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Abstract 

 
For the last two decades “active contour” or “snake” has been effective as an 

interactive image segmentation tool in a wide range of applications, especially for 

blob-object delineation. In the interactive snake segmentation process, a user 

draws a rough object outline; next, a cost function is optimized to drive the user-

drawn contour a.k.a. snake to delineate the desired object boundary. Although 

successful as an interactive segmentation tool, snake exhibits poor performances 

in various noteworthy image segmentation applications that require complete 

automation. Examples include oil sand particle delineation, biological cell 

segmentation and so on.  

     This thesis presents a novel, completely automated snake/active contour 

algorithm for multiple blob-object delineation. The algorithm consists of three 

sequential steps: (a) snake initialization: where we apply a Probabilistic Quad 

Tree (PQT) based approximate segmentation technique on an image to find the 

regions of interest (ROI) where the probability of having objects is very high and 

place seeds uniformly within the ROIs; (b) snake evolution: where we evolve one 

novel interleave directional gradient vector flow (IDGVF) snake from each seed; 

(c) snake validation: where we classify the snakes into object and non-object 

classes using a novel adaptive regularized boosting (ARboost). Existing efforts 

towards snake automation have concentrated only on the succession of 

initialization and evolution steps and have practically overlooked the snake 

validation step. Here, we emphasize that we cannot skip the validation step, even 

though the initialization and evolution have performed well. Our proposed novel 



 

 

 

validation step, executed after complete convergence of a snake contour from a 

given initialization, classifies the evolved contour into desired object and non-

object classes.  

     ARboost employs a novel loss function for boosting that enables to classify 

snakes more accurately into object and non-object classes than other variants of 

boosting. PQT generates substantially fewer seed points and is therefore more 

efficient than other initialization methods without degrading the segmentation 

performance. We have demonstrated that IDGVF is more robust to initialization 

and it possesses a broader capture range than other variants of GVF snakes.  

     The proposed automated snake algorithm has been successfully applied to two 

real data sets: oil sand ore images that have relevance in the oil sand mining 

industry and leukocyte images that are significant in biomedical engineering. 
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EGGVF                          Enhanced Generalized Gradient Vector Flow 

IDGVF                           Interleave Directional Gradient Vector Flow    
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f
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Chapter 1 

1. Introduction 

The “Active Contour” or “Snake” is a very popular interactive image 

segmentation techniques used in a wide range of applications [21], especially 

for blob-object segmentation since its  introduction by Kass et al. in 1987 [21]. 

The introductory paper “Snakes: Active Contour Models” originated by Kass, 

Witkin and Terzopoulos [21] received more than ten thousand citations till date 

according to Google Scholar [50]. The interactive active contour or snake 

segmentation technique consists of two sequential steps: (a) snake initialization: 

where a user manually places a rough object boundary near the actual object 

edges; and (b) snake evolution: where, an energy functional is minimized that 

provides necessary force to move the user-drawn contour aka snake towards 

desired features, usually edges. The energy functional is designed in such a way 

so that energy becomes minimum along the actual object edges and the snake 

contour eventually locks onto actual object boundaries. Thus, the snake contour 

delineates the region (blob) surrounding the desired feature (edge). Snake 

energy functional consists of two terms: (a) internal energy– it helps to make the 

snake contour smooth and continuous; and (b) external energy– it provides the 

necessary force to move snake contour towards desired features such as line or 

edges.  
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     Traditional low-level vision tasks such as edge detection [4], [27] techniques 

developed prior to snake have been treated as autonomous bottom-up processes. 

These traditional edge detection techniques consist of a number of sequential 

steps such as, noise removal, local maxima suppression and so on. Lack of the 

opportunity of correcting the mistakes made up at different steps of these 

traditional edge detection techniques propagates at the end. It is very difficult 

also for incorporating high level information into low-level vision tasks. As a 

result, these traditional edge detection techniques exhibit poor performance. 

One of the advantages of snakes over traditional edge based segmentation 

techniques is that snake allows to combine high level information (priori 

knowledge of object shape and inherent smoothness, usually formulated as 

internal energy of the snake) and   low level information (features such as edges, 

usually formulated as external energy) into a single variational energy 

functional that helps snake to be more insensitive to noise, gaps and other 

irregularities in object boundaries than traditional edge-based techniques. 

Variational framework also reduces the number of parameters of the algorithm 

than the traditional edge based segmentation techniques [32] . 

     In the area of computer vision, multiple blob-object delineation aims at 

seeking solid connected components (blobs) in an image. Snake delineates a 

blob-object boundary by considering it as a single, connected structure [28]. For 

multiple blob-object delineation, blob boundaries are delineated by distinct 

snake contours. Snake contour does not split or merge due to its inherent 
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topological inflexibility, which in turn helps to delineate two touching blob-

objects using two separate snake contours. 

 

     In this thesis, we have presented two emerging applications that require 

automated, multiple blob-object segmentation: oil sand particle delineation from 

oil sand images [46] and leukocyte detection [10] from intravital microscopy 

images. Both oil sand particles and leukocytes are blob-objects. Oil sand 

particles considered in this study are relatively darker and leukocytes are 

relatively brighter from the rest of the images as shown in Figure 1.1. Oil sand 

mining industry developed a novel crushing less technology that produce no 

rejects of oil sand particles and is therefore contribute to better recovery rates 

since no oil sand particle is rejected that could produce oil [25]. One additional 

advantage of this technology is that there is no expensive vibrating screen 

required to reject crushed but bigger oil sand particles coming out of the crusher 

from rest of the smaller particles. Because, smaller particles coming out from 

the crusher are passed over vibrating screen in the traditional oil sand extraction 

process. Oversize particles are rejected and undersize particles are passed 

                      (a)                                                        (b) 

                     Figure 1.1: (a) oil sand image. (b) Leukocyte image. 
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through vibrating screen and then are sent to the hydro transport plant for 

further processing towards bitumen extraction. Oil sand mining industry is 

interested to validate the design of the novel crusher used in this new 

technology. To automatically validate the design of this crusher, images of the 

crushed particles coming out of the crusher are captured by a video camera. 

Then oil sand images are segmented. Subsequently, the size of each of the 

crushed oil sand particle is measured and is investigated whether the size of 

each crushed particle exceeds an expected size.  

     In another significant application, leukocytes play an important role in 

inflammation by transmigrating through endothelium and accumulating at the 

site of injury. Inflammation is a normal defense mechanism; however, it 

becomes injurious in inflammatory diseases. Inflammation research entails 

study of the velocity distribution of leukocytes [36]. Bio-medical research 

laboratories are conducting experiments on living mice where the velocities of 

the leukocytes inside the veins of a mouse cremaster muscle are observed in 

video recordings made though a camera coupled with the intravital microscope. 

Leukocyte rolling velocity is an indicator of the inflammation process. To 

obtain the velocities of leukocyte or to initiate tracking of leukocytes, 

leukocytes are required to segment first. In both of these applications, skilled 

operators are employed to manually inspect hours of video and to extract the 

desired regions. Such manual processing is subject to operator errors and biases, 

extremely time consuming, tedious, has poor reproducibility and above all not 

cost effective.  
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     In this research we have demonstrated that the “Active contour” or “Snake” 

can successfully delineate oil sand particles and leukocytes [46], [37].  

Literature also reveals that snake has been a successful interactive image 

segmentation tool in a wide range of applications for the last two decades [21]. 

However, snake demonstrates poor performance in many applications that 

require complete automation [22]. This has motivated us for automating snakes 

to serve the purpose of automation where snake serves well as an interactive 

image segmentation tool.   

  1.1 Problem Statement 

Literature survey shows that interactive segmentation techniques, such as, active 

contour or snake [21] is an effective alternative to other traditional automatic 

segmentations in many applications. While automatic segmentation can be very 

challenging, a small amount of user input can often resolve ambiguous 

decisions on the part of the algorithm. Although successful as an interactive 

image segmentation technique, snakes fail to automatically delineate multiple 

blob-objects. Literature reveals that there are two potential roadblocks for snake 

automation: (a) poor convergence and (b) automatic initialization [22]. The 

success of the snake algorithm on delineating accurate object boundary depends 

on the placement of the initial contour near the object boundary. If this 

placement is far away from the object boundary, the contour cannot be 

guaranteed to lock onto the object edges. Depending on the requirement of the 

application, initial contour can be placed manually or with some automatic 

means. One difficult roadblock in automating the snake/active contour is the 
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automated initialization. To overcome this difficulty, several automated 

initialization techniques have been proposed [22]. Literature shows that 

automatic snake initialization techniques lead to over segmentation and often 

require post processing in the form of region merging [22].  For segmenting 

multiple blobs using active contour or snake, ideally, the number of seed points 

needed should be the same as the number of blobs present in the image and 

snakes evolved from each seed should be able to capture distinct objects. 

However, clutter available in the noisy images misguides the automatic seed 

placement techniques and a number of spurious snakes are generated from the 

unexpected seeds. Thus, snake/active contour has been shown to be effective as 

an interactive image segmentation tool to delineate blob-like objects like oil 

sand particles or leukocytes. We now define the research problem statement as: 

Development of a completely automated snake based segmentation algorithm 

for multiple blob-object delineation. 

1.2  Proposed Solution 

In this thesis, we have advocated that for complete automation of snake, we 

need three sequential and automated steps: (a) snake initialization, where we 

first find regions of interest (ROIs) and place seeds uniformly within ROIs, (b) 

snake evolution, where we evolve one snake from each seed, and (c) snake 

validation, where we classify snakes into object and non-object classes. 

Significant research has been conducted only on the progression of snake 

initialization and evolution steps towards snake automation and the validation 

step has been practically ignored. Here, we emphasize that we cannot disregard 
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the validation step, because snake initialization suffers from over segmentation. 

Clutter in the noisy images produces many unwanted seeds and snakes evolved 

from these seeds do not converge at the true object edges. When snakes are fully 

converged from given initializations, our proposed validation step classifies 

snakes into desired object and non-object classes using principal component 

analysis (PCA) or boosting-based classifier that we will demonstrate later. This 

snake classification algorithm removes unwanted snakes generated due to 

clutters. Three steps of our proposed snake automation algorithm are as follows. 

Snake Initialization: Initialization zones, called regions of interest (ROIs), are 

identified by fast and approximate segmentation techniques. The probabilities of 

locating objects within ROIs are higher than the rest of the image. We 

implement Probabilistic Quad Tree (PQT) based approximate segmentation 

technique to find ROIs. 

Snake Evolution: We throw seeds uniformly within ROIs and allow Interleave 

Directional Gradient Vector Flow (IDGVF) snakes to evolve from seed points. 

We have incorporated directional gradient information along with Dirichlet 

boundary condition into GVF framework that makes the GVF force field 

anisotropic and facilitates snakes to become more initialization independent. We 

compute the force field in an interleave fashion that significantly enhances the 

capture range of IDGVF snake. 

Snake Validation: When all snakes converge, each evolved snake contour is 

sieved through a classifier to verify whether the image area delineated by the 

snake is indeed the desired object. We have proposed two snake validation 



 

8 

 

techniques using (a) Principal Component Analysis (PCA) and (b) Boosting that 

are discussed as follows.   

a) Snake Validation by PCA: We have employed PCA-based classifier for 

snake validation. To perform classification using PCA, we   first construct a 

novel rectangular pattern image formed by unfolding an annular band across 

each converged snake contour.  Then each pattern image is projected into an 

already trained PCA space and PCA reconstruction error is computed. PCA 

training is performed on pattern images associated with actual objects marked 

by experts on training images. The snake associated with lower PCA 

reconstruction error is regarded as object, otherwise it is considered as non-

object. Pattern image across the converged snake contour carries intensity 

transition (dark-to-bright transition or vice-versa) across the object boundaries. 

This intensity transition seems to be fuzzy for converged snake contour across 

clutter. This pattern image is effective for discriminating objects from clutter if 

prominent object edges are present. 

b) Snake Validation by boosting: We have enhanced the performance of 

abovementioned PCA-based snake validation using boosting. In boosting-based 

snake validation we have exploited the advantages of multiple features over 

single feature (intensity transitions across actual object edges) used in the PCA 

for snake classification into object and non-object classes. We propose a novel 

loss function for boosting that offers optimal weight on the misclassified 

samples at each stage of boosting iteration. Optimal weight enforces 

misclassified samples to classify correctly in the subsequent iterations and thus 
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results in faster convergence than the Adaboost algorithm. We have derived a 

slightly modified Adaboost algorithm based on the proposed loss function. We 

have carried out experiments on both oil sand and leukocyte images. Results 

show that the proposed snake validation technique is an indispensable part of 

snake-based automatic segmentation technique and it augments the 

performances of existing automatic initialization techniques [13], [54] proposed 

in literature towards snake automation. 

1.3 Contributions 

 To overcome the difficulties encountered by existing researches on snake 

based automatic segmentation proposed in literature, we take a different 

route for snake automation that has hardly received any attention in snake 

related research. We first proposed in literature that snake-based automatic 

segmentation consists of three sequential steps: snake initialization, snake 

evolution and snake validation [47]. Existing efforts contemplated only on 

the development of snake initialization and evolution step and practically 

ignores the validation step. We have demonstrated that over segmentation 

resulted in existing automated snake segmentation algorithm consisting of 

step [47]. 

 We have proposed a probabilistic quad tree (PQT) based approximate 

segmentation technique [48] for snake initialization that accelerates the 

snake algorithm for multiple objects detection by generating fewer seeds 

than its competitors without degrading the performance. 
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 We have enhanced the performances of the existing GGVF snake evolution 

significantly by incorporating directional gradient information as well as 

Dirichlet boundary condition into GGVF energy functional [46]. We note 

that oil sand particle and leukocyte boundaries are characterized by dark-to-

bright and bright-to-dark intensity transitions going from inside to outside. 

We have accommodated this prior information inside governing partial 

differential equation that computes the force field. Dirichlet Boundary 

Condition (DBC) encourages the initial snake to grow, so that if the initial 

snake is inside the object, eventually it will expand and delineate the object 

boundary. DBC makes the force field anisotropic, which facilitates the 

initial snake contour to sense the actual object boundary [49]. We 

additionally use the directional gradient information here and we evolve the 

snake and compute the modified GVF field in an interleaved fashion until 

convergence. This intended modification makes the snake evolution more 

insensitive to initial snake location as well as it increases capturing capacity 

(it can reach to the object boundary starting from a small circle located 

inside an object) that we will demonstrate later. We call our modified GVF 

snake as Interleave directional Gradient Vector Flow (IDGVF) snake [49]. 

 We have proposed a novel pattern image for snake validation using PCA 

[46]. Our proposed pattern image is essentially constructed by the area of 

the original image covered by thickening the snake contour with an equal 

width both inside and outside. This pattern image is an annular ring across 

the snake contour. We warp this annular ring to a rectangular image for 
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computational convenience. This pattern image bears intensity transitions 

(dark-to-bright) across the object boundaries that characterize the object 

boundaries. 

 We have also proposed a boosting based snake validation technique [49], 

where we have exploited the benefit of multiple features over any single 

feature (intensity transitions across actual object edges) used in the above 

PCA based snake classification. Experimental results demonstrate that 

boosting-based validation outperforms PCA-based validation technique. We 

have proposed a novel loss function for boosting that offers optimal weight 

on the misclassified samples at each stage of boosting that enforces 

misclassified samples to classify correctly in the following iterations and 

thus promotes boosting convergence. A user can regulate the amount of 

regularization through our proposed loss function. We derive a slightly 

modified Adaboost algorithm by minimizing the proposed loss function and 

we entitle our modified Adaboost algorithm as “Adaptively Regularized 

boosting” (ARboost). Experimental results demonstrate that ARboost can 

classify snake contours more accurately than other variants of boosting.  

1.4 Organization of the thesis 

The rest of the thesis is organized as follows. Chapter 2 presents an overview to 

the relevant background information regarding previous endeavor towards 

snake automation. Chapter 3 presents our proposed method towards snake 

automation. Chapter 4 discusses proposed snake initialization techniques. 

Proposed snake evolution technique is explained in Chapter 5. Chapter 6 
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provides proposed snake validation technique. Experimental results are 

illustrated and discussed in Chapter 7. Chapter 8 concludes this thesis. Then it 

follows with appendix and bibliography.  
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Chapter 2 

2. Background and Related Work 

Since their inception by Kass et al. in 1987 [21], active contour or snake has 

drawn much attention in numerous computer vision and image processing 

applications, particularly to locate object boundaries. Active contour or snake is 

essentially a 2-D parameterized curve defined within an image domain that 

evolves from an initial position toward the boundary of an object by minimizing 

the energy functional, 

,int externalernalsnake EEE              (2.1) 
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Here, the contour is parameterized by s [0, 1], and the coordinates of a point on 

the contour are (X(s), Y(s)). I(x, y) denotes intensity values at pixel (x, y) and 

represents gradient of I. The internal energy defined in equation (2.2) is 

composed of a first-order term controlled by α and a second-order term 

controlled by β. The first order term forces the contour to be continuous by 

minimizing the distance between two consecutive points lying on the contour. 

However, it has the effect of causing the contour to shrink. The purpose of the 
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second order term enforces smoothness and avoids oscillations of the snake by 

penalizing high contour curvatures. Setting the value of β to zero at a point 

allows the snake to become second-order discontinuous and develop a corner. 

The external energy attracts the contour toward the target boundary. The snake 

exploits a priori knowledge of object shape and inherent smoothness, usually 

formulated as internal energy to compensate for noise, gaps and other 

irregularities in object boundaries. The value of the external energy becomes 

very small when the snake points are closer to an edge. Snake achieves a 

minimal energy or equilibrium state when the curve reaches the targeted image 

boundaries and eventually locks onto the object boundary or edge without any 

further movement. 

     To minimize (2.1), calculus of variations is applied to obtain the following 

Euler equations [39]: 
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To solve (2.4), (X(s), Y(s)) are treated as a function of time: (X(s, t), Y(s, t)), and 

the solutions to (2.4) are obtained when the steady state solutions of the 

following gradient descent equations are reached starting from an initial contour 

(X(s, 0), Y(s, 0)): 
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Equation (2.4) can be viewed as a force balance equation, so that if (u(x, y), v(x, 

y)) is any force field (computed from image data) acting on the active contour, 

then instead of solving equation (2.5) one solves the following equations, 
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The force field (u, v) is termed as the external force field. In (2.5), (u, v) is the 

edge force (fx, fy), i.e., the gradient of the edge map, f, as defined in (2.3). 

     Traditional snake based image segmentation technique is performed in two 

steps: first, the user draws the initial contour of the snake and then the snake 

converges onto the desired object boundary guided by the force as defined in 

(2.6). There are two major drawbacks of this traditional snake model. First, 

because of limited capture range or poor convergence the snake cannot 

converge onto the desired object boundary, if the initial placement of the snake 

contour is away from the edges, because the force field is present only near the 

object boundaries or edges and this force diminishes away thereafter. Secondly, 

during initialization it is very difficult to find seed points automatically within 

the objects since clutters present in the noisy images mimic real objects. Thus, 

automatic initialization techniques lead to over segmentation, i.e., number of 

seeds are far greater than the number of objects. To overcome these difficulties 

several methods have been proposed in literature. We discuss some noteworthy 

past endeavors for resolving these two difficulties below. 

2.1 Past researches / endeavors on enhancing capture range of 

traditional snakes 

One of the limitations of the traditional snake formulation [21] is its limited 

capture range. The external forces die out very rapidly away from the object 

boundary. If the initial active contour is away from edges and resides in a 
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homogeneous region in an image, then the external force model (2.3) cannot 

attract the contour towards object boundary. Because, inside the homogeneous 

region, the image gradient magnitude would be zero and there will be no edge 

force (fx, fy) acting on the snake. Thus being guided only by the internal force, 

the active contour may not move towards desired edge. If there is no external 

force, the snake shrinks on itself and vanishes to a point or straightens to a line 

depending on the boundary conditions. We mention here a few significant 

researches conducted to increase the capture range of the tradition snake model: 

(a) Pressure force / Balloon snake [5], (b) GVF [56] and (c) Enhanced 

Generalized Gradient Vector Flow (EGGVF) [36]. 

(a) Pressure force / Balloon snake 

Cohen [5] proposed another type of external force for active contour called 

pressure force / balloon snake that significantly increases the capture range of a 

traditional snake. The balloon force tries either to inflate or to deflate a closed 

contour. The balloon force exerts a force that is normal to the active contour 

(outward or inward). If it is an inflating force then the direction is outward 

normal; otherwise, it is directed to the inward normal. The balloon force for 

inflation is defined by, 

.|),(|),(,
||))(),((||

))(),((
))(),(( 2

1
1

1
1 yxIyxfwhere
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sYsXf
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(2.7) 

Where ))(),(( sYsXn is the normal unit vector to the curve at point (X(s), Y(s)), k1 

is the amplitude of this force and k is a user defined parameter. For deflation, 

the sign of k1 will be negative. The balloon force enforces to keep force vectors 
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of large magnitude away from the object boundary. Although the balloon force 

increases the magnitude of the forces it may fail to converge at boundary 

concavity [56]. One major bottleneck of the balloon force is that it is quite 

sensitive to the image edge strength. Snakes guided by pressure forces often 

leak through weaker edges [39]. 

(b) Gradient Vector Glow 

Xu and Prince [56] proposed Gradient Vector Flow (GVF) that represented a 

noteworthy advance in snake formulation. In GVF, an external force field (u(x, 

y), v(x, y)) is constructed by diffusing the edge force (fx, fy) into the 

homogeneous regions, at the same time keeping the constructed field as close as 

possible to the edge force near the edges. This goal is achieved through the 

minimization of the energy functional, 

,)2)(2))((22()2222(
2

1
),( dxdyyfvxfuyfxfyvxvyuxuvuGVFE

                 
(2.8) 

where, µ is a non-negative parameter expressing the degree of smoothness of 

the field (u, v). ux, uy, vx, vy are the derivatives of u and v with respect to x and y 

respectively. f is the edge-map defined in (2.3). Minimization of (2.8) leads to 

the solution of classical Laplace‟s equation )0or0( 22 vu due to the first 

integrand in (2.8) that encourages making the field (u, v) smooth. Minimization 

of the second integrand forces the vector field to be close to the edge force near 

the edges where the edge force strength is high. µ is a regularization parameter 

that makes a balance between the first and second term in the integrand and the 

value of this parameter should be set considering the amount of the noise 

present in the image. A larger value of µ can suppress noise to a greater extent. 
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Minimizing (2.8) with the help of calculus of variations results in the following 

two Euler equations [56]: 

,0))(( 222
xy

x
fuffu

         
,0))(( 222

yy
x

fvffv     (2.9) 

Solving (2.9) for external force field (u, v) results in GVF that acts as an 

external force field for snake. 

     The value of the second term in each equation of (2.9) is zero in a perfectly 

homogeneous region because I(x, y) is constant in a perfectly homogeneous 

region and consequently its derivative is zero. However, in this scenario, u and v 

are each determined by Laplace equation (first term of each (2.9)), and the 

resulting GVF field is interpolated from the region‟s boundary. Thus, GVF 

exists in homogeneous regions (i.e., where edges are absent) as well, and 

successfully increases the capture range of the edge force. Although GVF 

possesses many desirable properties as an external force field for snakes, it 

encounters difficulties to drag active contour inside a very narrow long 

concavity because it obliterates external force vector inside a very narrow long 

concavity while performing smoothing operation. Towards achieving this goal, 

a slight variation of GVF, called generalized gradient vector flow (GGVF), has 

been proposed [57]. The energy functional for GGVF is defined as, 
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where, g is a decreasing function of the edge force magnitude, which is defined 

by,  )),
||

(exp(|)(|
k

f
fg

                                              
             (2.11) 
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with k as non-negative smoothing parameter for the field (u, v). Unlike the GVF 

functional (2.8), the GGVF functional (2.10) smoothes the force field (u, v) only 

when the edge force magnitude is very low. Minimizing (2.11) with the help of 

calculus of variations results in the following two Euler equations [57]: 

,0))(1(2
xfugug                 .0))(1(2

yfvgvg            (2.12) 

(c) Vector Field Convolution (VFC) 

The idea behind gradient vector flow is quite attractive – to diffuse vector field 

away from the object boundaries that enhances the capture range of the snake. 

Li et al. [23] proposed vector field convolution (VFC) where they utilized the 

idea of GVF by computing the diffused external force via convolution in real 

time. In VFC, edge map is convolved with a prefixed vector kernel that 

smoothes gradient vector field, makes vector field more robust to noise and it 

reduces computational cost. The VFC external force 

)],(),,([),( yxvyxuyxf vfcvfcvfc is given by calculating the convolution of the 

vector field kernel k(x, y) and the edge map f(x, y) generated from the image I(x, 

y), )].,(*),(),,(*),([),(*),(),( yxvyxfyxuyxfyxkyxfyxf kkvfc Here, 

)],(),,([),( yxvyxuyxk kk  is a vector field kernel in which all the vectors 

point to the kernel origin ),(),(),( yxyxmyxk n . m(x, y) is the magnitude of 

the vector at (x, y) and n(x, y) is the unit vector pointing to the kernel origin (0, 

0), ]/,/[),( ryrxyxn  except that ]0,0[),( yxn  at the origin, where

22 yxr  is the distance from the origin. The origin is considered as the 

Features of Interest (FOI) such as object edges so that a free particle placed in 
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the field is able to move to the FOI. The VFC field highly depends on the 

magnitude of the vector field kernel m(x, y). It is assumed that the influence 

from the FOI should decrease as the particles are further away, the magnitude 

should be a decreasing positive function of distance from the origin. Li et al. 

[23] proposed two types of magnitude functions as follows: 

),/exp(),()(;)(),()( 22ryxmbryxma where γ and τ are positive 

parameters to control the decrease, ε is a small positive constant to prevent 

division by zero at the origin. Since the edge map is non-negative and larger 

near the image edges, edges contribute more to the VFC than homogeneous 

regions. Therefore, the VFC external force will attract free particles to the 

edges. 

(d) Enhanced Generalized Gradient Vector Flow (EGGVF) 

Ray et al. [38] demonstrated that GGVF is quite sensitive to initial contour 

position and it fails to capture object contour if the initial active contour location 

is not carefully chosen. To overcome this difficulty, Ray et al. proposed 

enhanced GGVF (EGGVF) [36], which utilizes the prior knowledge about the 

location of the initial contour relative to the object in solving the GGVF 

equations. The prior knowledge is that the initial active contour is completely 

located inside the object to be captured. This prior knowledge is encoded in the 

form of a Dirichlet Boundary Condition (BC), which is essentially a constraint 

on the partial differential equation, (PDE)s (2.9) or (2.12). Ray et al. imposes 

Dirichlet BC in the GGVF-PDEs as follows:  
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           (2.13) 

where, D denotes the rectangular image domain, C denotes the circular domain 

enclosed by the initial snake, D\C denotes the set difference of D and C, D and 

C are respectively the boundaries of D and C, C
n and D

n are unit outward 

normals to the boundaries C and D respectively. g is defined in (2.11) and f is 

defined in (2.3). The Dirichlet BC in (2.13) is characterized by imposing the 

solution as the unit outward normal on the boundary. The PDE (2.13) is utilized 

to generate EGGVF. Although the EGGVF has some similarity to the pressure 

force / balloon snake, the later is quite sensitive to the image edge strength. 

Pressure force / balloon snake has a tendency to leak through the weak edges 

whereas the snake guided by EGGVF force recovers the strong as well as the 

weak intensity edges [39]. The EGGVF-PDE smoothly interpolates the solution 

between the BC and the gradient of the edge-map. Thus the EGGVF-PDE can 

perceive the edge strength, whereas snake guided by balloon force cannot 

anticipate the gradient magnitude in its path.  

     Figure 2.1 shows the results of traditional snake proposed by Kass et al. [21], 

GVF [56] and EGVVF [36] on a synthetic circle image. A small circle as shown 

by dotted line is placed near to the circle boundary. Result shows that only 

EGGVF can capture circle contour successfully whereas traditional snake, GVF 

and VFC collapses on one side of the contour. The reason is visually evident 

from the force field of the corresponding snakes. For a traditional snake, the 

force field becomes feeble within the object and the resultant force acting on the 
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small circle does not guide the snake to expand and capture the circle contour. 

Since GVF and VFC field are isotropic, in order to capture contour with a GVF 

and VFC snake, the initial contour should include circle center from where GVF 

and force arrows radiate as shown Figure 2.1. Otherwise, the active contour 

only faces the arrows all directed away from the center and it collapses at one 

side of the object boundary as illustrated in Figure 2.1. However, enhanced 

GGVF force field can sense the position of the initial contour inside the object 

and consequently it guides the contour to converge at object boundary. We have 

tailored EGGVF snake for oil sand particle delineation and leukocyte detection 

that has been explained in chapter 5. 
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EGGVF 

Figure 2.1: Left column: black circle shows initial contour; red circle 

shows intermediate contour and solid green circle shows fully evolved 

contour. Right column: external force field of the corresponding 

evolution algorithm. 
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2.2 Literature review on automatic snake initialization 

The snake energy minimization is performed in two steps: first, the contour is 

placed near the object boundary and then the contour is evolved so that the 

energy decreases gradually and finally achieves the local minima of the energy 

functional. The energy functional is designed in such a way that the local 

minima are achieved when the snake contour locks onto the boundary. Although 

considerable amount of researches have been conducted on enhancing the 

capture range of the snake so that it can capture the accurate object boundary 

evolved from an initial seed located away from the target boundary, success of 

snake algorithm still depends on the initial position of the active contour.   

     Initialization plays a major role in the final solution quality of the snake 

model. One of the popular ways to initialize snake is employing some simple 

geometric shapes, such as circle or rectangle [22]. The potential bottlenecks of 

this simple initialization principle include a large number of iterations required 

for snake convergence and also converge away from object boundaries. An 

effective alternative approach is interactive segmentation [21], [56] where the 

user draws rough object outlines near the object boundaries and allows snakes 

to evolve from these initial contours and finally lock onto object boundaries. 

However, manually drawing object outlines over many images are extremely 

tedious, time consuming and overall not a cost effective process [22]. Since the 

introduction of GVF external force, various researchers have contributed on 

automatic snake initialization by analyzing the GVF external force field. Here, 

we discuss a few significant contributions. 
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(a) Center of Divergence (COD) 

Ge and Tian [13] proposed an automatic initialization method for detecting 

multiple objects by placing small circles at centers of divergence (COD). COD 

is defined as the set of points from which GVF vectors of all the neighboring 

pixels radiate as shown in Figure 2.2(b),(c). 

 

                       

               (c)                                                       (d) 

 Figure 2.2: (a), (b) Marked point (dot) is a Center Of 

Divergence (COD) on an oil sand particle and GVF field; (c) 

Enhanced view of COD (dot) in GVF field displaying 

vectors of GVF field ;(d) Results of COD on Oil Sand 

image. 

 

 

(a)                                                        (b) 
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Let there be four pixels adjoining each other: p (i, j), p (i + 1, j), p (i , j+1) and p 

(i+1, j+1), where i and j denotes column and row number of pixel p. V (i, j) = 

(x(i,  j), y(i,  j)) is the corresponding GVF vector of the pixel p (i, j). A function 

named sign is defined to quantify x(i, j): 
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x

x

x

xsign , 

y(i, j) is quantified similarly. Then the potential scattering point set Ps is defined 

as follows:  

              

},1))),1(()),(((and),1(),(|),({ jixsignjixsignabsjixjixjipPsx  

               

},1)))1,(()),(((and)1,(),(|),({ jiysignjiysignabsjiyjiyjipPsy  

       ].[ sysxs PPP  

This potential scattering point set Ps is called the center of divergence (COD). 

COD refers to the local maxima of the external energy field. 

 

(b) Critical point (CP) 

Wang et al. [54] suggested the idea of critical point (CP), which is defined as 

the set of points from which the quantized GVF vectors of their 8-

neighborhoods do not point to them as shown in Figure 2.3 (b), (c). Here the 

GVF vector is quantized in the following way: Let p
v  be the associated GVF 

vector of a pixel p in the image domain, p be the 8-neighborhood of p, and let 
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q be another pixel in p. Further let pq  be a unit vector from p to 

 

q. Then, p
W is derived from p

v  such that, ..max. pqVWV
p

q
pp

p

Direction of 
p

W  is 

the nearest to the direction of 
p

v  among the eight pq ‟s. Given a point p in the 

image domain, for any point q in Ωp with
q

W , qp  is a unit vector from q to p; p 

would be a critical point if, for all p
q , .1.qpW

q
 The point p is called 

source [58] or an inner critical if, for all p
q , .0.qpW

q
 A source point 

                 

                  (c)                                                       (d) 

 Figure 2.3: (a), (b) Marked point (dot) is a Critical Point 

(CP) on an oil sand particle and GVF field; (c) Enhanced 

view of CP (dot) in GVF field displaying vectors of GVF 

field; (d) Results of CP on Oil Sand image. 

 

 

  (a)                                                    (b) 
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resembles the origin of a spring where the water comes out and it is expected 

that the source point always lies within a homogeneous region i.e.  inside an 

object. 

 

 

(c) Force field segmentation (FFS) 

Li et al. [24] introduced an automatic snake initialization method via 

segmenting the external force field. FFS quantized the external force field 

                  (c)                                                 (d) 

 Figure 2.4: (a), (b) GVF field is segmented by Force Field 

Segmentation (FFS) shown by solid line on an oil sand 

particle and GVF field;  (c) Enhanced view of FFS (solid 

line) in GVF field displaying vectors of GVF field; (d) 

Results of FFS on Oil Sand image. 

 

 

  (a)                                                    (b) 
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similar to CP described above and treated edge map as a graph. Thus, FFS 

divides the external force field into different distinct regions by seeking weakly 

connected components in the graph in between opposing vectors as shown in 

Figure 2.4 (b), (c). Each region boundary is then initialized as an active contour.  

FFS is sensitive to clutter and broken edges and generally leads to spurious 

contours. FFS method cannot accommodate objects surrounded by extraneous 

edges. FFS is also a computationally expensive technique. However, FFS 

improves active contour performance by placing the simple shape initial model 

at the correct place; the initial model is still isolated from features of interest 

and requires a large number of iterations to converge [22].  

(d) Poisson Inverse Gradient (PIG) 

Li and Acton [22] suggested Poisson inverse gradient (PIG) that estimates 

object boundary, which causes external force field. Traditional snake based 

segmentation algorithm first defines an external force field and subsequently 

evolves an active contour to delineate the object boundary. PIG instead solves 

the inverse problem where PIG determines the object boundary that produced a 

given external force field. PIG computes an external energy field associated 

with a given force field. Therefore, PIG seeks the energy E(x, y) that has a 

negative gradient that is close to f(x, y) in the L2 norm sense: 

.),(),(
minarg

),(
2

dxdyyxfyxE
E

yxE

 

Minimizing this energy 

functional results in Poisson‟s equation:

 

).,(),( yxfdivyxE  PIG finds the 

lines of constant value, termed isolines, within the energy field and defines the 
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minimum isoline (isoline of minimum energy level) as snake initialization as 

shown in Figure 2.5. This constant value is known as isovalue. This minimal 

isoline represents a minimum energy approximation of the true optimal contour 

[40]. Isolines close to edges provide excellent candidates for snake 

initialization. Finding the optimal values of the parameters of these isomodels 

(isovalues of the isolines, number of isolines) is a difficult task that leads to over 

segmentation. 

     Results of the available automatic initialization techniques (COD, CP, FFS 

and PIG) on oil sand images (Figure 2.2 (d), 2.3(d), 2.4 (d) and 2.5 (d) 

respectively) illustrate that these methods lead to over-segmentation, i.e., it 

initializes more than the desired number of snakes and region merging needs to 

be conducted on the  image in the form of post processing. These demonstrate 

that these techniques are neither robust nor generic in nature and thus snake has 

been shown to be effective as a successful interactive image segmentation tool 

for the last two decades. From next chapter (chapter 3) onwards, we have 

discussed how we have tackled all these difficulties explained in this chapter 

(chapter 2) and have made effort on the development of a completely automated 

snake based image segmentation technique.  
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                      (c)                                                (d) 

 Figure 2.5: (a), (b) Isolines generated by Poisson Inverse 

Gradient (PIG) shown by solid line on an oil sand particle 

and GVF field;  (c) Enhanced view of isolines (solid lines) 

on oil sand particle;(d) Results of PIG on Oil Sand image. 

 

 

  (a)                                                    (b) 
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Chapter 3 

3. Proposed Method for Snake Automation 

We have illustrated in the previous chapter (chapter 2) that snake has been 

recognized as an interactive segmentation tool for the last two decades. 

However, snake fails to serve many significant image segmentation applications 

that require complete automation. Examples include oil sand particle 

delineation, leukocyte detection, and so on. This section depicts the proposed 

methodology towards snake automation.  

     Interactive snake segmentation algorithm consists of two sequential steps– 

(a) snake initialization: where a user draws rough objects outlines; and (b) snake 

evolution: where an energy functional is minimized to drive the user-drawn 

contour or snake to delineate the desired object boundary. Literature reveals that 

complete automation of snake consists of automating the snake initialization 

step. Unlike interactive snake segmentation process, seeds are placed here by an 

automated means and a snake is evolved from each seed. However, literature 

also shows that all automatic segmentation techniques suffer from over 

segmentation. We have first advocated in literature that for complete automation 

of snakes one needs to execute three sequential steps [47]: (a) snake 

initialization: where seeds are placed automatically on the image, (b) snake 

evolution: where one snake is evolved from each seed and (c) snake validation: 

where converged snakes are classified into object and non-object classes. Over-
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segmentation resulting from incorrect snake initialization could be compensated 

in the validation step as demonstrated in Figure 3.1.  

       

     Figure 3.1 illustrates three steps of proposed snake automation on an oil sand 

image where the snake initialization technique generates three seeds to segment 

two oil sand particles present in the image. Snake evolution technique evolves 

three snakes from three seeds. These three snakes are passed through a classifier 

where the classifier classifies two snakes as objects and the remaining one as 

Snake 

Initialization 

Snake 

Evolution 

Snake 

Validation 

Figure 3.1:  Proposed Snake based automatic segmentation 

technique. 
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non-object as shown in Figure 3.1. We have proposed two methods: Uniform 

Initialization (UI) and Probabilistic Quad Tree (PQT) based  approximate snake 

initialization techniques for snake initialization, Interleave Directional Gradient 

Vector Flow (IDGVF) for snake evolution and two methods for snake 

validation: Principal Component Analysis (PCA) and Adaptive Regularized 

Boosting (ARboost) as shown in Figure 3.2. 

 

     For Uniform Initialization (UI), we place seeds uniformly keeping uniform 

intervals between two consecutive seeds over the whole image as shown in 

Figure 3.3 (a). User can determine the separating distance between two 

consecutive seeds based on the object density.  We place seeds uniformly at 30 

pixels apart for oil sand particle delineation as shown in Figure 3.3 (a).  Then 

we allow the snakes to evolve from each seed and finally classify each evolved 

contour into desired object and non-object classes using principal component 

analysis (PCA). To perform the contour classification, we construct a novel 

Snake Initialization Snake Evolution Snake Validation 

1. Uniform 

Initialization (UI) 

2. Probabilistic 

Quad Tree (PQT) 

 

1. Principal Component 

Analysis (PCA) 

2. Adaptive Regularized 

Boosting (ARboost) 

Interleave 

Directional 

Gradient Vector 

Flow (IDGVF)  

Figure 3.2:  Three sequential steps of proposed snake based automatic 

segmentation technique and proposed methods for each of these three steps. 
 

Proposed Techniques Proposed Technique Proposed Techniques 
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rectangular pattern image by warping an annular ring across each evolved snake 

contour. We project each pattern image into an already trained PC (principal 

component) space and compute PCA reconstruction error. The snakes 

associated with lower reconstruction errors (shown in Figure 3.3 (b)) than a 

threshold are identified as objects and others are identified as non-objects. Solid 

and dark lines in Figure 3.3(a) and Figure 3.3(b) represent oil sand particle and 

clutter respectively. 

  

     Placing seeds using UI over the whole image is not a computationally 

efficient method since snake evolution itself is a computationally expensive 

step. Over population of seeds translates into inefficiency of the overall 

segmentation algorithm. Thus, only few effective seeds are desirable. Towards 

achieving this goal, we propose a Probabilistic Quad Tree (PQT) based 

approximate segmentation technique, which finds regions of interest (ROIs) 

within an image as shown by white rectangles in Figure 3.1 and we place seeds 

using UI within the ROIs. If the ratio of the object area to the total object area is 

                   (a)                                                          (b) 

Figure 3.3: (a) Seed points (small circle) and evolved snakes. (b) 

PCA reconstruction errors of these snakes. 
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very high then UI alone is sufficient to use for snake initialization since PQT 

will not help much to reduce the number of seeds in this scenario. Details of 

proposed UI and PQT based snake initialization techniques are discussed in 

Chapter 4. 

     For snake evolution, we used Interleave Directional Gradient Vector Flow 

(IDGVF) snake. We have discussed in the previous chapter (chapter 2) that  

introducing Dirichlet Boundary Condition into Generalized Gradient Vector 

Flow (GGVF) makes the field anisotropic that facilitates the EGGVF [36] snake 

more resilient to initialization and also enhances the capture range. We have 

introduced two significant modifications into EGGVF framework. First, we 

have incorporated directional gradient information along with Dirichlet 

Boundary Condition that helps IDGVF to overcome the unwanted weak edges 

present inside the object and to lock onto actual object boundaries. We also 

compute the edge map in an interleaved fashion until convergence. This 

intended modification makes the snake evolution more insensitive to initial 

snake location as well as it increases capturing capacity (it can reach the object 

boundary starting from a small circle locating inside an object). More details of 

the proposed IDGVF snake evolution technique are explained in Chapter 5. 

     We have demonstrated PCA-based snake validation technique in Figure 3.1 

and Figure 3.3. This PCA based snake validation technique is effective if 

prominent edges are present across actual object boundaries. We have also 

proposed a boosting-based snake validation technique that outperforms PCA-

based validation. We have discussed these details in the Experimental Results 
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and Discussions chapter (chapter 7). Boosting based validation exploits the 

advantages of using an effective combination of multiple features (edge, region 

and shape) over single edge based feature using PCA based snake validation 

technique. Details of the proposed PCA and boosting-based snake validation 

techniques are explained in Chapter 6. 

     We have conducted experiments on two datasets: (a) oil sand mining images 

[59]: useful for improving the performance of oil sand mining; (b) leukocyte 

images [37]: helpful in the study of inflammation as well as in the design of 

anti/pro–inflammatory drugs. Results of our proposed algorithms have been 

demonstrated on oil sand images as shown in Figure 3.1 and Figure 3.3 as well 

as on leukocyte images as shown in Figure 3.4. Experimental results 

demonstrates in the Experimental results and discussions chapter (chapter 7) 

illustrate  that our proposed algorithm is faster, more reliable and more accurate 

than the existing other competitive methods. 
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Uniform Initialization            Pattern Image         PCA reconstruction error 

 

            GVF Snake                                               GVF Field 

 

           Proposed IDGVF                                        IDGVF Field  

 

                                   Pattern image formation 

 
Figure 3.4: Results of proposed snake based automatic segmentation 

technique on Leukocyte images. 
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Chapter 4 

4. Snake Initialization 

We have discussed in literature review (Chapter 2) that the existing automatic 

snake initialization techniques produce a lot of unsolicited seeds. Clutters 

available in the real images produce many imprecise seeds and snakes evolved 

from these seeds do not guarantee to converge snake contours onto the true 

object edges. Optimal number of snake evolution is a natural choice for multiple 

object detection using snake since snake evolution is an expensive step. We 

have proposed two snake initialization techniques: Uniform Initialization (UI) 

and Probabilistic Quad Tree (PQT) based approximate segmentation techniques. 

These two techniques exhibit less over segmentation than the existing snake 

initialization techniques without degrading the performance. Over-segmentation 

resulting from incorrect snake initialization could be compensated in the 

validation step. Proposed Uniform Initialization (UI) and Probabilistic Quad 

Tree (PQT) based snake initialization techniques are explained below. 

4.1 Uniform Initialization (UI) 

We place seeds uniformly over the whole image keeping at several pixel 

distances between two consecutive seeds and we name it as Uniform 

initialization (UI). We allow the snakes to evolve using IDGVF [46] from each 

seed. The principle of the proposed evolution (IDGVF snake evolution) is 

discussed in the next section. We have compared the performance of proposed 

UI with two existing snake initialization techniques, Center of divergence 
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(COD) [13] and critical point (CP) [54]. We recall that COD refers to the local 

maxima of the external energy field. COD is the set of points from which the 

GVF vectors of all the neighboring pixels radiate. CP is the set of points from 

which the quantized GVF vectors of its 8-neighborhood do not point to it. 

     Visual results of COD, CP and UI techniques on an oil sand image are 

shown in Figure 4.1. COD and CP yield 31 seed points on an average on each 

image, whereas we place 30 seeds on each image in UI. To compute 

performance evaluation metric (accuracy, recall, precision and F-measure) of 

snake initialization techniques (COD, CP and UI), we place seeds using each of 

the three initialization techniques on 100 oil sand images independently and 

then evolve one snake from each seed using IDGVF evolution. When snakes are 

fully converged, we validate converged snake contours into object and non-

object classes using PCA that we have demonstrated chapter 6. We have kept 

snake evolution and snake validation techniques same     for each of the three 

snake initialization techniques to make fair judgments on evaluating their 

performances. Accuracy, recall, precision and F-measure [41] for COD, CP and 

UI techniques are shown in Figure 4.2. F-measure is a harmonic mean of recall 

and precision and F-measure is defined as 2PR / (P+R), where P and R stands 

for precision and recall respectively. F-measure combines recall and precision 

into a single entity. A higher F-measure indicates better detection capability. 

Results show that UI with PCA validation technique recalls at least 45% better, 

detects at least 20% more precisely than C OD and CP. The  
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                   CP                                           CP +GVF+PCA 

              COD                                       COD +GVF+PCA 

                     UI                                              UI +GVF+PCA 

 Figure 4.1:  Snake validation by PCA for different snake initialization 

methods. 
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value of F-measure for UI with proposed PCA technique is also bigger than 

those for COD and CP. 

     However, placing seeds over the whole image may not be appropriate for 

real-world applications, since the snake evolution is a computationally 

expensive step, and over population of seeds translates into inefficiency of the 

overall segmentation algorithm. To reduce the computational expense of the 

proposed UI technique, we have proposed probabilistic quad tree (PQT) based 

snake initialization technique. PQT first automatically finds regions of interest 

(ROI) from the image and then we place seeds using UI techniques within the 

ROIs. ROIs are the sub regions in an image where the probability of locating 

Figure 4.2: (a) Accuracy, (b) Recall, (c) Precision and (d) F – 

measure for Center of Divergence (CoD), Critical Point (CP) and 

Uniform initialization (UI).              

                         (a)                                                       (b)     

                             (c)                                                      (d)     
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objects is higher than the rest of the image. We have also demonstrated in the 

Experimental results and discussions chapter (chapter 7) that PQT generates less 

number of seeds than the existing snake initialization techniques without 

impeding the performance and is therefore more efficient technique than other 

snake initialization techniques.  The details of PQT are described in the next 

section. 

4.2 Probabilistic Quad tree based approximate segmentation 
 

PQT receives an image as an input, and then divides it into four adjacent, non-

overlapping quadrants if it meets a pre-specified criterion, subsequently each 

quadrant is divided similarly and the process proceeds recursively until it fails 

the specified criterion. Consequently, the algorithm locates objects within 

rectangular boxes. The PQT algorithm is depicted in Table 4.1. PQT computes 

the ratio (r) of two posterior probabilities and splits the current region into four 

quadrants if r is between two predetermined thresholds: upper threshold (Tup) 

and lower threshold (Tlow). We compute the ratio of these two posterior 

probabilities of a region (O) being object/non-object: 

)1.4(,
)0()0/()0/(

)1()1/()1/(
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BTOP
r  

     Where P(T/O) and P(B/O) are the likelihood of the region regarding texture 

and brightness respectively. O=1 signifies objects, O=0 encodes clutter. P(O=1) 

is the prior probability of a region containing objects and P(O=0) is the prior 

probability of a region including background. We locate objects by finding 

homogeneous regions based on local brightness and texture properties. We 

compute texture energy (T) by the distribution of the responses of Gabor filters 
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[30] and brightness (B) by the distribution of the gray level intensities (I) [33] of 

the region. Gray level intensity distribution determines brightness and Gabor 

filter response represents discriminative texture information for the objects. It is 

assumed that P(T/O=1) and P(B/O=1) follow multivariate normal distribution. 

 

     However, it is unreasonable to make the same assumption for the 

background class since the object class contains only objects but the background 

Table 4.1:  Probabilistic Quad-tree based approximate segmentation technique 

(PQT). 

Input: Image (I)       ***  I is an m by n image matrix containing 

***   gray level intensity; 

 

Output:  a set of disjoint patches, Ri, where i = 1, 2, …, n and 

where  {},
1


ji

ji

n

i
i RRIR (Null set) and Label (Ri) where  

Label (Ri) is either 0 (for background) or 1(for foreground). 

 

Initialzation:  k    I,      Label (k)   0. 

Call PQT (k) ***** PQT denotes Probabilistic Quad Tree ****  

Algorithm PQT (k) 

 

1. Compute  r  using quation (4.1) 

                                ***** Tlow and  Tup are two thresholds 

2. If r < Tlow           ***** r < Tlow          

3.    k  background 

4.     Label (k)  0 

5. Else If  r > Tup   *****  r > Tup  

6.             k  foreground 

7.         Label(k)  1. 

8.      Else             *****   Tlow  < r < Tup 

9.                  Split k into four disjoint quadrants, k1, k2, k3, and k4. 

10.            Quadtree(k1); Quadtree(k2);  

11.            Quadtree(k3); Quadtree(k4); 

12.      End 

13. End 
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class includes the rest of the world. Similar to the Bayesian discriminative 

features (BDF) [26] method, we derive a subset of the background classes that 

lie closest to the object class, and then model this particular subset of 

background class as a multivariate normal distribution. This statistical modeling 

of object and non-object likelihood is explained in section 4.3. 

     If r > Tup, then the region is likely to contain objects and if r < Tlow, then the 

region is likely to be background. If  Tlow<r < Tup, the region is divided into four 

quadrants for further examination. The suitable values of Tlow and Tup are found 

empirically as will be shown in the experimental section. Two threshold values 

(Tlow and Tup) of splitting ratio (r) in PQT algorithm for oil sand images are 

determined as follows. First we estimate the prior probability and the 

parameters of the likelihood of object and background class from the training 

set containing 20 images. Then we draw bounding box along the objects to 

generate object patches and also choose background patches arbitrarily from the 

validation dataset and compute r for each of these patches. Normalized 

frequency vs. the value of r is plotted in Figure 4.3(a) for both object and 

background patches. We see that the value r for background patches lie between 

0 to 20 and that for object patches lie from 0.6 to >30. We choose the values of 

Tlow and Tup as 0.6 and 20 respectively for oil sand images as shown in Figure 

4.3(a).  
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     We estimate prior probability of a region containing objects by computing 

the proportion of object pixels in the region from the training dataset. We 

Figure 4.3: (a) Normalized frequency vs. value of the parameter r of PQT 

algorithm for object and non-object patches of oil sand images. (b) 

Number of iterations required for each oil sand image of QT and PQT 

algorithm. (c) Accuracy of QT and PQT algorithms.   
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estimate prior probability of a region including background similarly. This 

positional prior helps to converge PQT faster than Quadtree (QT) algorithm that 

we have demonstrated in Figure 4.3(b) and 4.3(c). Figure 4.3(b) illustrates that 

PQT converges after ~45 iterations whereas QT converges after ~75 iterations 

for an oil sand image. Since most of the oil sand particles are located on the 

central part of the image, positional prior prevents the non-central quadrants 

from splitting further and PQT terminates after fewer number of iterations than 

that of QT. At each iteration, QT divides a region into four quadrants if   the 

mean average intensity and the mean response of the Gabor filter of the region 

are between the two thresholds values computed in a similar way to PQT. Two 

separate thresholds for brightness and texture are computed from the training 

set. Most importantly, Figure 4.3(c) demonstrates that PQT is more accurate 

than QT algorithm.  

4.3 Statistical Modeling of Object and Non-object Classes 

The object class contains only objects; the non-object class includes all the other 

objects, i.e., “the rest of the world” [26]. Even though it is reasonable to assume 

that the object class has a multivariate normal distribution, it is quite awkward 

to make the same assumption regarding non-object classes [26].  The response 

of the Gabor filters be , is normalized by, ,/)(
~

TT  where NT , µ 

and σ are the mean and the standard deviation of the components of  

respectively. The conditional density function of the object class is modeled as a 

multivariate normal distribution: 
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     Where
NM 0 and are the mean and the covariance matrix of 

object class O respectively. The covariance matrix,  can be factorized into the 

following form using the principal component analysis:

 

with  

),3.4(},.......,,{, 2100000 NN
tt diagI  

Where 
NN

0 is an orthogonal eigenvector matrix, 
NN

0  is a 

diagonal eigenvalue matrix with diagonal elements (the eigenvalues) in 

decreasing order ,).......( 21 N  and 
NN

NI  is an identity matrix. 

The principal components are defined by the following vector, NZ : 
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MTZ t

 

From equation (4.2), (4.3) and (4.4) we have,  
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The components of Z are the principal components. We use only the first M 

)( NM  principal components to estimate the conditional density function. 

We estimate the remaining N - M eigenvalues, ,,.......,, 21 NMM   by the 

average of those values: 
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      From (4.4) we have, 
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     Where zis are the components of Z defined by (4.4). Equation (4.8) states that 

the conditional densities function of object class can be estimated using the first 

M principal components, the input image, the mean of the object class, and the 

eigenvalues of the object class. The brightness likelihood of the object class  

P(B/O=1) is derived in a similar way the texture likelihood computed above. 

P(T/O=0) and P(B/O=0) are derived similarly for non-object class also. For 

further details, please see [26], [31]. 

     In the experimental section, we have demonstrated a comparative study 

between proposed PQT based snake initialization technique and other existing 

snake initialization techniques. 
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Chapter 5 

5. Snake Evolution 

In the literature review chapter (chapter 2), we have shown that Enhanced 

Generalized Gradient Vector Flow (EGGVF) is less sensitive to snake 

initialization than GVF since the EGGVF field can sense the position of the 

initial contour located inside the object by virtue of Dirichlet boundary 

conditions and it can guide the contour towards target boundary. However, 

EGGVF snake can be misguided by the weak edges as shown in Figure 5.1. 

Figure 5.1 demonstrates the evolution of an EGGVF snake from a seed located 

inside an oil sand particle. The corresponding edge map, vector field and 

intermediate stage of snake evolution are also illustrated in Figure 5.1. Edge 

map in Figure 5.1 shows the presence of weak and broken edges in the 

homogeneous region located inside the oil sand particle that is often found 

inside the object in reality.  

     Although EGGVF can evolve from a small initial contour and reach the 

actual object boundary, EGGVF snake can be misguided by weak edges 

(bottom left part of Figure 5.1) and unwanted strong edges (right top corner of 

Figure 5.1). To reduce the effect of weak and unwanted strong edges, we have 

modified EGGVF evolution as follows. First, we have incorporated directional 

gradient information along with Dirichlet boundary condition into GGVF 

energy functional that helps to capture object boundaries from a naïve initial 
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contour (circle of radius around 2~3 pixels) located inside the object. Towards 

achieving this goal, our proposed snake algorithm first builds an edge map [46]: 

),
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2
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0
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yyxx

yIyyxIxx

yx  

     Where I(x, y) is the image. The edge map ρ indicates only dark-to-bright 

intensity transitions on the image as seen from the center of the snake contour 

converged at previous iteration (x0, y0). Next, we compute a force field (u(x, y), 

v(x, y)) as follows [46]: 

),))(/),(exp(1()/),(exp(

),))(/),(exp(1()/),(exp(

2

2

yvKyxvKyxtv

xuKyxuKyxtu
 

subject to the Dirichlet boundary condition: 

,),(for),,()),(),,(( yxyxyxvyxu n  

     Where  is the initial snake contour (in our case, it is a small circle centered 

at (x0, y0)) and n(x, y) is the unit outward normal to the initial snake at (x, y). K 

is a user defined parameter controlling the degree of smoothness of the snake 

external force field (u, v). After computing (u, v), we use them to evolve a snake 

from the initial contour. Here the novelty is that we perform snake evolution 

and (u, v) computation in an interleaved fashion– first compute (u, v), then 

evolve a snake with (u, v) until convergence, next compute (u, v) again with 

previously evolved snake contour as , and so on, until finally there is no 

appreciable change in the area enclosed by the snake. For the first iteration, (x0, 

y0) is the initial seed point around which a small circular initial contour is 

chosen for evolving the snake and from the second iteration onwards, (x0, y0) is  
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      Evolution                       Edge Map                 Vector field                          

Figure 5.1: EGGVF snake evolution from a small naïve snake contour (red 

circle at Iteration # 0) chosen arbitrarily inside an oil sand particle.  
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the center of mass of the snake evolved in the preceding iteration. We call this 

variant of GVF as Interleave Directional Gradient Vector Flow (IDGVF). 

For all other variants of GVF snake evolution available in literature, edge map 

is first built before commencing the snake evolution and this edge map is kept 

same until the snake is fully converged. However, in IDGVF, the directional 

edge map is newly constructed at each iteration since (x0, y0) is different for 

each iteration. IDGVF is a modified version of EGGVF [38]. For EGGVF, 

external force field is the image gradient vector. For IDGVF, the force field is 

the dot product of gradient vector and the unit vector formed by joining each 

point of the field with (x0, y0). The position of (x0, y0) changes at each iteration. 

Consequently, IDGVF can sense the actual object edges more accurately and it 

can surpass weak edges present inside the object due to image noise and 

eventually snake locks onto actual object edges evolving from a naïve initial 

contour inside an object. Figure 5.2 shows the evolution of IDGVF snake from a 

small initial contour placed arbitrarily inside an oil sand particle. The 

corresponding edge map and external force vector fields are also illustrated in 

Figure 5.2. One can conclude from the visual result that introduction of 

Dirichlet boundary condition into GGVF evolution framework enables snake to 

reach object boundary from a small initial contour by making the force field 

anisotropic. Introduction of directional gradient information and novel 

reconstruction of edge map at each iteration during snake evolution in an 

interleave fashion guide the snake to overcome weak edges located inside the 

object and sense actual object boundaries.  
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        Evolution                      Edge Map                     Vector field     

Figure 5.2: IDGVF snake evolution from a small naïve snake contour (red circle 

at Iteration # 0) chosen arbitrarily inside an oil sand particle.  
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     In the experimental results and discussions chapter (chapter 7), we have 

demonstrated that our proposed IDGVF snake evolution algorithm is quite 

robust to snake initialization compared to other snake evolution algorithms. It 

has a broad capture range and it can capture an object contour from a seed point 

located inside an oil sand particle. We have also presented in the experimental 

and discussions chapter (chapter 7) that proposed snake evolution algorithm can 

delineate blob objects more accurately than its competitors. 
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Chapter 6 

6. Snake validation 

Literature reveals that snake automation technique consists of two sequential 

steps: snake initialization and snake evolution. Substantial efforts have been 

attempted to enhance the capture range of snake evolution. However, one of the 

main bottlenecks of snake automation is snake initialization since all of the 

snake initialization techniques suffer from over segmentation. We have first 

proposed in literature [47] that one needs to execute three sequential steps for 

snake automation: snake initialization, snake evolution and snake validation. 

We have demonstrated that snake validation is an important step for snake 

automation that has been unnoticed till date in literature [47]. Over-

segmentation resulting from incorrect snake initialization could be compensated 

in the validation step. After complete convergence of snake contour from the 

given seed, the contour is classified into desired object and non-object classes in 

the validation step. We have proposed two novel snake validation techniques: 

Principal Component Analysis (PCA) based classifier and Adaptive Regularized 

boosting (ARboost) for snake validation. The details of these two validation 

methods are discussed below. 
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6.1 Principal Component Analysis (PCA) based snake validation 

We first place seed uniformly over the whole image as shown in Figure 6.1(a) 

where seeds are placed uniformly over a leukocyte image. White dots shown in 

Figure 6.1(1) are the position of the seeds. Then an IDGVF snake is evolved 

from each seed as shown in Figure 6.1(a). When all the snakes are fully 

converged, a novel pattern image is formed for each converged snake contour to 

classify snakes into object and non-object classes using principal component 

                (c)                                   (d)                                              (e) 

Figure 6.1: leukocyte detection by PCA-based snake validation proposed 

by Saha et al. [47]. (a) Four snakes evolved on a leukocyte image. (b) 

PCA reconstruction error computed on snakes of fig. (a). (c) Annual band 

(unwarped pattern image) around a snake (solid white line) is shown by 

dotted white line. (d) Warped (unfolded) pattern image for snake 

delineating a leukocyte is shown. (e) Warped (unfolded) pattern image for 

clutter.  

(a)                                                                 (b) 
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analysis (PCA). Pattern image is constructed by unfolding an annular band 

across the converged snake contour as shown in Figure 6.1(c), (d) and (e). The 

pattern image is projected into PCA space and PCA reconstruction error is 

computed. The pattern images associated with object classes demonstrate lower 

normalized PCA reconstruction error than pattern images associated with non-

object classes as shown in Figure 6.1(b). Solid and dotted line in Figure 6.1(a) 

and (b) represent for leukocyte and clutter or non-object classes respectively. 

This PCA based validation technique is helpful if prominent edges (intensity 

transitions across the object boundaries) are present. The formation of pattern 

image and snake validation (classification of snake contours into object/non-

object classes) by PCA using pattern image is discussed below. 

6.1.1 Pattern Image Formation 

Figure 6.2(a) shows a snake (in solid line) and an annular ring denoted by dotted 

contours inside and outside of the evolved snake contour for an oil sand particle. 

The pattern image is constructed by warping the annular ring into a rectangular 

image (Figure 6.2(b)). 100 sample points are considered uniformly across the 

contour to make same size of the pattern images irrespective of the object sizes. 

The pattern image associated with object class carries object texture information 

near the object boundary / intensity transition (dark to bright transition) across 

the object contour that has good discrimination capability. This intensity 

transition (dark to bright) is absent for non-object class as shown in (Figure 

6.1(e)). This pattern image outperforms over two other gradient based 

techniques: Gradient Inverse Coefficient of Variation (GICOV) and average 
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directional gradient strength that has been demonstrated in the experimental 

results and discussions chapter (chapter 7). 

The width of the pattern image is chosen based on the object size and image 

intensity profile near the object boundary. 

 

 

6.1.2 Snake Validation by PCA 

Snake validation represents classifying converged snake contour into object and 

non-object classes. Given a set of training pattern images, the PCA framework 

for snake validation is as follows. Each pattern image Ii of size m-by-n is 

reshaped into a vector xi, of size M-by-1, with M = mn. Next, p pattern images 

are combined into a matrix: ],,2,1[ pxxx   of size M-by-p. Then, this matrix is 

centered: ],,,
2

,
1

[ xxxxxx pX   where .)/1(
i

p xx  Here typically, M >> p. 

Using singular value decomposition we have: ,)( T

pppppMpM
VDUX

 
where, U‟s 

columns are eigenvectors of XX
T
, and V‟s columns are eigenvectors of X

T
X. D is 

Figure 6.2: (a) annular ring (from innermost to outermost curve) 

across the contour (middle curve) of the object. (b) Rectangular 

pattern image. 

(a)                                                     (b) 
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a diagonal matrix with non-negative diagonal elements di, the singular values, 

which are the square roots of the eigenvalues λi of XX
T
 (or X

T
X) and are usually 

ordered so that λi ≥ λi+1, i = 1, 2, .., p-1. We compute the value of U, V and D 

from p pattern images associated with object class constructed from the training 

set. Then, we can project a new or test pattern image x into the PC-subspace 

composed of only d << M eigenvectors (first d columns of pMU ): 

).()(~ xxxx
T

dMdM
UU  The value of d is computed from the magnitude of the 

corresponding eigenvalue λ. PCA reconstruction error for the test image x is 

defined as: ,||~|| 2
xx where ||.|| denotes the Euclidean norm. If the test pattern 

image x belongs to the same class as the training images, then this 

reconstruction error will be small; otherwise it will be large [18]. 

6.2 Snake Validation by Boosting 

When snakes fully converge from the seed points on an image, we compute 

different features for each converged snake contour, such as, contour shape 

features [44] e.g., form factor, convexity, extent, modification ratio, major axis 

length, minor axis length, equivalent diameter, solidity, roundness, elongation, 

curl, aspect ratio, eccentricity, orientation, compactness, convex area [44], 

region based features e.g., area, intra and inter class variance, region instability 

[43] and edge based features e.g., GICOV [10], average gradient strength, 

smoothness, monotonicity [60], difference of Gaussian, residual error of the 

spin image [19] computed across the contour, temperature of the contour [7] , 

variance of the edge direction along the contour, edge life time [43], PCA 

reconstruction error [47] for snake validation. The definition of these features is 
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given in the Appendix. We use proposed Adaptive Regularized Boosting 

(ARboost, a variant of boosting) for selecting important features. ARboost 

algorithm consists of two phases: training and testing. 

6.2.1 ARboost training 

At the training phase, ARboost selects only important features for snake 

validation from a large pool of features computed using training snake contours 

and finds the weights associated with those features. We place seeds uniformly 

over the training images, evolve one snake from each seed and classify the 

snakes manually as objects that converge at actual object contours; otherwise 

we consider the snakes as non-objects. Thus we are able to obtain a training set 

of positive and negative samples. The ARboost algorithm forms a strong 

classifier by combining a set of weak learners linearly in an iterative manner 

[15]. We use decision stumps [15] as weak classifiers. Decision stump is a 

single level decision tree. Decision stump, Gj(x) for feature fj is defined as, Gj(x) 

= 1 if fj(x) > θj; otherwise, Gj(x) = 0, where θj is some feature value of fj chosen 

as a threshold. Finding the best decision stump at each stage is similar to 

learning a node in a decision tree. We search over all possible features f = [f1, f2, 

f3, … fj,…, fn] and for each feature, we search over all possible thresholds θ 

induced by sorting the observed values of f and pick f with θ that gives lowest 

misclassification error during training. 

6.2.2 ARboost testing 

At the test phase, the proposed PQT algorithm used for snake initialization finds 

ROIs automatically over the test images; then we place seeds uniformly only 
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within ROIs and grow one snake from each seed. When all snakes fully 

converge, for each snake, we compute the values of the important features 

selected by ARboost during training phase and multiply them with the values of 

the weights associated with the features chosen by ARboost during the training 

phase and subsequently add them to form a strong classifier,

,))(()(

1

M

m

mm xGsignxf  where, m  is the weight associated with weak 

classifier Gm(x). If the sign of the strong classifier for a snake contour is positive 

then it is classified into object class, otherwise it is classified into non-object 

class.  

                      

     For classification, standard Adaboost minimizes an exponential loss 

function: )),(exp())(,( xyfxfyL  where y is the response and f is the 

prediction. We introduce an additional term into exponential loss function:

))()(exp())(,( xGyxyfxfyL , where 0  and G(x) is the prediction 

of the weak classifier chosen at the current stage. In any boosting iteration, the 

proposed loss function is the same as the existing loss function if the 

Fig. 6.3:  Loss functions for two class classification. 
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misclassification error rate at current stage is zero (proposed term vanishes 

when )(xGy ). Proposed loss function estimates one-half the log-odds of P (Y 

= 1|x) similar to exponential loss criteria as well as binomial negative log-

likelihood or deviance (also known as cross-entropy) [15]. Statistical properties 

of this proposed loss function are presented in the Appendix. The discrepancy 

between the proposed and the exponential loss function is that the penalty 

associated with the proposed loss function is less than that of the exponential 

one, if the misclassification error rate at current stage is not equal to zero 

(shown in Fig. 6.3 where loss is plotted against a function of the classification 

margin y.f). This modification offers optimal weight on the misclassified 

samples at each boosting iteration and enforces to classify correctly in the next 

few subsequent iterations to the misclassified samples found at any iteration. 

Thus the proposed loss function encourages fast convergence of boosting 

iteration. One additional advantage of this proposed loss function is that the user 

can regulate the amount of penalty for negative margins after observing the 

classifier performance over a validation data set. Accordingly, we determine the 

value of λ through cross validation (λ is a function of k shown in the appendix 

and the value of k is determined experimentally). We derive a slightly modified 

Adaboost algorithm and we name it “Adaptive Regularized boosting 

(ARboost)” by minimizing the proposed loss function as shown in Table 6.1 

(The derivation of minimizing the proposed loss function is shown in 

Appendix). 
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     Proposed ARboost seeks the feature weight, 

0)},/)1(log(,max{log kerrerrkk mmm  where, for the standard 

Adaboost [15] algorithm the value of k is always 1. This leads to the weights 

associated with misclassified observations at any stage to be k times as much as 

the existing Adaboost (derivation is shown in the appendix). The value of k for 

ARboost is determined by cross-validation and is discussed in the experimental 

section.   

     The additional term that we propose in the existing loss function acts as a 

regularizer in the boosting framework. There are two other well-known 

regularized boosting algorithms in the literature: ε –boosting [15] and l1- 

regularized boosting [55]. The regularization strategy in ε-boosting uses the idea 

  Table 6.1: Proposed ARboost algorithm. 

1. Initialize the observation weights , 

where, 

„+‟ and „-‟ represents positive and negative samples 

respectively. 

2. For m = 1 to M: 

(a) Fit a classifier to the training data using 

weights  

(b)  Compute 
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of shrinking the contribution of each feature (feature weight). ε-boosting is 

slower but easy to implement and shares some properties with l1- regularized 

loss function. In l1- regularized boosting, the exponential loss function is 

minimized with l1- regularization. This provides sparse solution that enforces 

early stopping and acts as a regularizer. l1- regularization is a well-known 

technique in feature selection since it provides sparse solution [15]. Our method 

can adaptively regulate the effects of regularization in the boosting framework 

by fine-tuning the value of k from the training set through cross validation. We 

will demonstrate a comparative study among ARboost, ε –boosting [15] and l1- 

regularized boosting [55] in the next chapter (chapter 7). 
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Chapter 7 

7. Experimental Results 

We have carried out experiments on two challenging data sets: oil sand mining 

and leukocyte microscopy images. Oil sand mining images were captured as a 

part of the validation study of oil sand crusher design [25] and leukocyte images 

were captured as a part of inflammation study [11]. The practical relevance of 

these two studies is discussed below.  

7.1 Validation of oil sand crusher design  

Particular focus has been giving to reaseach and testing of a new type of oil 

sand slurry  technology  called  rejectless or crushing less extraction by oil sand 

mining industry [34]. This new technology allows the bitumen slurry preparing 

process closer to the mine face and it allows for more extensive use of 

hydrotransport, which is a key enabling technology introduced some years ago 

[25]. The technology will allow shovels in mines to feed oil sand directly into 

mobile crushers and slurry preparation plants. Starting the slurry preparation 

process closer to the mine face moves oil sand more cheaply than trucks or 

conveyors, and it could also improve recovery rates and reduce equipment 

down-time [25]. Figure 7.1 illustrates rejectless oil sand mining operation. 

     Mining operation is the first step toward oil extraction from oil sand. Once 

the topsoil and vegetation is removed, shovels are brought in to dig, scoop 

overburden first and then oil sand, which is filled into large haul trucks. Oil 

sand lies buried 15 m or deeper below the overburden [51]. These haul trucks 
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ferry oil sand to the remote crusher plant site in the traditional surface mining 

technology. Instead using  haul trucks, shovel directly dumps oil sand into the 

feeding hopper of the crusher located in the vicinity of the mine face in this new 

mining operation as shown in Figure 7.1. 

  

The crusher used in this mining operation consists of a series of double roll 

crusher. The aim of developing this technology is to use a new type of crushing 

system that will not generate any rejects and is therefore expensive vibrating 

screen is no longer needed to sieve unexpected crushed but bigger oil sand 

particles from rest of the smaller particles and to reject those bigger particles. 

Thus this technology will economize the oil sand production cost. Ongoing 

research on this technology envisages a mobile crusher where haul trucks will 

be eliminated from the system and the shovels can directly dump oil sand into 
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the hopper of the crusher that can move around. This will entail into significant 

savings on operation and maintenance of haul trucks. This technology uses a 

wet crushing technology where the oil sand is mixed with hot  water before 

feeding to the crusher. Flow of water helps to maintain a consistent flow of oil 

sand  through the crusher and to break the wet oil sand particles into smaller 

ones. The output of the crusher should be oil sand particles of individual 

equivalent diameter  less than 150 mm than can be directly transported to the 

Primary Separation Vessel (PSV). PSV separates oil sand, water and bitumen 

where oil sand is thrown into tailing ponds, water is recycled in the extraction 

system and bitumen is sent to the oil extraction plant for further processing 

which in turn produce crude oil.   

     With this reject less technology, more crushing of the ore will be done at the 

mine face. Without this technology, vibrating screens are used to separate large 

lumps from the ore feed and trucks then haul this material away. In this 

technology, there will be fewer conveyors and trucks required and there will be 

no screens to maintain. Thus this new technology has a much smaller 

environmental foot print as fewer trucks produce fewer emissions. Additionally, 

oil sand mining industry expects this technology to contribute to better recovery 

rates, as the large lumps that were previously rejected are now being broken 

down and the bitumen they contain recovered [6].  

     In order to develop this new technology a prototype of the new system was 

constructed in 2006 and was supplying bitumen for production by summer of 

2007 [25]. But in order to be able to validate that this new crusher design would 
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work, the size of the oil sand coming out of this crushing technology need to be 

measured, to make sure that these pieces were not too large (equivalent diameter 

of individual crushed pieces should be less than 150 mm), and would not cause 

blockages in the pumps that enforces crushed particles coming out from the 

crusher to send to the PSV.  One way to validate the crusher design is to take 

samples of crushed oil sand coming out from the crusher and physically measure 

them with a ruler.  This would require a lot of manual labor to measure a lot of 

dirt.  To automatically verify the design of the crusher in the prototype of this 

technology, the output of the crusher is transported and is sieved through the 

screen. The undersize particles are sent to PSV and the oversize particles are 

rejected. Images of those rejected oil sand particles are acquired by the video 

camera mounted over conveyor belt located after the screen. These images are 

segmented by the automatic snake based segmentation technique [49] proposed 

in this research and the size of each oil sand particle is measured. The dotted 

components (screen) shown in Figure 7.1 were additionally used in the prototype 

to automatically validate the wet crushing technology and will no longer be used 

in the final oil sand production system. 

     So this new oil sand mining technology is a tremendous cost saving, up-to-

the-minute technology developed at a minimal cost and handled hydrotransport 

in a lot more efficient way.  The commercial-scale pilot of this new technology 

demonstrated positive results. The research continues and the technology is 

being vetted for future applications. Proposed snake based automatic 
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segmentation technique is used to automatically validate the design of the 

crusher of this reject less wet crushing technology.  

7.2 Importance of rolling leukocyte detection in the study of 

Inflammation  

Leukocyte plays an important role in the study of inflammation. Inflammation is 

a natural defense mechanism initiated by tissue damage or injury, characterized 

by redness, heat, swelling, and pain. The key goal of inflammation is to restrict 

and eliminate the irritant and repair the surrounding tissue. Inflammation is an 

essential and useful process for the survival of the host. Three major stages are 

observed in the inflammatory response: first, capillaries dilate and hence blood 

flow increases; second, microvascular structural changes and plasma proteins 

escape from the bloodstream; and third, leukocytes transmigrate through 

endothelium and accrue at the site of injury [11]. During inflammatory 

response, endothelium cell is activated; leukocytes start deviating from 

mainstream blood flow and come in contact with activated endothelium cell. 

Then, leukocytes in contact with activated endothelium cell start moving slower 

than the mainstream blood velocity. This slow movement of leukocytes in 

contact with endothelium cell is called rolling. During rolling stages, leukocytes 

diffuse through vascular wall, reach the injured tissues and encounter the germs 

[38].   

     Although inflammation is a normal defense mechanism, it sometimes 

becomes harmful in various inflammatory diseases. Because sometimes the 

immune system attacks its host body due to an inability to distinguish invading 
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organisms from the body‟s own cells and causes inflammatory diseases. To 

struggle against such diseases, anti-inflammatory drugs are developed by 

blocking or controlling any of the necessary processes of inflammatory 

response. Because blocking any of the processes can severely reduce leukocyte 

accumulation at the injured site. The rolling velocity is a key predictor of 

inflammatory cell recruitment [38]. The most common description of leukocyte 

rolling velocities is a velocity distribution, preferably for hundreds of cells. 

Inflammation research involves the study of the velocity distribution of 

leukocytes. The roles of rolling velocities of leukocytes in acute and chronic 

inflammation are being investigated in vitro (“within the glass”, i.e. in a test 

tube) model systems and in vivo (“within the living”) microcirculation studies 

[11]. In this experiment, in vivo microcirculation studies have been considered 

where experiements have been conducted on living mice. To measure and 

analyze the leukocyte rolling velocity from the in vivo experiements, the 

movements of the leukocytes inside the postcapillary vennule of a cremaster 

muscle of a mouse are observed in video recordings made though a camera 

coupled with the intravital microscope. Typically such studies require tracking 

tens of thousands of leukocytes every day for clinical trials and drug discovery.   

To obtain the velocities of leukocyte or to initiate tracking of leukocytes, 

leukocytes are required to segment first. Normally, skilled technicians are 

employed to manually inspect hours of video and to extract the desired regions. 

Such manual processing is subject to operator errors and biases, extremely time 

consuming, tedious, has poor reproducibility and above all not cost effective. 
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Proposed snake based automatic segmentation technique [48] can automatically 

segment leukocytes from leukocyte microscopy images captured during in vivo 

experiment.  

     Several Challenges involved in automatic delineation of oil sand particles 

from oil sand images and leukocytes from leukocyte microscopy images are 

discussed below. 

7.3 Challenges Involved in delineating oil sand particles  

Figure 7.2(a) shows example of an oil sand image. Figure 7.2 (a) shows that the 

oil sand particles are relatively darker than its background. We apply some well-

known state-of-the-art algorithms, namely, Otsu‟s global thresholding [35], 

Chan et al.’s [9] well-known locally adaptive variational thresholding, Chan and 

Vese‟s [1] region based level set method on oil sand particles to delineate oil 

sand particles from the rest of the image. The green lines in Figure 7.2(c), 7.2(d) 

and 7.2(e) are the object boundaries found by Otsu‟s global thresholding [35], 

Chan et al.’s [9] adaptive variational thresholding and Chan and Vese‟s [1] level 

set method respectively.  These results show that all of them fail to delineate oil 

sand particles from the conveyor belt as shown in Figure 7.2(c), 7.2(d) and 

7.2(e) respectively. These poor performances of the existing of-the-shelf 

automatic segmentation techniques on oil sand images reveal difficulty of 

automated analysis. One of the key observations of these poor performances on 

automatic oil sand particle delineation is that these techniques attempt to 

classify pixels into background and foreground classes based on the gray level 

intensity differences between foreground and background classes and eventually 
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these methods demonstrate poor performances since there is not much 

difference in gray level between oil sand particles (objects) and corresponding 

conveyor belt (background) pixels distribution (unimodal histogram shown in 

Fig. 7.2(b)). Besides, these images are often illuminated and noisy with various 

 

kinds of background (conveyor belt) clutter. Moreover, oil sand particles come 

in a variety of shape, size and texture. The apparent brightness of the individual 

object varies from object to object. Most of the times, objects are mixed with 

dirt and fine materials. Additionally, since the mine operates 24 hours a day, 

and the oil sand material needs to be analyzed outdoors, varying lighting and 

weather conditions play a significant role in their appearance in the image. The 

aforementioned factors constitute the main challenges to automatically 

segmenting the individual oil sand particles from these images. Figure 7.2(f) 

shows that Xu and Prince‟s [56] Gradient Vector Flow (GVF) can successfully 

(a) Oil Sand image                    (b) Histogram of Fig. (a)  (c) Otsu‟s   Global thresholding 

(d)  Chan, Lam and Zhu          (e) Chan-Vese‟s algorithm                    (f) GVF snake     

Figure 7.2: Results of different well-known segmentation methods on oil 

sand image. 
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delineate oil sand particles where the initial seeds are placed manually inside the 

oil sand particles. Unlike pixel label classification based automatic 

segmentation techniques, a snake energy functional is designed in such a way so 

that minimizing the energy functional provides forces to the manually drawn 

initial snake contour lock onto nearby features such as lines or edges and thus 

the snake captures the region (blob-object) surrounding the desired feature [21]. 

7.4 Challenges Involved in delineating leukocyte boundaries  

      Some potential challenges involved in delineating leukocytes as shown in   

Figure 7.3 are mentioned below [38]:  

 

 Background is moving in the leukocyte video because Leukocytes roll (slow 

movement) in a fast moving blood stream. 

 Leukocytes slowly deform in shape as they roll along a venule. 

 Breathing movements of the living subject causes jitter in the video. 

 Image clutter presents in the images due to blood flow, venule wall, and 

presence of partially overlapping and osculating leukocytes. 

                      Figure 7.3: Leukocyte microscopy image. 
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 Image contrast changes due to change in transillumination conditions, 

breathing movement of the living subject. 

 Leukocytes appear in dark or bright since the leukocytes go below/above the 

microscope focal plane. 

 7.5 Organization of the datasets  

For oil sand mining images, we construct training set using 20 images, 

validation set using 30 images and test set using 100 images sampled randomly 

from an online video of oil sand particles over conveyor belt. For leukocyte 

images, we have carried out experiment on a training set of 5, validation set of 

10 and a test set of 25 leukocyte images. Ground Truth of both of these datasets 

was generated by the experts before commencing the experiment. We have 

demonstrated the efficacy of the proposed snake initialization (PQT), evolution 

(IDGVF) and validation (ARboost) methods in this chapter (chapter 7). 

7.6 Snake Initialization 

We have conducted a comparative analysis among three automatic initialization 

techniques: Center of Divergence (COD) [13], Critical Point (CP) [54], Force 

Field Segmentation (FFS) [24], Poisson Inverse Gradient (PIG) and 

Probabilistic Quad Tree (PQT). Seeds generated by COD [13], CP [54] and 

ROIs found by proposed PQT method as well as initial contours found from 

white dots in Figure 7.4. 
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     Table 7.1 illustrates the number of seeds or initial contours generated by the 

COD, CP, FFS, PIG, and PQT. Figure 7.5(a) and 7.5(b) show the accuracy and 

F-measure for COD, CP, FFS, PIG, and PQT techniques. We have used IDGVF 

for snake evolution and ARboost for snake validation technique with all of these 

initialization methods to compute accuracy and F-measure. F-measure combines 

both recall and precision into a single value [41]. 

                                                                                                                                                   

      Figure 7.4: Results of different snake initialization methods. 

COD     

CP     

FFS    

PIG     

PQT  
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Results show that although all techniques possess almost the same accuracy, 

PQT achieves the maximum F-measure value (25% more than that of PIG that 

achieves second highest F-measure value) and PQT generates significantly 

fewer seeds than the competing methods as shown in Table 7.1. 

Datasets 
# of 

objects 

# of Seeds generated by 

COD CP FFS PIG 
Proposed 

PQT 

Oil Sand 349 3215 2761 4757 3118 686 

Leukocyte 193 1581 1104 2055 1250 799 

                              (c)                                                         (d)                                                  

  Figure 7.5: (a) Accuracy, (b) Recall, (c) Precision and (d) F-measure of 

different snake initialization methods on oil sand images.  
 

(a)                                                       (b) 

Table 7.1: Comparison among existing snake initialization techniques. 
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7. 7 Snake Evolution 

 

     In the next set of experiments, we evaluate the efficacy of proposed IDGVF 

snake. We randomly choose 25 oil sand particles. In each one of these particles 

we place 5 randomly chosen seed locations. Then perform GVF [56], balloon 

Figure 7.6: Results of different snake evolution algorithm from a small 

snake contour placed at three different positions within an oil sand 

particle.  

 

GVF 

VFC 

Balloon 

EGGVF 

IDGVF 
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snake [5], VFC [23], EGGVF [37] and proposed IDGVF snake evolution from 

these seed locations.    

     Fig. 7.6 illustrates results of GVF, Balloon snake, VFC, EGGVF and IDGVF 

snake evolution evolved from three different initial seed points chosen 

arbitrarily inside an oil sand particle. Both visual results and higher PFOMs and 

Jaccard Score values demonstrate that IDGVF is less sensitive to the choice of 

seed locations compared to other snake algorithms. It has a broad capture range 

and it can capture contour from a seed point located inside an oil sand. Dirichlet 

boundary condition enables a snake to grow from a naïve initial contour (circle 

of radius ~2-3 pixels) located within the blob-object and help to reach at actual 

object boundary. Integration of directional gradient information in the force 

vector field in an interleave fashion guides snake to surpass weak edges present 

inside the solid object due to image noise, and helps to sense the actual object 

edges. IDGVF is handy to capture contour of the blob like object. 

     To measure the performance quantitatively we compute Pratt‟s figure of 

merit (PFOM) [1] and Jaccard score [16], both of which is dimensionless 

number and is bounded by 0 and 1. PFOM is defined as: 

                                   )1.7(
1

1

,max

1

1
2

A

idII
PFOM

I

iAI
  

     Where, II and IA are the number of ideal and actual edge pixels, d(i) is the 

pixel miss distance of the i-th edge pixel detected, and  is a scaling constant 

chosen to be 1/9 to provide a relative penalty between smeared edges and 

isolated, but offset, edges [1]. PFOM measures the inverse of the square of the 
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distance among actual edge pixels and edge pixels found by the algorithm [1]. 

Jaccard Score is the ratio of the intersection and union of the area of the objects 

found in an image by the algorithm and the area of the actual objects. The value 

of Pratt‟s figure of merit (PFOM) and Jaccard Score is bounded by 0 and 1. 

Superior performance of a segmentation algorithm is indicated by higher PFOM 

or higher Jaccard Score values. Figure 7.7 (a) and 7.7 (b) show box plot of the 

PFOMs and Jaccard Scores for GVF, balloon snake, VFC, EGGVF and IDGVF 

snake. 

 

 

7. 8 Snake Validation 

7. 8.1 Snake Validation by Principal Component Analysis 

(a) Experiments on oil sand images: 

We construct 10 rectangular pattern images by warping an annular ring of width 5 

pixels both inside and outside across the contour of 10 oil sand particles and use 

them for PCA computation. Figure 6.3 demonstrates first 10 eigenvalues in 

       (a)                                                        (b)     

Fig. 7.7: (a) and (b): Segmentation Scores (Pratt‟s Figure of Merit 

(PFOM) and Jaccard Score) for different snake evolution algorithms on 

oil sand images.  
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descending order for the training set consists of 10 pattern images of oil sand 

particles. The Scree plot illustrated in Figure 6.3 shows that the first eigenvector 

corresponding to maximum eigenvalue is sufficient to compute PCA reconstruction 

error for snake validation since it represents >80% of the total variance [18]. 

Experiments show that only the first principal component linked to the maximum 

eigen value explains the maximum percentage of variance (80% of the total 

variance) according to the scree plot shown in Figure 7.8. 

 
Figure 7.9(b) also confirms this choice for a typical image that shows the first 

principal component has good discrimination capability. 

 

                      (a)                                                          (b) 

Figure 7.9: (a) Seed points (small circle) and evolved snakes. (b) 

PCA reconstruction errors of these snakes. 

                     Figure 7.8: Scree Plot 
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     We use cross validation (leave-one-out) [15] to compute the threshold for 

PCA reconstruction error shown in Figure 7.10. We first compute different 

   Figure 7.10: Threshold selection using cross validation (leave-one-out 

method)  

on training images.                 
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performance curves vs. PCA reconstruction errors (see Figure 7.10). Then the 

threshold is chosen where the recall and precision curves intersect (Figure 7.10).   

     We have compared our PCA based outlier detection with two gradient based 

Techniques: GICOV [10] and average directional image gradient computed on 

evolved snake contours. GICOV is defined as the ratio of average directional 

image derivative and their standard deviation across snake contour. Snake 

associated with GICOV or average gradient value greater than a predefined 

threshold considers as desired object, otherwise it is considered as a clutter. We 

Figure 7.11: Oil sand images. Top row: results of average gradient. 

Middle row: results of GICOV. Bottom row:  results of our proposed 

PCA algorithm.  
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compute these thresholds on the same training set used for PCA using cross 

validation (leave-one-out) technique. Once again the threshold is chosen using 

where the recall and precision curves intersect each other on the training image 

set (see Figure 7.10).  

      

     Detections obtained by the proposed PCA, GICOV and average directional 

derivative techniques are shown in Figure 7.11, which demonstrates that the 

proposed algorithm is superior to its competitor for the images at hand. To 

measure the robustness, we have randomly shifted each converged snake 

contour some pixels (up to 9 pixels) along horizontal and vertical direction and 

have measured performance of these three techniques. We define the total 

amount of shift of each converged snake contour from its local minima as 

       Figure 7.12: Accuracy, Recall, Precision and F- measure vs. 

localization error. 
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localization error.  We measure accuracy, recall, precision and F-measure for 

different localization errors (in pixels) shown in Figure 7.12. Figure 7.12 shows 

that PCA-based snake confirmation test is up to 10% more accurate, recall is up 

to 20% better and it can sustain more localization error (at least 5 to 6 pixels).    

The F-measure value for proposed PCA technique is always larger than those of 

GICOV and average gradient. The robustness of the proposed PCA-based 

method can be attributed to the proposed annular pattern images that capture 

image texture information near the object boundaries. Thus our method can still 

be effective if the snakes converge slightly away from expected object 

boundaries due to noise and clutter that frequently plagues many snake-based 

tools.  

 

(b)  Experiments on leukocyte images  

Automatic leukocyte detection from intravital microscopy images help in the 

study of inflammation as well as in the design of anti / pro – inflammatory drugs 

[10]. Detections obtained by the proposed PCA, GICOV and average directional 

derivative techniques are shown in Figure 7.13.  
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Accuracy, recall, precision and F-measure for different localization errors (in 

pixels) are shown in Figure 7.14. These comparisons show that proposed PCA 

validation is up to 5% more accurate, recall is up to 30% better and it can 

sustain more localization errors (at least 5 to 6 pixels) than its competitors. 

 

 

 
 

Figure 7.13: Leukocyte images. Top row: results of average gradient. 

Middle row: results of GICOV. Bottom row: results proposed algorithm.   
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7. 8.2 Snake Validation by Boosting 

(a) Determination of the value of k  

We determine the value of k (discussed regarding feature weight in chapter 6.2) 

using five-fold cross validation technique [15]. We compute misclassification 

errors for different values of k that are shown in Figure 7.15(a) on oil sand 

images. Standard error bars indicate the standard errors of the individual 

misclassification error rates for each of the five parts. It is observed that both the 

average misclassification error rate and standard error is minimum for k = 8 for 

oil sand images. For standard Adaboost [15] algorithm, the value of k is always 

1. ARboost outperforms the standard Adaboost algorithm because ARboost can 

  Figure 7.14: Accuracy, Recall, Precision and F- measure vs. localization 

error for leukocyte images. 
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choose the best value of k for which the misclassification error is the minimum. 

The misclassification error rate for boosting with decision stumps [15], as a 

function of the number of iterations for k = 8 is shown in Figure 7.15(b).                                               

 

(b) Convergence of the Boosting Algorithm  

We empirically examine the performance of proposed regularization for the 

boosting framework and compare it with two other well known regularization 

techniques used in boosting: ε– boosting and l1– regularized boosting. We have 

conducted experiments on oil sand images and the plot of misclassification error 

rates over boosting iterations on both training and test set for standard 

Adaboost, ε– boosting, l1– regularized boosting and proposed ARboost is shown 

in Figure 7.16. This experimental result shows that the error rate does not 

change with boosting iterations for Adaboost. The reason behind this constant 

error rate could be inadequate weight adopted on misclassified samples at each  

(a)                                                      (b) 

Figure 7.15: (a) fivefold cross validation curve with standard error bars; 

the curve has minima at k = 8. (b) Misclassification error rate over the 

number of iterations for oil sand images.   
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     l1- regularized boost                 

Figure 7.16: Error rates with number of iterations for different variants of boosting. 

    Proposed ARboost  

ε - boost                              

        Standard Adaboost  
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iteration by Adaboost. Regularization in ε– boosting forces a decrease in the 

error rate; however, it cannot always maintain the monotonic decreasing trend 

of error rate over boosting iterations. Error rate in l1– regularized boosting 
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Figure 7.17: Comparison on different snake validation algorithm on Oil 

sand images. 
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decreases as boosting iteration number increases; however, this decreasing trend 

of error stops after certain iterations and then the error rate starts increasing. 

Error rate in the proposed ARboost decreases as the boosting iteration number 

increases since ARboost determines adequate weight to the misclassified 

samples at each iteration and user can adopt the amount of regularization by 

fine-tuning the value of k through cross validation. 

(c) Comparison with other variants of boosting 

We have compared ARboost based snake validation technique with three other 

validation techniques: PCA [47], ε-boosting [15] and l1- regularized boosting 

[55]. We have used PQT as snake initialization and IDGVF as snake evolution 

for all of these methods. The best values of the parameters of all techniques 

such as, threshold value of re-projection errors in PCA, the value of ε that 

controls regularization in ε-boosting have been selected using cross validation 

techniques. Detections obtained by all these methods on oil sand and leukocyte 

images are shown on Figure 7.17 and Figure 7.18 respectively. Quantitative 

comparisons in terms of Pratt‟s Figure of Merit (PFOM) and Jaccard Score in of 

these methods on oil sand and leukocyte datasets are demonstrated in Figure 

7.19 and Figure 7.20 respectively. 
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 Figure 7.18: Comparison on different snake validation algorithm on Leukocyte 

images. 
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Both visual observations and quantitative results demonstrate that proposed 

ARboost based validation outperforms ε-boosting, l1- regularized boosting and 

PCA since it can detect oil sand particles and leukocytes more accurately and 

precisely. Segmentation score (Jaccard Score and Pratt's Figure of Merit) as 

well as area under ROC curve of ARboost shown in Figure 7.21 (a) and 7.21(b) 

are greater than that of all other methods. 

  

Figure 7.19: Segmentation Scores (Pratt‟s Figure of Merit (PFOM) and 

Jaccard Score) of different methods on Oil Sand images.  
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Figure 7.20: Segmentation Scores (Pratt‟s Figure of Merit (PFOM) and 

Jaccard Score) of different methods on Leukocyte images.  
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                            (a)                                                                   (b) 

Figure 7.21:  Receiver Operating Characteristic (ROC) curves for (a) oil 

sand particles and (b) leukocyte images. 
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Chapter 8 

8. Conclusions and Future Work 

In this chapter (chapter 8) we have concluded the research work proving a 

summary and proposed new directions for future research. 

8.1 Work Summary 

(a) Automation of two emerging engineering applications  

There are many real world applications that demand for automatic 

segmentation. In this thesis we have addressed two such emerging applications, 

oil sand particle delineation [59] and leukocyte detection [10] that requires 

complete automation. We have demonstrated that proposed active contour or 

snake based automatic segmentation technique can automatically segment oil 

sand particles and leukocytes. 

(b) Snake automation by incorporating novel snake validation algorithm 

Active contour or snake segmentation algorithm consists of two sequential 

steps: snake initialization and snake evolution. Success of snake based 

segmentation technique depends on careful placement of the initial contours. 

We have demonstrated that all of the available automatic initialization 

techniques lead to over-segmentation and consequently yield more than the 

required number of initial contours. Snake convergence is an ill–posed problem 

and it is very hard to impose all the constraints to ensure the convergence of the 

snake always onto desired object boundaries even snake initialization and 

evolution is performed well. This necessitates incorporating classifiers into 
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automatic snake based segmentation framework that can separate evolved 

contours into object and non-object classes. Past endeavors concentrated only 

on the progression of snake initialization and evolution technique. In this 

research, we have first proposed in literature that snake based automatic 

segmentation technique consists of three sequential steps: snake initialization, 

snake evolution and snake validation. Though snake validation is a crucial step 

for snake automation, it has been practically ignored till date [47]. We place 

seeds uniformly within the regions of interest (ROI) of an image, evolve one 

Interleave Directional Gradient Vector Flow (IDGVF) snake from each seed 

and finally classify evolved snake contours into object and non-object classes. 

(c) Probabilistic Quad Tree (PQT) based approximate segmentation technique 

for snake initialization 

We have proposed a probabilistic quad tree (PQT)-based approximate image 

segmentation technique to automatically find ROIs within an image and then 

place seeds uniformly within ROIs. We have implemented a positional prior 

that facilitates a faster convergence of PQT than standard quad tree (QT) 

algorithm. Experimental results demonstrate that PQT generates fewer seeds 

than other existing snake initialization techniques without degrading the 

performance. 

(d) Interleave Directional Gradient Vector Flow (IDGVF) for snake evolution 

We have incorporated directional gradient information along with Dirichlet 

Boundary Condition (DBC) into Generalized Gradient Vector Flow (GGVF) 

evolution framework to capture oil sand particle or leukocyte boundary 
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successfully from a small naïve initial contour placed inside the desired object. 

In addition, we compute snake evolution in an interleave fashion: evolve snake 

from initial naïve contour until convergence, then modify edge map based on 

the position of the contour converged at previous iteration and then evolve 

snake again until convergence. We continue this procedure iteratively until there 

is no considerable change in area enclosed by the snake in two successive 

iterations. We have demonstrated that this novel interleave computation guides 

snake to surmount weak edges present inside the object and to reach at object 

boundaries.  

(e) Snake Validation by Principal Component Analysis (PCA)  

We have intended Principal Component Analysis (PCA) based classifier to 

classify evolved snake contours into object and non-object classes. To perform 

PCA classification, we construct a novel pattern image by warping an annular 

band across each evolved snake contour and then converting into a rectangular 

image for computational convenience. This pattern image carries texture as well 

as dark to bright or bright to dark intensity transitions across the contour that 

characterizes oil sand particle or leukocyte contour. For a test image, snakes are 

evolved from given initialization, and then a pattern image is formed across 

each converged snake contour and then pattern image is formed into PCA space. 

The pattern image associated with lower PCA reconstruction error is recognized 

as oil sand particle or snake, otherwise it is considered as clutter. This PCA 

based classification is effective if prominent object boundaries are present.  
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(f) Snake Validation by boosting 

We have also exploited the efficacy of multiple features (edge, region, shape 

etc.) using boosting over only edge based PCA classification. We offer a novel 

loss function for boosting regarding snake validation. We have incorporated one 

additional term in the existing exponential loss function for boosting that offers 

optimal weight on the misclassified samples in every boosting iteration that 

enforces to classify correctly the misclassified samples in the following 

iterations. These facilitate slightly fast convergence of boosting and derive 

adaptive regularized boosting (ARboost) by minimizing the proposed loss 

function. Results demonstrate that ARboost converges faster than other variants 

of boosting. Extensive experimental results demonstrate that proposed snake 

based automatic segmentation algorithm is computationally less expensive, 

more accurate and robust. 

8.2 Future Work 

We identify the following issues for future research with the evolution of snake 

towards automation for multiple blob-object detection: 

 

 We would like to explore the efficacy of proposed loss function for boosting in 

multiclass classification problem. 

 We would further like to investigate how the proposed loss function tackles the 

problem of over fitting. 

 We would like to integrate snake validation step into snake evolution step that 

may facilitate early stopping of snake convergence. 
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 Since snake evolution is a computationally expensive step, instead of placing 

seed points uniformly within regions of interest (ROIs), we would like to further 

investigate seed placing method inside the ROIs. 

 We would like to investigate the efficacy of incorporating other boundary 

condition such as, mixed boundary condition (different boundary conditions are 

used on different parts of the boundary) into IDGVF energy functional to 

facilitate snake more initialization independent as well as to sense weak edges 

located inside the object.  

  We would like to automatically evaluate the weighting parameters in the active 

contour energy functional through cross validation. 
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Appendix 

9.1 Supplements for Chapter 6 

9.1.1 Features used for Snake Validation using Adaptive 

Regularized Boosting (ARboost) 

(a) shape features [44] 
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(b) Edge features 

GICOV [10]: GICOV is defined as the ratio of average directional image 

derivative and their standard deviation across snake contour. 

Let (X
i
, Y

i
), i=1:n be points on the snake contour. Let n(X

i
, Y

i
) denote the normal 

to the contour at (X
i
, Y

i
). Further, let I denote the image. Then gradient inverse 

coefficient of variation (GICOV) is defined as: 

 

 

 

 

Average gradient strength [47]: Average gradient strength is defined as the 

average directional image derivative. Let (X
i
, Y

i
), i=1:n be points on the snake 

contour. Let n(X
i
, Y

i
) denote the normal to the contour at (X

i
, Y

i
). Further, let I 

denote the image. Then average gradient strength (AGS) is defined as: 

 

 

Smoothness [60]: Smoothness of the snake contour is defined as, 
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Where Ei and Ei+1 are two consecutive points on the contour, arctan Ei and 

arctan Ei+1 are their arctangent values and n is the total number of the points on 

the contour. 

Monotonicity [60]: Monotonicity of a snake contour is defined as: 
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Where Ei and Ei+1 are two consecutive points on the contour, arctan Ei and 

arctan Ei+1 are their arctangent values and n is the total number of the points on 

the contour. 

 Variance of the edge direction along the contour [60]: Variance value of the 

edge direction along the contour is defined as: 

                                      )(arctan
1

V

1

ME
n

ariance
n

i

i  

Where Ei is a point on the contour, arctan Ei is the arctangent value of point Ei, n 

is the total number of points on the contour, and M is the mean arctangent value 

of all points on the contour. 

Difference of Gaussian [14]: Difference of Gaussian (DOG) is used to detect 

edges. Image I(x, y) is smoothed by convolution with difference of two 

Gaussians of with σ1 and σ2, i.e. DOG *  I(x, y) where, 
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and (x, y) is the pixel location. 

Residual error of the spin image [19] : 

 Spin images represents the global properties of any surface in an object-oriented 

coordinate system rather than in a viewer-oriented coordinate system. Object-

oriented coordinate system is independent of viewer position. 

 Oriented points are used to generate spin images [19]. Oriented points (denoted as 

O) are 3-D surface points that have a direction [53]. The surface corresponding 

these points is represented as a polygonal mesh M with vertices. An oriented point 

O at a surface mesh vertex is defined by the 3-D position of the surface vertex 

(denoted as p) and a surface normal (denoted as n) [19]. A 2-D basis (p, n) that 
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correspond to a local coordinate system can be formulated. The tangent plane P 

through p oriented perpendicularly to n and the line L through p parallel to n is used 

to achieve this goal. This leads to (α, β)   cylindrical coordinate system where α is 

the perpendicular distance to while β is the signed perpendicular distance to P. 

Figure 1 illustrates cylindrical coordinate system.  

 

 

Figure 9.1: The cylindrical coordinate system and its (p, n) 2-D basis (taken from 

[19]) computed across the contour.  
 

a spin map, So is generated using the oriented point basis. A spin map, So can be 

characterized as a projection function of the 3-D points x of an object to 2-D 

coordinates (α, β) associated with the 2-D basis (p, n) that corresponds to the 

oriented point O.  The projection function is [2]: 

                                   )).(,)).(((),()(

:

22
0

23

pxnpxnpxxS

So
 

Although α cannot be negative, β can be both positive and negative. 

Points are sampled uniformly across snake contour and a spin image vector is 

computed for each point. Then these points are learned and the residual error is 

computed similarly as PCA reconstruction error explained in section 6.1.2.  
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Edge lifetime [43]: Edge lifetime is defined as, 

                                            

l

k

n

i
k

iE
n

1 1

,
1

timelifeEdge  

Where 
k

iE , is the absolute gradient value of the of the i-th point on the 

contour at scale σk, n is the total number of points on the contour. 

Edge lifetime entails blurring the image over a range of scales, detecting edges 

at each scale, and tracking them across scale. The longer an edge persists before 

extinction (i.e. its lifetime) the more likely it is to be significant. 

 PCA reconstruction error [47]: has been defined in section 6.1.2. 

 

Temperatue of a contour [7]: Let, P and Q be the length of snake contour and 

convex hull inscribes by the snake contour, then temperature (T) is defined as,  

                                     
1)))/(*2(log( QPPT  

(c) Region based features 

Intraclass variance (IV): let D be the vector consists of gray level values of the 

pixels located inside the bounding box that encloses the snake contour and C be 

the vector consists of gray level values of the pixels located inside the snake 

contour. Then IV = variance(C) + variance (D\C). 

Interclass variance (INV): let D be the vector consists of gray level values of 

the pixels located inside the bounding box that encloses the snake contour and C 

be the vector consists of gray level values of the pixels located inside the snake 

contour. Then INV = variance (D) – IV = variance (D) - variance(C) - variance 

(D\C). 

Region Instability [43]: let D be the vector consists of gray level values of the 

pixels located inside the bounding box that encloses the snake contour and C be 
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the vector consists of gray level values of the pixels located inside the snake 

contour. Then instability is defined as the Area of the overlap between the 

histogram of C and D\C. 

9.1.2 Derivation of Proposed Discrete Adaboost Algorithm  

Proposed loss function is: 

.0|),)(|)(exp())(,( xGyxyfxfyL  

Let )()()(
1

xGxfxf
mmmm  be the strong classifier composed of first m 

classifiers. We can pose m-th iteration of Adaboost as the following 

optimization, 

),(
mm

G
N

i iiiimi
G

xGyxGxfy
1 1

,

|])(|))()((exp[minarg

N

i iiii

m

i
G

mm
xGyxGywG

1
,

|])(|)(exp[minarg),( where, 

))(exp(
1 imi

m

i
xfyw is free of both β and G(x). 

].)exp())exp()2[(exp(minarg

])2exp()[exp(minarg),(

1
)(:,

)(:)(:,

N

i

m

i

xGyi

m

i
G

xGyi

m

i

xGyi

m

i
G

mm

ww

wwG

ii

iiii

 

The solution for βm and Gm can be obtained in two steps. First, for any value of 

β+λ > 0, the solution for Gm is: 
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Also,  )(log
2

1
k )

1
(log
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i
xGyww  

Using the fact that ,1))((2)(
iiimi

xGyIxGy  we get, 
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iwm
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So, ))).((exp(1

iim

m

i

m

i
xGyIww  The factor exp(–βm) multiplies all weights by 

the same value, so it has no effect. 

9.1.3 Statistical properties of the proposed loss function used in the 

Adaptive Regularized Boosting (ARboost) 

Proposed loss function 0|),)(|)(exp())(,( xGyxyfxfyL estimates 

one-half the log-odds of P (Y = 1|x). This justifies using its sign as the 

classification rule in ,))(()(

1

M

m

mm xGsignxf This proposed loss criterion 

shows similar behavior with two other loss criteria with the same population 

minimizer, exponential loss criteria and binomial negative log-likelihood or 

deviance (also known as cross-entropy) [15]. It encodes that the function f(x) 

that minimizes the L2 version of the exponential criterion is the symmetric 

logistic transform of P(y = 1|x). E(L(y, f(x))) is minimized at

.
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Proof:  Propose loss function can be written as, 
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While E represents expectation over the joint distribution of y and x, it is 

sufficient to minimize the criterion conditional on x. 

Case I: Consider )(xGy  
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Case II: Consider )(xGy  
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