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Abstract

In the recent years, images have played an increasingly important role in our society
Today, they are being used in a variety of applications, such as advertising, medical
diagr.osis, tracking, weather forecasting and television. However, the large informa-
tion content of images coupled with the limited resources available for storage and
transmission, create the need for image compression.

This thesis presents a general purpose image compression scheme — Adaptive S
pling with Predictive Encoding (ASPEN), which is essentially based on the Predictive
Compression model and Detail-based segmentation of images. ASPEN’s functionality
provides for either lossless or lossy compression, and it can also be tailored to meet the
particular needs of different applications.

A picture usually comprises of areas of varying detail. ASPEN first attempts to
detect these areas, and then it samples key poinits from them. An arca with greater detoil
requires many sample points to suitably represent it, whereas regions with lesser detail
can be represented with fewer points. These key sample points are then used to predict
the remainder of the image. Predictive encoding schemes are able to directly exploit
the dependency between neighbouring pixels within an image and hence are effective
in reducing the interpixel redundancy. Combining the use of adaptive sampling with
predictive encoding, ASPEN manages to achieve compression while maintaining the
deuired image quality. The performance of a prototype version of ASPEN is compared
to other compression techniques in terms of compression ratio and image quality. Some

applications for which ASPEN is particularly suited are also outlined.
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Chapter1

Introduction

Interest in image processing techniques dates back more than half a century, when
the first digitized images were transmitted across the Atlantic [3]. The limited speed
and storage capabilities of those early computers, however, were a roadblock to the
widespread growth of imaging applications. The recent improvements in high-speed
network technology coupled with the increased speed and storage capabilities of com-
puters have provided the necessary impetus for rapid growth in this ficld. We are
now able to manipulate images in ways heretofore only imagined. Today, it is not
uncommon to have workstations capable of displaying full-motion colour video in
real-time.

However, the large information content of digital images, requires immense com-
puting resources for processing, storage and transmission. Let us consider a single
picture of dimensions 512 x 512, that consists of 262,144 pixels. If the image is 24-bit
colour, it requires 786,432 bytes or just under 1 Mega byte of storage. Transmission
of this single digital image over a link with 9600 bps would take about 1.7 minutes
(including overhead). Real-time transmission of Digital Video requires 30 frames per
second, which equates to about 30 Mbytes per second. In High Definition Television
(HDTV) where image resolution is even higher, this figure is about 150 Mbytes per sec-
ond. The present fibre-optic network technology due to bottlenecks such as network
access and processing time, is not able to meet this requirement [5, 2, 18]. Clearly some

method of compression is necessary to reduce the volume of bits required to represent



the information in an image.

Image compression techniques are quite diverse, ranging from predictive to trans-
form based methods. All compression schemes take a raw digital image and convert it
into a format which requires fewer bits to transmit or store. Compression is a 2-stage
process. At one end, an encoder compresses the image into (hopefully) a smaller file.
The file is then stored (or transmitted) and reconstructed at the other end by a decoder.

A system that performs both these operations is referred to as a codec (coder-decoder).

1.1 Compression Algorithms & Standards

Algorithms

Compression algorithms can be classified into two categories: lossless and lossy, de-
pending on the method’s effect on the data oeing compressed. A lossless scheme,
such as traditional linear predictive coding, is able to reconstruct the original image
exactly after compression. Lossless compression, however, is not very efficient. A 4:1
compression ratio is considered very good [16].

On the other hand, a lossy method such as JPEG, alters the data during compres-
sion. Generally, lossy schemes can attain high compression ratios without a perceptible
change in the uncompressed image quality (visual quality of the image is a subjective
criterion). Lossy compression schemes are suitable for most non-critical image pro-
cessing applications, such as teleconferencing or mug-shot databases, where some loss
in image quality is acceptable. Lossless compression schemes must be used in appli-
cations where even slight visible errors are undesirable, such as medical images for
diagnosis.

Standards

Research community and the industry, have defined many standards for image com-
pression, each of which deals with different types of images and applications. The
JPEG (Joint Photographic Experts Group) standard is designed for the compression of
stillimages (grayscale or colour). For the lossless compression of binary (one-bit/ pixel)

images, a standard called JBIG (Joint Bi-Level Image Experts Group) has been devel-



oped. MPEG (Motion Picture Expert Group) generates standards for digital video
(sequence of frames in time) and audio compression. Some details of several image

compression schemes and standards will be presented in the next chapter.

1.2 Adaptive Sampling with Predictive Encoding ~ (ASPEN)

Detail-based segmentation of images and the Predictive compression model are the
essential underlying principles of ASPEN. In segmentation-based image compression,
the image is segmented, that 1s the image pixels are divided into mutually exclusive
spatial regions based on some criteria [9, 14].

ASPEN first attempts to segment areas of the image based on their detail-content.
A high detail-content implies that the region has rapidly varying gray levels, whereas
regions with low detail-content have almost constant or slowly varying gray levels.
ASPEN segments a region with considerable detail (samples more points from it) till
the region can be suitably predicted from the sample points or when it cannot be
segmented any further. Thus, areas with greater detail have more points sampled
from them and regions with lc~-er detail are represented with fewer points. These key
sample points are then used to predict the remainder of the image using a variety of

prediction methods.

ASPEN has a number of distinct advantages:

e ASPEN adapts itself to each image — automatically detecting areas of detail and

then only sampling key points (that are most representative).

o Adaptive sampling followed by predictive encoding can achieve the desired

compression ratio and image quality.

¢ Being a predictive encoding scheme, ASPEN can be utilized for cither lossless or

lossy compression.

ASPEN can be used to compress different images within several applications. For

images requiring lossless compression such as medical images to teleconferencing im-



ages for lossy compression, ASPEN is capable of adapting to each image and particular

needs of the application.

1.3 Organization of the thesis

Chapter 2 presents fundamental knowledge about image compression, followed by a
description of Traditional Linear Predictive Coding and JPEG compression methods.
Chapter 3 describes the design and implementation of a prototype version of ASPEN.
Experiments designed to search the ASPEN parameter space for a good setting, are
detailed in chapter 4. Performance results from the comparison of ASPEN with JPEG
and Traditional Linear Predictive Coding are presented in chapter 5. Some applications
for which ASPEN is particularly suited are outlined in chapter 6. Conclusions are

presented in chapter 7 along with some outlines for future research directions.



Chapter 2

Image Compression Methods

The large amount of data required to represent an image heavily taxes the computing
resources (cpu and memory), in turn limiting the power of image processing. Advances
in technology permit ever increasing image 1esolution (spatially and in gray-levels),
thereby creating the nee” to limit the resulting data volume. By removing the re-
dundancy present in most images, compression algorithms reduce the number of bits
needed to represent an image in a way which makes reconstruction possible.

A general algorithm for data compression is shown in figure 2.1.

binary code

Image .. rounded-oft
Elementg_L..Coefflc‘.ents —L'_>C0f~:ffj('r>nts ———-

o ojon

oo Y
N Z» 30

Figure 2.1: General Compression Algorithm

The image data are first mapped from the pixel domain to another domain (fre-
quency or spatial), using either Transform, Predictive or Hybrid compression schemes.
This step aims to reduce the information redundancy caused by high correlation (de-
pendency amongst pixels) present in the image data. The quantizer rounds off each
mapped datum to one of a smaller number of possible values. Most reduction in

bit voluine is achieved in this phase, at the expense of information loss. Finally the



quantizer output is coded using either a variable or a fixed length code. Variable
length codes use shorter codes for more frequent data, thereby increasing compression

efficiency, whereas fixed length codes offer ease of handling.

2.1 Entropy and Redundancy

In order to pick an appropriate image compression technique, image data properties
such as entropy and redundancy must be determined first.

Entropy is a measure of the degree of randomness in a set of random variables [3].
In coding applications, entropy represents the amount of information associated with
the set of coder input values. It gives a lower bound on the average number of bits
required to code thosc inputs. If an image has (i gray levels and the probability of
occurrence of gray level k is ’(k), then entropy I/ is defined as

G-1

no= =3 Pk)-log (P(k)). (2.1)
k=0

For any image, it is not possible to code the set of gray levels using less than // bits on
average. Therefore, the concept of entropy provides a performance criterion against
which we can measure any particular code.

The limit of maxintum achievable compression ratio - I then is,

N o= —. 2.2)

where b is the least number of bits needed to represent the image quantizatior levels.
Theoretical limits of possible image compression can be fcund using formula 2.2. For
example, let the entropy of an image be // = 3, where the image pixels are quantized
into 256 gray levels or 8 bits per pixel. This entropy value implies that the image data
can be represented by at most 3 bits per pixel without any loss of information. In this
case, the maximum compression any code would achieve is A’ = 8/3 = 2.6.
Information redundancy (r) is a central issue in digital image compression and is

defined as,

ro= b—H. (2.3)



Three forms of redundancies can be exploited in still-image compression, and

ASPEN particularly deals with only interpixel redundancy.

¢ Coding Redundancy
If the gray levels of an image are coded in a way that uses more code symbols
than absolutely necessary to represent each gray level, the resulting imagge is said
to contain Coding Redundancy. Assigning variable length codes to most and least

probable gray values removes coding redundancy.

¢ Interpixel Redundancy
Since the value of any pixel in an i'nage can be reasonably predicted from the
value of its neighbours, the information carried by individual pixels is relatively
small. Redundan-y existing in images because of the correlation present within

pixels is termed Interpixel Redundancy.

¢ Psycho-Visual Redundancy
Human eye does not respond with equal sensitivity to all visual information.
Certain information simply has less relative importance than other information in

normal visual processing. This information is said to be psychovisually redundant.

2.2 Encoding Techniques

All encoding techniques use special codes to represent bytes or groups of bytes, which
in turn substantially decreases the bit volume required to code the information. Ef-
fective encoding schemes aim to exploit patterns or special characteristics (skewed
distribution of values) in the data set. Some key encoding schemes are discussed

briefly.

2.2.1 Huffman Coding

Huffman coding is a statistical lossless cempression scheme which removes coding
redundancy in the data stream [6]. It saves on the average number of bits required to

code a message by assigning shorter code words to more frequently appearing items.

~3



Therefore, it can afford to assign longer bit strings to less frequently appearing items.

A Huffman code can be built in the following manner:
¢ Sort all items in order of probability of occurrence.

¢ Create a tree by successively combining two items of the lowest probability to

form & new composite item; probability of the new item is the sum of its parts.

¢ Beginningatthe topmost node of the tree, label each leaf with a "1" if its probability

is higher than that of the other leaf attached to the same node, and a "0" otherwise.

This algorithm produces a unique: code string for each data item. Since no code string
is the prefix substring of any other code, no separators are needed between strings in

order to perform decoding. This technique is used in most archivers (pkzip, zoo ... ).

2.2.2  Arithmetic Coding

Arithmetic coding is also a statistical compression scheme, that works by representing
anumber by an interval of real numbers between 0 and 1 [13). Each unique data item is
assigned a subinterval of [0,1], proportional to its probability of occurrence. To encode
a string of items, subintervals of the interval assigned to the first item in the string
are assigned to each data item. Next subintervals are assigned again to the interval
corresponding to the second item in the string. This is repeated until the last item in
the string is reached. Any real number in this final interval can be used to represent

the original string.

2.2.3 Dictionary Coding

The Dictionary or Substitutional class of compressors owe much of their existence to
the work of Jakob Ziv and Abraham Lempel in the late 70’s (I.Z78). The basic idea
behind Dictionary compression is to replace an occurrence of a particular phrase or a
group of bytes in a set of data, with reference to a previous occurrence of that phrase.

LZ78-based schemes work by entering phrases into a dictionary and when a repeat

occurrence of that particular phrase is found, the corresponding dictionary index is



used instead of the phrase. Several compression algorithms are based on this principle,
differing in the manner in which they manage the dictionary. Terry Welch’s 1.ZW
scheme [22], used in the UNIX “compress” program and the Graphic Interchange
Format (GIF) is the most well known.

The success of an encoding scheme depends on how well it matches the structure of
a given image. Therefore, the structure of the image must be determined first, tollowed
by choosing an encoding method that best fits that structure. However, it is difficult
to understand the structural properties inherent in pictorial data. Hence, the design of

an image encoder involves a certain amount of experimentation.

2.3 Still-Image Compression Schemes

Any of the above mentioned encoding schemes can be used for image compression.
However, since pixels within images usually do not follow any given pattern, encoding,
schemes on their own do not have much success in compressing images. Therefore,

other techniques discussed below have to be used in addition to encoding schemes.

2.3.1 Traditional Linear Predictive Coding - LPC

The Traditional Linear Predictive Coding scheme is based on the Differential Pulse
Code Modulation (DPCM) model, in which a pixel is predicted from a combination of

pixels already coded in the image.

Original Set of Pixel Values

128 129 130 127 125 128 127 129 130

128 -1 -1 3 2 -3 1 -2 -1
Difference Set

Figure 2.2: Differential Pulse Code Modulation

For example, assuming that the coding is done from left to right, the pixel to the left

can be used as an estimate for the current pixel, as shownin Fig 2.2. Then the descriptor

Y



fed to the encoder need only be the difference between the pixel being coded and the
pixel preceding it. Since in a coniinous-tone image the differences between one pixel
and the next are likely to be small, it is more efficient to encode the difference values
than to encode each pixel independently.

In the Traditional scheme, points immediately above and to the left are used as
predictors for estimating each pixel value. Fig 2.3 shows a digitized picture represented
by matrix f. Let f(in,n) be the element of this matrix that is in the n,;, column and

the n,, row.

m
1 2 3 4 >
1 % X x b
2 s X x x
{m-1,n-1)
3 x * »(m,n-1)
4 X X X »‘j':)v((rn,n)

(m-1,n)
n

Figure 2.3: Matrix f — A digitized picture

The pixel at (1. 1) is predicted using points (m —1.n—1),(m.n—~1)and (1 -1, n).

S n) —the predicted value and ¢(m ., 1) - the error value are:

ftm.on) = aflm =10yt a,f(m—=1.n— 1)+ a,flm.n—1). (2.4)

clmen) = flm,n)= f(m.n). (2.5)

where «,, «,, «, are image prediction model parameters and are set to minimize the
total estimation error, either 3" |« (1. n)| or 3 ¢?(1n. n). These parameters are calculated
based on the correlation of pixels in the image.

Itis apparent that if the gray levels in an image are known in the topmost row and
the leftmost column, the entire image may be reconstructed from the differential data
(1. n). This data for an image represents a smaller anount of information than the gray
levels in the original digitized image. This is because images generally contain areas

of slowly varying gray levels, and in these regions ¢(m. n) is very small.

10



Predictive compression algorithms are described in detail in [16, 11]. Many mod-
ifications of predictive compression methods can be found in the literature, some of

them also combine predictive compression with other coding schemes [1, 25).

2.3.2 Joint Photographic Experts Group - JPEG

The Joint Photographic Experts Group (JPEG - pronounced jay peg) has been working un-
der International Organization for Standardization (ISO), the International Telegraph
and Telephone Consultative Committee (CCITT) and the International Electrotechni-
cal Commission (IEC) — for the purpose of developing a standard for colour image
compression [12]. This standard describes a family of image compression techniques
amongst which the Baseline Sequential Lossy and the Lossless scheme appear to be the
most important.

The JPEG lossless standard is based on. the Traditional Linear Predictive model,
in which the value of a pixel is estimated from its surrounding neighbours. This
estimation (predicted value) is then subtracted from the actual value and the difference
is encoded using either Huffman or Arithmetic coding methods.  Lossless codecs
typically produce around 2:1 compression for colour images with moderately complex
scenes [21].

DCT-Based Encoder

8x8 Image

Blotkade ~ FDCT |~ Quantizer = Encoder =
v

e © e et . Compressedi
Re%fg’gmcted< - IDCT '~ ' DeQuantizer -  : Decoder = Data

DCT-Based Decoder
Figure 2.4: Baseline Sequential JPEG Algorithm
The JPEG Baseline Sequential Lossy scneme is based on the Discrete Cosine Trans-

form (DCT). The basic algorithm is described below.

First, the range of colours is shifted from [0, 2"] to [-2"~1, 2 1-1]. Next, the image



is subdivided into 8 x 8 blocks and the Forward DCT is applied to each of them. The
DCT is related to Fourier transforms, and transforms images from the spatial domain
to the frequency domain.
The FDCT used in JPEG is:
. 1 (2r + 1):171' 2y + 1)rw
Flu,v) = ZZI .y Ccos T -cos——lé——— (2.6)

r=0 y=0

where ('(u). ('(v) = % for u. v = 0;C"(u).C'(r) = 1 otherwise, [ is the input image.
The resulting transformed block is then quantized and coded using a Huffman
or Arithmetic encoder. To reconstruct a compressed image, the coded data is first
decoded, the Inverse Discrete Cosine Transform (IDCT) is applied to the 8 x 8 blocks
and the resulting values are shifted back to the original colour range.
The IDCT used in JPEG is:

] LA (20 + Num (2y + 1)ew
f(r.y) = Z () Zg w, v cos——Tf,————-cos 6 (2.7)

JPEG has been designed to exploit known limitations of the human eye, notably the
fact that small colour details are not perceived as well as small details of light-and-dark
areas. Thus JPEG is intended for compressing images that will be looked at by humans
(not suitable for machine interpretation). Furthermore, JPEG works well on images
containing natural or real-world scenes where colours change gradually. Because of
the nature of DCT-quantization, JPEG is not particularly adept at handling cartoon type
images (containing narrow colour transitions within large areas of the same colour).
The sharp lines contained in these images can become badly blurred.

A useful property of JPEG is that the degree of lossiness can be varied by adjusting
the compression parameters. The image maker can trade off file size against output
image quality. However, at high compression rates, images start appearing blocky

(because of applying quantization to 8 x 8 blocks).

2.3.3 Vector Quantization

The basic idea behind Vector Quantization is Shannon’s Rate-Distortion Theory, which

states that a better compression performance can always be achieved by coding vectors
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instead of scalars.

Applying this idea, Vector Quantization first divides the image into small blocks
each of which is represented as a vector [4]. These data vectors are then coded using
unique codewords from a codeword dictionary. The premise of the dictionary idea
is that some patterns occur more frequently than others in an image. Therefore, it is
more efficient to store these patterns in a Codeword dictionary. The vector codes are
storec! or transmitted along with the codeword dictionary. The advantage of Vector
Quantization is a simple receiver structure consisting of a look-up-table, but at the

expense of increased complexity at the coder.

2.3.4 Fractal Compression

Traditional geometry with its straight lines and smooth surfaces is not adequate to
represent natural objects such as trees, clouds or mountains. Fractal geometry with
its convoluted coastlines is able to model such objects more cfficiently [8). Fractal
Compression, based on fractal geometry, attempts to represent images by developing,
models based on fractal equations.

Fractal Image compression is a promising new technology, arguably superior to
JPEG. However, it takes a considerable amount of time to compress images. On the
other hand, JPEG can be used for real time compression of images. To become widely

accepted fractal compression will have to improve its speed of compression.

2.3.5 Pyramidal Compression

Substantial reduction in bit volume can be achieved by representing an image as a
pyramid [15]. In pyramidal based schemes, large image arcas of the same gray level
are represented in higher levels of the pyramid (quad-tree), without the necessity of
including lower level nodes in the image representation.

Pyramidal compression can be applied to the idea of Progressive image trans-
mission, which is based on the fact that transmitting the entire image data may not
be necessary under some circumstances. Therefore, in progressive transmission, the

higher pyramid levels (lower resolution) are transmitted first. The details, that is the
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lower pyramid levels follow later.

2.3.6 Experiments with Traditional LPC

Traditional Linear Predictive Coding (LPC) suffers from slope overload, which occurs
at regions where gray level values change abruptly. Experiments dealing with a new
predictive compression method [23], were conducted to remedy this problem. A one-
dimensional table was used to store exact pixel values for the locations where the
prediction error values are outside some range.

In related work {19, 20], a framework for a multi-phase linear predictive scheme
aimed at alleviating the effects of the slope overload problem is described. Difficult-
to-predict pixels are iteratively eliminated from the coefficient computation and the
LPC coefficients are refined accordingly in two phases. In all of these experiments, the
traditional linear predictive model was followed, that is the three points immediately

above and to the left were used as predictors for estimating each pixel value.

2.4 Comparison of Compression Methods

No image compression technique is a panacea that solves the myriad issues associated
with differentimaging applications. All compression techniques though effective, have
their pros and cons. Prediction based methods tend to be much faster than Transform
or Vector Quantization schemes and can be easily realized in hardware [17]. Transform
based methods better preserve subjective image quality and are the most insensitive to
channel transmission noise. Vector Quantization methods require a complex coder, but
offer a sirnple decoding scheme consisting only of a look-up-t2ble. Pyramidal schemes

are suitable for progressive image transmission.
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Chapter 3

Description of ASPEN

Existing compression schemes work by either transforming the image (JPEG, wavelets),
or by direct statistical redundancy removal (GIF). Each of these schemes has been
designed to work in limited domains, such as ‘lossy or lossless” compression of ‘binary,
grayscale or colour’ images. Unlike its counterparts, Adaptive Sampling with Predictive
Encoding (ASPEN) is a general purpose image compression scheme which is essentially
based on the Predictive Compression model and Detail-Based Segmentation of images.
ASPEN's functionality provides for either lossless or lossy compression. It is capable
of adapting to different types of images and the particular needs of a given application.

Fig 3.1 gives an overview of ASPEN.

o Binary String
Original Image data structure

- - (1) Herative
Ce Segmentation

(2) Prediction
Quantized
Values

Sample & SRR (3) Quantization o Input to
Errorlmage - - oo Symbol encoder

Bypass Quantization

Figure 3.1: Overview of Adaptive Sampling with Predictive Encoding
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Some salient characteristics of ASPEN are,

o The tirst stage, Iterative Segmentation, attempts to sample areas of the image based
on their detail-content. Segmentation of the image may be rectangular or square

and is represented efficiently by a binary-string based data structure.

e Sample points obtained in this stage are then used to the predict remainder of
the image, using prediction schemes ranging from Coefficient based to Bi-linear
and Splinal interpolation. Upon prediction, the error values (actual - predicted)

along with the sample points are stored in the sample & error image.

e Finally, Uniform, Adaptive, or Optimal quantization schemes may be used to
roundoff each error value to one of a smaller number of possible values. Output
from the quantizer is ready to be coded using efficient symbol encoders such as
Huffman or Arithmetic. The quantization scheme may be bypassed, which leads

to lossless compression.

In the following sections, Iterative Segmentation as well as various prediction and

quantization techniques are described in detail.

3.1 Iterative Segmentation

Quite often images are composed of areas with varying detail-content. A high detail-
content implies that the region has rapidly varying gray levels, whereas regions with
low detail-content have almost constant or slowly varying gray levels. By iteratively
segmenting regions of the image based on their detail-content, ASPEN attempts to select
a set of sample points, which are devoid of the redundancy caused by high correlation
present in image data.

For the purposes of segmentation, ASPEN considers grayscale images as surfaces
over square or rectangular domains, represented by a set of ordered triples (. y. z),
where (r. y) is the location of a pixel in the image, and : = [(x.y) is the value of the

graylevel at that pixel.
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The Iterative Segmentation algorithm is:
Iterative_Segmentation(/. horz. vert. threshold)
Input
I~ The input image to be segmented.
horz— Initial sampling rate in the horizontal (x) direction.
veri— Initial sampling rate in the vertical (y) direction.
threshold— Threshold value to check segmentation.
Global Variables
height, width - Dimensions of the input image /.
Local Variables
number_of_iterations— The total number of iterations to be performed.
x.y, k— For local processing.
Iterative_Segmentation()
number_of _ilerations = logz(fll.»l.\'(/mr:. rerl)).
for(k = 0;k < number_of _itcrations; kb + +) {
for(y = 0;y < height; y+ = vert) {
for(x = 0;a < width; 2+ = horz)
block = [(«&. y), (« + horz y), (o, y+ vert) (o + horz g+ vert )
if ((block previously marked scgment. further) or (b .- 0)) {
sample the four corner points of the block.
test block for further segmentation.

mark the block appropriately.

}
vert = vert/2;

horz = horz/2;

Return



test_block()
approzimate predetermined pixels in the block.
for (all approximated pixels)
if ({approcimated value — aclual value) >= threshold) then
return (segment_further)

End.

Some salient points of the algorithm are:

The number_of_iterations in this algorithm is determined by the greater of the
two initial sampling rates (horizontal and vertical). For instance, if the greater
rate is 32, then there will be log,(32) or 5 iterations, one each at rate 32, 16, 8, 4

and 2.

Each iteration segments the image into ((/icight - width)/(horz- rcrt)) number of
blocks. Shape of a block depends on the initial sampling rates and may be square

or rectangular. A block is represented by its four corner pixels,
[Crog)(ae+ horeiy) (weoy+ vert) (o + horz. y 4+ vert )].

For eachblock, it is first determined whether it is a sub-block of a block previously
marked for segmentation (except in the first iteration). If it is, corner points of

the block are then sampled.

Theblock is then tested for its detail-content. In this phase, previously determined
pixels in the block are approximated using the four corner points of the block.
The approximation method can be determined by the user at runtime. If the
approximation error is more than the thireshold specified by the user, the block
is marked segment further. Otherwise it is not necessary to segment the block

further, as the approximation errors lie within the acceptable range.

The sampling rates are then divided by 2 and the process is repeated.

18



3.1.1 Demonstration of Sampling

(a) original image (b) dense sampling

(¢) medium sampling (d) sparse sampling,

Figure 3.2: Demonstration of sampling

Parameters such as horizontal & vertical rates, threshold can be varied by the user to

control the sampling (segmentation) of the image. Sparse, Medium to Dense sampling

can be achieved. An example is presented in Fig 3.2.
(a) - is the input image to be sampled.
(b) - horz = vert = 64, threshold = 20 - dense sampling.
(c) - horz = vert = 32, threshold = 40 - medium sampling.

(d) - horz = vert = 16, threshold = 80 - sparse sampling.



3.1.2 Data Structure to Represent Segmentation

A binary-string based data structure has been designed, to represent the segmentation
of the image in a compact manner. A schematic of the data structure is presented in

Fig 3.3.

Binary String representing this segmentation is:

lteration # String
1 0111
2 0100 0110 0111
3 0000 0100 1110 1111 1010 0011

Figure 3.3: Data Structure to represent Segmentation.

If a block is to be segmented further, a ‘1’ is appended to the string, otherwise a ‘0’ is
appended and the nextblock is processed. This binary string follows the same order as
the segmentation itself, as described in the Iterative Segmentation algorithm - from left
to right first and then top to bottom. In order to reconstruct exact segmentation of the
image, all that is required are the original dimensions of the image, initial horizontal

and vertical rates and the binary string.

3.2 Prediction Schemes

The Iterative Segmentation  scheme, segments the image into square or rectangular
blocks, each of which has a low detail-content. Each block, which is represented by

its four corner pixels, is then approximated using one of the prediction methods, as



shown in Fig 3.4. The prediction method to be used can be determined by the user at

Prediction Schemes:
1. Bi-Linear Interpolation
2. Two-Phase Interpolation Pixels within the block

are Predicted by the
3. Two-Phase-Extended Int. four cornos pm{“s

4. Splinal Interpolation
5. Correlation-Based Prediction.
6. Refined Coefficients

Figure 3.4: Prediction of a Block.

runtime.

In the design of ASPEN, the following prediction schemes were studied.

3.2.1 Bi-Lincar Interpolation

If the desired point (which is being predicted) lies within the points being used as
predictors, interpolation can be used. The simplest interpolation in two dimensions is

Bi-Linear Interpolation, which is depicted in Fig 3.5.

(x.y,) wdlw (x.y)
L J [ J

\ b
p {5 (xposypos)

de desired paint

(x,y)® ~g3e .(X.;-v.,)

Figure 3.5: Bi-Linear Interpolation.

The formula for Bi-Linear Interpolation is,

Sleposcypos) = [lar.g) +(dl - awpos) + (d2 - ypos) +(d3 - rpas - yposy. (3.1)
Al = flr2.42) = [l
d2 = flr3.y3) — [l )

d3 = f(ra.ys) — f(r3.y3)

where f(.epos, ypos) is the approximated value at the desired point.



The coordinates («pos, ypos) must lie within the range [0,1]. Their value is calcu-

lated relative to the coordinates of the corners of the block.

The Bi-Linear Interpolation algorithm is:
Bi-Linear Interpolation(/. (xy, y1). horz, vert)
Input
!/ — is the block of pixels to be predicted.
(1, 1)~ coordinates of the upper left corner of the block.
horz— width of the block.
rert— height of the block.
Output
A~ approximated values for block /.
Local Variables
(r2, y2)— coordinates of the lower right corner of the block.
!, J— counter variables.
Bi-Linear Interpolation()
ry =&y + horz.
Y2 =y + oert.
for(i = ;i < i+ +)
for(j = y1;j < y2ij + +)
M jy=billincar(1.(i. j). horz, vert)
Return
The four corner pixels of the block are used to interpolate all points within that
block. The surface approximated using Bi-Linear Interpolation is linear along each
edge of the block and bilinear in the interior. Bi-Linear Interpolation offers reasonably

good results and ease of implementation.

3.2.2 Two-Phase Interpolation

For most approximations, Bi-Linear Interpolation is considered close enougl for govern-

ment work [13]. This scheme predicts pixels independent from each other, and in doing

N
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so fails to exploit the correlation present within the pixels in an image. Hence it is not
considered very smart. A new scheme, Two-Phase Interpolation, has been designed to
adapt to the changing scene (variation of gray levels) within a block and thereby take

advantage of the interdependency which exists between pixels.

(x"y‘)o..___ o(x"'y‘) ,__.o(x'""” (¥ @ »“6”« o (xy)
o & S N\ P
S Y ~ ~ -~ Y
(x.y)® CelTxy)  e(x.y) (x.y)e® /-Q‘.-V-) o(x.y.)
& ' R [ P ~ 4
5 ~ G
a4 aa
x.y)® Cy) %y o) " ®x.v)

Predict central pixel first,

Predict rest of the four pixels,
calculate differences

using differences

(a) First phase (b) Second phase

Figure 3.6: Two-Phase Interpolation.

The Two-Phase Interpolation algorithm is as follows:
Two-Phase Interpolation(/. (., y1). horz, vert)
Input
I - is the block of pixels to be predicted.
(1. y1)— coordinates of the upper left corner of the block.
horz. vert— dimensions of the block.
Output
-A— predicted values for block /.
Local variables
(k. yr)— for local processing, k =5,6,7,8,9.
(dy)— for calculating differences, k = 1,2, 3, 4.
Two-Phase Interpolation()
if ( horz & vert ) are smallest possible
then Return.
==== [nitializing ====

x5 =ay+ horz/2; ys = y1; we = 015 Yo = i + 0crt]2;

ey =yt horz; gy = g1+ 0t [2; wg =y + horz[2; gy oy o oerl;
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7=y + horz[2; yr =y + vert/2;

==== First Phase — Predict Central Pixel and Calculate Differences ====
ACrz.yz) = bidineartl (a7, y7) horz vert);

di = abs(f(a7.y7) = flar ye)); k=1.2.3.4.

==== Second Phase - Predict Rest ====

P5) = (a1 -da+ r2-dy)/(dh + da); p(6) = (w1 -da + x3-dy)/(ddy + d3);
P8) = (w2 -dy+ wa-da)/(da+ dg); P(9) = (wa-dy+ xg-dz)/(ds+ dy);
==== Recursively predict the sub-blocks ====

Two-Phase Interpolation(/. (1. y1). horz/2. vert /2);

Two-Phase Interpolation(/. (.rs. ys). horz /2. vcrt [2);

Two-Phase Interpolation( /. (6. ye). horz /2, vert [2);

Two-Phase Interpolation(/. (7. y7). horz /2, vert [2);

Return

Some salient steps in the Two-Phase Algorithm are:

¢ In the first phase, the central pixel (.. y7) of the block, is predicted from the
four corner points, using bi_lincar interpolation. Differences between the four
corner pixel values and the actual central pixel value, are then calculated. These
differences give a good indication of the direction in which the pixel values within
the block are skewed. This information is then utilized for better prediction of

the remaining pixels in the block.

e In the second phase, four other pixels ((r5.ys). (6. ¥6)- (8. yg). (*9. yo)) within
the block are predicted using the difference values. The block is then subdivided
into four equal-sized blocks, each of which is then approximated recursively,

using the same procedure.

3.2.3 Two-Phase-Extended Interpolation - (2PE)

Two-Phase-Extended Interpolation, as the niame suggests, is an extension of the Two-

Phase scheme, differing from the original only in the way it calculates the difference-
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Figure 3.7: Two-Phase-Extend.:d Interpolation.

Unlike the Two-Phase scheme, two corner pixels are used for calculating cach
difference value in the 2PE model. These difference values are then used to predict the

remaining pixels in the block, as shown in Fig 3.7. For instance,

diz = Abs(f(r7.47) = (05 ([lor o)+ flaayn)))). (3.2)
dag = Abs(f(ar7.y7) = (05 (frz.m) + [egoya)))). (3.3)
Aasoys) = (dog- floeron) + dis- fracy2))/(dia 4 doy). (3.4

where 13, da4 are difference values calculated using corner pixels and the actual value
for the central pixel. -A(rs.ys) is the predicted value calculated using the difference
values and two corner pixels.

The premise of 2PE is that, taking more corner pixel vatues into consideration while
calculating the difference values, should give a better indication of the distribution of
pixel values within the block. This information in turn should provide for a better

approximation method.

3.2.4 Splinal Interpolation

Splinal Interpolation attempts to fit a smooth curve between the sample points, whereas
Linear Interpolation fits a straight line through them [7]. This difference is depicted
in Fig 3.8. In some continous-tone images, where gray levels vary gradually, splinal

interpolation scheme may be able to better model the image surface.
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AV AVS

(a) Linear Interpoiation {b) Splinal Interpolation

Figure 3.8: Difference between Linear and splinal Interpolation.

In this implementation of ASPEN, Quadratic function spline is used to model the
image surface. This function is defined by the formula.

flriy) = Co+Crr+ Coy + (30 + Cyry + Csy”. (35)

where ¢, 's are the coefficients that uniquely define the quadratic function, and f(.r. )
is the value of the function at (.r. y). In order to calculate value of the (';’s, at least six

sample points are required. This system of linear equations must be solved,

. 2, 2 v
Lo yo of Toyo yh Co 4o

105 ys 42 wsys y2 (s 5
ASPEN samples six points from each block, which are then used to calculate the unique
coefficient values. Using these coefficients the remaining pixels within the block are

approximated.

3.2.5 Correlation-based Prediction

{(m.n-1)

(m,n)
(m-1ne  w o= . emln (m,n):
(mB+1)

Figure 3.9: Coefficient based Prediction.

Correlation-based Prediction is a smart prediction scheme, that gathers information

from the image and then uses it to predict the image more efficiently. It calculates four
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coefficients (("1. (2. D1. D3), two each for the horizontal and vertical directions, based
on the interpixel redundancy present in images. These coefficients are calculated tor
each possible block size in the image. Individual blocks in the image can then be

predicted using these coefficients in the following manner.

Jlmony = flm=1.0)-Cy+ flm 4+ 1.0)- Cahori~ontal) 3.0)

flm.ny = SO =1 -Dy+ flnon+ 1) - Daecrtical) (3.7

The formulae for calculating these coefficients are,

Ry, —1n)-Riom+ Y noan+1,0)— Riun = 1.1, nmok 1. n)-ll’(ln.u.m b))

(1= ) ’
! Rim—1.n.om—1,u) ROon+1.n.m+1.n)— Rim—1.n, w1, u)-ln‘(m [ SN TI P TR TS
T Rim =1 u.m=1n)y-Rm . n.m+1.0)—R(m—1,n. Lot 1. H)-Il'(IH.II.III 1.n)
- =T, nom—=1.0)- R+ Ve m+ 1,0y — R — 1o+ 1. n)»ln’(m Voo v Lo
Dy = Rimon =T mn)-Rim.n+ V1 mn+1)= Rn.n-—-1, mon 1) - R, n,mon 4 1)
' Rimon—=T1an.n =1 Rin.n+ 1m0+ 1)~ Rm.n —1.m.1 + I) R oo 1)
D = R =1 mon=1)- Ron.n,mon+ 1) = R, n — l.u/ " l) RO Voanon)

Rmn =T mon~1)-RGn.n+ Y, u+1)— R, w— 1.t l) ‘/1'(m.n Lot

where (1. y1. .02 y2) is the autocorrelation function of the real random to which the

image belongs, and is defined as

Rieryin.eaiyp) = D [lrieg) - [laay2) (3.8}

A proof for the formulae of ('} and ¢ 2 is presented here. Similar proofs can be obtained

for 127 and Ds.

fm ny=flm =1y Cr+ fl+ 1on) - (.
[ (mon) = flm.n )]2 (error over the entire image)
G =S [JOmon) = (Flm = Ton)- €y b flm 4 1oy o))
("1 and (', must be calculated such that the error is minimum, hence the first derivative
with respect to the coefficients is equated to zero.
71('—] =S RA=flmony+Cy-flm=T.uj+ 9 [l + Tomyy- Sl - Youjl 0.
=X o) fln = 1oy + VS f2n = Vo) + CoS2 [ Jm 4 Tony- flar 1ouj] O
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= [flmomy fln =1om)] =5 fHm—=1.n)+CY S oflm+1n)- f(m - 1.0)].

Using equation 3.8, we get
fimonom—1.n)y = Cyp-Rm—=1.n.m=1.0)+Co- Rim+1.n.m— 1. 1n}).(3.9)

Similarly for ("

/IT =00 (2= Slmony+ Oy flm = Ton) 4+ O fim + 1)y - ffm + 1.0)] = 0.

=) fOm+ L) + Ca 5 P+ Loy + Cy 3 [f(m = 1on) - f(m + 1.0)] = 0.
= 30 [flmony- flm+1.m)] = Coo & A+ 1o+ 5 [flm =1.m)- flm +1.0)].

Using equation 3.8, we get
Rimen.m+ 1.0y = Cr-Rim=Tn.m+1n)+Co- Rim+1.n.m+1. nX3.10)

Solving the two equations 3.9 and 3.10, with two unknowns 'y and (', we get the

previously defined values for ('} and (2. Hence the proof.

3.2.6 Refined Coefficients

In the correlation-based prediction scheme, coefficients for each block size are cal-
culated using the entire image. However, due to the nature of the segmentation in
ASPEN, not all pixels in the image play a role in the prediction of each block size, as

shown in Fig 3.10 .

uThese pixels don’t play a role
in the prediction of y~sized blocks

AN
These pixels don't play a role
in the prediction of x—sized blocks

Figure 3.10: Refined Coefficient.

In the Refined Coefficients scheme, only pixels that play a role in the prediction of a

particular block size are used in the calculation of coefficients. For example, the pixels
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that define smaller sized blocks don’t play a role in the prediction of bigger blocks,
and hence should not be used in the calculation of coefficients for these blocks. Intu-
itively the refined scheme should exhibit an improvement over the previous coefficient

calculation method.

3.3 Quantization

A quantizer is a device whose output has only a limited number of possible values.
Each input is forced to take one of the allowable output values. Quantization is an
irreversible process because, given the output value, it is impossible to determine the
exact input value.

Uniform (equal) and Optimal (unequal or tapered) quantization are the two meth-
ods that exist for quantizing data values. Both these schemes have been implemented in
ASPEN. Another scheme, Adaptive quantization, that takes advantage of the ASIPEN-
sezmented image has also been developed. The user may specify the preferred quan-

tization scheme at run time.

3.3.1 Uniform Quantization

w» Quantizer output fevels

Q Q@ Q Qyx
[} [} [} [
| 5 1 2 [ g 2 2 1 [
r — ' ' M v v v ' Decision
Z, Z, Z, Zie Levels
H; Sample Value Range >H;:

Figure 3.11: Uniform Quantization.

Image pixel values are said to be uniformly distributed if they occur with equal fre-
quency in the image. Uniform quantization, which divides the input range into equal
sized blocks, is the best and the least complex solution for such a situation. Asis shown
inFig 3.11, theinputrange //1. /1 is divided into A equal sized blocks ( Zy. Za. ... Z1.41 ).

The quantizer output levels (Q;. Q3. .... Q) lie midway between the decision levels as



is shown in the following formulae.

Zi = Qe+ Qi)/2. (3.11)
Qi = (Zr+ Zie1)/2. (3.12)

3.3.2 Optimal Quantization

When the sample values in a certain range occur frequently while others occur rarely,
it would be more efficient to use quantization levels that are finely spaced inside this
range and coarsely spaced outside it. This would increase the average accuracy of

quantization without increasing the total number of levels.

A
Samples take values more
often near the center of

% arange H1H2
E
ks
[72]
2
g%
gm Tapered Quantizer
@ output levels
o Q Q Qs Qy
[}
1 | o | 1 1 1441 1 § ] 1
A v v v Ty vy Y A v v ' DeciSiOn
51 22 2 Zk+1 | avels
H™ Sample Value Range >H2

Figure 3.12: Optimal Quantization.

For a given number I\’ of output levels, the decision levels 7, and output levels Q)

must be determined such that the mean square quantization error é2 is a minimum.
N Zrat
63 = Z (2 — qe)? - p(z)dz (3.13)
k=17 2k
where p( ) is the probability density function for the input sample. To minimize 2 for
a given K, partial derivatives of 42 with respect to Z; and Q. are equated to zero. The

derived formulae for Z; and Q. are:

Zi = (Qr-r+Qi)/2. (3.14)
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Zi 1 Zk
[ " :,.,,(;)(1:] / [/ “,,(:).1:]. (3.15)
Zk JZy

For an optimum quantizer, the decision levels (7;) are located halfway between
the output levels (Q 1) while each Z is the centroid of portion of p{ =) between (7)) and

(Zr41)-

Steps involved in optimally quantizing a given input sample are:
¢ Pick an appropriate value for Q;.
o Then calculate the succeeding Z;'s and Qs by using equations 3.14 and 3.15.

¢ If the calculated value of the last output level (), is equal to the centroid of the

area between Z; and 7,1, then it is the correct solution.

o If Qi is not equal to the appropriate centroid, the calculation must be repeated

with a different value of ;.

The search for the correct value of ()1 can be systematized so as to yield correct
results in a short time. A number of different ways to design and implement optimal

quantizers can be found in [10, 24].

3.3.3 Optimal versus Uniform Quantization

Table 3.1 presents results from the comparison of Uniform with Optimal Quantization.

Tests were conducted for image Lena at quantization levels 2,4, 8 and 16.

| Number of Levels [ Uniform | Optimal [ Percentage ]

2 3.94 4.40 11.67
4 7.45 9.77 31.14
8 14.62 17.40 19.01
16 28.42 29.99 5.52

Table 3.1: Optimal versus Uniform Quantization

Number of Levels is the number of levels the image is quantized into. Uniform
and Optimal represent the SNR (Signal-to-Noise Ratio) values for Uniform and Opti-
mal quantizations, respectively. Percentage represents the amount by which Optimal

outperforms Uniform. Examples from these tests are presented in Fig 3.13.



(c) optimal - 2

(d) equal - 4

(g) optimal - 8 (h) equal - 16 (1) optimal - 16

Figure 3.13: Examples of Optimal and Uniform Quantization

3.34 Adaptive Quantization

Both Uniform and Optimal Quantization schemes treat the image to be quantized as a
single-entity, and therefore are not able to take advantage of the segmentation produced
by ASPEN. However, in some cases it may be more efficient to treat blocks of the image
differently. A new scheme, Adaptive Quantization has been designed to accomplish it
in an efficient manner.

ASPEN segments the image into square or rectangular blocks of varying sizes, each

of which is at least locally smooth and thus may be predicted within reasonable error.
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Error values within these blocks vary considerably, and are primarily dependent on
the size of the block. Since the corner pixels used for prediction in a large block lie
further away, it is found that bigger blocks have larger errors compared to blocks of

smaller size.

Quantize blocks
differenti
based on their size

Figure 3.14: Adaptive Quantization.

To take advantage of this fact, Adaptive Quantization deals with cach segmented
block separately, quantizing it based on its size. Bigger blocks are quantized into fewer
levels as the error values contained in them are larger, whereas smaller blocks need to

be quantized densely.



Chapter 4

Search in Parameter Space

A key feature of ASPEN is that it can be customized to meet the specific needs of a user.
In order to achieve this facility, a user can directly input the parameters that control the
functioning of ASPEN, thereby acquiring the desired compression and image quality.

ASPEN parameters can take a wide range of values; a detailed description follows,

¢ horz-rate & vert-rate
These are the initial sampling rates in the horizontal and vertical directions,
respectively. These rates must be powers of 2, and are selected from the range

€ {4.8.16.32.64.128) .

e upper-thresh & lower-thresh
These represent the threshold values used to check segmentation at the first and
the last iterations, respectively. The values of these thresholds are picked from

the range € {0.255}.

¢ num-points-to-check
This parameter decides the number of points that will be approximated when a

block is being tested for further segmentation. Values it can take are {5.9} .

¢ prediction-method
Prediction scheme to be used is determined by this parameter. One of the fol-

lowing schemes may be used, { bi-linear, two-phase, two-phase-ext, corr-coeffs,
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refined-coeffs, spinal }.

¢ quantization-method
This parameter determines the quantization to be used. Choices are { optimal,

adaptive, equal }.

¢ num-levels
This determines the number of output levels of the quantizer. Set of values lies

in the range {0.256} .

Experienced users of ASPEN, might want to experiment with the parameter values
in order to achieve higher performance. ASPEN allows them this freedom. However, a
novice user (lacking the experience to vary parameter values) might be satisfied with a
good setting for the parameters, at which ASPEN performs at or near its peak. In order
to choose a good setting for the parameters, a systematic search of the ASPEN parameter
space was conducted. Fifteen images representative of several different image types
were used in the experiments. The search results presenting the good settings of ASPEN
parameters, are reported as a guideline for future users. However, the user can casily

alter any of these parameters to achieve higher performance in a particular application.

4.1 First Phase - Wide Range Search

The parameters quantization-method and num-levels, relate to lossy compression. They
do not have any effect on the sampling of the image or the quality of prediction, and hence,
it was decided to leave them out of the experiments for parameter search.

In the first phase, ASPEN was run over a wide range (covering most of the allow-
able range) of parameter values. The results obtained were quite comprehensive and
demonstrated a distinct trend in ASPEN’s performance. They helped locate a useful
range of values that the parameters should take. The values that the input parameters

took in these runs are presented in Table 4.1,
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| Parameters | Values ]
Horizontal & Vertical rates | 8, 16, 32, 64, 128.
Upper & lower thresholds | 0, 50, 100, 150.
Num_points_to_check 5,9.
Prediction_method All six schemes.

Table 4.1: Setting of ASPEN parameters in the First Phase

There are 5x5x4x4x2x6 = 4800 possible combinations of these parameter values,
and ASPEN was run once for each setting. To cover the wide range of image types
(facial, satellite, aerial, landscapes, close-ups, generated), 15 representative images
were picked for testing. The results obtained were tabulated; each table contained
400 numbers (25x16 - for the rate and threshold combinations). Twelve such tables
were obtained for each image (2x6: 2 for the num-points-to-check and 6 for each of the
prediction schemes).

vertical RATE honzonal

. R pess A B
8 4 M\ 16 az 64 {28
B163264 128 8163264128 B 163264128 8163264 128 8163264 128

o X X X %X x X X X X X X X X X X x X X X X X X X X x
B ox x x xx . xx x x x X X x % % X X ¥ X X X X X X X
g-/ -~ X X X x x ¥ X X X X X X X X X x X X x x d
o
v ox o x x x x X X X * ox X X X X X ., X X X X X X X X X X
o x x x x x x x x X x x X x %X x X X X x x x x X x
l B % x x x x X x X X X X X X X X x X X x x X X X X X .
2= - X X X o o w X X X x
§xxxxx X X X X x x x X x x x x X X X X X XX X X X oo owae X % X X X
Y ox ox x x x X X %X X x x X x X X x x % x X X X X X X X X X X o 0 e X X X X X
-
O X X X X X x X x X X X X X X x X X X X -
X B owxoxoxox x x x x X x x x x x x x x X X x
Lo §8 W XX KRNy g e XXX XX
é!xxxx X X X X X X x x X X X x X X X X X X e
S = X X M X X X x X %X X x x x X X X x x X X X X » IMAGE - with pixels
-
§ e X X X X X X X X x x x X x XK X K X X X X X X
:’SSxxxxx X x X X x x X x x X X X x X X X X %X X
TE X x x x x X ® X X x x 2 X x x x X X x x
.S_KXXXX X X X X X X X X X > X x x x

TABLE- with numbers
Each Value in the table corresponds to a pixel in the image.

Figure 4.1: Table represented as an image

For demonstration purposes, it was decided to present the information contained in
the tables using grayscale images. Visual information (an image with light intensities)
is more effective in demonstrating the trend exhibited by ASPEN's parameters (shown

in Fig 4.1).
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The transformation of information from the tables to images was achieved in the

following way.

¢ The maximum and the minimum values in the tables were first detected. They
were then assigned grey level values at the extremes of the 8-bit grey level scale,
thatis 0 and 255.

¢ Remaining values in the table were then assigned a grey level value, correspond-
ing to their distance from the maximum and the minimum values, as presented
in Formula 4.1. In this way a light intensity value is obtained for cach number in
the table.
X —min

Graylevel(for table value X) = —————— . 256, .1)

maxr — nin

Results for three images, obtained in the first phase, are presented in Figures
4.2, 4.3, 4.4. Search results were similar for all images. Each figure contains five
pseudo images, one each for the five prediction schemes - Two-Phase, Two-Phase-Ext,
Bi-Linear, Corr. Based and Refined Coeffs. All images represent 9-point division.

Darker areas in these pseudo images represent better performance of ASPEN.

(a) 2-phase (c) Bi-linear

(d) Corr Based (e) Ref Coeffs

Figure 4.2: Demonstration of Trend - Image1 - Wide Search



(a) 2-phase (b) 2-phase-ext (c) Bi-linear

(d) Corr Based (e) Ref Coeffs

Figure 4.3: Demonstration of Trend — Image2 - Wide Search

(

(d) Corr Based {e) Ref Coeffs

Figure 4.4: Demonstration of Trend - Image3 ~ Wide Search

Results indicated that ASPEN performs better when the sampling rates are (32, 64,
128). Atlow sampling rates more points are sampled, which in turn reduces the level of
ASPEN's performance. It was also noticed that performance is better if the horizontal
and vertical sampling rates are equal (square segmentation). The optimum range for

the thresholds was narrowed down to 50-150. Lower threshold values represent lesser
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prediction and more sampling. Performance of ASrEN at 5 and 9-point division is
quite close, however, for most cases 9-point division gave slightly better results. Of
all the Prediction Schemes tested, it was observed that Two-Phase and Bi-Linear gave

the best results, followed closely by the Two-Phase-extended scheme.

4.2 Second Phase - Fine Tuning

The second set of runs were designed to fine-tune the parameters, that is focus into the
exact setting where ASPEN's performance is good (at or near its peak). The values that

the input parameters took in these runs are presented in Table 4.2.

[ Parameters | Values ]
Horizontal & Vertical rates | 32, 64, 128.

Upper & lower thresholds | 50, 75, 100, 125, 150.

Num_points_to_check 9. L
Prediction_method Two-Phase, Bi-Linear, Two-I’hase-Extended.

Table 4.2: Setting of ASPEN parameters in the Second Phase

ASPEN was run 375 times for each image (once for each parameter setting =
5x5x3x3). The results obtained were tabulated; each table contained 125 numbers.
Three such tables were obtained for each image (one each for the three different pre-

diction schemes located in the first phase).

RATE
32 64 128
gox x x
= x x x
L - = x x
Wy * x )
lower - x x o
N ] x x x
o N X x x x ® %
a‘ ® B2ox x x % % x
=-('; o X x »n X X
ﬁ 4 H 3 x x x X
w £ - -
[- 4 b :
E - RASE I
® ox x x i v
35 x x x IMAGE - with pixels
L x x x
upper T W x X x
B N x x

TABLE- with numbers

Figure 4.5: Table represented as an image

Again for demonstration purposes, the information contained in tables is presented



in visual form (pseudo images), as is shown in Fig 4.5. Results for the three images,
obtained in the second phase, is presented in Fig 4.6 (a), (b), (c) represent the results

for Image - 1, (d), (e), (f) for Image -2, and (g), (h), (i) for Image - 3.

() (h) (i)
2ph 2pe Bln

Figure 4.6: Demonstration of Trend - Fine Tuning

Although the performance at rates 32, 64 and 128 is quite close, it was observed that
rates 32 and 64 were consistently better. Good range for the thresholds is still 50-150,
however, it was detected that ASPEN performs better, whenever the value of lower

threshold is greater than the value of higher threshold. The user can use any value
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between 50 and 150 for the thresholds. Also, Two-Phase scheme emerged as the best

prediction method. The optimal setting for ASPEN parameters is depicted in Tab 4.3.

| Parameters | Values ]
Horizontal & Vertical rates | 32, 64. l
Upper & lower thresholds | 50-150 (lower > Upper). {
Prediction_method Two-Phase. |

Table 4.3: Optimal Setting of ASPEN parameters



Chapter 5

Performance Comparisons

Since ASPEN can be used for both Lossless and Lossy compression, its performance
was tested and compared with the most widely used standards in these areas, Linear
Predictive Coding (lossless) and JPEG (lossy). Several measures can be used toevaluate
compression algorithms, and the merits of some are described first. Finally, results from

the performance comparisons are presented.

5.1 Performance Measures

The performance of compression algorithms is highly image dependant. Severai rite-
ria can be used to measure the performance of compression algorithms, and the relative
itnportance of each depends on the needs of the application (for which the compression
algorithm is required).

Most commonly used measures are compression ratio, image quality and speed of com-
pression/decompression. These measures are easily quantifiable. Some other criteria that
cannot be directly measured are consistency of compression, ease of hardware implementa-

tion and standardization.

5.1.1 Compression Ratio

Compression ratio is the most significant criterion used for measuring the performance

of compression algorithms. It is simply the percentage of savings in the number of
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bits required to represent the data. For most algorithms it is difficult to determine the
compression ratio beforehand, as it depends on the individual characteristics of the
image being compressed. Images with greater detail generally give lower compression

ratios. Compression ratio /' is,
K = b/l 5.0

where b is the least number of bits needed to represent the image quantization levels
and /1 is the entropy of the image. Entropy gives a lower bound on the average number
of bits required to code a s2t of input values, which is closely achievable by Huffman
[3]. Ttis evident from formula 5.1, that if entropy of an image is known, compression
ratio can be calculated easily.

Since this version of ASPEN was intended to be a prototype, a symbol coder
such as Huffman or Arithmetic was not implemented. Therefore, the actual storage
required for ASPEN compressed images was not calculated. Instead entropy of the
error image was calculated which gives an upper bound on the amount of compression
possible (closely achievable by Huffman). Hence entropy has been used to substitute

compression ratio in all the results presented.

5.1.2 Fidelity Criteria

Fidelity criteria provide a means of quantifying the nature and extent of information
loss due to compression. These criteria are applicable only for lossy compression
schemes.

If the loss of information can be expressed as a function of the original and the
decompressed image, it is said to be based on an objective fidelity criterion. Examples of
such criteria are mean-absolute-error, root-mean-square-error and signal-to-noise-ratio.

Let f(z,y) represent an input image and f(x,y) denote the decompressed image.
Let A! and V be the dimensions of the image. For any value of = and y, the error (., y)

is defined as,
e(x,y) = fle.y) - fle.y). (5.2)

This forms the basis of all objective fidelity criteria.
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The root-mean-square-error is the square root of the squared error averaged over the

M x N array, or

A-1N-1 172

Coms = M ¥ 3N ay)?| (5.3)

r=0 y=0

A characteristic of the mean squared error is that it accentuates large errors in individual

pixels. A closely related measure, the mean absolute error may be used instead,

M-1N-
Cabs = A] N JZ—:() UZ() l( (54)

The signal-to-noise-ratio is the most widely used measure for image quality. For the

decompressed image it is defined as,

. 1/2
A -1 N-1 2
a7 _ r=(0 u=0 f T, J)
SNl = | SRS | (55)
r=0 J 0 ’j

The numerator is the output or the decompressed signal. The denominator term is
the error in a pixel within the image and has a value of zero for the pixels that are not
altered during compression.

Objective fidelity criteria offer a simple and convenient mechanism for evaluating
information loss. However, evaluating image quality through a human observer may
be more appropriate, as most decompressed images are ultimately viewed by human
beings. Such evaluations are said to be based on subjective fidelity criterin and may
be accomplished by showing the decompressed image to a cross section of viewers
and averaging their evaluations [17]. However, individual opinion of the quality of a
particular image varies considerably, and accurate results based on subjective testing

are difficult to obtain. In this thesis, only objective fidelity criteria are considered.

5.1.3 Compression Time

Many imaging applications such as teleconferencing, require real-time processing and
transmission of images. Compression/Decompression time is the key factor that de-
termines whether any algorithm is suitable for applications with such stringent re-

quirements.



A number of variables affect the time required to compress/decompress images
using any algorithm. They may be the particular implementation, platform being used or
time required for I/O. Implementation of algorithms on hardware generally outperform
software implementations.

This version of ASPEN was intended to be a prototype. It is not a fully functional
image compression/decompression system yet. Many memory and speed optimiza-
tions will have to be performed in the future versions. For that reason, this thesis does
not present any results based on compression time. It must be noted that Prediction
based methods (like ASPEN) tend to be much faster than Transform based schemes

and can be easily realized in hardware [17].

5.2 Characteristics of the Tests

ASPEN was tested and compared with Linear Predictive Coding (LPC) and JPEG.

Some salient characteristics of the tests were,

¢ Environment
A Sun SPARC station SLC under Unix was the environment used for the tests

and comparisons.

o Image File Format
Raster file format was chosen as the image format for the storage of both uncom-

pressed and compressed ASPEN images.

e Implementation
ASPEN, LPC and JPEG were implemented in the C programming language. All

programs are platform independent.

¢ JPEG
Data for JPEG compression was obtained using the free software of the Indepen-
dent JPEG group. The IJG software provides control over the compression size

and quality of the image, through the use of a parameter Q - for quality. Q must
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be in the range 0-100, with 100 corresponding to the highest image quality and
the lowest compression ratio.

o Test Images
Fifteen grayscale images (size 256 x 256) were selected for the comparison tests.
The images are listed according to their types in Table 5.1. Sample images from

each type are presented in Fig 5.1.

[ Image Type | Names of the Images ]
Facial Lena, Pfeifer, Monalisa, Model
Aerial Building

Close Ups Flower, Car, Fruit

Generated Window

Landscapes | Carrier, Bay, Street, Sunset, Potala
Satellite Earth

Table 5.1: Different Images used for Testing

(b) Aerial

(d) Generated (e) Landscape {f) Satellite

Figure 5.1: Examples of Images

o ASPEN Parameters

In all the tests performed, value of the input parameters in ASPEN remained



constant. These values were determined in the extensive search of ASPEN pa-

rameter space (shown in Table 5.2). Two-phase was the prediction scheme used

[ H. Rate | V. Rate [ Lower Th. | Upper Th. | Division |
L 32 [ 32 [ 50 [ 150 T 9point |

Table 5.2: Setting of ASPEN parameters for comparisons

in the lossless comparisons of ASPEN with LPC, whereas the bi-linear scheme
was used in the lossy comparisons with JPEG. Uniform quantization scheme was

used in the lossy comparisons.

53 ASPENvs LPC

Table 5.3 presents results from the comparison of ASPEN with LPC in terms of entropy.

Image Name | Orig. Ent. | LPC [ ASPEN [ Fared | Percentage |

lena 7.44 5.18 5.22 - 0.53
pfeifer 7.75 5.70 5.52 + 2.32
monalisa 6.62 5.30 5.20 + 1.51
model 6.06 4.36 4.20 + 2.64
flower 7.19 4.51 4.64 - 1.80
fruit 7.14 4.77 4.80 - 0.42
car 7.15 5.23 517 + 0.84
carrier 5.43 5.73 5.39 + 626
sunset 5.85 4.73 4.40 + 5.64
window 3.41 3.51 2.50 + 29.61
potala 5.15 4.77 4.36 + 7.96
bay 7.15 5.54 5.49 + 0.69
building 6.36 5.85 5.95 - 1.72
earth 5.95 4.60 451 + 1.51
street 7.25 5.27 5.29 - 027 ]

Table 5.3: Comparison of ASPEN and LPC

The column headings are interpreted as:

e Image Name: Name of the image.



¢ Orig. Ent.: Entropy of the original image. LPC: Entropy of the LPC compressed
image. ASPEN: Entropy of the ASPEN compressed image.

¢ Fared: A + sign indicates that ASPEN fared better, whereas a - sign shows that

LPC was the better scheme.

» Percentage: A number indicating the percentage by which either ASPEN or LPC
was better. The formula used was,

er N IlSI)I',l\’ — LPC|
peree ll’(l.(/( — () llf/. IL‘II’- 100 (5.6)

5.3.1 Analysis of the Results: ASPEN vs LPC

Of the 15 images tested, ASPEN fared better than LPC in 10 of them. For this set of
images, average compression achieved by LPC was 1.272, whereas average ASPEN
compression was 1.325.

Based on this set of images, it appears that ASPEN outperforms LPC. The images
for which ASPEN performed better, it beat LPC by a considerable margin. On the other
hand LPC beat ASPEN only marginally in some of the images. It should also be noted
that the parameter settings of ASPEN used in these tests may not be optimal for each
individual image. A higher compression ratio can be obtained for each image after

experimenting with the parameters (customizing the parameters for each image).

54 ASPEN vs JPEG

Table 5.4 presents the results from the comparison of ASPEN with JPEG (with bi-linear

prediction and uniform quantization). The column headings are interpreted as,
¢ Image Name: Name of the image.
¢ Orig. Ent.: Entropy of the original image.
* JPEG: SNR and Entropy of the JPEG compressed image.

* ASPEN: SNR and Entropy of the ASPEN compressed image.
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¢ Quality: The Quality percentage (Q) at which ASPEN beat PEG.

Image Name | Orig. Ent. JPEG ASPEN [ Quality
snr ent | sur cnt

lena 7.44 25.61 28.57 70
1.19 1.20

pfeifer 7.75 21.58 2430 500
0.93 0.86

monalisa 6.62 16.49 18.76 50
0.74 0.74

model 6.06 35.24 35.27 80
0.85 0.70

flower 7.19 36.39 36.12 80
1.20 1.16

fruit 7.14 21.31 24.94 70
1.01 0.97

car 7.15 48.17 48.32 88
1.89 1.77

carrier 5.43 16.79 17.31 50
0.63 0.62

sunset 5.85 29.28 30.32 80
0.93 0.91

potala 5.15 40.72 42.68 88
1.10 1.02

bay 7.15 2053 22.79 70
1.21 1.22

building 6.36 18.29 19.30 75
1.72 1.74

street 7.25 23.81 25.99 70
.15 116

window* 3.41 121.07 34.75 T 95
1.30 1.30

earth* 5.95 68.59 58.32 95
2.60 2.58

Table 5.4: Comparison of ASPEN and JPEG

5.4.1 Analysis of the Results: ASPEN vs JPEG

Of the fifteen images tested, ASPEN did not beat 2 images. It beat JPEG at Q-88 in
86%, at Q-80 in 73%, at Q-75 in 53%, at Q-70 in 467% and at Q-50 in 20% of the images.
Average value of SNR in JPEG was 27.24, whereas average SNR value of ASPEN was
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28.82. Average entropy achieved by JPEG was 1.12, whereas average entropy achieved
by ASPEN was 1.08.

Based on this set of images, itappears that ASPEN scheme using Bi-linear prediction
and Uniform quantization outperforms JPEG if the goal is to achieve low compression
(that is ratios between 2:1 and 10:1) while maintaining image quality as measured by
SNR. As the compression ratio increases, however, JPEG compression is clearly better
of the two methods. Hence if image quality is essential, ASPEN scheme is better, while

if small file size is the goal, JPEG is superior.

5.5 Examples

Some examples of images compressed using ASPEN and JPEG are shown in [ig 5.2.
The monalisa image was compressed at Quality level 50 and the street image was

compressed at Q 80 in JPEG.

(c) ASPEN Image

(d) Orig. Image (e) JPEG Image (f) ASPEN Image

Figure 5.2: Examples of Compression — ASPEN and JPEG



Chapter 6

Possible Applications of ASPEN

ASPEN is a gencral purpose image compression scheme that can be used to compress
different images within several applications. For images requiring lossless compres-
sion such as medical images to teleconferencing images for lossy compression, ASI’EN
is capable of adapting to each image and particular needs of the application.
However, the scope of ASPEN extends beyond being a general purpose compression
scheme. Some imaging applications for which it is particularly suited, are described

in this chapter.

6.1 Scanning an Image Database

When an operator is searching an image database looking for a particular image, (in
the absence of indexing information), it is desirable to quickly display a low quality
version of each candidate image. It is not necessary to have the highest possible image
quality to find the image for which the operator is looking as lower resolution may be
sufficient to reject/accept an image. Fig 6.1 shows an image compressed using JPEG

and ASPEN at high compression rates,
¢ (a) - Original grayscale image.
e (b) - JPEG image, compression ratio is 49.54.

e (¢) - ASPEN image, compression ratio is 51.75.
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(a) Original Image

(b) JPEG Image (c) ASPEN Image
Figure 6.1: Blockiness in JPEG at low compression levels

The JPEG image is quite blocky, which makes it hard to recognize the original image.
At a comparable compression ratio, the ASPEN image has a much better visual quality
and is therefore more suited for such an application. It must be noted that the quality

of the JPEG image as measured by SNR is higher than the ASPEN image.

6.2 Combining Image Encryption with Compression

In an image database, security is a major issue which is just as important as storage.
This is especially true in a wireless environment, where transmission of data demands

a high ratio of compression and a high degree of security at the same time.



Existing Image Encryption techniques require extra storage, which affects the com-
pression ratio significantly. Furthermore, these schemes treat image encryption sepa-
rately from compression, which requires additional time and space in the process.

Torecover the segmentation of the image, ASPEN hasa sophisticated reconstruction
mechanism. The Key for reconstruction is treelike data structure which can be stored

as a binary string (as shown in Fig 6.2).

Binary String representing this segmentation is:
1011 1001 1011 0001 1101 0001 0110 1010 1111 0000

Figure 6.2: Key for Image Reconstruction

This key is at most 1/10"" of the image in size. Various coding schemes can be
used to record or transmit this key. The images compressed or transmitted in this way
would be inherently secure in the sense that the only way to reconstruct the images is
to obtain and understand the key.

Hence, ASPEN can be used as an Image Eacryption scheme, in which the security

is an intrinsic component of the compressed image.

6.3 Redundancy Sieving

In ASPEN, parameters such as the sampling rates and threshold can be varied by ihe
user to control the amount of detail-retention, or in other words, redundancy-remoonl
from the original image. The removal of redundancy from the image is referred to as
Redundancy Sieving. Areas of low detail content (of constant or slowly varying gray
levels) are filtered out and only pixels representing areas of high detail content remain

in the redundancy-sieved image. An example is presented in Fig 6.3.
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(a) Original Image (b) Redundancy Sieved Image

Figure 6.3: Redundancy Sieving in ASPEN

An image reconstructed using only the sample points from the redundancy-sicved
image (all error values are made zero), would be of high quality in the areas of detail.
Possible applications that might need such images, are Weather Forecasting, Tracking,
Arial Combat, Teleconferencing, and Topographical Analysis. In such applications,
where one needs to focus on areas of detail, a system that can automatically sieve out
redundancy in the images, will be most beneficial. ASPEN provides such a function-

ality.

6.4 Like-Image Database

In an image database, most images are of the same type. For example, a hospital lab
may store hundreds of chest x-ray images, which bear great similarity to each other.
A police station may store thousands of face photos, each of which is a front-view of
a human head. In any of these cases, an image compressor will routinely deal with
a great number of similar images. Existing algorithms compress images from scratch
and fail to utilize knowledge about particular image types.

ASPEN's parameters (using knowledge or after experimentation) can be optimized
for a particular image type to obtain the maximum possible compression. Therefore,
ASPEN is suited for compression of images in a database where most or all of the

images would be of a particular type.
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Chapter 7

Conclusions

This thesis has presented a general purpose image compression scheme - Adaptive Sun-
pling with Predictive Encoding (ASPEN), which can be customized to individual images
or the particular needs of an application. Its functionality also extends to providing,
both Lossless or Lossy compression. These qu.alities make ASPEN an attractive image
compression system.

ASPEN is based on the Predictive Compression model. Six prediction schemes
were implemented and tested thoroughly. Results showed that Two-phase prediction
works best for lossless compression, whereas if lossy compression is desired, Bi linear
performs the best. Predicted values of pixels in Two-pluse are interdependent and for
this reason, errors contained within one pixel propagate onto others. This problem
does not arise in the lossless case where pixels are not quantized and hence contain no
errors.

Based on the image set used in our experiments, it appears that ASPEN outperforms
LPC for lossless compression.

For lossy compression, if the goal is to achieve low compression (that is ratios
between 2:1 and 10:1 - or upto 70-75% Q in JPEG) while maintaining good image quality,
then ASPEN should be used instead of JPEG. As the compression ratio increases,
however, JPEG compression is clearly better of the two methods. Hence if image
quality is essential, ASPEN scheme is better, while if small file size is the goal, JPEG is

superior.
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Some applications for which ASPEN is particularly suited are Scanning an Image
Database, Image Encryption and Redundancy Sieving. Study showed that ASPEN's

functionality provides well for all the requirements of these applications.

7.1 Suggestions for Future Work

The first course of action, is to take ASPEN from its prototype stage, to a complete
compression/decompression system. To accomplish this, an efficient symbol coder
such as Huffman or Arithmetic will have to be implemented. Also many speed and
memory optimizations will have to be performed for the final version of ASPEN.

Contrary to traditional Image Encryption schemes, ASPEN treats compression and
encryption together, thereby reducing time and space requirements. The use of a
binary string based structure in ASPEN (for image reconstruction), makes security an
intrinsic componert of the compressed image. The application of ASPEN for Image
Encryption shows promise and needs to be investigated further.

So far ASPEN has been designed for compression of still-images. The functionality
of ASPEN can be easily extended to motion picture compression. Successive frames
may be used to transmit previously unsampled points, thereby constantly improving
image quality in all areas of the image. It will be interesting to see how ASPEN fares
against the existing motion picture compression standards such as MPEG.

A quadratic spline based prediction scheme was experimented with. Results
showed that this particular function was not able to model the image surface ef-
fectively. Some other functions such as exponential, might be able to better model the
images, and their performance should be investigated.

The study of ASPEN’s performance with respect to Optimal Quantization is in
experimental stages, at the time of this writing. Preliminary results show that Optimal
quantization outperforms Uniform quantization by about 15-20%. Once fully func-
tional, optimal quantization will give ASPEN the edge it needs to beat JPEG at lower
quality (Q) levels.

One can envision a knowledge-based ASPEN system in the future, that can system-
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atically generate and utilize knowledge from an image. It can also accumulate knowledge
while processing and compressing images. Such a system would have the ability to
understand images and use that knowledge to automatically select the best setting
of ASPEN parameters. This ability will make the functionality of ASPEN completely

transparent to its users.
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