5.11. Let ΓΣ,I∅ be a chamber of the secondary fan. Then XΣ is a stacky vector

bundle of rank r if and only if there exists a subset βΓ ⊆ (β ∩−ΓΣ,I∅) and aji ∈ Z such that

|βΓ| = r and for each βi ∈ βΓ we have −βZ
i =

∑
βj 6∈βΓ

ajiβ
Z
j .

Corollary 5.12. A chamber of the secondary fan is a hybrid model if and only if it satisfies

the conditions of the previous theorem, βi 6= 0 for each βi ∈ β0 := β \ βΓ, and Cone(β0) is

strongly convex.

We also extend these theorems to the following result on stacky vector bundles.
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Theorem 5.15. Let ΓΣ,I∅ be a chamber of the secondary fan. If βΓ = (−ΓΣ,I∅ ∩ β) is

nonempty with |βΓ| = r, then XΣ is an almost stacky vector bundle of rank r.

In order to prove these results, we will need some background work.

Lemma 5.2. Let C1, C2 be maximal dimensional cones. Then if C1 ∩ C2 is also maximal

dimensional, every facet of C = C1 ∩ C2 is contained in a facet of C1 or C2.

Proof. Let W be any facet of C. By Definition 2.12, we know that W = C ∩ H for some

hyperplane H. By general topology we know that ∂C = ∂(C1 ∩C2) ⊆ ∂C1 ∪ ∂C2. Therefore

since the boundary of any cone is the union of its facets, we know that W is contained in

the union of facets of C1 and C2.

Now consider all of W at once. Either W is contained in a single facet, or parts of W are

contained in multiple facets. Without loss of generality we can assume that W is contained

in facets contained in H. Any parallel facets would not intersect and we would need an

infinite number of non-parallel facets, which is nonsense. Therefore W is contained by facets

of the form H ∩Ci. However any such facet would contain all of W since W = H ∩C1 ∩C2.

This proves the claim.

Condition 5.3. We will say a cone C in ĜR satisfies Condition 5.3 if it has dimension n

and every facet in C is contained in Cone(βW ) for some βn−1-basis βW .

Lemma 5.4. Let C1, C2 be any two cones satisfying Condition 5.3. Then if C1 ∩ C2 has

dimension n, it also satisfies Condition 5.3.

Proof. This follows directly from Lemma 5.2. Let W be a facet of C1 ∩ C2. Then W is

contained in a facet of C1 or C2, which by assumption is contained in some Cone(βW ).

Corollary 5.5. By induction, Lemma 5.4 is true for any finite intersection of cones satis-

fying the condition.

Lemma 5.6. Let βJ be a β basis. Condition 5.3 holds for Cone(βJ).

Proof. Cone structure is preserved under change of basis. Since Cone(βJ) is simplicial, we

can do a change of basis so that BJ is the standard basis. Then the facets of the cone are

exactly Cone(ei1 , ..., ein−1). Since under change of basis the ei are the βi, the condition is

true.

Corollary 5.7. Condition 5.3 holds for any chamber ΓΣ,I∅ of the secondary fan.
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Proof. By Proposition 3.7, we have that any chamber of the secondary fan can be written

as ΓΣ,I∅ =
⋂

Cone(βJ) for some β-bases βJ .

Therefore since ΓΣ,I∅ is an n-dimensional intersection of cones who satisfy the condition,

ΓΣ,I∅ satisfies the condition.

Proposition 5.8. The set β ∩ (ĜR \ −ΓΣ,I∅) is equal to the set{
βi ∈ β | βi extends to a β-basis βJ with Cone(βJ) ⊇ ΓΣ,I∅

}
Proof. Let βi be an element of β ∩ (ĜR \ −ΓΣ,I∅).

Let W be a facet of ΓΣ,I∅ . ΓΣ,I∅ satisfies Condition 5.3 so we have that W is contained in

Cone(βW ) for some βn−1-basis βW .

Since W is contained in Cone(βW ), the hyperplane spanned by Cone(βW ) must be the hy-

perplane spanned by W , as they have the same dimension. We will denote this hyperplane

by HW .

HW separates the ambient space into two half planes. Because it is a facet of ΓΣ,I∅ , only one

such half plane will contain ΓΣ,I∅ . Let H≥0
W and H>0

W be this halfplane, including and not

including HW respectively. We define H≤0
W and H<0

W similarly.

Then as in Proposition 2.13, ΓΣ,I∅ = ∩WH≥0
w , where the intersection is taken over all the

facets of ΓΣ,I∅ .

Choose a facet W ′ such that βi ∈ H>0
W ′ . This is possible because −ΓΣ,I∅ = ∩H≤0

W , so

βi 6∈ −ΓΣ,I∅ implies βi 6∈ H≤0
W ′ for some W ′.

Let βJ = βW ′ ∪ βi. It is enough to show that Cone(BJ) contains ΓΣ,I∅ as βJ is an extension

of βi.

By Proposition 3.6, ΓΣ,I∅ ⊆ βJ or Γ◦Σ,I∅ ∩ Cone(βJ) = ∅. Therefore we need only show that

the interior of ΓΣ,I∅ intersects Cone(βJ) .
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Note that Γ◦Σ,I∅ = (∩(H≥0
W ))◦ = ∩((H≥0

W )◦) = ∩H>0
W .

Let w be a point in W ′. W ′ is contained in Cone(βW ′) ⊆ Cone(βJ). Up to change of basis we

can assume that βJ is the standard basis. Then βJ = {w = (w1, ..., wn) | wi ≥ 0, 1 ≤ i ≤ n}
and βW ′ = {w = (w1, ..., wn) | wi ≥ 0, 1 ≤ i ≤ n− 1, wn = 0}.

Therefore w ∈ W ′ implies wi ≥ 0 and wn = 0. Without loss of generality we can choose

w such that the wi are strictly positive for i < n. Otherwise every w ∈ W would lie in

∪n−1
i=1 {x | xi = 0, xn = 0} which is not sufficiently high dimensional.

Therefore for sufficiently small ε, every point x in the ball of radius ε centred at w, will have

xi > 0 for i < n.

w ∈ ∂ΓΣ,I∅ = ∂Γ◦Σ,I∅ . Therefore there exists x ∈ Γ◦Σ,I∅ such that ||x−w|| < ε. Therefore x sat-

isfies xi > 0 for i < n. Since x is in the interior of ΓΣ,I∅ , we also have x ∈ H>0
W for all W and

in particular x ∈ H>0
W ′ , so xn > 0. Therefore x ∈ Cone(βJ). Therefore x ∈ Cone(βJ) ∩ Γ◦Σ,I∅ .

Therefore ΓΣ,I∅ ⊆ Cone(βJ) as required.

Conversely let βi be in −ΓΣ,I∅ and assume for the sake of contradiction that βi extends to

a β-basis βJ that contains ΓΣ,I∅ . Then −βi ∈ ΓΣ,I∅ , so Cone(βJ) contains both βi and −βi.
However Cone(βJ) is supposed to be strongly convex. A contradiction.

Proposition 5.9. The irrelevant ideal B(χ) can be calculated explicitly by

B(χ) = 〈
∏

i∈J xi | ΓΣ,I∅ ⊆ Cone(βJ)〉 where ΓΣ,I∅ is the cone containing χ in its relative

interior.

Proof. By definition, B(χ) is given by B(χ) = 〈
∏

νi 6∈σ or i∈I∅ xi | σ ∈ Σmax〉.

In Proposition 3.7, we define Jσ := {i | νi 6∈ σ or i ∈ I∅}. Therefore

B(χ) = 〈
∏

i∈Jσ xi | σ ∈ Σmax〉.

By part (b) of Proposition 3.7, we know that β-bases βJ are of the form βJσ for σ ∈ Σmax,

exactly when ΓΣ,I∅ ⊆ Cone(βJ).
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Therefore B(χ) = 〈
∏

i∈J xi | ΓΣ,I∅ ⊆ Cone(βJ)〉, as required.

Lemma 5.10. If ΓΣ,I∅ is a chamber, I∅ =
{
xi | βi ∈ βJ for every Cone(βJ) ⊇ ΓΣ,I∅

}
Proof. First assume xi ∈ I∅. Then if Jσ = {i | νi 6∈ σ or i ∈ I∅}, xi ∈ Jσ for each σ ∈ Σmax.

Then by Proposition 3.7, part b), xi is in βJ for ever Cone(βJ) ⊇ ΓΣ,I∅ .

Conversely assume xi is such that βi ∈ βJ for every βJ ⊇ ΓΣ,I∅ . Assume for the sake of

contradiction that xi is not in I∅. Then by Lemma 3.13, xi corresponds to a ray νi. Let σ

be any maximal cone in Σ containing νi. Then i 6∈ Jσ and βi 6∈ βJσ .

However by Proposition 3.7 part b) , ΓΣ,I∅ ⊆ βJσ .

Therefore by assumption βi ∈ βJσ . A contradiction.

Using the preceding propositions and lemmas, we arrive at our main results which we restate

and prove below.

Theorem 5.11. Let ΓΣ,I∅ be a chamber of the secondary fan. Then XΣ is a stacky vector

bundle of rank r if and only if there exists a subset βΓ ⊆ (β ∩−ΓΣ,I∅) and aji ∈ Z such that

|βΓ| = r and for each βi ∈ βΓ we have −βZ
i =

∑
βj 6∈βΓ

ajiβ
Z
j .

Proof. First assume βΓ exists. We will construct a base called XΣ0 , a vector bundle over

that base called XΣ̃, and prove that Σ = Σ̃, proving the forward direction.

Let β0 = β \ βΓ and l = n − r. Without loss of generality we can order β so that

β0 = {β1, ..., βl}.

Recall, the set β comes with an exact sequence as below.

0 M Zn Ĝ 0A Q

Zn can be viewed as Zl⊕Zr, so with this splitting there is a natural inclusion g : Zl ↪→ Zl⊕Zr,
giving us the following diagram.
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0 M Zn Ĝ 0

Zl

A Q

g

Let h : Ĝ→ Ĝ, be the identity. Then we can extend the diagram to

0 M Zn Ĝ 0

Zl Ĝ

A Q

g h

Let Q0 = Q ◦ g : Zl → Ĝ, giving us the following diagram.

0 M Zn Ĝ 0

Zl Ĝ

A Q

Q0

g h

We can choose a basis reflecting the splitting Zn = Zl ⊕ Zr. In this basis Q can be written

as Q = [Q0, Q1], where Q0 : Zl → Ĝ, as in the diagram, and Q1 : Zr → Ĝ. By def-

inition βZ
i = Q(ei). Therefore Im(Q0) = span(βZ

1 , ..., β
Z
l ) and Im(Q) = span(βZ

1 , ..., β
Z
n).

By assumption, for each βi ∈ βΓ we have −βZ
i =

∑l
i=1 ajiβ

Z
j for aij ∈ Z. Therefore

span(βZ
1 , ..., β

Z
l ) = span(βZ

1 , ..., β
Z
n) and Q0 is surjective by the surjectivity of Q.

Therefore the diagram can be written as

0 M Zn Ĝ 0

Zl Ĝ 0

A Q

Q0

g h

Let M0 be the kernel of Q0 and A0 be any inclusion. This gives us the following diagram.
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0 M Zn Ĝ 0

0 M0 Zl Ĝ 0

A Q

A0 Q0

g h

Then there exists an inclusion f : M0 →M making the diagram commute. See Lemma A.1

and Lemma A.2 for a proof of this statement.

0 M Zn Ĝ 0

0 M0 Zl Ĝ 0

A Q

A0

f

Q0

g h

From the snake lemma, we get the following diagram, where the snake is exact.

coker f coker g cokerh 0

0 M Zn Ĝ 0

0 M0 Zl Ĝ 0

0 ker f ker g kerh

A Q

A0

f

Q0

g h

Then ker f = ker g = kerh = cokerh = 0 and by Lemma A.3 coker f ∼= coker g = Zr giving

us the following diagram.

Zr Zr 0 0

0 M Zn Ĝ 0

0 M0 Zl Ĝ 0

0 0 0 0

A Q

A0

f

Q0

g h
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Define a map t : Zr → Zn as follows.

By assumption we can write −βZ
i =

∑
βj∈β0 ajiβ

Z
j for aji ∈ Z. The we can define t such that

for each {el+1, ..., en} we have t(ei) =
∑l

j=1 ajiej + ei. Then the matrix of t is given by



a1(l+1) a1(l+2) · · · a1(l+r)

...
...

...

al(l+1) al(l+2) · · · al(l+r)

1 0 · · · 0

0 1 · · · 0
...

...
...

0 0 · · · 1


Note that since βZ

i is the ith column of Q, this gives us Q ◦ t = 0.

Then by the universal property of kernels, and the fact that A : M → Zn is the kernel of Q,

there is a map s : Zr →M such that the following diagram commutes.

Zr

M Zn
t

s

A

Since the map Zr → Zr is an isomorphism between cokernels, we also have that the following

square commutes.

Zr Zr

M Zn
s t

A

Therefore we have the following diagram where either the blue part or the red part commutes.

We will name the cokernel maps of f and g, πf and πg respectively.
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Zr Zr 0 0

0 M Zn Ĝ 0

0 M0 Zl Ĝ 0

0 0 0 0

s t

A

πf

Q

πg

A0

f

Q0

g h

Note that πg ◦ t = idZr .

Indeed πg ◦ t(ei) = πg(
∑l

j=1 ajiej + ei) = ei for each basis element, so by linearity the claim

holds.

Let’s consider the following part of the diagram.

Zr

M Zn
s

t

A

πf

πg

Then t = A ◦ s and πf = πg ◦ A.

Then πf ◦ s = πg ◦ A ◦ s = πg ◦ t = id.

Therefore we have a splitting

0 M0 M Zr 0
f

πf

s

Therefore, by the splitting lemma we can write M = M0 ⊕ Zr.

Then we can choose a basis for M to reflect this splitting such that f is the identity

M0 →M0 ⊆M0 ⊕ Zr and s is the identity Zr → Zr ⊆M0 ⊕ Zr.
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We can write A in the form A = [x, y] where x : M0 → Zn and y : Zr → Zn.

Then x(m0) = A ◦ f(m0) = g ◦ A0(m0), so

x =

[
A0

0

]

Similarly y = A ◦ s = t =



a1(l+1) a1(l+2) · · · a1(l+r)

...
...

...

al(l+1) al(l+2) · · · al(l+r)

1 0 · · · 0

0 1 · · · 0
...

...
...

0 0 · · · 1


Therefore A =

[
A0 C

0 I

]

where C is the coefficient matrix


a1(l+1) a1(l+2) · · · a1(l+r)

...
...

...

al(l+1) al(l+2) · · · al(l+r)


Now from β0 and Q0 we can construct a new secondary fan. Note that A0 is by definition

the inclusion of the kernel of Q0, so A0 is the corresponding “A” matrix.

By Corollary 3.8, any cone of the secondary fan is a maximal intersection of cones over

β-bases.

By Proposition 5.8, the βJ such that Cone(βJ) contains ΓΣ,I∅ are exactly the β-bases that are

disjoint from −ΓΣ,I∅ . Since βΓ ⊆ −ΓΣ,I∅ and β0 = β \ βΓ, all β-bases forming the chamber

are also subsets of β0. Therefore ΓΣ,I∅ =
⋂

ΓΣ,I∅⊆βJ⊆β
0 Cone(βJ) and is also a chamber in the

secondary fan of β0. We will refer to this chamber as ΓΣ0,I∅0
, refer to A∨0 (ei) as ν0

i , and let

χ0 ∈ ΓΣ0,I∅0
be any character in the relative interior of ΓΣ0,I∅0

.

We claim that I∅ = I∅0 . By Lemma 5.10, I∅ =
{
xi | βi ∈ βJ for every Cone(βJ) ⊇ ΓΣ,I∅

}
.

Therefore since the βJ forming ΓΣ,I∅ and ΓΣ0,I∅0
are the same by definition, I∅ = I∅0 .
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By Lemma 3.13, the rays of Σ0 are generated by ν0 \ I∅.

Recall the matrix A =

[
A0 C

0 I

]
. We can form a new matrix A′ =

[
A′0 C ′

0 I

]

by removing the rows corresponding to νi with i ∈ I∅ and scaling the remaining rows of[
A0 C

]
to make them minimal generators.

Then the rows of A′0 are exactly the ray generators of Σ0 and the rows of A′ are exactly the

ray generators of Σ. We can build a stacky vector bundle Σ̃ over Σ0 using the matrix C ′ and

the process in section section 4.

By Lemma 4.7 the rays of Σ̃ are exactly the rows of A′, which are exactly the rows of Σ.

By [CLS11, Page 207], if two toric varieties have the same rays and same irrelevant ideals,

they are equal. Therefore we need only show B(Σ) = B(Σ̃).

The irrelevant ideal of Σ̃ is given by B(Σ̃) = 〈
∏

ρ6∈σ(1) xρ | σ ∈ Σ̃max〉.

Note that by Lemma 4.7, the maximal cones of Σ̃ are generated by rays of cones in Σ0 and

e1, ..., er.

Therefore B(Σ̃) = 〈
∏

ρ6∈σ0(1) xρ | σ0 ∈ Σ0max〉 = B(Σ0).

For χ ∈ ΓΣ,I∅ , B(χ) = 〈
∏

νi 6∈σ or i∈I∅ xi | σ ∈ Σmax〉 = B(Σ) × I∅. Similarly B(χ0) =

B(Σ0)× I∅.

Alternatively by Proposition 5.9, we have that B(χ) = 〈
∏

i∈J xi | ΓΣ,I∅ ⊆ Cone(βJ)〉.

Note that since ΓΣ,I∅ and ΓΣ0,I∅0
are intersections of the same cones by definition B(χ) =

B(χ0).

Therefore we have both B(χ) = B(Σ)× I∅ = B(Σ0)× I∅.

Therefore B(Σ) = B(Σ0) = B(Σ̃).
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Since Σ and Σ̃ have the same irrelevant ideals and rays, they are equal.

Therefore XΣ is indeed a stacky vector bundle of rank r over XΣ0 .

Conversely assume XΣ is a stacky vector bundle of rank r. Then up to change of basis we

can assume the rows of A are scalar multiples of the rows of the matrix

 E1 E2

A0 C

0 I

.

Here I is the r × r identity, the rows of

[
A0 C

0 I

]
correspond to the νi that are rays of Σ,

and
[
E1 E2

]
corresponds to the νi ∈ I∅.

Then we will show that choosing βΓ to correspond to the rows of
[

0 I
]

satisfies the claim.

First we will show that the βΓ defined above satisfies βΓ ⊆ (β ∩ −ΓΣ,I∅).

By Proposition 3.7, ΓΣ,I∅ =
⋂
σ∈Σmax

Cone(βJσ) where Jσ = {i | νi 6∈ σ or i ∈ I∅}
and by Proposition 5.8,

(−ΓΣ,I∅ ∩ β) =
{
βi ∈ β | βi does not extend to a β-basis βJ such that Cone(βJ) ⊇ ΓΣ,I∅

}
.

Therefore (−ΓΣ,I∅∩β) = {βi | i 6∈ Jσ for any σ ∈ Σmax} = {βi | i 6∈ I∅ and i ∈ σ for all σ ∈ Σmax}.

Since only the rows in
[
E1 E2

]
are part of I∅, to prove βΓ ⊆ (−ΓΣ,I∅ ∩ β) we need only

show that the νi corresponding to the rows of
[

0 I
]

are in every σ ∈ Σmax. This is true

by Lemma 4.7 so βΓ ⊆ (−ΓΣ,I∅ ∩ β).

Now to prove the claim, we need only show that for each βi ∈ βΓ, there exists aji ∈ Z such

that −βZ
i =

∑
βj∈β0 ajiβ

Z
j .

By assumption QA = 0. Therefore for each for each column of A get a dependence relation

between the columns of Q. In particular if we write A as
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

b11 · · · b1s a1(l+1) a1(l+2) · · · a1(l+r)

...
...

...
...

...

bl1 · · · bls al(l+1) al(l+2) · · · al(l+r)

0 · · · 0 1 0 ... 0

0 · · · 0 0 1 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 1


then the last r columns of A give βZ

i +
∑l

j=1 ajiβ
Z
j = 0 as required.

Corollary 5.12. A chamber of the secondary fan is a hybrid model if and only if it satisfies

the conditions of the previous theorem, βi 6= 0 for each βi ∈ β0 := β \ βΓ, and Cone(β0) is

strongly convex.

Proof. Since a hybrid model is a stacky vector bundle over a projective base, this follows

directly from Proposition 3.14.

Remark 5.13. The proof of the proceeding theorem is also why we use the name stacky

vector bundle. In the setup of this proof we construct a base XΣ0 for XΣ. We show that for

any χ ∈ ΓΣ,I∅ and χ0 ∈ ΓΣ0,I∅0
we have B(χ) = B(χ0) = 〈

∏
i∈J xi | ΓΣ,I∅ ⊆ Cone(βJ)〉. The

only difference between the ideals is B(χ) ⊆ C[xi | βi ∈ β] and B(χ0) ⊆ C[xi | βi ∈ β0]. This

implies U(χ) = Cn × U(χ0).

By Proposition 3.12, XΣ0 = U(χ0) // G and XΣ = U(χ) // G. The G acting on U(χ) is ac-

tually the same G acting on U(χ0) since the proof of the theorem shows they share the same

Ĝ. Furthermore the group action G × Cl → Cl is simply the group action G × Cn → Cn

restricted to Cl. To see this note that the action G× Cn → Cn is given by t→ QT (g)t.

Let



t1
...

tl

s1

...

sr


be an arbitrary element of Cn = Cl⊕Cr and let ∗ denote group multiplication in

either group.
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Then

g ·



t1
...

tl

s1

...

sr


= QT (g) ∗



t1
...

tl

s1

...

sr


=


βZ

1
...

βZ
n

 g ∗



t1
...

tl

s1

...

sr



=
[
〈βZ

1 , g〉 ... 〈βZ
n , g〉

]
∗



t1
...

tl

s1

...

sr


=


〈βZ

1 , g〉t1
...

〈βZ
n , g〉sr



Restricting this to Cl we get

g ·



t1
...

tl

0
...

0


=



〈βZ
1 , g〉t1

...

〈βZ
l , g〉tl
0
...

0


.

Similarly the action G× Cl → Cl is given by t→ QT
0 (g) ∗ t, so we have

g ·


t1
...

tl

 =


〈βZ

1 , g〉t1
...

〈βZ
l , g〉tl


Therefore the action of G on Cl is just the action of G on Cn restricted to Cl.

Since U(χ) = Cr × U(χ0), U(χ) is a G-equivariant vector bundle over U(χ0), that is the
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projection map is compatible with the G-actions. This motivates the terminology “stacky”

vector bundle.

Lemma 5.14. Let βi in (−ΓΣ,I∅ ∩ β). Without loss of generality we can reorder our βi into

two sets βΓ = (β∩−ΓΣ,I∅) and β0 = β \βΓ such that {β1, ..., βl} ∈ β0 and {βl+1, ..., βn} ∈ βΓ.

Then there exists di, aji ∈ Z≥0 such that diβ
Z
i +

∑l
i=1 aijβ

Z
j = 0 for each βi ∈ βΓ.

Proof. For each βi ∈ βΓ, −βi ∈ ΓΣ,I∅ . By Proposition 5.8, the βJ such that that Cone(βJ)

contains ΓΣ,I∅ are exactly the β-bases that are subsets of β0. Therefore ΓΣ,I∅ ⊆ Cone(βJ) for

each β-basis βJ ⊆ β0. Since Cone(βJ) is simplicial, elements of βJ are generators of a vector

space. Therefore there exist unique cji ∈ R such that −βi =
∑

j∈J cjiβj. Note that since

−βi and each βj are lattice points, this unique description is also true over Q and cji must

be rational. Furthermore since −βi is assumed to be in Cone(βJ), the cji must be positive.

Then multiplying the equation by a suitable integer di to clear the denominators, we get

−diβi =
∑

j∈J ajiβj for aij, di ∈ Z≥0.

Note that since we can do this for each βJ ⊆ β0 this description is not unique.

Our relations so far happen in ĜR and not Ĝ. However, the kernel of the map Ĝ → ĜR

is a torsion subgroup T . Therefore we have −diβZ
i =

∑
j∈J ajiβ

Z
j + t for some t ∈ T .

Then multiplying both sides by a suitable integer s will yield st = 0, so that we have

−sdiβZ
i =

∑
j∈J sajiβ

Z
j as required.

Theorem 5.15. Let ΓΣ,I∅ be a chamber of the secondary fan. If βΓ = (−ΓΣ,I∅ ∩ β) is

nonempty with |βΓ| = r, then XΣ is an almost stacky vector bundle of rank r.

Proof. First we will assume there exists βi ∈ βΓ. Let β0 = β \ βΓ and reorder β so that

β0 = {β1, ..., βl}. Then by Lemma 5.14, there exist dl+1, ..., dl+r and aij ∈ Z such that for

each βi ∈ βΓ, we have diβ
Z
i +

∑l
i=1 aijβ

Z
j = 0.

Let D be the matrix with dl+1, ..., dl+r along the main diagonal and g : Zn → Zn be the map

given by

[
I 0

0 D

]
where we consider Zn as Zl ⊕ Zr.

Let
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0 M Zn Ĝ 0A Q

be the exact sequence associated with β.

Then we can extend the diagram by defining Q′ = Q ◦ g.

0 M Zn Ĝ 0

Zn Im(Q′) 0

A Q

Q′

g

Let M ′ be the kernel of Q′ and A′ any inclusion to extend the diagram.

0 M Zn Ĝ 0

0 M ′ Zn Im(Q′) 0

A Q

A′ Q′

g

Since g(Zn) is a subgroup of Zn, we have Q′(Zn) = Q ◦ g(Zn) is a subgroup of Q(Zn) = Ĝ.

Therefore we can choose an inclusion h so that the following diagram commutes.

0 M Zn Ĝ 0

0 M ′ Zn Im(Q′) 0

A Q

A′ Q′

g h

By Lemma A.1 there exists an inclusion f : A′ → A making the diagram commute as below.

0 M Zn Ĝ 0

0 M ′ Zn Im(Q′) 0

A Q

A′

f

Q′

g h

We can also consider the diagram where everything is tensored over Z with Q as below.
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0 MQ Qn ĜQ 0

0 M ′
Q Qn ImQ(Q′) 0

A Q

A′

f

Q′

g h

Then by Lemma A.4, since f and h are inclusions and g is an isomorphism over Q, f and h

are also isomorphisms over Q. Therefore by Lemma A.5, as maps of Z-modules, f, g and h

have finite index.

Since Q′ is a matrix map from Zn, it is also associated to a collection of GIT quotients and

a secondary fan. We will define β′ and ν ′ as the “β” and “ν” of Q′.

In fact the secondary fan for Q′ has the same structure as the secondary fan for Q, just in a

sparser lattice.

By definition h(β′Zi ) = h(Q′(ei)) = Q(g(ei)).

Q(g(ei)) = Q(ei) for βi ∈ β0 and Q(g(ei)) = Q(diei) = diQ(ei) for βi ∈ βΓ.

Regardless h(β′Zi ) and βZ
i are in the same line. Therefore it makes sense to define β′Γ =

{β′i | βi ∈ βΓ} and β0
′ = {β′i | βi ∈ β0}. Furthermore, since the secondary fan is defined over

Q or R, the sets β and β0 yield the same secondary fan. Since the secondary fans are the

same, it makes sense to talk about the same chambers. Let ΓΣ′,I′∅
be the chamber ΓΣ,I∅ in

the secondary fan of Q′. Since both secondary fans have the same form, β′i ∈ ΓΣ′,I′∅
exactly

when βi ∈ ΓΣ,I∅ . Therefore β′Γ = (β′ ∩ −ΓΣ′,I′∅
).

We want to show that ΓΣ′,I′∅
corresponds to a stacky vector bundle of rank r, that N includes

into N ′, and that Σ is just Σ′ considered in the sublattice N .

We claim that β′Γ satisfies the claims of Theorem 5.11, making XΣ′ a vector bundle of rank r.

We need to show that for any β′i ∈ β′Γ we have −β′Zi =
∑

β′j∈β0′ ajiβ
′Z
j for aij ∈ Z.

As above, if β′i ∈ β′Γ we have h(β′Zi ) = diβ
Z
i , and if β′i ∈ β0′ we have h(β′Zi ) = βZ

i
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Therefore since diβ
Z
i +

∑r
i=1 aijβ

Z
j = 0, we also have h(β′Zi ) +

∑r
i=1 aijh(β′Zj ) = 0 which

implies β′Zi +
∑r

i=1 aijβ
′Z
j = 0 by injectivity of h.

Therefore X ′Σ is indeed a stacky vector bundle of rank r.

Next we will show that N is a sublattice of N ′.

Let f̂ : N → N ′ be the dual map to f . The dual to an injective lattice map of finite index

is always an injective map of finite index. See Lemma A.6 for a proof of this. Therefore f̂

realises N as a sublattice of finite index of N ′.

All that remains to be shown is that Σ and Σ′ are the same fan in different lattices.

By Lemma 5.10, I∅ =
{
xi | βi ∈ βJ for every Cone(βJ) ⊇ ΓΣ,I∅

}
. Therefore since ΓΣ,I∅ and

ΓΣ′,I′∅
are constructed from the same β-bases over Q, I∅ is the same for both.

By definition νi = A∨(ei).

Then f∨A∨(ei) = (Af)∨ei = (gA′)∨ei = (A′)∨g∨ei = (A′)∨diei = di(A
′)∨ei = diν

′
i

for βi ∈ βΓ

and f∨A∨(ei) = (Af)∨ei = (gA′)∨ei = (A′)∨g∨ei = (A′)∨ei = ν ′i

for βi ∈ β0.

Note that we used the fact that in dual bases g∨ = gT .

Therefore f̂ takes the ray generated by νi to the ray generated by ν ′i. Therefore when N is

viewed as a sublattice of N ′, the lines generated by ν and ν ′ are the same.

Since I∅ is the same for both fans, Σ and Σ′ have the same rays in different lattices.

Therefore to show that f̂ takes Σ to Σ′, it is sufficient to show that Σ and Σ′ have the same

maximal cones.

By Proposition 3.7, a maximal cone σ ofXΣ gives a β-basis βJσ such that Jσ = {i | νi 6∈ σ or i ∈ I∅}.
Therefore Jσ uniquely determines the rays of the maximal cone σ.
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By Proposition 3.7, ΓΣ,I∅ ⊆ Cone(βJσ) if and only if σ ∈ Σmax. Therefore the choice of

chamber ΓΣ,I∅ in the secondary fan tells us exactly which maximal cones Σ has. Since ΓΣ,I∅

and ΓΣ′,I′∅
correspond to the same chamber in the secondary fan, they must have the same

maximal cones σ ∈ Σmax = Σ′max which proves the claim.

Example 5.16. We calculated the fan of O(−3) in Example 4.10. This variety can also be

realized as a GIT quotient with matrices A =


1 0 1

0 1 1

−1 −1 1

0 0 1

 and Q =
[

1 1 1 −3
]
.

This gives the secondary fan in Figure 5.

Figure 5: The Secondary Fan for Q = [1, 1, 1,−3]

Consider the chamber ΓΣ,I∅ = Cone(β1) = Cone(β2) = Cone(β3). −ΓΣ,I∅ ∩ β = β4. By

Theorem 5.11, Σ is stacky vector bundle of rank 1, since βZ
4 can be written as an integral

linear combination of the remaining β via βZ
4 = −3βZ

1 = −3βZ
2 = −3βZ

2 . By Corollary 5.12,

the base of this bundle is projective as Cone(β0) = Cone(β1, β2, β3) is strongly convex.

Since by Lemma 5.10, I∅ can be calculated by I∅ =
{
xi | βi ∈ βJ for every Cone(βJ) ⊇ ΓΣ,I∅

}
,

we know I∅ = ∅ for this chamber. Therefore Σ is a simplicial fan with rays ρ1, ρ2, ρ3, ρ4. The

only such fan is the fan for O(−3), which is indeed a rank one vector bundle over P2.

We can also calculate the GIT quotient for the other chamber of the secondary fan. Since

βJ = {β4} is the only β-basis with ΓΣ,I∅ ⊆ Cone(βJ) for this chamber, we know that I∅ = β4.

Therefore Σ is the only simplicial fan with rays ρ1 = [1, 0, 1], ρ2 = [0, 1, 1], ρ3 = [−1,−1, 1],

which happens to be the simplicial cone with these rays. One can show that this is the
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variety C3/Z3. Since βZ
1 = βZ

2 = βZ
3 = −1

3
βZ

4 , this is an almost stacky vector bundle over a

point.

5.2 Comparisons

Toric GIT is a powerful tool because we can construct our quotients from just two matrices.

In the literature, there are a variety of conditions on the Q matrix that give useful results

about the constructed varieties. In this section we will compare two such results to our

results obtained in the previous section.

5.2.1 Quasisymmetry

Recall our setting of starting with an inclusion G ↪→ (C∗)n and a dual exact sequence

0 M Zn Ĝ 0A Q

(C∗)n can be seen as the diagonal subgroup of GLn(C). Therefore this inclusion can be seen

as a group representation φ : G→ GLn(C).

Definition 5.17. We can quotient β into subsets C = β∩L where L is any line in Ĝ. Then

as in [ŠV15, Page 8], we call the representation quasisymmetric if
∑

βi∈C βi = 0 for each

C. We will also call β itself and the action G × Cn → Cn quasisymmetric if this condition

is satisfied.

The quasisymmetric condition gives some useful results beyond the scope of this thesis that

can be found in [HS16]. When we assume the quasisymmetric condition in addition to

assuming we have a hybrid model, the base of the stacky vector bundle takes a particular

form.

Proposition 5.18. Let XΣ be a projective, Q-factorial toric variety such that Nef(X) =

Eff(X). Then there is a finite toric morphism Pn1 × · · · × Pns → X for some
∑s

i=1 ni =

dimN1(X). [FS09, Proposition 5.3]

Proposition 5.19. Let β be quasisymmetric, and ν be primitive geometric. Let ΓΣ,I∅ be a

chamber of the secondary fan such that I∅ = ∅ and such that XΣ is a vector bundle over a

projective base XΣ0. Then there is a finite toric morphism Pn1 × · · · × Pns → XΣ0 for some∑s
i=1 ni = dimN1(XΣ0).
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Proof. By Proposition 3.17 ΓΣ,I∅ is isomorphic to the nef cone. As in the proof of Theo-

rem 5.11, there is a chamber ΓΣ0,I∅0
corresponding to this chamber in the secondary fan of

Σ0. Furthermore since ΓΣ0,I∅0
has the same I∅ = ∅, it is isomorphic to the nef cone of XΣ0 .

Similarly since any chamber in the secondary fan of ΓΣ0,I∅0
is an intersection of β-bases in

β0 ⊆ β, any chamber in the secondary fan of Σ0 is also a chamber in the secondary fan of Σ.

We claim that Eff(XΣ0) = Nef(XΣ0). By definition Nef(XΣ0) ⊆ Eff(XΣ0) so we only need

to show Eff(XΣ0) ⊆ Nef(XΣ0). Since Eff(XΣ0) = Cone(Dρ | ρ ∈ Σ0(1)), we need only show

that Dρ ∈ Nef(XΣ0) for each Dρ.

By Proposition 3.17, Dρ corresponds to some βi ∈ β0 in the isomorphism. Since β is qua-

sisymmetric, we also have −βi ∈ β. By Corollary 5.12, we know that Cone(β0) is strongly

convex, therefore −βi 6∈ β0. Therefore by construction in Theorem 5.11, we know that

−βi ∈ −ΓΣ,I∅ . Therefore βi ∈ ΓΣ,I∅ , and by the isomorphism we have Dρ ∈ Nef(XΣ0).

Then the conclusion follows from Proposition 5.18.

5.2.2 The Herbst Criterion

Definition 5.20. The matrix Q is said to satisfy the Herbst Criterion if we can choose

rankQ = r linearly independent columns of Q, β1, ..., βr, so that the remaining columns lie

in −Cone(β1, ..., βr). [CG15, Page 2]

[CG15] shows that Q satisfies the Herbst criterion if and only if there is an affine stable point

in the image of Q. This is equivalent to the condition that Cν is simplicial. We will use ideas

of their proof [CG15, Lemma 3.7] to show this equivalence.

Proposition 5.21. Q satisfies the Herbst criterion if and only if Cν is simplicial.

Proof. First assume Q satisfies the Herbst criterion. Then change the basis over Q so that

the chosen r linearly independent columns of Q are the first r columns, and that they are

e1, ..., er. Since by assumption we have βi ∈ −Cone(β1, ..., βr) for the remaining columns of

Q, we can write Q in the form Q =
[
I −N

]
for some matrix N with non-negative entries.
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Since A has full rank by assumption, there exists a change of basis over Q such that

A =

[
A1

I

]
.

Then since QA = 0 we get
[
I −N

] [ A1

I

]
= 0 =⇒ A1 −N = 0 =⇒ A1 = N .

Therefore A is of the form

[
N

I

]
for some matrix N with non-negative entries.

Then since each of the rows of N lies inside the cone generated by the rows of I, Cν is

generated by the rows of I and is simplicial as required.

Conversely assume that Cν is simplicial. Then since the νi generated the cone, we can

organise it so that ν1, ..., νl are the ray generators and νl+1, ..., νn lie in the cone generated by

ν1, ..., νl. Then we can change basis over Q so ν1, ..., νl = e1, ..., el. Therefore A is of the form[
N

I

]
for a matrix N with non-negative entries. Since Q has full rank we can do a change of

basis over Q so that Q is of the form
[
I Q2

]
. Then QA = 0 =⇒

[
I Q2

] [ N

I

]
=⇒

Q2 = −N . Therefore Q2 =
[
I −N

]
which satisfies the Herbst criterion.

The situation where the Herbst criterion is satisfied is a special case of the situation in which

Q has a chamber that is an almost stacky vector bundle.

Proposition 5.22. If Q satisfies the Herbst criterion then there exists a chamber of the

secondary fan ΓΣ,I∅ such that XΣ is an almost stacky vector bundle.

Proof. As in the proof of Proposition 5.21, there is a change of basis over Q such that we

can write Q =
[
I −N

]
and A =

[
N

I

]
.

We claim that Cone(e1, ..., er) forms a chamber of the secondary fan. By Corollary 3.8, the

chambers of the secondary fan are maximal intersections of β-bases. Therefore to show that

the Cone(e1, ..., er) is a chamber of the secondary fan, we need only show that no other

β-basis has a full dimensional intersection with it.

Let βJ be another β-basis. Without loss of generality we can assume that the βi in it

are e1, ..., es and some additional βi that are columns of −N . Therefore Cone(βJ) ⊆
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Cone(e1, ..., es,−e1, ...,−er). Therefore it is sufficient to show that this cone has no maximal

dimension intersection with Cone(e1, ..., er). Indeed

Cone(e1, ..., es,−e1, ...,−er) ∩ Cone(e1, ..., er) = Cone(e1, ..., es)

which is not maximal dimensional. Then since the remaining columns of Q lie in the negative

cone, the GIT quotient for this chamber is an almost stacky vector bundle by Theorem 5.15.

6 Conclusion

The goal of this thesis has been to investigate when a chamber of the secondary fan is a

hybrid model. In Theorem 5.11 and Corollary 5.12, we determine that ΓΣ,I∅ is a hybrid

model or rank r exactly when it satisfies the following conditions.

1. There exists βΓ ⊆ (β ∩ −ΓΣ,I∅) and aji ∈ Z such that |βΓ| = r and for each βZ
i ∈ βΓ

we have −βi =
∑

βj 6∈βΓ
ajiβ

Z
j .

2. βi 6= 0 for each βi ∈ β0 := β \ βΓ

3. Cone(β0) is strongly convex.

In Theorem 5.15 we also show that a reduced version of these conditions is sufficient for ΓΣ,I∅

to be an almost stacky vector bundle. That is if there exists ∅ 6= βΓ ⊆ (β ∩−ΓΣ,I∅) then XΣ

is an almost stacky vector bundle.

To see why these results are relevant, we recall that the hybrid model condition in [FJR15]

gives an example of a Gauged Linear Sigma Model. Our condition is slightly weaker but it is

nevertheless the first step to finding a condition describing this class of GLSMs. More than

this, however, our results are useful in the same sense that Toric Geometry itself is useful.

Toric Geometry is powerful because all the varieties can be described completely by fans,

with many geometric notions expressed completely using just fan data. In toric GIT we are

not just studying a single variety, but a class of varieties, so instead of a fan, our data be-

comes the charge matrix. The relevance of our results lies in the fact that even though being

a hybrid model is a geometric concept, the existence or non-existence of a hybrid model can

be entirely described by a condition on the charge matrix.
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Math research is of course an ongoing process, and for every answer one finds, one should

discover several more questions. Hence in the spirit of continued scientific endeavour, we

conclude this thesis with the following four.

1. Can we use the charge matrix to describe when a chamber is a vector bundle, as

opposed to a stacky vector bundle?

2. Is the converse to Theorem 5.15 true?

3. For which R-charge actions does an almost stacky vector bundle yield a hybrid model

in the sense of [FJR15]?

4. When is a function defined on the semistable locus of a GIT quotient smooth?
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Appendix A Basic Commutative Algebra Proofs

In this section we will prove some basic facts about commutative algebra that are used in

the body of the thesis.

Lemma A.1. Given any commutative diagram with exact rows as below, there exists a

unique map f : A′ → A that makes the diagram commute.

0 A B C 0

0 A′ B′ C ′ 0

α β

α′ β′

g h

Proof. Consider the map g ◦α′ : A′ → B. By the commutative diagram we have β ◦ g ◦α′ =
h ◦ β′ ◦ α′ = h ◦ 0 = 0. Then by the universal property of kernels, this induces a map

f : A′ → A such that the diagram commutes

0 A B C 0

0 A′ B′ C ′ 0

α β

α′

f

β′

g h

Lemma A.2. Let the following be a commutative diagram with exact rows.

0 A B C 0

0 A′ B′ C ′ 0

α β γ

α′

f

β′

g

γ′

h

If g and h have trivial kernel, then so does does f .

Proof. We apply the snake lemma to get the following diagram with an exact snake.
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coker f coker g cokerh 0

0 A B C 0

0 A′ B′ C ′ 0

0 ker f ker g kerh

α β

α′

f

β′

g h

By assumption we can replace ker g and kerh with zero as below.

coker f coker g cokerh 0

0 A B C 0

0 A′ B′ C ′ 0

0 ker f 0 0

α β

α′

f

β′

g h

Then by exactness ker f = 0 as well.

Lemma A.3. Consider the following exact sequence with exact rows. If h is an isomorphism,

then coker f is isomorphic to coker g.

0 A B C 0

0 A′ B′ C ′ 0

α β

α′

f

β′

g h

Proof. The snake lemma gives the following diagram with an exact snake.
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coker f coker g cokerh 0

0 A B C 0

0 A′ B′ C ′ 0

0 ker f ker g kerh

α β

α′

f

β′

g h

Since h is an isomorphism this gives cokerh = kerh = 0.

coker f coker g 0 0

0 A B C 0

0 A′ B′ C ′ 0

0 ker f ker g 0

α β

α′

f

β′

g h

Therefore exactness of the snake yields cokerh ∼= coker g.

Lemma A.4. Consider the following diagram with exact rows and g an isomorphism. If f

and h both have trivial kernels, they are also both isomorphism.

0 A B C 0

0 A′ B′ C ′ 0

α β

α′

f

β′

g h

Proof. Apply the snake lemma to the diagram as follows.
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coker f 0 cokerh 0

0 A B C 0

0 A′ B′ C ′ 0

0 0 0 0

α β

α′

f

β′

g h

Exactness at coker f and cokerh yields the claim.

Lemma A.5. Let f : A→ B be an inclusion of Z-modules that is an isomorphism over Q.

Then A has finite index in B.

Proof. Consider the exact sequence

0 A B B/A 0
f

Since Q is a flat Z module, tensoring by ⊗ZQ gives the following exact sequence.

0 AQ BQ (B/A)Q 0
f

However over Q, f is assumed to be an isomorphism, so we also have

0 AQ BQ 0 0
f

Therefore (B/A)Q ∼= 0. This is only possible if (B/A) is a finite group. Therefore A has

finite index in B.

Lemma A.6. Let f : A → B be a map of Z modules that is an inclusion of finite index.

Then the dual map is also an inclusion of finite index.

Proof. Consider the exact sequence

0 A B B/A 0
f

Since Hom(−,C) is right to left exact, dualizing gives the following exact sequence.
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0 Hom(B/A,C) Hom(B,C) Hom(A,C)
f∨

Since B/A is a finite group, Hom(B/A,C) = 0 as below.

0 0 Hom(B,C) Hom(A,C)
f∨

This shows that f∨ is injective.

Returning to the original exact sequence. We can tensor by Q, a flat module, to get the

following exact sequence.

0 AQ BQ 0 0
f

Therefore f is an isomorphism over Q. The modules A and B are isomorphic over Q, which

implies Hom(A,C) and Hom(B,C) are isomorphic over Q. Therefore they must have the

same rank.

Then since rank is additive over short exact sequences, the cokernel of f∨ must have rank 0

making it a finite group as required.
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