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Abstract—There is a growing need for accurate and efficient
real-time state estimation with increasing complexity, intercon-
nection, and insertion of new devices in power systems. In this
paper, a massively parallel dynamic state estimator is devel-
oped on a graphic processing unit (GPU), which is especially
designed for processing large data sets. Within the massively
parallel framework, a lateral two-level dynamic state estima-
tor is proposed based on the extended Kalman filter method,
utilizing both supervisory control and data acquisition, and
phasor measurement unit (PMU) measurements. The measure-
ments at the buses without PMU installations are predicted
using previous data. The results of the GPU-based dynamic state
estimator are compared with a multithread CPU-based code.
Moreover, the effects of direct and iterative linear solvers on
the state estimation algorithm are investigated. The simulation
results show a total speed-up of up to 15 times for a 4992-bus
system.

Index Terms—Compute unified device architecture (CUDA),
data parallelism, dynamic state estimation (DSE), extended
Kalman filter (EKF), graphic processing units (GPUs), large-
scale systems, massive-thread, multithread, OpenMP, parallel
programming, phasor measurement units (PMUs).

I. INTRODUCTION

THE EVOLUTION of power systems toward the new
smart grid era is bringing unprecedented operational

challenges toward online monitoring of networks. Traditional
dynamic state estimation (DSE) is not scalable enough to pro-
cess the large amount of data generated over the grid, and is
prone to computational bottlenecks. Existing DSE paradigms
mainly focus on complexity reduction using partial measure-
ments, hierarchical, and decoupled methods [1]–[4] which
compromise the accuracy for speed, but are not fast enough
to predict the real-time behavior of the system. Other meth-
ods that focus on estimation accuracy by increasing either
modeling or algorithmic complexity (see [5]–[8]), are com-
putationally onerous limiting their practical applicability to
small scale systems. Indeed, new approaches for DSE which
are both fast and accurate are required. Recent research in
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power system state estimation within the smart grid context is
focused on the following subjects.

1) Distributed state estimation by domain decomposition to
scale down the problem [9]–[11].

2) Combined parameter and DSE on practical data [12].
3) Vulnerability analysis of power grids as a cardinality

minimization problem [13].
4) Secure state estimation by identification and protection

of critical measurements [14], [15].
While the above methods address important issues, they

overlook the computational efficiency aspect and speed of the
state estimation process which are vital for real-time mon-
itoring and control of the grid. In addition, the proposed
approaches are mainly tested on CPU-based hardware for
small system sizes which behave somewhat differently from
large-scale power systems in terms of computational com-
plexity. In contrast, this paper presents a massively parallel
dynamic state estimator (MPDSE) utilizing extended Kalman
filter (EKF) on the graphic processing unit (GPU). GPUs have
the following advantages over CPU clusters.

1) Parallelism: Parallelization using GPU is fine grained
parallelization which is a lot different from coarse
grained parallelization on CPU. In contrast to the CPU
with a limited number of arithmetic cores, the GPU
is composed of hundreds of cores known as stream
processors (SPs) that can simultaneously handle thou-
sands of threads [16], [17].

2) Extensibility: Unlike CPU with limited achievable
speed-up, the maximum achievable speed-up by mas-
sive parallelism in GPU is proportional to the number
of cores [18].

3) Cost: A GPU with hundreds of core is a lot cheaper
than a system with hundred CPU cores. Basically, the
GPU has enormous cost advantage, GFlops per dollar,
in comparison with CPUs [19].

The popularity of the GPUs in the field of high-performance
computing is due to their ability to provide computational
power for massively parallel problems at a reduced cost [20].
The novelty of this paper includes the data collation method
which is used to prepare measurement set, and the massive-
thread parallel implementation of the DSE on GPU which to
the best of our knowledge is not reported yet. In this paper,
using an NVIDIA GPU, separate tasks are assigned to indi-
vidual compute unified device architecture (CUDA) abstracted
threads. Therefore, the computationally onerous tasks are off-
loaded and executed in parallel utilizing thousands of threads,
accelerating the process of state estimation significantly.
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The massively parallel processing capability of the GPU has
already been exploited for power system applications, such
as power flow analysis, transient stability simulation, and
electromagnetic transient simulation [20]–[25].

The implementation of synchronized phasor measurement
unit (PMU) technology has enabled system operators to mon-
itor the real-time network conditions [26]. PMUs which pro-
vide measurements by sampling instantaneous waveforms can
deliver up to 50/60 measurements per second. For large-scale
networks, installing enough PMUs for full network observa-
tion may be expensive and impractical. A more realistic and
feasible deployment of the PMU for DSE is to use both con-
ventional supervisory control and data acquisition (SCADA)
and synchronized measurements together. Most of the pro-
posed approaches [27]–[29] neglected the fact that PMU
measurements are a lot faster than SCADA measurements;
however, [30]–[32] interpolated states at the PMU unobserv-
able buses considering that there are more measurements
available in the buses with PMU installation. To take advan-
tage of the PMUs faster refresh rate a lateral data collation
method is investigated in this paper for the MPDSE. In the first
level, we extrapolate the SCADA measurements employing the
exponential moving average method. Under contingency sce-
narios, in case of significant difference in PMU measurements,
a correction term is added to the results of prediction. Once the
measurements at all buses are available, they are transformed
to SCADA format before being fed to the state estimator in
the second level.

The organization of this paper is as follows. The data colla-
tion and the MPDSE algorithm are presented in Section II.
Section III describes the GPU and the CPU programming
paradigms for DSE. Section IV presents the experimental
results and analysis, followed by the conclusion in Section V.

II. LATERAL MASSIVELY PARALLEL DSE

Using the present and previous states of the network, DSE
predicts the state vector one step ahead of the time. In this
section, a lateral massively parallel state estimation algorithm
is formulated. The two stages of the MPDSE include the data
collation and the state estimation process itself which are done
in parallel, i.e., when the state is being estimated at the present
time, data is being collected for the next time step, simulta-
neously. The data collation procedure prepares a uniform set
of measurements for EKF-based state estimator.

A. Data Collation

The main goal in this section is to provide a coherent set
of measurements for the MPDSE algorithm. Since it is not
possible to make the whole system observable using PMUs
due to the high cost of this technology, the proposed data col-
lation method extrapolates SCADA measurements to update
them as fast as PMU measurements arrive. The process of
data collation is done under the following assumptions.

1) The network is observable with the existing SCADA
measurements, and the PMU devices are installed at the
generator buses.

2) The number of PMU channels is limited to a maxi-
mum of two (one for voltage and one for current) for
economical reasons.

3) Since practical state estimation update every
30–60 s, and SCADA measurements update every
2–5 s [33], [34], SCADA and PMU refresh rate are
considered as every 2 and 30 s, respectively.

4) Based on the previous assumption, in between two
SCADA measurements 60 PMU measurements are
available. Since the changes for close measurements are
very small, the buffer length of six is chosen to use
the average of each six consecutive PMU measurements.
So, in between two SCADA measurements there are ten
PMU measurements. However, under contingency sce-
narios, the actual refresh rate of the PMU measurements
is used to decide the condition of the system.

5) For simplicity the measurement uncertainty due to
instrument transformers [35] is neglected, and PMU
measurements are considered with higher accuracy than
the SCADA measurements, by assigning higher weights
to them in the error covariance matrix.

6) SCADA data are recorded with local time stamps,
so the time skew between SCADA and PMU mea-
surements will be negligible considering the fact that
quantities provided by SCADA measurements do not
change significantly in a short time interval.

7) The time step �t is equal to 0.2 s which is the time
interval between two averaged PMU measurements.

8) For simplicity it is assumed that the reference of PMU
measurements which is associated with the GPS timing
signal is equal to the slack bus angle.

The overall measurement set (m) is divided into two subsets:
PMU measurements (mP) and SCADA measurements (mS).
Since the refresh rate of mP is a lot faster than mS, there are
more measurements available for the buses with PMU instal-
lations during the same time interval. To take advantage of
all available measurements, missing SCADA measurements
are extrapolated employing the exponential moving average
method [36]. This method assigns different weights to the pre-
vious measurements in a way that the old measurements fade
exponentially and new measurements have more effect on the
result of prediction as follows:

m̃E
k+1 = μmS,E

k + (1 − μ)m̃E
k , 0 < μ < 1 (1)

where μ is the scalar smoothing constant, which is chosen to
be 0.7 in this paper. mS,E

k and m̃E
k are previous measurements

(including actual and extrapolated SCADA measurements) and
extrapolated measurements, respectively. The indices k = t
and k + 1 = t + �t are used for present time and one step
in the future, respectively.

To extrapolate a SCADA measurement, the last ten avail-
able measurements which contain both measured SCADA and
extrapolated SCADA are used. The algorithm, extrapolates all
measurements even those that arrive exactly at the time the
new set of SCADA measurements arrive. It should be noted
that in every ten extrapolated SCADA measurements, two of
them will be available by actual measurement. Whenever new
SCADA is available, extrapolated measurement is replaced by
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Fig. 1. Example of data collation for MPDSE.

the actual measurement. To increase the accuracy, the aver-
age of last ten estimation errors (difference between actual
SCADA measurements and the extrapolated measurements)
are added to the predicted value. Expanding m̃E

k with its
components results in the following:

m̃E
k+1 = μ

10∑

i=0

(1 − μ)imS,E
k−i + (1 − μ)11m̃E

k−11

+ 1

10

10∑

j=1

(
�ej

k

)2
(2)

where �ej
k represents the estimation error at the time instant k.

Indices i and j refer to the last ten available measurements and
estimation errors, respectively. An example of data collation
for t = 24.2 s is shown in Fig. 1.

In order to have a uniform set of measurements, the
PMU measurements which are in polar format are trans-
formed into cartesian format (mP

T in Fig. 2). For a given
function f(r, ϕ) in polar coordinates the relationship between
derivatives in cartesian (z = r cos(ϕ), y = r sin(ϕ)) and polar
(r = √

z2 + y2, ϕ = arctan(y/z)) coordinates is as follows:

∂f

∂z
= ∂f

∂r

∂r

∂z
+ ∂f

∂ϕ

∂ϕ

∂z
= cos(ϕ)

∂f

∂r
− sin(ϕ)

r

∂f

∂ϕ

∂f

∂y
= ∂f

∂r

∂r

∂y
+ ∂f

∂ϕ

∂ϕ

∂y
= sin(ϕ)

∂f

∂r
+ cos(ϕ)

r

∂f

∂ϕ
. (3)

The error covariance matrix R corresponding to PMU mea-
surement errors in polar coordinates must also be transformed
to cartesian coordinates. By definition of differentiability the
incremental change �z is given as

�z = z(r + �r, ϕ + �ϕ) − z(r, ϕ) � ∂z

∂r
�r + ∂z

∂ϕ
�ϕ. (4)

Fig. 2. Data collation process flowchart.

Similarly, the incremental change �y can also be defined
resulting in the following general transformation:

[
�z
�y

]
=

[
cos(ϕ) −r sin(ϕ)

sin(ϕ) r cos(ϕ)

] [
�r
�ϕ

]
= [

Tr
] [

�r
�ϕ

]
. (5)

Based on definition of covariance matrix [37]

R(z, y) = Ex
[
(z − z̄) (y − ȳ)T]

(6)
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where Ex indicate the expected value. z̄ and ȳ, represent the
mean value of z and y, respectively. Substituting (5) in (5)
using the transformation matrix (Tr), the error covariance
sub-matrix of PMU measurements in cartesian format can be
driven as follows:

RC
PMU = R(�z,�y) = Ex

[
(Tr�r)(Tr�ϕ)T]

= Ex
[
Tr�r�ϕTTT

r

] = TrEx
[
�r�ϕT]

TT
r

= TrR(�r�ϕ)TT
r = TrR

P
PMUTT

r . (7)

�̄z and �̄y assumed to be zero.
Superscripts C and P refers to cartesian and polar for-

mat, respectively. Since the PMU measurements are assumed
to have higher accuracy than SCADA measurements, more
weight is assigned to them in measurement error covariance
matrix

R =
[

RC
SCADA 0

0 RC
PMU

]
. (8)

In case of sudden changes in the PMU measurements the
accuracy of the estimation may degrade. By online tracking
(as fast as measurement update rate) of the difference between
two consecutive PMU measurements at the buses with PMU
installations, the algorithm decides whether the network was
in normal condition or not. The threshold for detecting contin-
gency is set to 50% of previous measurement; it is assumed
that if the next PMU measurement changes more than 50%
of the previous value there is a contingency. The proposed
method also can be applied for smaller thresholds. To handle
the contingency effect on the state estimation process, a cor-
rection step is added to the algorithm. Nodal equations in a
power network can be written as

[
IP
IS

]
=

[
YPP YPS
YSP YSS

] [
VP
VS

]
(9)

where the subscripts P and S refer to buses with PMU mea-
surement and SCADA measurement subsets, respectively. In
general

�VP = (�YPP)−1 (�IP − �YPS�VS). (10)

From (10), it can be concluded that changes in �VS is
proportional to changes in �VP. Therefore, in the case of
sharp or sudden changes in the PMU measurements, only YPS
and YPP needed to be updated using online power flow. These
matrices are too small compare to YSS. Fig. 2 shows the block
diagram of the entire data collation process.

B. Massively Parallel DSE

The generic power system for DSE can be described by

xk+1 = f(xk) + wk (11)

mk+1 = h(xk+1) + εk+1, εk ∼ N(0, Rk) (12)

where x is a vector of system states comprising of volt-
age magnitudes and phase angles at all buses except the
slack bus where V1 = 1∠0◦ p.u. Since the phase angle in
slack bus is considered 0, there are 2n − 1 states to be esti-
mated. f(x), m, and h(x), are vectors of nonlinear system

transition function, unified measurements, and nonlinear mea-
surement functions, respectively. For a system with n buses
and m lines, there are 2m + 2n + 1 elements in each mea-
surement vector: 2m power flows, 2n power injections, and
slack bus measurements. ε and w are measurements and sys-
tem noises assuming normal distribution with zero mean, and
R is the (2m + 2n + 1) × (2m + 2n + 1) measurement error
covariance matrix. Equation (11) can be linearized as follows
if the time frame is small enough:

xk+1 = Fkxk + ak + ωk, ωk ∼ N(0, Qk) (13)

where Fk represents the (2n − 1) × (2n − 1) state transition
matrix between two time frames, ak is the vector of associ-
ated behavior of the state trajectory, and ωk is the Gaussian
noise vector with zero mean and covariance matrix Qk. The
MPDSE utilizing EKF is composed of three major steps:
1) identification; 2) prediction; and 3) filtering.

1) Parameter Identification: To evaluate the dynamic
model, unknown parameters need to be calculated online.
Holt’s exponential smoothing technique [38] was used for
identification of Fk and ak. Based on this method, Fk and ak
can be described as follows: if x̃ and x̂ represent the predicted
and estimated value of the states, respectively:

Fk = α(1 + β)Iidn, 0 < (α, β) < 1

ak = (1 + β)(1 − α)x̃k − βγk−1 + (1 + β)ξk−1

γk = αx̂k + (1 − α)x̃k

ξk = β(γk − γk−1) + (1 − β)ξk−1 (14)

where α and β are smoothing parameters. Under normal oper-
ation conditions it is possible to adjust Fk and ak such that
Qk remains constant. Iidn is the (2n − 1) × (2n − 1) identity
matrix. However, considering the dynamic behavior of the net-
work neglecting the changes in Qk may result in inaccurate
prediction. Online estimation of Qk can be formulated as [39]

Q̂k+1 = Qk

√√√√ trace
{

Hk+1

(
FkρkFk

T + Q̂k

)
HT

k+1

}

trace
{
Hk+1

(
FkρkFk

T + Qk
)

HT
k+1

} . (15)

2) State Prediction: Using the measurement and estimated
states at the time instant k, the predicted value x̃k+1 can be
formulated as

x̃k+1 = Fkx̂k + ak,
(
xk − x̂k

) ∼ N(0, ρk)

ρ̃k+1 = FkρkFT
k + Q̂k, (xk − x̃k) ∼ N (0, ρ̃k) (16)

where ρ and ρ̃ are (2n − 1) × (2n − 1) error covariance matri-
ces for estimated and predicted values, respectively. The objec-
tive function J(x) was chosen to minimize both estimation and
prediction errors

J(x) = arg min
x

[m − h(x)]TR−1[m − h(x)]

+ [
x − x̃

]T
ρ̃−1 [

x − x̃
]
. (17)

The following equation satisfies the first-order optimality
condition at the minimum of J(x):

g(x) = HT(x)R−1[m − h(x)] − ρ̃−1 [
x − x̃

] = 0 (18)
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where g(x) is the (2n − 1) × 1 vector of gradient of the objec-
tive function, and H = ∂h/∂x is the (2m + 2n + 1) × (2n − 1)

Jacobian matrix. Using Taylor’s expansion of h(x) around
x̃0 (18) can be expressed as follows:

G(x)�(x) = HT (x̃) R−1 [
m − h (x̃)

]

G(x) = HT (x̃) R−1H (x̃) + ρ̃−1 (19)

where �(x) = x̂− x̃0 is the (2n − 1) × 1 state mismatch vector
and G(x) = ∂g/∂x is (2n − 1) × (2n − 1) is the gain matrix.
The state estimation algorithm given by (17)–(19) can be solved
iteratively until convergence of �(x) to a specified threshold.

3) State Filtering: This step updates the predicted values
using the next set of measurements at the time instant k+1.
The updated state through EKF can be written as

x̂k+1 = x̃k+1 + kk+1 (mk+1 − h (x̃k+1))

kk+1 = ρ̃k+1HT
k+1

[
Hk+1ρ̃k+1HT

k+1 + R
]−1

ρk+1 = ρ̃k+1 − kk+1Hk+1ρ̃k+1 (20)

where K is the (2n − 1) × (2n − 1) Kalman gain matrix. For
the same reasons mentioned earlier, this step is also a good
candidate for parallelization.

C. Extraction of Parallelism

In the proposed MPDSE method several aspects of paral-
lelism are combined to utilize the full capability of GPUs as
efficiently as possible. First, all initialization and data collation
are done on the CPU. After that all of the data are trans-
ferred to the GPU for executing the MPDSE algorithm. The
following types of parallelism are used in this paper.

1) Task Parallelism: In this level, the traditional serial algo-
rithm is converted into various smaller and independent
tasks which can be solved in parallel. All of the indepen-
dent tasks in the three main steps of EKF are calculated
in parallel to accelerate the algorithm. In the parameter
identification, ak, λk, and Qk do not rely on each other’s
result, so they are calculated in parallel to accelerate the
algorithm. In the state prediction stage, x̃k+1, ρ̃k+1, G(x),
and g(x) are parallelizable. Finally in the state filtering
step, x̂k+1 and ρk+1 can be calculated simultaneously.

2) Data Parallelism: This level employs the fine-grained
type of parallelism that can be used on the single instruc-
tion multiple data (SIMD)-based architectures such as
GPUs for the basic computations in the algorithm.
Generally, matrix-vector and matrix-matrix products are
time consuming for large data-sets. There are several
independent for loops in the implementation of each
matrix-matrix and matrix-vector products which make
them the best candidates for parallelization utilizing
GPU threads. Assigning each iteration in a loop to
individual threads, the task can be executed in parallel
by converting into a kernel. In the MPDSE algorithm,
the computation of ak for state prediction and G(x),
K, λ, ρ and HT(x)R−1H + ρ̃−1 for state filtering can
take a long time to complete even on CPU clusters.
These separate tasks are composed of matrix-matrix
and matrix-vector product or summations which can be
assigned to an individual kernel to run in parallel. Each

Fig. 3. MPDSE operation flowchart.

TABLE I
SUMMARY OF SEQUENTIAL AND PARALLEL VARIABLES IN MPDSE

kernel is responsible for the calculation of that specific
task. As the number of independent threads is a lot more
than the CPU cores, this type of parallelization is not
possible on the CPU.

3) Parallelism in Linear Solver: Solution of �(x) by inver-
sion of G(x) is considerably expensive due to the sheer
size of the inverted matrix. Two alternatives, LU decom-
position as a direct method and preconditioned conjugate
gradient (PCG) [40] as an iterative method were used
in this paper. For iterative solvers, the preconditioner is
the most challenging part to parallelize. Coarse grained
or task parallelism is difficult to achieve on LU and
Cholesky factorization due to inherent sequentiality.
However, underlying implementation of these algorithms
(vector updates, inner products, and matrix vector prod-
ucts) takes advantage of the data parallelism. So, these
tasks are done as a combination of sequential and
parallel computations.

Sparse matrix-vector multiplication and sparse triangular
solve is used for GPU implementation using cuSPARSE
library [41]. Fig. 3 shows the overall MPDSE flowchart, and
Table I summarizes the sequential and parallel variables.
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Fig. 4. CUDA and OpenMP physical and abstracted resources.

III. GPU AND CPU SYSTEM ARCHITECTURE

In contrast to the CPU with a limited number of arithmetic
cores, capable of processing a few heavy-weight threads in
parallel, the GPU is composed of hundreds of cores known as
SPs that can simultaneously execute thousands of light-weight
threads using the SIMD paradigm.

A. Hardware Setup

The hardware used in this paper is one unit of Tesla S2050
GPU from NVIDIA with 148 GB/s memory bandwidth. It
has 448 cores which deliver up to 515 Gigaflops of double-
precision peak performance. This device contains 14 streaming
multiprocessors (SMs), each with 32 SPs, an instruction unit,
and on-chip memory [42]. CUDA version 5.0 with compute
capability 2.0 is used for programming. The CPU is the quad-
core Intel Xeon E5-2620 with 2.0 GHz core clock and 32 GB
memory with 42.6 GB/s memory bandwidth, running 64-bit
Windows 7 operating system.

B. CUDA and OpenMP Abstractions

Fig. 4 shows the physical and abstracted resources in a CPU
and a GPU. CUDA is the general-purpose programming model
for the NVIDIA GPU hardware [43]. The GPU runs its own
functions called kernels independently under the CPUs con-
trol. Typically, when a kernel is called, a fixed number of
threads execute the same kernel in parallel. There is a two-
level hierarchy in each thread namely, blockId and threadId
which distinguish the specific portion of the data to process.
The top level is a 2-D array of blocks which are organized

Fig. 5. IEEE 39-bus power system used to build the large test cases.

Fig. 6. MPDSE test procedure.

as a grid. All blocks in a grid have the same dimensions
and share the same blockId. While a generic programming
language such as OpenCL [44] could have been used to
program GPU, CUDAs advantages in providing advanced
debugging and profiling tools, better performance, and higher
level of abstraction are the main reason for its adoption in
this paper.

OpenMP is a standard application programming inter-
face (API) for multicore CPUs, which does not require
major code reformation for parallelization. It also includes
environment variables to facilitate scheduling and parallelism
at runtime [45]. The program begins as a single process called
a master thread which executes sequentially. The master thread
creates a group of slave threads within the parallel construct.
At the end of the construct only the master thread remains
while the rest of the slave threads synchronize and terminate.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To evaluate accuracy and efficiency of the parallel DSE
algorithms, experiments were conducted based on two sep-
arate simulation codes: multithread CPU-based code in C++,
and a massive-thread GPU-based code written in C++ and
CUDA. The results of state estimation were compared utilizing

READ O
NLY



KARIMIPOUR AND DINAVAHI: EKF-BASED PARALLEL DSE 1545

TABLE II
SUMMARY OF OVERALL ESTIMATION TIME FOR MULTITHREAD AND MASSIVE THREAD DSE UNDER CONTINGENCY CONDITION

Fig. 7. Pseudo code for GPU implementation of MPDSE.

both iterative PCG and direct LU decomposition methods for
the linear solver. Since the matrices are highly sparse in state
estimation, all matrices and vectors are stored in compressed
sparse row format to reduce the computational burden.

Large-scale test power systems were constructed to explore
the efficiency of the GPU-based MPDSE program. Case 1 is
the IEEE 39-bus system (Fig. 5) which was duplicated and

interconnected to create large-scale systems, whose dimension
n is obtained as n = 39 ∗ 2Sc , where Sc = 
 − 1 with 
 being
the test case index. The block diagram for the MPDSE test
procedure is shown in Fig. 6. Buses with PMU measurements
and SCADA measurements in the IEEE 39-bus system are
shown in Fig. 5.

The uniform set of measurements which are the input to
the MPDSE code are obtained by corrupting online power
flow results of the test power systems with Gaussian noise
of zero mean and covariance R, and combining them with the
output from the data collation process. Therefore, to assess the
accuracy of the state estimator, the results are verified using
bus voltage magnitudes and phase angles for all test cases
modeled in PSS/E. While it is possible to use a partial set of
measurement, all of the measurements are included to make
the problem as complicated as possible for the GPU. For each
time step the measurement set and all of the steps in Fig. 3
except state filtering are calculated one step ahead of the time,
so the MPDSE algorithm can dynamically estimate the states
of the system. The simulations were done using the test data
sets listed in Table II, with a tolerance of 10−4 for convergence
of the estimated parameters.

A. Massive-Thread GPU and Multithread
CPU Implementation

The communication overhead in data transfer between the
CPU (host) and the GPU (device) is an important bottleneck
in massive-thread programming. In the proposed GPU imple-
mentation most of the computational steps are moved to GPU
to avoid any unnecessary communication between host and
device. Fig. 7 illustrates the implementation of the MPDSE
on the GPU. The OpenMP standard was utilized to develop
the multicore DSE code. All the for loops and parallel sec-
tions were assigned to separate threads and cores. Each thread
is responsible for specific portion of the tasks to execute on
that core. The entire DSE task was divided into several sub-
sets to distribute an equal workload among the threads which
equals the number of the cores. Fig. 8 shows a sample of the
multithread CPU code.

B. Effect of Direct and Iterative Linear Solvers

The total execution time under contingency scenario includ-
ing sequential data collation, contingency check, admittance
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Fig. 8. Pseudo code for quad-core CPU implementation of DSE.

matrix update, and state estimation is reported in Table II.
The results obtained using double precision (64 bit) for-
mat for both CPU (TCPU

Ex ) and GPU (TGPU
Ex ) codes as the

system size increased. The execution time for GPU-based pro-
gram includes both execution and communication time. An
incomplete Cholesky PCG [40] iterative algorithm was used
to condition the gain matrix which reduced the number of
iterations in each solution. Since the gain matrix G(x) is
asymmetric, it is not possible to directly use the Cholesky
factorization. At first, gain matrix is divided into two matrices
M and N where

G = M − N = GT − (
GT − G

)

= GT −
[(

GT − G
)

Pos + (
GT − G

)
Neg

]

= [
GT − (

GT − G
)

Pos

] −
[(

GT − G
)

Neg

]
. (21)

M = [GT − (GT − G)Pos] = LTL is a symmetric positive
definite (SPD) matrix which is used as a preconditioner.
(GT − G)Pos is the matrix of positive element in (GT − G).

Fig. 9. Execution time (TEx) and speed-up (Sp) comparisons of multithread
and massive-thread DSE along with growth rate functions.

Thus the following equation can be solved instead of (19):

L−TG(x)�̆x = L−Tg(x) (22)

where �̆x = L−1�x. The condition numbers before and after
preconditioning are shown in Table II. The results also show
that the execution time reduced by approximately 20%–50%
using PCG compared to the LU decomposition method. The
reason is that direct methods calculate an exact solution on a
single iteration, so that they deal with large size matrices which
take more time to be solved; however, the iterative method
starts from an initial guess and improves the solution in each
iteration. Fig. 9 shows the results of comparison between the
CPU and GPU simulations along with the speed-up of the par-
allel code for both iterative and direct solvers. As can be seen,
PCG converged faster than the LU decomposition algorithm
but the speed-up (Sp = TCPU

Ex /TGPU
Ex ) using GPU is almost the

same for both methods. The reason is that the execution times
for both CPU-based PCG and GPU-based PCG experience a
similar drop in each case study. Therefore, the overall speed-
up is almost the same. The accuracy was mostly the same for
both linear solvers, so the details are omitted from Table II.

C. Accuracy Analysis of the GPU-Based MPDSE

The performance of the proposed MPDSE method, was
evaluated under both normal and contingency conditions. The
estimated states in case 1 for a temporary fault at bus 10 at
t = 10 min for a duration of 0.1 s. are shown in Fig. 10. From
Fig. 11 it is clear that the proposed MPDSE can accurately
track the system dynamics. The average error of 0.07 p.u.
for voltage magnitudes and 2.5 rad. for phase angles during
the first 5 min was due to the fact that the estimator needed
to predict missing SCADA measurements at the first level
(Fig. 1). Since at the beginning there was not enough his-
tory data to be used for prediction, the error of estimation was
large. However, in a long term simulation neglecting the effect
of incomplete historical data the average estimation error for
voltage magnitudes and phase angles was 0.002 p.u. and 0.05
rad., respectively. A snapshot of the estimation error at buses
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Fig. 10. Voltage magnitudes and phase angles for case 1 under faulted
condition.

Fig. 11. Estimation errors in MPDSE for case 1 compared to PSS/E under
fault conditions.

numbers 10, 11, 13, and 32 is provided in Fig. 12. The small
differences compared to PSS/E results are justifiable consider-
ing the fact that the order of block execution in each GPU grid
is undefined in kernel definition. Therefore, it leads to slightly
different results if different CUDA blocks perform calculations
on overlapping portions of data. In addition, the performance
of the proposed state estimation method is tested for various
number of PMU installations. The normalized Euclidian norm
of the state estimation is defined as a factor to evaluate the
accuracy using

xEN =
∥∥x − x̂

∥∥
√

dim(x)
(23)

where xEN is the normalized Euclidian norm of the estima-
tion error, and dim(x) is the dimension of vector x. x and x̂
are vector of true states and estimated states, respectively.
Table IV shows the accuracy index for both voltage magni-
tude and phase angle using PMU installation (NP) at 10%,
20% and 40% of the total system buses (NT). NP is rounded

Fig. 12. Snapshot of estimation error for case 1 at bus num-
bers 10, 11, 13, and 32.

TABLE III
STATE ESTIMATION EXECUTION TIME

TABLE IV
DSE ERROR NORM (23) FOR DIFFERENT PERCENTAGE OF

PMU INSTALLATION

to the next larger number. As it is shown the results are accu-
rate for all of the case studies and the accuracy is increased
as the percentage of PMU measurements increased.

D. Speed-Up and Complexity Analysis

As shown in Table II, the advantage of utilizing GPU for
parallelization in MPDSE is significant when the size of the
system is increased. One explanation is that for small size of
data the communication overhead between the host and device
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supersedes the execution time on the CPU. With growing sys-
tem sizes, the CPU is barely able to handle the computation
tasks in a reasonable time. With growing system sizes less time
is spent on state estimation. The reason is that, as the size of
the system grows the parallel portion of the program expands
faster than the serial portion, while underscore GPUs advan-
tages. The results of Table II are not unique due to the fact that
the programming structure is one of the most important fac-
tors which affects the processing time. Therefore, a different
programming style may lead to faster results; nevertheless, the
speed-up shown in Table II would still be valid for increasing
system sizes although with a slightly lower numerical value.

The portion of execution time related to actual DSE process
(parameter identification, state prediction and state filtering)
along with the actual state estimation process speed-up is
reported in Table III. As the results show state estimation
takes approximately 25%–30% of the total execution time
of massive-thread DSE and between 35%–40% of the total
execution time of the multithread DSE.

To analyze the algorithms complexity, their efficiencies are
expressed as functions of the problem size. Considering Sc as
the system scale, by curve fitting the closest growth rate func-
tion (GR = TEx(Sc)) for the CPU-based and the GPU-based
algorithms are calculated as Sc∗log2(Sc) and

√
Sc∗log2(

√
Sc),

respectively. The growth rate functions for CPU (GRCPU) and
GPU (GRGPU) are plotted in Fig. 9. As the size of the problem
increases, the required time for execution increased propor-
tional to these functions which proves that the speed-up will
increase with growing system sizes. It can be seen that the
CPU-based algorithm follows a higher order complexity com-
pared to the GPU-based algorithm. The complexity reduction
is the main advantage afforded by the GPU for MPDSE.

Distribution of threads, blocks and memory varies in dif-
ferent kernels. Typically, the number of thread per block is
a constant number which was 128 in our case studies. The
number of blocks per grid is different based on the problem
size in each case study. In this paper, the maximum number of
block per grid in each dimension was 16. GPU resource occu-
pancy varied between 51% and 87% for LU decomposition
and between 54% and 98% for PCG method.

V. CONCLUSION

The application of parallel processing for DSE is motivated
by the desire for faster computation for real-time monitoring
of the system behavior. The approach proposed in this paper
investigates the process of accelerating the DSE for large-
scale networks using both PMU and SCADA measurements.
A data collation method is proposed where PMU devices are
installed at a subset of buses, and the remaining measurements
were extrapolated employing the exponential moving average
method. A MPDSE process is formulated on the GPU. In
addition, a multithreaded CPU implementation was developed
for comparison. For a fair comparison exactly the same algo-
rithm is used on both CPU and GPU. Numerical experiments
in this paper, proved that successful parallelization utilizing
iterative and direct linear solver results in a notable reduc-
tion in execution time; 15 times total speed-up for a 4992-bus

power system is reported. The results verify the accuracy of
the proposed GPU-based estimator under both normal and
contingency conditions. If any optimization can happen to
improve the CPU-only simulation, its implementation on the
GPU would improve the GPU-based simulation as well. Future
work will include detailed modeling of power system infras-
tructure to provide a higher accuracy and more detailed state
estimation within the massively parallel framework.
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