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Abstract

Estimation theory is a branch of statistics and probability that derives information

about random variables based on known information. In process engineering, state

estimation is used for a variety of purposes, such as: soft sensing, digital filter design,

model predictive control and performance monitoring. In literature, there exist

numerous estimation algorithms. In this study, we provide guidelines for choosing

the appropriate estimator for a system under consideration. Various estimators are

compared and their advantages and disadvantages are highlighted. This has been

done through case studies which use examples from process engineering. We also

address certain robustness issues of application of estimation techniques to chemical

processes. Choice of estimator in case of high plant-model mismatch has also been

discussed. The study is restricted to unconstrained nonlinear estimators.
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Chapter 1

Introduction

1.1 Motivation

Estimation theory is a powerful tool that has been used in most fields of science and

engineering. Signal processing, economics, robotics, aeronautics, medicine, telecom-

munications are a few of the fields that use estimation theory. In process industries,

estimation is widely used to infer accurate measurements from noisy sensor data,

i.e., as a soft sensor to predict variables that are not measurable online and/or

to estimate parameters to obtain accurate dynamic process models, and for model

predictive control. This not only provides improved control, but assists in fault

detection and process monitoring. Most chemical processes exhibit highly nonlinear

dynamics, and the extended Kalman filter (EKF) has been widely used to solve the

related estimation problems. Though numerous algorithms exist, process engineer-

ing continues to lag behind in the implementation and use of advanced estimation

techniques. Over the past decade, the literature on the application of estimation

theory in process engineering has been receiving increasing attention. However, to

the knowledge of the author, the literature lacks a direct comparison of all tech-

niques to process engineering examples. The objective of this work is to study the

application of various estimation techniques and to evaluate them by application

to benchmark (polymer) process engineering systems. We differentiate estimators

based on their advantages and disadvantages, and provide guidelines on which es-

timator to use under which circumstance, depending on specific features (process

dynamics) of the application under consideration. We also address certain issues

with respect to tuning of the filters and their robustness. This thesis aims to pro-

vide a framework for the selection of the appropriate unconstrained estimator for

different chemical processes.
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1.2 The state estimation problem

Estimation theory is the science of estimating the values of variables and parameters

of a model (that describe a system) using measured or empirical data. A state-space

model is used to describe the system under consideration, and model parameters and

variables are obtained using state estimation algorithms. Fig 1.1 shows a schematic

of the state estimation problem. Known quantities such as system inputs and mea-

surements are fused with a model of the system to give smoothed measurements and

estimates of unmeasured parameters and states. For example, in a two-tank non-

interacting system, if the height of liquid in the second tank were to be measured,

the estimation algorithms would compute the smoothed measurements of the level

in tank 2 and provide an estimate of level of liquid in tank 1 (Fig 1.2).

Figure 1.1: State estimation schematic

In a mathematical sense, if a process were to be described by a state-space

model as described by eqs. 1.1 and 1.2 (or a nonlinear model), where x represents

the states of the system, u the inputs and y the measurements, estimation theory

predicts p(x(k)|Y ), where k represents a discrete instance in time; p(x(k)|Y ) is the

conditional probability density function of the state conditioned over all measure-

ments up to time k; and w and v represent the uncertainty in state transition and

measurement models respectively.
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Figure 1.2: State estimation of a two tank system

x(k) = Fkx(k − 1) +Gku(k) + w(k) (1.1)

y(k) = Hkx(k) + v(k) (1.2)

State estimation depends on the properties of the system under consideration.

More information on full state estimation (estimation of all states) and its depen-

dence on the properties of the system can be obtained from Ray (1981). Estimation

of states of a system depends on the observability of the dynamic equations used

to represent it. Observability is a measure of how many of the internal states of

a system may be calculated from measurements. If a state is unobservable based

on the dynamic model of the system and its measurements, then the internal state

cannot be estimated. Therefore there is a need for good dynamic models which fuse

the measurements to achieve full state observability.

1.3 State estimation of polymer reactors

Ohshima and Tanigaki (2000), Asua (2007) , Embirucu et al. (1996), Kiparissides

and Morris (1996) and Soroush (1998) have highlighted the importance of state es-

timation algorithms in the polymer industry. Polymerization reactors are a good

platform to study the application of different estimation techniques as they ex-

hibit highly nonlinear dynamics. Moreover, polymerization kinetics can take place

through many mechanisms, and these processes are carried out in different types of

reactors. Therefore, such systems provide a broad range of cases studies to evalu-

ate the state estimation algorithms. Also, polymer quality variables such as melt

index and polymer density are not measurable online. If at any instance of time,
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the polymer quality variables extend beyond the client specifications, the product

may be rendered as an off-specification polymer which is of no use to both the poly-

mer vendor and the client (Fig 1.3). Hence, monitoring of process variables is of

utmost importance (Fig 1.4). Also, the polymer product specifications requested by

different vendors may be different. Hence, transition from one grade of polymer to

the other needs to be done in an optimal manner. The polymer that is produced

during transition is off-specification polymer (Fig 1.5) and clearly given the state

estimates, one can develop control strategies to minimize the off-spec product dur-

ing and between grade transitions. Such methods would then improve the economic

and monetary gains of polymer production by effective utilization of resources and

decrease of transition time. For optimization algorithms to be effective, it is crit-

ical that they receive accurate estimates of process and polymer quality variables

(Fig 1.6).

Figure 1.3: Off-specification polymer produced during steady state operation of
polymer reactors illustrates the importance of monitoring polymer product quality
variables

1.4 Thesis overview

1.4.1 Thesis outline

The thesis is organized as follows: Algorithms for advanced state estimation are

discussed in chapter 2 of the thesis. Chapter 3 contains results for comparison of

4



Figure 1.4: State estimation for detection of product quality variables

Figure 1.5: Off-specification polymer produced during grade transition in polymer
reactors illustrates the importance of monitoring polymer product quality variables
during grade transition

5



Figure 1.6: State estimation for product quality control in polymer reactors

unconstrained state estimation techniques. First, a comprehensive literature re-

view on compassion of estimation algorithms is presented. Advanced estimation

techniques are applied onto a MMA polymerization CSTR, and their results are

compared. The EKF, UKF and PF are compared on the basis of system properties,

i.e., different noise sequences (Gaussian and non-Gaussian). Later, the EKF and

UKF are compared with respect to their tuning parameters (process to measure-

ment noise ratios). State estimation using the EnKF and its comparison to the

UKF is also presented in chapter 3. The use of PF’s for state estimation of full

state distributions and non-Gaussian sequences is also highlighted. The importance

of introducing integral action to state estimation algorithms and its reduction to

state augmentation formulation is discussed. Clustering techniques to extract point

estimates from full state distributions is documented in the last part of chapter 3.

Chapter 4 introduces a gas phase fluidized bed reactor for polyethylene production.

The application of PF and UPF to this system is presented in chapter 4. Chapter

5 contains some concluding remarks, and recommendations for future study.
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1.4.2 Thesis contributions

Comparison of state estimation techniques have been presented by many researchers.

A collection of past and recent literature in this research area is listed in the next

chapter. The main thesis contribution that distinguishes this piece of work from

current and past studies are as follows:

(1) This thesis provides detailed guidelines for the selection of appropriate uncon-

strained estimators (EKF, UKF, EnKF, PF, UPF) for chemical processes. This is

done through a case study approach.

(2) In chapter 2, a systems analysis approach to state estimation of a polymethyl

methacrylate (PMMA) continuous stirred tank reactor (CSTR) has been presented.

Case studies have been conducted to exhibit the performance of estimation algo-

rithms under different Gaussian and non-Gaussian noise sequences. This part of the

thesis has been presented as a publication at the IFAC-DYCOPS 2010 meeting in

Leuven, Belgium.

(3) The EKF linearization error in the form of bias has been characterized by ap-

plication on the PMMA reactor. This study successfully differentiates linearization

error from approximation errors.

(4) In a novel study of tuning particle filters, Imtiaz et al. (2006) presented a method

using distribution of weights applied to a priori state estimates to tune particle fil-

ters. In our work, we have extended this method to a PMMA reactor, demonstrating

the ease of implementation of this algorithm.

(5) The importance of introducing integral action in state estimation, and its reduc-

tion to state augmentation is a practical contribution demonstrated in chapter 3.

(6) In chapter 3, we demonstrate alternate approaches to using the expectation (E)

as the point estimate in Bayesian estimation (especially for the PF). We demonstrate

the use of ’k-means’ clustering for modal analysis of the probability distribution of

the estimate.

(7) In chapter 4, the importance of proposal generation in particle filters for cases

of large plant-model mismatch is illustrated. In this case study, we have applied

the particle filter to a polyethylene polymerization reactor under a high dimensional

plant-model and reduced order estimation model framework.

(8) Using a polyethylene reactor as an example, Kalman update based filters are

shown to be more stable than particle filters in case of high plant-model mismatch.

The unscented particle filter, a modification of the generic particle filter using the

UKF to generate the proposal is shown to be a robust estimator.
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Chapter 2

State estimation techniques

In the previous chapter, the state estimation problem was introduced. In this chap-

ter, various estimation algorithms are discussed. Fig. 2.1 provides an overview of dif-

ferent estimation techniques under the stochastic framework. Estimation techniques

are first differentiated based on the type of system dynamics they are applied to -

as linear and nonlinear estimators. The next differentiation is by the nature of the

algorithm - as constrained or unconstrained based filters. Under the unconstrained

framework, the Kalman filter provides the optimal solution to the linear state es-

timation problem. The need for an optimal solution to the nonlinear estimation

problem has lead to the derivation of numerous estimation algorithms each under

different fundamentals, principles and assumptions. Kalman update based nonlin-

ear estimators include the extended Kalman filter (EKF) and the unscented Kalman

filter (UKF). The particle filter (PF) and its variants, such as the sequential impor-

tance resampling (SIR) based PF, the auxiliary SIR (ASIR) particle filter and the

unscented or ensemble based PF (UPF , EnKF-PF) are Monte Carlo based nonlinear

estimators. The ensemble Kalman filter is a nonlinear estimator that combines the

Kalman update with Monte Carlo based techniques. Under the constrained frame-

work, estimation algorithms include moving horizon estimation (MHE), nonlinear

dynamic data reconciliation (NDDR), recursive NDDR (RNDDR) and constrained

versions of the unconstrained techniques such as the constrained KF and the con-

strained EKF.

Section 2.1 introduces the linear state estimation problem and the Kalman filter.

The linear Kalman filter forms the basis for derivation and understanding of most

nonlinear estimators. Hence, it is discussed in detail here. The nonlinear estima-

tion problem and the different techniques used are introduced later in section 2.2.

Section 2.3 is a brief note on unconstrained state estimation techniques.
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Figure 2.1: Flowchart of state estimation techniques.

2.1 State estimation for linear systems

Under the discrete time framework, a linear dynamical system can be described by

equations 2.1 and 2.2. w and v are uncertainties associated with the process and

measurement respectively. Fk is the state transition matrix applied to the previous

state xk−1. Gk is the control-input matrix applied to the input vector uk. Hk is the

observation model which relates the state vector to the measured variables (yk).

x(k + 1) = Fkx(k) +Gku(k) + w(k) (2.1)

y(k) = Hkx(k) + v(k) (2.2)

Under the stochastic estimation framework, the optimal solution to the dynamic

estimation problem was described by Kalman (1960). Details of the Kalman filter

and its evolution are described in the next section.
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2.1.1 Kalman filter

The study of revolution of heavenly bodies lead to the evolution of a new branch

of mathematics called estimation theory. The earliest work in estimation theory

was introduced by Friedrich Gauss in the form of a least squares problem (Soren-

son (1985)). Subsequent improvements in the field of estimation theory lead to

the development of one the most powerful algorithms in history: published by R

E Kalman in 1960 as the Kalman Filter (Kalman (1960)). The Kalman filter pro-

vided state estimates using noisy measurement data. It was based on a framework

of optimality and it provided the optimal solution to the state estimation problem

for linear stochastic systems. This new method was based as a recursive predic-

tion - correction algorithm unlike previous algorithms that used a batch of past

and current data. Under its assumptions, the Kalman filter provides the optimal

solution to the linear state estimation problem (Maybeck (1979)). It can be either

formulated as a minimum mean squared error problem or as a maximum likelihood

estimation algorithm under the Bayesian framework. In Kalman (1960), the idea of

Kalman filter was devised by combining the state transition matrix with orthogo-

nal projections. A collection of early work on Kalman filtering, its derivatives and

its applications is provided by Sorenson (1985). Jazwinski (1970) and Gelb (1974)

provide further information on the KF algorithm and its implementation. May-

beck (1979) provides an introduction to the estimation problem and basics of the

Kalman filter, including its implementation and its underlying assumptions. In a

tutorial, Welch and Bishop (2001) introduce the Kalman filter equations with its

assumptions as a novel solution to the linear filtering problem. The application of

the KF to a problem is system specific, and this has lead to development of a wide

range of derivatives of the traditional KF. A comprehensive review of the KF and

its derivatives with examples and its derivations based on when one or more of its

assumptions are violated can be obtained in Simon (2006). The derivation of the

KF as an optimal recursive data processing algorithm is documented below. The

KF differs from its earlier counterparts as it does not require batches of data. It can

be represented as a Markov process where the current information can be derived

based on the information at the previous time instant. First, the KF is derived as

a minimum mean squared error estimator. Later, the KF derivation is discussed

under the Bayesian framework. With respect to eqs. 2.1 and 2.2, the assumption is

that w and v are zero mean Gaussian noise with covariances Q and R respectively.

The noise is assumed to be white and uncorrelated at each time instant.
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wk ∼ N(0, Qk)

vk ∼ N(0, Rk)

Under these assumptions, the objective of the Kalman filter is to obtain the con-

ditional pdf p[x(k)|Y k]. The KF is a predictor-corrector method, i.e., it involves a

prediction step (time update) where state predictions are obtained without incorpo-

rating the most recent measurements, followed by a correction step (measurement

update) where the predictions are corrected based on the incoming measurements.

Time update

The first step is to predict the state and covariance estimates at each instant in

time. This step is prior to the measurement becoming available. Eq. 2.3 represents

the one step ahead prediction of the state x using the model of the process that the

estimator uses.

x̂(k|k − 1) = E[x(k|k − 1)] = Fk−1x̂(k − 1|k − 1) +Gk−1u(k − 1) (2.3)

The next step is to derive the one step ahead predicted covariance. The following

steps lead to equation. 2.16 which is the simplified expression of the predicted co-

variance.

Pk|k−1 = E[(x(k)− x̂(k|k − 1))(x(k)− x̂(k|k − 1))T ]

Pk|k−1 = E[(Fk−1x(k−1)+Gk−1u(k−1)+w(k−1)−Fk−1x̂(k−1|k−1)−Gk−1u(k−
1))(........)T ]

Pk|k−1 = E[(Fk−1(x(k − 1)− x̂(k − 1|k − 1)) + wk−1)(..........)
T ]

Pk|k−1 = E[Fk−1(x(k−1)−x̂(k−1|k−1))(x(k−1)−x̂(k−1|k−1))TF T
k−1+wk−1w

T
k−1+

Fk−1(x(k − 1)− x̂(k − 1|k − 1))wTk−1 + wk−1(x(k − 1)− x̂(k − 1|k − 1))TF T
k−1]

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (2.4)

Measurement update
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Once the time update is complete, the incoming measurement information is em-

ployed to obtain the measurement update steps. The equation for the state estimate

is obtained by weighing the prediction error from the model and the innovation error

using the Kalman gain. Eq. 2.5 represents this equation.

x̂(k|k) = x̂(k|k − 1) +Kk(yk −Hkx̂(k|k − 1)) (2.5)

Based on this proposed equation, the covariance update and Kalman gain expres-

sions can be derived under an optimization framework as a minimum mean squared

error (MMSE) estimator.

First the covariance expression is derived. Equation. 2.6 represents the expression

for covariance measurement update

P (k|k) = cov(xk − x̂(k|k))

P (k|k) = cov(xk − (x̂(k|k − 1) +Kk(yk −Hkx̂(k|k − 1))))

P (k|k) = cov(xk − (x̂(k|k − 1) +Kk(Hkx(k) + v(k)−Hkx̂(k|k − 1))))

P (k|k) = cov((I − kkHk)(xk − x̂(k|k − 1))−Kkvk)

P (k|k) = (I − kkHk)cov(xk − x̂(k|k − 1))(I − kkHk)
T +Kkcov(vk)K

T
k

P (k|k) = (I − kkHk)Pk|k−1(I − kkHk)
T +KkRkK

T
k

P (k|k) = (I − kkHk)Pk|k−1(I − kkHk)
T +KkRkK

T
k (2.6)

Next, the Kalman gain expression is derived. The objective is to obtain an MMSE

estimate represented by the expression given in equation. 2.7.

minE[|x(k)− x̂(k|k)|2] = mintrPk|k (2.7)

Pk|k = Pk|k−1 − kkHkPk|k−1 − Pk|k−1HT
k k

T
k +Kk(HkPk|k−1H

T
k +Rk)K

T
k

Pk|k = Pk|k−1 − kkHkPk|k−1 − Pk|k−1HT
k k

T
k +Kk(Sk)K

T
k

∂trPk|k
∂Kk

= −2(HkPk|k−1)
T + 2KkSk = 0

Kk = Pk|k−1H
T
k S
−1
k

Eq 2.8 is the derived Kalman gain expression under the optimal framework.

Kk = Pk|k−1H
T
k S
−1
k (2.8)

where Sk is given by HkPk|k−1H
T
k +Rk
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Based on the Kalman gain expression, the covariance update equation can be sim-

plified (eq. 2.9).

KkSkK
T
k = Pk|k−1H

T
k K

T
k

Pk|k = Pk|k−1 − kkHkPk|k−1 − Pk|k−1HT
k k

T
k +Kk(Sk)K

T
k

Pk|k = Pk|k−1 − kkHkPk|k−1

Pk|k = Pk|k−1(I −KkHk)

Pk|k = Pk|k−1(I −KkHk) (2.9)

Eq’s. 2.3 to 2.9 represent the Kalman filter equations that are used to implement

the KF on any system. There are three variables/parameters that can be used to

tune the filters: the initial state matrix (x0), the initial state covariance matrix (P0)

, and the ratio of noise covariance matrices (Q/R).

The KF can also be derived under the Bayesian framework using maximum like-

lihood statistics. The true state x is assumed to be a Markov process, i.e., the

current state (x(k)) can be calculated from the state of the process at the previous

time step (x(k − 1)). It does not require information of any other previous states

(x(k − 2), .., x(0)). The measurement y is assumed to be a hidden Markov process,

i.e., the observable states of a Markov process. Due to the Markov assumption, the

following equations hold:

p(x(k)|x(k − 1)x(k − 2)....x(0)) = p(x(k)|x(k − 1))

p(y(k)|x(k)x(k − 1)......x(0)) = p(y(k)|x(k − 1))

Based on the above equations, the probability distribution over all states of the

hidden Markov process can be obtained :

p(x(0), ...., x(k), y(1), ...., y(k)) = p(x(0))Πk
i=1p(y(i)|x(i))p(x(i)|x(i− 1))

The Chapman-Kolmogorov equation, which uses the Markov property is given by

equation. 2.10. It provides a recursive relationship relationship between the poste-

rior densities of the states at two different time instants based on the the previous

measurement.

p(x(k)|Y (k − 1)) =

∫
p(x(k)|x(k − 1))p(x(k − 1)|Y (k − 1))dx(k − 1) (2.10)

Y (k) = the measurement set up to time k = y(1), y(2), ...., y(k)
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Using Bayes rule, eq. 2.11 can be derived

p(x(k)|Y (k)) =
p(y(k)|x(k))p(x(k)|Y (k − 1))

p(y(k)|Y (k − 1))
(2.11)

The expression for p(y(k)|Y (k − 1)) is given by eq. 2.12

p(y(k)|Y (k − 1)) =

∫
p(y(k)|x(k))p(x(k)|Y (k − 1))dx(k) (2.12)

Using the above equations with the following densities gives the Kalman filter under

Bayesian framework

p(x(k)|x(k − 1)) = N(Fkx(k − 1), Qk)

p(Y (k)|x(k)) = N(Hkx(k), Rk)

p(x(k)|Y (k − 1)) = N(x̂(k − 1), Pk−1)

The Kalman filter has been the basis for the development of a large number of

algorithms in estimation theory. Ever since its introduction in 1960, it has been the

most widely applied algorithm to obtain smoothed measurements and estimates of

hidden state variables. In the subsequent section we discuss a number of estimation

techniques for nonlinear systems, most of which use the Kalman update.

2.2 Unconstrained state estimation techniques for

nonlinear systems

In the previous section, the Kalman filter algorithm was discussed in detail. As il-

lustrated, the Kalman filter is the optimal solution to the linear estimation problem.

However, most processes exhibit highly nonlinear dynamics. A nonlinear system can

be represented by equations. 2.13 and 2.14.

x(k) = F (x(k − 1), u(k)) + w(k) (2.13)

y(k) = H(x(k)) + v(k) (2.14)

In certain cases, the process nonlinearity can be captured very accurately by linear
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models. A Kalman filter would be adequate in this case. However, if linear mod-

els cannot be used to represent the system, a nonlinear estimator is required for

estimation purposes. In the earliest efforts, numerous versions of the Kalman filter

were proposed to solve the nonlinear estimation problem. However, until now, no

general optimal solution is available for the estimation of nonlinear systems, and it

is an open research problem. In this section, some of the most commonly used non-

linear estimators are discussed. In section 2.2.1 the Kalman update based filters are

discussed. In section 2.2.2 Monte Carlo based methods are discussed, followed by

section 2.2.3 that highlights a filter that combines the Kalman update with Monte

Carlo techniques.

2.2.1 Kalman update based estimators

In this section, two commonly used Kalman update based nonlinear estimators are

illustrated. These filters use the Kalman update for point estimate calculation and

covariance update as represented by equations. 2.5 to 2.9. The Gaussian assump-

tion is used in all of these filters. First, the extended Kalman filter is introduced,

followed by the unscented Kalman filter. In each of these filters, the nonlinearity is

approximated in different ways for the time update, followed by the measurement

update adapted exactly from the generic Kalman filter.

Extended Kalman Filter

As pointed out earlier, most processes exhibit highly nonlinear dynamics, and the

Kalman filter does not always provide a satisfactory solution to this problem. Early

attempts to solve the nonlinear estimation problem involved linearizing the non-

linear equations around a nominal state trajectory and then applying the Kalman

filter (linearized Kalman filter). Later, it was proposed that the nonlinear equations

could be linearized around the Kalman filter estimate, thus forming a dynamic lin-

earization approach. This filter commonly became known as the Schmidt-Kalman

filter (Schmidt (1966)) or the extended Kalman filter (EKF). Further information

on the EKF can be found in Maybeck (1979) , Jazwinski (1970), Gelb (1974), Welch

and Bishop (2001) and Simon (2006).

In this section, the EKF has been derived under the continuous-discrete framework,

as this is the most commonly used form of the estimator. It can however be derived

under the continuous or discrete formulations. In the continuous-discrete frame-

work, the system in treated as a continuous time system with measurements taken
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at discrete time intervals. The system is modeled under the nonlinear framework

represented by equations. 2.13 and 2.14. The steps involved in the EKF are the same

as the KF, except for the linearization step (jacobian calculation) at each discrete

instant of time.

Time Update

x̂(k|k − 1) = F (x̂(k − 1|k − 1), u(k − 1)) (2.15)

The covariance time update is the same as for the KF.

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1 (2.16)

In equation. 2.15, Fk−1 is the linearization of nonlinear function F around the cur-

rent state estimate (xk−1|k−1) and model inputs (uk−1).

Ak−1 = ∂A
∂x
|x̂(k−1|k−1),u(k−1)

Measurement Update

The measurement update is also similar to the KF except that the nonlinear mea-

surement function H is used to predict the measurements. A linearized form of H is

required for the calculation of Kalman gain as represented in equation. 2.17. Hence,

at each instant in time, H is linearized around the predicted estimate (x̂(k|k − 1)).

Ck = ∂H
∂x
|x̂(k|k−1)

Kk = Pk|k−1C
T
k S
−1
k (2.17)

where Sk is given by CkPk|k−1C
T
k +Rk

x̂(k|k) = x̂(k|k − 1) +Kk(yk −H(x̂(k|k − 1))) (2.18)

Pk|k = Pk|k−1(I −KkCk) (2.19)

Eqs. 2.15 to 2.19 represent the extended Kalman filter equations. The assumptions

made in the KF hold for the EKF as well (i.e. Gaussian white noise sequences).
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Implementation of the EKF can be understood from the schematic presented in

fig. 2.2. The estimator is initialized with guess values of state (x(0)) and covariance

(P0) matrices. The nonlinear system propagation model is linearized around the

initial state and input variables. The linearized model is used in the one step ahead

covariance prediction (Pk|k−1). The state space model of the process is used to

obtain the one step ahead predicted state estimate (x̂(k|k − 1)). x̂(k|k − 1) and

Pk|k−1 are the prior estimates obtained from the time update step. The correction

part of the algorithm begins with the linearization of measurement propagation

equation around the predicted state (to obtain Ck). This is used in the Kalman

gain(Kk) calculation. The state estimate at time k (x̂k|k) is obtained by weighing

(using the calculated Kalman gain, Kk) the predicted estimate and the measurement

innovation. Note that the most recent measurement (yk) is incorporated in this

calculation. The covariance estimate at time k (Pk|k) is then obtained. Kk, x̂k|k

and Pk|k are known as the posterior estimates. These steps are repeated in time

in a recursive formulation. In this algorithm, the tuning parameters are the noise

covariance matrices. The estimator is sensitive to the initial state vector and the

initial state covariance matrix based on the system dynamics.

The EKF is the most widely used estimator in chemical processes. In fields

such as navigation and aerospace, the EKF seems to be losing out to more recently

developed techniques which have demonstrated certain advantages in comparison.

For highly nonlinear systems, the linearization performed by the EKF is unable

to represent the true system dynamics (Romanenko and Castro (2004)). It has

been shown to diverge or produce biased estimates under certain cases of nonlinear

dynamics. The drawbacks of the EKF and its application to chemical processes with

comparison to other estimators are discussed in later chapters.

Unscented Kalman Filter

The EKF is based on a simple linear approximation that represents the system

nonlinearity at each time instant. This however leads to linearization bias when

the linearized set of equations are unable to represent the nonlinear dynamics accu-

rately. Need for an alternate method to represent system nonlinearity has lead to

a novel algorithm called the unscented Kalman filter (UKF). The UKF is based on

the principle of the unscented transform. As stated by Julier and Uhlmann (1997),

the unscented transform is founded on the premise that it is easier to approximate a

Gaussian distribution than it is to approximate a nonlinear function or transforma-
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Figure 2.2: Schematic of the Extended Kalman Filter.

tion. Fig. 2.3 illustrates this principle. A variable with known Gaussain statistics

(mean and variance) in the space of x undergoes a nonlinear transformation (F ) in

the space of y. The EKF would simply linearize F , and pass the mean through the

linearized set of equations to obtain the mean in the y-space. In contrast, in the

unscented transform, points (sigma points) are deterministically chosen from the

Gaussian distribution based on its mean and covariance. These points are passed

through the nonlinear transformation to the y-space. The known distribution in x

is now represented in the y-space by these transformed points. The approximate

Gaussian statistics of the transformed distribution can now be obtained using these

transformed points.

Julier and Uhlmann (1997) introduced the unscented transform for use in state

estimation. The unscented transform is coupled with the Kalman update to give

the UKF. A comprehensive review of the UKF algorithm is provided in Wan and

van der Merwe (2000). Daum (2005) presents a short illustration on the importance

of the UKF in nonlinear filtering. Kandepu et al. (2008) have compared the UKF

performance to other estimator algorithms for several dynamic systems. A literature

18



Figure 2.3: The principle of the unscented transform (adapted from Julier and
Uhlmann (1997)). Sigma points are used to represent the variable under considera-
tion in the x-space. These are then passed through the nonlinear transformation F
to get transformed points in the y-space. The statistics calculated using transformed
points, represent the statistics of the variable under consideration in the y-space

review on application and comparison of UKF to other estimation algorithms is

presented in Chapter 3.

Fig. 2.4 represents the prediction - correction formulation of the UKF with its

equations. Fig. 2.5 provides a schematic of the UKF. The UKF requires an initial

guess of the state and covariance matrices, as represented by Eq. 2.20 and Eq. 2.21.

In the following algorithm, the variable x represents the augmented states, i.e.,

system states and the disturbance, which is also modeled as a state.

x̂0 = E[x0] (2.20)

P0 = E[(x0 − x̂0)(x0 − x̂0)T ] (2.21)

Calculation of sigma points:

Sigma points along with their corresponding weights provide a deterministic method

of representing the state distribution. X represents the sigma points, while W rep-

resents the weights. Eq’s. 2.22 to 2.25 are used to calculate sigma points and the

weights associated with them.

Xk−1 = [x̂k−1 x̂k−1 ±
√

(L+ λ)Pk−1] (2.22)
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Figure 2.4: Prediction - correction formulation of the unscented Kalman filter with
equations.

W
(m)
0 = λ/(L+ λ) (2.23)

W
(c)
0 = λ/(L+ λ) + (1− α2 + β) (2.24)

W
(m)
i = W

(c)
i = 1/(2(L+ λ)) i = 1, ..., 2L (2.25)

L represents the number of states. λ = α2(L+ κ)− L is a scaling parameter where

κ (generally set to 0) and β (incorporates knowledge of prior distribution of x) are

secondary scaling parameters. The number of sigma points is 2L+ 1.

Time update:

This step involves calculation of the prior estimates, obtained by propagating the

sigma points through the non-linear system dynamics. Eq. 2.26 represents the non-

linear transformation of the sigma points. The output vector represented by each

sigma point is obtained using equation. 2.27. The weights associated with each

transformed sigma point are known from equation. 2.23 to equation. 2.25. The
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Figure 2.5: Schematic of the unscented Kalman filter.

weights and transformed sigma points are used to calculate the a priori estimates

(equation. 2.28 and equation. 2.30) and a priori covariance matrix (equation. 2.29).

Xk/k−1 = F (Xk−1) (2.26)

Yk/k−1 = G(Xk/k−1) (2.27)

x̂k/k−1 =
2L∑
i=0

W
(m)
i Xi,k/k−1 (2.28)

Pk/k−1 =
2L∑
i=0

W
(c)
i [Xi,k/k−1 − x̂k/k−1][Xi,k/k−1 − x̂k/k−1]T (2.29)

ŷk/k−1 =
2L∑
i=0

W
(m)
i Yi,k/k−1 (2.30)
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Measurement update:

The measurement update in the UKF is similar to the Kalman update except that

the cross-covariances are used instead of the auto-covariance. However, it has been

shown that there is an increased efficiency of the measurement update step in the

case of the UKF (Kandepu et al. (2008)). Posterior estimates of the state are cal-

culated by using the Kalman gain to weight the measurement innovations with the

state estimates.

K = PxkykP
−1
ykyk

(2.31)

x̂k/k = x̂k/k−1 +K(yk − ŷk/k−1) (2.32)

Pk = Pk/k−1 −KPykykKT (2.33)

The UKF estimates are said to be accurate upto 3rd order statistics for Gaussian

distributions and upto 2nd order statistics for non-Gaussian distributions (Julier and

Uhlmann (1997)). The true mean and covariance estimates of the UKF are more

accurate than those obtained through the EKF. In addition, it does not require

computation of the Jacobian, thereby reducing the computational complexity of

the problem. However, it must be noted that both the EKF and UKF make an

assumption that the underlying distributions are all Gaussian and hence can be

accurately represented by 2nd order statistics.

2.2.2 Monte Carlo technique based estimator

Monte Carlo techniques use repeated random sampling, i.e., a trial of all or most

possible cases to obtain aggregate statistics for processes. For example, if one were

to find the probability of landing the number six in a single role of a die, one could do

that by repeated throwing the die about 100 times, and computing the probability

by dividing the number of times the die rolled the number 6 by 100. Monte Carlo

techniques are repeated sequentially (Sequential Monte Carlo : SMC) to obtain

solutions to the nonlinear estimation problem. SMC methods are more commonly

known as particle filters, and are discussed in the following section.
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Particle filters

Particle filtering is a method of recursive Bayesian filtering by Monte Carlo simula-

tions, or, in other words, a sequential Monte Carlo (SMC) technique. In a Bayesian

approach to state estimation, the entire information of the state is represented in

the form of a posterior probability density function (pdf) based on the measure-

ments obtained at that time instant. The pdf is represented by using Monte Carlo

techniques in which a set of random samples (particles) with associated weights are

generated. The particles are similar to the sigma points of the UKF, except that the

particles are not computed deterministically. As the number of particles increases,

the exact posterior density is approached. The algorithm is based on calculating the

entire posterior distribution of the state rather than finding a single point estimate

at each sampling instant.

As pointed out in Ristic et al. (2004), SMC techniques were introduced as early as

in the 1950s. However, these were not popular due to their requirement of high com-

putational power. The early algorithms of the particle filter were based on sequential

importance sampling (SIS). An increase in the use of particle filtering algorithms

was seen with the introduction of the resampling technique by Gordon et al. (1993).

Arulampalam et al. (2002) and Doucet et al. (2001) give a comprehensive review of

the particle filtering techniques. Sequential importance sampling (SIS), sequential

importance resampling (SIR), auxiliary sequential importance resampling (ASIR)

and regularized particle filtering are some of the common SMC techniques. The

SIR algorithm is the most commonly used technique today. However it has certain

drawbacks which are illustrated in later chapters.

The basic SMC algorithm is described below (adapted from Ristic et al. (2004)).

The posterior density of the state at time instant k is represented by p(xk|Yk) and

the joint posterior density is represented by p(Xk|Yk) (i.e. probability of X oc-

curring, given Y occurred). p(Xk|Yk) can be approximated by a set of particles

X i
k, i = 1, ..., N and a set of weights wik, i = 1, ..., N :

p(Xk|Yk) ≈
N∑
i=1

wikδ(Xk −X i
k)

According to the principle of importance sampling, since the exact distribution

p(Xk|Yk) is unknown, we draw samples from an importance distribution q(Xk|Yk).
The weights are now given by the expression wik ∝ p(X i

k|Yk)|q(X i
k|Yk). The im-

portance density is a known distribution, drawing samples from which is similar to

drawing samples from the actual posterior distribution. Suppose the posterior den-
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sity at time step k − 1 has been computed. Once the measurement yk is obtained,

we compute the importance density:

q(Xk|Yk) = q(xk|Xk−1, Yk)q(Xk−1|Yk−1)

The posterior density can be represented as :

p(Xk|Yk) = p(yk|Xk, Yk−1)p(Xk|Yk−1)/p(yk|Yk−1)
∝ p(yk|xk)p(xk|xk−1)p(Xk−1|Yk−1)

The weight update equation can hence be derived as :

wik ∝ p(X i
k|Yk)|q(X i

k|Yk) = wik−1p(yk|xik)p(xik|xik−1)|q(xik|X i
k−1, Yk)

The posterior density can now be approximated as :

p(xk|Yk) ≈
N∑
i=1

wikδ(xk − xik)

The steps described above represent the sequential importance sampling algorithm

and form the basis for derivation of most sequential Monte Carlo methods. It has

been shown that as N −→ ∞, the true posterior density is obtained. However, a

large number of particles are required to avoid particles with zero weights. This

depends on the variance of the posterior density and its computation. To elimi-

nate degeneracy, the resampling step was introduced. Ever since its introduction

by Gordon et al. (1993), the particle filter has become a popular tool in state es-

timation. It involves sampling of N particles from the posterior distribution such

that all N particles have equal weights (1/N). The posterior particles {xik} and their

corresponding weights {wik} are used to construct the cumulative distribution func-

tion (cdf), followed by which, N particles of equal weights are drawn based on the

constructed cdf. The N particle are represented as {xik, 1/N}. The generic particle

filter combines the SIS algorithm with a resampling step. The sequential importance

resampling (SIR) algorithm is the most basic and widely used version of the particle

filter, and it uses the prior distribution to be the importance distribution. Under

these assumptions, the equations involved with the SIS algorithm simplify to:

q(xk|X i
k−1, Yk) = p(xk, x

i
k−1)

wik ∝ wi−1k p(yk|xik)

The SIR PF algorithm is described in fig. 2.6 and fig. 2.7. Initial particles are
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passed through the system dynamics. The obtained transition particles are the

importance particles. The likelihood function uses the incoming measurement infor-

mation to calculate the importance weights. The importance weights and particles

are combined to produce the posterior distribution. Resampling from this distribu-

tion is done such that the new set of particles are all of equal weights and they are

concentrated in regions of high probability. These particles form the prior particles

for the subsequent time instant run of the particle filter. The algorithm is repeated

itself at each time instant.

The disadvantages of the SIR PF are loss of diversity of particles due to resam-

pling at every step and sensitivity to outliers, as no measurement is incorporated

in the likelihood function. Other versions of the PF have been developed to obtain

optimal solutions to the nonlinear state estimation problem. An application of the

auxiliary SIR-PF with its basic algorithm is available in Chen et al. (2005). Particle

filters with EKF, EnKF or UKF to compute the proposal distribution are described

in der Merwe et al. (2000) and Prakash et al. (2008). Extensive literature is present

and maybe accessed through online journals for more information on particle filters.

Figure 2.6: Schematic of the particle filter (adapted from der Merwe et al. (2000)).

2.2.3 Combination of Monte Carlo and Kalman update based
estimator

In this section, an estimator which represents a hybrid between the Kalman up-

date and the Monte Carlo technique is described. In such techniques, N Kalman

25



Figure 2.7: Combining Monte Carlo technique with Bayes rule to derive the Sequen-
tial Monte Carlo technique (PF)

updated based filters are run in parallel to approximate the population statistics of

the Gaussian random variable under consideration. In other words, at each time

instant, a Kalman update based filter is run in a Monte Carlo fashion (N times).

One of the most commonly used methods to do this is the ensemble Kalman filter

and is illustrated below.

Ensemble Kalman filter

The ensemble Kalman filter (EnKF) is an algorithm that combines two powerful

techniques - Monte Carlo and Kalman update. The EnkF was first introduced by

Evensen (1994b) for application to ocean models which are large scale nonlinear

systems. The EnKF has been used for other large scale systems such as weather

predictions and reservoir simulations (Evensen (1994a)). Monte Carlo samples called

ensembles are used to represent the statistics of a variable. The sample mean of these

ensembles gives the state estimate, and the sample covariance gives the covariance

matrix. Each ensemble point is used to predict individually its prior estimate and

measurement estimate using the extended Kalman filter algorithm. The N prior

and measurement estimates are then used to calculate auto-covariance and cross-
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covariance matrices. A comprehensive review of the EnKF algorithm may be found

in Gillijns et al. (2006) and Baker (2007). The EnKF algorithm is described below:

X̂(k − 1|k − 1) ≡ (x1(k − 1|k − 1), x2(k − 1|k − 1), ...., xN(k − 1|k − 1)) (2.34)

where xi(k−1|k−1) represents a Monte Carlo sample (an ensemble) obtained from

the state and covariance estimate at time step k− 1. N is the number of ensembles.

Each member of the ensemble is propagated forward in time.

x̂i(k|k − 1) = F (x̂i(k − 1|k − 1), u(k − 1)) + wi(k) (2.35)

Eq. 2.35 is applied to each member of the ensemble, i.e., from i = 1, ..., N , where

w(k)i is a random sample from N(0, Q).

The state prediction error covariance matrix P̂ (k + 1|k) is approximated as the

sample covariance of X̂(k|k − 1) around the sample mean µx(k|k − 1)

µx(k|k − 1) =
1

N

N∑
i=1

xi(k|k − 1) (2.36)

P xx(k|k − 1) =
1

N − 1

N∑
i=1

((xi(k|k − 1)− µx(k|k − 1))((xi(k|k − 1)− µx(k|k − 1))T

(2.37)

Prediction step

Measurement predictions are performed using the measurement model of the system

under consideration.

yi(k|k − 1) = H(xi(k|k − 1)) + vik (2.38)

vik is a Monte Carlo sample from N(0, R). An ensemble of predicted measurements

is now obtained

Ŷ (k|k − 1) = y1(k|k − 1), ....., yN(k|k − 1).

The output error covariance can be calculated as the sample covariance of yi(k|k−1)

using the sample mean µy(k|k − 1)

µy(k|k − 1) =
1

N

N∑
i=1

yi(k|k − 1) (2.39)

P yy(k|k − 1) =
1

N − 1

N∑
i=1

((yi(k|k − 1)− µy(k|k − 1))((xi(k|k − 1)− µy(k|k − 1))T

(2.40)
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Similarly, a cross-covariance between the prediction error and output error can be

calculated

P xy(k|k − 1) =
1

N − 1

N∑
i=1

((xi(k|k − 1)− µx(k|k − 1))((xi(k|k − 1)− µy(k|k − 1))T

(2.41)

Update step

The Kalman gain is obtained from combination of the auto and cross-covariance

matrices.

Kk = P xx(k|k − 1)(P xy(k|k − 1))−1 (2.42)

The updated ensemble is given by X̂(k|k) = (x1(k|k), ...., xN(k|k)

where

xi(k|k) = xi(k|k − 1) +Kk(y(k)− yi(k|k − 1)) (2.43)

This estimate is used to reinitialize the algorithm for the next step. The optimal

estimate is chosen to be the mean of the updated ensemble

x̂∗(k|k) =
1

N

N∑
i=1

xi(k|k) (2.44)

The covariance for the updated state ensemble can be computed as below

P ∗(k|k) =
1

N − 1

N∑
i=1

(xi(k|k)− x̂∗(k|k))(xi(k|k)− x̂∗(k|k))T (2.45)

The EnKF avoids the problem of calculation of the Jacobian. It also has advantages

over the UKF, as it does not involve a deterministic sampling and re-calculation of

initial points to be propagated at the next time step. It has been used for large

scale systems and under the Gaussian assumption, it is a very powerful estimation

algorithm in terms of quality of estimates and computational cost. Although it

is unable to handle highly non-Gaussian behavior unlike the particle filter, it is

generally more robust than the PF and has been used to generate the proposal

distribution for particle filter applications.

2.3 Constrained filtering

Model computations often end up moving towards regions where the solutions are

physically not realizable (example: the height in the two tank system becomes neg-

ative). This may be due to noise, incorrect assumptions of Gaussian behavior, etc.
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In these cases, it is important to consider the estimation problem under a con-

strained framework. One of the most commonly used methods is applying clipping

constraints to unconstrained estimation algorithms (such as setting the height to

zero when it goes negative). However, the need for sophisticated ways to introduce

constraints has led to the development of rigorous methods of constrained state

estimation. The commonly used methods are illustrated in Fig. 2.1. A good re-

view of moving horizon estimation (MHE) can be found in Rawlings and Bakshi

(2006) and Haseltine and Rawlings (2005). Recursive data reconciliation (RNDDR)

methods have been illustrated by P. Vachhani and and Rengaswamy (2006) . Con-

strained versions of unconstrained algorithms can be found in literature by Kolas

et al. (2009), Shao et al. (2010), Prakash et al. (2008) and Prakash et al. (2010). It

must be noted that constrained state estimation is beyond the scope of this thesis.
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Chapter 3

Comparison of unconstrained state
estimation techniques

3.1 Introduction

In the previous chapter, linear and nonlinear estimation algorithms were discussed.

In this chapter, various unconstrained estimation methods are compared. Section

3.2 contains an extensive literature survey comparing these techniques. Section 3.3

contains details of the polymethyl methacrylate (PMMA) polymerization reactor

that has been used as a case study example for comparison of various estimation

algorithms. The behavior of estimation algorithms under different noise sequences

that may occur in the PMMA reactor is studied in section 3.4. This section has

been presented and appears in the proceedings of the IFAC DYCOPS 2010 confer-

ence held in Leuven, Belgium. In section 3.5, the two Kalman update based filters

(EKF and UKF) are studied under different cases of noise covariance ratios (process

to measurement noise covariances). Heuristic tuning of these filters is also estab-

lished in this section. Section 3.6 highlights the advantages and disadvantages of the

EnKF over other Kalman update based filters. The importance of particle filters

for estimation of non-Gaussian posteriors is illustrated in section 3.7. Section 3.4 to

3.7 contains results for comparison of unconstrained state estimation techniques. In

section 3.8, the importance of integral action in estimation algorithms is highlighted

using the example of a two tank system. The algorithm used incorporates integral

action in a manner that is similar to that used in a proportional-integral type con-

troller. Section 3.9 highlights the importance of efficient point estimate extraction

from full state distributions. A novel method for extracting point estimates using

k-means clustering has been illustrated.
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3.2 Literature review on comparison of state es-

timation techniques

In the past, a lot of attention was paid towards the comparison of different estimation

algorithms on various systems under different scenarios of noise statistics and process

dynamics. Most comparative studies involve simple examples (small state systems

- 2 to 3 states) with little or no model-plant mismatch.

The EKF has been the most widely used estimator in process engineering. Only

recently has there been literature on application of alternate methods on chemical

process systems. The EKF has been preferred owing to its ease of implementation,

and the unavailability of alternate methods to address its drawbacks until recent

years. Extensive literature may be found on the implementation of EKF on pro-

cess systems. In one of the first works on estimation in polymerization reactors,

Jo and Bankoff (1976) used an extended Kalman filter to estimate the conversion

and weight average molecular weight of a vinyl acetate polymerization continuous

stirred tank reactor (CSTR) system with free-radical polymerization mechanism.

Results obtained using the EKF were compared to values obtained from an exper-

imental setup. Kozub and MacGregor (1992) used an EKF to estimate states in a

semi-batch emulsion copolymerization of styrene/butadiene rubber (SBR) system.

McAuley and MacGregor (1991) soft sensed the melt index and polymer density val-

ues of a polyethylene reactor by using an EKF . Sriniwas et al. (1994) used an EKF

to estimate the states from multi-rate sampled measurements with variable dead

times on an industrial gas-phase co-polymerization reactor model. Prasad et al.

(2002) used a multi-rate EKF for state and parameter estimation of a styrene poly-

merization reactor to monitor polymer quality variables. Gudi et al. (1994) used a

multi-rate EKF to monitor biomass profiles and critical fermentation parameters in

an antibiotic fermentation reactor.

Wilson et al. (1998) provide a critical review on the industrial implementation

of EKF. In their work, they have documented the application of EKF to different

process engineering systems such as polymerization reactors, pulp & paper processes,

and biotechnology and nuclear industries. These systems have been compared with

respect to different criteria such as the type of dynamic and measurement models,

sensitivity of estimation results, and the comparison of open loop predictions to

estimator results. They also assessed the feasibility of using an estimator for an

industrial scale reactor using an industrial pilot semibatch reactor. Results based on

an online run of the two step exothermic reaction lead Wilson et al. (1998) to believe
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that the EKF is not robust enough to be implemented online, and that modifications

are required to avoid filter divergence. The paper concludes with critical evaluations

of the EKF for industrial scale estimation and future recommendations for industrial

applications.

In one of the the earliest works on comparison of state estimation techniques,

Romanenko and Castro (2004) compared the performance of the EKF and UKF

in a nonlinear environment with perfect plant-model match. A fair comparison of

ideally tuned filters was conducted under three different case studies of measurement

to process noise covariance ratio (Q/R) scenarios. Under high noise ratios (low

measurement noise), similar filter performances of the estimators were established.

As the noise ratios were decreased, the EKF performance degraded and it finally

diverged completely, in contrast to the performance of the UKF. The reason for

the poor performance of the EKF was attributed to the linearization error that

propagated through the covariance matrix calculations; this was supposed to be

efficiently handled in the UKF. A critical evaluation of similar case studies has been

conducted in section 3.5 of this thesis. It has been established in section 3.5, that

the cause of divergence of the EKF in the Romanenko and Castro (2004) study

should be attributed to the approximation error rather than the linearization error.

In a recent study, Kandepu et al. (2008) established that the UKF performed

better than the EKF in terms of robustness and speed of convergence. The conclu-

sions were established using four different simulation studies. Using the example of a

van der Pol oscillator, the EKF is shown to diverge under conditions of plant-model

mismatch, unlike the UKF. However, we believe that further tuning of the EKF

might produce better results than those exhibited in their paper. Under no plant-

model mismatch, the UKF has a slight advantage over the EKF. Kandepu et al.

(2008) demonstrate the advantage of using the unscented transform as a nonlinear

approximation by showing faster convergence of the UKF against the EKF using

the example of an induction machine with poor initial state estimates. In a separate

case study using an SOFC hybrid system, the faster convergence of the UKF with

respect to the EKF has been established under poor initial state estimates. The

system contains 3 known inputs and 14 measurements to estimate 18 states.

In the work by Kolas et al. (2009), different versions of the UKF algorithm have

been documented and compared with the EKF. First, the algorithm for a generic

UKF with symmetric sigma points is documented. Later, the UKF with augmented

state noise and the fully augmented UKF algorithms are illustrated. In addition,
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the generic UKF is reformulated to improve its numerical behavior and constraint

handling; i.e., instead of the generic Kalman measurement update, sigma points are

used to calculate the posterior statistics (rather than using prior statistics obtained

from the sigma points). The authors use case studies to establish that the EKF fails

to converge under constraints while the UKF converges for the same case. However,

in the unconstrained case, both filters fail to converge. The literature provides a

good review of the different versions of the generic UKF. However, the comparison

of the performance of the EKF and the UKF is established based on convergence

under constraints, and the authors do not address linearization errors.

Using a CSTR and batch reactors as examples, Qu and Hahn (2009) have shown

that the UKF performs similar to the EKF when process nonlinearities are not signif-

icant. In the case of severe nonlinearity and high noise levels, the UKF outperforms

the EKF.

The above documented literature by Kolas et al. (2009), Romanenko and Castro

(2004), Kandepu et al. (2008), Qu and Hahn (2009) compare the performance of

the EKF and the UKF. Performance comparisons of the UKF and the PF are very

rare. Shao et al. (2010) have compared the performance of the PF against the

EKF, UKF and moving horizon estimation (MHE) under constraints. Using three

different examples : a two state batch reaction, a three state batch reaction and

a three state CSTR, it has been established that the PF provides flexibility for

constrained nonlinear Bayesian state estimation in comparison to other estimators.

Novel methods of handling constraints have been established. A hybrid method

that combines acceptance/rejection of particles, and clipping of particles that fall

outside the region obtained using optimization strategies is proposed.

In two separate contributions, Haseltine and Rawlings (2005) and Rawlings and

Bakshi (2006) have compared the EKF to the constrained MHE and later, the

MHE with the PF. In Haseltine and Rawlings (2005), examples have been used to

show that the EKF may fail even in cases where there is no plant-model mismatch.

The poor performance of the EKF with respect to the MHE in the demonstrated

examples are due to poor constraint handling methods in the EKF in comparison

to the MHE. Rawlings and Bakshi (2006) have introduced the particle filter as a

new tool in the field of nonlinear state estimation. The authors state that the

MHE is a well-established tool for constrained systems. But in case of multimodal

distributions, the PF may have an advantage over the MHE and hence a hybrid

version of PF and MHE is proposed by the authors in these cases.
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Chen et al. (2004) have compared the performance of the EKF, MHE and se-

quential Monte Carlo methods (PF) for three different examples. In the first case

study, the estimators are compared for a linear system under Gaussian noise statis-

tics. The EKF is shown to perform the best, as it reduces to the KF for the linear

case. The MHE performance is very similar to that of the PF while they differ in

computational time. In the second case study, a non-stationary time series model

which forms a nonlinear one state dynamic model is used to compare estimator per-

formance. The posterior distributions have been shown to be non-Gaussian (skewed

or bimodal). It is clear that under these circumstances, the filters that assume

Gaussian statistics for random variables will underperform (EKF and MHE). The

PF is shown to give much lower mean squared error value in comparison to the EKF

and MHE. However, in terms of computation time, the EKF takes far lesser time

than the SMC which in turn takes lesser time than the MHE. This establishes that

in cases where non-Gaussian distributions may be closely represented by Gaussian

distributions, the EKF can be used as an adequate choice of estimator. In the third

case study, a two state CSTR is used as the example. This model exhibits multi-

modality of posterior distributions at certain steady states. It has been shown that

in this case, the PF performance is similar to the EKF and the MHE. This however

is a contradiction to the expected behavior of Monte Carlo based techniques as they

should be able to handle the multi-modality. We believe that the reason for similar

performance is due to the fact that the extent of multi-modality is low and it can be

represented adequately by Gaussian unimodal distributions. In a second case study

of the same example under a different steady state with more or less unimodal dis-

tributions, it has again been shown that the filters perform similarly with respect

to mean squared error values.

In one of the first papers to apply the particle filter to a process system, Chen

et al. (2005) have compared the performance of an auxiliary particle filter (ASIR-

PF) with an EKF for a batch polymerization reactor. A polymethyl methacrylate

process similar to the one used here was used for this case study. The temperatures

of the reactor are measured while the concentrations are estimated. It has been

shown that the root mean square error values (RMSE) are lower for the ASIR filter

in comparison to the EKF. CPU times are, however, much lower for the EKF than

for the ASIR filter. In a separate case study, the termination rate constant of the

monomer was considered to be a time varying parameter and parameter estimation

results were compared. The RMSE values for polymer properties were much lower
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in the case of the ASIR establishing that the estimated parameter values of the

ASIR filter were more accurate. In conclusion, the ASIR filter was determined to

be the estimator choice for highly non-linear batch processes.

In recent years, there has been a increase in the literature related to comparison

of different estimation techniques particularly in context of process engineering. The

well cited recent literature is restricted to the above cited papers. The above-cited

literature indicates that there are few, if any, instances where multiple unconstrained

estimators are compared with the EKF, especially for chemical process systems.

Most of the literature indicates the comparison of a single unconstrained (UKF,

PF) or constrained (MHE) estimator with the EKF. In this chapter, we describe

the application of all unconstrained estimators on the same example, a PMMA

CSTR. The comparison of the UKF and the EnKF with each other and the PF

including heuristic tuning of these filters is also established.

3.3 Methyl methacrylate (MMA) polymerization

CSTR

This chapter involves the study of estimation techniques on a methyl metha-acrylate

polymerization reactor. This is a 6 state plant model, and the model used by the

estimator has the same structure as the plant model, that is no structural model-

plant mismatch is assumed.

3.3.1 Process description

A free-radical MMA polymerization process is used in this study. Polymerization

takes place in a CSTR with azo-bis-isobutyronitrile (AIBN) as an initiator and

toluene as a solvent. Fig. 3.1 provides a schematic of the reactor. The reactions are

exothermic, and a cooling jacket is used to remove heat. The details of the model

can be obtained from Silva et al [13]. The reaction mechanism for MMA free-radical

polymerization is as follows:

Initiation:

I
k−→ R·

R· +M
kI−→ P ·1

Propagation:

P ·i +M
kp−→ P ·i+1
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Monomer transfer:

P ·i +M
kfm−→ P ·i +Di

Addition termination:

P ·i + P ·j
ktc−→ Di+j

Disproportionation termination:

P ·i + P ·j
ktd−→ Di +Dj

Figure 3.1: MMA polymerization reactor schematic

3.3.2 Modeling the PMMA reactor

A mathematical model of the process is developed based on the following assump-

tions: (a) constant volume of the reactor, (b) reactor contents are perfectly mixed,

(c) no gel effect, (d) uniform cooling fluid temperature, (e) heat capacity and density

of cooling fluid and reactor mixture remain constant. The mass and energy balance

equations are as follows:

dCm
dt

= −(kp + kfm)CmP0 +
F (Cmin − Cm)

V
(3.1)

dCI
dt

= −kICI +
(FICIin − FCI)

V
(3.2)
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Table 3.1: Operating parameters for the simulated PMMA CSTR
F = 1.0m3/h Mm = 100.12 kg/kgmol
FI = 0.0032m3/h f* = 0.58
Fcw = 0.1588m3/h R = 8.314 kJ/(kgmol.K)
Cmin = 6.4678kgmol/m3 −∆ H = 57800 kJ/kgmol
CIin = 8.0kgmol/m3 Ep = 1.8283× 104kJ/kgmol
Tin = 350K EI = 1.2877× 105kJ/kgmol
Tw0 = 293.2K Efm = 7.4478× 104kJ/kgmol
U = 720kJ/(h.K.m2) Etc = 2.9442× 103kJ/kgmol
U = 2.0m2 Etd = 2.9442× 103kJ/kgmol
V = 0.1m3 Ap = 1.77× 109m3/(kgmol.h)
V0 = 0.02m3 AI = 3.792× 1018l/h
ρ = 866kg/m3 Afm = 1.0067× 1015m3/(kgmol.h)
ρw = 1000kg/m3 Atc = 3.8223× 1010m3/(kgmol.h)
Cp = 2.0kJ/(kg.K) Atd = 3.1457× 1011m3/(kgmol.h)
Cpw = 4.2kJ/(kg.K) Atd = 3.1457× 1011m3/(kgmol.h)

dT

dt
=

(−∆H)kpCmP0

ρCp
− UA

ρCpV
(T − Tj) +

F (Tin − T )

V
(3.3)

dD0

dt
= (0.5ktc+ ktd)P 2

0 + kfmCmP0 −
FD0

V
(3.4)

dD1

dt
= Mm(kp + kfm)CmP0 −

FD1

V
(3.5)

dTj

dt
=
Fcw(Tw0 − Tj)

V0
+

UA

ρwCpwV0
(T − Tj) (3.6)

Po =

√
2f ∗CIkI
ktd + ktc

(3.7)

The temperatures are measured using standard thermocouples. Table 3.1 lists the

design and operating parameters. f ∗ is the initiator efficiency.

3.3.3 Estimation framework

T The temperatures (Tj, T ) are the measured states, while the reactor concentra-

tions (Cm, CI) are considered as the hidden states (to be estimated). Polymer mo-

ments (D0, D1) are not included in the estimator model as they are not observable

states. Parameter estimation can be considered for any of the kinetic parameters

(ki, kp, kfm, ktc, ktd).
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3.3.4 Observability

Linear observability analysis reveals that only 4 of the states are observable when the

temperatures are the measured variables. The temperatures and the concentrations

are the observable variables, and the moments are not observable. Observability

has been checked based on the rank of the observability matrix obtained from the

linearized system equations (the Jacobian).

3.4 Filter performance under different noise statis-

tics

The model is tested for various scenarios of Gaussian and non-Gaussian state and

measurement noise sequences. Using these case studies, we establish cases in which

significant difference in the performance of various filters is exhibited. Measurement

noise is considered on the reactor and coolant temperatures. State noise is added

to the system dynamic equations of the monomer and initiator concentrations. The

estimates of polymer moments are not used to compare filter performance as they

are unobservable states.

3.4.1 Case studies

Case 1

This case assumes Gaussian noise on the measurements (temperatures). Fig. 3.2

indicates that the EKF works extremely well when the estimator is used to filter the

measurement noise. It also tracks the concentrations (hidden states). It is important

to note that there is an exact match of plant and model in this case. In this case, the

Kalman gain goes to zero, and the estimator trusts the model estimates completely.

This shows the importance of good process models in estimation.

Case 2

In this case, in addition to Gaussian measurement noise on the temperatures, Gaus-

sian state noise is introduced in the dynamic estimation for the concentrations.

Fig. 3.3 demonstrates the superiority of the performance of the PF and UKF the

over the EKF. The Kalman gain is adjusted using the noise covariance matrices and

it is a finite non-zero value, thus weighting the measurement innovations and the
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estimates. The soft-sensing ability of the EKF is limited as it diverges completely

in concentration estimation.

Case 3

In this case, non-Gaussian measurement and non-Gaussian state noise is introduced

into the system. Fig. 3.4 indicates that the results are similar to that of Case 2.

Note that the step tests performed in case 2 and 3 are different. In case 2, the input

disturbance was a 10% change in cold water flow rate, while in case 3, it is a 10%

change in monomer inlet flow rate. The EKF again diverges, while the PF and UKF

estimates match the true state closely.

Case 4

In this case, non-Gaussian measurement noise is introduced, but there is no state

noise. It is seen that the EKF works extremely well in tracking the true measure-

ment (Fig. 3.5). This reiterates what was concluded in case 1, that for reasonable

measurement noise and exact plant-model match, the EKF gives good estimates.

3.4.2 Analysis of case studies

Table 3.2 summarizes the case studies described above. When there is no plant-

model mismatch, the model captures the system dynamics including the state noise

sequences. For perfect plant-model match, the EKF is capable of providing good

estimates if the state noise to measurement noise covariance ratio is adjusted such

that Kalman gain goes to zero. When the Kalman gain approaches zero, it indicates

that there is complete trust in the model and full disregard of the correction due to

the measured states (Cases 1 & 4) and no measurement correction takes place. It

is important to note that if plant-model mismatch exists, the effect will be seen in

poor estimation in the unmeasured states. The ratio of state noise to measurement

noise is a tuning parameter that decides the value of the Kalman gain. The study

of effect of the noise ratios is described in the subsequent section.

The UKF and PF seem to be similar in performance behavior; however, for

extreme non-Gaussian behavior, a difference in estimator performance can be seen.

The level of estimator performance varies based on the degree of non-linearity of

the system dynamics, state and measurement noise, and the degree of plant-model

mismatch. Three important conclusions can be drawn from the above case studies :

(1) The EKF is unable to capture the true dynamics of the unmeasured states under
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high nonlinearity. It can be seen in fig 3.3 that the EKF estimates seem to be biased.

This is because the linearization approximation of the EKF does not capture highly

nonlinear process dynamics accurately. This is called the linearization error.

(2) The performances of UKF and PF are very similar in all these cases. This

indicates that the PF will show a superior performance over the UKF when the

posterior density is non-Gaussian, and not necessarily when the noise distributions

are non-Gaussian. Gaussian noise sequences may also cause the posterior to be

non-Gaussian in some cases. This depends on the degree of nonlinearity of system

dynamics.

(3) Though not explained in the case studies, the tuning of Kalman update based

filters is different from tuning of Monte Carlo based particle filters.

Table 3.2: Summary of case studies (G = Gaussian ; NG = Non-Gaussian)
Case Measurement State Plant-Model Conclusion

Noise Noise Mismatch (choice of filter)
1 G None None EKF, UKF, PF
2 G G None UKF,PF
3 NG NG None UKF,PF
4 NG None None EKF UKF, PF
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Figure 3.2: State estimation in the presence of zero process noise, Gaussian mea-
surement noise (standard deviation (std) of 0.01), and a 10% positive step in cold
water flow rate.
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Figure 3.3: State estimation in the presence of Gaussian state noise (std of 1 and 0.01
on the monomer and initiator concentrations respectively), Gaussian measurement
noise (std of 0.01 on the temperatures), and a 10% positive step in cold water flow
rate.
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Figure 3.4: State estimation in the presence of non-Gaussian state (multimodal with
std of 1 and 0.01 on the monomer and initiator concentrations respectively), non-
Gaussian measurement noise (multimodal with std of 0.01 on the temperatures) and
a 10 % positive step in monomer flow rate.
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Figure 3.5: State estimation in the presence of non-Gaussian measurement noise
(multimodal with std of 0.01 on the temperatures) and a 10 % positive step in
monomer flow rate.
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3.5 EKF versus UKF : Effect of process noise to

measurement noise covariance ratios (Q/R)

ratio on filter performance

The EKF and the UKF are based on the Kalman update. In the previous section,

it was established that the ratio of assumed noise covariances are tuning parameters

to change the value of Kalman gain, which in turn affects the weighting of the model

estimate and the residual error. In this section, the performance of the EKF and

UKF are compared for different ratios of noise covariances using three case studies.

Particle filters are excluded from this study, as they are not based on the Kalman

update. The tuning of particle filters is discussed in the subsequent section.

3.5.1 Noise statistics and tuning parameters

Additive Gaussian noise was added to the system. Fig. 3.6 represents the noise

distribution used.

Covariance of measurement noise added to temperatures (jacket temperature and

coolant temperature in order) is given by:(
1.0e− 06 0

0 1.0e− 06

)

Covariance of process noise added to concentrations (monomer concentration and

initiator concentration in order) is given by:(
1 0
0 1.0e− 04

)

Covariance of process noise for estimator model:
1.0 0 0 0
0 1.0e− 04 0 0
0 0 1.0e− 06 0
0 0 0 1.0e− 06


Covariance of measurement noise considered in the estimation process:(

1.0e− 06 0
0 1.0e− 06

)
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Figure 3.6: Distribution of noise sequences used in the simulation studies that follow.

Initial state noise covariance matrix:
1.2e− 03 0 0 0

0 7.5e− 07 0 0
0 0 6.5e− 06 0
0 0 0 2.5e− 05



3.5.2 Case 1 - Low Q/R ratio

In this case, the process (state) noise covariance is chosen to be much smaller than

the measurement noise covariance. This forces the Kalman gain (K) to approach

zero. When the Kalman gain is zero, and the state estimates are the model estimates.

This can be seen from equation. 3.8, which reduces to equation. 3.9 when K is zero.

x̂k|k = x̂k|k−1 +K(yk −Hkx̂k|k−1) (3.8)
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x̂k|k = x̂k|k−1 (3.9)

The estimator performance now depends entirely on the model. All estimators

based on the Kalman update will perform similarly in this case. Fig. 3.7 shows

the state estimation results for this case study. However, a slight difference can

be observed between the EKF and UKF estimates. The difference in estimation is

simply due to the method in which the a priori estimates are calculated. In the

EKF, it is directly the model estimates, but in the UKF, sigma points are propagated

through system dynamics, and the statistics of model estimates are obtained from

these propagated sigma points. The small difference in performance can be removed

by changing the several tuning parameters used to select sigma points in the UKF

algorithm. It must be noted that this case study is conducted under no plant model-

mismatch. Fig. 3.8 shows the propagation of noise covariances, and fig. 3.9 shows

that the Kalman gain tends to zero in this case.

The assumed covariance of process noise for estimator model:
1.0 0 0 0
0 1.0e− 04 0 0
0 0 1.0e− 06 0
0 0 0 1.0e− 06


The assumed covariance of measurement noise added to estimators:(

1.0 0
0 1.0

)

3.5.3 Case 2 - Q and R ratios are comparable

In case study 2, the process and measurement noise covariances are chosen such that

the Kalman gain considers both the state estimate and the measurement residuals.

Fig 3.10 represents the Kalman gain at each time instant. Clearly, the Kalman gain

lies between 0 and 1 indicating that estimation is taking place. Fig 3.11 demon-

strates the difference in estimation performance between the EKF and UKF. From

table. 3.3, it can be seen that under similar tuning rules, the UKF performs better

than the EKF for case study 2. The difference between the EKF and the UKF

algorithms lies in the methodology used to calculate the statistics of a variable

undergoing a nonlinear transformation. The EKF simply linearizes the system, un-

like the UKF where sigma points are used to represent nonlinear transformations.
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Figure 3.7: Case 1 - Estimation under low process-measurement noise ratio.

Figure 3.8: Case 1 - Covariance propagation under low process-measurement noise
ratio.

48



Figure 3.9: Case 1 - Kalman gain propagation of measured states under low process-
measurement noise ratio. The figure shows the Kalman gains tend to zero.

Fig 3.12 shows how the linearization causes a bias (linearization error) in estimat-

ing unmeasured states. It can also be noticed that the Kalman update seems to

overestimate the covariance matrices associated with these unmeasured states (for

both EKF and UKF). It must be noted that the exact noise statistics are known in

this ideal case study, and these noise covariance matrices are used in the estimator

algorithms.

The assumed covariance of process noise for estimator model:
1.0 0 0 0
0 1.0e− 04 0 0
0 0 1.0e− 06 0
0 0 0 1.0e− 06


The assumed covariance of measurement noise added to estimators:(

1.0e− 06 0
0 1.0e− 06

)
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Figure 3.10: Case 2 - Kalman gain propagation of measured states under unit
process-measurement noise ratio. The figure shows the Kalman gain lies between 0
and 1.

Figure 3.11: Case 2 - Estimation under unit process-measurement noise ratio.
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Figure 3.12: Case 2 - Plots to show biased EKF estimates compared to UKF esti-
mates for monomer concentration under unit process-measurement noise ratio. The
bias is not more than that seen in case 3.

3.5.4 Case 3 - High Q/R ratio

In case study 3, the process noise covariance is much higher than the measurement

noise covariance forcing the Kalman gain for the measured state to 1 (fig. 3.14). This

indicates that the measurements are now trusted completely, and play a major role

in the state estimate. Fig 3.15 shows the estimation performance under this scenario

and table. 3.3 indicates the performance of the estimators. The mean square error

(MSE) values for measured states are exactly the same (unlike case study 2), while

for the unmeasured states, the MSE values are clearly smaller for the UKF. Fig. 3.16

indicates the reason for the higher MSE values for the unmeasured states with the

EKF. The estimation bias caused by linearization of the system dynamics is clearly

evident in these plots. The bias seems to be much higher for case 3 (fig. 3.16) than

that of case 2 (fig. 3.7). This is because the weighting caused by the Kalman gain

in case 2 was able to correct the bias to a certain extent. The EKF covariance for

measured states is smaller than the UKF covariance for case study 3 (fig. 3.17).

This is in contradiction to the covariance propagation of measured states in case 2

(fig. 3.13).
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Figure 3.13: Case 2 - Covariance propagation under unit process-measurement noise
ratio.

Covariance of process noise for estimator model:
1.0 0 0 0
0 1.0e− 04 0 0
0 0 1.0e− 06 0
0 0 0 1.0e− 06


Covariance of measurement noise added to estimators:(

1.0e− 12 0
0 1.0e− 12

)

3.5.5 Analysis and Concluding remarks - EKF versus UKF

When the Kalman gain is non-zero, plant measurements are trusted, i.e., estimation

actually begins to take place. If the ratio of process to measurement noise is low,

the estimates are the a priori estimates (model predictions). If the process model

is good enough to capture the true process dynamics accurately, then the estimator

is dispensable, or a low value of noise covariance ratios may be used (Q/R). When
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Figure 3.14: Case 3 - Kalman gain propagation of measured states under high
process-measurement noise ratio. The figure shows the Kalman gain approaches 1.

Figure 3.15: Case 3 - Estimation under high process-measurement noise ratio.
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Figure 3.16: Case 3 - Plots to show biased EKF estimates compared to UKF esti-
mates for monomer concentration under high process-measurement noise ratio.

Figure 3.17: Case 3 - Covariance propagation under high process-measurement noise
ratio.
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the model estimates are not trusted entirely, the Q/R ratio is adjusted such that

the Kalman gain lies between 0 and 1 and thus considers a weighted sum of the

measurement residual and model prediction. If the model is not good, then the

Q/R ratio is set close to 1, thus trusting the measurements almost completely.

In this system, the EKF estimates for unmeasured states (concentrations) are bi-

ased owing to the linearization error. We believe that the linearization error is caused

due to the imperfect linearization of CmP0 ∼ Cm
√
Ci in equation. 3.1. Fig. 3.18 rep-

resents the results for 1000 Monte-Carlo simulations of the temperature estimates

when Q/R is equal (approximately) to 1 (i.e. Kalman gain lies between 0 and 1).

Both the EKF and UKF are able to smooth the estimates. In fig. 3.19, the lineariza-

tion error in the EKF estimate of concentrations is clearly visible. The estimates

seem to be biased towards one direction. The box plots in fig. 3.20 provide a good

summary of estimation results for the PMMA system. The estimators successfully

smooth the measured states, while the EKF provides biased estimates (unlike the

UKF) for the unmeasured states.

Table 3.3 lists the EKF to UKF mean squared error values for the three different

case studies. In case 1, the MSE values should be close to 1, as there is no estimation

taking place. The difference in performance seen here was explained earlier in the

first case study for low Q/R ratios. When Q/R equals (approximately) 1, the UKF

provides better estimates than the EKF, especially in the case of unmeasured states.

When the Q/R ratio is high, the UKF provides better estimates than the EKF for

the unmeasured states while the MSE ratio for measured states is close to 1 (as

measurements are trusted).

As reported earlier, Romanenko and Castro (2004) have indicated that the lin-

earization error occurs when Kalman gain is close to zero. However, this is really

an approximation error, and should not be referred to as linearization error. Lin-

earization error does not effect the model estimates, it is the covariance matrix and

in turn the Kalman gain which are affected. There are two kinds of errors that may

occur -

(1) An error can occur due to the approximation made as shown in equation. 3.10.

This approximation error would be evident when the Kalman gain is close to zero,

and the model represents the state estimates. The greatest advantage of the UKF

is the increased accuracy of the mean transformation.

E[f(x)] ≈ f(E[x]) (3.10)

(2) Error due to linearization of nonlinear equations can be propagated through
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Table 3.3: EKF versus UKF for varying process-measurement noise ratio
(EKF MSE )/(UKF MSE)

Variable Variable Property Case 1 Case 2 Case 3
(Q/R = Low) (Q/R = 1) (Q/R = High)

Tr Measured 3.61e-001 1.87e+000 1.00e+000
Tj Measured 3.41e-001 2.167e+000 1.00e+000
Cm Unmeasured 8.99e-001 1.06e+001 1.22e+001
Ci Unmeasured 9.91e-001 7.84e+000 7.36e+000

the covariance matrix and in turn the Kalman gain. This is the linearization error

that has been exhibited in the case studies above. It is shown here that bias/error

of EKF estimates can occur due to covariance approximation and not just mean

transformations.

It is important to note that these errors are system specific and depend on the

dynamics of the system or process.

Figure 3.18: Estimation intervals for temperatures (measured states). Intervals
obtained as maximum and minimum values at each time instant for 1000 Monte
Carlo simulations. Plant (blue), EKF (Red) and UKF (green). The solid blue line
that runs through the center is the average of plant values. Q/R ∼ 1.
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Figure 3.19: Estimation intervals for concentrations (unmeasured states). Intervals
obtained as maximum and minimum values at each time instant for 1000 Monte
Carlo simulations. Plant (blue), EKF (Red) and UKF (green). The solid blue line
that runs through the center is the average of plant values. Q/R ∼ 1.

3.5.6 Heuristic tuning of Kalman update based filters

In this section, we provide a heuristic way of tuning the Kalman update based filters.

It is assumed that the value of measurement noise (R) can be accurately obtained.

Once R is known, the Q/R ratio is set be low and decreased until the Kalman

gain is close to zero. This case provides a method to study the model estimation

accuracy. If the estimates are good, then the model is accurate and hence the Q/R

ratio can be set to a low value. If not, the Q/R ratio is increased until the Kalman

gain lies between 0 and 1. If the measurements can be trusted completely (i.e.

sensors are trusted to be good), then the Q/R ratio can be set close to 1. Note

that all comparison of estimator performance here is being done using measured

quantities alone and not the hidden states. A proportional integral based Kalman

filter framework maybe used as described in the later part of the thesis.
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Figure 3.20: Box plots for 100 Monte Carlo simulations for the case where Q/R
ratio ∼ 1.

3.6 Ensemble Kalman filter for state estimation

In this section, the results for the application of the EnKF to the PMMA reactor

are described. As explained in the previous chapter, the EnKF is an estimation

algorithm that combines the Kalman update with Monte Carlo simulations. The

ensemble members that are propagated through time are comparable to particles

used in the particle filtering algorithm. However, Kalman update based filters are

based on mean and covariance propagation, i.e., the first and the second moment

alone. Thus, only Gaussian distributions are represented accurately by the EnKF.

However, under this assumption, it outperforms other estimators. In the following

section, the advantages and disadvantages of the EnKF are discussed.

3.6.1 Analysis of the application of EnKF to a PMMA re-
actor

The EnKF and UKF were run for 60 time instants (fig. 3.21) under similar initial

conditions. The mean squared error values can be seen in fig. 3.22 . As expected, the
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EnKF performance is comparable to the UKF performance (MSE of UKF/EnKF

close to 1). Both the EnKF and UKF were devised to address the linearization

error in the EKF algorithm for highly nonlinear systems. In this case, the UKF

seems to have a slight edge in performance over the EnKF. This may be due to

the tuning of the initial covariance matrix of the EnKF. Tuning the initial state

covariance matrix in the EnKF is very important, as the ensemble is not resampled

and the algorithm relies completely on the propagation of initial ensemble chosen.

A small initial covariance may lead to computation of a low value of sample covari-

ance. Higher initial covariance with a larger ensemble may lead to good estimates

of the covariance matrix. However, the calculation of a point estimate from a larger

ensemble is difficult, as the mean of the ensemble is affected by points that may

lie far from the value of the state estimate. However, with progress in time, the

ensemble members will converge, hence eliminating this problem. It is important

to choose the right number of ensembles and good value of the initial covariance

matrix. In this example, deterministic sampling (UKF) seems to be helpful is pro-

viding good estimates. The computation time is much higher for the EnKF than

the UKF (fig. 3.23). EnKF is used mainly in large scale systems such as reservoir

simulations and weather forecasting. This is due to the following advantages over

the UKF:

1) The size of the ensemble required for large state systems may be less than the

number of sigma points required by the UKF algorithm (2*number of states + 1)

2) Moreover, the EnKF does not use a square root operator which is used by the

UKF in calculation of the sigma points. This requires the covariance matrix to be

positive definite at all instants of time. This criteria need not be fulfilled in the

EnKF.

3) Also, in the EnKF, the ensemble is updated by the Kalman update. No resam-

pling takes place at each instant. In the UKF, sigma points need to be computed at

each instant of time. This may prove to be computationally cumbersome for large

scale systems.

4) Covariance update is not required in the EnKF. It simply uses the members of the

ensemble to calculate the sample covariance. The sample covariance is not required

in any calculations in the EnKF algorithm; it is merely the second moment of the

Gaussian random variable estimate.

The main advantage of both the EnKF and the UKF is that they do not need
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Figure 3.21: EnKF estimation plots for 1 minute of time run

computation of the Jacobian, unlike the EKF. The use of the EnKF over UKF and

vice versa comes down to computational power required by each estimator for the

system under consideration. Usually, for small systems, the UKF is the preferred

algorithm owing to lower computational time. For large scale systems, the EnKF is

the choice owing to its simplicity (no square root and resampling) and lower compu-

tational time as the size of the ensemble becomes smaller than the number of sigma

points. Hence, the choice of estimator between EnKF and UKF may be based solely

on the dimension of the state space and the computational time required for the

estimation algorithm to run. However, it is important to note that both the EnKF

and the UKF are based on the Kalman update and hence only represent Gaussian

random variables.

3.7 State estimation in case of non-Gaussian pos-

terior

When the dynamics of a process are highly nonlinear, it is likely that any Gaussian

or non-Gaussian noise sequences will cause the posterior distribution to be non-
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Figure 3.22: MSE values of UKF/EnKF for the case study on comparison of UKF
and EnKF performances on a PMMA reactor.

Figure 3.23: CPU run times of UKF and EnKF for the case study on comparison
of UKF and EnKF performances on a PMMA reactor.
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Gaussian. The extent of non-Gaussian behavior depends on the system dynamics

and the distribution of the noise sequences affecting the system. Figures. 3.24 to 3.26

shows the non-Gaussian posterior distributions that occur for the PMMA reactor

under simple Gaussian noise sequences. The solid line in these figures depicts the

best possible Gaussian fits to these distributions. In most cases here, the mean

of the best Gaussian fit may represent the true estimate. However, if the extent

of non-Gaussian behavior were to be increased, Gaussian approximation of these

skewed/multi-modal distributions would lead to significant errors. In this section,

we introduce the application of particle filters for full state distributions.

3.7.1 Application of particle filters

The Kalman update based filters are based on representation of random variables

using Gaussian statistics (i.e. mean and covariance). As discussed earlier, in case

of highly non-Gaussian distributions, these GRV (Gaussian random variable) based

estimators may give significant error. Hence, one needs an alternate solution. Parti-

cle filters are based on full state distributions (not just the mean and the covariance

of the estimate) and are capable of representing multi-modal and skewed distribu-

tions. Fig 3.27 represents the plots for the application of particle filter onto the

PMMA reactor under high process noise covariance. Effective tuning of the filter is

described in the subsequent section.
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Figure 3.24: Evolution of posterior for Cm. The posterior is either skewed or multi-
modal. The overlying Gaussian distribution fails to describe the histogram accu-
rately.

3.7.2 Filter tuning and performance

The algorithm given by Imtiaz et al. (2006) was used to tune the particle filter. The

process noise was chosen to be higher (one order higher) than the actual process

noise. This helps to make the prior wide and hence to cover the actual states of

the system. Fig. 3.27 represents the simulation results for this case (Case 1). Large

oscillations were observed in the unmeasured state variables, indicating that the

selected process noise is very high. A series of simulations were used to select a

suitable process noise covariance matrix. The process noise covariance was selected

such that the estimation of unmeasured states was jittery , but not oscillatory.

Figures. 3.28 and 3.29 represent the simulation study for this case (Case 2). The

distribution of weights to a priori states shows that the weighting between model

estimates and plant measurements was uneven. Keeping the process noise covariance

constant, the measurement noise covariance was increased until the distribution of

weights to a priori states indicated that both measurements and model estimates

were shaping the prior and in turn affecting estimation. Figures. 3.30 and 3.31
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Figure 3.25: Evolution of posterior for Cm. The posterior is either skewed or multi-
modal. The overlying Gaussian distribution fails to describe the histogram accu-
rately.

indicate the tuning based on distribution of weights to a priori states. Table. 3.4

gives the MSE values for each of these cases.

3.7.3 Concluding remarks for the particle filter

The particle filter holds a clear advantage to the EKF and UKF when the posterior

distributions are highly non-Gaussian. Table 3.5 represents the mean squared error

values, in case one were to heuristically tune all the estimators. Tuning of Kalman

update based filters (based on ratios of noise covariances) is different from tuning

of particle filters (distribution of weights). It can be shown that as the number of

particles approaches infinity, the posterior approaches the true posterior represented

by the information (measured output) at any instant of time. The use of particles

and weights to represent the posterior ensures that non-Gaussian distributions are

represented accurately, i.e., multi-modal or skewed distributions are represented. It

is important to note that the particle filter algorithm deals with full state distri-

butions alone, and not point estimates. The extraction of a point estimate from
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Figure 3.26: Evolution of posterior for Ci. The posterior is either skewed or multi-
modal. The overlying Gaussian distribution fails to describe the histogram accu-
rately.

full state distributions is an open problem, and is discussed later in this chapter.

Unlike the particle filter, the generic EKF or UKF are able to calculate only the

first two moments of the posterior (mean and variance). Calculation of additional

moments may require additional computation. Hence, the particle filter is clearly a

better filter when the posterior estimates are highly non-Gaussian. It is, however,

important to note that in cases when the assumptions of the EKF or UKF hold,

they may perform comparable to the particle filter.
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Figure 3.27: Particle filter performance for Case 1 under high process covariance.

Figure 3.28: Distribution of weights for particle filter application for Case 2 (under
reduced process covariance).
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Figure 3.29: Particle filter performance for Case 2 (under reduced process noise
covariance).

Figure 3.30: Distribution of weights for particle filter application for Case 3 (under
increased measurement noise covariance).
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Figure 3.31: Particle filter performance for Case 3 (under increased measurement
noise covariance).

Table 3.4: MSE values for tuning of particle filter
Variable Variable Property Case 1 Case 2 Case 3

Tr Measured 5.97e-4 9.37e-5 1.44e-4
Tj Measured 1.19e-4 7.49e-5 9.66e-5
Cm Unmeasured 3.33e+2 6.54e-1 5.22e-1
Ci Unmeasured 2.91e-2 9.83e-5 5.94e-5

Table 3.5: Comparison of EKF , UKF and PF MSE values
Variable Variable Property EKF UKF PF

Tr Measured 4.83e-4 2.58e-4 1.44e-4
Tj Measured 4.21e-4 1.94e-4 0.97e-4
Cm Unmeasured 4.12e+1 0.39e+1 0.05e-1
Ci Unmeasured 5.09e-3 0.65e-3 0.06e-3
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3.8 Proportional-integral based Kalman filters

Integral action is used in control loops to remove constant bias that may occur during

proportional control. It is due to this reason that most controllers in industry are

based on proportional-integral action. In the previous section, it was shown that

the EKF provided biased estimates due to linearization error. Biased estimates may

also be obtained due to parameter mismatch in the plant and model. In this section

, we discuss the introduction of integral action in Kalman filtering, to remove bias.

The Kalman update equation contains the Kalman gain term, which is comparable

to the proportional gain in a PID controller. The Kalman filter may give a bias due

to gain or time constant mismatch between the plant and the model. We try to

eliminate this bias by incorporating the integral action with common fundamentals

as that in PID controllers.

3.8.1 PI-KF algorithm

In the proposed algorithm, the accumulated error is calculated and added to the

model prediction as uncertainty. Two tuning parameters are used. γ is the tuning

parameter that is used to regulate the addition of the integral error to the model

prediction. γ is a square matrix with same number of rows as the state transition

matrix. If all the values in γ are set to zero, the filter reduces to the traditional

Kalman filter, and there is no integral action taking place. Integral gain (Kintegral)

is comparable to a forgetting factor that weights the effect of past accumulated

error on the current state variables. For ease of tuning, γ is restricted to values of

0 or 1 on the diagonal (off diagonal elements are 0) and only Kintegral is used as

a tuning parameter. Tuning of these terms is discussed for the two tank system

given in the next sub-section. Eq. 3.11 is the prediction step of the Kalman filter

algorithm. Eq. 3.12 is the new step introduced after calculation of the Kalman gain.

v represents the integral/accumulated error.

x̂k|k−1 = Fx̂k−1|k−1 +Buk + γv (3.11)

v = v +Kintegral(zk −Hkx̂k|k−1) (3.12)

3.8.2 PI-KF algorithm on two tank system

The proposed algorithm was tested on a simulated two tank system. Fig. 3.32

shows the system under consideration. The model dynamics and parameters may
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Figure 3.32: Schematic of two tank system used to study the PF-KF problem

be obtained from the MATLAB tutorial files on system identification. Eq 3.13 and

3.14 describe the nonlinear dynamics of this process. However, a linearized version

of this system is used for this study (both plant and estimator model). Eq 3.15 and

3.16 describe the linearized continuous time state space model. Table. 3.6 gives the

values parameters and variables associated with this system. x1 and x2 are the

water levels in tank 1 and tank 2 respectively.

dx1(t)

dt
=

1

A1
(Ku(t)− a1

√
2gx1(t)) (3.13)

dx2(t)

dt
=

1

A2
(a1
√

2gx1(t)− a2
√

2gx2(t)) (3.14)

ẋ = Ax+Bu (3.15)

y = Cx+Du (3.16)

A =

 −√ g
2x1ss

a1
A1

0√
g

2x1ss
a1
A2

−
√

g
2x2ss

a2
A2


B =

[
K
A1

0

]
C =

[
0 1

]
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D =
[

0
]

x1ss and x2ss are steady state values that can be obtained by equating eq 3.13 and

3.14 to 0.

Table 3.6: Tabulation of variables for two tank system
Variable Description Units Plant value Model Value

A1 Area of tank 1 m2 0.500 1.000
A2 Area of tank 2 m2 0.250 0.125
a1 Tank 1 outlet area m2 0.020 0.010
a2 Tank 2 outlet area m2 0.015 0.0075
g Acceleration due to gravity m/s2 9.810 9.810
K Pump constant m3/sV 0.005 0.005
u Voltage to pump V 10.000 10.000

Fig 3.33 shows the estimation performance using the Kalman filter. In fig 3.34,

the bias is removed by the integral action. γ is set to diagonal[1 0], as this drives

x1 to a value which tries to correct x2 (i.e true value of x2). If one were to choose

γ to be diagonal[1 1], the state x1 would not be corrected entirely. If there exists

a parameter such that it effects the dynamics of x2 alone, then one could do a two

step correction which would include correcting x2 using x1 initially (γ = diagonal[1

0]) and then correcting x2 after a delay (γ = diagonal[0 1]). Tuning Kintegral is done

in a manner similar to tuning integral action in PID controllers, i.e., starting with a

low value of Kintegral and increasing it until a good integral action response is seen

(similar to figure. 3.34). If the value of Kintegral is increased by a large amount, the

estimate would be highly oscillatory or unstable. The value of Kintegral used in these

simulations is 0.2.

However, for the two tank system, if only a1 were changed , this would not work.

This is because we would change the steady state of the system if the ratio of a1 to

a2 is not maintained. Hence, experiments need to be performed to get the accurate

value of a1/a2 , while a1 and a2 can individually take be any value. Hence, the two

tank system problem needs to be considered under a constrained framework (in this

case constant value) for a1/a2.

The process transfer function is given by Eq 3.17

X2(s)

U(s)
=

K a1
a2

√
2x1ss
g

(A2a1
a2

√
2x2ss
g
s+ 1)(A1

√
2x1ss
g
s+ 1)

(3.17)
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Figure 3.33: State estimates for the two tank system with Kalman filter

Figure 3.34: State estimates for the two tank system response with proportional
integral Kalman filter
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Under constraints (a1/a2), the PI based Kalman filter will handle gain mismatch

and mismatch in time constants (i.e. mismatch in variables K,A1, A2, a1, a2, g).

3.8.3 Similarity between integral action and state augmen-
tation

It was later found that this method is similar to the state augmentation method

used by Lee and Ricker (1994) (in turn inherited from Goodwin and Sin (1984)).

Here the entire uncertainty is clubbed into an additive noise model. The PI action

shown above condenses to this state augmentation methodology. The above case

study demonstrates the importance of considering state augmentation in state esti-

mation. A noise model needs to be augmented to the dynamic state equations with

appropriate values of γ (to control the position of the term to club the uncertainty)

and Kintegral (as a forgetting factor). The use of this algorithm will remove any

uncertainty that occurs due to observable parameters. Hence, under a stochastic

framework, it is good to consider a noise model or a PI based Kalman filter. Note

that the integral states that are added are not being estimated, i.e., the integral

terms that are added to the state equation do not undergo any actual estimation.

3.8.4 Concluding remarks

When accurate/true parameter values are not important, and only good state es-

timates are required, PI based Kalman filter can be used. However, it should be

noted that any bias caused by an unobservable parameter cannot be corrected. It

should be noted that the structure of noise model and hence tuning of γ and Kintegral

are important with respect to PI based Kalman filtering. Non-zero off diagonal ele-

ments in γ might help in reducing estimator bias when parameters are jointly (and

highly) correlated to two or more states. The proportional integral framework may

be extended to other Kalman update based estimation algorithms (EKF,UKF).
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3.9 Point estimate extraction from full state dis-

tributions

Estimators provide state estimates at every time instant. The Kalman update based

estimators like the EKF or UKF provide point estimates which can then be used by a

controller for good control of processes. In the previous section, it was demonstrated

that particle filters, provide a full distribution of the posterior states. However, it

is important to obtain point estimates from these distributions which need to be

passed on to the controller. In most cases, the mean of the distribution is used as

the point estimate. The mean however does not represent the expected value of

the distribution. Fig. 3.35 indicates how the mode and mean differ in the case of

non-Gaussian distributions. In this section, the issue of extracting a point estimate

from a full state posterior distribution is addressed.

Figure 3.35: Importance of point estimate extraction from non-Gaussian posteriors.
Notice that the mode and mean do not match for non-gaussian distributions.

3.9.1 Non-stationary growth model

A non-stationary growth model is used to illustrate the importance of full state

information, and the extraction of an appropriate point estimate from the full state

distribution. This example has been used to show the evolution of non-Gaussian

posteriors in many studies such as Gordon et al. (1993) and Chen et al. (2004). The

dynamic system consists of one state equation (equation. 3.18) and the measured

output is a derivative of the state (equation. 3.19). w and v represent the noise

statistics.

x(k) = 0.5x(k − 1) +
25x(k − 1)

(1 + x(k − 1)2)
+ 8cos(1.2(k − 1)) + w(k) (3.18)
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y(k) =
x(k)2

20
+ v(k) (3.19)

w = N(0, 10)

v = N(0, 1)

The estimator tuning parameters were:

Process noise covariance: Q = N(0, 10)

Measurement noise covariance: R = N(0, 1)

Initial covariance matrix: P = N(0.1, 1)

3.9.2 Non-Gaussian posteriors

The evolution of non-Gaussian posteriors is represented in Fig. 3.36. As concluded

earlier, the EKF is supposed to exhibit poor performance when posteriors are non-

Gaussian. Fig. 3.37 confirms the poor performance of the EKF.

Figure 3.36: Evolution of non-Gaussian posteriors at specific time instants for non-
stationary growth model.
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Figure 3.37: Poor performance of EKF for non-stationary growth model.

The best known method to handle multi-modal distributions is to use a particle

filter that provides full state information. The superior performance of the particle

filter in comparison to the EKF is shown in Fig. 3.38.

It can be seen that at most time instants (fig. 3.38), the particle filter does not

represent the true value exactly. Particle filters provide full state information in

the form of a posterior distribution. The method to extract a point estimate from

this full state distribution for each time instant is an open problem. This is often a

problem with particle filters and has been highlighted by several publications such

as Rawlings and Bakshi (2006). Most applications of the particle filter use the mean

of the full state distribution (as in fig. 3.38). As demonstrated in fig 3.35, the mean

is not the correct point estimate. The next section describes the different methods

of point estimate extraction from full state distributions.

3.9.3 Methods of information extraction

Mean

One way is to take the mean of the distribution. However, this yields the true state

only for symmetric unimodal distributions where the expected value is equal to both

the mean and median.
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Figure 3.38: Superior performance of PF in comparison to EKF for non-stationary
growth model.

Mode

Another option is to take the mode of the distribution as the point estimate. This

may work for skewed distributions, but for multi-modal distributions, it may select

the tallest peak, which may still not represent the actual solution. Also, for mul-

tivariate systems, the simple mode may have to be selected for each of the states

separately. The collection of modes then obtained for each state might not belong

to the multivariate distribution. Fig. 3.39 shows the performance of using the mode

as the point estimate in a particle filter. Even though this method works well at

many time instants compared to the mean (time instant 17), it fails at other instants

(time instant 20). The failure is illustrated in fig. 3.40. To understand this failure,

one must understand evolution of such a multi-modal distribution. The measure-

ment equation is such that at certain time instants, two roots can exist for a given

value of measurement (y). For the equation y = x ∗ x and measurement of y = 1,

x can take both values of +1 and -1. Though the particle filter correctly indicates

the two solutions of x that exist for the measurement y, the particle filter does not

automatically indicate the correct value of x. In fig. 3.40, if one were to believe the

particle filter and choose the mode with highest concentration of the particle cloud,
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the estimate would not be correct.

Figure 3.39: PF with mean and mode as point estimates for non-stationary growth
model.

Mode detection using k-means clustering

The proposed method in this section is to identify a point estimate for multimodal

distributions using clustering, followed by the application of process knowledge to

select a particular cluster and its centroid as the point estimate. k-means is a

data classification technique that is used to cluster the particles based on Euclidean

distance. In this case, the k-means method is used to extract all possible modes

from a non-Gaussian distribution. Initially, we start with a high number of clusters,

and the distance between the clusters is compared with that of a threshold value.

The threshold can be defined by inverting the measurement equation at each time

instant, i.e x =
√

(20y−E[v]). If the distance between any two clusters is less than

the threshold, then the k-means technique is applied again by reducing the number

of clusters. The centroid of each cluster is assumed to be a mode of the posterior

distribution. In case that only one cluster occurs, the mode of all the particles is

selected as the posterior point estimate.

Fig 3.41 indicates how the modes are captured using k-means clustering.
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Figure 3.40: Failure in information extraction from full state distribution provided
by particle filter.

Figure 3.41: Information extraction using k-means clustering from full state distri-
bution provided by particle filter.
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The next step is to incorporate process knowledge to select one mode as the point

estimate. One way to do so is to use constraints on physical quantities. For example,

the height of a tank may never go negative or the temperature of the reactor may

not go beyond a certain value, and this can be used to eliminate some modes. In

certain cases, however, no previous (process) knowledge of the state is known. In

this case, the only way would be to present all possible modes to an operator who

can then infer the right mode based on his or her knowledge. Fig. 3.42 indicates how

the state is captured at each time instant. At certain time instants (e.g.: 8, 10, 14),

a single mode is captured indicating a unimodal distribution (maybe Gaussian or

skewed) and at certain instants (e.g.: 3, 13, 26), two modes are captured indicating

a multi-modal distribution. In this example it is assumed that a maximum of two

modes occur.

Figure 3.42: ’K-means’ clustering from full state distributions provided by particle
filter.

3.9.4 Summary on point estimate extraction from full state
distributions

The non-stationary growth model has been widely used in literature to compare

performance of different estimators (Chen et al. (2004), Mukherjee and Sengupta
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(2010)). Gordon et al. (1993) introduced the resamping step in particle filters and

used this example to compare their results with the extended Kalman filter. In the

literature, the mean or the mode has been used as the point estimate and the mean

square error has been computed using this point estimate. For the non-stationary

growth example, k-means clustering of the posterior distribution (provided by par-

ticle filter), solves the state estimation, as one of the modes always lies on the true

state at each time instant. It has been shown that the mean square error value is

zero when information can be extracted exactly from the full state distribution that

is provided by the particle filter. In the case of non-Gaussian posteriors, the Kalman

update based filters might choose one of the Gaussian peaks from the many peaks as

the true estimate. Particle filters, however, will use the entire non-Gaussian distri-

bution. Using k-means, one could separate the data into peaks and clusters. Once

this information is extracted, process knowledge in the form of constraints may be

used to eliminate certain modes.
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Chapter 4

State and parameter estimation of
a gas phase polyethylene reactor
using particle filters

In the previous chapter, we compared various unconstrained estimators, and high-

lighted the properties of the particle filter. In this chapter, we explore the application

of the particle filter to a realistic large scale chemical process. Many control appli-

cations require on-line estimation of states and parameters simultaneously. In a

mathematical sense, the nonlinear dynamic system with time varying parameters

can be represented by equations. 4.1 and 4.2, where θ(k) represents the time varying

parameters.

x(k) = F (x(k − 1), u(k),Θ(k)) + w(k) (4.1)

y(k) = H(x(k),Θ(k)) + v(k) (4.2)

In estimation, the parameters to be estimated are treated as augmented states with

their dynamics assumed to be random walk models (d(θ)/dt = 0). Thus, the new

state is a combination of system states and parameters (x∗ = [x
θ
]).

This chapter is concerned with the simultaneous state and parameter estimation

of a high dimensional gas phase polyethylene reactor. Two main concepts have been

addressed:

(1) Application of estimation techniques (PF, UKF, UPF) to the gas phase polyethy-

lene fluidized bed reactor process (FBR)

(2) Control of high dimensional reactors with reduced order models using particle

filters
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Section 4.1 contains a survey of the literature on modeling and control of the

gas phase process. Section 4.2 provides a description of the process along with the

reactor model and the estimation framework. Application of particle filters to this

system is analyzed in section 4.3. Section 4.4 introduces the unscented particle filter

(UPF) and the analysis of its application to the gas phase FBR.

4.1 Literature review

The need for monitoring of processes has lead to the development of process models

to represent complex process dynamics. The UNIPOL process (gas phase FBR tech-

nology licensed by Univation Technologies) is a very complicated process to control

owing to its complex reaction mechanism with multiple catalyst sites and reactor

instability. For the gas phase FBR process, good process models are required to

monitor process variables (such as gas phase concentrations), polymer properties

(such melt index and polymer density), molecular weight distributions and parti-

cle size distributions to avoid segregation of polymer particles. Models are also

needed to build effective control strategies, and develop grade transition strategies

to optimize consumption of resources and economic benefits.

In one of the first attempts to model the gas phase polyethylene process for

quantitative understanding of its dynamic behavior and knowledge for process con-

trol, Choi and Ray (1985) present a combination of mass transfer mechanisms, flow

characteristics and kinetic polymerization models. Later, Carvalho et al. (1989) pre-

sented a complex kinetic model with pseudo kinetic rates accounting for the large

molecular weight distributions using multiple catalyst site models to describe the

kinetic mechanism. In one of the most cited papers in modeling of industrial gas

phase reactors, McAuley et al. (1990) developed a model that could predict copoly-

mer composition and molecular weight properties in an industrial-scale fluidized-bed

reactor under good temperature regulation. The model was an attempt to provide

a simulation platform to test on-line quality control schemes and predict the effects

of grade transition policies on molecular weight and compositional distributions.

A collection of the early work in the field with a comparison of different models

developed in the early 1990’s is documented by Hatzantonis et al. (2000).

Most of the early work aimed at developing homogenous reactor models (con-

stant temperature and composition through out the reactor) which could provide

molecular weight distributions. Successful homogenous reactor modeling lead to

increased research in developing models that could account for heterogeneity and
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provide distributions of molecular weights and particle sizes. In one of the early

works, Hutchinson et al. (1992) developed a model to study particle growth. In an

attempt to model the particle related (growth, attrition, agglomeration and elutri-

ation) phenomena in a fluidized bed reactor, Hatzantonis et al. (1998) presented

a population balance model. Yiannoulakis et al. (2001) provided a review of the

literature involving estimation of particle size distributions (PSD) and the effect of

many reactor variables on the PSD. Kanellopoulos et al. (2004) developed a random

pore polymeric flow model to analyze the growth of a single particle in a FBR.

Taking into account heterogeneity in the reactor, Fernandes and Lona (2001)

developed a model taking into account interactions between three different phases.

In more recent work, Dompazis et al. (2005) developed a multiscale model that

incorporates a combination of molecular level (kinetic mechanism) and reactor level

(PSD) phenomenon to predict both the MWD and the PSD. In more recent efforts

on modeling of gas phase polymerization reactors, Dompazis et al. (2008) have

presented a complex multiscale multiphase and multicompartment dynamic model

that takes into account different phases, mechanisms and varying property gradients

(such as temperature variations along the height of the reactor).

With respect to control and grade transition, McAuley and MacGregor (1991)

first developed inferential schemes to predict polymer properties (melt index and

polymer density) online. It must be noted that these polymer properties cannot be

directly measured online. Later, McAuley and MacGregor (1992) used these infer-

ence schemes and designed optimal grade transition strategies. In this contribution,

it was highlighted that grade transitions should not be carried out without feedback

control. Disturbances and model mismatch could lead to transition trajectories that

deviate from optimal trajectories. In a separate contribution, McAuley and Mac-

Gregor (1993) used an EKF based estimation scheme to estimate disturbances and

reduce plant-model mismatch and incorporate nonlinear feedback control. Hydro-

gen and butene flow rates were then manipulated to design optimal grade transition

strategies. More recently, Chatzidoukasa et al. (2003) provided alternate methods to

optimal grade transition by designing an objective function that took into account

controller pairings in the optimality criteria. Grade transition, nonlinear control ,

study of development and effect of catalysts on MWD and PSD, and study of un-

stable operating conditions are still open areas of research with respect to gas-phase

polymerization.

In this work, we use a model adapted from McAuley et al. (1990) and McAuley

84



(1991), and use it as a basis for estimation studies using particle filters. A description

of the model follows:

4.2 Gas phase polyethylene reactor

4.2.1 Process description

The gas-phase solid catalyzed polymerization process has long been recognized as

being very efficient for producing polyolefins. Fig. 4.1 provides a schematic of the

polymerization process. In the fluidized bed reactor (FBR), catalyst particles are

continuously fed into the reactor, and they react with the incoming fluidizing reac-

tion medium to produce a broad distribution of polymer particles. The gas mixture

in the case of polyethylene production contains ethylene (monomer), butene (co-

monomer), hydrogen and some inert gasses (e.g.: nitrogen). The catalyst usually

requires an initiator in the form of aluminium alkyl. Polymer is removed from the

bottom of the reactor in the form of pellets. Industrial polyolefin FBR, typically

operate at temperatures of 75-1100C and pressures of 20-40 bar (Xie et al. (1994)).

The recycle stream consists of a heat exchanger to continuously remove the heat gen-

erated by exothermic reactions. A small amount of the recycle stream is removed

in the form of bleed flow rate. This helps to regulate pressure and composition in

the reactor and recycle stream. The recycle stream consists of a large volume of

the gases. This accounts for the fluidizing mechanism wherein the catalyst particles

are kept suspended by the incoming recycle stream from the bottom of the fluidized

bed. The reactor system usually consists of three basic regulatory controllers. The

temperature is controlled using the coolant flow in the heat exchanger. Pressure

is controlled using the flow of inert gasses in the reactor. The polymer outflow is

used to regulate the level of components in the fluidized bed. Shenoy et al. (2008)

provide a review of the process along with some basic regulatory control strategies.

4.2.2 Reactor modeling

The reactor model has been adapted from McAuley (1991). Simulating the rector

involves kinetic expressions, pseudo kinetic expressions, mass and energy balance

equations, and PID controller equations. The following section documents the ki-

netic and reactor models used in the case study presented in this chapter.
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Figure 4.1: Schematic of a gas phase fluidized bed reactor for polyethylene produc-
tion

Kinetic model

The kinetic model consists of consumption rates of species, which are functions of

kinetic parameters, and mass/mole balance equations for kinetic species (e.g.: active

catalyst sites). The type of reactions that take place in the reactor include:

(1) Formation and initiation of active sites

Potential active sites undergo a formation reaction with the cocatalyst (aluminium

alkyl) to give active catalyst which is now ready to undergo reaction with other

species in the reactor. The active sites undergo an initiation reaction when they

react with the monomer.

(2) Propagation reactions

Living polymer chains refer to catalyst with chains of monomers and comonomers

attached that are ready to undergo further reaction. Here, the live polymer chains

grow by the addition of a monomer or a comonomer. It is important to note the

kinetic rates for the propagation differ with - the type of molecule (monomer or

comonomer) joining the living polymer chain, the end molecule in the living poly-

mer chain and the type of catalyst site to which the living polymer chain is bound.

This reaction gives rise to 8 different kinetic expressions for a 2 site reaction with a

single monomer and comonomer.
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(3) Chain transfer reactions

Live polymer chains undergo chain transfer reactions to give dead polymer chains.

Dead polymer chains do not undergo any further reactions while the liberated cata-

lyst site might undergo further reactions. Chain transfer agents include the monomer

itself, hydrogen and the cocatalyst. Spontaneous chain transfer can also take place

where in no chain transfer agent is required.

(4) Additional reactions

In addition to the above reactions, side deactivation reactions due to presence of

poisons such as carbon monoxide or impurities can take place.

In this model, it has been assumed that the catalyst has two different types

of active sites. The two active sites differ from each other on the basis that their

reaction constants are different. For example, the first type of active site may

undergo formation reactions more readily than the second active site. This gives rise

to pseudo kinetic expressions, i.e., if one were to represent the rate of propagation ,

the difference in propagation rate constant values of the two sites must be taken into

account. Hence, a pseudo kinetic expression that combines both the propagation

rates needs to be defined. This has to be done for each of the kinetic expressions

listed above. Pseudo kinetic expressions can be obtained from McAuley (1991) and

Carvalho et al. (1989). Usually, the kinetics of different active sites are combined

using two terms:

(1) Mole fraction of monomer of type i = [Mi]
[M1]+[M2]

. [M1] and [M2] refer to the

concentration of monomer and comonomer respectively.

(2) Φi(j), the fraction of active sites of type j having terminal monomer Mi.

Using the above two variables, pseudo kinetic expressions for formation, initiation,

propagation and chain transfer reactions are obtained.

Following the rate expressions, mass balance equations (equation. 4.3) are used

to represent the dynamic nature of the concentration of kinetic species in the re-

actor. Kinetic species include potential active sites, initiation sites, sites with a

single monomer attached to them, and finally polymer moments for live and dead

polymer chains. In the reactor, polymer chains (both dead and alive) are of varying

length based on the number of monomers and comonomers that they are made up

off. Thus, polymer chains in the reactor can be represented as distributions of two

forms - chain length distributions and molecular weight distributions. Representa-

tion of mass balance equations for polymer chains is done in the form of moments of
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these distributions (usually the zeroth, first and second moments). Thus, mass bal-

ance expressions for 3 moments for live and 3 moments for dead polymer moments

can be written.

Accumulation = Inflow +Generation− Consumption−Outflow (4.3)

Temperature effects are included in the kinetic rate constants in the form of equa-

tion. 4.4. k(T) is the kinetic constant as a function of temperature, A is the Arrhe-

nius constant, E the activation energy, T the temperature and R the universal gas

constant.

k(T ) = Aexp(
−E
RT

) (4.4)

The concentration of gaseous entities (monomer, comonomer, hydrogen, inert) is

different from their concentrations in the amorphous phase (the phase in which

kinetic reactions take place). Henry’s constant (Kp) is used to account for difference

in gas phase and amorphous phase concentrations (as shown in eq. 4.5)

[Mi]polymer = Kp(Mi, T )[Mi]gas (4.5)

The kinetic model is simplified by assuming that some of the intermediate species

such as active sites and sites with a single monomer attached have fast dynamics.

Thus the mass balance expressions for these species reduce to algebraic expres-

sions. Molecular weight properties (weight average molecule weight, number aver-

age molecular weight and polydispersity index) are used to describe the molecular

weight distributions of the polymer product. The values for these properties can be

calculated using the live and dead polymer moments. To calculate the melt index

and polymer density, inference schemes are developed.

Given the concentration of reactants in the gas phase and the reactor tempera-

ture, the kinetic model can predict the polymer production rate and polymer quality.

Reactor model

If a model of the process needs to be used for controller design, development and

testing, dynamic mass balances of the reactants are required to predict the gas

compositions in the reactor. This is due to the fact that the reactor feeds/inputs

rather than gas phase concentrations are the manipulated variables. Thus, the model

must predict the effect of feed flow changes on reactor operation. For this purpose

a model of the reactor is combined with the kinetic model. Dynamic mass balances
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of the form represented by eq. 4.3 need to written for inert, hydrogen, monomer,

comonomer, cocatalyst and impurity, respectively.

A dynamic energy balance for the species accounts for the temperature in the

reactor. It is assumed that the turbulent mixing in the FBR causes the temperature

throughout the bed to be uniform. The energy balance equation for the reactor is

represented by eq. 4.6.

(MwCpw + VpρCppol
dT

dt
= Hf +Hgi −Hg0 −Hr −RvρCppol) (4.6)

Mw and Cpw are the mass and heat capacity of the reactor wall respectively. Cppol,

Vp and ρ are the heat capacity, volume and density of the polymer in the reactor.

Hf and Hgi are inflow enthalpies of feed inlet and recycle gas respectively. Hg0 and

RvρCppol represent the enthalpy outflows due to recycle gas outflow and polymer

product outflow. −Hr accounts for heat liberated by the polymerization reactions.

Energy balance equations are also required to represent the energy regulation by

the heat exchanger on the recycle stream. The reactor model also consists of the

regulatory PID controller equations. An algebraic expression is used to calculate

the pressure in the reactor, and a controller equation regulates the pressure using

the inert inflow into the reactor. Temperature control is achieved by regulating the

inflow of coolant to the heat exchanger. Bed level control is achieved using the

product discharge line at the bottom of the reactor. To illustrate the controller

equation, the bed level control equations are represented in eq. 4.7 as: bw is the bed

level, bwsp the bed level set point and τbw is the time constant of the closed loop

response (chosen to 1 here).
dbw
dt

=
bwsp − bw

τbw
(4.7)

Thus, a set of 35 nonlinear differential equations (35 state system) combined with

numerous algebraic rate expressions and fast dynamics mass and energy balances

are used to represent the dynamic behavior of the gas phase polymerization process.

This model can be used to study the effect of temperature on reactor conditions,

design of controllers, grade transition strategies and so on.

4.2.3 Estimation framework

This section discusses the estimation framework for the polyethylene reactor. Us-

ing sensitivity analysis, the variables that most affect reactor properties have been

identified. These variables need to be modified as manipulated variables for non-

linear product property control and grade transition. Using the identified sensitive
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variables, reduced order models are built to aid in reactor control. In this case

study, the reduced order model has been adapted from McAuley (1991). The re-

duced order model used in this case is represented by equations. 4.8 to 4.11. The

model is capable of predicting the effect of hydrogen and butene feed rates on melt

index and density. It also accounts for the effect of reactor temperature, vent flow

rate, catalyst feed rate, and bed level on product properties; these variables change

quickly during grade transition.

Vg
d[H2]

dt
=

FH
mw(H)

− khY [H2]−
[H2]bT
[CT ]

− gl[H2] (4.8)

(Vg + Vs)
d[M2]

dt
=

FM2

mw(M2)
− kp2Y [M2]−

[M2]bT
[CT ]

− S(M2)[M2]Op (4.9)

dY

dt
= Fcatacat −

Y Op

Bw

− kdY (4.10)

dBw

dt
= Y kp1[M1]mw(M1) + kp2[M2]mw(M2)−Op (4.11)

In the reduced order model, [H2], [M2], [M1] represent the concentrations of hydro-

gen, comonomer and monomer, respectively. Fx represents the inflow rate of x. Vg

is the volume of the gas in reactor and can be calculated from known and estimated

quantities as VTotal − Bw

ρc
. kh, kp1 and kp2 are the respective pseudo-rate constants

for consumption of hydrogen, ethylene and butene, and kd is the deactivation con-

stant. Y is the total number of moles of active catalyst in the reactor. bT is the total

gas bleed rate and Ct is the total gas phase concentration. Vs is the equivalent gas

volume of butene dissolved in the polymer bed and can be calculated from known

quantities, S is the solubility coefficient for butene sorption. Op is the outflow rate

of polymer from the reactor and acat is the number of moles of active sites per until

mass of catalyst in the catalyst feed stream.

Estimation schemes are used to filter the disturbances and reduce the plant model

mismatch by incorporating measurements in the reduced order model. Moreover, the

nonlinear controller uses values of states and parameters that are estimated by the

estimation scheme. Fig. 4.2 describes the estimation schematic under consideration.

The estimated states are [H2], [M2], Y and Bw. Parameters estimated include kp2,

gl, kd and Op . The measurements used from the plant are shown in the schematic.

Under this scheme, the system is full state observable (McAuley (1991)). For this

study, the plant is represented by simulation of the 35 state higher dimensional
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model. This kind of a high plant - low model order representation brings in plant

model mismatch, specifically structural as well as parametric mismatch. Hence, an

estimator is a must in order to incorporate measurement feedback into the dynamic

model. It is important to note that there is structured plant-model mismatch, and

some of the parameters represented by the lower order model may not correspond

to parameters in the higher dimensional model. For example, the termination rate

constant in the low-dimension model does not represent any termination constant

of the higher dimensional model.

The model used by the estivation scheme is given by :(
ẋ

Θ̇

)
=

(
f(x,Θ, u)

0

)
, where xT = {[H2] [M2] Y Bw} and ΘT = {kp2 gl kd Op}.

The measurement equation is given by y =


[H2]
[M2]
PR
Bw

 =


[H2]
[M2]

Y (kp1[M1]mw1 + kp2[M2]mw2)
Bw


Apart from the above measurement matrix, other raw measurements from the large

dimensional plant are used in the estimation model (such as pressure, temperature,

[M1], etc).

The tuning parameters include:

Measurement noise covariance : R = diag[1e− 8, 1e− 8, 1e− 4, 0.04]

Process noise covariance : Q = diag[1e−10, 2.5e−7, 1e−2, 0.25, 0.01, 1e−4, 1e−12, 9]

State covariance : P = diag[1e− 4, 1e− 4, 1e− 2, 25, 1, 4, 1e− 6, 2500]

The melt index (MI) and polymer density (ρ) can be inferred from equations. 4.12

and 4.13. k0, k1, k3, k7, p0, p1, p2 and p4 are constants that are updated at irregular

intervals by a multirate estimator when lab readings of MI and polymer density

become available. T0 is the reference temperature , while T is the temperature mea-

sured in the reactor. It is important to note that these soft sensing inference schemes

provide estimates of melt index and polymer density at each sampling instant. The

only other way to measure these polymer properties is through off-line laboratory

measurements, which have significant delay and cannot be obtained at every instant
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Figure 4.2: Estimation framework for the gas phase fluidized bed reactor for
polyethylene production
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Figure 4.3: Plot of inlet feeds for gas phase FBR for polyethylene production (plots
have been scaled due to the proprietary nature of the data)

of time.

ln(MI) = k7(
1

T
− 1

T0
) + 3.5ln(k0 + k1

[M2]

M1

+ k3
[H2]

M1

) (4.12)

ρ = p0 + p1ln(MI)− {p2
[M2]

[M1]
}p4 (4.13)

Fig. 4.3 represents the manipulation of some of the input variables for the case

studies below.

4.3 Application of particle filters

In the earlier work , McAuley and MacGregor (1993) used two EKFs to update the

MI and polymer density inference schemes and eliminate disturbances and reduce

plant-model mismatch in the reduced order model. According to our studies in the

previous chapter, an EKF might not be the right choice of estimator owing to the

linearization and approximation errors as well as its inability to handle non-gaussian

disturbances. A particle filter on the other hand is able to handle non-Gaussian

distributions, and this motivates the use of a particle filter. In this section, we

analyze the results of applying a particle filter with the lower dimensional model.

The tuning parameters, estimation framework and input sequences for the appli-

cation of the PF were provided in the previous section. Figs. 4.4 to 4.7 represent the
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Figure 4.4: Measurement smoothing using particle filters for gas phase FBR for
polyethylene production (plots have been scaled due to the proprietary nature of
the data)

plots for the application of the generic (SIR) PF to this system. It is seen that the

PF tracks the true state up to a certain time instant, after which it fails to estimate

the states and parameters. An investigation into the cause of this behavior leads to

the fact that the weights of all particles tends to zero after a certain time instant.

The reason for this is that the predicted states (particles) lie near the tail of the

likelihood or far away from the likelihood (no overlap). In this case the weights of

the particles would initially be very low and finally decay to zero. Thus, none of the

particles would lie in the region of the true state. Fig. 4.8 highlights this problem.

There are two solutions to this problem:

(1) To give a very large (overestimated) estimate of measurement noise covariance.
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Figure 4.5: Estimation of polymer product properties using particle filters for gas
phase FBR for polyethylene production (plots have been scaled due to the propri-
etary nature of the data)

Figure 4.6: Estimation of unmeasured state using particle filters for gas phase FBR
for polyethylene production (plots have been scaled due to the proprietary nature
of the data)
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Figure 4.7: Parameter estimation using particle filters for gas phase FBR for
polyethylene production (plots have been scaled due to the proprietary nature of
the data)
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Figure 4.8: Problem of particle degeneracy due to overlap of likelihood and prior
near tail of likelihood or no overlap at all. (idea for figures adapted from der Merwe
et al. (2000))
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This would make the likelihood spread to be very large (large variance in likelihood),

and hence the state estimates would lie within the likelihood region. However, a

trial of this method on this system leads to the finding that a very large covariance

(of the order 1010 times the true measurement covariance) is required for successful

estimation using a generic PF. Such a value of measurement noise covariance is not

physically realizable. Moreover, owing to the large spread of the measurement likeli-

hood, a large number of particles are required so as to avoid degeneracy of particles

(i.e., particles with zero weights). This is computationally cumbersome.

(2) The other method is to introduce feedback into the one step ahead prediction

of particle locations (fig. 4.9). This is done by effective generation of the proposal

distribution, using a bootstrap method. For example, using a Kalman update based

filter to generate the proposal moves the particles towards regions of high likelihood.

This brings in feedback correction into the proposal, thus helping the stability of

the particle filter. Such a formulation, using UKF to generate proposal is called the

unscented particle filter (UPF) and has been tested on this system, as described in

the next section.

4.4 Unscented particle filters for high plant-model

mismatch

In this section, the problem of particle weights going to zero in a generic particle

filter under the large-plant lower dimensional model case is resolved. A Kalman

update based filter, in this case the UKF is applied to this system. the estimation

problem formulation and tuning parameters are same as that used in the case study

provided in the previous section. Fig. 4.10 is the plot of the polymer quality vari-

ables (melt index and polymer density) for this case study. The UKF is able to

track the polymer quality variables accurately. This establishes that the stability of

a Kalman update based filter, compared to the PF, for such formulations of plant-

model mismatch. Thus, in case of structural mismatch between plant and model, a

Kalman update based estimator is the appropriate choice of estimator. However, as

highlighted by Ning and Fang (2008), if non-Gaussian noise sequences are present,

the choice of estimator has to be a sequential Monte Carlo estimator that deals with

estimation of full state distributions, without making assumptions for variables to

be Gaussian. Hence, the PF with a Kalman update based filter to generate the
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Figure 4.9: Incorporating feedback into prior particles using Kalman update based
filters for proposal generation. (figure adapted from der Merwe et al. (2000))
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Figure 4.10: Estimation of polymer product properties using unscented Kalman
filters for gas phase FBR for polyethylene production (plots have been scaled due
to the proprietary nature of the data)

proposal needs to be used. The UPF would be a very powerful tool, as it provides

robustness to the PF. der Merwe et al. (2000) , Rui and Chen (2001), Daum (2005),

Prakash et al. (2008) have all highlighted the importance of proposal generation.

The algorithm for the UPF has been highlighted below.

In the generic formulation of the PF using Bayes rule, the weights of the particles

are

wik ∝ wk−1p(yk|xk)p(xk|xk−1)|q(xk|Xk−1, Yk)

In the SIR PF, which is the easiest form of the particle filter in terms of implemen-

tation, the proposal distribution (q(xk|Xk−1, Yk)) was chosen to be the transition

prior (p(xk|xk−1)).
In the UPF, the proposal is generated by a UKF, i.e., q(xk|Xk−1, Yk) = p(xk|Xk−1, Yk)

where p(xk|Xk−1, Yk) is the posterior distribution generated by the UKF. The UKF

being a Kalman update based filter, represents the posterior probability distribution

(p(xk|Xk−1, Yk)) in the form of a Gaussian distribution represented by its means and

covariance (N(x̂k, cov[xk])).

Thus, q(xk|Xk−1, Yk) = N(x̂k, cov[xk]).

The use of UKF to generate proposal in PF provides measurement feedback to

the importance particles, as measurements are used in the UKF algorithm. Thus,

particles remain in regions of high measurement likelihood.
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4.4.1 Analysis of application of UPF to gas phase polyethy-
lene FBR

The Unscented particle filter was applied to the polyethylene FBR. The formulation

of the problem is similar to the high dimensional plant and low dimensional model

used in the previous case study of the particle filter. The tuning parameters also

remain the same. Fig. 4.11 to 4.14 shows plots of the successful implementation of

the UPF for this system with this type of plant-model mismatch (high dimensional

plant represented by a low dimension model for estimation purposes). It is seen

that the use of the UKF to generate the proposal distribution, provides feedback

to the prior particles. Thus, prior particles always remain within the region of high

measurement likelihood. As shown in the previous case study, a Kalman update

based estimator is stable under such formulations of plant-model mismatch. Thus,

estimation in case of non-Gaussian distributions under such problem formulations

will require a Kalman update based estimator to be coupled with a PF to provide

stability to the PF algorithm. It is important to note that, such a formulation is

true for most cases of online implementation where the order of the true process is

unknown. Even though a Gaussian distribution is used in the proposal, it serves

to bring the particles closer to the true value of the state, thus providing a tighter

region for the spread of the particles. This improves the performance of the PF.

4.5 Concluding remarks

Through a case study on a realistic system, we have shown that with high plant

model mismatch it is important to incorporate feedback in the proposal distribu-

tion. It is important to note that high-plant model mismatch is inevitable in real

time implementation of estimation algorithms on large-scale chemical processes. It

has been shown that Kalman update based filters are more stable than generic for-

mulations of the particle filter (e.g.: SIR-PF), which use the transition prior as the

proposal distribution. In order to address the problem of non-Gaussian distributions

in such cases of high plant-model mismatch, particle filters which use Kalman up-

date based filters to generate proposal distributions are required. The UPF is more

robust to plant-model mismatch than the PF, and it retains its ability to estimate

non-Gaussian distributions.
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Figure 4.11: Measurement smoothing using unscented particle filters for gas phase
FBR for polyethylene production (plots have been scaled due to the proprietary
nature of the data)
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Figure 4.12: Estimation of polymer product properties using unscented particle
filters for gas phase FBR for polyethylene production (plots have been scaled due
to the proprietary nature of the data)

Figure 4.13: Estimation of unmeasured state using unscented particle filters for
gas phase FBR for polyethylene production (plots have been scaled due to the
proprietary nature of the data)
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Figure 4.14: Parameter estimation using unscented particle filters for gas phase FBR
for polyethylene production (plots have been scaled due to the proprietary nature
of the data)
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Chapter 5

Concluding remarks and future
work

5.1 Concluding remarks

Fig. 5.1 summarizes the approach to estimation developed and investigated in this

thesis. While this work focuses on chemical process systems, the results are appli-

cable to all fields of science and engineering that may make use of unconstrained

estimation techniques. The KF is the optimal solution to linear systems. In the

case of nonlinear systems, the EKF is the most widely used filter. In this thesis, it

was shown that the EKF is prone to approximation and linearization errors depend-

ing on the nonlinear dynamics of the system under consideration. In this case, the

UKF and EnKF provide improved solutions to the estimation problem. However,

the choice between the EnKF and UKF depends on the computational power of

the two algorithms. This varies with the system under consideration. Most process

dynamics are highly nonlinear and this leads to non-Gaussian distributions of states

and parameters. To handle this, a filter that does not approximate distributions to

be Gaussian must be used. The particle filter was shown to be an effective solu-

tion for non-Gaussian distributions. However, the PF is not robust to plant-model

mismatch. In chapter 4, the effectiveness of the UPF for estimation in the case

of high plant-model mismatch was clearly demonstrated. The UPF is a filter that

handles non-Gaussian random variables, full state distributions and is stable enough

to be used in cases of high plant-model mismatch. The only drawback of the UPF,

compared to the PF, is the added computational requirement.

In this thesis, various estimation techniques were compared. Some of the ro-

bustness issues of estimators were also addressed. One of them was the bias that
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Figure 5.1: Flowchart to help in the decision for choice of state estimation technique
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occurred between the state estimate and the true state. Bias in state estimates can

occur due to parametric mismatches between the model and true parameters or due

to linearization errors. Bias can be eliminated using methods of state augmenta-

tion or parameter estimation. In chapter 3, integral action, similar to that of PID

controllers, was used to eliminate bias. Another issue that was addressed, was the

extraction of a point estimate from the full state distributions obtained using PFs.

k-means clustering was used to extract the modes from the posterior distributions

obtained using the PF.

Nonlinear estimation is an open area of study. However, it is important to

note that there may not exist a general solution to the nonlinear state estimation

problem. But the application of estimation theory is system specific and depends

on the dynamics and stability of the system under consideration.

To elucidate the novelty of our work: This thesis provides detailed guidelines

for the selection of appropriate unconstrained estimators for chemical processes. In

chapter 2, first, a systems approach of state estimation was analyzed using a PMMA

reactor under different noise distribution sequences. Later, the linearization error

of the EKF was exhibited. A comparison of the EnKF and UKF, followed by the

advantage of the PF in estimating non-Gaussian distributions was demonstrated.

The robustness of the UPF, in comparison to the PF, in the case of high plant-

model mismatch was demonstrated in chapter 4. To account for estimation bias

due to model-plant mismatches, integral action was introduced in state estimation

algorithms. k-means clustering was used to extract a point estimate from full state

posterior distributions.

5.2 Future work

5.2.1 Nonlinear observability

As explained in the introduction of this thesis, observability is a very important

criteria, that defines which states can be estimated. For linear systems, the rank

of the observability matrix defines the number of states that can be estimated. In

the case of EKF, the same procedure holds good, as the equations representing

system dynamics are linearized at each instant in time. However, in the case of the

other nonlinear estimators (UKF, PF, EnKF), the nonlinear equations are directly

used (no linearization) by the estimation algorithms. Finding the observability

of a nonlinear system is an open problem. Research needs to be conducted, to
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demonstrate the advantages or disadvantages of using estimation techniques that use

linear or nonlinear observability. It is important to note that a systems observability

may change based on it being linearized or not. However, examples pertaining to

change in observability have not been discovered yet and need to be demonstrated.

5.2.2 Issues with particle filters

Effective handling of non-Gaussian measurement noise

Though a lot of literature aims at generation of proposal distributions, not much

information exists about the design of likelihood functions based on measurement

noise statistics. In most examples, the likelihood is represented by a Gaussian

probability density function. However, in the case of non-Gaussian measurement

noise sequence, models of measurement noise can be identified and the distribution

can be represented in the form of sum of Gaussian distributions. A recent study

in this area has been done by Mukherjee and Sengupta (2010). This would provide

better state estimates, as the assumption of Gaussian measurement likelihood is

eliminated.

Multivariate methods for mode detection in case of non-Gaussian poste-
riors

In this thesis, the importance of extraction of a point estimate from full state dis-

tributions obtained using particle filters was demonstrated. However, the method

developed was easy to implement for the example used, as distributions were dis-

tinctly bimodal or unimodal. Generalized methods in the form of constraints or

multivariate methods need to be designed in order to resolve the problem of point

estimate extraction from full state distributions. If the correct point estimate is ex-

tracted, the particle filter can be considered as the optimal solution for the nonlinear

state estimation problem.

5.2.3 Subspace identification for state estimation

Subspace identification is able to provide all the necessary information for imple-

menting Kalman filters for linear systems. This would solve two major issues - (1)

The physical models that are required by the estimator may be eliminated (2) Noise

covariance matrices obtained through subspace identification are actually tuning

parameters when the estimators are implemented using first principles models. The
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use of subspace identification for state estimation and tuning needs to be attempted.

Obtaining a physically meaningful state transition matrix from input - output data

using subspace identification needs to be investigated. These methods must then

be extended to nonlinear estimators. This would add to the robustness of using

estimators online, as identification models may represent system dynamics more

accurately than first principles models.

5.2.4 Proportional integral based estimators

Integral action is a very powerful tool in PID controllers due to the fact that it

eliminates bias. The basis for introduction integral action into estimation algorithms

has been outlined in this thesis. The introduction of integral action to various linear

and nonlinear estimation algorithms by choosing appropriate noise models needs

to be investigated. This would be particularly useful as model-plant mismatch are

inevitable.

5.2.5 Polyethylene FBR : future work

A lot of work is currently being conducted on the polyethylene reactor. The reduced

order model is being studied for stability and estimation techniques were being

applied under the ideal case of no plant-model mismatch. Estimation techniques

under different realistic disturbances that may be experienced in the plant are being

used to simulate case studies to study the use of different estimation techniques.

On a further scale, the propagation of full state distributions through nonlinear

controller is being studied. It is important to note that a full order model should be

used for simulation of the plant, and a lower order model for the estimation. This

represents a realistic scenario for application of state estimation.

5.2.6 Estimation of MWD and PSD

Techniques for estimation of MWD and PSD in polymerization reactors remains a

long term goal of this project. Complex models that can predict MWD and PSD

are being developed by many researchers. However, the application of estimators to

these models has not yet been attempted. The challenges in this work include the

complexity of the model, and the choice of equations and measurements that might

make the model observable.
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5.2.7 Tuning of filters

During the course of this work, an attempt was made to address optimal tuning of

filters. The vastness of the area and the large amount of literature has lead to it

being a part of future work.
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