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Abstract: This study presents a methodology for analysing the transient behaviour of harmonics associated with the interfacing of
a synchronous generator and a transmission line. The algorithm is derived entirely in the dynamic harmonic domain that is based
on an orthogonal basis and on operational matrices. The main characteristics of the proposed method are: its capability to
accurately follow the harmonic content of a transient without the aid of a post-processing tool and its ability to serve as a
visually active indicator of the steady-state and transient conditions in a signal. The proposed method is validated by
comparing its results against those obtained through a time-domain technique. NLY

1 Introduction

The interaction between synchronous generator, transmission
line and non-linear loads has a significant bearing on the
power quality of a system. It is well known that the
operation of a synchronous machine under non-sinusoidal
conditions can produce harmonics owing to the intrinsic
frequency conversion dynamics that exists between the
stator and the rotor. The saturation of the rotor can enhance
waveform distortion in that frequency conversion process
[1–4]. In addition, the interconnection of a generator with
an untransposed transmission line can produce resonances
leading to over-voltages, failure of substation equipment
and even power system instability [2]. Owing to the
complexity of obtaining a precise model for the machine
saturation [5], this subject is not considered here and left
for future research work. However, accounting for enough
available data, it is preliminary proposed to represent
saturation as a non-linear relation, for example, a
polynomial relating flux and current [6].

Several studies have been reported on the interconnection
of a generator with a transmission line, a few of them
dealing with harmonics [1–7]. However, most of the
existing literature has focused on the steady-state analysis.
The need for harmonic analysis under transient conditions
arises for filtering, control and protection purposes owing to
the proliferation of a variety of non-linear loads, especially
fast-switching power-electronic loads.

Traditionally, electromagnetic transients’ simulation tools
such as EMTP and PSCAD/EMTDC can be used to
calculate transients as a function of time. A post-processing
routine can then be used to compute the corresponding
harmonic content during the period of interest. For the sake
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of an example, the windowed fast Fourier transform
(WFFT) allows the calculation of the harmonic content of a
signal as a function of time by sliding an FFT window.
However, numerical errors such as aliasing, Gibbs
oscillations and the picket-fence effect [8] make such
techniques unattractive for relatively fast transients.

A harmonic domain (HD) methodology, based on constant
Fourier coefficients, was pioneered by Xia and Heydt, using a
decoupled positive sequence circuit for a full-wave bridge
rectifier [9, 10]. Later on, Densem et al. reported that the
network must be modelled in the abc frame since the
characteristic harmonics cannot be properly evaluated by a
positive sequence frequency representation [11]. The HD
methodology was extended to the dynamic case, that is,
with variable Fourier coefficients, for transient studies by
Acha et al. [6], and it is hereafter referred to as the dynamic
harmonic domain (DHD) methodology.

The DHD is a direct approach for transient and steady-state
solution of harmonics. It is based on an orthogonal basis and
on operational matrices, with the coefficients of
the orthogonal basis being the state variables. Intrinsically,
the DHD solution allows the possibility of computing the
evolution of the harmonic coefficients step-by-step. In
addition, the DHD methodology provides the power quality
indices used in steady-state applications as functions of time.

In this paper, we propose a methodology for directly
analysing the transient behaviour of harmonics in a
generator-line load system using the DHD without resorting
to post-processing techniques for harmonic tracking. In the
generator model, both the electromechanical and the
electromagnetic dynamics are taken into account and are
coupled numerically through a hybrid numerical solution.
For illustration purposes a single-mass model is considered;
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however, the extension to the multi-mass case is straightforward.
The untransposed transmission line is modelled as a fully
frequency-dependent line. In this work we have taken the
DHD line model proposed in [12]. Linear and non-linear loads
are interfaced to the system via their corresponding
differential/algebraic equations. The simulation results from
the proposed method are validated through a time-domain
technique. The former can potentially be implemented in real-
time simulation by using efficient technologies such as field
programmable gate arrays (FPGAs) and graphic processor
units (GPUs), thus overcoming the network’s size restriction.

The paper is organised as follows. In Section 2, the DHD
models for synchronous machine, the transmission line and
their interconnection are presented. The algorithm proposed
for the numerical solution of the complete system is
explained in Section 3. Section 4 analyses the simulation
results for an example system under various transient
conditions. Section 5 presents the conclusions of the study.

2 Generator and transmission line DHD
models

This section outlines the modelling of the synchronous
generator and the transmission line in the DHD and
describes the interfacing of the two models.

2.1 Generator

The following definition is used

u = vot + urel (1)

where vo is the electrical power angular frequency in rad/s
and urel corresponds to the deviation (from its uniformly
rotating reference on phase a) of the rotor angle u (defined
as the angle between phase a and the d-axis).

The synchronous machine can be represented in the time
domain (using motor convention) as

vs

vr

[ ]
= Rs

Rr

[ ]
is

ir

[ ]
+ d

dt

Cs

Cr

[ ]
(2)

where the s and r subscripts correspond to stator and rotor
quantities, respectively. In the DHD (2) becomes (without
change of notation)

vs

vr

[ ]
= L

d

dt

is

ir

[ ]
+ R + LSsr +

d

du
L

( )
is

ir

[ ]
(3)

where (using Matlabw notation)

L =
Ls Lsr

Lrs Lr

[ ]
, R = blkdiag{Rs, Rr}

Ssr = blkdiag{Ss, Sr}

Ss = blkdiag{S, S, S}, Sr = {S′
r, S′

r, S′
r, S′

r}

S = diag { . . . , −3jvo, − jvo, jvo, 3jvo, . . . }

S′
r = diag{ . . . , −4jvo, − 2jvo, 0, 2jvo, 4jvo, . . . }

In (3), the vectors representing stator and rotor voltages and
currents are time-varying harmonic vectors, whereas the
inductance and resistance matrices are Toeplitz-type
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matrices [6]. The steady-state solution can be obtained by
setting to zero the derivatives with respect to time in (3).

Alternatively, (3) can be expressed in a compact form as

d

dt

is

ir

[ ]
= Ag

is

ir

[ ]
+ L−1 vs

vr

[ ]
(4)

where

Ag = −L−1 R + LSsr +
d

du
L

( )

The mechanical dynamics of the machine is described (for a
single-mass rotor) as follows

v̇rel =
vo

2H
[Te − Tm + kdvrel] (5a)

u̇ = vrel (5b)

where

Te =
1

2
iT dL

du
i (6)

In (6), the current vector, i, contains both stator and rotor
currents. From (6) one can notice that the complete set of
harmonics contribute to the scalar electrical torque Te.

2.2 Transmission line

Since the underlying idea of this work is to analyse transients
accurately, the DHD transmission line model used here is
based on a frequency-dependent line model in the phase
domain [13], where the propagation matrix and the
characteristic admittance are approximated by rational
functions using vector fitting [14] (see Appendix 1). The
corresponding propagation equations in the time domain are
(see Fig. 1a for reference directions) [12]

ẋ1

ẋ2

[ ]
= A1

A1

[ ]
x1

x2

[ ]
+ b1

b1

[ ]
i′n
i′m

[ ]
(7a)

i′n
i′m

[ ]
= c1

c1

[ ]
x1

x2

[ ]
(7b)

with their counterpart in the DHD given by [12]

ẋ1

ẋ2

[ ]
= A1 − S′

A1 − S′

[ ]
x1

x2

[ ]

+ B1G

B1G

[ ]
i′n
i′m

[ ]
(8a)

i′n
i′m

[ ]
= C1

C1

[ ]
x1

x2

[ ]
(8b)

It is mentioned here that after calculating i′m and i′n and in the
modal domain, they are transformed into the phase domain.
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In addition to the propagation equations, we have the
terminal equations for bus m [12]

ẋ3 = (A2 − S)x3 + B2vm (9a)

im = C2x3 + D2vm − 2i′m (9b)

Similarly, for bus n we have

ẋ4 = (A2 − S)x4 + B2vn (10a)

in = C2x4 + D2vn − 2i′n (10b)

The reflected currents are updated at each time step with

i′′m = i′m + im (11a)

i′′n = i′n + in (11b)

2.3 Interfacing

The resulting DHD ordinary differential equations for the line
are now interfaced to a transformer (its magnetising branch
taken here as a non-linear inductance [15]) and the machine
equations.

From the output expression of (9b) the relation between
sending end voltage and current is given by (note that
m ¼ 2(is + iT) and vs ¼ vm)

vs = D−1
2 (2i′s − C2x3 − is − iT ) (12)

Substituting (12) into (9a), the transmission line, the
transformer and the generator models are linked as

ẋ3 = (A2 − S − B2D−1
2 C2)x3 + 2B2D−1

2 i′s

− B2D−1
2 (is + iT ) (13)

Fig. 1 Test case

a Network system
b Single-phase-to-ground fault (I), line-to-line fault (II) and three-phase non-
linear load (III)
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taking into account (4) and (13) gives

d

dt

is

ir

[ ]
= Gm

is

ir

[ ]
+ L−1

g1 D−1
2 [ − C2x3 + 2C2i′s

− (aTFT + bTF
3
T )] + L−1

g1 vr (14)

where

Gm = −L−1
g1

Rs + D−1
2

Rr

[ ]
+ LSsr +

d

du
L

{ }

It is mentioned that the magnetising branch of the transformer
has been represented as the flux/current relation:
iT = (aTFT + bTF

3
T ). Combining (13) and (14) into a

state–space representation, we finally obtain (15)
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(15)

3 DHD algorithm for transient harmonic
analysis

The complete set of ODEs representing the generator-
transformer-line system given by (5), (8a) and (15) can be
expressed in compact form as

ẋe

ẋm

[ ]
= Ae

Am

[ ]
xe

xm

[ ]
+ Be

Bm

[ ]
u (16)

where xe and xm represent the harmonic vectors of electrical
and mechanical state variables, respectively. Since the
generator contains slow and fast dynamics at the same time,
a hybrid algorithm is used for the numerical integration of
(16) such that the stiffness of the complete system is
overcome. The algorithm consists of the following four steps:

Step 1: Assume that the simulation begins with the system in
steady state. Initialise all the system variables.
Step 2: Using the trapezoidal rule for (16) the electrical state
variables and the electrical torque are calculated at Steps
k + 1 and k + 1/2 by

m1xk+1
e = m2xk

e +
Bk

e

2
(uk + uk+1) (17a)

n1xk+1/2
e = n2xk

e +
Bk

e

2
(uk + uk+1/2) (17b)

where

m1,2 = 1

Dt
I +

1

2
Ak

e

( )
, n1,2 = 2

Dt
I +

1

2
Ak

e

( )
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and

xk
e = [x1, x2, x3, FT , ir, is]

T

The electrical torque is obtained by

Tk+1/2
e = 1

2
iT
s,k+1/2

d

du
Lk+1/2is,k+1/2 (18)

Step 3: First, a predicted value of vrel is given by

p1v̂
k+3/2
rel = p2v

k+1/2
rel + vo

2H
(Tk+1/2

e − Tm) (19)

where p1,2 = (1/Dt) + vokd/4H .
Then, a corrected value for urel is obtained by

u
k+3/2
rel = u

k+1/2
rel + Dt

2
(v̂k+3/2

rel + v
k+1/2
rel ) − voDt (20)

Finally, with v̂
k+3/2
rel and u

k+3/2
rel calculate the inductance

matrix (d/du)Lk+3/2
u with

d

du
Lk+1
u = d

du
Lk+1/2
u + d

du
Lk+3/2
u

( )
/2 (21)

Step 4: The average values of the electrical states and torque
are computed as

xe a = (xk+1/2
e + xk+1

e )/2 (22a)

Te a = 1

2
xT

e a

d

du
Lk+1xe a (22b)

p1v
k+3/2
rel = p1v

k+1/2
rel + vo

2H
(Te a − Tm) (22c)

4 Case study

To ascertain the accuracy of the proposed algorithm, a case
study is presented. The results provided here were
compared against those obtained by a time-domain
technique, which consists in solving the original non-linear
ODEs by numerical integration (labelled as TD in the
corresponding figures).

Fig. 1 shows the test case where a 555 MVA, 24 kV
synchronous machine is connected to a solidly grounded
Y 2 Y transformer with LT ¼ 0.02 pu, aT ¼ 0.02 pu and
bT ¼ 8 × 104 pu to a 100 km open-ended transmission line.
The geometry of the untransposed line is shown in
Appendix 2. The synchronous machine parameters were
obtained from [5] where the per unit parameters have been
calculated on the basis of the machine nominal power and
voltage (i.e. 555 MVA and 24 kV). Simulation results for
steady-state as well as transient conditions are analysed in
the following subsections.

4.1 Steady state

Fig. 2 (reproduced using the method in [2]) corresponds to the
steady-state voltage for a generator and an open-ended line
system showing the magnitude of its harmonics when the
length of the line is varied from 10 to 1000 km. From
Fig. 2 one can notice several harmonic resonance
conditions, the most noticeable around 147.8 km line
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length. The results in Fig. 2 have been further corroborated
for several line lengths with the proposed DHD model
described in Section 2 by setting to zero all the derivatives
with respect to time. This HD computation permits to
calculate initial conditions that can be included in the DHD.

4.2 Single-phase fault

The simulation starts in steady state with the far end of the line
having a load with R ¼ 125 pu, L ¼ 1 pu. After 0.0332 s,
phase c is connected to ground through a 1028 pu
resistance to simulate a phase-to-ground fault. Then, at
0.085 s the fault is cleared and the same RL load is
reconnected until a new steady state is reached (see Fig. 1b-
I). The instantaneous voltage waveforms at the receiving
line terminal, phase c, vnc, from both the DHD and the TD,
are presented in Fig. 3. The stator currents is are shown in
Fig. 4a. In addition, the corresponding harmonic content for
phase c obtained through the DHD is presented in Fig. 4b.
For the DHD simulation up to the ninth harmonic was
considered since the magnitudes of the remaining
harmonics were negligible. It is mentioned that in this paper
the figures corresponding to harmonic content present only
the harmonics with considerable magnitude with respect
to the fundamental frequency.

Although some harmonics behave as very small
quantities in a specific condition, in resonance conditions

Fig. 3 Voltage vnc during the single-phase fault

Fig. 2 Harmonic behaviour of the steady-state voltage vma for the
open-ended line with varying line lengths
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their magnitudes can be increased considerably (see Fig. 2).
Furthermore, when electronic devices are connected to
the network, some of the devices’ characteristic harmonics
(different than the fundamental) will be an important part
of the solution. The proposed methodology has the
flexibility of including any number of harmonics.

Additionally, the electrical torque from both DHD and TD
are presented in Fig. 5a, and the machine speed obtained by
the DHD technique is shown in Fig. 5b.

4.3 Phase-to-phase fault

A phase-to-phase fault is simulated between phases b and c as
illustrated in Fig. 1b-II. The simulation starts in steady state
and after the second cycle a fault is inserted through a
1028 pu resistance. Finally, after another three cycles the
fault is cleared. Fig. 6a shows the current at bus n, phase b
(inb), and Fig. 7a presents the voltages at the end of the line
for all phases (vna, vnb and vnc) with the harmonic content
of phase b shown in Figs. 6b and 7b. From Figs. 6 and 7
one can notice that the system tries to reach a different
steady state sequentially.

4.4 Three-phase non-linear load

The proposed methodology is now applied to the network in
Fig. 1a with a non-linear reactor as a load. The time-domain
representation of the chosen non-linear load is given by
the flux/current relation i(t) ¼ f (w) and expressed,

Fig. 4 Stator currents during the single-phase fault

a Stator currents is
b Harmonic content of isc
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without losing generality, as a polynomial (in the DHD) of
the type

i = aF+ bFp (23)

The power p is related to a convolution operation in (23)
[6, 12]. As mentioned earlier, a similar representation has
been taken here for the magnetising branch of the
transformer [15].

The current expression for a resistive load in parallel with
a non-linear reactor at bus n, as shown in Fig. 1b-III, is given
by

in = −aF− bFp − R−1vn (24)

Substituting (24) into (10b) gives

vn = K(−aF− bFp − C2x4 + 2i′n) (25)

where K ¼ (I + RD2)21R and R is the linear load. Next,
substituting (25) into (10a) and taking the following DHD
voltage/flux relation into account

Ḟ− SF = vn (26)

Fig. 5 Mechanical parameters during the single-phase fault

a Machine electrical torque
b Rotor speed O
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We obtain the final current/flux relation for bus n as

A2 − S′ − KB2C2 −KB2(a+ bFp−1)

−KC2 −S − K(a+ bFp−1)

[ ]

×
x4

F

[ ]
+ 2K

B2

Ih

[ ]
i′n =

ẋ4

Ḟ

[ ]
(27)

Finally, (27) is introduced into (16) as part of the harmonic
vector of electrical state variables xe.

For this example the simulation starts in steady state and
after 0.0332 s, a non-linear load (a ¼ 0.5, b ¼ 8 × 106) in
parallel to the 125 pu resistance is connected in each phase
at bus n. The simulation ends at 0.15 s. In Fig. 8, the
voltage at bus n phase a and the corresponding harmonic
content are shown. As expected, one can notice from these
figures that the harmonic distortion is larger when non-
linear loads are introduced into the network. In fact, the
waveform in Fig. 8a presents 16.9 and 2.5% of the third
and fifth harmonic, respectively.

4.5 Accuracy of the proposed technique

Accuracy of the DHD depends on both, size of the time step
and the number of harmonics. To the best of the authors’
knowledge, in the literature regarding harmonics, there is
not a criterion for determining the number of harmonics
given a predefined error and is still a research-open topic.
Nevertheless, the knowledge of the harmonic content of the

Fig. 6 Current at bus n phase b during the phase-to-phase fault

a Current inb

b Harmonic content of inb
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source (or perturbation) and/or the amount of non-linearity
involved, given, for instance, by the a and b coefficients in
the polynomial type flux/current relation can shade light on
such number. Additionally, the highest harmonic is closely
related to the time step used for the simulation. A steady
state solution using the HD can be used to figure out the
approximate number of harmonic coefficients required in a
dynamic study.

Fig. 9a shows the rotor currents ir and its various
components: iF is the field winding current, which produces
flux in the direct axis (connected to the DC source of the
excitation system); iD is the quadrature axis winding current
to represent slowly changing fluxes produced by deep-
flowing eddy currents; iG and iQ are the direct and
quadrature axes winding currents to represent damping bar
effects.

Fig. 9b shows the harmonic content of iG, where only even
harmonics appear owing to the DC source excitation. Some
remarks regarding the obtained results:

1. During steady state all harmonics behave as constants, as
expected.
2. Harmonics react instantaneously to system disturbances.
Their dynamics are followed in a natural way by the DHD
while post-processing techniques (for instance, WFFT)
would have a slow harmonic tracking response.
3. The proportionality of harmonic magnitudes for a given
signal (voltage or current) changes from steady state to the
transient state.

Fig. 7 Voltages at bus n during the phase-to-phase fault

a Voltages vn

b Harmonic content of vnb O
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4. Harmonic oscillations during a transient behave according
to the line resonant frequency, travelling time and excitation-
related frequencies.
5. After removing a fault, steady state is reached faster by
lower harmonics than by higher harmonics.
6. Simply examining the time-domain results, it is difficult to
discern the steady-state condition. The DHD provides a
visually active indicator of the transient and steady-state
conditions in a signal.

4.6 Power quality indices

Power quality assessment under transient conditions has a
significant impact for the design of active filters. However,
the traditional method of using windowed FFT does not
yield accurate harmonic information under transient
conditions. The DHD allows obtaining the power quality
indices directly through traditional formulae [6].

As an example, Fig. 10 shows the evolution of the most
used power quality indices (power factor and distortion
factors can also be derived) for the 100 km line example
with a non-linear load. As expected, the quantities are
constants in periodic steady state and register significant
changes during transient conditions owing to the dynamic

Fig. 8 Voltage at bus n phase a for a three-phase non-linear load

a Voltage vna

b Harmonic content of vna
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harmonics behaviour. Further potential applications of
the proposed model to the power quality area can be seen
in [16].

Fig. 9 Rotor currents for a three-phase non-linear load

a Rotor currents ir
b Harmonic content of iG

Fig. 10 Power quality parameters for bus n with a three phase
non-linear load
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5 Conclusions

This paper has presented the interfacing of the synchronous
generator and an untransposed transmission line for analysing
harmonics behaviour under transient conditions. The proposed
algorithm is based on the dynamic harmonic domain (DHD)
methodology, which permits following step-by-step the
harmonics evolution with respect to time. Additionally, it has
been corroborated that the time-varying harmonic coefficients
are capable of representing the non-harmonic line frequencies
involved in the transient [12]. The proposed algorithm can
handle non-linear loads in a straightforward manner while in
frequency-domain techniques the inclusion of such loads is
still difficult. The accuracy of the proposed algorithm was
verified for a single machine-line load system; however, the
method is applicable to longer systems as well, provided
enough computational resources are available. This is because
in the DHD, the size of the ODEs system becomes large as the
instantaneous variables are transformed into harmonic vectors.
Nevertheless, the algorithm can be potentially used in real-
time simulation. The applications of the algorithm include the
study of harmonics in transient state for control, protection and
power quality purposes and also in the study of ferroresonance.
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8 Appendix 1: transmission line model in the
DHD

Focusing on bus n, the relation between the incident current,
i′n, and the reflected current, i′′m, is

i′n = Hmodei′′m (28)

Approximating Hmode by rational functions, (31) is expressed
as

i′n = [c1(sI − A1)−1b1]i′′m (29)

The set of poles obtained from the rational fitting are
contained in the diagonal matrix A1; the column vector b1

has all entries equal to ‘1’ and the residues of the
realisation are contained in the row vector c1. Thus the
corresponding state–space realisation for (32) becomes

x1 = A1x1 + b1i′′m (30)

The state–space realisation for the two line nodes, m and n, in
the DHD becomes (8), with the following matrix definitions
with corresponding dimensions shown in parentheses (for k
poles and h harmonics)

A1 = diag{a1Ih, a2Ih, . . . , akIh}, (kh × kh)

S′ = blkdiag{S, S, . . . , S}, (kh × kh)

B1 = [Ih, Ih . . . Ih]T, (kh × h)

C1 = [c1Ih, c2Ih, . . . , ckIh], (kh × h)

Ih corresponds to the identity matrix of dimensions (h × h)

Fig. 11 Untransposed transmission line configuration
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Fig. 12 Non-linear load magnetic saturation characteristic
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and the time delay for all harmonics is taken into account by

G = diag{ejhvot, . . . , ejvot, 1, e−jvot, . . . , e−jhvot}

9 Appendix 2: line configuration

The geometrical configuration for the untransposed
transmission line used in Section 4 is shown in Fig. 11.

10 Appendix 3: non-linear load magnetising
characteristic

The magnetic saturation characteristic of the non-linear load
(F 2 i curve) is presented in Fig. 12.
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