
Predicting Textual Merge Conflicts

by

Moein Owhadi Kareshk

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Moein Owhadi Kareshk, 2020

Abstract

During collaborative software development, developers often use branches to

add features or fix bugs. When merging changes from two branches, con-

flicts may occur if the changes are inconsistent. Developers need to resolve

these conflicts before completing the merge, which is an error-prone and time-

consuming process. Early detection of merge conflicts, which warns developers

about resolving conflicts before they become large and complicated, is among

the ways of dealing with this problem.

Existing techniques do this by continuously pulling and merging all combi-

nations of branches in the background to notify developers as soon as a conflict

occurs, which is a computationally expensive process. One potential way for

reducing this cost is to use a machine learning based conflict predictor that

filters out the merge scenarios that are not likely to have conflicts, i.e. safe

merge scenarios. In this thesis, we assess if conflict prediction is feasible. We

employed binary classifiers to predict merge conflicts based on 9 light-weight

Git feature sets. We train and test predictors for each repository separately.

To evaluate our predictors, we perform a large-scale study on 147, 967

merges from 105 GitHub repositories in seven programming languages. Our

results show that decision trees can achieve high f1-scores, varying from 0.93

to 0.95 for repositories in different programming languages when predicting

safe merges. The f1-score is between 0.45 and 0.71 for the conflicting merges.

Our results indicate that predicting conflicts is feasible, which suggests it may

successfully be used as a pre-filtering criteria for speculative merging.

ii

Preface

Chapter 4 of this thesis has been published as M. Owhadi Kareshk, S. Nadi,

“Scalable Software Merging Studies with MergAnser,” Proceedings of the

16th International Conference on Mining Software Repositories (MSR), 2019 [57].

Chapters 5, 6 and 7 of this thesis has been published as M. Owhadi

Kareshk, S. Nadi, J. Rubin, “Predicting Merge Conflicts in Collaborative Soft-

ware Development,” Proceedings of the ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement (ESEM), 2019 [58].

This project has been partially funded through a 2017 Samsung Global

Research Outreach (GRO) program.

iii

To my teachers

iv

Acknowledgements

I would like to thank my supervisor, Dr. Sarah Nadi, for her helps and support

during the time I was working with her. This thesis would not have been

possible without her constructive feedback.

v

Contents

1 Introduction 1
1.1 Research Questions . 4
1.2 Study Overview . 4
1.3 Thesis Organization . 6
1.4 Thesis Contributions . 6

2 Background 7
2.1 Collaborative Software Development with Git 7
2.2 Prediction Using Machine Learning 10

2.2.1 Binary Classification Techniques 12
2.2.2 Classification for Imbalanced Data 13

2.3 Classification Models . 14
2.3.1 Decision Tree . 14
2.3.2 Random Forest . 15

3 Related Work 16
3.1 Merging Methods . 16
3.2 Empirical Studies on Software Merging 17
3.3 Speculative Merging . 17
3.4 Proactive Conflict Detection 18
3.5 Merge Conflict Prediction . 19
3.6 Data Acquisition in Software Merging 20

4 Data Collection with MergAnser 22
4.1 MergAnser . 22

4.1.1 MergAnser Usage Examples 24
4.2 The Dataset of Merge Scenarios 25

4.2.1 Selecting the Target Repositories 25
4.2.2 Extracting Merge Scenarios 28

5 Feature Extraction 31

6 RQ1: Which characteristics of merge scenarios have more im-
pact on conflicts? 34
6.1 Methodology . 34
6.2 Results . 35

6.2.1 Correlation Analysis 35
6.2.2 Supervised Analysis . 36

vi

7 RQ2: Are merge conflicts predictable using only Git features? 38
7.1 Methodology . 38

7.1.1 Hyper-parameters . 40
7.1.2 Combination operators 40

7.2 Results . 40
7.2.1 Comparing Decision Trees and Baseline #2 41
7.2.2 Comparing Decision Trees and Random Forests 42
7.2.3 The Results for the Conflicting class 42
7.2.4 The Results for the Not Conflicting class 43

8 Threats to Validity 44
8.1 Internal Validity . 44
8.2 External Validity . 45

9 Implications and Discussion 46

10 Conclusion 48

References 50

vii

List of Tables

2.1 The Confusion Matrix for Binary Classification 12

4.1 The list of tables in the MergAnser database schema 24
4.2 The status of repositories we used in our study (the minus sign

(−) shows the deductions) . 28
4.3 Descriptive Statistics of the Selected Repositories 28

5.1 Feature Sets Used For Training the Merge Conflict Predictor . 32
5.2 The Dimension (D) of Each Feature Set 33

6.1 Spearman’s Rank-Order correlation coefficients (CC) and their
corresponding p-Values (p). CC with p < 0.05 are highlighted. 35

6.2 Feature Importance Based on a Decision Tree Classifier 37

7.1 Merge conflict prediction result comparing Baseline #2 (B2),
decision trees (DT), random forests (RF) in terms of precision
(P), recall (R), and f1-score (F1) - Highest f1-scores in each case
are highlighted . 41

viii

List of Figures

1.1 A merge Scenario in Git . 2
1.2 A simple conflicting merge scenario 2
1.3 The Methodology for Creating the Proposed Conflict Prediction 5

4.1 The MergAnser database schema 23
4.2 The distribution of the number of stars across different pro-

gramming languages . 28
4.3 The distribution of the number of merge scenarios across differ-

ent programming languages 29
4.4 The distribution of the number of conflicting merge scenarios

across different programming languages 30
4.5 The distribution of conflict rates across different programming

languages . 30

ix

Chapter 1

Introduction

Modern software systems are commonly built by large and distributed teams

of developers. Thus, improving the collaborative software development ex-

perience is important. Distributed Version Control Systems (VCSs), such as

Git, and social coding platforms, such as GitHub, have made such collabora-

tive software development easier. However, despite its advantages, collabora-

tive software development also gives rise to several issues [13], [38], including

merging and integration problems[6], [51].

Branching and merging are among the most important Git features that

provide systematic support for collaborative development. These features al-

low developers to have multiple copies of the code that are called branches

in Git to be able to work simultaneously. This isolates the changes and pre-

vents breaking one copy of the code because of changes that other developers

made. When a branch is ready to be merged into another branch of the code,

Git helps developers to perform it using a one-line command. As we show

in Fig. 1.1, each merge scenario has four main components. Ancestor is the

starting point of branching and parents are the last commits on each branch.

Git stores the development history as commits, which are the group of code

changes with relevant information such as a message to describe the changes.

Finally, merge commit is the result of merging which is automatically created

by Git.

However, when two developers change the same part of the code, Git cannot

decide which change to choose and reports textual conflicts. In this situation,

1

Ancestor

Parent #1

Parent #2

Merge
Commit

...

...

Figure 1.1: A merge Scenario in Git

if	(a	<	b){
				A	=	3;

}

if	(a	<	b){
<<<<<<<<
				A	=	2;
========
				if	(a	>	0){
								A	=	3;
				}
>>>>>>>>
}

if	(a	<	b){
				A	=	2;
}

if	(a	<	b){
				if	(a	>	0){
								A	=	3;
				}
}

Ancestor

Parent	#1
Parent	#2

Failed	Merge	Commit

Figure 1.2: A simple conflicting merge scenario

the developers need to resolve the conflict manually, which is an error-prone

and time-consuming task that wastes resources [14], [64]. Fig 1.2 shows a

simple textual conflict, reported by Git with special tags. In this scenario, Git

cannot decide between editing an assignment and adding a condition (changes

are shown in green). Hence, it reports a conflict with special tags (in red) and

asks developers to manually resolve it.

Working on the same code for a long time without proper communication

between developers increases the change of having an unintentional conflict.

Hence, previous research proposed new techniques and tools to resolve conflicts

as soon as they occur [17], [32], [64]. Speculative merging [11], [16], [32],

2

[40] is one of the most effective ways for reducing conflicts by continuously

merging the branches in the background and reporting any conflict as soon

as possible, preferably, before the time developers need to merge the code.

Git uses unstructured merge which is very fast. However, speculative merging

might be computationally expensive due to a large number of branches and

the number of combinations of branches that need to be merged. One possible

solution to reduce the computational cost of speculative merging is filtering-

out the merge scenarios with a low probability of having conflicts. Therefore,

given a merge scenario, it is useful to be able to predict the chance of conflicts.

To the best of our knowledge, there have been two attempts at predicting

merge conflicts in the past [7], [45]. The first study [45] looked for correlations

between various features and merge conflicts and found that none of the fea-

tures have a strong correlation with merge conflicts. The authors concluded

that merge conflict prediction may not be possible. However, we argue that

lacking correlation does not necessarily preclude a successful classifier, espe-

cially since the study did not consider the fact that the frequency of conflicts

is low in practice and most of the standard forms of statistics and machine

learning techniques cannot handle imbalanced data well. The second study [7]

investigates the relationship between two types of code changes, edits to the

same method and edits to dependent methods, and merge conflicts. The au-

thors report recall of 82.67% and precision of 57.99% based on counting how

often a merge scenario that had the given change was conflicting. This means

that this second study does not build a prediction model that is trained on

one set of data and evaluated on unseen merge scenarios.

Since neither of the above works built a prediction model that is suitable

for imbalanced data and has been evaluated on unseen data, it is still not

clear if predicting merge conflicts is feasible in practice, especially while using

features that are not computationally expensive to extract. Additionally, both

papers focus only on Java repositories and do not consider other programming

languages. In this thesis, we investigate if predicting merge conflicts using

inexpensive-to-extract Git features is feasible in practice.

3

1.1 Research Questions

In this research work, we aim to answer the following research questions:

RQ1: Which characteristics of merge scenarios have more impact

on conflicts? We aim to investigate which features in Git history have an

impact on conflicts. Our focus is the features that are not expensive to extract.

Moreover, we want to see if this impact varies in repositories written in different

programming languages.

RQ2: Are merge conflicts predictable using only Git features? We

use machine learning techniques to implement conflict predictor models and

evaluate them to see if predicting merge conflict is possible in practice.

1.2 Study Overview

To answer the above-mentioned questions, we study 105 well-engineered reposi-

tories that are listed in the reaper dataset [54], and that are written in seven dif-

ferent programming languages (C, C#, C++, Java, PHP, Python, and Ruby).

We collect 147, 967 merge scenarios from these repositories and (1) analyze the

correlation between the features and conflicts and (2) train a separate binary

classifier for each repository to predict conflicting merge scenarios.

To train our classifiers, we use a total of 9 feature sets that can be extracted

solely through Git commands. We intentionally use only features that can be

extracted from version control history so that our prediction process can be

efficient (e.g ., as opposed to features that may require code analysis). Fur-

thermore, we use cost-sensitive decision trees [60] and random forests [46], to

take into account the specific characteristics of merge data, such as being im-

balanced, in our classifiers. Figure 1.3 shows an overview of our methodology,

which consists of three stages, as follows:

1. Collecting Merge Scenarios (Chapter 4) As the first step, we need

to collect merge scenarios. We do so by mining the Git history of the

target repositories.

4

Predictor	Training
Chapter	7

Merge	Scenario	Collection
Chapter	4

Ancestor

Parent	#2

Parent	#1

Merge
Commit

...

...

Feature	Extraction
Chapter	5

Merge	Scenarios

Git metadata Features

Features

Real-valued	Vector

Predictor

Classifier

Conflict Not	Conflict

Figure 1.3: The Methodology for Creating the Proposed Conflict Prediction

2. Feature Extraction (Chapter 5): In the second stage, we extract

the features that we will later use to build the prediction model. Using

Git history, we extract features from both branches being merged.

3. Prediction (Chapter 7): In the last stage, we use statistical machine

learning techniques to build a prediction model. Specifically, we use

a binary classifier that aims to classify conflicting and not conflicting

(safe) merge scenarios. Since conflicts happen in only a few numbers of

merge scenarios, the classifier should be capable of handling imbalanced

data. We employ imbalanced data handling techniques to train tree-

based ensemble models.

5

1.3 Thesis Organization

We provide an overview of the background of this thesis in the next chapter.

After that, we briefly introduce the related work to this thesis. We introduce

our data gathering tool, MergAnser, and our dataset in Chapter 4. We then

introduce the features we extracted from our data and the intuition behind

using each of them in Chapter 5. Finally, we aim to answer our research

questions in Chapter 6 and Chapter 7, respectively.

1.4 Thesis Contributions

The contributions of this thesis are:

1. We build a scalable tool (MergAnser) to extract the data of Git history

as a normalized SQL database.

2. We create a set of potentially predictive features for merge conflicts based

on the literature on software merging.

3. We apply systematic statistical machine learning strategies for handling

the imbalanced data of software merging.

4. We design effective machine learning classifiers for textual conflicts in

seven programming languages.

5. We evaluate our models using 147, 967 merge scenarios extracted from

105 well-engineered GitHub repositories written in different program-

ming languages.

6

Chapter 2

Background

We describe the background of our research in this chapter. We first de-

scribe collaborative software development and Git, as a widely used version

control system. We also introduce speculative merging which helps develop-

ers to reduce the number of merge conflicts in software merging. After that,

we introduce the machine learning approaches we use for predicting merge

conflicts.

2.1 Collaborative Software Development with

Git

Today’s software industry relies on collaborative development. Developers

need to work on the same code at the same time and managers should be able

to manage the team and have a clear view of the developers’ progress. There

are different tools that help software teams to manage their collaboration such

as online messaging and version control systems.

Git is a vastly used version control system that helps developers store

the development history, share software artifacts, and collaborate with each

other [13], [38], [39]. Using Git, developers can work on the same code-base

simultaneously. Git is a distributed version control system, which means that

there is no central server that stores the main version separately and local

versions do not have any advantage or priority in comparison with each other.

We provide an overview of Git concepts that are most relevant to this thesis

in the following.

7

Repository Each software project is called a repository in Git. A repository

can contain textual (e.g . code, documentation, and configurations) and binary

(e.g . image, video, and executable) files. While Git can store the binary files,

only the changes in textual files are tracked.

Commits Developers specify all related changes that are made in the code

for a specific purpose as a commit. Each commit has a SHA-1 hash which

is its unique identifier. Moreover, each commit has a commit message that

is a textual explanation about the code changes and their intentions in that

commit. The commit messages should be expressive so that developers can

have a global overview of the development history by reading commit mes-

sages. A commit can contain multiple changes such as adding or removing

code snippets and renaming or deleting files. Each commit has a pointer to

its parent, which is the previous commit that the current commit is based on.

Merge commits are special cases and have more than one parent as we explain

later.

Branches When multiple developers work on the same repository, they need

to keep at least one copy of the code safe and reliable when adding new features

or fixing bugs. Therefore, Git allows developers to have multiple copies of their

code, each for a different purpose. These copies are called branches, and each

branch has a unique name. The initial and default name of the first branch in

Git is master. Branching is a key Git feature that allows developers to work

in parallel.

Merging Developers merge the new branches with all of their changes to

the base branch when they finish the development of the new branches and

test them successfully. This way of merging is so-called direct merging. Git

merge uses unstructured merging, which is line-based and does not consider the

structure of the code. While this allows Git to be language-independent, it

may result in failed merging. Git supports n-way merging (also called Octopus

Merging), which allows developers to merge more than two parents into a

8

branch. However, since this is not a common way of merging in Git, we focus

on 3-way merging, where there are only two parents to merge.

As we show in Fig 1.1, there are four important commits involved in each

merge scenario:

1. Ancestor: The commit that branching started from.

2. Parent #1: The last commit in the branch that we want to merge into.

3. Parent #2: The last commit in the branch that we want to merge from.

4. Merge Commit: An automatically-generated commit by Git and it is

the result of merging of Parent #1 and Parent #2.

Merge Conflicts When the same line of the code is changed in two branches,

Git cannot decide which change to choose and therefore reports a merge con-

flict with specific tags. Git allows developers to edit the conflicting code

snippets which are separated by tags by choosing either of the parents or com-

bining the code snippets. Developers typically resolve these conflicts manually,

which is an error-prone and time-consuming task [14], [64].

Rebasing There are two main ways of integration in Git, merging and re-

basing. While merging keeps the history of branching in history, rebasing

applies the commits of a branch on top of the other one and therefore, does

not stores the branching history. Rebasing makes the Git history clean (by not

generating merge commits) and linear but prevents us to analyze the merging

in development history.

GitHub is an online social coding platform that operates based on Git and

offers an additional set of features via a web-based user interface. This service

allows organizations, teams, and developers to have their profiles and follow

each other’s work. Each profile has its Git repositories which can be either

public or private. Repositories also can have wiki pages to provide additional

information or documentation. To work on a project separately, developers

9

can copy a project with all of its content to their profile which is referred to as

forking on GitHub. Developers who forked a repository can ask the owner of

the original repository to merge the changes of the forked repository into the

original one by submitting a pull-request. The owner of the original project

can accept or deny the changes of the forked repository. In case of accepting

a pull-request, the new changes are merged to the original repository. We

consider both direct merges and pull-requests in this thesis.

2.2 Prediction Using Machine Learning

Providing algorithmic solutions is not possible for all types of problems. While

some problems have sound and complete solutions (e.g . such as parsing code

given a grammar and finding the shortest path between two nodes in a graph),

proposing a deterministic algorithm may not be straight-forward for certain

problems. For instance, although there is no known algorithm for detecting

buggy classes so far, there are known bugs in the development history of

different software repositories that we can use to predict the unknown bugs

in the future using machine learning algorithms. The characteristics of each

class are features (e.g . the number of lines of code and code complexity), and

statuses of classes (buggy or not buggy) are labels of the features [59].

Supervised machine learning algorithms receive the data as input and as

an output, they create a mathematical model to predict the label of unseen

observations. While it is important to evaluate machine learning models using

unseen data, these models often can generalize only for the unseen data that

is close to the data they previously trained on. Despite the fact that the aim

is training a model with generalization power, one usual problem in machine

learning is that models memorize the training data, instead of learning the

common patterns in it. This problem is so-called over-fitting [63]. Choosing

the right values for internal parameters, i.e. hyper-parameters, regularization,

and cross-validation, are common ways of avoiding over-fitting [65], [66].

Machine learning techniques can be categorized in many ways, here we

describe some of the most common ones:

10

• Unsupervised Learning: When there is no label available for the data,

we still can extract information from it at some level. This can include

representation learning [12] to have a better input for a supervised model,

data visualization [48], [50], [70], and data clustering to find natural

partitions in the data [30], [35].

• Supervised Learning: This type of learning is employed when there is a

label to predict. Classification [8] and regression [47] are the most well-

known supervised problems. The former is when labels are discrete and

finite, and the latter is when labels are real-valued numbers or vectors.

• Semi-supervised Learning: Labelled data can generally reveal more infor-

mation than unlabelled one, but labelling the data is not cheap. There-

fore, semi-supervised learning [20] uses both supervised and unsupervised

data at the same.

• Active Learning: Since data labelling is an expensive task in some situa-

tion, it is important to start labelling from the observations (data points)

that are most informative. Active learning aims to prioritize the data

points and ask the agent (usually a human) to label the important ones

first [26], [55].

• Reinforcement Learning: When there is no label available for the data,

but the model receives feedback as a reward from the environment for

each action that it takes. The goal of reinforcement learning is to learn

a strategy to receive the highest amount of accumulative award [37].

Building a machine learning model contains two stages, training and test-

ing. The training data is used to learn the parameters of the machine learning

models and the testing data is used to report the results. Since the goal of

machine learning is a generalization for unseen data, rather than memorizing

the training data, the training and testing data should be exclusive.

In this thesis, we consider each merge scenario, with all involved commits,

as an observation. We represent each merge scenario as a fixed-length real-

11

Table 2.1: The Confusion Matrix for Binary Classification
Actual Classes

Target Class Not-Target Class

Predicted Classes
Target Class True Positive (TP) False Positive (FP)

Not-Target Class False Negative (FN) True Negative (TN)

valued feature vector. We then create our predictors using binary classification

models to predict if conflicts can occur in each merge scenario.

2.2.1 Binary Classification Techniques

In a binary classification problem, the labels can hold binary values, 0 or 1,

which means that the model should label a data point as either of these two

classes. In our problem definition, 0 means there is no conflict in a merge

scenario, and 1 means there is at least one merge conflict in a merge scenario.

Therefore, we predict the existence of conflicts, rather than the number of

conflicts in merge scenarios.

Similar to most of the machine learning techniques, a binary classification

technique aims to minimize a cost function which tells the model how it needs

to update the parameters to classify the given data better. For this purpose,

there is a vast range of metrics defined to evaluate a binary classifier via the

testing data. By comparing the actual labels of the training data and the

prediction of a binary classifier, we can use the following metrics, as we also

show in Table 2.1:

• True Positive (TP): The target class is labelled correctly.

• False Positive (FP): The non-target class is incorrectly labelled as the

target class.

• True Negative (TN): The non-target class is labelled correctly.

• False Negative (FN): The target class is incorrectly labelled as the non-

target class.

The most well-known binary classification metrics are defined using the

above definitions, as follows:

12

accuracy =
TP + TN

TP + FP + FN + TN
(2.1)

recall =
TP

TP + FN
(2.2)

precision =
TP

TP + FP
(2.3)

f1 − score = 2 ∗ precision ∗ recall
precision + recall

(2.4)

2.2.2 Classification for Imbalanced Data

Imbalanced data means there are more data points in one class than the other

one. Since conflicts do not occur frequently (based on the statistics in the

following chapters), our data is imbalanced. This situation causes problems in

two ways:

1. Training: Most of the machine learning techniques are not designed

to handle imbalanced data in their original form. Therefore, using a

model without any modification may result in having a bias towards the

majority class, i.e. the class with more data points.

2. Evaluation: While accuracy (Equation 2.1) is a widely used criterion to

evaluate a binary classifier, its output is not valid for imbalanced data.

As an extreme example, if 99% of data points are in majority class and

only 1% in the minority one, a hypothetical weak classifier that always

labels the data as the majority class would achieve 99% accuracy. While

this number seems to be impressive, it does not show the effectiveness

of the classifier and it is misleading.

There are multiple ways to deal with imbalanced data in machine learning,

including:

13

1. Resampling the data: The goal of this method is balancing the number

of data points in two classes. The first way of doing this is under-

sampling that keeps the data of the minority class and randomly select

the equal size of the minority class form the majority class. This method

eliminates parts of the available data of the majority class and therefore,

should be used with caution. Another sampling strategy is over-sampling

that keeps the data of the majority class and generates data for the

minority class using repetition, bootstrapping, or Synthetic Minority

Over-Sampling Technique (SMOTE) [21].

2. Using the right evaluation criteria: Since using accuracy is potentially

misleading for evaluating a model using imbalanced data, other metrics

such as f1-score are used as the accuracy’s alternative. Furthermore,

using cost-sensitive metrics helps the classifier to better consider the

miss-classification of the minority class by magnifying the penalty of

this class.

3. Using ensemble learning: Using multiple (and usually weaker) classifiers

can decrease the bias towards the majority class [42]. Bagging [15] and

boosting [33] are two common ways of creating such models.

In this work, we use ensemble learning models to achieve better classifier

models. Furthermore, we use cost-sensitive metrics by employing the imbal-

anced rate to increase the effect of the miss-classification cost of conflicting

merges which are the minority class. Finally, we report recall, precision, and

f1-score metrics.

2.3 Classification Models

Here we briefly describe the classification techniques that we used in our work.

2.3.1 Decision Tree

This is a very simple, yet effective classification technique [44], [60], [61]. This

classifier is also famous for its interpretability since its output is a set of rules.

14

Each non-leaf node in a decision tree is a condition on the value of a feature.

The higher-level nodes select the features that can classify the data better.

The entropy of the children of a node is used as a proxy of the effectiveness of

that node. A feature that can classify the data into the nodes with the lowest

entropy is considered as a better feature and therefore, decision trees are also

useful to determine the importance of features. Increasing the number of

levels increases the chance of over-fitting. Hence, there is usually a maximum

number of levels as a hyper-parameter. Another important hyper-parameter

in decision trees is the minimum number of data points in a node to expand.

2.3.2 Random Forest

This classification technique uses the ensemble learning approach to enhance

performance. It trains multiple decision trees, each of them via a subset of

features, and then assigns a label to an unseen data point by voting among

all of the trees. Using the combination of weaker classifiers is shown to be a

proper way of improving the classification result [46], [68]. In random forests,

all of the data points and decision trees have the same weight in the voting

process. Usually, the decision trees are the same in terms of hyper-parameters

and their input data (which subset of features to use) is their only difference.

15

Chapter 3

Related Work

In this chapter, we provide an overview of the related work to our proposed

method for predicting textual conflicts.

3.1 Merging Methods

We first provide a summary of existing merging techniques. For a more com-

prehensive classification, we refer the reader to Mens’ survey on software merg-

ing [53].

Git is an unstructured merging tool that is language-independent and does

not consider the structure of the code (or any underlying tracked file); when

the same text in a file has been simultaneously edited, Git reports a textual

conflict.

On the other hand, structured merge tools [18], [71], e.g ., FSTMerge [29],

leverage information about the underlying code structure through analyzing

the corresponding Abstract Syntax Tree (AST). Since differencing a complete

AST is expensive, semi-structured merge tools, such as JDime [36], improve

performance by producing a partial AST that expands only until the method

level, with complete method bodies in the leaves. Structured merge is then

used for the main nodes of the tree, while unstructured merge is used for the

method bodies in the leaves.

In this thesis, we focus on textual conflicts as reported by Git, since these

are the most common types of conflicts developers face in their typical work-

flow. We often use only the term conflict for brevity.

16

3.2 Empirical Studies on Software Merging

Previous studies compared the above merge techniques in practice in terms

of speed, quality of resolutions, and the complexity of reported conflicts. For

example, Cavalcanti et al. [19] focused on unstructured and semi-structured

merge tools and found that using semi-structured merge significantly reduces

the number of conflicts. The authors also found that the output of semi-

structured merge is easier to understand and resolve. In follow-up work, Ac-

cioly et al. [6] investigated the structure of code changes that lead to conflicts

with semi-structured tools. The study showed that in most of the conflict-

ing merge scenarios, more than two developers are involved. Moreover, this

study showed that code cloning can be a root cause of conflicts. While semi-

structured merge is faster than structured merge and more precise than un-

structured merge, it is still not used in the software industry due to the effort

that is needed to support new programming languages. A recent large-scale

empirical study by Ghiotto et al. [52] also investigated various characteristics

of textual merge conflicts, such as their size and resolution types. The results

suggest that since merge conflicts vary greatly in terms of their complexity and

resolutions, having an automatic tool that can resolve all types of conflicts is

likely not feasible.

One approach for reducing the resolution time is selecting the right de-

veloper to perform the merging based on their previous performance and

changes [22]. Other work looked at specific types of changes that may affect

merge conflicts. For example, Dig et al. [24] introduced a refactoring-aware

merging technique that can resolve conflicts in the presence of refactorings.

A recent study also shows that 22% of the analyzed Git conflicts involved

refactoring operations in the conflicting code [49].

3.3 Speculative Merging

Given the cost of merge conflicts and integration problems, many research

efforts have advocated earlier resolution of conflicts [17], [32], [64]. Previous

17

work has shown that lack of awareness of changes being done by other de-

velopers can cause conflicts [27], and since infrequent merging can decrease

awareness, it increases the chance of conflicts.

To address that, proactive merge-conflict detection warns developers about

possible conflicts before they attempt to merge, i.e., before they try to push

their changes or pull new changes. With proactive conflict detection, develop-

ers get warned early about conflicts so they can resolve them soon instead of

waiting till later when they get large and complicated.

In the literature, proactive conflict detection is typically based on specula-

tive merging [11], [16], [32], [40], where all combinations of available branches

are pulled and merged in the background. While a single textual merge oper-

ation is computationally inexpensive, constantly pulling and merging a large

number of branch combinations can quickly get prohibitively expensive. One

opportunity we foresee for decreasing this cost is to avoid performing spec-

ulative merging on safe merge scenarios that are unlikely to have conflicts.

To accomplish this, we can leverage machine learning techniques to design a

classifier for predicting merge conflicts. The question we address in this thesis

is whether such a classifier works well in practice.

3.4 Proactive Conflict Detection

There are several approaches to increase the awareness of developers by de-

tecting conflicts early. Awareness of changes other team members may be

making is a key factor in team productivity and reduces the number of con-

flicts [27]. Syde [34] is a tool for increasing awareness through sharing the

code changes present in other developers’ workspaces. Similarly, Palantir [64]

visually illustrates code changes and helps developers avoid conflicts by mak-

ing them aware of changes in private workspaces. Crystal [17] is a visual tool

that uses speculative analysis to help developers detect, manage, and prevent

various types of conflicts. Cassandra [40] is another tool to minimize conflicts

by optimizing task scheduling, to minimize simultaneous edits to the same

files. MergeHelper [56] helps developers find the root cause of merge conflicts

18

by providing them with the historic edit operations that affected a given class

member.

Guimarães et al. [32] propose to continuously merge, compile, and test

committed and uncommitted changes to detect conflicts as early as possible.

However, such an approach is likely expensive given a large number of combi-

nations of branches and developer changes in large projects.

3.5 Merge Conflict Prediction

To the best of our knowledge, there is no research work to study the possibility

of predicting the existence of conflicts in unseen merge conflicts using machine

learning. However, two main studies try to investigate the relationship be-

tween the features of merge scenarios (e.g . code and Git history features) and

conflicts.

Accioly et al. [7] investigate whether the occurrence of events such as edits

to the same method and edits to directly dependent methods can be used to

predict conflicts. However, they do not build a prediction model. Instead, they

count the number of times each of the above features exists when a conflict

occurs versus when the merge is successful. Based on such counts, their results

show a precision of 57.99% and a recall of 82.67%.

Leßenich et al. [45] investigate the correlation between various code and

Git features and the likelihood of conflicts. To create a list of features they

investigated, they first surveyed 41 developers. The developers mentioned

seven features that can potentially cause conflicts. However, after analyzing

21, 488 merge scenarios in 163 Java repositories, the authors could not find a

correlation between these features and the likelihood of conflicts. We speculate

that one reason for not capturing such relationships is using stepwise-regression

which may not be an effective model for imbalanced and non-linear data, such

as that collected from merge scenarios.

In this thesis, we investigate merge conflict prediction by creating a list of

nine feature sets that can potentially impact conflicts. Our list is based on

previous work in the areas of software merging and code review [27], [28], [43],

19

[45], [64]. Our work is different from all the above in that we use statistical

machine learning to create a classifier, for each repository, that can predict

conflicts in unseen merge scenarios.

3.6 Data Acquisition in Software Merging

Researchers study merge scenarios to design better development tools or to

introduce better practices to reduce the number of conflicts. Empirical studies

on software merging can also shed light on the characteristics of current soft-

ware development practices and ways of improving them. There is a number

of previous work that analyzes the performance and functionality of different

merging techniques [6], [19], predicts merge conflicts [7], [45], detects conflicts

early [17], [28], [32], analyzes the merging status of pull-requests [43], [72], or

studies the code review process associated with pull-requests [10], [23], [69].

Over the last couple of decades, several tools were proposed for mining

software repositories, especially for Git and GitHub repositories. However,

to the best of our knowledge, there is no off-the-shelf tool that focuses on

software merging. Boa [25] is a tool, with an accompanying language, for

running large-scale queries on data from GitHub and SourceForge. However,

it queries snapshots of these websites, rather than real-time data.

GHTorrent [31] is an offline mirror of GitHub that allows users to either

download the data as a SQL or MongoDB database or run their queries online.

PyDriller [67] is a recent tool for analyzing Git history to extract data such

as commits, developers, source code, etc. GitMiner [1] is an open-source tool

that stores data extracted from Git and GitHub in a database.

Although both PyDriller and GitMiner can be used to detect merge com-

mits by selecting commits with more than one parent, neither provides any ad-

ditional option to analyze merge scenarios or merge conflicts. GrimoireLab [2]

is an industrial-level tool that is capable of gathering data from version control

systems, issue trackers, mailing lists, wikis, but it does not contain any tooling

for analyzing merge scenarios.

Some papers that study software merging (e.g., [6]) release the tool used

20

for mining the merge data. However, the tool is specific to the study and

cannot be directly employed for general software merging research due to lack

of scalability and covering only a limited number of merge-scenario features

extracted for the specific study.

Since there is not a scalable and well-tested tool to extract the data of

software merging, we develop our tool, MergAnser, which is capable of ex-

tracting the data of merges and conflicts as a normalized SQL database. In

the next chapter, we introduce this tool and its features.

21

Chapter 4

Data Collection with MergAnser

In this chapter, we introduce our data acquisition tool, MergAnser [3], which

we develop and release as an open-source tool under an MIT license. We also

introduce the data we collected using MergAnser for our study, the criteria

for choosing repositories, and the relevant statistics of our data.

4.1 MergAnser

MergAnser is a scalable tool that we develop and maintain to help us gather

the data of merges on GitHub as a normalized SQL database. This tool not

only allows us to collect the data we need for our textual conflict prediction

models but also can be employed by other researchers who need clean and

normalized data to study merge scenarios.

Given a list of repositories, MergAnser extracts the information of each

repository such as their popularity metrics (i.e. the number of stars, forks,

watches) and their description using the standard GitHub APIs. Then, to

gather the necessary data of merge scenarios, MergAnser first clones the

repositories locally and then detects merge scenarios using Git commands.

We consider any commit with two parents as a merge scenario, which includes

direct merging and pull-requests. Our detection strategy means we miss re-

based merge scenarios since rebasing creates a linear history. However, there is

currently no accurate technique for detecting merge scenarios that have been

rebased. In the next step, MergAnser replays each merge commit to detect

the conflicting files and regions. The reason we replay each merge scenario is

22

Conflicting_File

file_path_name VARCHAR(400)

conflict_type VARCHAR(40)

MR_merge_technique VARCHAR(15)

MR_MS__merge_commit_hash CHAR(40)

MR_MS_Repository_id BIGINT

Indexes

Repository

id BIGINT

update_date DATETIME

name VARCHAR(100)

description VARCHAR(400)

language VARCHAR(20)

watch_num INT

star_num INT

fork_num INT

issue_num INT

size BIGINT

merge_scenario_num INT

is_done INT

Indexes

Merge_Scenario

merge_commit_hash CHAR(40)

ancestor_commit_hash CHAR(40)

parent1_commit_hash CHAR(40)

parent2_commit_hash CHAR(40)

parallel_changed_file_num INT

merge_commit_can_compile INT

merge_commit_can_pass_test INT

ancestor_can_compile INT

ancestor_can_pass_test INT

parent1_can_compile INT

parent1_can_pass_test INT

parent2_can_compile INT

parent2_can_pass_test INT

merge_commit_date DATETIME

ancestor_date DATETIME

parent1_date DATETIME

parent2_date DATETIME

parent1_developer_num INT

parent2_developer_num INT

pull_request INT

Repository_id BIGINT

Indexes

Merge_Replay

merge_technique VARCHAR(15)

has_conflict INT

can_compile INT

can_pass_test INT

execution_time FLOAT

result_is_equal_to_replay INT

MS_merge_commit_hash CHAR(40)

MS_Repository_id BIGINT

Indexes

Merge_Related_Commit

commit_hash CHAR(40)

date DATETIME

message VARCHAR(400)

branch VARCHAR(45)

merge_commit_parent INT

file_added_num INT

file_removed_num INT

file_renamed_num INT

file_copied_num INT

file_modified_num INT

line_added_num INT

line_removed_num INT

MS_merge_commit_hash CHAR(40)

MS_Repository_id BIGINT

Indexes

Conflicting_Region

parent1_path VARCHAR(400)

parent2_path VARCHAR(400)

parent1_start_line INT

parent1_length INT

parent2_start_line INT

parent2_length INT

MR_merge_technique VARCHAR(15)

MR_MS_merge_commit_hash CHAR(40)

MR_MS_Repository_id BIGINT

Indexes

Figure 4.1: The MergAnser database schema

that the information of merge conflicts is not stored in the Git history. Fi-

nally, MergAnser stores all the extracted information in a SQL database,

according to the schema in Figure 4.1.

In Table 4.1, we summarize the description of each table in our database

schema. We use GitHub APIs and Git commands to extract the data of the

Repository table and only use Git commands to extract the data of other

tables. The exact details of the tools and commands we use are available in

MergAnser’s online documentation [4].

MergAnser can analyze multiple repositories in parallel, using as many

CPU cores as the user specifies. We designed the data schema to be easily

extensible, such that extracting any new features in the future is easy.

23

Table 4.1: The list of tables in the MergAnser database schema
No. Table Name Description
1 Repository Data of analyzed repositories, e.g . the anal-

ysis date, name, description, and program-
ming language

2 Merge Scenario Data of merge scenarios, e.g . the SHA-1
and the date of the ancestor, parents, and
the merge commit

3 Merge Related Commit Data of all commits that are involved in
the merge scenario, e.g . the SHA-1, date,
commit message, and branch name

4 Merge Replay MergAnser replays merge scenarios to
detect conflicts and stores their character-
istics, such as whether the merge scenario
has any conflict

5 Conflicting File Data of all files that have conflicts, includ-
ing their relative path and the type of con-
flict reported by Git (e.g ., content conflict
vs. delete/modify)

6 Conflicting Region Data of conflicting regions, including the
paths of the two parents’ files and the lo-
cation of the conflict region, represented as
the start line and length of the region

4.1.1 MergAnser Usage Examples

To provide more insights into the potential usages of our MergAnser, we

provide three sample queries here to extract relevant information from the

data extracted by MergAnser.

Simultaneously Changed Files To extract the number of files that are

edited in two branches in parallel, the user can run the following query:

SELECT merge commit hash , p a r a l l e l c h ang ed f i l e num
FROM Merge Data . Merge Scenar io

The number of commits The following query extracts the number of in-

volved commits in merge scenarios in Java:

24

SELECT merge scenar io . merge commit hash , COUNT(commits . commit hash
)

FROM Merge Data . Repos i tory as r e po s i t o r y
JOIN Merge Data . Merge Scenar io as merge scenar io

ON r epo s i t o r y . id = merge scenar io . Repos i t o ry id
JOIN Merge Data . Merge Related Commit as commits

ON merge scenar io . merge commit hash = commits .
MS merge commit hash

WHERE repo s i t o r y . language = ’ java ’
GROUP BY merge scenar io . merge commit hash

The number of added/removed lines To extract the difference between

the number of lines that are added and deleted in two branches:
SELECT merge scenar io . merge commit hash ,

SUM(commits . l ine added num ∗ IF (commits .
merge commit parent=2 ,1 ,−1)) AS ’ l i n e added ’ ,

SUM(commits . l ine removed num ∗ IF (commits .
merge commit parent=2 ,1 ,−1)) AS ’ l ine removed ’

FROM Merge Data . Merge Scenar io as merge scenar io
JOIN Merge Data . Merge Related Commit as commits

ON merge scenar io . merge commit hash = commits .
MS merge commit hash

GROUP BY merge scenar io . merge commit hash

4.2 The Dataset of Merge Scenarios

We describe the systematic procedure we follow to gather the data of this study

in this section. This includes the selection of target repositories to analyze and

extracting merge scenarios.

4.2.1 Selecting the Target Repositories

The first step to collect the merge scenarios for our study is to choose the

target repositories to be analyzed. We focus on open-source repositories in

this thesis and therefore, need to ensure that the selected repositories are

of high quality and reflect real-world development practices. As a proxy for

quality, we look for well-engineered repositories (i.e., real-world engineered

software projects [54]) that are also popular. Specifically, we use the following

criteria:

25

• Popularity: Intuitively, more active and useful repositories attract

more attention, reflected in the number of stars, issues, and forks. Simi-

lar to the previous studies[6], [7], we use the number of stars as a filtering

criterion.

• Quality: Even though the number of stars represents some measure

of quality, not all popular repositories are suitable for our study. For

instance, there are a number of repositories that only consist of code

examples and interview questions that are highly starred but are not

suitable for studying merge conflicts since they do not represent a col-

laborative effort to build a software system. Hence, we apply further

quality measures for our repository selection. We use reaper [54] to detect

well-engineered software repositories and avoid analyzing personal or toy

repositories. Reaper uses various repository characteristics such as com-

munity support, continuous integration, documentation, history, issues,

license, and unit testing to classify well-engineered software repositories

using a random forest classier. We use the reaper’s released dataset [62]

(downloaded on September 15, 2018) and select all repositories in that

list that have been classified as well-engineered repositories.

• Programming Language: We choose all seven programming lan-

guages that the reaper dataset supports: C, C#, C++, Java, PHP,

Python, and Ruby.

Considering the three criteria mentioned above, we sort the well-engineered

repositories in each programming language separately based on the number of

stars. We then select the top 100 repositories from each language, for a total

of 700 repositories as the initial list. However, we need to eliminate a subset

of repositories for the following reasons:

1. For practical limitations with respect to computational resources for re-

playing thousands of merge scenarios from that many repositories, we

need to eliminate some of the repositories in the initial list.

26

2. Machine learning algorithms need adequate data for training and testing.

Since we train a binary classifier for each repository, it is important

to have enough merge scenarios for training and testing in the target

repositories.

Considering the above-mentioned reasons, we eliminate the repositories in

the following categories according to Table 4.2:

1. To avoid analyzing the same merge scenario multiple times, we only

analyze the main repositories and eliminate the forked versions.

2. We focus on active repositories and therefore eliminate any moved or

archived repositories from that initial list.

3. To have enough data for training and testing a binary classifier, we elim-

inate the repositories that have less than 200 merge scenarios in their

history.

4. There should be conflicting merge scenarios in both training and testing

data and hence, we eliminate the repositories that do not satisfy this

condition.

5. The test data should have enough data to be able to report a reliable

classification report. For this reason, we only consider the repositories

that have more than 10 conflicting merge scenarios in the testing data.

6. To make the evaluation practical, we only consider repositories whose

size is less than 1 GB and focus on the latest 5, 000 merge scenarios in

each repository.

Therefore, as we show in Table 4.2, only 105 (out of 700 repositories in our

initial list) repositories are suitable to use for training and testing our conflict

predictors. Table 4.3 provides some descriptive statistics of these repositories.

Moreover, since we use the number of stars as an indicator of the popularity of

repositories, the distribution of the number of stars that each repository has

is illustrated across different programming languages in Figure 4.2.

27

Table 4.2: The status of repositories we used in our study (the minus sign (−)
shows the deductions)
Item No. Repositories
1 The initial list of repositories 700
2 Forked repositories 4 (−)
3 Moved/archived repositories 91(−)
4 Repositories with less than 200 merge scenarios 290(−)
5 Repositories without conflicting merges in the training/testing data 30(−)
6 Repositories with less than 10 conflicting merge scenarios in the testing data 144(−)
7 Executions terminated with errors 36(−)
8 The final list of repositories for experiments 105

C C# C++ Java PHP Python Ruby
Programming Languages

0

10000

20000

30000

40000

50000

Nu
m

be
r o

f S
ta

rs

Figure 4.2: The distribution of the number of stars across different program-
ming languages

Table 4.3: Descriptive Statistics of the Selected Repositories
Statistics Min Average Max
1 No. Stars 967 8,975.91 86,852
2 No. Watches 32 497.68 4,636
3 No. Forks 209 2,300.61 18,950
4 No. Issues 0 339.80 7,368
5 Size (MB) 0.93 91.24 991.35

4.2.2 Extracting Merge Scenarios

After choosing the target repositories, we extract their latest 5, 000 merge

scenarios using MergAnser. We collect 147, 967 merge scenarios in total.

Figure 4.3 illustrates the distribution of merge scenarios for repositories in dif-

28

C C# C++ Java PHP Python Ruby
Programming Languages

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f M
er

ge
 S

ce
na

rio
s

Figure 4.3: The distribution of the number of merge scenarios across different
programming languages

ferent programming languages. The median of the number of merge scenarios

over different programming languages is close to each other, around 500. In

Figure 4.4, we illustrate the distribution of the number of conflicting merge

scenarios in the same way. Similarly, Figure 4.5 shows the conflict rate, i.e.

the portion of merges that have at least one conflict. The median of this rate

for all programming languages is less than 10%.

Merge scenarios can be identified from a repository’s Git history. However,

unfortunately, not all information about a merge scenario (e.g ., whether there

was a conflict or not) is available in Git’s data. Therefore, to identify conflict-

ing merge scenarios and determine whether the merge resulted in a conflict,

we use a replaying method where we re-perform the merge at that point of

history and record the outcome. For each merge scenario, we detected the

parent commits and replay the merge locally using git merge command. We

then check the Git standard output to see if there is any textual conflict in

the merge scenario and store the relevant information in the database.

29

C C# C++ Java PHP Python Ruby
Programming Languages

0

100

200

300

400

500

600

Nu
m

be
r o

f M
er

ge
 C

on
fli

ct
s

Figure 4.4: The distribution of the number of conflicting merge scenarios across
different programming languages

C C# C++ Java PHP Python Ruby
Programming Languages

0

20

40

60

80

Ra
te

 o
f M

er
ge

 C
on

fli
ct

s

Figure 4.5: The distribution of conflict rates across different programming
languages

30

Chapter 5

Feature Extraction

We introduce the features we extracted from our data in this chapter. We

selected the list of the features to extract from a merge scenario based on an-

alyzing the kind of information previous studies on software merging typically

need [27], [28], [43], [45].

To train a classifier, we need to extract potentially predictive features from

merge scenarios. Our goal is to use features whose extraction is computation-

ally inexpensive such that the prediction can be used in practice. We identify

these features by surveying the literature on merge conflicts and related areas,

such as code evolution or software maintenance.

In Table 5.1, we categorize the identified features into 9 feature sets, along

with the intuition behind them, as well as any relevant related work that

previously used this feature set or a variation of it. For example, feature set #4

is inspired by previous merging and code review studies [28], [43] and indicates

changes in files. We include this feature set since more code changes may

increase the chance of conflict. We do not rely on language-specific features;

all of our feature sets are language-agnostic.

The feature sets shown in Table 5.1 are on different granularity levels.

Feature set #1, No. of simultaneously changed files, is a merge-level feature

set which means that this feature set is extracted once for a given merge

scenario. All other feature sets are in branch-level which means that they

are extracted from each branch separately. Each feature set should have a

single value or vector for each merge scenario. This means that we need

31

Table 5.1: Feature Sets Used For Training the Merge Conflict Predictor
No. Feature Set Intuition for Including this

Feature Set
1 No. of simultaneously changed

files in two branches
The increase in simultaneously
changed files increases the chance
of conflict. If the value of this fea-
ture is zero, no conflict can oc-
cur [45], [64]

2 No. of commits between the an-
cestor and the last commit in a
branch

Having more commits means
more changes in a branch, which
may increase conflicts [28], [43],
[45]

3 Commit density: No. of commits
in the last week of development
of a branch

Lots of recent activities may in-
crease the chance of conflicting
changes [45]

4 No. added, deleted, renamed,
modified, and copied files in a
branch

More code changes may increase
the chance of conflict [28], [43],
[45]

5 No. added and deleted lines in a
branch

More code changes may increase
the chance of conflict [28], [45]

6 No. of active developers in a
branch

Having more developers increases
the chance of getting inconsistent
changes [27], [28], [43]

7 The frequency of predefined key-
words in the commit messages in
a branch. We use 12 key-words:
fix, bug, feature, improve, docu-
ment, refactor, update, add, re-
move, use, delete, and change

These keywords can provide a
high-level overview of the types of
code changes and their purpose.
Certain types of changes may be
more prone to conflicts[28]

8 The minimum, maximum, aver-
age, and median length of com-
mit messages in the branch

The length of a commit message
can be an indicator of its qual-
ity [28]

9 Duration of the development of
the branch in hours

The longer a branch exists for,
the more likely it is for inconsis-
tent changes to happen in one of
the other branches [27]

to combine the two values of branch-level feature sets. Since the choice of

the combination operator may impact the performance of the classifier, we

empirically determine the best combination operator to use, as we describe in

the following chapters.

Table 5.2 shows the dimension of each feature set (i.e., the number of

32

Table 5.2: The Dimension (D) of Each Feature Set
No. Feature Set D
1 No. of simultaneously changed files in two branches 1
2 No. of commits between the ancestor and the last commit in a

branch
1

3 Commit density: No. of commits in the last week of develop-
ment of a branch

1

4 No. added, deleted, renamed, modified, and copied files in a
branch

5

5 No. added and deleted lines in a branch 2
6 No. of active developers in a branch 1
7 The frequency of predefined keywords in the commit messages in

a branch. We use 12 key-words: fix, bug, feature, improve, doc-
ument, refactor, update, add, remove, use, delete, and change

12

8 The minimum, maximum, average, and median length of com-
mit messages in the branch

4

9 Duration of the development of the branch in hours 1
Total features 28

individual values, each corresponding to a feature, used as input to the model)

for the prediction task. The dimension of some of these feature sets is one,

which means that they are just a scalar value. Some other feature sets have a

dimension greater than one in order to represent all the needed information;

such feature sets would be represented as a vector. For instance, feature set #4

needs five values to represent the number of added, deleted, modified, copied,

and renamed files. Feature sets #4, #5, #7, and #8 are vectors with size 5,

2, 12, and 4, respectively, and the other feature sets are scalars. In the end,

each merge scenario is represented by a total of 28 features.

33

Chapter 6

RQ1: Which characteristics of
merge scenarios have more
impact on conflicts?

In RQ1, we are interested in identifying which feature sets are more important

for predicting conflicts. In this chapter, we first describe the analysis methods

we use, given the features extracted in Chapter 5 and then present the results.

6.1 Methodology

To answer RQ1, we analyze the 9 feature sets in Table 5.1 to see which of

them are more important. We analyze importance in two ways:

1. Correlation Analysis: We calculate Spearman’s rank-order correla-

tion[41] which is a non-parametric measure between the feature sets and

the existence of conflicts. This is the same correlation method used in

previous work to determine the effectiveness of various features for pre-

dicting conflicts [45].

2. Supervised Analysis: We use decision trees to analyze the importance

of each feature set since the results of decision trees are easier to interpret

than other classifiers. A decision tree aims to find a single feature set in

each level based on which it can classify the data in the most optimized

way. For feature sets that have more than one feature, we calculate the

average of the importance of their individual features.

34

Table 6.1: Spearman’s Rank-Order correlation coefficients (CC) and their
corresponding p-Values (p). CC with p < 0.05 are highlighted.
Programming

Languages
Feature Sets

1 2 3 4 5 6 7 8 9

C
CC 0.45 0.19 0.0 -0.02 -0.02 0.03 0.0 0.12 -0.01
p 0.0 0.0 0.06 0.05 0.16 0.14 0.14 0.01 0.43

C#
CC 0.54 0.26 -0.07 -0.05 -0.04 0.0 -0.03 0.12 0.0
p 0.0 0.0 0.02 0.05 0.12 0.11 0.1 0.0 0.27

C++
CC 0.49 0.21 -0.03 -0.03 -0.03 0.0 -0.01 0.11 -0.02
p 0.0 0.0 0.09 0.11 0.04 0.07 0.04 0.01 0.24

Java
CC 0.55 0.26 -0.05 -0.04 -0.03 0.01 0.1 0.1 -0.02
p 0.0 0.0 0.02 0.03 0.01 0.26 0.7 0.0 0.35

PHP
CC 0.55 0.29 -0.08 -0.07 -0.09 -0.01 -0.07 0.14 -0.01
p 0.0 0.0 0.0 0.01 0.0 0.09 0.0 0.0 0.24

Python
CC 0.5 0.28 -0.04 -0.04 -0.04 -0.01 -0.03 0.11 -0.01
p 0.0 0.0 0.01 0.04 0.05 0.14 0.03 0.0 0.45

Ruby
CC 0.52 0.28 -0.07 -0.05 -0.03 0.3 -0.3 0.14 0.0
p 0.0 0.0 0.03 0.05 0.12 0.2 0.07 0.0 0.3

6.2 Results

6.2.1 Correlation Analysis

We first analyze the Spearman’s Rank-Order correlation between the feature

sets and merge conflicts, as shown in Table 6.1. We calculate the correlation

and the corresponding p-value for each feature set separately.

Following previous work [45] and statistics guidelines [9], we consider cor-

relation coefficients ≥ 0.6 as strong , 0.4 − 0.59 as medium, and 0.2 − 0.39

as weak. We only consider statistically significant correlations whose p-value

≤ 0.05 and highlight them in the Table 6.1.

The p-values of feature set #9, for all languages, are greater than 0.05

showing that there is no significant correlation between the conflicts and these

feature sets. The p-values of feature set #1, #2, and #8 for all programming

languages are less than ≤ 0.05. However, none of the feature sets show a

strong correlation and only Feature Set #1 has a medium correlation for all

programming languages. There are also weak statistically significant corre-

lations between feature set #2 and conflicts for all programming languages,

35

except C. In Ruby repositories, there is a weak correlation for the feature set

#7 but it is not statistically significant. For the rest of the cases, there are no

significant correlations.

While we do not use the same exact features from the previous work by

Leßenich et al.[45], we can confirm their findings in terms of lacking correlation

between Git features of merge scenarios and conflicts. This gives us confidence

that the lack of correlations we find for most features is correct. However, we

argue that this lack of correlation does not necessarily mean merge conflicts

are not predictable, as we show later in the results of RQ2.

Although we report the correlation and importance of feature sets for dif-

ferent programming languages separately, it is important to note that we do

not expect to see significant differences between the feature sets in different

programming languages since our feature sets are language-agnostic. Our re-

sults in Table 6.1 confirm that.

6.2.2 Supervised Analysis

As a different way of measuring feature importance, we use decision trees to

determine the importance of our feature set for predicting conflicts in each

programming language. The results are shown in Table 6.2, where the feature

importance is a value between 0 and 1. Again, we find that the number of

simultaneously changed files (Feature Set #1) is the most important feature

by far. The high impact of the number of simultaneously changed files can

be intuitively explained since more in-parallel changes increases the likelihood

of conflicts, and the chance of conflict is zero if there are no simultaneously

changed files. The number of commits (Feature Set #2), active developers

(Feature Set #6), and the frequency of keywords in commit messages (Feature

Set #7) also have non-zero values for some programming languages. However,

apart from Feature Set #1, all features have very low importance for the clas-

sifier. Similar to the correlation-based analysis, we find that the importance

of feature sets is relatively similar for all programming languages.

Our results suggest that commit message information (feature sets #7 and

#8) is not important for detecting conflicts. Since commit messages contain

36

Table 6.2: Feature Importance Based on a Decision Tree Classifier
Programming

Languages
Feature Sets

1 2 3 4 5 6 7 8 9
C 0.87 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0
C# 0.90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C++ 0.91 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0
Java 0.88 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0
PHP 0.90 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Python 0.94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ruby 0.94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

information about the evolution of a repository (e.g ., indications of types

of code changes), we intuitively thought that they may have an impact on

conflicts. However, the feature sets related to commit messages we currently

extract are intentionally lightweight to keep execution time low. It is, therefore,

hard to conclude if commit messages are indeed altogether useless in this

context or if different types of feature sets (e.g ., taking word embedding of the

commit messages into account) may lead to more meaningful relationships.

This finding is important since unlike the other numerical features, analyzing

the commit messages is computationally expensive due to text processing.

The zero feature importance in Table 6.2, does not necessarily mean that

there is no connection between the features with zero feature importance and

conflicts. First, some of the values are not absolutely zero and we report them

as zero because of rounding the numbers up to two digits after the decimal

point. Second, decision trees are simple classifiers and might not be able to

discover sophisticated patters in the data.

The number of simultaneously changed files is the most important feature
for predicting merge conflicts. The number of commits in each branch shows
a weak correlation, but a much lower importance level by the decision tree.
The remaining feature sets show low correlation coefficients and importance.

37

Chapter 7

RQ2: Are merge conflicts
predictable using only Git
features?

In this chapter, our goal is to determine if merge conflicts can be predicted

using our selected feature sets. We first describe the classifiers we use and

then present the results.

7.1 Methodology

We use the features we extracted in Chapter 5 for training our conflict pre-

dictors, which are binary classifiers. We train and test binary classifiers for

each repository separately and report the aggregated results for repositories in

each programming language. For each repository, we sort its merge scenarios

chronologically and use the first 70% of data for training and 30% for testing

the predictors. It means that we use the older merge scenarios (the first 70%)

to predict the newer unseen ones (the remaining 30%) and there is no data

or feature leak through time in our predictors. We compare the performance

of the decision tree and random forest classifiers we built using all 9 collected

feature sets. Additionally, we also create two baselines to compare our results

against. The following summarizes the four classifiers we compare.

1. Decision Tree: A cost-sensitive decision tree classifier is one of the

simplest options for a binary classification task that is also robust to

imbalanced data. We train a decision tree with all of our 9 feature sets.

38

Note that this is the same classifier used to determine importance in

RQ1.

2. Random Forest: To investigate if a more sophisticated classifier can

make more use of the available features, we use cost-sensitive random

forests. In contrary to decision trees, random forests use random num-

bers in the classification process and therefore, changing the value of the

random seed might have impact on the results. Thus, for each repository,

we train and test the random forest classifier 10 times with 10 different

random seeds that are randomly selected to report more reliable results.

When reporting results, we calculate a single number for each repository,

calculated as the average of the 10 runs.

3. Baseline #1: The first baseline we compare to is a “dummy” classifier

that randomly labels the data. If the data was balanced, the f1-score

of both classes would be around 0.5, i.e. random guess. However, since

our data is not balanced, the f1-score of this classifier would be the same

as the imbalance rate in the data for the conflicting class, i.e., 0.10,

and would be 0.90 for the not conflicting class. We expect that any

other predictor should be better than this basic baseline to be useful in

practice.

4. Baseline #2: Recall that in the results of RQ1 (Chapter 6), we found

that feature set #1, which is the number of simultaneously changed files

in two branches, is the most important feature for the decision tree clas-

sifier. Therefore, as our second baseline, we use a decision tree classifier

that uses only feature set #1 from Table 5.1. The goal of this baseline is

to have a low-cost classifier that relies only on the most important fea-

ture. That way, we can determine if having the other features improves

things, or is simply an added cost with no benefit.

39

7.1.1 Hyper-parameters

The main hyper-parameters of decision trees and random forest classifiers are

(1) the minimum samples in leaves, (2) the minimum sample split, (3) the

maximum depth, and (4) the total number of estimators (just for random

forest). Determining the proper values of hyper-parameters helps us to reduce

the chance of over-fitting in our models. Due to the importance of these hyper-

parameters, we use random search to find the right values of them. We use

the range of 2 to 35 for the minimum samples in leaves and minimum sample

split, 1 to 8 for the maximum depth, and 1 to 10 as the choices for the number

of estimators.

7.1.2 Combination operators

Recall from Chapter 5 that since some of our feature sets are extracted for each

branch separately, we need to use a combination operator to combine them

into a single value for the whole merge scenario. To find the suitable combi-

nation operator to use, we train our predictors based on each of seven com-

mon combination operators: Minimum, Maximum, Average, Median, Norm-1

of Difference, Norm-2 of Difference, and Concatenation operators. We then

use random search to determine the best combination operator. We find that

Norm-1 is the best combination operator for all seven programming languages.

We use the scikit-learn [5] Python library to implement our predictors.

Unless we mention, the pre-defined settings are used for tuning the classifiers.

We report the median of our performance measures for both the conflicting

and not conflicting (safe) classes in the following section.

7.2 Results

Table 7.1 shows our results for RQ2. Note that we do not show the results

of Baseline #1 since it can be calculated based on the bias in the data and

serves as a minimum threshold that any useful predictor needs to achieve.

The numbers of each cell in Table 7.1 are the median of values for repositories

in different programming languages. While we report the numbers for both

40

Table 7.1: Merge conflict prediction result comparing Baseline #2 (B2), deci-
sion trees (DT), random forests (RF) in terms of precision (P), recall (R), and
f1-score (F1) - Highest f1-scores in each case are highlighted

Programming
Languages

Models
Not Conflicting Conflicting
P R F1 P R F1

C
B2 1.0 0.83 0.91 0.3 1.0 0.45
DT 0.99 0.93 0.95 0.35 0.86 0.45
RF 0.99 0.95 0.95 0.42 0.72 0.48

C#
B2 1.0 0.89 0.94 0.38 1.0 0.55
DT 0.99 0.92 0.94 0.60 0.88 0.66
RF 0.97 0.93 0.94 0.57 0.72 0.60

C++
B2 1.0 0.84 0.91 0.41 1.0 0.57
DT 0.99 0.90 0.94 0.50 0.92 0.61
RF 0.98 0.90 0.94 0.52 0.82 0.60

Java
B2 1.0 0.82 0.9 0.49 1.0 0.66
DT 0.97 0.90 0.94 0.61 0.85 0.71
RF 0.95 0.90 0.93 0.61 0.81 0.67

PHP
B2 1.0 0.85 0.92 0.44 1.0 0.61
DT 0.99 0.90 0.94 0.50 0.90 0.63
RF 0.98 0.92 0.94 0.51 0.78 0.59

Python
B2 1.0 0.81 0.89 0.29 1.0 0.45
DT 0.99 0.89 0.93 0.42 0.85 0.53
RF 0.98 0.93 0.95 0.46 0.76 0.52

Ruby
B2 1.0 0.86 0.93 0.34 1.0 0.51
DT 0.99 0.93 0.95 0.43 0.79 0.53
RF 0.97 0.95 0.96 0.44 0.69 0.52

conflicting and not conflicting classes, it is the latter that has the potential

usage in filtering-out the safe repositories in speculative merging and therefore,

it is important in our study. We interpret the results in the following.

7.2.1 Comparing Decision Trees and Baseline #2

We first compare Baseline #2, which is a simple decision tree classifier that

uses the most important feature set determined in Chapter 6, to the decision

tree classifier that uses all feature sets. Table 7.1 shows that the decision tree

classifier that uses all features achieves a higher (or equal) f1-score for both

41

classes when compared to Baseline #2. This suggests that despite feature set

#1 being the most important feature, adding the other features to the classifier

does improve the results.

Additionally, both the decision tree classifier and Baseline #2 outperform

Baseline #1 (the “dummy” classifier) in the not conflicting class. This shows

that there is gained value in designing a “real” classifier.

7.2.2 Comparing Decision Trees and Random Forests

Given that the decision trees with all features outperform Baseline #2, we now

compare the decision trees to random forests to determine if a more sophisti-

cated classifier can achieve better results. The results in Table 7.1 show that

decision tree models achieve the highest f1-score for both safe and conflicting

merges in most cases. This shows that using a more advanced ensemble ma-

chine learning classifier did not help in achieving better results. It is however

important to note that the margin of difference between the f1-score of the

decision trees and random forests is small for most languages and this differ-

ence is mainly observed in the conflicting class. Another observation is that all

the classifiers seem to perform consistently across the different programming

languages.

7.2.3 The Results for the Conflicting class

We now focus on decision trees and discuss the results for the conflicting class

in more detail. Table 7.1 shows that recall of the conflicting class ranges from

0.79 to 0.92 for the different programming languages. This means that the

predictor can correctly identify most of the conflicting merge scenarios. The

table shows that the precision of the conflicting class is in a lower range, varying

from 0.35 to 0.61. On the one hand, having a high recall means that following

the prediction of our proposed models, developers can perform early merging

to prevent merge conflicts or at least prevent them from becoming complicated.

On the other hand, a low precision means that our models suggest developers

perform unnecessary merges. Considering the fact that early merging is not a

harmful operation, while resolving conflicts is time-consuming and error-prone,

42

the extra merging does not have a notable negative impact on the development

process. Overall, the f1-score of conflicting class ranges from 0.45 to 0.71 across

the seven languages.

7.2.4 The Results for the Not Conflicting class

In terms of not conflicting (safe) merge scenarios, Table 7.1 shows that deci-

sion trees’ recall for the not conflicting class is between 0.89 to 0.93. This is

a high recall rate and means that the predictor can correctly identify most of

the automatically mergeable merge scenarios (i.e., those that will not result

in conflicts). The precision of this class is between 0.97 to 0.99 for different

programming languages, meaning that almost all of the merge scenarios that

are predicted as safe are actually safe. Overall, the f1-score of the not conflict-

ing class ranges between 0.93 to 0.95 for the different programming languages.

The results of our models for the not conflicting class suggest that we can

potentially use the output of our models to filter-out the safe merge scenarios

in the speculative merging process.

We, finally, note that the average time for predicting the status of a given

merge scenario, including the feature extraction process, is 0.1±0.02 seconds.

This makes our predictor fast enough to be used in practice.

We find that both decision trees and random forests based on light-weight
Git features can successfully predict conflicts for different programming lan-
guages. Our observations shows that decision trees outperform random
forests by an small margin. However, the f1-score of the safe class is much
higher than the conflicting class.

43

Chapter 8

Threats to Validity

8.1 Internal Validity

git merge can use several merging algorithms and the choice of the algorithm

used may impact the results. We employ the default one (recursive merging

strategy) since developers typically do not change the default configuration of

Git merge.

Rebasing is another strategy for integrating changes from different branches.

When git rebase is used instead of git merge or when the --rebase option

is used while pulling, a linear history is created and no explicit merge commits

will exist. Therefore, there is a chance that we miss some merge scenarios

since we detect merge scenarios based on the number of parents of a com-

mit. Unfortunately, there is no precise methodology to extract rebased merge

scenarios since there is no information in Git about them.

We eliminate n-way (octopus) merging and only focus on 3-way merging

where each merge commit has exactly two parents. This may eliminate some

merge scenarios. However, 3-way merging happens more often in practice.

We use a set of ranges for the random search of hyper-parameters. We

selected these ranges based on our intuition and the heuristics in the literature

about the hyper-parameters for machine learning techniques. However, we

cannot guarantee that we found the globally optimal values for our hyper-

parameters.

44

8.2 External Validity

While we have a large-scale empirical study, our evaluation is still limited

to 105 open-source repositories on GitHub in seven popular programming

languages. Our results may not address merge conflict prediction in other

programming languages. Also, we need to train a separate predictor for each

repository, and the effectiveness of a predictor that is trained on one repository

should be investigated using other repositories.

45

Chapter 9

Implications and Discussion

Here we discuss what our prediction results may mean for avoiding complex

merge conflicts in practice.

The recall of our decision trees is relatively high (0.79 to 0.92) for the

conflicting class, which means that the classifier can identify an acceptable

portion of conflicts if it is used as a replacement of speculative merging alto-

gether. Notifying developers of these potential conflicts would allow them to

merge early and avoid the conflict from becoming more complex. The down-

side is that the precision of predicting conflicts is lower (0.35 to 0.61), which

means that developers may perform a merge earlier than needed (i.e., perform

a merge when there is no conflict to resolve). In practice, this may not be

a big problem since frequent merges are encouraged to avoid conflicts in the

long term.

However, instead of completely replacing speculative merging and running

the risk of false positive notifications to developers, we advocate for using a

merge-conflict predictor as a pre-filtering step for speculative merging [16], [17]

or continuous merging [32] in developers’ work environments (e.g ., their IDE).

Both recall and precision of our classifiers for safe merges are considerably

high (recall between 0.89 to 0.93 and precision in the range of 0.97 to 0.99

for decision trees). The precision of safe merge scenarios in the context of

pre-filtering them out from speculative merging is important since we want to

make sure that eliminated merge scenarios are actually safe. Given the high

precision and the fact that conflict rates are typically low (10.0%), this means

46

that a subsequent proactive conflict detection tool will accurately eliminate a

large number of safe merge scenarios from its analysis, thus potentially saving

costs.

47

Chapter 10

Conclusion

In this thesis, We investigate if textual merge conflicts are predictable. If

merge conflicts are predictable using inexpensive-to-extract Git features, we

potentially can eliminate the safe merge scenarios in speculative merging and

reduce the computational costs. We aim to train a binary classifier for each Git

repository to be able to label unseen merge scenarios in the same repositories

either as conflicting or not conflicting (safe) merge scenarios.

We develop a data gathering tool (MergAnser) to help us, and other

researchers who work on software merging, to collect the data of direct merg-

ing and pull-requests in Git history. We use MergAnser to extract 147, 967

merge scenarios from 105 popular and well-engineered open-source GitHub

repositories in seven programming languages (C, C#, C++, Java, PHP, Python,

and Ruby).

We extract 9 feature sets from each merge scenario to represent each of the

merges as a fixed-length real-valued vector. We use the feature sets that are

used in previous studies on software merging. We perform two studies using

this data.

In the first study, we calculate the Spearman’s rank-order correlation be-

tween conflicts and each of 9 feature sets. We found that there is no statistically

strong correlation between our feature sets and conflicts. However, the feature

set #1 (No. of simultaneously changed files in two branches) has medium and

feature set #2 (No. of commits between the ancestor and the last commit

in a branch) has weak correlations. Furthermore, only feature set #1 is an

48

important feature for decision trees that are trained using all feature sets.

In the second study, we focus on training binary classifiers to predict con-

flicts. For each repository we sort the available merge scenarios chronologically

and use the first 70% for training and 30% for testing. Since the data is highly

imbalanced and conflicts occur only in 10.0% of merge scenarios, we use cost-

sensitive decision trees and ensemble learning models (random forests) to be

able to handle this imbalanced data. The f1-score of our decision tree models,

which outperform random forests by small margins, for predicting the not con-

flicting merges varies from 0.93 to 0.95 for different programming languages.

This means that our models can effectively detect the safe merges that can be

eliminated in speculative merging. The recall of conflicting merges also varies

from 0.79 to 0.92, which indicates that our models are reliable to detect con-

flicting merges. However, the precision of our models is low (0.35 to 0.61) for

the conflicting class which means that they might suggest unnecessary early

merging which is not harmful to the development process, compared with the

costs of resolving conflicts.

As the future step, we suggest investigating the impact of using our conflict

predictors in speculative merging. The focus of this thesis is textual conflicts

which are the conflicts that are reported by Git. As a future step, we suggest

to investigate if predicting conflicts in structured merges is possible in prac-

tice. Due to the computational cost of structured merges, this predicting can

dramatically reduce the costs of using structured merges.

49

References

[1] https://github.com/Prickett/gitminer.

[2] https://chaoss.github.io/grimoirelab.

[3] https://github.com/ualberta-smr/merganser.

[4] https://github.com/ualberta-smr/merganser/wiki/.

[5] https://scikit-learn.org/.

[6] P. Accioly, P. Borba, and G. Cavalcanti, “Understanding semi-structured
merge conflict characteristics in open-source java projects,” Empirical
Software Engineering, vol. 23, no. 4, pp. 2051–2085, 2018.

[7] P. Accioly, P. Borba, L. Silva, and G. Cavalcanti, “Analyzing conflict
predictors in open-source java projects,” in Proceedings of the 15th In-
ternational Conference on Mining Software Repositories, ACM, 2018,
pp. 576–586.

[8] C. C. Aggarwal, Data classification: algorithms and applications. CRC
press, 2014.

[9] T. W. Anderson and J. D. Finn, The new statistical analysis of data.
Springer Science & Business Media, 2012.

[10] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of the 2013 international conference
on software engineering, IEEE Press, 2013, pp. 712–721.

[11] J. Baumgartner, R. Kanzelman, H. Mony, and V. Paruthi, Incremental
speculative merging, US Patent 7,934,180, 2011.

[12] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[13] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P.
Devanbu, “The promises and perils of mining git,” in Mining Software
Repositories, 2009. MSR’09. 6th IEEE International Working Confer-
ence on, IEEE, 2009, pp. 1–10.

[14] C. Bird and T. Zimmermann, “Assessing the value of branches with
what-if analysis,” in Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, ACM,
2012, p. 45.

50

https://github.com/Prickett/gitminer
https://chaoss.github.io/grimoirelab
https://github.com/ualberta-smr/merganser
https://github.com/ualberta-smr/merganser/wiki/
https://scikit-learn.org/

[15] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[16] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detection
of collaboration conflicts,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering, ACM, 2011, pp. 168–178.

[17] ——, “Early detection of collaboration conflicts and risks,” IEEE Trans-
actions on Software Engineering, vol. 39, no. 10, pp. 1358–1375, 2013.

[18] J. Buffenbarger, “Syntactic software merging,” in Software Configuration
Management, Springer, 1995, pp. 153–172.

[19] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and improving
semistructured merge,” Proceedings of the ACM on Programming Lan-
guages, vol. 1, no. OOPSLA, p. 59, 2017.

[20] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning (chapelle,
o. et al., eds.; 2006)[book reviews],” IEEE Transactions on Neural Net-
works, vol. 20, no. 3, pp. 542–542, 2009.

[21] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
Synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[22] C. Costa, J. Figueiredo, L. Murta, and A. Sarma, “Tipmerge: Recom-
mending experts for integrating changes across branches,” in Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, ACM, 2016, pp. 523–534.

[23] A. D. Da Cunha and D. Greathead, “Does personality matter?: An anal-
ysis of code-review ability,” Communications of the ACM, vol. 50, no. 5,
pp. 109–112, 2007.

[24] D. Dig, K. Manzoor, R. E. Johnson, and T. N. Nguyen, “Effective soft-
ware merging in the presence of object-oriented refactorings,” IEEE
Transactions on Software Engineering, vol. 34, no. 3, pp. 321–335, 2008.

[25] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proceedings of the 2013 International Conference on Software Engi-
neering, IEEE Press, 2013, pp. 422–431.

[26] S. Ertekin, J. Huang, L. Bottou, and L. Giles, “Learning on the border:
Active learning in imbalanced data classification,” in Proceedings of the
sixteenth ACM conference on Conference on information and knowledge
management, ACM, 2007, pp. 127–136.

[27] H. C. Estler, M. Nordio, C. A. Furia, and B. Meyer, “Awareness and
merge conflicts in distributed software development,” in Global Soft-
ware Engineering (ICGSE), 2014 IEEE 9th International Conference
on, IEEE, 2014, pp. 26–35.

51

[28] Y. Fan, X. Xia, D. Lo, and S. Li, “Early prediction of merged code
changes to prioritize reviewing tasks,” Empirical Software Engineering,
pp. 1–48, 2018.

[29] Fstmerge tool, https://github.com/joliebig/featurehouse/tree/
master/fstmerge.

[30] G. Gan, C. Ma, and J. Wu, Data clustering: theory, algorithms, and
applications. Siam, 2007, vol. 20.

[31] G. Gousios, “The ghtorent dataset and tool suite,” in Proceedings of the
10th working conference on mining software repositories, IEEE Press,
2013, pp. 233–236.

[32] M. L. Guimarães and A. R. Silva, “Improving early detection of software
merge conflicts,” in Proceedings of the 34th International Conference on
Software Engineering, IEEE Press, 2012, pp. 342–352.

[33] H. Guo and H. L. Viktor, “Learning from imbalanced data sets with
boosting and data generation: The databoost-im approach,” ACM Sigkdd
Explorations Newsletter, vol. 6, no. 1, pp. 30–39, 2004.

[34] L. Hattori and M. Lanza, “Syde: A tool for collaborative software devel-
opment,” in Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering-Volume 2, ACM, 2010, pp. 235–238.

[35] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[36] Jdime tool, http://fosd.net/JDime.

[37] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learn-
ing: A survey,” Journal of artificial intelligence research, vol. 4, pp. 237–
285, 1996.

[38] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories, ACM,
2014, pp. 92–101.

[39] ——, “An in-depth study of the promises and perils of mining github,”
Empirical Software Engineering, vol. 21, no. 5, pp. 2035–2071, 2016.

[40] B. K. Kasi and A. Sarma, “Cassandra: Proactive conflict minimization
through optimized task scheduling,” in Proceedings of the 2013 Interna-
tional Conference on Software Engineering, IEEE Press, 2013, pp. 732–
741.

[41] M. G. Kendall, S. F. Kendall, and B. B. Smith, “The distribution of
spearman’s coefficient of rank correlation in a universe in which all rank-
ings occur an equal number of times,” Biometrika, pp. 251–273, 1939.

52

https://github.com/joliebig/featurehouse/tree/master/fstmerge
https://github.com/joliebig/featurehouse/tree/master/fstmerge
http://fosd.net/JDime

[42] T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Comparing
boosting and bagging techniques with noisy and imbalanced data,” IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, vol. 41, no. 3, pp. 552–568, 2010.

[43] O. Kononenko, T. Rose, O. Baysal, M. Godfrey, D. Theisen, and B.
de Water, “Studying pull request merges: A case study of shopify’s
active merchant,” in Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Practice, ACM, 2018,
pp. 124–133.

[44] H. Laurent and R. L. Rivest, “Constructing optimal binary decision trees
is np-complete,” Information processing letters, vol. 5, no. 1, pp. 15–17,
1976.

[45] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen, “In-
dicators for merge conflicts in the wild: Survey and empirical study,”
Automated Software Engineering, vol. 25, no. 2, pp. 279–313, 2018.

[46] A. Liaw, M. Wiener, et al., “Classification and regression by randomfor-
est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[47] D. Lindley, “Regression and correlation analysis,” in Time Series and
Statistics, Springer, 1990, pp. 237–243.

[48] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[49] M. Mahmoudi, S. Nadi, and N. Tsantalis, “Are refactorings to blame?
an empirical study of refactorings in merge conflicts,” in Proc. of the
26th IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER ’19), 2019.

[50] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold ap-
proximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

[51] S. McKee, N. Nelson, A. Sarma, and D. Dig, “Software practitioner per-
spectives on merge conflicts and resolutions,” in Software Maintenance
and Evolution (ICSME), 2017 IEEE International Conference on, IEEE,
2017, pp. 467–478.

[52] G. G. L. Menezes, L. G. P. Murta, M. O. Barros, and A. Van Der Hoek,
“On the Nature of Merge Conflicts: a Study of 2,731 Open Source Java
Projects Hosted by GitHub,” IEEE Transactions on Software Engineer-
ing, 2018.

[53] T. Mens, “A state-of-the-art survey on software merging,” IEEE trans-
actions on software engineering, vol. 28, no. 5, pp. 449–462, 2002.

[54] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for
engineered software projects,” Empirical Software Engineering, vol. 22,
no. 6, pp. 3219–3253, 2017.

53

[55] H. T. Nguyen and A. Smeulders, “Active learning using pre-clustering,”
in Proceedings of the twenty-first international conference on Machine
learning, ACM, 2004, p. 79.

[56] Y. Nishimura and K. Maruyama, “Supporting merge conflict resolution
by using fine-grained code change history,” in Software Analysis, Evolu-
tion, and Reengineering (SANER), 2016 IEEE 23rd International Con-
ference on, IEEE, vol. 1, 2016, pp. 661–664.

[57] M. Owhadi-Kareshk and S. Nadi, “Scalable software merging studies
with merganser,” in Proceedings of the 16th International Conference on
Mining Software Repositories (MSR ’19), 2019.

[58] M. Owhadi-Kareshk, S. Nadi, and J. Rubin, “Predicting merge conflicts
in collaborative software development,” in 2019 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM), IEEE, 2019, pp. 1–11.

[59] M. Owhadi-Kareshk, Y. Sedaghat, and M.-R. Akbarzadeh-T, “Pre-training
of an artificial neural network for software fault prediction,” in 2017 7th
International Conference on Computer and Knowledge Engineering (IC-
CKE), IEEE, 2017, pp. 223–228.

[60] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[61] ——, “Simplifying decision trees,” International journal of man-machine
studies, vol. 27, no. 3, pp. 221–234, 1987.

[62] Reaper dataset, https://reporeapers.github.io/static/downloads/
dataset.csv.gz.

[63] J. Reunanen, “Overfitting in making comparisons between variable selec-
tion methods,” Journal of Machine Learning Research, vol. 3, no. Mar,
pp. 1371–1382, 2003.

[64] A. Sarma, D. F. Redmiles, and A. Van Der Hoek, “Palantir: Early detec-
tion of development conflicts arising from parallel code changes,” IEEE
Transactions on Software Engineering, vol. 38, no. 4, pp. 889–908, 2012.

[65] C. Schaffer, “Selecting a classification method by cross-validation,” Ma-
chine Learning, vol. 13, no. 1, pp. 135–143, 1993.

[66] B. Scholkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2001.

[67] D. Spadini, M. Aniche, and A. Bacchelli, “Pydriller: Python frame-
work for mining software repositories,” in Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ACM, 2018,
pp. 908–911.

54

https://reporeapers.github.io/static/downloads/dataset.csv.gz
https://reporeapers.github.io/static/downloads/dataset.csv.gz

[68] C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn, “Bias in ran-
dom forest variable importance measures: Illustrations, sources and a
solution,” BMC bioinformatics, vol. 8, no. 1, p. 25, 2007.

[69] H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto, “Analyzing
individual performance of source code review using reviewers’ eye move-
ment,” in Proceedings of the 2006 symposium on Eye tracking research
& applications, ACM, 2006, pp. 133–140.

[70] J. Vesanto, “Som-based data visualization methods,” Intelligent data
analysis, vol. 3, no. 2, pp. 111–126, 1999.

[71] B. Westfechtel, “Structure-oriented merging of revisions of software doc-
uments,” in Proceedings of the 3rd international workshop on Software
configuration management, ACM, 1991, pp. 68–79.

[72] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in github: What can we learn from code review and bug
assignment?” Information and Software Technology, vol. 74, pp. 204–
218, 2016.

55

	Introduction
	Research Questions
	Study Overview
	Thesis Organization
	Thesis Contributions

	Background
	Collaborative Software Development with Git
	Prediction Using Machine Learning
	Binary Classification Techniques
	Classification for Imbalanced Data

	Classification Models
	Decision Tree
	Random Forest

	Related Work
	Merging Methods
	Empirical Studies on Software Merging
	Speculative Merging
	Proactive Conflict Detection
	Merge Conflict Prediction
	Data Acquisition in Software Merging

	Data Collection with MergAnser
	MergAnser
	MergAnser Usage Examples

	The Dataset of Merge Scenarios
	Selecting the Target Repositories
	Extracting Merge Scenarios

	Feature Extraction
	RQ1: Which characteristics of merge scenarios have more impact on conflicts?
	Methodology
	Results
	Correlation Analysis
	Supervised Analysis

	RQ2: Are merge conflicts predictable using only Git features?
	Methodology
	Hyper-parameters
	Combination operators

	Results
	Comparing Decision Trees and Baseline #2
	Comparing Decision Trees and Random Forests
	The Results for the Conflicting class
	The Results for the Not Conflicting class

	Threats to Validity
	Internal Validity
	External Validity

	Implications and Discussion
	Conclusion
	References

