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ABSTRACT

Moment redistribution provides an attractive alternative to the non-linear methods of 

analysis. CSA A23.3-94 provisions for moment redistribution neglect the effects o f 

important parameters and can be conservative. Significant differences exist among design 

standards on the provisions for moment redistribution. The lack of consensus suggests 

that as a profession we do not fully understand the problem. This work attempts to 

establish appropriate limits on allowable moment redistribution in reinforced concrete 

structures.

An analytical model is developed for computing (3, the permissible percentage reduction 

in moment at a section due to moment redistribution. Important parameters affecting [3 

are identified and incorporated in the model. The model is validated against experimental 

results and shows good agreement. Comparison between CSA A23.3-94 and the model 

limits shows that the code is conservative. The maximum code limit for (3 is 20%. For the 

ultimate limit-state, with favourable combination o f parameters, the model would allow 

(3 in excess o f 50%. The serviceability limit state, however, can restrict (3 to 21% to 34%.

The code considers (3 as a function o f c/d, the ratio of the depth o f neutral axis to the 

effective depth o f beam cross-section, only. For 20% moment redistribution, the standard 

allowable c/d is only 0.2. By comparison, the model allowable c/d for 20% moment 

redistribution is at least 0.38 and can be as high as 0.6.
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A parametric study shows that the [3 depends upon various parameters, in addition to c/d. 

It is thus inappropriate to express (3 as a function of c/d alone.

A set o f empirical equations for (3 is developed to provide an alternative to the code 

equation. The equations consider the explicit effects o f co, the mechanical reinforcement 

ratio, and L/d, the span to depth ratio, on p, with implicit effects from other parameters.

Design moment coefficients for continuous reinforced concrete beams are developed. 

Use o f these coefficients vs code coefficients can provide savings in the amount of 

flexural reinforcement. It is demonstrated that considering moment redistribution can 

eliminate the need for pattern live-load analysis, in the design of continuous reinforced 

concrete beams with c/d less than 0.4.
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A' of compression reinforcement

A cef effective area of concrete in tension

A s area o f tension reinforcement

Asb area o f reinforcement corresponding to the balanced steel ratio

A sj area o f steel for ilh steel layer

Avs cross-section area o f one leg of stirrup

b beam width

b ’ beam flange width

b0 width o f  concrete core measured to outside o f  the peripheral ties

bs centre to centre width o f the stirrup

bso width to the outside o f stirrup

bw beam web width

c depth o f neutral axis (distance from the extreme compression fiber to the

neutral axis o f the section)
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Cc compressive force in concrete

c0 concrete cover in mm

cy depth o f neutral axis at first yield

d effective depth o f section (distance from the extreme compression fiber to

the centroid o f the tension reinforcement) 

db diameter of reinforcing bar

dj depth o f ith steel layer from extreme compression fibre

dx differential element of reinforced concrete member

Ec modulus of elasticity o f concrete

El flexural stiffness o f  reinforced concrete section

EIcr cracked flexural stiffness

Es modulus of elasticity of steel

Esh modulus of strain hardening

compressive strength of concrete 

fct tensile strength o f concrete

fs steel stress

fSi steel stress for ith steel layer

fsu ultimate strength o f steel

ft tensile stress in concrete

Ft force in tension steel

fy yield strength o f steel

fyh yield strength o f steel hoops

hs centre to centre height o f the stirrup

hso height to the outside o f stirrup

Iav average cracked moment o f inertia = (Isu+Isp)/2

Icr cracked moment o f inertia

Isp cracked moment o f inertia at the span

I™ cracked moment o f inertia at the support

jd  distance from the centroid o f  compressive forces in steel and concrete to the

centroid o f tension steel 

K factor that takes into account the effect of confinement on concrete strength
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Ki parameter depending upon the support conditions and loading

ki factor taken as 0.7 for mild steel, 0.9 for cold rolled steel

K2 parameter that defines the effective plastic hinge length

k2 l+0.5pu/po

kj factor taken as 0.6 for a concrete cube strength o f 40 MPa, 0.9 for 15 MPa

kd depth of neutral axis corresponding to yielding of steel.

Kp plastic hinge length factor

ks spring stiffness

L centre to centre span

Ln clear span

Lp plastic hinge length

Lt bond transfer length

M bending moment

Ma ultimate moment at support

Mdes design moment

Mcl elastic envelope moment at left support

Memid elastic envelope moment at mid-span

MeR elastic envelope moment at right support

Mf factored elastic moment

Mmjn moment resistance corresponding to minimum area o f flexural

reinforcement 

M0 static span moment

Mr nominal moment o f resistance

MrL moment resistance o f a critical section at left support

Mrmid moment resistance o f a critical section at mid-span

MrR moment resistance o f a critical section at right support

Ms service elastic moment

Mtotai total span moment

Mu moment at ultimate load

Mx bending moment at a distance x from the support

My moment at first yield
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n modular ratio (Es/Ec)

P axial load

Po axial compressive strength o f member without bending moment

Pu axial load at ultimate

q uniformly distributed load

qP uniformly distributed load corresponding to formation o f first plastic hinge

qu uniformly distributed load at beam failure

qy uniformly distributed load at yielding o f steel

s centre to centre spacing o f the stirrups

Sb spacing o f longitudinal bars

Sm average crack spacing

Ti tension force in ith steel layer

V c shear carried by the concrete

v r shear resistance o f the beam

Vs shear carried by the stirrups crossing 45° crack

V sx shear carried by the stirrups crossing cracks within the distance dv

V x shear at a given section

wd uniformly distributed dead load

wL uniformly distributed live load

W f uniformly distributed factored load

Wj crack width at section i

x i yield safety parameter for section j

XLI left hand side region o f a cracked element in which xb -  xbi

XL2 left hand side region o f  a cracked element in which xb = xb2

X r i right hand side region of a cracked element in which xb = xbi

XR2 right hand side region o f a cracked element in which xb = xb2

X u depth o f compression zone at ultimate limit stage

z distance o f critical section to the point o f contraflexure

7 factor defining slope o f falling branch o f concrete stress-strain curve

a unfactored live load to dead load ratio
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a j ratio o f average stress in the rectangular compression block to the specified

concrete strength = 0.85-0.0015

P allowable percentage reduction in the elastic bending moment

Pc global factor to take into account the different ultimate concrete strains

Pl allowable percentage reduction in the left support elastic moment

Pmid allowable percentage reduction in the mid-span elastic moment

P„ 22.5 (global factor to take into account the non-linearity

Pr allowable percentage reduction in the right support elastic moment

Ps 0.0740 for high ductile steel, 0.0476 for normal ductile steel

Pi ratio o f the depth of stress block, a, to the depth of neutral axis at ultimate

0.97-0.0025 f,!.

y ratio o f adjacent spans

ec concrete strain

ecu ultimate concrete strain at extreme compression fibre

scy strain in concrete at the yielding of steel

Sksou concrete strain corresponding to 0.5 f^

£k50h additional concrete strain due to confinement at 0.5 f'

es steel strain

sSi steel strain for i steel layer

esm average steel strain

ssu ultimate strain in steel

8suk characteristic value o f steel strain at maximum strength (0.05)

8sUk* steel strain at ultimate taking into account tension stiffening

ssx steel strain at a given section

£syk characteristic steel strain at yield point

r| ratio o f shear carried by steel to the total shear (vs/vr)

0 rotation o f a section

0free unrestrained rotation

0P plastic rotation capacity

0PL plastic rotation capacity for one side o f hinge
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Qpreqd required plastic rotation capacity

9  rest restrained rotation

®R,pl plastic rotation capacity (din 1045)

9tu total inelastic rotation in length z

0 u ultimate rotation in plastic hinge length

e y yield rotation in plastic hinge length

Ki coefficient defining the influence o f the bond properties o f the bars

k 2 coefficient dependent on the distribution o f tensile stress within the section

1 limiting moment coefficient

Xq shear slenderness

!-t moment coefficient

ftd ductility moment coefficient

M<Ies design moment coefficient

f t f factored elastic moment coefficient

(-tied redistributed moment coefficient

l^s serviceability moment coefficient

P tension reinforcement ratio = as/bd
J

P compression reinforcement ratio = Aj/bd

Pb balanced reinforcement ratio = Ab/bd

P r ratio of the area o f tension steel to the effective area o f concrete, Acer

Pv volumetric percentage o f transverse steel = 2 ( b s + h s ) A vs/ b s o h s o S

<?s stress in steel for cracked element

f^scrL steel stress at left face o f the cracked element

f^scrR steel stress at right face o f the cracked element

O^smin minimum steel stress within the cracked element

Tb bond shear

^bave average bond shear stress

T-bl bond shear when fs<fy

^b2 bond shear when fs>fy

<t> curvature
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capacity reduction factor for concrete

plastic curvature

<1>S capacity reduction factor for steel

<t>u ultimate curvature

<t>x curvature at a given section

<j)y curvature at first yield

CO mechanical reinforcement index = A sfy /bdf^

C O ' mechanical compression reinforcement index = A 'fy//bdfj

cob mechanical reinforcement index at balanced condition = A ^ / b d f ^

®eff effective mechanical reinforcement index = (As -  A s )fv/b d f '
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1. INTRODUCTION

1.1 Introduction

This work considers moment redistribution and ductility o f indeterminate reinforced 

concrete structures. Moment redistribution occurs in reinforced concrete structures due to 

cracking o f concrete and yielding of steel. Moment redistribution can be used to reduce 

the design moments in indeterminate reinforced concrete structures. Today the focus of 

our work is not only the design and construction of new structures but also the evaluation 

and rehabilitation of existing structures. Moment redistribution can be used to tap into the 

reserves o f strength which otherwise could not be rationalised by the elastic methods of 

analysis. CSA A23.3-94 provisions for moment redistribution are conservative and do not 

account for the effect o f the main parameters. A need exists for a ductility model that can 

assess the allowable moment redistribution in reinforced concrete structures and provide 

a more rational limit than the current standard limit.

The actual behaviour o f reinforced concrete is non-linear. As a result, elastic analysis 

does not predict the behaviour o f reinforced concrete structures at ultimate. For redundant 

concrete structures, there is a reserve o f strength that can be best utilised through non­

linear analysis and design. A number o f non-linear analysis and design methods exist. 

These are often referred to as the limit design methods. True non-linear-analysis methods 

are generally not used in design practice due to complexity o f the analysis procedures. 

Since these methods utilise all the strength reserves, there is also a concern among the 

design engineers about the safety margins provided by these methods.

Moment redistribution is a form o f non-linear analysis in which the calculated elastic 

bending moment at a critical section may be reduced or increased provided that the 

bending moments in the adjoining critical sections are increased or decreased to satisfy 

equilibrium for the loading case under consideration. Since the load cases that give the 

maximum moments at support are usually different from those which give the maximum 

moments at mid-span, allowing for moment redistribution reduces maximum negative
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and maximum positive moments o f the elastic moment envelope. This results in a 

reduction in the amount o f flexural reinforcement required and congestion of 

reinforcement at supports locations.

Recognizing the non-linear behavior of concrete structures at the ultimate load stage, 

structural design standards allow limited redistribution o f elastic moments. There are 

several issues that need to be addressed regarding the use o f such relations. The following 

outlines the issues related to the provisions o f the Canadian standard (CSA A23.3-94) in 

particular.

(1) The CSA A23.3-94 limit for allowable moment redistribution is conservative 

compared to most design standards. It gives a maximum allowable moment 

redistribution o f 20%. British (BS8110-1988) and European (CEB-FIP Model 

Code-1990) design standards allow up to 30% moment redistribution, while the 

Danish standard (DS411-1986) allows as much as 66% moment redistribution. 

Japanese standards (JSCE-1986) set an upper limit o f 15%. Thus significant 

differences exist among the design standards on the amount o f allowable moment 

redistribution.

(2) CSA A23.3-94 assumes that (3 is only a function o f the c/d ratio. As the literature 

review will reveal, this is not true. The amount o f moment redistribution depends 

upon the plastic rotation capacity, which in turn depends upon a number o f other 

factors. Some o f the important factors identified in the literature include; structure 

geometry, loading, presence of shear cracks, bond-slip relationship, concrete 

confinement, and material constitutive relationships.

(3) CSA A23.3-94 places a restriction on the increase in moment, while performing 

moment redistribution. Since increasing the design moment above the elastic 

moment does not pose any ductility demand on the section, this restriction is 

unwarranted.

2
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There is a need to improve the provisions o f A23.3-94. Furthermore, the revised moment

redistribution provisions can be used to improve the approximate frame analysis

coefficients in section 9.3.3 of A23.3-94.

1.2 Research Objective and Scope

The research objective is to develop a rational moment redistribution provision, suitable

for incorporation in the design standard.

The following scope o f work is identified.

(1) Perform an analytical assessment of CSA A23.3-94 provisions for moment 

redistribution to demonstrate the need for a rational ductility model.

(2) Develop a comprehensive analytical model for computing the plastic rotation 

capacity and detennining the allowable limit for moment redistribution.

(3) Perfonn a parametric study to understand and quantify the effects o f different 

parameters on allowable moment redistribution.

(4) Evaluate the moment redistribution limits with respect to the ductility limit 

condition.

(5) Evaluate the moment redistribution limits with respect to the serviceability limit 

condition.

(6) Develop alternate equations for moment redistribution by considering both 

ductility and serviceability limit conditions. These equations would reflect the 

effects o f various parameters in addition to the c/d ratio.

(7) Derive moment coefficients for flexural design o f  continuous beams.

3
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(8) Examine the need for pattern load analysis in continuous reinforced concrete 

beams.

The scope o f work is limited to reinforced concrete beams and braced frames subjected to 

static gravity loads only. Lateral load analysis and stability consideration are beyond the 

scope of this work.

1.3 Outline of the Thesis

As with all research, the search for a solution started with a review o f existing literature. 

An overview o f the existing literature on moment redistribution and ductility of 

reinforced concrete continuous beams is presented in Chapter 2. The purpose o f the 

review is to identify the important parameters affecting ductility and moment 

redistribution and review the concepts that will be used later in the thesis to develop the 

analytical model. A critical review o f the existing provisions for moment redistribution in 

different design standards is also done to point out the discrepancies and deficiencies 

associated with these provisions. Anomalies in the A23.3-94 requirements for moment 

redistribution are especially pointed out.

Chapter 3 examines the standard (CSA A23.3-94) limit for moment redistribution and 

assesses the need for a ductility model that can provide a realistic estimate o f plastic 

rotation capacity and allowable moment redistribution in continuous reinforced concrete 

beams. Ductility equations from plane-section analysis, combined with classical 

equilibrium methods o f analysis and subsequent hinge moment analysis, is used to 

establish the allowable c/d for given amount of moment redistribution.

An analytical model is developed in Chapter 4 to predict the plastic rotation capacity and 

moment redistribution limit o f reinforced concrete sections. The model is developed by 

considering the mechanics o f reinforced concrete, constitutive laws, which include a 

bond-slip law that allows computation o f stresses and strains within the cracked elements. 

An effort is made to incorporate all the important variables identified in the literature

4
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review, especially beam slenderness, concrete confinement, ultimate concrete strain, steel 

ductility, shear cracking, and type of loading.

A parametric study is done in Chapter 5 to understand and quantify the effects o f various 

parameters on plastic rotation capacity and allowable moment redistribution. The study is 

carried out using the model developed in Chapter 4. The parametric study provides 

guidelines for safe incorporation of moment redistribution in design practice. The data 

generated from the parametric study is used to develop a set o f  ductility-based empirical 

equations for allowable moment redistribution.

Although ductility condition may allow very high amount o f moment redistribution under 

favorable conditions, the serviceability limit-state must be checked to establish an upper 

limit on allowable moment redistribution. In Chapter 6, moment redistribution limits are 

determined by evaluating the maximum elastic service load moments at critical sections 

under different load combinations, adjacent span ratios, and live load to dead load ratios. 

Empirical equations for allowable moment redistribution are derived considering both 

serviceability and ductility requirements.

Redistributed design moment coefficients are derived in Chapter 7 by considering the 

ultimate limit-state and the serviceability limit-state. The effects o f  pattern loads, span 

configurations and live load to dead load ratios are considered. The maximum 

coefficients from the two provide the design moment coefficients.

The need for pattern load analysis is assessed in Chapter 7 to detennine i f  continuous 

reinforced concrete beams can be analyzed and designed for a single load case. This is 

accomplished by comparing the maximum elastic moments from a non-pattem single 

load analysis with the redistributed design moments from pattern load analysis.

Chapter 8 presents a summary of the research, conclusions, and recommendations for 

future research.
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2. LITERATURE REVIEW

2.1 Introduction

This chapter reviews the concepts and literature on the behaviour of reinforced concrete 

structures that will be used and referred to in the remainder o f the thesis. A review o f the 

classical methods o f non-linear analysis provides a tool for initial assessment and 

comparison o f standard (CSA A23.3-94) limit for moment redistribution. A review of the 

existing ductility models identifies the major parameters influencing allowable moment 

redistribution. A review o f the concrete stress-strain models helps selecting a constitutive 

relationship for modelling the behaviour o f confined concrete. A review o f the moment 

redistribution provisions o f different standards provides a notion o f differences among 

these standards on this subject matter.

2.2 Classical Methods For Non-Linear Design of Concrete Structures

Reinforced concrete is not an elastic material and hence the application o f elastic analysis 

concepts to reinforced concrete structures is a matter of pure convenience. Even if  the 

elastic behaviour may be accepted as an idealised model for statically determinate 

reinforced concrete members, such a model can not reflect the actual behaviour o f 

redundant structures. Redundant structures, subjected to a large number of loading 

conditions, have strength reserve that can be utilised through non-linear methods o f 

analysis.

Elastic theory o f concrete structures can not provide answers to such questions as; what is 

the behaviour o f a structure after the yield occurs at a critical section? What is the load at 

which a redundant reinforced concrete structure actually collapses? What is the deflection 

o f a structure on the verge o f its collapse? Answers to such questions can only be 

provided through inelastic methods o f  analysis.
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Fundamental concepts and theories o f the non-linear analysis o f reinforced concrete 

structures were developed in late fifties and sixties (Baker 1956, Maachi 1960, Sawyer 

1964, Cohn 1964). These methods of non-linear analysis are often referred to as the 

“limit design” methods.

The limit design approach allows any distribution o f bending moments at ultimate load to 

be used, provided the following conditions are met (Park and Paulay 1975).

1. The distribution o f bending moments is statically admissible. That is, the bending 

moment pattern chosen does not violate the laws of equilibrium for the structure as a 

whole or for any part o f it.

2. The rotation capacity o f the plastic hinge regions is sufficient to enable the assumed 

distribution o f moments to be developed at the ultimate load. That is, the required 

plastic rotations at critical sections do not exceed the available plastic rotations, for 

all possible loading schemes.

3. The cracking and deflections at the service load are not excessive.

The requirements of items 1 to 3 can be stated as limit equilibrium, rotation 

compatibility, and serviceability (Park and Paulay 1975). Most limit design methods 

consider one or two of these conditions initially, the remaining condition or conditions 

being the object of a subsequent check.

In proceedings o f the International symposium on Non-linear design o f concrete 

structures, Cohn (1979) classified the limit design methods into two broad classes, 

depending on the way they satisfy the three fundamental requirements. The 

“ c o m p a t i b i l i t y  m e t h o d s ” are essentially concerned with the satisfaction of equilibrium 

and rotation compatibility at ultimate load and require a subsequent check of 

serviceability. The “ e q u i l i b r i u m  m e t h o d s ” are primarily concerned with the satisfaction
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of equilibrium and serviceability and require a subsequent check of rotation 

compatibility.

Classical inelastic methods in the compatibility group have been proposed by Baker 

(1956), Macchi (1960), and Sawyer (1964). Methods in the equilibrium group have been 

proposed by Cohn (1964, 1968), and Furlong (1970). The following presents a brief 

review o f some of the limit design methods, done by Park and Paulay (1975) and Cohn 

(1979).

2.2.1 Compatibility methods

Compatibility methods satisfy, in the first place, the equilibrium and rotation 

compatibility o f critical sections under ultimate loads. The serviceability criterion is not 

considered initially and is a matter o f subsequent checks. The compatibility methods aim 

at controlling the deformation capacity o f structures, for the worst loading combinations, 

at the ultimate limit state. Various authors differ on two major assumptions; the idealised 

behavioural model o f  reinforced concrete sections and the definition o f the ultimate state.

Baker (1971) adopted the bilinear moment-curvature relationship, as shown in Fig. 

2.1(a), with points A and B corresponding to the incipient yielding of the tension steel 

and the crushing of the compression zone of concrete, respectively. Baker assumed that 

the ultimate limit-state o f a structure is reached when it develops a collapse mechanism 

by the fonnation of a sufficient number o f plastic hinges.

The design is commenced by detennining a distribution o f ultimate bending moments, 

which is in equilibrium with the ultimate loads. This may be obtained by drawing the free 

bending moment diagram for the members supporting the ultimate loads when the ends 

are free o f rotational restraint, and drawing the fixing moment line at some convenient 

position, as shown in Fig. 2.2. The sections are reinforced for those ultimate moments. 

Note that a collapse mechanism has developed at the ultimate load. The rotation capacity 

o f the plastic hinge regions is then checked to ensure that the chosen distribution of 

bending moments can be developed at the ultimate load. The pattern o f moments at the
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service load is determined and the stresses checked to ensure that the members are 

serviceable. The assumed distribution o f ultimate moments may need to be modified if 

inadequate rotation capacity or unsatisfactory serviceability is found.

Sawyer (1964) adopted the bilinear model, as shown in Fig. 2.1(b), with points C and D 

corresponding to the elastic and ultimate limit states o f the section, respectively. The 

carrying capacity of a structure is reached when at least one o f its critical sections is 

defined by point D in Fig. 2.1(b). Sawyer proposed that the statically indeterminate 

beams and frames be designed for suitably low probabilities of failure for two failure 

stages. One stage would be crushing-spalling o f concrete and the other would be wide 

cracking o f concrete.

The method uses a rotational compatibility analysis indirectly by adjusting the elastic 

envelope moments obtained from the various design-loading combinations at ultimate 

load, to establish a bending moment pattern for which reinforcement is provided. For 

each possible loading combination at ultimate load, using any set o f adjusted moments 

that satisfies static equilibrium and falls within the ultimate resisting moments o f  the 

sections, the inelastic rotations at all plastic sections are calculated. A moment-curvature 

curve with a yield moment of 0.85 of the ultimate moment is assumed. Elastic theory is 

then used to calculate the moments resulting from these inelastic bending angles and the 

external loading imposed on the structure. If the calculated moments exceed the ultimate 

resisting moments o f the sections, the reinforcement is revised by adding reinforcement 

to regions in which the ultimate moment is exceeded or to regions in which the inelastic 

angle developed is excessive. The moments introduced by the inelastic angles and the 

external loading are recalculated, and the reinforcement is adjusted, until the adequacy of 

the ultimate moments o f resistance has been demonstrated. The design is then checked by 

elastic theory to ensure that the steel stresses and cracks at service load are not excessive.

2.2.2 Equilibrium methods

Equilibrium methods o f analysis satisfy equilibrium and serviceability criteria in the first 

place while compatibility is a matter o f subsequent checks. These methods aim at
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ensuring convenient margins o f safety against local section failures and against structural 

collapse. The main aspects o f equilibrium methods may be summarised as follows.

(1) Under-reinforced concrete sections are idealised by the elastic-plastic model, as 

shown in Fig. 2.1 (a).

(2) Design moments are defined as percentages o f the corresponding elastic envelope 

moments calculated for the ultimate loads.

(3) A satisfactory criterion for the ultimate limit state is required to provide safety 

against any possible mode of plastic collapse.

(4) An appropriate serviceability criterion is required to provide sufficient safety against 

yielding, cracking, and deflection when subjected to worst loading combination.

Cohn (1964, 1968) developed a limit design method based on the requirements of limit 

equilibrium and serviceability. In this method, the solution is obtained by scaling down 

the elastic envelope moments obtained from the various ultimate load combinations, by 

multiplying by appropriate parameter Xj < 1, where Xj is the yield safety parameter for 

section j. The value o f xj is set by the following requirements: at service load, the critical 

sections o f the frame must remain in the elastic range; at the ultimate load, the internal 

forces must be in equilibrium with the external loads and one or more collapse 

mechanisms must form; and the overall moment reductions from the elastic envelope 

must be a maximum. A typical design seeks the minimum value for Xj consistent with 

acceptable service load behaviour and the equilibrium conditions at the ultimate load. 

The sections are designed on the basis o f  the determined distribution o f bending 

moments, and the plastic hinge regions are checked to ensure that they have sufficient 

rotation capacity to develop the assumed moment redistribution at the ultimate load.

Furlong (1970) developed a limit design method that involved assigning ultimate 

moments for structures braced against side sway. The worst cases o f different types and
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arrangements o f  loading on various arrangements o f  spans were analysed by Furlong to 

determine the possible patterns of design moments in continuous beams that would 

satisfy the requirements of serviceability and limit equilibrium. Then the plastic rotations 

resulting from these distributions o f ultimate moments were analysed to determine the 

curvature ductility requirements. The possible distributions o f design moments so found 

were used to derive the moment coefficients and a simple equation was given for 

curvature ductility requirements.

d> L
—  > 1 + 0.25—̂  [2.1]
<f»y d

where

(j)u = ultimate curvature 

<(>y = curvature at first yield 

Ln = clear span 

D = effective depth o f section.

Later, Furlong and Rezende (1979) proposed an alternate system of moment coefficients 

and equations for determining beam shears and beam and column moments in order to 

determine design values for beams and one way slabs in braced frames. This alternate set 

o f analysis coefficients can be applied to a broad range o f structures involving live to 

dead load ratios as high as five and almost any combination of span lengths. The alternate 

system is derived with requirements that every component is ductile and strong enough to 

resist a minimum limit state of strength, with provisions that no reinforcement will yield 

under any service limit state o f loading.

Modem equilibrium methods are those proposed by Marti (1999). Marti proposed a 

simple consistent approach to the design o f plain, reinforced and prestressed concrete 

structures. It utilises both static (lower bound) and kinematic (upper bound) methods o f 

limit analysis. The static method uses discontinuous stress fields and a truss model (Marti 

1991) to model the flow o f forces within the member and is particularly suitable for new
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structures. The method allows for some assumed level o f redistribution. The kinematic 

method on the other hand enables quick check of essential dimensions and details of an 

existing design or structure. In the kinematic method the concrete is treated as an 

isotropic, perfectly plastic material, and the governing failure mechanisms are derived by 

using the Mohr-Coulomb failure envelope (Marti 1980).

According to Marti, after cracking the structural response is governed mainly by the 

tension chord deformations. The tension chord model developed by Marti et al. (1998) 

permits a unified treatment of the problems o f cracking, minimum reinforcement, tension 

stiffening, defonnation capacity and permissible redistribution o f forces and moments. 

The cracked membrane model (Kaufmann and Marti 1998) combines the basic concepts 

of modified compression field approach and the tension chord model to predict the 

behaviour o f cracked members.

Marti pointed out that the response o f the structure changes with the loading history 

because the member starts cracking at earlier loads. However, provided that sufficiently 

ductile behaviour is ensured, ultimate strengths are unaffected by the loading and 

restraining history. Hence, to obtain reliable results from limit stress analysis, the 

ductility o f the structure must be ensured through the selection o f appropriate materials, 

as well as adequate dimensioning and detailing of the structures. Marti indicated that the 

behaviour o f a structural member under service loads could be improved by prestressing 

some o f the reinforcement.

2.3 Arbitrary Moment Redistribution

The “arbitrary redistribution o f moments” is an alternate method o f inelastic design that 

has gained more acceptance than the limit design methods. In moment redistribution, the 

calculated elastic bending moment at a critical section may be reduced or increased 

provided that the bending moments in the adjoining critical sections are adjusted 

appropriately to maintain equilibrium for the loading case under consideration. Figure 2.3 

illustrates the adjustment in the elastic bending moment diagram for a two-span 

continuous beam (Park and Paulay 1975). Since the load cases that give the maximum
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moments at support are usually different from those which give the maximum mid-span 

moments, allowing for moment redistribution will result in reduction of maximum 

negative and maximum positive moments as compared to the elastic moment envelope.

There are two main advantages associated with the use of moment redistribution; the 

designer can select patterns of bending moment that avoid congestion o f the 

reinforcement at the supports of beams, and improved economy from the reduction o f the 

peaks o f the elastic bending moment envelope. If  large adjustments to the peak bending 

moments in Fig. 2.3 can be made, significant savings will result, particularly if the ratio 

o f live load to dead load is high.

2.4 Moment Redistribution Provisions in Design Standards

Design standards recognise the non-linear behaviour of reinforced concrete and 

acknowledge it by allowing some moment redistribution from an elastic analysis. 

Different formulae for the redistribution of elastic moments have been proposed by 

various standards of practice. A summary of such formulae is presented here:

I. A C I318-95

(3 =  20
f  ' \
J-PZE

v Pb J

[2.2]

But, p -p ’ should not exceed 0.5pb 

where,

(3 = amount o f moment redistribution expressed as a percentage of the elastic moment

p = tension reinforcement ratio = A s /bd

p = compression reinforcement ratio = A j/b d

A s = tension reinforcement

Aj = compression reinforcement
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Pb = reinforcement ratio under balanced conditions

II. CSA A23.3-94

B = 3 0 -5 0 — < 20% 
d

[2.3]

where

c = the depth o f neutral axis

d = the effective depth of the section.

III. BS 8110-85

P  =
/
0 .6 - -

d\
xlOO < 30% [2.4]

For structures more than four storeys high, in which the frame provides the lateral 

stability, the reduction in moment is restricted to 10%.

IV. CEB Model Code 1990

For concrete strengths between 12 MPa and 35 MPa

0 .5 6 -1 .2 5 -
d

xlOO [2.5a]

For concrete strengths between 40 MPa to 60 MPa

p =  0 .4 4 -1 .2 5 - xlOO [2.5b]

For continuous beams and non-sway frames
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0 < (3 < 30%

For sway frames 

0 < (3 < 10%

V. Din 1045-78 (German)

P < 15%  [2.6]

VI. JSCE-1986 (Japan)

P < 15% [2.7]

when, p -  p < 0.5pb

VII. DS 411-1986 (Danish)

[3 < 66% [2.8]

when cg < to,,

where

© = mechanical reinforcement index ( Asfy//bdf! )

©b = mechanical reinforcement index under balanced conditions.

2.5 Review of Codes Provisions For Moment Redistribution

Figure 2.4 gives a graphical representation of all the standards formulae presented above. 

The comparison shows that significant differences exist, among the various design 

standards, on the amount o f allowable moment redistribution. The Japanese and the 

German standards are most conservative, allowing only 15% moment redistribution. The
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American Standard (ACI 318-95) allows a maximum o f 20% moment redistribution for 

(p -p )  = 0 (equal amount o f tension and compression reinforcement) and the 

redistribution limit decreases linearly to 10% as the reinforcement ratio reaches half o f 

the balanced value. The Canadian Standard (A23.3-94) allows a maximum of 20 % 

moment redistribution which reduces linearly from 20% at c/d = 0.2 to 0% for c/d = 0.6. 

The British Standard and the CEB Model Code are more liberal as they allow a 

maximum o f 30% moment redistribution, depending upon the c/d ratio.

The most liberal o f the above standards is the Danish standard (not shown in Fig. 2.4) 

that allows a maximum moment redistribution o f 66%, with the only restriction that the 

reinforcement index is less than the balanced value. This may look too generous, 

however if  the conclusions of Macchi (1960) and others are remembered in that high 

moment redistribution is possible due to flexural cracking and compatibility, then the 

progressive recommendation o f the Danish standard may be within the realm of 

possibility for certain structures.

Cohn and Lounis (1991) raised the concern that these standard formulations are aimed 

only at satisfying the compatibility criterion along with the equilibrium at the ultimate 

limit-state. No condition that satisfies the serviceability (crack width, deflection, 

allowable stresses) is specified and no consideration is given to live load to dead load 

ratio and the degree o f prestressing. Furthermore because o f the significant differences in 

the partial safety factors adopted on the loads and materials, completely different 

conditions at both ultimate and service loads are reached when the same amount o f 

moment redistribution is allowed for by various standards. The relative depth o f neutral 

axis calculated for each individual standard would be different and so is the factored 

moment capacity o f critical section. The ultimate concrete strains vary from one standard 

to another. The concrete stress blocks, for section analysis at ultimate limit-state, adopted 

by various standards are also different. Hence the allowable moment redistribution 

proposed by different standards is related to the specific design parameters.
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Cohn and Lounis (1991) pointed out the following major differences between various 

design standards:

1. The CSA and CEB-FIP standards consider the redistribution to be independent o f the 

degree o f prestressing. This implies that both reinforced concrete (RC) and 

prestressed concrete (PC) can accommodate the same amount o f moment 

redistribution, a conclusion that can be justified from ductility point o f view, but not 

from a serviceability point o f view. Allowing moment redistribution for a high 

degree o f prestressing may violate the crack width requirement, especially for lightly 

reinforced members.

2. The ACI and BS standards implicitly consider the moment redistribution as a 

function of y (mixed reinforcement index) by giving different formulae for the two 

extreme cases o f RC and PC. Both ACI and BS allow less moment redistribution for 

PC than RC, which may be understood to reflect the more severe service condition 

imposed on PC structures. In the BS standard the maximum moment redistribution 

decreases from 30% for reinforced concrete to 20% for prestressed concrete.

3. In the CSA, ACI and CEB-FIP standards, the moment redistribution is a function of 

concrete grades; for high strength concrete the permissible moment redistribution is 

reduced in all three standards. However this reduction is very small in the ACI and 

CSA standards, while it is considerable in the CEB-FIP standard. In the BS standard, 

the same amount o f  moment redistribution applies for both low and high concrete 

grades.

Experimental studies conducted by Mattock (1959) showed that redistribution of bending 

moments by up to 25% does not result in performance (cracking and deflection) inferior 

to that o f the beams designed for the distribution of bending moments predicted by elastic 

theory.
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The review of standards provisions on moment redistribution reveals that design 

standards consider c/d ratio or reinforcement index as the only parameter influencing the 

amount o f moment redistribution. Research has shown that although c/d ratio is an 

important factor influencing moment redistribution, it is not the only factor governing 

moment redistribution. The review of the ductility models for plastic rotation capacity, 

which follows, reveals other important factors that influence the plastic rotation capacity 

and the amount o f moment redistribution in reinforced concrete structures.

2.6 Existing Ductility Models

The amount o f moment redistribution that can be allowed at a section depends upon the 

plastic rotation capacity o f that section. Several experimental and analytical studies have 

been conducted to assess the plastic rotation capacity, 0P, and allowable moment 

redistribution, J3, of reinforced concrete sections. This section reviews the main phases in 

the development o f calculation models for deformation capacity of reinforced concrete 

members.

2.6.1 Constant curvature models

The classical expressions for plastic rotation capacity, 0P, in the literature were o f the

type:

=  (<t>. -<t>y )l p [2.9]

which could be rewritten as:

r c
"cu cy r

c kd p
[2 .10]

V /

where

(j)y = curvature at yield 

(j)u = curvature at ultimate
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Lp = effective hinge length 

Ecu -  strain in concrete at ultimate 

£cy = strain in concrete at the yielding o f steel 

kd = depth o f neutral axis corresponding to yielding of steel, 

c = depth of neutral axis at ultimate moment resistance

The above equations give an idealised plastic rotation capacity by considering constant 

curvature over an effective plastic hinge length. The concept o f this idealised plastic 

rotation is described in various texts (Park and Paulay 1975) and is elaborated in Fig. 2.5. 

The figure shows part o f a reinforced concrete beam that has reached the ultimate 

curvature and bending moment at the critical section. End A of the member, for example, 

is the free end of a cantilever or a point o f contraflexure, and end B is a column face. The 

distribution of curvature along the member is apparent. The region of inelastic curvature 

is spread over a length of beam in which the bending moment exceeds the yield moment 

of the section. The curvature fluctuates along the beam because o f the increased rigidity 

of the member between the cracks. Each o f the peaks o f curvature corresponds to a crack 

location. The actual curvature distribution at ultimate can be idealised into elastic and 

inelastic regions, as shown in Fig. 2.5c. The shaded area o f Fig. 2.5c is the inelastic 

rotation that can occur at the plastic hinge in the vicinity o f the critical section. Thus, the 

shaded area represents the plastic rotation that occurs in addition to the elastic rotation at 

the ultimate stage of the member. The inelastic area at the ultimate stage can be replaced 

by an equivalent rectangle o f height (<j)u—cj)y) and width Lp, having the same area as the 

actual inelastic curvature distribution. The width Lp is the effective length of the plastic 

hinge over which the plastic curvature is considered to be constant. Using moment area 

theorem, the plastic rotation equals the area o f the curvature diagram and the resulting 

equation is exactly o f the same form as Eq.2.9 or Eq. 2.10.

To estimate 0P from Eq. 2.9, the effective plastic hinge length Lp is required. 

Investigators have proposed various empirical expressions for the effective plastic hinge 

length and the maximum concrete strain 8cU at ultimate curvature. Baker and Amarakone 

(1964) conducted one o f the first large scale investigations to explore the parameters
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affecting rotation capacity o f concrete sections. The experimental program was 

conducted with the collaboration o f several universities and research institutes. The prime 

variables investigated were the compressive strength o f concrete, the yield strength of the 

reinforcement, the relative amounts o f longitudinal and transverse reinforcement, the 

presence o f axial and shear force, and the type o f loading the sections were subjected to. 

Two types o f load patterns were studied: a single point load at midspan and two point 

loads spaced at roughly one third o f the span. All beams were simply supported. In all, 

there were ninety-four beams for which results were correlated. The cross-sections o f the 

beams varied between 150mm x 200mm and 300mm x 300mm. The concrete 

compressive strength ranged from 17 MPa to 40 MPa, the yield stress o f the 

reinforcement from 270 MPa to 590 MPa. The relative amounts o f  tensile, compressive 

and transverse reinforcement ranged from 2.5% to 65.7%, 0.96% to 24.8%, and 0.051% 

to 1.51% respectively, with the tensile and compressive reinforcement percentages being
l

expressed in terms o f the reinforcement index ( c o = p fy / f c). The span lengths varied

from 1.4 m to 2.9 m. Sixty-two beams were tested in pure flexure while the remaining 

thirty-two were subjected to an additional axial force. Approximately half o f the beams 

tested were reinforced with mild reinforcement, the remaining with cold rolled 

reinforcement. For members subjected to an axial load, the ratio o f the neutral axis depth 

to the effective section depth was held constant throughout the test. As the axial load was 

increased, the bending moment was adjusted accordingly.

The authors gave the following equation for Lp, for members with unconfined concrete, 

based on the initial assessment o f the test results:

L p = k ,k 2k ;
/ , V /4

[2.11]

where,

ki = 0.7 for mild steel, 0.9 for cold rolled steel

k2 = l+0.5Pu/Po, where Pu = axial compressive force in member and P0 = axial 

compressive strength of member without bending moment
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k3 = 0.6 for a concrete cube strength o f 40 MPa, 0.9 for 15 MPa

z = distance o f critical section to the point o f contraflexure

d = effective depth of member

For use o f above equation in conjunction with Eq. 2.10, the value o f £cU = 0.0035. The 

authors concluded that for the range o f span/d and z/d ratios normally found in practice, 

Lp lies in the range between 0.4d and 2.4d.

After correlation of the test data, the authors proposed a revised expression for computing 

the plastic rotation capacity o f members confined by transverse steel.

ps = volumetric percentage o f transverse steel 

f ’ = compressive strength of concrete in psi.

The major conclusions that the authors drew from the correlated data were:

(1) The compressive strain in concrete at ultimate is the major parameter influencing 

the plastic rotation capacity.

(2) It is better to use a tri-linear moment-curvature relationship rather than the usual 

bilinear model.

(3) Confined concrete is more ductile than the unconfined concrete.

[2.12]

where

£cy = 0.002 or the actual calculated value

£ = 0 .0 0 15<l 1.45 + 1.5o +(0.7 —O.lo ) [2.12a]
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(4) It can be dangerous to apply plastic theory to reinforced concrete frames without 

checking hinge rotations.

(5) It is possible to achieve high rotations and moments redistribution by suitable 

detailing.

(6) Long-term creep has a favourable effect with regard to the distribution of bending 

moments.

Mattock (1964) carried out a series of tests to investigate the rotation capacity o f hinging 

regions in reinforced concrete members. In all, 37 beams were tested. The following 

variables were considered: compressive strength o f concrete (28 MPa to 41 MPa), yield 

strength o f reinforcement (325 MPa and 414 MPa), relative amounts o f longitudinal 

reinforcement (1% to 3%), effective depth o f beam (254 mm and 508 mm), span o f beam 

(1397 mm, 2795 mm, and 5588 mm), and distance from point o f maximum moment to 

point o f zero moment. All the beams tested were 152 mm wide. Most of the test 

specimens were simple-span beams subjected to a concentrated load at mid-span, to 

simulate the distribution of bending moments adjacent to an interior support in a 

continuous beam. For reference purposes, six additional specimens were tested as simple- 

span beams with equal concentrated loads applied at each third point. Following 

conclusions were drawn from the test results:

(1) The ultimate curvature decreases with an increase in percentage o f the tensile 

reinforcement.

(2) The ultimate curvature decreases with an increase in the ratio c/d.

(3) The maximum compressive strain in concrete can be very much in excess o f the 

usually assumed value o f 0.003. For most test specimens, the maximum concrete 

compression strains recorded were in excess o f 0.01. In a few specimens the 

maximum concrete compressive strains recorded were in excess o f 0.02. Mattock
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(1964) proposed the following tentative equation for computing the maximum 

compression strain in concrete:

e cu =0.003 + — [2.13]
z

where z is measured in inches. Mattock himself pointed out that the above equation 

is not dimensionally consistent and is a subject of further refinement, as additional 

test data become available.

(4) The inelastic deformations extend at least a distance d/2 on either side of the section 

of maximum moment. The extent to which plasticity extends beyond the distance 

d/2 from the point o f maximum moment depends primarily on the ratio z/d and the 

amount o f flexural reinforcement at the section. The plastic hinge length was found 

to increase with increase in the ratio z/d, for beams with the same amount o f flexural 

reinforcement.

(5) The influence o f the range of stirrups spacing, considered in the tests (64 mm, 127 

mm, and 254 mm), on the maximum concrete compression strain was found to be

Mattock adopted a conservative value o f d/2 as the plastic hinge length, to each side of 

the critical section, and proposed following equation for computing the total inelastic 

rotation in the hinging region:

negligible.

[2.14]

where,

0tu = total inelastic rotation in length z 

0U = inelastic rotation in length d/2

23

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



co = tension reinforcement index = pfy J f ' c 

co = compression reinforcement index = p’fy j f̂

CDb = balanced tension reinforcement index = pbfy/ f '

p, p , and pb are the tension reinforcement ratios, compression reinforcement ratios, and 

balanced tension reinforcement ratios respectively.

Based on his findings, Mattock suggested that complete redistribution o f moments might 

be assumed to occur in continuous beams, provided the net tension reinforcement index 

at critical sections is kept below 0.5ce>b.

Sawyer (1964) proposed following expression for the effective plastic hinge length, based 

on the interpretation o f existing test results:

Lp = 0.25d + 0.075z [2.15]

This equation is based on the assumptions that the maximum moment in the member is 

the ultimate moment, that My/Mu = 0.85, and that the zone o f yielding is spread d/4 past 

the section in which the bending moment is reduced to My.

Corley (1966) designed his test series as a continuation to that o f Mattock. For the test 

series, the specimen size ranged from 75 mm x 125 mm to 300 mm x 750 mm, the 

concrete compressive strength from 28 MPa to 40 MPa, the yield strength o f the steel 

reinforcement from 300 MPa to 550 MPa, and the span lengths from 0.9 m to 8.4 m. In 

all 40 simply supported beams were tested to examine the effect o f cross section size, and 

o f  transverse reinforcement volume on the rotational capacity o f reinforced concrete. 

Corley noted from Mattock’s test series that the rotations were greater for a beam 

subjected to shear, in addition to moment, as opposed to one subjected to a constant 

moment with zero shear. From his own work Corley noted that the effect o f size o f the 

specimen did not seem to have a great deal o f influence on the rotational capacity. He
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also noted that a beam with closely spaced stirrups develop greater rotation capacity than 

a beam with fewer stirrups. Corley pointed out that a premature shear failure would 

drastically reduce the rotation capacity o f a beam and hence it is necessary to provide 

proper shear reinforcement to develop full rotation capacity.

From the test results, Corley proposed the following expression for the effective length of 

the plastic hinge:

He also suggested the following as a lower bound for the maximum concrete strain:

where all the notations have the same meanings as described before, b is the beam width, 

and fy is expressed in ksi. The plastic rotation may be computed by substituting these 

values for Lp and ecu into Eq. 2.10.

Mattock (1967), in discussing Corley’s paper, suggested simpler forms o f Eq. 2.16 and 

Eq. 2.17 that fitted the trend o f the data reasonably well:

When using these values in strength calculations, the spalling o f the cover concrete at 

high strains was ignored and the ACI concrete compressive stress block parameters were 

employed. It was also emphasised that at large ultimate curvatures the steel strains are 

high, and the steel may be in the strain hardening range. The increased tensile force due

L =0.5d  + 0.2Vd -  
d

[2.16]

ecu = 0.003 + 0.02- [2.17]
z 20z

V /

Lp = 0.5d + 0.05z

e cu = 0.003 + 0 .02 -  + 0.2ps

[2.18]

[2.19]
z
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to strain hardening will increase the neutral axis depth and should be taken into account 

in calculating c; otherwise the ultimate curvature may be overestimated.

Dilger (1966) was the first to incorporate the effects of inclined shear cracks on plastic 

rotation capacity. As shown in Fig. 2.6, the rotation capacity was divided into two parts: 

the rotation due to bending, calculated from the section moment-curvature diagram, and 

the rotation due to the shear force effect, approximated using the shift in the tensile force 

line (rotation A and B in Fig. 2.6). In estimating the length o f the plastic area, which is 

activated due to shear cracks, the influence o f the crack inclination and of the angle 

between stirrups and beam axis was taken into account. The angle o f the inclined cracks 

was calculated according to the criteria o f minimum deformation energy. With such an 

approach an inclined-crack-dependent part o f the rotation capacity could be computed as 

a product of length o f the plastic hinge due to inclined cracks and the plastic curvature of 

the most strained section. Using a truss model and a compression strut angle o f 45°, 

Dilger showed that the shift in the tension force diagram due to inclined shear cracks is 

approximately d/2.

Dilger verified his method with several previously tested reinforced concrete beams and 

then proceeded to design a series o f two span T-beams for moment redistribution. Each 

beam was designed for a different amount o f moment redistribution. Each span o f the 

beam was subjected to a single concentrated load in the middle. Full redistribution of 

moment was achieved in almost all the specimens. What is even more interesting is that 

all o f the test beams were designed for a balanced failure and were thus not under­

reinforced. Other researchers considered under-reinforced members a necessity for 

achieving lull moment redistribution.

The following observations were made from the test series:

(1) Shear deformations made up approximately half o f the total defonnation.
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(2) It is unconservative to neglect the comparison between the available rotation 

capacity and that required for a given redistribution o f moments.

(3) High percentages o f moment redistribution can be achieved without slender 

members or ductile sections as long as one properly designs for shear and 

anchorage.

Later Abele (1974) showed that shear deformations in T-sections increase at a much 

higher rate in time than flexural deformations and that shrinkage has a major influence on 

the total deformation.

2.6.2 Variable curvature models

A further improvement in modelling the rotation capacity followed from the observation 

that deformations along the plastified part o f the member are discontinuous and that 

curvature is concentrated in the cracks, while the contribution o f the member parts 

between the cracks is very small (tension stiffening). This finding had important 

implications for the evolution o f calculation models. Consequently, the member 

deformations could not be calculated by simple integration, along the member axis, of the 

curvature diagram derived directly from the bending moment diagram. Plastic rotation 

had to be computed as a sum of the rotations o f cracked elements within the plastic hinge 

region. Rotation of each element followed from the integration o f strains along the beam 

element taking into account tension stiffening between cracks. The maximum plastic 

deformation (i.e. the maximum rotation capacity) was obtained when in the most stressed 

cracked beam element the steel stress reached the ultimate value or when the rotation 

angle that marked failure o f the concrete compression zone was exceeded. Good 

examples o f this type o f modelling are the models according to Eifler (1969) and 

Bachmann (1970).

While studying the influence of inclined cracking on the development o f plastic hinge 

rotation, refined methods o f discretization o f the hinge region were proposed. Figure 2.7 

schematically shows the discrete crack model proposed by Eifler (1969). In Fig. 2.8, the
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example o f bending and shear crack hinge discretization after Bachmann (1970) is given. 

Bachmann separated plastic hinges into two categories and noted that:

(1) Flexural crack hinges develop relatively small rotational capacities and are generally 

centred about one dominant crack; and

(2) Shear crack hinges develop much higher rotational capacities since the hinge length 

is extended because o f the fan-like pattern.

Bachmann tested ten two-span continuous beams; five with rectangular sections, and five 

with T-sections. The percentage of steel reinforcement was varied at critical sections such 

that two failure mechanisms were possible. Two o f the beams formed failure mechanisms 

with the first hinge forming in the span, while the remaining eight developed their first 

hinge over the central support. Eight o f the test beams reached a failure load that 

exceeded that which was predicted using the familiar bilinear moment-rotation 

assumption.

Bachmann developed equations for calculating the rotation o f a section depending upon 

the type o f crack pattern expected (flexure or shear). For example, for a flexural crack 

hinge:

W -
e  =  £ — ■*- [2 .2 0 ]

i = l  <1 — C

where w; is the crack width at a section, d is the effective depth, and c is the depth o f 

neutral axis. The crack width and spacing were determined through several equations 

relating bond stress, slip, and steel strain. The strain in the concrete between cracks was 

ignored. For a shear crack hinge the calculations were drawn from the well-known truss 

analogy.
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Bachmann concluded that the theories used by the ACI standard and researchers such as 

Corley and Mattock were unrealistic since they did not account for the effects o f  shear. 

Also, the bar length over which the tension reinforcement is yielded is considerably 

greater in shear crack hinges than in flexural crack hinges. The latter conclusion being the 

same as Dilger’s horizontal shift in the tension force diagram resulting from shear 

cracking.

Using the strut-and-tie approach Michalka (1986) proposed a truss-model, shown in Fig. 

2.9, to analyse the support region and determine the plastic hinge rotation capacity. 

Michalka concluded that shear deformation (compression of the struts) has a prominent 

influence on the rotation capacity only for very high shear stresses. Furthermore he 

emphasised that resistance against shear force, sufficient to prevent a premature failure, is 

required (e.g. by adequate stirrup reinforcement) in order to utilise the rotation capacity 

o f  plastic hinges. If shear failure occurs before the bending moment capacity is reached, 

the strain in the tension reinforcement and in the compression reinforcement is reduced, 

thus leading to a reduced plastic rotation. Therefore design and detailing provisions must 

ensure that the shear capacity o f a structure is well above the bending capacity, even 

when taking into account the usual over strength of tension reinforcement.

In the eighties and nineties extensive research on the ductility o f reinforced concrete was 

conducted in Europe and some interesting models were proposed for computing the 

plastic rotation capacity. A brief summary o f some o f the models is given below.

Model STUTTGART for calculating the rotation capacity o f reinforced and prestressed 

concrete was developed by Langer (1987) and extended by Li (1995). Langer emphasised 

that an accurate representation o f the material behaviour is an indispensable condition for 

a mathematical model that produces reliable results. Langer’s model was therefore based 

on a very accurate representation of the concrete and steel stress-strain relationships.

In Langer’s model, a statically determinate beam with a length equal to the distance 

between two adjacent points o f zero moment is cut out o f the real indetenninate system.
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The distribution o f moments along the beam is determined. If shear cracks are expected, 

the shifting of the tensile force is taken into account assuming an angle o f the inclined 

compression struts according to Dilger (1966). The curvatures at the location o f cracks 

and between the cracks are determined and integrated over the beam length to obtain the 

rotation capacity (see Fig. 2.10).

The Model NAPLES is related to the work o f Cosenza et al. (1991). The model is similar 

in principle to the one proposed by Langer (1987). The characteristics o f the model are:

(1) Because o f the slip between the two materials, the deformations o f concrete and 

steel in tension are different.

(2) the concrete in tension that collaborates with the steel is restricted to an effective 

area with constant stress.

(3) the Bernoulli hypothesis is assumed for compressed concrete and steel in tension.

(4) the distance between the flexural cracks is assumed constant.

The bending moment diagram is made considering a 45° diffusion of applied load to the 

centroidal axis, as shown in Fig. 2.11. The effect o f inclined cracking is taken into 

account by varying the bending moment diagram as shown in Fig. 2.12.

The ZURICH model is based on the work of Sigrist and Marti (1994). The model uses 

discontinuous stress fields to compute the distribution of forces in the member. A tension 

chord model is developed to determine the distribution o f bond-stress and steel strains 

over the member length. The curvatures at the crack location and between the cracks are 

determined using the steel strains, and are integrated over the plastic hinge length to 

obtain the plastic rotation capacity. Sigrist concluded that for steel with good ductility 

characteristics and normal strength concrete, moment redistribution o f up to 20% can be
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permitted without an explicit check o f rotation capacity provided that the c/d ratio is less 

than 0.333.

2.6.3 Other ductility models in literature

Researchers have presented various ductility models in an attempt to include the 

influence of important parameters on moment redistribution and ductility. Kemp (1981) 

proposed the following equation for moment redistribution that considers the effect o f 

beam slenderness in addition to the c/d ratio.

-xlOO

1+ K ' L
K 2 d((j)u/(j)y)- l_

[2.21]

where

K| = parameter depending upon the support conditions and loading (Ki = 1 for fixed 

ended beam under uniform load)

K2 = parameter that defines the effective plastic hinge length

For low reinforcement ratios, the above equation allows maximum moment redistribution 

as high as 62% of the elastic value.

Scholz (1993) conducted an analytical study to investigate the influence o f beam 

slenderness and stiffness variation along the span of a beam, on allowable moment 

redistribution. He proposed the following relationship:

c < _________ 1.33KC

M M * *  I2 '221
0.027 + 0.5(L/d)

where
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Isu = cracked moment o f inertia at the support 

Isp = cracked moment o f inertia at the span 

Iav = average cracked moment o f inertia.

Ecu = ultimate strain in concrete

In the above formula, no upper bound on the percentage o f moment redistribution is 

imposed from strength considerations. Scholz, however, recognised that deflection and 

cracking under service loads would introduce a variable limit in this regard.

Riva and Cohn (1994) developed a non-linear analysis model based on realistic materials 

laws. The model was then used to carry out parametric study of beams with various 

bending moment distributions, section shapes and amounts of reinforcement. The 

parametric investigation consists o f the non-linear analysis o f 30 cantilevered reinforced 

concrete beams under distributed load and 16 simply supported reinforced concrete 

beams under either distributed or concentrated load. A non-linear regression analysis 

resulted in the following expression for the plastic hinge length in terms of the ductility 

factor (j)p/(|)y, the shape factor Mu/My, the reinforcement index CD, and the compression 

flange to web width ratio b/bw.

For 1.0 < <t>p/<t>y < 7.0

L p _ B
800co

k
—(0.9—0.8y)

_b_
b,„

-D/ê to2

f(y) [2.23]

and for (j)p/<j)y > 7 .0
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The constants A, B, C, D, E, F, G, H, and the function f(y) were determined for three 

different bending moment distributions. The plastic rotation capacity is calculated from 

the formula:

« p  = <t>Pz [2.25]

where z is the shear span. After comparing with the existing rotation capacity 

formulations, the authors concluded that neglecting the influences o f the loading 

distribution and the ratio z/d may lead to non-conservative results. This aspect becomes 

particularly relevant for support sections o f continuous beams under distributed loads, 

which are characterized by hogging moment distributions and low z/d ratios. For 

prestressed members it may not be possible to achieve higher moment redistribution due 

to presence o f secondary moments. The authors provided a comparison o f available 

plastic rotation formulae, which are reproduced in Table 2.1.

Riva and Cohn pointed out that the validity of CEB (1990), Mattock (1983) and Baker 

and Amarakone (1964) models is limited as they are based on experimental results on 

simply supported beams under concentrated load at mid span, in which only a few 

parameters were considered. Furthermore, with only few exceptions, the experimental 

beams were characterised by z/d ratios larger than 5 that are not likely to be critical in the 

neighbourhood of a support section of a continuous beam.

The FIP (1984) and Naaman et al.(1986) models are independent o f z/d and, although 

simpler, they are non-conservative for low z/d values that characterise the support 

sections.
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Table 2.1 Summary of available expressions for plastic rotations (Riva and Cohn 

1994)

Model Expression for plastic rotation capacity

Riva and Cohn (1994)

Naaman et al. (1986)

FIP (1984)

Mattock (1983)

Corley (1966)

Mattock (1964)

Baker and Amarakone (1964)

6p =

/ r  A

Z

For 1.0 <(j)p/(|)y < 7.0 

L.
f  a  B 1( ♦ ' 1

- (0 .9 -0 .8 y)

f b  t
800(o, | b . J

-D /640(0

f(T)

For <t>P/<i>y >7.0

i ^  = - ^ - ( l . 2 5 c o ) F+G
z ^p/^y

Mu
m ~

- i
v b w j

The constants A, B, C, D, E, F, G, H, and the 

function f(y) depends upon bending moment 

distribution

Q  1.05-(co -to ')  Lp 
p ~ 850(co-co ')-35d/2 

^ l-OS-l^co-co') Lp 
p ~ 1300(co-co')-40 d/2 

where L = d/ 2

D 0.004
p = 'c7d~

(upper bound) 

(lower bound)

0 p = 0.0086 1 + 0.1-
V

£0,
C 0 +  C 0 „  —  CO

V

0 p = k - ^ ) [ o . 5 d  + O.2Vd|N

0.,

■ =  1 + 1 -
'  co-co7  ̂

( 0 h

0p =O.8(ecu- s ty)k ,k 3- |

V 16.2 

(k,k 3 = 0.5)
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Ahner and Kliver (1999) used an analytical model to provide a simplified formula for 

computing the plastic rotation capacity o f reinforced concrete structures.

0 r . p , = P „ | 3 ,
ŝuk ŝyk

1 - ^
d

[2.26]

where

Xu = depth of compression zone at ultimate limit stage

d = effective depth

A.q = shear slenderness

Pn = 22.5 (global factor to take into account the non-linearity)

Ps = 0.0740 for high ductile steel

= 0.0476 for normal ductile steel

Ssyk. — Characteristic steel strain at yield point

£suk = mm

0.28

1.75

f  x A
B —

Â
v d /

 ̂2

esuk steel -  failure

 1
x ..V u 7

£cu —> concrete -  failure

£suk*= steel strain at ultimate limit state using a simplified approach to take into account 

tension stiffening effects 

£suk = characteristic value o f steel strain at maximum strength (taken as 0.05 by the 

authors)

£cU = ultimate concrete strain

Pc = global factor to take into account the different ultimate concrete strains
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The size effect, relating to the beam depth, was not considered and it was assumed that 

the size effect is small as compared to the effects o f slenderness and material properties. 

The confinement effect was also not considered. The authors concluded that the most 

important parameters affecting plastic rotation capacity are member slenderness, ultimate 

concrete strength and strain, steel strength and ultimate steel strain. Furthermore, the 

authors pointed out that the model yields values that appear to be unsafe in comparison 

with a mechanically accurate model. Further research was recommended, particularly on 

maximum concrete strain and bond behaviour after steel yielding.

2.7 Further Studies on Moment Redistribution and Ductility

Researchers have conducted numerous experimental and analytical studies on moment 

redistribution in reinforced concrete members to understand the phenomena and the 

parameters influencing it. Rangan and Hall (1984) considered moment redistribution in 

flat plate floors. A series o f large-scale tests were conducted on flat plate panels subjected 

to uniformly distributed loads. The authors noted that between the uncracked condition 

and the ultimate load condition, there was considerable amount o f moment redistribution. 

The two support moments and the mid-span moments vary by about 50% from the elastic 

value. The authors concluded that the flat plates can tolerate higher amounts o f moment 

redistribution and hence any sophistication in the analysis and design of flat plate is not 

really necessary.

Sveinson (1989) conducted analytical studies using the program “NONARCS” that he 

developed to study moment redistribution in reinforced concrete structures. The studies 

showed that, from the ultimate strength perspective, very high amounts of moment 

redistribution may be achieved, however serviceability criteria ceased to be met for 

redistribution of about 40% from the elastic distribution. Results indicate that a moment 

redistribution of 35% may be easily achieved and will satisfy serviceability criteria such 

that deflections and steel stresses at service load are not critical.

Cohn and Lounis (1991) reviewed the moment redistribution provisions o f American and 

European standards and concluded that major differences exist among the various design
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standards. The existing formulae neglect the ratio of live load to dead load, degree of 

prestressing and permissible crack-widths, resulting in possibly unsafe, unserviceable and 

uneconomic designs. For prestressed members it may not be possible to achieve high 

amounts o f moment redistribution without adverse cracking. The potential for moment 

redistribution increases with high live load to dead load ratios. On the other hand where 

dead loads prevail, a small amount o f moment redistribution is possible without violating 

crack width criteria. The major factors influencing plastic rotation capacity are the c/d or 

reinforcement index co, allowable crack width and the live load to dead load ratio.

Cohn and Riva (1992) studied the effect o f moment redistribution on serviceability. They 

introduced a yield safety parameter to control both cracking under service conditions and 

the permissible moment redistribution under ultimate loads. The limiting values o f these 

safety parameters that ensure satisfaction of the standard specified cracking criteria were 

derived from the results o f a comprehensive computer investigation. A subsequent 

parametric study showed that the reinforcement index co, allowable crack width wa, and 

the degree o f prestressing are the governing factors in crack control. These factors, along 

with the live load to total load ratio, determine the permissible moment redistribution in 

reinforced concrete and prestressed concrete members.

Wyche et al. (1992) conducted an analytical study to understand the interaction between 

prestress secondary moments and moment redistribution in prestressed concrete 

members. The authors concluded that the secondary moments from prestressing can be 

beneficial or detrimental, depending upon the sign o f these moments. Positive secondary 

prestress moments at supports would assist in moment redistribution while negative 

moments would prohibit higher moment redistribution and cause premature failure due to 

rupture o f steel. The authors noted that some standards do not make a distinction between 

reinforced concrete members and prestressed concrete members. This can be very un­

conservative when designing prestressed concrete members for moment redistribution. 

Thus while redistributing bending moments, the factored elastic moments must include 

the moments due to superimposed loads as well as the secondary moments due to 

prestressing.
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The effect o f the yield strength o f reinforcing steel on curvature ductility was studied by 

Al-Haddad (1995) through parametric study. The study considers the actual properties of 

reinforcing steel under both low and high strain rates o f loading. The study shows that the 

ductility reduces as the yield stress increases. There is an average reduction in curvature 

ductility o f 12% for an increase o f 34.5 MPa in the yield stress. The code-specified yield 

value falls in the lower tail o f the probability density function o f the yield stress. For 

conservative estimate of ductility the yield value should be the one that falls in the upper 

tail o f its probability density function. He concluded that using code-specified yield 

strength o f the reinforcing steel will lead to an overestimation o f the ductility capacity of 

reinforced concrete sections. The study highlights that the definition o f yield stress used 

for evaluation o f curvature ductility is an unsettled issue and needs further research.

Dishongh (1995) proposed a method (inelastic moment redistribution or IMR) for 

obtaining redistributed moments in continuous bridge girders, using “shake down” 

analysis. The IMR procedure makes use o f the conjugate beam method to relate the 

inelastic hinge rotations to both the resulting redistributed moments and the resulting 

residual deflections. The process consists o f perfonning moment redistribution for 

various cycles o f loading, representing passage of live load across the bridge. A complete 

cycle consists of moving load along the girder, one by one unlocking each plastic hinge 

and allow it to rotate inelastically while other hinges are held locked. After a few cycles, 

when the inelastic rotations at every hinge remain unchanged, shakedown is reached, and 

residual deformations can be determined. Details o f the procedure can be obtained from 

the above reference.

Alca et al. (1997) investigated the size effect on the behaviour o f flexural members 

subjected to pure bending. The need for investigation o f size effect arises due to different 

conclusions reached by Corley (1966) and Hillerborg (1988). Corley concluded that there 

is no effect o f size on the ductility o f reinforced concrete sections. Hillerborg, on the 

other hand, used a fracture mechanics approach and Corley’s test data to conclude that 

the rotational capacity of the hinge is inversely proportional to the effective depth of the 

member.
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The authors conducted tests on 12 simply supported, under-reinforced, high strength 

concrete beams under two-point loading. Three different effective depths and two 

different concrete strengths were considered. It was concluded through measured 

rotations, extreme compression fibre strains, and flexural strengths that there was no 

apparent effect o f size on deformation capacity or flexural strength. The authors 

attributed the size effect noted by others to the mid point loading, and confinement from 

stirrups and loading plate.

Pisanty and Regan (1998) conducted a series o f tests to determine the effect o f moment 

redistribution on the entire loading history, from serviceability to ultimate limit-state. The 

results indicate that the redistribution o f  moments in reinforced concrete elements is not a 

phenomena associated with the formation of plastic hinges only. Once an element is 

designed and loaded with the view o f taking into consideration moment redistribution, it 

will affect its entire loading history. They suggested that redistribution of moments 

should be considered from the serviceability limit-state through the entire loading history 

up to the ultimate limit-state.

Kemp (1998) reviewed the effects o f lateral confinement, longitudinal strain gradient, 

size effect, concrete strength and nature o f loading on ductility through non-linear 

analysis o f 94 beam-tests conducted by other authors. He concluded that the ultimate 

strain in concrete is increased by the confinement o f concrete provided by the stirrups. 

With proper confinement much higher concrete ultimate strains can be achieved than 

those given by the normal code limitations o f 0.003 to 0.004. Kemp noted that the 

lengthening o f longitudinal strain gradient has a beneficial effect on the ductility o f 

reinforced concrete beams. The size o f the specimen affects the concrete stress-strain 

properties o f concrete in flexure. The maximum concrete stress reduces as the size o f the 

specimen is increased. Kemp further noted that the concentrated loads have a beneficial 

localized effect on the ductility o f concrete.
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Alvarez et al. (2000) conducted bending tests on a series o f continuous slab strips to 

determine the effects o f cold-formed reinforcing bars on ductility. The experimental and 

numerical analysis revealed that the low ductility o f cold-formed steel may result in 

dangerous strain localization, impairing rotation capacity, permissible moment 

redistribution and ultimate strength.

2.8 Stress-Strain Relationship for Confined Concrete

The application o f limit design methods requires computation o f available and required 

plastic rotations at critical sections o f the beam. The plastic rotation capacity o f a hinge 

depends upon various material and structural parameters, concrete stress-strain law being 

one of them. CSA A23.3-94 uses a linear strain distribution with a limit o f 0.0035 on 

ultimate concrete strain and an equivalent rectangular stress block is used for computing 

the ultimate flexural strength and curvature. Reinforced concrete beams usually contain 

transverse reinforcement in the form o f stirrups. These stirrups provide confinement to 

the compression zone of concrete and result in an increase in the strength and ultimate 

strain o f the concrete. The slope o f the falling branch o f stress-strain curve for confined 

concrete is quite moderate as compared to that for unconfined concrete. The standard 

does not account for the beneficial effects of confinement. Concrete strains much higher 

than 0.0035 have been reported in tests (Mattock 1964). Researchers agree that ultimate 

concrete strain is the most important parameter that effects the plastic rotation capacity. It 

is therefore necessary to have a stress-strain model that takes into account the effect of 

confinement on ductility and ultimate strain of concrete.

Concrete may be confined by transverse reinforcement in the form of closely spaced steel 

spirals or hoops. Such confinement is passive. At low levels o f  axial concrete stress the 

transverse reinforcement is hardly stressed and thus the concrete is unconfined. The 

concrete becomes confined when at stresses approaching the uniaxial strength it 

commences to increase in volume due to progressive internal fracturing. The volumetric 

expansion causes the concrete to bear outward against the transverse reinforcement, 

which then applies a confining reaction to the concrete. Tests by many investigators in 

the past (Chan 1955, Roy and Sozen 1964, Soliman and Yu 1967) have shown that such
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confinement can considerably improve the stress-strain characteristics o f concrete. 

Circular spirals confine concrete more effectively than rectangular ties or hoops as they 

apply a uniform radial pressure to the concrete, whereas a rectangle tends to confine the 

concrete mainly at comers (Fig. 2.13). Nevertheless, rectangular ties do produce a 

significant increase in ductility o f the concrete core as a whole. A comparative study of 

the confined concrete models, proposed by Chan (1955), Roy and Sozen (1964), Soliman 

and Yu (1967), Sargin (1971), Kent and Park (1971), Vallenas et al. (1977), Sheikh and 

Uzumeri (1980), was done by Sheikh (1982).

Chan (1955) suggested a tri-linear curve for confined and unconfined concrete, as shown 

in Fig. 2.14(a). The only variable considered in this model is the volumetric ratio o f 

lateral steel to concrete core. The OAB part approximates the curve for unconfined 

concrete. The slope BC depends upon the lateral confinement. For unconfined concrete 

the slope is negative. For confined concrete the slope is positive with ultimate concrete 

strains attaining values much higher than for unconfined concrete. Comparison between 

experimental and analytical results (Sheikh 1982) shows that Chan’s model overestimates 

the strength and ultimate strain of confined concrete in several cases, particularly for 

specimens with large tie spacing. Conversely for specimens with closely spaced ties the 

model underestimates the strength and ultimate strain. This might be attributed to the fact 

that no consideration is given to the tie spacing and steel configurations.

Roy and Sozen (1964) proposed a stress-strain relationship for concrete as shown in Fig. 

2.14(b). The co-ordinates of the peak point are 0.002 and f c, where f c is the strength o f 

concrete in a plain specimen. An equation for the strain value corresponding to 50 

percent o f the maximum stress is suggested to define the descending part of the bilinear 

curve. The variables considered in the model are the volumetric ratio o f lateral steel to 

concrete core and the ratio o f the shorter dimension o f the section to the tie spacing. 

Comparisons with experimental results (Sheikh 1982) show that the model 

underestimates the strain at the maximum stress and ignores the increase in strength due 

to confinement. The slope of the descending part has a slower rate o f drop than shown by 

experiments.
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Soliman and Yu (1967) proposed the stress-strain curve shown in Fig. 2.14(c). The 

variables considered in the model are the area o f ties, tie spacing, and section geometry. 

No consideration is given to the steel configuration. Comparisons with experimental 

results (Sheikh 1982) show that the model underestimates the increased concrete strength 

due to confinement. The model predicts the maximum strain corresponding to the 

maximum stress reasonably well. The slope o f the descending part is too steep compared 

with the experimental curves.

Sargin (1971) proposed a general equation to give a continuous stress-strain curve of 

confined concrete as shown in Fig. 2.14(d). The variables recognised in the model are the 

volumetric ratio o f lateral steel to concrete core, ratio of width o f concrete core to tie 

spacing, yield strength o f steel, and concrete cylinder strength. The strain value at peak 

stress is also assumed to depend on the strain gradient at the section. Comparison with 

test results (Sheikh 1982) shows that the model underestimates the increase in concrete 

strength due to confinement. The effect o f tie spacing, it seems, is also not appropriately 

accounted for. The increase in concrete strength is directly related to the stress in the ties. 

The test data does not support this assumption.

The stress-strain curve proposed by Kent and Park (1971), shown in Fig. 2.14(e), is based 

on the data reported by Roy and Sozen (1964), and Soliman and Yu (1967) and combined 

many features o f the previously proposed curves. The ascending portion o f the curve is 

represented by a second-degree parabola and is unaffected by the confinement of 

concrete. The maximum concrete stress is assumed equal to the cylinder strength f  c and 

the corresponding strain is 0.002. The falling branch of the curve is a straight line whose 

slope is specified by determining the strain at 0 .5fc. The slope of the falling branch is a 

function o f concrete cylinder strength, ratio o f width o f confined concrete to spacing of 

ties, and ratio o f volume o f tie steel to volume of concrete core. The descending curve 

extends to 0 .2 f c, beyond which a horizontal line to infinity represents the concrete 

behaviour. The model recognises the effect o f confinement on ductility but does not 

recognise the effect on concrete strength. Comparison with test data (Sheikh 1982) shows
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that the model reasonably estimates the slope of the descending branch. The model 

however underestimates the maximum stress and corresponding strain.

The model proposed by Vallenas et al. (1977), Fig. 2.14(f), is similar in form to Kent and 

Park’s (1971) model, with the difference that it considers the concrete strength 

enhancement due to confinement. The variables included in the model are the volumetric 

ratio o f tie steel to concrete core, ratio o f area o f longitudinal steel to area o f cross- 

section, sizes o f tie bar and longitudinal bar, ratio o f core dimension to tie spacing, steel 

strength, and strength o f concrete. Comparison with test data (Sheikh 1982) shows that 

the model reasonably estimates the slope of the falling branch. Since this model takes 

into account the increase in concrete strength due to confinement, the predictions are 

better than the Kent and Park’s (1971) model. However, the test data shows that the 

strength o f the concrete is not dependent upon the longitudinal steel content and is not 

directly proportional to the stress in ties, as suggested by the model. The model 

underestimates the effect o f tie spacing on strength and ductility.

The stress-strain model o f Sheikh and Uzumeri (1980), for confined concrete, is shown in 

Fig. 2.14(g). The first part o f the curve OA is a second-degree parabola followed by a 

straight portion AB, at maximum stress level. The descending part o f the curve is a 

straight line extending to 30 percent o f the maximum stress, after which a horizontal line 

represents the concrete behaviour. The variables considered in the model are, volumetric 

ratio o f lateral steel to concrete core, distribution o f longitudinal steel around the core 

perimeter and the resulting tie configuration, tie spacing, characteristics o f lateral steel, 

and strength o f plain concrete. The amount o f longitudinal steel was recognised as having 

no significant effect on the behaviour o f confined concrete. The analytical behaviour o f 

confined concrete under concentric load, using this model, shows good agreement with 

experimental results (Sheikh 1982).

Park et al. (1982) improved the original Kent and Park (1971) model by making an 

allowance for the enhancement in the concrete strength due to confinement. Fig. 2.14(h) 

shows the modified stress-strain model. The curve consists o f two parts. A second-degree
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parabola represents the ascending portion o f the curve and a linear falling branch 

represents the descending portion of the curve. The maximum stress reached at point B is 

assumed to be K f c and the corresponding strain is 8 0  = 0.002K. The factor K is greater 

than one and takes into account the effect o f confinement on concrete strength. K 

depends upon the volumetric ratio of tie steel to concrete core, yield strength o f ties, and 

cylinder strength o f concrete. The maximum strain is taken as 0.002K, in which 0.002 is 

the assumed value of the strain at maximum stress o f unconfined concrete. This enables 

the initial curve (parabola AB) to have the same initial slope as the unconfined concrete. 

The descending branch extends to 0.2Kfc. Comparisons with test results show that this 

model gives a better prediction o f the confined strength of concrete than the original Kent 

and Park (1971) model. A comparison, given by Park et al (1982), shows that both 

modified Kent and Park model and Sheikh and Uzumeri (1980) model give excellent 

agreement with the measured moment capacity. The modified Kent and Park model has 

the advantage o f simplicity o f application compared with Sheikh and Uzumeri model.

Sheikh and Yeh’s (1986) model is an extension of earlier model, proposed by Sheikh and 

Uzumeri (1980) for axially loaded members, to include the effects of flexural strain 

gradient. Tests by Sargin (1971) have concluded that specimens show increased ductility 

under the flexural strain gradient. The model is shown in Fig. 2.14(i). The curve 

OABCDE is for confined concrete under concentric compression, while the curve 

OAB’C’D ’E’ is for confined concrete under eccentric compression. The model shows 

good agreement with the experimental results, but is quite complicated for routine 

applications.

Mander et al. (1988) developed a unified stress-strain model for confined concrete, 

applicable to both circular and rectangular sections. The concrete section may contain 

any general type o f confining steel, either spiral or circular hoops, or rectangular hoops 

with or without supplementary cross ties. The model is applicable to static or dynamic 

loading, applied either monotonically or cyclically. The model takes into account the 

effects o f cyclic loading and strain rate. The proposed model for monotonic loading and 

slow strain rate is shown in Fig. 2.14(j). A single equation is used to define the stress-
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strain curve. The influence o f confinement is taken into account by defining an effective 

lateral confining stress. The ultimate strain in concrete is defined as the one 

corresponding to first fracture o f the transverse reinforcement and is based on the energy 

balance approach. Since this is a unified model applicable to a variety o f loading rates, 

strain rates, and shape and arrangement of ties, its application to specific cases is 

complicated.

The proposed stress-strain model of Saatcioglu and Razvi (1992) is similar in shape to the 

Kent and Park (1971) model, as shown in Fig. 2.14(k). The model defines the confined 

strength in terms of equivalent uniform pressure provided by the reinforcement cage. The 

slope of the descending branch is obtained by defining the strain corresponding to 85% o f 

the peak stress. A constant residual strength is assumed beyond the descending branch, at 

the 20% strength level. The variables consider are the size and spacing of ties, 

arrangement o f ties, and dimensions o f the cross-section. The model does not take into 

account the effect o f strain gradient. In general the model provides good agreement with 

the test results.

Literature review of the stress-strain models for confined concrete reveals that the 

volumetric ratio of lateral steel to concrete core is the most important parameter affecting 

the concrete behaviour. Other variables affecting concrete behaviour include, tie spacing, 

section dimensions, cylinder strength, and steel strength.

The modified Kent and Park model (Park et al 1982) and the Sheikh model (Sheikh and 

Uzumeri 1982) give better predictions o f  test results than all the other models reviewed 

here. The Sheikh and Uzumeri model gives good predictions o f concrete strength in 

general but may overestimate the concrete strength in the presence of shear and spalling 

o f concrete cover. It would be logical in that case to use a model that underestimates the 

increase in concrete strength due to confinement. An appropriate choice in that case 

would be the modified Kent and Park model (Park et al 1982). The model is easy to apply 

and gives a very good prediction of the slope o f the falling branch.
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2.9 Ultimate Strain of Concrete

Researchers agree that ultimate concrete strain 8cU is the most important factor that affects 

the plastic rotation capacity o f a concrete section. The standard (A23.3-94) specifies an 

ultimate concrete strain o f 0.0035 for use in the computation o f ultimate strength and 

curvature o f concrete section. The presence o f transverse reinforcement and strain 

gradient provides a confinement effect and increases the ductility and hence ultimate 

strain o f concrete. Concrete strains much larger than 0.0035 have been reported in 

flexural tests o f concrete beams. Researchers have proposed empirical equations for 

computing the ultimate strain at the extreme compression fibre o f flexural members. The 

classical equations for 8cU were given by Baker and Amarakone (1964) (Eq. 2.12a) and 

Corley (1966) (Eq. 2.17).

£c„ =  0.0015 1 1.45 + 1 ,5p, + (0.7 -  0. l p j - t - j

£cu — 0.003 + 0.02— h 
z

r Q  f  ^rs y
20\  /

[2.12a]

[2.17]

Park et al. (1982) used the above equations to compare the experimental values o f peak 

strains and the theoretical predictions. The experiments were conducted on axially loaded 

columns. The minimum strain at first visible crushing at the extreme compression fibre 

was 0.005, which is well in excess o f the standard-specified value o f 0.0035. The 

concrete cover showed no sign o f spalling at this stage. The maximum measured strains 

on the surface o f the confined core, when the cover had spalled off, varied between 0.016 

and 0.026. Corley’s equation gives a very good agreement between the theoretical and 

experimental values o f peak strain. The authors mentioned that the tests were tenninated 

at a stage when the load-deflection curve was still rising and hence greater values o f 

experimental peak strains would have obtained had the tests were continued. Baker’s 

equation provides a highly conservative estimate o f £cU compared to the experimental 

values.
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2.10 Summary and Conclusions

A review o f the non-linear analysis methods and ductility models for computing the 

plastic rotation capacity and allowable moment redistribution in reinforced concrete 

structures is presented. It is found that elastic methods of analysis are not suitable for 

predicting the ultimate behaviour o f reinforced concrete structures. One must resort to 

non-linear methods for a realistic prediction o f the response o f reinforced concrete 

structures at ultimate. These non-linear methods, known as limit design methods, must 

satisfy equilibrium, rotation compatibility, and serviceability. Two broad classifications 

o f limit design methods are identified, the equilibrium methods, and the compatibility 

methods. These methods, although provide a sound rationale for predicting the non-linear 

response o f reinforced concrete structures, are quite complicated and laborious. As such 

these methods have not gain much acceptance within the designers community.

Design standards recognise the non-linear behaviour o f reinforced concrete and provide 

empirical relations for arbitrary moment redistribution. These relations assume a linear 

relationship between the allowable moment redistribution and the c/d ratio and require no 

check o f compatibility and serviceability. It is noted that a major disagreement exists 

among different standards on the amount o f allowable moment redistribution. The 

allowable percentage of moment redistribution varies from 15% for the Japanese standard 

to 66% for the Danish standard.

It is recognised that to establish a limit on permissible moment redistribution one needs a 

rational model for predicting the plastic rotation capacity o f critical sections. Initial 

models for computing the plastic rotation capacity assume a constant curvature over an 

equivalent plastic hinge length. Further research showed that deformations along the 

plastic hinge length are discontinuous and that plastic rotation should be computed as a 

sum of the rotations o f cracked elements within the plastic hinge region. It is recognised 

that the shear cracking causes a significant shift in the tension force diagram and results 

in increased rotation capacity. On the other hand, neglecting bond-slip may result in an 

unconservative estimate o f plastic rotation capacity. Researchers emphasise the 

importance of using accurate constitutive relationships for concrete and steel and
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recognised ultimate strain o f concrete as the most important parameter influencing the 

plastic rotation capacity. Some suggested member slenderness and shear cracking as 

important parameters influencing plastic rotation capacity. The effect o f loading and 

prestressing on the plastic rotation capacity has also been recognised.

The literature review helps identifying the important parameters affecting plastic rotation 

capacity and allowable moment redistribution. It is evident from the literature review that 

different ductility models emphasise the importance o f different parameters affecting 

moment redistribution. The current standard (CSA A23.3-94) considers c/d to be the only 

influencing parameter. The need exists for a comprehensive ductility model that 

incorporates all the important variables to provide a basis for formulating alternate 

equation for allowable moment redistribution.
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(a)

Figure 2.1 Idealized moment-curvature relationships used in non-linear 
analysis and design of reinforced concrete structures

w u per un it length

t t<------ /-----------  1------->F=-

Fixing m om ent line

Free bending mom ents

(cl

Figure 2.2 Distribution of ultimate bending moments; (a) beam, (b) limit 
bending moment diagram, (c) collapse mechanism, after Park and Paulay 
(1975)
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Live load (on either or both spans) plus dead load

K-
Uniformly loaded continuous beam

0.2 M,

~ T
Bending m om ent diagram

a = not less than increase resulting from reduction 
of support m om ent for load case 1 by 20% 

b  = not more than the reductions resulting from 
an increase of support m om ent for load 
cases 2 and 3 by 20% o r up to  design 
envelope, whichever is less

  Load case 1: dead load and live load on both  spans
—  —  Load case 2: dead load on both  spans, live load on right-hand span
— • —  Load case 3: dead load on both  spans, five load on left-hand span.

—  Bending m om ent envelope for design

Figure 2.3 Adjustments of elastic theory bending moment diagram for 

allowable moment redistribution, after Park and Paulay (1975)
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Figure 2 .4  Moment redistribution limit according to different 
design standards
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A
Crack-

------------ ActUal M  Plastic hinge
------------Idealized w W  ro ta tion

Figure 2.5 idealized plastic rotation; (a) beam, (b) bending moment 
diagram, (c) curvature diagram, after Park and Paulay (1975)
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Figure 2.6 Calculation of plastic rotation considering inclined cracking, after 
Dilger (1966)

cracked beam elements

- u -°R
/

plastic hinge region

Figure 2.7 Calculation of rotation capacity in discrete crack model, after Eifler 
(1969)
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III

Figure 2.8 Bending (top) and shear crack hinge (bottom) after Bachmann (1967)

stirrup

strut

Figure 2.9 Strut and tie model for calculating rotation (bending/shear), after 
Michalka (1986)
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Deflection

max k

Curvature

Figure 2.10 Integration of the curvature in numerical model, after Langer (1987)

centroldal axis

Figure 2.11 Bending moment diagram, after Cosenza et al. (1991)
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shear-punching cracks
flexural cracks

Figure 2.12 Bending moment diagram in the presence of shear-punching cracks, 
after Cosenza et al. (1991)

' / / ,  Unconfined 
' / /  concrete

(a) ib)

Figure 2.13 Confinement by square hoops and circular spirals; (a) square 
hoop, (b) circular spiral, after Park and Paulay (1975)
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Figure 2.14 Stress-strain curves for confined concrete, after Sheikh (1982) 
(continued on next page)
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Figure 2.14 (contd.) Stress-strain curves for confined concrete
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3. ASSESSMENT OF CODE PROVISIONS FOR MOMENT REDISTRIBUTION*

3.1 Introduction

This chapter examines the code (CSA A23.3-94) limit for moment redistribution and 

demonstrates that it is not entirely rational.

Because o f the ease o f computer based structural analysis, structures are now analysed 

and designed for more load cases than in the past. This leads to an expansion o f design 

bending moment envelope, an increase in flexural reinforcement and a higher 

construction cost. Moment redistribution can be used to reduce the design moment 

envelope and the amount o f flexural reinforcement required at critical sections. In 

moment redistribution, the calculated elastic bending moment at a critical section can be 

reduced or increased provided that the bending moment in the adjoining critical sections 

are adjusted to satisfy equilibrium for the loading case under consideration. Since the 

load cases that give maximum moments at supports are different from those which give 

maximum moments in spans, allowing for moment redistribution will result in reduction 

o f both maximum negative and maximum positive moments of the elastic envelope.

Structural design standards (CSA A23.3-94, ACI 318-95, BS 8110-85, CEB Model code 

1990, JSCE 1986, DIN 1045-78, DS411-1986) recognise the non-linear behaviour of 

reinforced concrete structures and allow limited moment redistribution o f elastic 

moments. Different formulae for the redistribution o f elastic moments are proposed by 

various standards o f practice. The literature review revealed that significant differences 

exist among design standards on the amount o f permissible moment redistribution with 

the Canadian Standard being very conservative. Structural standards consider permissible 

moment redistribution as a section property and relate it to the relative depth o f the 

compression zone at failure (c/d) or the reinforcement index (co=Asfy/b d f c) only.

E s s e n t i a l s  o f  t h i s  c h a p t e r  a p p e a r  a s  a  p a p e r  i n  t h e  p r o c e e d i n g s  o f  t h e  A n n u a l  C o n f e r e n c e  o f  t h e  

C a n a d i a n  S o c i e t y  f o r  C i v i l  E n g i n e e r i n g ,  h e l d  i n  R e g i n a  S K ,  1 9 9 9
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Although, c/d or co can fairly well represent the combined effects o f stress-strain 

characteristics o f the materials, the geometry o f the cross-section and the amount of 

tensile and compressive reinforcement, it is an oversimplification to relate moment 

redistribution to c/d or co only. The literature review reveals that there are many other 

factors that need to be considered.

To take complete advantage of moment redistribution, a realistic estimate o f permissible 

moment redistribution, at critical sections, is required. This chapter examines the 

Canadian standard (CSA A23.3-94) provision for moment redistribution.

3.2 Moment Redistribution in CSA A23.3-94

The amount o f moment redistribution at a critical section depends upon the ductility o f 

that section. For a given amount o f moment redistribution to occur at a section, the 

required plastic rotation must not exceed the available plastic rotation. CSA A23.3-94 

accounts for the ductility o f section in terms of c/d ratio. The standard requires that the 

maximum pennissible moment redistribution, (3, at a section must not exceed 30-50(c/d). 

This can be restated as:

^  (max) = -^ (3 0 -(3 ) [3.1]

where c is the depth o f neutral axis at ultimate, (3 is the change in moment expressed as a 

percentage o f the elastic moment. The standard limits the maximum value of [3 to 20%. 

To ensure ductility, the design c/d ratio must not exceed the value given by Eq. 3.1, for a 

given amount o f moment redistribution. It is important to note here that the code equation 

for moment redistribution uses material resistance factors <|>c and (j)s when computing c/d. 

The material resistance factors vary from standard to standard. In order to make the work 

in this thesis generally applicable, all material resistance factors are taken as 1.0; thus Eq.
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3.1 is rewritten as Eq. 3.2 and all material resistance factors are dropped from further 

equations.

(max) = — (30 — (3) [3.2]

where (j)s = 0.85 is the resistance factor for steel and cj)c = 0.6 is the resistance factor for

it linearly to the c/d ratio, as shown in Fig. 3.1. The literature review reveals that the most 

important factors, influencing permissible moment redistribution, are the plastic rotation 

capacity and plastic rotation demand, which in turn depend upon many other factors 

including structure geometry and loading.

3.3 Allowable c/d Limit From Plane-Section Analysis

In this section an alternate expression for c/d is derived to provide basis for comparison 

with the code c/d limit. The expression is derived using the established methods o f plane- 

section compatibility analysis. The plastic rotation capacity o f a hinge is given as:

where (f>y and (j)u are the curvatures at the critical section at yield and ultimate respectively 

and Lp is the effective hinge length. Equation 3.3 assumes a constant curvature within 

plastic hinge length Lp. The yield curvature can be obtained from a plane-section analysis 

using the conditions at yield as shown in Fig. 3.2a:

concrete. The draw back of Eq. 3.2 is that it considers p as a section property and relates

[3.3]

6 1
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where fy is the yield strength o f steel; Es is the modulus o f elasticity o f steel; d is the 

effective depth of the section, and cy/d is the relative depth of neutral axis at yield, given 

as:

c y = A/ p V + 2 p n - p n  [3.5]
d

where p is the reinforcement ratio = As/bd, b is the width o f the beam, n is the modular 

ratio = Es/Ec, and Ec is the modulus of elasticity o f concrete. The ultimate curvature, (j)u, 

can similarly be obtained from the plane-section analysis using the conditions at ultimate, 

as shown in Fig. 3.2b.

<t>. = —  [3.6]c

where £cU = ultimate concrete strain at extreme compression fibre = 0.0035. Using Lp 

Kpd, and substituting Eq. 3.4 and 3.6 into Eq. 3.3 gives:

0 p =

£ cu / y / E ,  '

d f r - s A 1)
Kpd [3.7]

Equating 0p = 0preqd and rearranging, gives the allowable c/d ratio in terms o f the required 

plastic rotation.
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where 0 preqd is the required plastic rotation at a critical section and K p is a constant 

defining plastic hinge length. Based on Mattock’s (1964) findings that plasticity extends 

at least a distance d/2 on either side o f the section o f maximum moment, following values 

of K p are assumed:

Kp = 1 for hinge with members on both sides 

Kp = 0.5 for hinge with member on one side

Figure 3.3 shows a graphical solution of Eq. 3.8. Equation 3.8 cannot be used directly for 

comparison with the code Eq. 3.2. The code equation relates c/d to allowable moment 

redistribution, while Eq. 3.8 relates c/d to the plastic rotation capacity. The procedure 

used to compare Eq. 3.8 with the code equation is as follows:

1. Obtain elastic moment envelope for the continuous beam, using pattern load 

analysis.

2. Assume a reasonable value of (3, within code allowable limits, at critical sections 

where reduction in design moments is desired.

3. Reduce elastic envelope moments by applying {5 and adjusting other moments to 

satisfy equilibrium.

4. Perform “hinge-moment analysis” for each load case, as outlined in section 3.4.2, to 

obtain the required plastic rotations at critical sections for each load case.

5. Substitute required plastic rotation values into Eq. 3.8 to obtain the allowable c/d 

limit at each critical section. (These c/d values correspond to assumed values o f (3 at 

each critical section).
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6. Using same value o f (3 as in step 2, determine the code c/d limit for each critical 

section with Eq. 3.2.

7. Compare the theoretical and the code c/d limits obtained from steps 6 and 7.

This procedure is discussed in detail in the following sections.

3.4 Moment Redistribution Analysis

To perform moment redistribution analysis, one must select a value o f (3. Experimental 

and numerical studies (Mattock 1959, Svienson 1989, Sigrist and Marti 1994) have 

shown that 20% moment redistribution is usually not a problem with continuous beams 

that are not very heavily reinforced. The code upper limit on moment redistribution is 

also 20%. The actual redistribution used may be less. The selection o f (3 is somewhat 

arbitrary. A value of 20% is used in the example in section 3.6. The ductility requirement 

with (3=20% can usually be satisfied at the design stage. This may require the addition o f 

compression reinforcement and/or modifying the beam cross-section to ensure that the 

design c/d does not exceed the allowable c/d at critical sections.

The proposed procedure is a lower bound solution based on limit analysis methods. A 

brief review of classical limit design methods is given in the literature review. Any 

distribution of design bending moments is acceptable provided that the following 

conditions are met:

1. The distribution o f bending moments is statically admissible, i.e. the internal forces 

must be in equilibrium with the external loads.

2. The rotation capacity of the plastic hinge region is sufficient to enable the assumed 

distribution o f moments to be developed at the ultimate load.

3. The cracking and deflections at the service load are within the allowable limits.
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Conditions 1 to 3 can be stated as, equilibrium, ductility, and serviceability. The 

procedure consists o f two phases. In the first phase the design moments are obtained by

a “hinge-moment analysis” is done for each load case to obtain the redistributed design 

moments, the redistributed shear and axial forces and the plastic rotations at the critical 

sections. This procedure is demonstrated in the following sections.

3.4.1 Phase I - Direct reduction of elastic envelope moments

The reduced design moments can be obtained directly from the elastic moment envelope 

by using p and equilibrium. For a beam of span L, acted upon by a uniformly distributed 

load Wf, equilibrium requires:

Where MeL, MeR, and M emid are the elastic envelope moments at the left support, right 

support, and the mid-span, respectively.

M0 is the static span moment given as:

using P to reduce the elastic envelope moments at selected locations. In the second phase

[3.9]

Mtotai is the total span moment demand given as:

[3.10]

[3.11]

Equation 3.9 can be rewritten as:

2 8
[3.12]
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Note that while Eq. 3.12 is commonly used in design, it is not exact unless MeL = M eR. 

For continuous beams with patterned live loads, the elastic envelope moments are 

typically in excess o f the static span moment. Thus reduction in elastic envelope 

moments is possible as shown in Fig. 3.4. The solid lines in Fig. 3.4 represent the elastic 

moment envelope, while the dotted lines represent the reduced design moment envelope. 

The design moment envelope is obtained by reducing the elastic moment envelope, such 

that the total span moment is equal to the static span moment. The procedure is described 

below in detail.

Elastic moment envelope is first obtained from the elastic analysis. Next the total span 

moment M totai and static span moment M 0 for each span are calculated using Eq. 3.10 and 

3.11 respectively. The reduction in total span moment for each span can be written as:

~  H mid emid X— = M t0t, - M 0 [3.13]

where (3l and (3r are the percentage reduction in the left and right support moments 

respectively and (3mid is the percentage reduction in the mid-span moment. There are three 

(3 values that need to be established. Two are selected by the designer and the third is 

computed from Eq. 3.13. As previously discussed, a value o f 20% will be used for (3l and 

|3r. The mid-span moment reduction may then be calculated from Eq. 3.13. Finally, the (3 

values are applied to the elastic moment envelope to obtain the reduced design moments 

at the critical sections. Assuming no ductility problem, this will produce a plastic collapse 

capacity no smaller than W f.

3.4.2 Phase II - Hinge moment analysis

A “hinge-moment” analysis is used to: assess the ductility demand; to obtain the points of 

inflection, and to obtain the axial forces and shear forces that are consistent with the 

redistributed moments. The design moments obtained from phase-I are used to perform

6 6
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the hinge-moment analysis. The analysis is performed with a conventional elastic frame 

analysis program. In this analysis the structure is modified and analysed for each load 

case by introducing frictionless plastic hinges and the corresponding design moments at 

the appropriate critical sections. The procedure is summarised below for a typical load 

case, with reference to Fig. 3.5:

1. Locations o f plastic hinges are identified by comparing the elastic moments at the 

critical sections with the design moments obtained in Phase I o f the analysis. These 

are the sections at which the elastic moments exceed the design moments. Fig. 3.5a 

shows a beam with a load case that causes maximum moment at the centre support 

(node 5). Figure 3.5b shows the elastic bending moment diagram for this load case 

and the design moment envelope. A hinge will fonn at section 5 because at this 

section the elastic moment is greater than the design moment.

2. The structure and the load case are modified by introducing plastic hinges and the 

associated design moments. Figure 3.5(c) shows the modified structure with a hinge 

at section 5. The design moment is applied to the ends o f  the members framing into 

the plastic hinge.

3. The modified structure is analysed for the modified load case to obtain the 

redistributed forces and deformations.

4. The redistributed moments at critical sections are checked to ensure that they do not 

exceed the design moments. More than one hinge-moment analysis may be required 

to make sure that the final redistributed moments do not exceed the design moments, 

at any critical section. The final analysis gives the required redistributed forces and 

deformations. The sum of the member end rotations on either side o f a plastic hinge 

gives the total plastic rotation required by that hinge.
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Steps 1 through 4 are repeated to obtain the redistributed moments at critical sections for 

each load case. The solution provides the redistributed moment envelope as well as the 

required plastic rotations to be used in Eq. 3.8.

3.5 Serviceability

Formation of a plastic hinge, at service load, would produce unacceptable crack widths. 

Thus, one should avoid redistributing moment below the service load value. All 

requirements o f serviceability such as crack widths and deflection control must be 

satisfied as for normal elastic analysis.

3.6 Application of Proposed Procedure for Comparison of c/d Limits

To compare the code c/d limits from Eq. 3.2 with the c/d limits from Eq. 3.8, moment 

redistribution analysis is done on the beam shown in Fig. 3.6. The beam is analysed for 

six pattern load cases to obtain the maximum moments at critical sections. The factored 

elastic envelope moments and the service elastic envelope moments are given in Table 

3.1.

In phase 1 o f the analysis, the elastic support moments, Me, are reduced by 20% with 

span moments adjusted to satisfy the equilibrium requirements. Table 3.1 shows the 

reduced design moments, Mcies, and the values o f (3 at critical sections. Note that the 

elastic moments are not reduced below the service load moments Ms. In the second phase 

o f analysis, the required plastic rotations, 0preq, are obtained by performing hinge-moment 

analysis. The values o f the required plastic rotations at critical sections are shown in 

Table 3.1.

Table 3.1 Plastic rotations from moment redistribution analysis

Section 2 3 4 5
Me (kNm) 379 -493 264 -400
Ms (kNm) 271 -357 186 -286
Mdes(kNm) 353 -394 211 -320
0 (%) 6.8 20 20 20
0D,ead (radians) 0.0029 0.00357 0.00355 0.00278
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Having obtained [3 and 0preq from moment redistribution analysis, the allowable c/d ratios 

at the critical sections can be calculated using Eq. 3.8. Table 3.2 shows the comparison of 

c/d limits obtained from Eq. 3.2 and Eq. 3.8. The code c/d limit is very conservative for 

most o f the sections. Equation 3.8 shows that for the same amount of moment 

redistribution at sections 3 ,4 , and 5, the allowable c/d limit varies from one section to the 

other. This is because the plastic rotation demand at each of these sections is different due 

to structure geometry and other factors not recognized by the code.

Table 3.2 Comparison of code c/d limit and theoretical c/d limit

Section 2 3 4 5
3  ( % ) 6.8 20 20 20
c/d (code, Eq. 3.2) 0.328 0.14 0.14 0.14
c/d (theory, Eq. 3.8) 0.548 0.5 0.505 0.558
c/d (code)/ c/d (theory) 0.6 0.28 .277 .25

3.7 Simplified Approach for Computing Allowable c/d and (3

The procedure outlined above for computing allowable c/d is suitable when one needs to 

perform moment redistribution analysis to obtain the complete design solution. However, 

when one needs a quick estimate o f allowable c/d or [3, the procedure may not be very 

convenient because complete hinge-moment analysis is required to estimate the required 

plastic rotations. Instead of considering complete structure, a single span indeterminate 

beam, shown in Fig. 3.7a, can provide a conservative estimate o f required plastic rotation. 

Since allowable c/d varies inversely with 0 preqd, a conservative estimate o f 0 preqd will yield 

a conservative estimate o f allowable c/d.

Let qu be the ultimate load on the beam and qp be the load causing plastic hinge at the 

fixed support. After the formation of plastic hinge, the beam behaves as a simply 

supported beam for the load qu-qP- The plastic rotation at fixed end of the beam can be 

calculated as the end rotation caused by the load qu-qP acting over a simply supported 

beam, as shown in Fig. 3.7b. The required plastic rotation is thus given as:
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where El is the flexural stiffness o f reinforced concrete section. It is appropriate to use El 

o f a fully cracked section for getting conservative estimate o f required plastic rotation. 

Substituting qu=8Me/L2, and qp=8[l-([i/100)]Me/L2 in Eq. 3.14 to get:

[3.15]

where Me is the elastic moment corresponding to ultimate load qu. Thus with the 

conservative simplifying assumptions noted, Eq. 3.15 can be used in lieu o f hinge- 

moment analysis. Substituting Eq. 3.15 into Eq. 3.8 gives the expression for allowable c/d 

in tenns o f the required moment redistribution.

Equation 3.16 can be used to establish the limiting bounds on c/d and (3. The procedure is 

described as follows.

1. For a given beam with a given amount o f reinforcement, As, at the support, find the 

relative depth o f neutral axis at ultimate.

d bda,p,f;

where oq is the ratio of average stress in the rectangular compression block to the 

specified concrete strength = 0.85-0.0015 f  ̂ but not less than 0.67. J3i is the ratio o f
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the depth of stress block, a, to the depth o f neutral axis at ultimate, given as: pi 

=0.97-0.0025 f 'c .

2. Find the nominal moment o f resistance, Mr.

M r = A sf y
f  a ^

d - -
v 2 y

= Asf yd l-0 .5 p , — 
1 d

[3.18]

3. Calculate relative depth o f neutral axis at yield, cy/d, using Eq. 3.5.

4. Calculate cracked flexural stiffness El

El = E„ —be! + E„nA,
'  C *  
1- ^  

d
v /

[3.19]

5. Assume a value o f p.

6. Calculate elastic bending moment, Me, that is consistent with the section provided 

(Mr) and assumed p.

M . =■ [3.20]
1 —

100

Where Mu is the moment at ultimate load qu. Setting Mu = Mr, Eq. 3.20 can be re­

written as:

M
P

[3.21]
1 - -

100
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7. Calculate (c/d)max from Eq. 3.16.

8. Compare c/d and (c/d)max from step 1 and step 7. If the two agree then the assumed 

value o f P in step 5 was the correct limiting value, if  not, iterate by assuming a new 

value o f (3 until the two values o f c/d converge. The resulting value o f  (3 is the 

maximum allowable moment redistribution for given c/d ratio in step 1.

3.7.1 Comparison with code limits for c/d and [3

Figure 3.8 shows the P vs c/d curves generated for a range o f beam slenderness ratios 

(L/d =6, 12, 21), using Eq. 3.16 and the procedure described in previous section. The 

beam cross-section and material properties are the same as those used in the previous 

example (Fig. 3.6). The plot shows that for a given value o f c/d the allowable moment 

redistribution decreases with increasing values o f beam slenderness. The code equation 

(Eq. 3.2) for p is also plotted in Fig. 3.8. The comparison shows that the code c/d limit is 

very conservative, especially for non slender beams. The plot also shows that the 

relationship between P and c/d is not unique as implied by the code. For the same c/d 

ratio, the value of P varies with the beam slenderness.

Equation 3.16 is fundamentally more correct than the code equation for moment 

redistribution because it takes into account the effects o f beam slenderness in addition to 

the section properties, and material properties. It should, however, be noted here that the 

equation still does not account for the presence o f shear cracking, tension stiffening, 

confinement and other factors o f practical significance.

3.8 Summary and Conclusions

Code c/d and P limits are examined to assess the need for a more rational ductility model. 

Moment redistribution can be used as a tool to reduce the design moment envelope of 

continuous reinforced concrete beams. CSA A23.3-94 assumes a linear relationship 

between c/d and P (p=30-50c/d) and limits the allowable moment redistribution to 20%.
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An expression for c/d limit is developed in terms o f required plastic rotation at critical 

sections. The required plastic rotations in turn are determined using moment 

redistribution analysis with assumed values o f (3 at critical sections. From the required 

plastic rotations the corresponding c/d limits are computed at each critical section. The 

c/d limits obtained are compared with the code c/d limits. Code limits are found to be 

very conservative. In theory, for 20% moment redistribution the allowable c/d limit can 

be higher than 0.5 while the code limit is only 0.14. Also, the relationship between c/d 

and (3 is not unique as implied by the code. The analysis showed that the c/d limit can 

vary from one critical section to the other, for the same value o f |3. This is because the 

plastic rotation demand at each o f these sections is different due to structure geometry 

and other factors not recognized by the code. There is no unique relationship between p 

and c/d as implied by the code.

While moment redistribution analysis provides complete solution, using the entire 

structure and loading, a conservative estimate o f c/d and P limit can be obtained by using 

a single span indeterminate beam model. An expression for the allowable c/d is 

developed using this model. The expression takes into account: the elastic moment at 

critical section; beam slenderness; plastic hinge length; section properties and material 

properties in addition to p. The code equation and the derived equation for allowable 

moment redistribution were plotted on the same graph (Fig. 3.8) for comparison 

purposes. The comparison shows that the code c/d limit is very conservative, especially 

for non-slender beams. The plot also shows that there is no unique relationship between p 

and c/d as implied by the code. For the same c/d ratio, the value o f p varies with the beam 

slenderness.

While the equations developed in this chapter for permissible moment redistribution are 

fundamentally more correct than the code equation, they still do not account for the 

presence o f shear cracking, tension stiffening, confinement and other factors of practical 

significance.
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The conservative nature o f code and its inability to account for different parameters 

affecting plastic rotation capacity and allowable moment redistribution points to the need 

for a comprehensive analytical model for computing permissible limits o f 0P and [3.
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4. ANALYTICAL MODEL*

4.1 Introduction

This chapter deals with the development o f an analytical model for computing plastic 

rotation capacity, 9P, and allowable moment redistribution, (3, in reinforced concrete 

structures. CSA A23.3-94 provisions for moment redistribution were assessed in the 

previous chapter and were found to be conservative. The model developed in this chapter 

eliminates much of the unnecessary conservatism of the code.

The possible distribution o f design bending moments in indeterminate concrete structures 

depends upon the amount of moment redistribution that can occur at critical sections, 

which in turn depends upon the ductility o f the section. For a given amount of moment 

redistribution to occur at a critical section, the required plastic rotation at a section must 

not exceed the available plastic rotation at that section. Thus, to establish a limit on 

permissible moment redistribution an estimate o f plastic rotation capacity is required.

To understand the concept o f ductility and its influence on moment redistribution, 

consider a two-span reinforced concrete beam subjected to a uniformly distributed load as 

shown in Fig. 4.1a. A plastic hinge fornis at the critical section, at a load qy, when the 

tension steel stress at that section reaches the yield value. Assuming the first plastic hinge 

to form is at the interior support, the idealized beam thereafter is shown in Fig. 4.1b. As 

the load on the beam increases further, the steel undergoes yielding thereby causing 

inelastic rotation at the interior support. The moment at the support no longer increases 

elastically with the applied load. The inelastic rotation causes much of the post yield 

elastic moment at the center support to be redistributed to the adjacent spans. The amount 

o f moment that can be redistributed depends upon the stiffness o f the plastic hinge and 

the amount of inelastic rotation it can accommodate. The ultimate rotation capacity and 

the moment redistribution capacity at the support are reached when either the 

compression concrete crushes or the tension steel ruptures at an ultimate load of qu. The

* E s s e n t i a l s  o f  t h i s  c h a p t e r  a p p e a r  a s  a  p a p e r  i n  t h e  C a n a d i a n  J o u r n a l  o f  C i v i l  E n g i n e e r i n g ,  V o l  2 7 ,  n o .  6 ,  

D e c e m b e r  2 0 0 0
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elastic moment distribution at yield and ultimate and the inelastic moment distribution at 

ultimate are shown in Fig. 4.1c. The deformations at yield and ultimate are shown in Fig.

4. Id. The plastic rotation capacity 0P is defined as the difference o f the ultimate rotation 

and the yield rotation occurring over a length, referred to as plastic hinge length, in which 

the stress in tension steel is greater than or equal to the yield value. The allowable 

moment redistribution (3 is defined as:

M - M
P = — --------x l0 0 %  [4.11

M e

Where Me is the elastic moment at ultimate and Mu is the nominal moment o f resistance. 

The code (CSA A23.3-94) considers (3 to be the function o f relative depth o f compression 

zone at failure (c/d) or the reinforcement index (co) only. The literature review and 

subsequent assessment in Chapter 3 reveals that 0P and P depends upon a number o f other 

parameters. Evaluation o f 0P and p is a complex issue because o f the interaction o f these 

parameters. Due to the wide range o f these parameters, experimental results show large 

variation of the measured values o f plastic rotation capacity. An analytical model is an 

attractive alternative to experimental investigations in studying member behaviour and 

allows one to study influences of various parameters in an independent and systematic 

manner.

In this chapter an analytical model is developed to predict the plastic rotation capacity 

and moment redistribution limit of reinforced concrete sections. An effort is made to 

include the major parameters influencing plastic rotation capacity and moment 

redistribution in reinforced concrete structures.

4.2 Parameters Affecting Plastic Rotation Capacity

The literature review revealed that the following parameters govern the non-linear 

behaviour of a reinforced concrete member.
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(1) M a t e r i a l  p a r a m e t e r s :  Stress-strain laws for concrete and steel, concrete-steel bond- 

slip law.

(2) G e o m e t r i c  p a r a m e t e r s :  Shape of the section, reinforcement index (to), stirrup 

percentage.

(3) S t r u c t u r a l  p a r a m e t e r s :  Structural layout (equal/ unequal span lengths), members’ 

slenderness ratios (L/d), supports conditions.

(4) L o a d i n g  p a r a m e t e r s :  Load intensity and distribution.

(5) T y p e  o f  p l a s t i c  h i n g e :  Flexural crack hinge, shear crack hinge. A flexural crack 

hinge is one that contains flexural cracks, while a shear crack hinge is one that 

contains inclined shear cracks in addition to the flexural cracks.

The effects o f all the above parameters need to be considered in order to develop a 

realistic model for computing plastic rotation capacity and allowable moment 

redistribution in reinforced concrete structures.

4.3 Types of Ductility Models

There are two fundamental types o f ductility models for the computation o f plastic 

rotation capacity, the constant curvature model and the variable curvature model.

4.3.1 Constant curvature model

The classical models for computation o f 0P assume constant plastic curvature over an 

equivalent plastic hinge length as shown in Fig. 4.2. Typical expression for computing the 

plastic rotation capacity is o f the form:

[4.2]
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where (j)y and (j)u are the curvatures at yield and ultimate respectively, at the critical section 

at which 0P is required, and Lp is the effective hinge length.

The ultimate curvature and the yield curvature in the above equation are obtained from 

strain compatibility and equilibrium analysis at the critical section, while Lp is determined 

from empirical expressions. Examples o f  such models are those proposed by Baker 

(1964), Mattock (1964), Sawyer (1964), Corley (1966), and Mattock (1967). Details o f 

such models can be found in the literature review.

4.3.2 Variable curvature model

In variable curvature models, the deformations o f reinforced concrete flexural members 

are calculated from the rotations o f elements between cracks rather than from the 

curvature at the section o f maximum moment. Examples o f such models are those 

proposed by Bachmann (1970), Eifler (1969), and Langer (1987). In these models, the 

member is divided into a series o f cracked elements as shown in Fig. 4.3a. Consider a 

cracked element from the member subjected to a moment and in-plane load, as shown in 

Fig. 4.4. At the location o f a crack, the tensile stress is resisted completely by the 

reinforcement. Between cracks, bond between the concrete and the reinforcing bars 

restrains the elongation o f the steel and thus a part o f the tensile stress in the 

reinforcement is transmitted to the concrete situated between the cracks. Thus, the stress 

and strain in a reinforcing bar varies from a maximum value at the cracks to a minimum 

value between the cracks. This phenomenon is called tension stiffening as it results in an 

apparent increase in the stiffness of the cracked element. Tension stiffening results in a 

decrease in the overall deformations o f the member. (CEB Manual 1985)

For given steel strains at the cracks, using a suitable steel-concrete bond shear 

relationship, one can estimate the steel strain distribution between cracks. Integrating 

steel strain over the cracked element gives the crack width and dividing crack width by 

the depth o f the crack gives the rotation o f individual cracked element. The crack widths 

and the rotations for each individual cracked element are calculated from which the total

8 6
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rotation 0 between the ends of a length o f member consisting o f n elements is calculated 

as shown in Fig. 4.3b:

where d is the effective depth to the tension steel, Wj is the elongation o f the steel between 

the ends o f elements i, and kjd is the neutral axis depth at the crack in element i.

The variable curvature methods are more rational and transparent than the constant 

curvature methods in depicting the deformations o f reinforced concrete members. They 

allow the incorporation o f various factors that affect the ductility o f reinforced concrete 

members.

4.4 Analytical Model

The proposed analytical model is based on the variable curvature model. It is understood 

that the elongation of tension steel is the primary source o f plastic rotation; therefore one, 

needs a model that accurately predicts the elongation o f tension steel. The elongation of 

tension steel depends upon the steel strain distribution between the cracks. This in turn 

depends upon the magnitude of tensile forces at the cracks, stress-strain law adopted for 

the steel and the concrete, and the bond-slip law.

The material constitutive relationships and the bond model adopted for the development 

o f the analytical model are described in the following sections. Expressions are derived to 

determine the distribution of tension steel force at cracks along the member and the 

distribution o f steel strain between the cracks.

The model is general and applies to any loading and continuity conditions. However, for 

the purpose o f this study, it is developed for the interior support o f a two-span continuous 

beam subjected to unifonnly distributed load. The principal ductility requirement for 

beams exists at the support regions of continuous beams, and the condition is most severe
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when tangents at the ends must retain a slope o f  zero (Furlong 1979). This would 

typically be the case for the interior support o f  a two-span continuous beam with equal 

spans. Occasionally, the first hinge may form at or near mid-span. Such cases do not 

govern as the ductility requirements for positive moment or span regions are not as 

critical as those for the support regions (Cohn 1965).

4.4.1 Constitutive relationship for concrete

The main factors affecting concrete behaviour are; concrete strength, lateral 

reinforcement (confinement), strain gradient, size o f specimen, and type o f loading. 

Lateral confinement o f concrete may significantly improve the characteristics o f stress- 

strain curve, resulting in an increase in concrete strength and ultimate strain. The slope o f 

the falling branch o f stress-strain curve for confined concrete is also quite moderate as 

compared to that for unconfined concrete. Strain gradient (such as in flexure) also 

contributes to the confinement o f concrete (Scott, Park and Priestley 1982).

Modified Park et al. model (1982) for confined concrete, shown in Fig. 4.5, is used to 

incorporate the beneficial effects o f confinement. While the model is developed primarily 

for columns with concentric and eccentric loads, it’s use for flexural members is 

conservative (Scott et al.1982). For the purpose o f this study, the ultimate concrete strain 

is limited to 0.005. The curve consists o f two parts. A second-degree parabola represents 

the ascending portion of the curve and a linear falling branch represents the descending 

portion o f the curve. The maximum stress reached at point B is assumed to be Kf^ and

the corresponding strain is £o = 0.002K. The factor K is greater than one and takes into 

account the effect o f confinement on concrete strength. K depends upon the volumetric 

ratio of tie steel to concrete core, yield strength o f ties, and cylinder strength o f concrete. 

The first part of the curve (half parabola AB) has the same initial slope as the unconfined 

concrete. The descending branch extends to 0.2K f^. The factor K is given as:

K = l +  ̂ i! L  [4.4]
f e
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where pv = ratio o f volume o f rectangular steel hoops to volume o f concrete core 

measured to outside o f the peripheral hoop; fyh = yield strength of steel hoops; and f  ̂ = 

concrete compressive cylinder strength. Equation 4.4 assumes that rectangular hoops 

cause an increase in strength o f the concrete of pv fyh- The modified Kent and Park stress- 

strain curve is defined by the following two equations, with reference to Fig. 4.5.

Region AB (£c < 0.002K)

fc = K fc
2 e„

0.002K 0.002K
[4.5]

Region BC(£c>0.002K)

fc = [1 -  Z m (ec -  0.002K)] > 0.2Kf; [4.6]

where Zm defines the slope o f the falling branch, and is given as:

Z.„ =■
0.5

k̂50u k̂50h 0.002K
[4.7]

in which,

e k50u —
3 + 0.29fc 

145f; - 1 0 0 0
[4.8]

and

e k50h -  4 Pv-^ s [4.9]

8 9
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where f ' is in MPa; K is as given in Eq. 4.4; b0 = width o f the concrete core measured to 

outside o f the peripheral ties; and s = centre to centre spacing o f the hoops. -

The slope of the falling branch in Eq. 4.7 is specified by the strain when the stress has 

fallen to 0.5 fc. Equation 4.8 for £ksou, takes into account the effect o f concrete strength on 

the slope of the falling branch o f unconfined concrete, high-strength concrete being more 

brittle than low-strength concrete. Equation 4.9 for 8 ksoh gives the additional ductility due 

to rectangular hoops.

Based on test results (Mattock 1964, Park et al. 1982), the extreme fibre concrete strain 

limit is taken as 0.005 rather than 0.0035 as used in CSA A23.3-94. While the 0.0035 

code limit is adequate for computing moment resistance, it is too conservative for 

computing hinge rotation capacity. In Mattock’s tests the experimental concrete strains at 

ultimate were found to be in the vicinity o f 0.008 with few as high as 0.02. In Park et al. 

(1982) tests, conducted on a series o f  axially loaded columns, the maximum concrete 

strains recorded were between 0.016 and 0.026 while the load deformation curve was still 

rising. Higher values o f experimental peak strains would have been obtained had the tests 

continued further. The minimum concrete strain at first visible crushing o f concrete cover 

was 0.005. In flexural members the strain gradient and the shear reinforcement, if present, 

increase the maximum concrete strain at ultimate moment resistance. On the basis o f the 

experimental evidence, the assumption o f an ultimate concrete strain o f 0.005 would be 

conservative for typical rectangular beams. However, it must be noted that for some 

specific cases, such as box girders, where the stress state in compression flange 

approaches uniform compression, and beams with a constant moment region, the limit of

0.005 might be unconservative. For the later cases, the designer should use a value 

approaching that for the ultimate concrete strain in uniaxial compression.
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4.4.2 Stress-strain relationship for reinforcing steel

In plastic hinge regions the steel strains are usually high and the steel may strain harden. 

Strain hardening causes steel force to increase beyond yield value resulting in an increase 

in the depth of neutral axis. Neglecting strain hardening can lead to unconservative 

estimates of plastic rotation capacity and allowable moment redistribution. A bilinear 

stress-strain diagram, shown in Fig. 4.6 is adopted to include the effects o f strain 

hardening. There are two regions, which may be represented by the following equations:

Region AB: £s < ey

fs = e sEs [4.10]

Region BC: ey < es < £su

fs = f y +(£s - £ y)Esh [4.11]

where, ESh is the modulus o f strain hardening, given as:

E * = -
f .  -  f ,

£  — £° s u  y

[4-12]

The notations used in Eqs. 4.10 to 4.12 are illustrated in Fig. 4.6.

4.4.3 Moment-Rotation relationship

Classical theories for limit analysis assume frictionless hinges at the sections where the 

steel has yielded. In general, there is an increase in the resisting moment past the yield 

value due to strain hardening of steel and shift of neutral axis. A more realistic behaviour 

o f plastic hinge is modelled by a linear hardening rotational spring o f stiffness ks, as 

shown in Fig. 4.7. 9U is the ultimate rotation corresponding to ultimate moment Mu and qy
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is the yield rotation corresponding to yield moment My. The relationship between 

moment and rotation after yielding is given as:

M = M y + k s( 0 - 0 y) [4.13]

4.4.4 Strain compatibility analysis of reinforced concrete sections

The strain distribution, location o f neutral axis, and curvature of a reinforced concrete 

section for given external loading can be determined from strain compatibility and 

equilibrium o f forces. While strain compatibility analysis is textbook material, it is 

presented here to facilitate further discussion and development in this thesis. The 

following assumptions o f flexural theory are used:

(1) Plane sections before bending remain plane after bending.

(2 ) Stress-strain curves for concrete and steel are known.

Figure 4.8 shows a reinforced concrete section with axial load and flexure. For a given 

concrete strain in the extreme compression fibre 8 c and neutral axis depth c, the steel

strains S s i ,^ ,  8 5 3 ......, can be determined from similar triangles of the strain diagram. For

example for bar i at depth d;:

The stresses fsi, fS2 , fS3,  , corresponding to strains 8 x1852853......, may then be found from

the stress-strain curve for the steel. Steel forces T], T2, T3,...., Tn may be found from the 

steel stresses and the area o f steel. For example for bar i, the force equation is:

c - d :
[4.14]8 = 8  SI '

C

[4.15]
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The distribution o f concrete stress over the compressed part o f the section o f Fig. 4.8 may 

be found from the strain diagram and the stress-strain curve for the concrete. For any 

given concrete strain 8 c in the extreme compression fibre, the concrete compressive Force 

Cc is given as:

c

Cc = | b f cdy [4.16]
o

where b is the width o f the compression zone and the vertical distance dy is measured 

from the neutral axis, and upward positive. The compressive stress fc can be obtained 

from concrete stress-strain curve, using Eqs. 4.5 and 4.6. The force equilibrium equation 

for the axial force and moment can be written as:

Jbfcdy + ] f f , iAIi=P  [4 .17]
n i=i

}bfc( ^ - c  + y ) dy  + ^ f siA si( ^ - - d i) = M [4.18]
o i=i 4

In the above expressions, the sign convention considers compression as positive and 

tension as negative.

The curvature is given from the strain diagram as:

<[) = —  = - p -  [4.19]
c d -  c

For a given value o f 8 c or 8 s the neutral axis depth is found through iteration by adjusting 

c until the internal force resultants P and M calculated using Eq. 4.17 and 4.18 match the 

desired axial force and moment. The internal forces and neutral axis depth so found are 

used to determine the moment M and curvature §  from Eq. 4.18 and 4.19 respectively. By

93

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



carrying out the calculations for a range o f £c or 8 s values, the moment-curvature curve 

can be plotted. A spreadsheet formulation has been done to carry out the section analysis, 

using the procedure described above.

For the purpose o f evaluating ductility we are often interested in the curvature at yield 

and the curvature at ultimate only. The stress-strain curve for concrete is approximately 

linear up to 0.7 f,!. The concrete stress usually does not exceed this value when the steel

reaches yield strength. Hence, the neutral axis depth and the curvature may be computed 

by assuming the linear stress distribution, as shown in Fig. 4.9. For a doubly reinforced 

concrete section, the relative neutral axis depth c/d can be found from transformed section 

analysis as:

[4.20]

Moment My at first yield is given as:

My = A sf yjd [4.21]

and the curvature (j)y at yield is given as:

[4.22]

where, 

p = As/bd

p ' = A ;/bd

As = area o f tension steel 

A s = area of compression steel 

cy = depth of neutral axis at yield
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d = effective depth o f tension steel

d’ = distance from the extreme compression fibre to the centroid o f compression steel 

jd = distance from the centroid o f compressive forces in steel and concrete to the 

centroid o f tension steel 

n = Es/Ec.

4.4.5 Bond-slip constitutive relationship

The tension chord model o f Marti et al. (1998) is used to determine the stress and strain 

distribution within the cracked elements. Acknowledging that the exact distribution o f 

stresses in concrete and steel is not o f primary interest as long as the resulting steel 

stresses and overall member strains reflect the governing influence and match the 

experimental data, the authors use a rigid-perfectly plastic bond-slip relationship with a 

stepped descending branch as shown in Fig. 4.10. When the steel stress is less than the 

yield stress, the bond stress is given as:

TbI = 2fct = 0.6f; 2/3 [4.23]

when the steel stress is greater than the yield stress, the bond stress is given as:

Tb2 = fct = 0.3f; 2 /3 [4.24]

where fct is the tensile strength o f concrete and f ' is the compressive strength o f concrete.

The rate o f change of steel stress along the bar can be determined by considering the 

equilibri um of a small length of bar as shown in Fig. 4.11

Gs A s + Tb7tdbdx = (<js + d a s )AS [4.25]

From which,
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[4 .2 6 ]
dx db

where g s is the stress in steel, As is the area o f steel bar, db is the diameter o f reinforcing 

bar, and xb = Tbi for pre-yield region and xb = xb2 for post-yield region.

4 .4 .6  S teel s tre ss  a n d  s tr a in  d is tr ib u tio n  w ith in  c ra c k e d  e le m en t

For a tension element loaded with force Ft at both ends, typical distributions of xb, Gs and 

0 s are given in Fig. 4.12. If  the end forces are not equal, the stress and strain distributions 

become non-symmetric but can be readily obtained. There are four cases that need to be 

considered, as shown in Figs. 4.13 through 4.16. To determine the steel strain distribution 

between the cracks, distances Xu, x l2 , xri,  xr2 , and the magnitude o f minimum stress 

within the cracked element must be known. These are determined below using the bond 

model and Eq. 4.26. Following notations are used:

x L1 = distance in which Gsmin < g s < f y 

x L2 = distance in which f  <  o s <  G scrL 

x R1 = distance in which G smin <  Gs <  f y 

x R2 = distance in which f y < G s < G scrR

g s =  stress in  steel

GscrL ~ steel stress at left face of the cracked element 

Gsci-r -  steel stress at right face o f the cracked element 

Gsmin = minimum steel stress within the cracked element 

sm = average crack spacing 

db = diameter o f steel bar

C a se  l l  GscrL "> fyj GscrR fyj Gsmin '> fy

From Fig. 4.13,

[4 .2 7 ]

9 6
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Applying the bond model and Eq. 4.26 to left hand side crack gives,

ŝmin ŝcrL , X L2
d b

Similarly applying bond model to right hand side crack gives,

4 X b2
^ s i n i n  ^ s c r R  X R2

d b

and from Fig. 4.13a

X R2 — S m X L2

Equating Eqs. 4.28 and 4.29 to get,

, ,    ( ^ s c r l -  ^ s c r R  ) d b ,
XL2 “  . R2

M’lb2

and substituting x r2 from Eq. 4.30 to get,

_  ( ^ s c r L  ° s c r R  ) d b +  4 ^ b 2 S i: 
L2 0

^ b 2

C-3S6 2> CTScrL >  fy; OscrR fyi tTsmiu ^  fy

Applying the bond model and Eq. 4.26, as shown in Fig. 4.14, gives: 

4x
o  = f  -  —s(min) Ly  ,  A LI

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



_  ( g scrR f y ) d b
x R2 -  [4.36]

b2

Equating Eq. 4.32 and 4.33 gives,

l r i  -  a li  [4-37]Xdi — X I

from which one can write,

S m ~ ( X I7 +  X n , )
x u = —— ----- —  [4.38]

O>0SC 3* (TjcrL > f y; t ŝcrR ^  fyj Osmin ^  fy

Applying the bond model and Eq. 4.26, as shown in Fig. 4.15, gives:

4t
^ s (m in )  =  g scrR 1  X R1 [4-39]

d b

<7S(min) from the left hand side is the same as that given by Eq. 4.33 and x l2 is the same as 

that given by Eq. 4.35. From Fig. 4.15a one gets,

XR2 = 0  [4.40]

X R1 =  S m _  ( X LI 4" X l2 ) [4.41]
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Equating Eq. 4.33 and 4.39 gives,

(fy ~ ŝcrR )
X ,  , = ■l i  .  + x r i  [4.42]

bl

and substituting xRJ from Eq. 4.41 gives,

( f y  — ^ s c r R  )  ^ b  ^ b l  ( S in ~  X L 2  )
X  =  ^X LI

8 ^b.
[4.43]

Case 4: OscrL ^  fyj Ĉ scrR ^  fyj ^smin ^  fy 

From Fig. 4.16:

X L2 =  X R 2  = ^ [4.44]

Applying the bond model and Eq. 4.26 gives:

4x
° s ( i n i n )  ~  ^ s c r L  “j X LI [ 4 - 4 5 ]

b

t̂ s(min) from the right hand side is the same as that given by Eq. 4.39. From Fig. 4 .16a one 

gets,

X R l = S m ~ X LI [4.46]

Equating Eq. 4.39 and 4.45 to get,

x u = -(yscrL GscrR̂ b + x R1 [4.47]
^ b i
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and substituting Xri from Eq. 4.46 to get,

x u =
(^scrL ^ s c r R  ) ^ b  "*"4XblSl;

8 x,bl

4.4.7 Determination of average steel strains within cracked elements

The average steel strain, esm, within a cracked element is given as:

J e sxdx

The expressions for average steel strain for the four cases are derived below.

Case 1: CtscrL ^  fy? O'scrR ^  fy? Osmin ^  fy

From figure 4.13c,

esmx s m =
F +  FŝcrL min

X L2 +

F 4 - P  
scrR ° s  min

"R2

Expanding and solving for 8 sm gives:

ŝm
1 6 tbr(eyE sl15 o scrL- t br)-8 c r S(

16t Ebr si)

where,

^^scrL ŝcrL

^ ^ s c r  ^scrL  ^scrR
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[4.50]

[4.51]

[4.52]

[4.53] 
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Esh is the strain hardening modulus o f steel and ey, e ^ ,  SscrR, £smin, are the steel strains 

corresponding to steel stresses fy, a scrL, crscrR, and Gsmin respectively.

Case 2: GscrL ^  fyj 0>scrR ^  fy! (Tsmin ^  fy

From Fig. 4.14c:

£smXS,„ =

(£  4 . g X (
scrL

£ . + Pc ' s m m  y

XL2 "F

X R1 ■*"

£ ■ + F  ^^ s m i n  y
X L, +

£ scrR + £ y
LR2

[4.55]

Expanding and solving for £sm gives:

£ sm

[2eyE sh(5oscrL + 8 a scrR) + 8 o scrL2 + 8 a scrR2J

^br^sh

[(5c>scrav - 2 xb r ) ] 2

^br^s

[4.56]

where,

^ ^ s c r R  ^  scrR  f y [4.57]

o  a

scra\ ^ s c r a v  y [4.58]

o  =scrav
ŝcrL ŝcrR [4.59]

1 0 1
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Case 3 I G sc rL ^ fy ?  d s c r R  ^  fy ?  G sm in  ^  fy

From Fig. 4.15 c:

e s m X S m =
£ scrL + £ y

XL2 +
£ 4" £^ s m i n  y

X L1 +
£ scrR ^ ” £ smin

‘ R1 [4.60]

Expanding and solving for £sm gives:

£ sm - +
( 2 £ yE s„ + 5 a scrL) 5 G

^^br^sh
(2 c scrL + 6 o scrR -  8 xbr) (8 t br -  2 §oscrI_ -  5oscrR)

64xbrE s
+

( ^ s c r L  +  f y  -  4xbr) (8 xbr -  2 a scrL + a scrR + f  )
32xbrEs

[4.61]

Case 4. GscrL fy? GscrR ^ fy? Gsmin ^ fy

From Fig. 4.16c:

£ s m X S m =
' s c r L

XL1 +
■'scrR

LR1 [4.62]

Expanding and solving for £sm gives:

£  =  ■sm

5 g „ +  G scrR ^scrL ^scrR  ^ ^ b r ^ s c r L

16xbrE s
[4.63]

4.4.8 Computation of tension steel force

Depending upon the magnitude o f the shear force in the critical moment region o f the 

member, two significantly different types o f hinges can be fonned, a flexural hinge, and a

1 0 2
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shear hinge. The flexural crack hinge occurs when the bending moment is predominant, 

while the shear crack hinge develops when in addition to a bending moment the shear 

force is sufficient to cause diagonal cracking. Figure 4.17 illustrates the two types of 

hinges.

In flexural crack hinges the plastic deformations concentrate in a single or very few 

cracks so that their rotation capacity remains relatively low. The shear crack hinges, on 

the other hand, exhibit a significantly increased rotation capacity due to flexure-shear 

cracks, provided that the member possesses a sufficient shear capacity to avoid shear 

failure. This improvement o f the behaviour o f the hinge is achieved by the shift o f the 

tensile force along the bars as a result o f the inclination o f the cracks, enlarging the length 

o f plastic hinge (Dilger 1966).

Since, the shear forces are usually high in the vicinity o f plastic hinge at supports, it is 

assumed that inclined cracks are present in the vicinity o f plastic hinge. This assumption 

may be verified at a later stage when computing the actual shear in concrete. Figure 4.18 

illustrates the cracking pattern in the vicinity of a shear crack hinge. At the interior 

support o f a beam the diagonal cracks, instead o f  being parallel, tend to radiate from the 

compression zone at the reaction point, forming a fan shaped region. Each o f the radiating 

cracks may be assumed to form the boundary o f an inclined compression strut. The angle 

o f inclination (from the horizontal) o f the compression struts increases as one goes 

towards the support. Outside the fan region the cracks are parallel to each other.

A literature review by Park and Paulay (1975) reveals that the optimum angle o f the 

compression stmt is about 38°, based on strain energy considerations. The CEB-FIP 

Model Code (1990) allows for a choice o f 0 in the range from 18.4° to 45°. The Canadian 

Standard (A23.3-94) simplified method provisions for shear design are based on a 

45°tmss model while the “General Method” provisions considers variable 0 below 45°.

A small value o f 0 allows for larger stirrup spacing, but more longitudinal reinforcement 

is required. For given amount o f longitudinal reinforcement, the smaller the angle the
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more the elongation o f  tension steel. To obtain a conservative estimate o f steel 

elongation, an inclination angle of 45° is assumed in this study.

Considering Fig. 4.18, for an assumed angle o f 45°, the fan region extends a distance dv 

from the support, where dv is the distance between centroid o f the tension steel and 

centroid o f the compression stress block. Outside the fan region, the cracks are parallel to 

each other at an assumed angle of 45°.

Dilger (1966) recognized the influence o f shear cracking on the tension steel force and 

proposed an expression that allows one to compute the shift in tensile force due to shear 

cracking. Based on the same idea, the tensile force distribution can be determined by 

considering various free body diagrams from Fig. 4.18 (Park and Paulay, 1975). The 

variation of tension force, Ft, within the fan region is given as:

M V x 2
Ft = —  -----2- t- [4.64]

d v 2 d . ,2

The variation of Ft outside the fan region (0 < x < dv) is given as:

M V
F. = - r L + r r  [4-65]d„ 2

Where Mx and Vx are the moment and shear at the section being considered. In the 

derivation o f the above expressions, it is assumed that the cracks are inclined at an angle 

o f 45°, there is no contribution o f concrete in resisting shear, and the support reaction is 

concentrated at a point. Thus it is assumed that the entire shear, except for that within dv 

o f the support, is resisted by transverse steel and the width o f support is neglected. These 

assumptions will underestimate the plastic hinge length and the tension steel force (Park 

and Paulay, 1975) and would provide a conservative estimate o f plastic rotation capacity.

1 0 4
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For beams with flexural cracks only, the distribution o f tension force Ft along the member 

is given as- •

M x
F, = - i  [4.66]

d„

4.4.9 Computation of crack spacing

The CEB manual for Cracking and Deformations (1985) indicates that there are several 

parameters that influence the crack spacing, in particular the cover and bar spacing. The 

CEB Manual (1985) gives the following empirical equation for determining the average 

crack spacing.

= 2(c0 + ^ )  + k ,k2^  [4.67]
10 p,

where,

sm = average crack spacing in mm

c0 = concrete cover in mm

Sb = spacing of bars or bundles in mm. For beams this is taken as the web width

divided by the number o f bars or bundles o f bars in one layer 

Kl = coefficient defining the influence o f the bond properties o f the bars. The following 

values are recommended for Kl 

high bond bars 0.4

ribbed prestressing wires 0 . 6

plain bars 0 . 8

k 2  = coefficient dependent on the distribution o f tensile stress within the section. 

Appropriate values are:

pure bending 0.125

pure tension 0.25

db = bar diameter in mm.

pr = ratio of the area o f reinforcement to the effective concrete area, Acef
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The effective area of concrete, Acef, to be used in Eq.4.67 is described in Fig. 4.19.

4.4.10 Computation of plastic rotation capacity

The plastic rotation capacity is computed for the interior support o f a two-span 

continuous beam subjected to uniformly distributed load, as shown in Fig. 4.1. The 

procedure for computing the plastic rotation capacity consists o f two parts. In the first 

part 0 P is determined by considering the internal mechanics o f plastic hinge region to 

compute the elongation o f t e n s i o n  steel. This involves the application of concrete bond- 

slip law and the materials constitutive laws defined earlier in the chapter. In the second 

part 0 P is determined by considering the overall behaviour o f structure including the 

effects o f  stiffness, geometry and loading o f the structure. The correct solution requires 

iteration in which the values o f loading and the steel strain at failure are adjusted to give 

same value o f 0 P from the two approaches.

4.4.10.1 A - Computation of 0P (capacity) from elongation of tension steel

It is understood that elongation o f tension steel is the primary cause of plastic rotation. 

The elongation o f tension steel depends upon the steel strain distribution between the 

cracks. This in turn depends upon the magnitude o f tensile forces at the cracks, stress- 

strain law adopted for the steel and the concrete, and the concrete bond-slip law. The 

expressions for computing the tension steel forces at cracks and the distribution o f steel 

strain within the cracks have been developed in the previous sections and will be used 

here to compute the plastic rotation capacity of critical section. The procedure for 

determining plastic rotation capacity is described for the interior support o f a two-span 

beam shown in Fig. 4.1. The procedure involves the following steps:

1. Divide the tension zone o f the beam in the vicinity o f plastic hinge into a number of 

cracked elements. Usually it is sufficient to consider a length d to each side o f the 

plastic hinge.

1 0 6
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2. Determine crack spacing from Eq. 4.67.

3. Calculate the yield moment My, corresponding to yielding o f steel at the interior 

support, using Eqs. 4.20 and 4.21.

4. Calculate the corresponding load qy

8 M y
qy =-TTL [4.68]

5. Assume a value o f ultimate load qu greater than qy

6 . Determine the depth o f neutral axis c and the force lever arm dv from ultimate

conditions at the critical section, using strain compatibility analysis.

7. Determine average steel strain in the first cracked element using strain compatibility

analysis

£  =  £°s m  cu

V C J
[4.69]

8 . Assume a value o f steel strain 8 s at first crack above the support.

9. Determine the tension steel stress cys at first crack using a steel stress-strain model.

10. Determine the tension steel force at first crack as Ft = As o s.

11. Detennine the moment at support as Mu = Ft dv.

12. Calculate the shear at support corresponding to load qu and moment Mu as Vu =

(Mu/L)+(quL/2).
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13. Calculate the tension steel force Ft at the other end o f the first cracked element, 

using Eq. 4.64.

14. Calculate the value o f steel stress at the other end of cracked element as G s=  Ft/As

15. With the steel stress at both ends o f the first cracked element known, determine the 

steel stress and strain distribution within the cracked element using appropriate bond 

model equations from 4.27 to 4.48.

16. Determine the average steel strain, £sm, within the first cracked element using 

appropriate bond model equations from 4.50 to 4.63.

17. Compare the value of £sm obtained from step l6  to the value determined in step 7. If  

the two agree, the assumed value of 8 s at the first crack was correct. If not, repeat 

steps 7 through 16 until the two values o f 8 sm agree.

18. Having obtained the correct value o f 8 s at first crack, for given load qu, revise the 

values o f steel stress os, steel force Ft and moment Mu at support.

19. Determine the distribution o f shear force and moment, at crack locations along the 

beam, from statics.

20. Determine the distribution o f tension steel force Ft at crack locations along the 

beam, using Eqs. 4.64 and 4.65. Figure 4.21 shows a typical distribution of the 

tension chord force.

21. Obtain the steel stress and strain distribution within each cracked element, using 

bond model equations. Only those elements that contain plastic deformations need 

to be considered. The plastic hinge length is limited to the region in which c s at 

cracks is greater than fy (or 8 s>fy/Es)and can be obtained from stress (or strain)
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distribution along the length of the beam. The curvature ((|>x) distribution can be 

obtained by dividing the steel strains by the distance (d-c).

[4.70]

22. Figures 4.22, 4.23, and 4.24 show typical distribution o f steel stress, strain, and 

curvature respectively along the member. Note that the steel strains and curvatures 

drop significantly between the cracks.

23. Integrate curvatures over the plastic hinge length to obtain the ultimate rotation o f

24. Use steps 18 through 22 to calculate the yield rotation 0y for 8 sy, qy and My. All 

cracked elements within the hinge length need to be considered. Since £sy, qy and My 

are known, the calculation of 0 y does not require a trial and error procedure.

The plastic rotations calculated in part A are based on assumed values o f ultimate load qu 

and needs to be verified in the second part of analysis. In the second part of analysis, the 

plastic hinge rotations are computed considering the overall behaviour of structure 

including the effects o f stiffness, geometry and loading of the structure. The loading, qu, 

on the beam is the same as that used in the first part o f analysis.

the hinge:

[4.71]

25. Calculate plastic rotation of the hinge by subtracting the yield rotations from the 

ultimate rotations:

[4.72]
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4.4.10.2 B - Computation of 0P (demand) From Structure Geometry and Loading

Consider a two-span continuous beam, as shown in Fig. 4.1. The yielding of 

reinforcement at the interior support at a moment My leads to the fonnation of plastic 

hinge. The corresponding load qy is given by Eq. 4.68.

The moment My can be calculated using Eqs. 4.20 and 4.21. With hinge formation the 

statical system transform to that shown in Fig. 4.1b. The behaviour o f plastic hinge is 

modelled by a linear hardening rotational spring o f stiffness ks. The beam is assumed to 

act elastically between the hinge and the exterior supports. As the load increases from qy 

to qu the moment at the support increases inelastically from M y to Mu, the nominal 

moment o f resistance o f  the support section. This moment is less than the elastic value of 

the moment at the support, Me, which is given as:

q L2

M e = ^ f -  t4 -73]

The moment in excess of Mu is redistributed from the support to the adjacent spans, 

causing an increase in the span moments beyond the elastic value. Moment redistribution 

occurring at the support is that given by Eq. 4.1.

The plastic hinge rotation at the support can be derived using the M-0P relationship and 

the moment area theorem. Due to symmetry, one could consider a single span, fixed at 

one end, beam as shown in Fig. 4.25a. The plastic rotation occurs, after the formation of 

the plastic hinge, due to load (qu-qy) acting over the beam in which the fixed support has 

been replaced with a rotational spring o f stiffness ks, as shown in Fig. 4.25b. This plastic 

rotation can be calculated as a difference o f the free rotation due to load (qu-qy) acting 

over a simply supported beam (Fig. 4.25c) and the restrained rotation due to rotational 

spring o f stiffness ks (Fig. 4.25d). From Fig. 4.25c, using moment area theorem, the free 

rotation, 0 free, at the hinge is given as:
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Where EIcr is the cracked flexural stiffness o f the beam. From M-0P relationship, the 

increase in moment beyond elastic value is:

M u ~ M y = k s0 pL [4.75]

Where 0pl  is the plastic rotation to one side o f the hinge and Mu is the moment capacity 

o f support section. From Fig. 4.25d, using moment area theorem, the restrained rotation, 

0 re s t  is given as:

k sLeD,
[4.76]

cr

The plastic hinge rotation 0pl is given as:

V = 6 « « - e -  [4-77]

Substituting values from Eq. 4.74 and 4.76 gives:

9  [ 4 7 8 1  

pL 24EI + 8 k T‘cr s

This is plastic rotation to one side o f the plastic hinge. For both sides, the plastic hinge 

rotation is 2 0 pl:

(q — q ) L3
0 „ =  V y >   [4.79]

p 12EIcr + 4 k sL
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Equating 0pl from Eqs. 4.75 and 4.78, and accounting for both sides o f the plastic hinge, 

one can write the expression for the stiffness o f rotational spring, ks, as:

With qy, M y , qu and M u known from the first part o f the analysis, the value o f ks can be 

computed using Eq. 4.80 and 0P can be computed using Eq. 4.79.

Compare the values o f 0P from Parts A and B o f the analysis. The solution is correct and 

the maximum load limit has been found if  the two values match. If not, a new value of qu 

is assumed and the whole procedure for Parts A and B of the analysis is repeated until 

convergence.

In the above procedure, a constant cracked stiffness is used for the computation of elastic 

moment distribution in the beam. In reality, the cracked stiffness o f the positive and 

negative moment regions varies with the amount o f reinforcement. The amount o f 

reinforcement provided at the support is typically greater than that provided in the span. 

For rectangular beams this translates to higher cracked stiffness at the support as 

compared to the span. However, most beams are cast monolithic with the slab and act as 

T-beams in the positive moment region. This along with the top flange reinforcement 

contributes to the cracked stiffness o f  the span region. Furthermore, in a beam designed 

for moment redistribution the support moments are typically reduced and the cracked 

stiffness at the support gets closer to that within the positive moment region in the span. 

In such situations it is conservative to assume a constant El over the entire length o f the 

beam.

Due to the complex and iterative nature o f the procedure for computing 0P, a spreadsheet 

program is developed that incorporates the strain compatibility analysis and the bond- 

model analysis to calculate the tension chord forces, stresses and strains within cracked 

elements, the curvatures and the plastic hinge rotation. The input to the program requires

[4.80]
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the beam span, section properties, material properties including stirrups, amount o f 

tension, compression and hoop reinforcement, and the crack spacing. The spreadsheet 

calculates the plastic rotation capacity for both parts o f the analysis and automatically 

iterates the values o f 8 s and qu to obtain the correct solution. The design example in the 

next section uses this spreadsheet.

4.5 Design Example

The plastic rotation capacity is calculated for the interior support o f a uniformly loaded 

two-span continuous beam, using spreadsheet formulation o f the ductility model. Each 

span is 12 m. Section properties, material properties and reinforcement details for the 

beam are given below:

B e a m  G e o m e t r y

L = 12 m

L/d = 16

S e c t i o n  P r o p e r t i e s :

b = 300 mm

h = 800 mm

d = 750 mm

M a t e r i a l  P r o p e r t i e s :

Concrete: 

f  ̂ = 30 MPa

£cu = 0.005 

Ec = 27700 MPa

Steel: (CSA G30.18-M92, Grade 400R) 

fy = 400 MPa 

Es = 200,000 MPa
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fu = 540 MPa

Esu =  0 .1

A m o u n t  o f  R e i n f o r c e m e n t :

6  No. 20 top bars at interior support 

Stirrups No. 10 @ 150 c/c 

( 0  = 0.108

The tension region is divided into a number o f  cracked elements. Using Eq. 4.67, the 

crack spacing, sm, is calculated as 165 mm. A value o f 150 mm is used for crack spacing 

for the purpose of analysis because cracks are likely to develop at stirrup locations. The 

bond shear Xbi and Xb2 are:

xbl = 0.6(f ’ f 3 = 5.8MPa and xb2 = 0.3(f' ) 2/3 = 2.9MPa

In the first part 0p (capacity) is computed from the elongation of tension steel. The 

yielding moment and the corresponding load are calculated as, My = 479 kNm and qy =

26.6 kN/m. Assuming a value of ultimate load qu greater than qy, say qu = 58.2 kN/m, it is 

found that, 8 s = 0.0469, esm = 0.0321 and Mu = 581 kNm. Figure 4.26 shows the variation 

o f steel strain in the first cracked element over the support and corresponding mean strain 

value. Figures 4.21, 4.22, and 4.23 show the force, stress, and strain distribution 

respectively in tension steel. The plastic hinge length is limited to the region in which g s 

at cracks is greater than or equal to fy and can be obtained from Fig. 4.22. For this 

particular case, the plastic hinge length is 500 mm to either side o f the critical section. 

The curvature distribution is shown in Fig. 4.24. The total rotation and the yield rotation 

are calculated as, 0U = 0.03427 rad. and 0y = 0.00404 rad. and the plastic rotation capacity 

is obtained as 0P = 0.03023 rad.

In the second part 0P (demand) is computed from structure geometry and loading. The 

rotational spring stiffness is computed, using Eq. 4.80, as, ks = 3.37xl09 Nmm/rad and 

plastic rotation is computed, using Eq. 4.79, as 0P = 0.03023 rad. Since the two values of
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0 P from part one and two o f the analysis match, a correct solution has been obtained. 

Thus, for this example, 0P = 0.03023 rad. Figure 4.27 shows the variation o f 0P with 

mechanical reinforcement index (co=Asfy/bdfc) for the example beam.

The model can be used to determine the allowable moment redistribution. The model 

gives the ultimate value o f the load qu, from which the elastic moment at the support can 

be calculated using Eq. 4.73. The nominal moment resistance can be calculated using Eq. 

4.18. The allowable moment redistribution can then be determined, using Eq. 4.1 and is 

44.5% for this particular example. Figure 4.28 shows the variation of allowable moment 

redistribution with mechanical reinforcement index for the example problem.

4.6 Comparison With Experimental Results

Mattock’s (1964) and Bosco and Debernardi’s (1993) tests were used to validate the 

proposed model. The Mattock’s test series consisted o f 37 beams, while the Bosco and 

Debemardi’s test series consisted o f 44 beams. The following sections provide a brief 

review o f the test programs and comparison with the model.

4.6.1 Mattock’s tests

Mattock carried out a series o f tests to investigate the moment-rotation characteristics of 

reinforced concrete beams in the support region of a continuous beam. Simple span 

beams, with a concentrated load at mid-span, were used to simulate the distribution of 

bending moments adjacent to a support in a continuous beam. The half span of a simple- 

span beam represents the region between the support and the point of contraflexure in a 

continuous beam. Thirty-one such beams were tested. For reference purposes, six 

additional beams were tested as simple span beams with equal loads applied at each third 

point. However, the values o f 0P for these beams were not reported.

The variables included in the test program were as follows:
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- Concrete strength 28 MPa and 41 MPa

- Reinforcement yield point 324 MPa and 413 MPa

- Effective depth o f beam 250 mm and 500 mm

- Span o f test beam 1.4, 2.8, and 5.6 m

- Amount o f tension reinforcement between 1% and 3%

- All beams were 150 mm wide.

Figure 4.29 shows the comparison of calculated and measured plastic rotation capacity. 

The 45° line represents the case where calculated rotation capacity is equal to the 

measured rotation capacity. All the points plot above the 45° line, which shows that the 

model underestimates the plastic rotation capacity. The relatively high deviation o f some 

plotted points from the 45° line is due the fact that very high values o f ultimate concrete 

strains (in the vicinity o f 0.02) were reported for some of the tests. A better correlation of 

the test data is obtained when the test beams having 8 cU greater than 0 . 0 1  are eliminated 

from the comparison, as shown in Fig. 4.30. Figure 4.31 plots the ultimate concrete 

strains reported in the tests, showing that for the majority o f the tests the reported values 

were in the vicinity of 0 .0 1 .

For comparing the trend of the variation of test and model 9P with co, the beams are 

divided into four groups. Each group is formed by the beams having same slenderness 

ratio (L/d) and volumetric ratio o f stirrups (ps). Group 1 consists o f four beams (ref. 

Mattock’s beams B l, D l, G l, G3) having L/d=5.5 and ps =0.01019. Group 2 consists of 

five beams (ref. Mattock’s beams B4, D4, G2, G4, G5) having L/d = 11  and ps = 0.01019. 

Group 3 consists of four beams (ref. Mattock’s beams A4, C5, E2, F2) having L/d = 11 

and ps =0.01224, and group 4 consists o f four beams (ref. Mattock’s beams A3, A 6 , C3, 

C 6 ) having L/d = 22 and ps = 0.005656. 0P vs co curves were generated for these beam 

groups for two values o f Ecu, 0.005 and 0.008, and are shown in Figs. 4.32 through 4.35. 

Since the test values o f  ecu were in the vicinity o f 0.01, the model curves with £cU = 0.008 

predict test results better than those with 8 cU = 0.005. The figures show that the model 

predicts the trend o f the test data well. Both test results and the model indicate that the 

plastic rotation capacity increases with an increase in slenderness ratio.
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In general, the model predicts the trend of the test results well. In particular, the 

correlation is good when the values o f  8 cU used in the model are close to the values 

obtained in the test.

4.6.2 Bosco and Debernardi tests

Bosco and Debemardi (1993) carried out a series of tests to study the influence of steel 

ductility, section size, and shape o f moment diagram on plastic rotation capacity o f 

reinforced concrete beams. The testing program was carried out at the Laboratory o f the 

Department o f Structural Engineering of the Politecnico di Torino.

The variables considered were as follows:

- types o f steel Grade B 500 H (high ductility, EsU=0.07)

The beam slenderness ratio and the width to depth ratio o f the cross sections were kept 

constant. The mechanical properties o f concrete were reported to be constant during the 

tests. Stirrup and compressive reinforcement were the same over the whole length of the 

beams for each beam depth.

The testing program employed 44 simple span beams, subdivided into eleven classes. 

Each class consisted o f four specimens, having the same amount of tension 

reinforcement. The first specimen of each group contain high ductility steel with one 

load, the second specimen contain normal ductility steel with one load, the third specimen

- load conditions

- beam cross-section

- reinforcement

Grade B 500 N (nonnal ductility, £sU =0.042)

100X200, 200X400, 300X600

0.13% to 1.7%

single point load at mid-span

three symmetrically placed point loads
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contain high ductility steel with three loads, and the fourth specimen contains low 

ductility steel with three loads.

Figure 4.36 shows the comparison of calculated and measured plastic rotation capacity. 

The plotted points in general follow the 45° line. For most beams the model is 

conservative. However, quite a few points plot below the 45° line. This can be attributed 

to the fact that the measured plastic rotation capacities correspond to the maximum 

moment values attained in tests. The M-0P curves reported show that 0P continues to 

increase beyond maximum moment value and at failure the plastic rotation can be many 

times that o f the reported value.

For comparing the trend of the variation of test and model 0P with co, the beams are 

divided into four groups, depending upon the type o f steel and loading. Only those beams 

are included in a group, which have the same L/d and ps. Group 1 contains beams with 

high ductility steel and single point load at mid span. Group 2 contains beams with 

normal ductility steel and single point load at mid span. Group 3 contains beams with 

high ductility steel and three point loads placed symmetrically, at a distance 2 h, about 

mid-span o f the beam, where h is the height o f the beam. Group 4 contains beams with 

normal ductility steel and three point loads placed symmetrically, at a distance 2 h, about 

mid-span of the beam. For group 3 and 4, the model assumes that only flexural cracks are 

present since the shear is small in the vicinity o f plastic hinge. Figures 4.37 through 4.40 

show the 0P vs. co curves for groups 1 through 4 along with the corresponding test results. 

The figures show that the model predicts the trend o f the test data well except for one test 

in group 2 that plotted much higher on the graph. Tests and model both confirm that in 

low ductility steel the plastic rotation capacity may be significantly reduced for low 

values o f reinforcement index.

4.7 Summary and Conclusions

An analytical model is developed for evaluating the rotation capacity, 0P, o f plastic hinges 

and allowable moment redistribution, p. The model accounts for the effects o f major 

parameters on 0P and p. These include the constitutive relationships, bond-slip law, type
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of plastic hinge, beam slenderness, concrete confinement, ductility o f steel, and the type 

o f loading.

Constitutive relationships were used for concrete and steel to include the effect of 

concrete confinement and strain hardening. Concrete-steel bond-slip relationship is used 

to include the effect o f tension stiffening. A linear M-9P relationship allows accounting 

for the finite stiffness o f  hinges. The effect o f  shear cracking on 0P and p is taken into 

account by considering the shift o f tension steel force along the reinforcement.

The model considers the tension regions o f beam to be composed of individual cracked 

elements. The analysis to determine 9P and (3 consists of two parts. In the first part 9P is 

computed by summing up the individual rotations of each cracked element. The steel 

strain distribution within each cracked element is determined, using the bond-slip law. 

The steel strain distribution provides the curvature distribution, which is integrated over 

the plastic hinge length to provide the plastic hinge rotation. In the second part, 0p is 

computed using the stiffness, geometry and loading on the structure. The correct solution 

requires iteration in which the values o f loading and the steel strain at failure are adjusted 

to give same value of 0P from the two approaches. The correct solution satisfies 

equilibrium internally and externally, and compatibility o f deflections and rotations 

without violating the failure criteria for the steel and concrete.

The proposed model gives good agreement with experimental results. Both tests and 

model show the same trend in the variation of 0 P with the reinforcement index.

The concrete strain at ultimate has a significant influence on plastic rotation capacity; 9P 

increases with increasing 8 cU. The plastic rotation capacity also increases with increasing 

beam slenderness. A parametric study will be used in the next chapter to quantify the 

effects o f various parameters on 0 P and p.
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(b)
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1 —elastic moment at ultimate

elastic moment at yield inelastic moment at ultimate

(c)

at yield. at ultimate

Figure 4.1 (a) Two span beam with loading; (b) idealized beam after formation of 
plastic hinge; (c) distribution of moments; and (d) deformations at yield and 
ultimate
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Figure 4.2 Constant curvature model: (a) cantilever beam; (b) bending moment 
diagram; and (c) curvature distribution
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Figure 4.3 (a) Flexural member with cracked elements; and (b) rotation of cracked 
element
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(d)

Figure 4.4 Tension stiffening effect: (a) cracked element; (b) bond stress; (c) 
tensile stress in concrete; (d) tensile stress in steel; and (e) flexural rigidity
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Figure 4.5 Stress-strain relationship for concrete 
(Park et al. 1982)
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Figure 4.6 Stress-strain relationship for steel
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Figure 4.7 Moment-rotation relationship at hinge
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Figure 4.8 Strain compatibility and equilibrium analysis of a section 
subjected to flexure and axial load
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Figure 4.9 Stress and strain distribution in flexure at first yield
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Figure 4.10 Bond Model (Marti et al. 1998)
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Figure 4.11 Equilibrium of a differential element of a bar: (a) bar element; (b) 
stress distribution; and (c) force equilibrium
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Figure 4.12 (a) Cracked element; (b) bond shear; (c) steel stress; and (d) steel 
strain
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Figure 4.13 Case 1(oscrL>fy, ciscrR>fy, cr5min>fy): (a) bond shear; (b) steel stress; and 
(c) steel strain V
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Figure 4.14 Case 2 (ascrL>fy, cscrR>fy, osmin<fy): (a) bond shear; (b) steel stress; 
and (d) steel strain distribution
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Figure 4.15 Case 3 (ascrL>fy, oscrR< fy, osmin<fy): (a) bond shear; (b) steel stress; 
and (c) steel strain distribution
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Figure 4.16 Case 4 (oscrL<fy, ascrR<fy, osmin<fy): (a) bond shear; (b) steel stress; and 
(c) steel strain distribution

135

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



V
\

M

(a)

K -Sm ►|<-Sm ►;< Sm—►K"Sm >K-Spl >K-Sm > 1

V

MM

(b)

Figure 4.17 Plastic hinges at the interior support of a continuous beam: (a) 
flexural crack hinge; and (b) shear crack hinge
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Figure 4.18 Cracking in the vicinity of plastic hinge
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Figure 4.19 Effective area of concrete for computation of 
crack spacing
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Figure 4.20 Average strain concept used in the model: (a) cracked 
element with curvature; (b) £sm from plane-section’s analysis; and (c) esm 
from bond model
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Figure 4.21 Variation of tension chord force
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Figure 4.22 Variation of steel stress
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Figure 4.25 Computation of 0P at support: (a) idealized single span beam; (b) 
beam and loading after formation of plastic hinge; (c) statical system, loading 
and M/El diagram for computing free rotation; and (d) statical system, loading 
and M/El diagram for computing restrained rotation due to spring
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Figure 4.26 Strain variation in first cracked element
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Figure 4.29 Comparison of calculated and measured plastic 
rotations
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Figure 4.30 Comparison of calculated and measured 
rotations (Excluding beams With testecu >0.01)
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5. PARAMETRIC STUDY*

5.1 Introduction

This chapter contains the parametric study of plastic rotation capacity, 0p, and allowable 

moment redistribution, (3, using the methodology developed in Chapter 4. The study was 

carried out to understand and quantify the influence o f various parameters on 0P and (3. A 

better understanding o f the influence of these parameters, on 0 P and (3, will facilitate safe 

incorporation o f moment redistribution in design practice.

Figure 5.1 gives a graphical representation o f different standards fonnulae for allowable 

moment redistribution. The comparison shows that significant differences exist among 

various design standards, on the amount o f allowable moment redistribution. These 

standard provisions consider moment redistribution as a section property and relate it to 

the relative depth o f the compression zone at failure (c/d) or the reinforcement index 

(oo=Asfy/b d fc) only. Although, c/d or CD can fairly well represent the combined effects of

stress-stra in  characteristics o f  th e  m ateria ls, the g eo m etry  o f  the c ro ss-sec tio n  and the  

am ou n t o f  ten s ile  and c o m p ress iv e  re in forcem en t, it is  an o v ersim p lifica tio n  to  relate  

m o m e n t red istribution  to c /d  or CO on ly .

Researchers have proposed empirical relations for computing the plastic rotation capacity 

and allowable moment redistribution. A summary o f the expressions for available plastic 

rotation is given in Table 2.1.

It appears that none o f the proposed formulations for 0P can be considered completely 

satisfactory. Most o f them are based on tests o f simply supported beams with point loads, 

in which only a limited number o f parameters governing the plastic rotation capacity o f a 

member are considered. In particular, the fonnulations neglect the effects o f loading

* E s s e n t i a l s  o f  t h i s  c h a p t e r  a p p e a r  a s  a  p a p e r  i n  t h e  p r o c e e d i n g s  o f  t h e  A n n u a l  C o n f e r e n c e  o f  t h e  C a n a d i a n  

S o c i e t y  f o r  C i v i l  E n g i n e e r i n g ,  h e l d  i n  L o n d o n  O N ,  2 0 0 0
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distribution (uniformly distributed vs. concentrated) and structural configuration 

(continuous vs. simple spans).

The differences among the various design standards, and their deficiency in incorporating 

the main parameters, show the necessity for a detailed parametric study to quantify the 

influence o f main parameters on allowable moment redistribution.

5.2 Parametric Study of 0P and p

A two-span continuous beam is used for the parametric study. The loading on the beam 

may be either uniform or concentrated. The geometry, cross-section, loading, and 

material properties o f the beam are shown in Fig. 5.2. Only uniformly distributed load 

case is considered for the study, except for the case where the effect of loading on 0 P and 

P is considered. Similarly, an ultimate concrete strain, £cU, of 0.005 is used for the study, 

except for the case where effect o f £cU on 0p and P is considered. The plastic rotation 

capacity and the allowable moment redistribution are evaluated for the interior support of 

the beam.

A shear crack hinge is assumed for the parametric study except for the case where effects 

o f type o f plastic hinge are considered. While most reinforced concrete beams exhibit 

shear cracking at the ultimate limit state, this may not be true for lightly reinforced 

concrete beams. For such beams an explicit shear capacity check may be required to 

confirm the presence o f shear cracks. If shear cracks are not present, the 

recommendations and conclusions regarding allowable moment redistribution do not 

apply. However, the proposed model is general and can be used to determine the 

allowable moment redistribution with flexural hinges only.

The plastic rotation capacity and the allowable moment redistribution are expressed as a 

function of reinforcement index, (0 . While not necessarily more correct, it is more 

convenient to express 0 P and p as a function o f (0 , rather than the c/d ratio, because © 

remains constant for given amount o f flexural reinforcement, material properties, and
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section properties. On the other hand c/d ratio may be affected by other parameters, such 

as presence o f compression and transverse reinforcement. The presence o f axial load also 

influences the c/d ratio.

5.2.1 Effect of reinforcement index and ductility of steel

The reinforcement index and the c/d ratio are the most important parameters affecting 

plastic rotation capacity and moment redistribution. They incorporate within them the 

combined effects o f material properties, section properties, and the amount o f  flexural 

reinforcement. Figure 5.3 and Fig. 5.4 show the effect o f co on 0P, and (3 respectively. The 

curves are drawn for normal ductility steel (£^=0.1) and low ductility steel (£sU=0.04). 

Two distinct regions can be identified on these curves: a linear portion, AB, and a 

hyperbolic portion (BC or DC). In region AB, the rupture o f tension steel governs the 

failure o f the section. In region BC or DC, the failure is governed by the crushing of 

concrete. For nonnal ductility steel the failure is almost always governed by the crushing 

o f concrete unless the reinforcement provided is less than the minimum required 

reinforcement. For low ductility steel on the other hand, the failure is governed by the 

rupture o f steel for low to moderate reinforcement ratios, while it is governed by the 

crushing of concrete in regions o f higher reinforcement ratios.

For Canadian reinforcing steel the ultimate strain is high (£sU > 0.08 for Grade 400R and 

Bsu > 0.12 for Grade 400W) and hence 0P and (3 will be governed by the crushing of 

concrete rather than the rupture o f steel.

When the failure is governed by the rupture o f steel, 0P increases slightly with an increase 

in the value o f CO. When the failure is governed by the crushing o f concrete, 0P reduces 

hyperbolically with increasing co. The highest point on the curve being the one where the 

steel ruptures simultaneously as the concrete crushes. The allowable moment 

redistribution, on the other hand, reduces with the increase in co, for both steel rupture 

and concrete crushing failure.

1 5 4
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The increase in 0P with co, in the regions o f  steel failure (AB), is attributed to the fact that 

for the same steel strain (strain at rupture), the depth o f neutral axis increases with an 

increase in co which results in an increase in curvature and hence plastic rotation capacity. 

In the concrete failure zone, however, the depth o f neutral axis increases with an increase 

in co while the concrete strain remains constant (ultimate concrete strain £cU). This results 

in a decrease in curvature and hence the plastic rotation capacity. The maximum steel 

strain values at beam failure load also decrease with increasing values o f co.

In the steel failure region AB, as co increases, both moment capacity o f the critical 

section, Mu, as well as the elastic value o f the moment, Me, increases. However, the 

increase in Me is less than the increase in Mu. Since p=(Me-Mu/Me)*100, the net result is 

a reduction in the value o f (3.

It is clear from Fig. 5.3 and Fig. 5.4 that 0P and |3 are very limited for low ductility steel, 

especially in the regions of low reinforcement ratios. For example for the particular 

example considered here, at oo=0.05, 0P is 0.021 radian for low ductility steel as opposed 

to 0.073 radian for normal ductility steel.

The Canadian standard (CSA A23.3-94) allows a maximum moment redistribution of 

20% for c/d ratios o f 0.2 or less. In the particular example considered here, moment 

redistribution as high as 6 6 % can be allowed for low values o f c/d. For c/d ratio of 0.2, 

more than 30% moment redistribution can be allowed in this particular example. It is to 

be noted, however, that the plastic rotation capacity and the allowable moment 

redistribution depends upon a number of other factors and hence could vary significantly 

for the same value of co or c/d.

5.2.2 Effect of beam slenderness

Figure 5.5 and Fig. 5.6 show the influence o f beam slenderness (L/d) on plastic rotation 

capacity and allowable moment redistribution respectively. The effective depth o f the
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beam is kept constant at 740 mm while the span length is varied from 4.5 m to 16 m (L/d 

= 6  to L/d = 21.6).

Figure 5.5 shows that the plastic rotation capacity increases, almost linearly, with 

increasing slenderness ratio. The effect is most significant at low values o f ( 0  and reduces 

as co increases. This can be explained if  we consider the deformations o f the tension 

chord. For slender beams the yielding of steel is spread over a larger length as compared 

to the shorter beams. For example for co=0.107, the plastic hinge length increases from 

335 mm for L/d = 8  to 605 mm for L/d = 20. This increase in the plastic hinge length 

increases the plastic rotation capacity. The effect o f beam slenderness on plastic hinge 

length, however, reduces with an increase in CO. Intuitively, most designers know that thin 

(slab like) lightly reinforced members can plastically deform a lot.

The effect o f beam slenderness on allowable moment redistribution is counter-intuitive. 

Figure 5.6 shows that the allowable moment redistribution increases with a decrease in 

beam slenderness. This can be explained by the fact that for a given depth and 

reinforcement index, the nominal moment o f resistance Mu remains almost constant. The 

beam failure load qu reduces with the increase in L/d and although length o f the beam 

increases the net result is a reduction in the elastic moment Me.

It is well known that stiffer members (low L/d) experience larger changes in bending 

moments due to differential support settlements than do slender members. Similarly for 

stiff members small plastic hinge rotations produce large redistributions in moments. As 

one reduces L/d, the plastic rotation demand reduces faster than the plastic rotation 

capacity. Thus stiff (low L/d) members have higher allowable moment redistribution.

As an example o f the influence o f L/d on 0P, for co=0.144, 0P increases from 0.0143 

radian for L/d= 6  to 0.0243 radian for L/d=21.6, an increase of 70%. Similarly for the 

same co, (3 increases from 32% for L/d=21.6 to 50% for L/d=6 , an increase o f about 56%.
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5.2.3 Effect of ultimate concrete strain

Experimental evidence (Mattock, 1964) has shown that the strain in concrete at ultimate, 

Ecu, is an important parameter affecting plastic rotation capacity and allowable moment 

redistribution. This is shown in Fig. 5.7 and Fig. 5.8 by the slope of 9P and (3 curves. Both 

0 P and P increase almost proportionately with an increase in £cU.

As an example of the effect o f ultimate concrete strain on 0P and P, for o>=0.144, 0P 

increases from 0.013 radians for £^=0.0035 to 0.035 radians for £^=0.008, an increase of 

169%. Similarly for the same co, P increases from 26% for £cU=0.0035 to 47% for 

Ecu=0.008, an increase o f 74%.

The significant effect o f Ecu is due to the fact that an increase in £cU mobilises higher 

strains in tension steel, thereby increasing tension chord deformations and hence the 

plastic rotation capacity.

5.2.4 Effect of compression reinforcement

The effect o f compression reinforcement on plastic rotation capacity and allowable 

moment redistribution is shown in Fig. 5.9 and Fig. 5.10. Both 0P and P increase with an 

increase in the mechanical compression reinforcement index. The increase in 

compression reinforcement reduces the c/d ratio and mobilises greater strains in tension 

steel that leads to larger deformations o f the tension chord and an increase in plastic 

rotation capacity and higher amounts of moment redistribution. Table 5.3 provide such 

details for (0=0.144. For CO=0.144, there is a 93% increase in plastic rotation capacity 

from (Ofc=0 to coc=0.1444. Similarly there is about 39% increase in allowable moment 

redistribution from (0t=0 to coc-0-1444.

For flexural members, the ductility o f support sections is usually more critical than that o f 

span sections, because span sections very often act as T-sections, so that their ductility is 

improved considerably by the inclusion of flange areas. The amount o f positive moment 

steel in a typical flexural member is about 70 to 80% of the tension steel provided for
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negative moments. If only half o f this positive moment steel is continued through the 

support, that steel would provide enough compression reinforcement at the support to 

significantly increase the plastic rotation capacity and allowable moment redistribution.

5.2.5 Effect of concrete confinement

Transverse reinforcement in reinforced concrete beams provides confinement o f the 

compression zone and increases the ductility o f concrete in that region. Figure 5.11 and 

Fig. 5.12 illustrate the effect o f confinement on 0p and [3 respectively. The degree of 

confinement is expressed as a volumetric ratio o f stirrups, pv=2(bs+hs)Avs/bsohsos, where 

bsand hs are the centre to centre width and height o f the stirrup respectively, bso and hso 

are the width and height to the outside of stirrup respectively, Avs is the area o f one leg of 

stirrup, and s is the spacing of stirrups. The volumetric ratio o f stirrups is varied from

0.003872 (No. 10-2 legged stirrups at 300 c/c) to 0.02954 (No. 15-2 legged stirrups at 75 

c/c).

Both 0p and (3 increase with an increase in the amount o f transverse reinforcement. The 

plastic rotation capacity and allowable moment redistribution increase with increasing 

confinement

Figure 5.13 shows the effect o f confinement on concrete stress-strain curve. The slope of 

the falling branch of the stress-strain curve o f concrete reduces with increasing amounts 

o f confinement. This leads to a reduction in the depth of the compression block, as shown 

in Fig. 5.14, and an increase in the steel strain and beam failure load. The net result is an 

increase in the plastic rotation capacity and allowable moment redistribution. Because the 

base case in this parametric study, limited 8 cU to 0.005 the beneficial effect o f pv on 

increasing 8 cU are not reflected in Figs 5.13 and 5.14.

As an example o f the effect o f confinement, at (0=0.144, 0P varies from 0.018 for 

pv=0.00387 to 0.029 for pv=0.0295, an increase o f 61%. Similarly, for the same co, P 

varies from 32.5% for pv=0.00387 to 42% for pv=0.0295, an increase of about 31%.
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5.2.6 Effect of Vs/Vu

The effect o f the ratio o f shear carried by stirrups to the total shear, Vs/Vu, on the tension 

chord force, Ft, is shown in Fig. 5.15. The yielding is spread to a larger region for beams 

with small Vs/Vu ratio. Thus concrete beams that require little or no stirrups have more 

moment redistribution capacity than those requiring large amounts o f shear 

reinforcement.

Figure 5.16 and Fig. 5.17 show the effect o f Vs/Vu ratio on 0P and (3. Both 0P and (3 

increase with a decrease in the ratio Vs/Vu. As an example, for oo=0.144, 0P increases 

from 0.0212 radian for Vs/Vu = 1 to 0.035 radian for Vs/Vu = 0.25, a difference o f 65%. 

Similarly, for the same CO, (3 increases from 36% for Vs/Vu = 1 to 48% for Vs/Vu = 0.25, a 

difference o f about 33%. The plastic hinge length increases from 520 mm for Vs/Vu = 1 

to 725 mm for Vs/Vu = 0.25.

5.2.7 Effect of type of hinge

Two types of plastic hinges can fonn at a critical section, the flexure crack hinge, and the 

shear crack hinge. The shear crack hinge contains inclined cracks that increase the length 

over which the steel has yielded and thus increase the plastic hinge length. In some cases, 

the shear might not be enough to cause cracking o f concrete. In this case only flexure 

crack hinge is formed. The flexure crack hinge extends only over one or two cracks and 

the corresponding rotation capacity is quite low as compared to the shear crack hinge.

Figure 5.18 shows the effect o f the type o f hinge on the distribution o f tension chord 

force. It is clear that the tension chord force is increased and the yielding is spread over a 

much larger region, in case o f shear crack hinge.

Figure 5.19 and Fig. 5.20 show the effect of the type o f hinge on plastic rotation capacity 

and allowable moment redistribution respectively. As expected, 0P and (3 are much larger 

in the case o f a shear crack hinge than in case o f a flexure crack hinge. For example, for 

00=0.144, 0P is 0.0212 radian for shear crack hinge as opposed to 0.0077 radian for
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flexure crack hinge, a difference o f 175%. Similarly, for the same (0 , P is 36% for the 

shear crack hinge as opposed to 17% for the flexure crack hinge, a difference o f  1 1 2 %. 

The plastic hinge length for the shear crack hinge is 520 mm as opposed to 250 mm for 

the flexure crack hinge, in this particular example ((0=0.144).

5.2.8 Effect of axial load

Figure 5.21 and Fig. 5.22 show the effect o f axial load on plastic rotation capacity and 

allowable moment redistribution respectively. Since, in general, flexural members carry 

small axial loads, the ratio Pu/Ag is varied between -1  MPa (tension) to +1 MPa 

(compression) only. A plastic hinge is usually avoided in compression members and as 

such these are not considered in the study.

A compressive axial load reduces 0P and (3 while a tensile axial load increases 0P and p. 

This is because 0P and p benefit from the steel elongation. The compressive load reduces 

the steel strains and hence 0P and P, while the tensile load increases the steel strains and 

hence 0 P and p.

5.2.9 Effect of load type

Figure 5.23 and Fig. 5.24 show the effect o f the type of loading on plastic rotation 

capacity and allowable moment redistribution respectively. Three load cases were 

investigated, as shown in Fig. 5.2. These include, a uniformly distributed load on each 

span, a concentrated load at the centre o f each span, and concentrated loads at third points 

o f each span. It is found that the type o f loading has no significant effect on 0P or p. This 

is attributed to the fact that the shape o f the moment diagram in the vicinity o f the plastic 

hinge does not change much from one load case to the other, while the other parameters 

remain unchanged.

5.3 Comparison of Model Limits with Code Limits

Figure 5.25 and Fig. 5.26 show the upper and lower limits o f 0P and P respectively, 

obtained from the theoretical model. For 0P, the lower limit is obtained for a beam with a
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slenderness ratio o f 6  and a volumetric ratio o f stirrups o f 0.0038, while the upper limit is 

obtained for a slenderness ratio o f 21 and volumetric ratio o f stirrups o f 0.0295. For (3, 

the lower limit is obtained for a beam with a slenderness ratio o f 2 1 , and a volumetric 

ratio o f stirrups of 0.0038, while the upper limit is obtained for a slenderness ratio o f 6 , 

and a volumetric ratio o f stirrups o f 0.0295. The ultimate concrete strain is taken as 0.005 

for both cases. A shear hinge is assumed in the analysis and the ratio Vs/Vu is taken as 1. 

The effect o f axial load is not taken into account. The co considered is the net co and hence 

takes into account, the effect of any compression reinforcement. Figure 5.26 shows that 

there is a significant difference in the minimum and maximum allowable limits o f  

moment redistribution. For example for co = 0.2, the lower limit o f (3 is 20% while the 

upper limit is 45%.

Figure 5.27 provides a comparison of different code limits for (3 with the model limits. 

Compared to the model limits, the British standard (BS8110-85) can be unconservative 

for moderate to high values of CO. Similarly, German standard (DIN 1045-78) is 

unconservative for values of co greater than 0.25. The CEB Model Code limit is slightly 

higher than the model lower limit for the middle range of co. The American standard 

(ACI 318-95) limit is highly conservative.

Figure 5.28 provides an exclusive comparison of CSA A23.3-94 limits for [3 with the 

model limits. The code limit is conservative compared to the lower limit of the model and 

extremely conservative compared to the upper limit o f the model. For smaller values o f co 

(less than 0.15), the code is very conservative even for the lower limit of the model. For 

example, the code restricts the allowable moment redistribution to 2 0 % at c/d = 0 . 2  (co =

0.106). For the same value o f c/d, the lower limit of the model would allow almost 40% 

moment redistribution. In general even the lower limit o f the model allows almost twice 

as much moment redistribution as that allowed by the code.
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5.4 Empirical Equations for (3 Based on Ductility

Due to interaction of all the influencing parameters, determination of (3 is a complex 

problem. While a complex ductility model is more appropriate for use as an analytical 

research tool, it may not be entirely suitable for routine applications where one needs a 

quick estimate of allowable moment redistribution. A set of P curves or empirical 

equations, encompassing the influence of major parameters provide an alternative to the 

ductility model. The data from the parametric study is used to obtain empirical 

expressions for the allowable moment redistribution. Although nine independent 

variables were considered in the parametric study, including all these parameters in the 

regression analysis will lead to a complex formulation not suitable for practical use. The 

strategy used considers the influence o f a few important variables while assuming 

conservative values for the rest. In the following paragraphs, each variable is looked 

upon, on case-by-case bases, to decide which variables to include as independent 

variables and which variables to assign conservative constant values.

1. The reinforcement index is the most important parameters affecting moment 

redistribution. It incorporates the combined effects o f material properties, section 

properties, and the amount o f flexural reinforcement. It must be included as an 

independent variable in regression analysis.

2. Beam slenderness (L/d) is another major factor that considers the effects of structure 

geometry on allowable moment redistribution. It will be included as independent 

variable in regression analysis.

3. Concrete ultimate strain value can be kept constant at 0.005, in line with the 

assumptions used in this thesis.

4. Compression reinforcement is very effective in increasing the plastic rotation 

capacity and allowable moment redistribution. Its effect can be included within co by 

using cOeff as (a s -  A j)fy/b d fj ; where Aj is the compression reinforcement.
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5. The confinement o f concrete by transverse reinforcement improves the ductility of 

concrete. Using a lower bound value o f volumetric ratio o f stirrups, as 0.0038, will 

provide a conservative estimate o f (3.

6 . The ratio o f the shear stress carried by the stirrups to the total shear stress Vs/Vu can 

be assumed as unity. This will provide a conservative estimate o f p.

7. The type o f plastic hinge has a major influence on the plastic rotation capacity and 

allowable moment redistribution. Usually the magnitude of shear at the support is 

high enough to fonn diagonal cracks (ie Vf > Vc) and hence a shear plastic hinge 

can be assumed for all practical purposes.

8 . The effects o f axial load can be neglected for flexural members.

9. The type o f loading has insignificant influence on the allowable moment

redistribution and hence its effects are not included.

From above, it is concluded that co and L/d are the two most important variables that must 

be included in any expression for allowable moment redistribution. The rest can be 

included as constants with values that provide conservative estimate o f allowable 

moment redistribution.

There are two options that one can look at to detennine the relationship between (3 and 

the two independent variables co and L/d. Option one would be to perform non-linear 

regression analysis to obtain a single equation, using both co and L/d as independent

variables. Option 2 would be to obtain a set o f equations, relating (3 to co for different

values of L/d. The second option is adopted here as it will provide a simple relationship 

for calculating (3 and will always err on the conservative side.
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Based on the above discussion, (3 vs co curves are generated for a range o f L/d values 

from 6  to 21 as shown in Fig. 5.29. The graph shows that (3 reduces with increasing L/d, 

the rate o f reduction being more pronounced in the lower range of L/d. For example, 

reduction in the value o f [3 from L/d = 6  to L/d = 12.5 is more than twice as much as that 

from L/d = 12.5 to L/d = 21. Having noted that, following five values o f L/d are selected 

for providing a set o f [3 curves and equations; 6 , 8.5, 12.5, 16 and 21. For obvious 

reasons, a tighter spread o f  values is considered in the lower range of L/d than the upper 

range. Figures 5.30 through 5.34 show the model data points and the regression curves 

for each individual value o f L/d. The curves are second-degree polynomial and provide 

excellent fit to the model data. The following equations are obtained for the allowable 

moment redistribution:

Case 1: L/d < 6 (Fig. 5.30)

(3 = 528co2 -  382co+92 [5.1]

Case 2: 6 < L/d <8.5 (Fig. 5.31)

(3 = 622co2 -417co+89 [5.2]

Case3: 8.5 < L/d < 12.5 (Fig. 5.32)

(3 = 65 lea2 -425co+84 [5.3]

Case 4:12.5 < L/d < 16 (Fig. 5.33)

[3 = 700co2 -  439co+ 82 [5.4]
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Case 5:16 < L/d < 21 (Fig. 5.34)

(3 = 715co2 -439CO+78 [5.5]

The above equations or the (3 curves in Figures 5.30 to 5.34 can be used to establish the 

limits o f  moment redistribution, based on the ultimate limit-state. These equations can be 

useful in the strength evaluation o f existing structures when the structural collapse, rather 

than serviceability, is a prime concern. For design of new structures, the serviceability 

limit must be evaluated before using these equations. Serviceability limit-state is a topic 

o f the next Chapter.

5.5 Summary and Conclusions

A parametric study is done to understand the influence o f various parameters on plastic 

rotation capacity, 0P, and allowable moment redistribution, [3. The study reveals that in 

addition to co, 0p and (3 depend upon several other parameters. The most important among 

these are the type o f plastic hinge, ultimate concrete strain, beam slenderness, amount of 

compression reinforcement, amount o f  transverse reinforcement, and the ratio o f the 

shear carried by the stirrups to the total shear. The ductility of steel and the presence of 

axial load also influence the plastic rotation capacity and allowable moment 

redistribution. For low ductility steel 0P and (3 are very small compared to those for 

normal ductility steel, at low to moderate reinforcement ratios. The following 

observations are made with regard to the influencing parameters:

1. The reinforcement index co and the c/d ratio are the most important parameters 

affecting plastic rotation capacity and moment redistribution. For low ductility steel

(Ssu < 0.04), the failure is governed by the rupture o f steel, while for normal ductility 

steel (8 sU > 0.08), the failure is governed by the crushing o f concrete. For low 

ductility steel, 0 P and (3 are significantly reduce at lower values o f co (< 0.15).
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2. Beam slenderness (L/d) affects both 9P and (3. The plastic rotation capacity increases 

as the beam slenderness increases, while the allowable moment redistribution 

decreases as the slenderness increases.

3. Concrete ultimate strain has significant effect on 0P and [3. Both 0P and (3 increase 

with an increase in the concrete ultimate strain.

4. Compression reinforcement is effective in increasing the plastic rotation capacity 

and allowable moment redistribution.

5. The confinement of concrete by transverse reinforcement improves the ductility o f 

concrete.

6 . The ratio o f the shear stress carried by the stirrups to the total shear stress affects the 

distribution of tension steel force and hence 0P and (3. The smaller the ratio Vs/Vu 

the larger is the tension steel force and the extent of yielding and hence larger is the 

plastic rotation capacity and allowable moment redistribution.

7. The type of plastic hinge has a major influence on the plastic rotation capacity and 

allowable moment redistribution. The available rotation capacity and moment 

redistribution could be twice as large for the case o f a shear crack hinge as 

compared to a flexural crack hinge.

8 . The presence o f a tensile axial load increases 0P and (3, while the presence o f 

compressive axial load reduces 0P and (3.

9. The type of loading, unifonn or concentrated, has insignificant influence on plastic 

rotation capacity and allowable moment redistribution.

10. In general, most design standards are conservative. Moment redistribution much 

greater than 20% can be achieved, especially for low reinforcement ratios. Even for
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2 0 % moment redistribution, the code allowable limits of c/d are very conservative 

and would not allow taking advantage of moment redistribution under practical 

situations.

A set o f empirical equations and (3 curves are produced to evaluate the allowable moment 

redistribution in continuous reinforced concrete beams. These equations provide explicit 

relationship between (3 and co for different values o f L/d. The effects o f compression 

reinforcement are implicit in co. For the rest o f the parameters, constant values are 

assumed that provide conservative estimates o f |3. It is to be noted that these equations 

provide moment redistribution limits based on ductility criteria. The equations can be 

particularly useful in strength evaluation o f existing structures when structural collapse, 

rather than serviceability, is a matter o f concern. For new design, the serviceability 

criteria must be evaluated before using these equations.
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6. MOMENT REDISTRIBUTION AND SERVICEABILITY

6.1 Introduction

This chapter evaluates the allowable limits for moment redistribution, in continuous 

reinforced concrete beams, with respect to the serviceability limit state. Ductility model 

developed earlier in Chapter 4 shows that the allowable moment redistribution can be 

very high under favourable conditions. Moment redistribution implies yielding of the 

reinforcement. This chapter examines limits on moment redistribution to avoid the 

adverse effects of concrete cracking and yielding of reinforcement at service load levels.

6.2 Serviceability Requirement

Serviceability requires that crack widths and deflections are not excessive at service load 

level. Crack widths and deflection checks should be done in accordance with standard 

practice. Such checks are outside the scope o f this thesis. To satisfy the serviceability 

criteria, it is a virtual certainty that one must avoid yielding of reinforcement at service 

load level. If Ms is the maximum service moment at a critical section, to avoid yielding of 

reinforcement at that section at service load level, the minimum design moment Mdes 

must be at least:

Where A, is the limiting yield moment coefficient defined as (Furlong and Carlos, 1979):

If Mf is the maximum factored elastic moment and Ms is the maximum unfactored service 

elastic moment, the allowable moment redistribution (3 to satisfy the no yielding criteria 

is given as:

M dcs= M s/A [6.1]

A = M y/M r [6.2]
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p = Mf  ( M ,A ) xl(X)
M f

[6.3]

The above equation can be normalized by dividing the numerator and denominator by 

WfL2.

To determine the allowable moment redistribution for the serviceability limit state, one 

needs to determine the maximum elastic moment coefficients, (is and |if, at all critical 

sections and the limiting yield moment coefficient X . It is to be noted here that while the 

reinforced concrete members can be proportioned based on Eq. 6.4, an explicit check of 

crack widths and deflections may be required to ensure that serviceability requirements 

are met as per applicable standard.

6.2.1 Limiting yield moment coefficient X

The limiting yield moment coefficient can be obtained by determining My and Mr from 

plane-sections analysis. Considering linear stress-strain relation at yield, as shown in Fig. 

6.1a, one can write an expression for My as:

P = M j _ h . x l 0 0

| i f
[6.4]

where

M's = -----?iwrL
[6.5]

[6.6]

M = A sf y d - ^ f -  = A sfyd 1 -0 .33 -^fy  y 3  y d [6.7]
/
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Similarly, considering equivalent stress block at ultimate, as shown in Fig. 6.1b, one can 

write an expression for Mr as:

M r = A sf y
f  a ^

d - -
v 2 /

= A sf yd 1 -0 .5 (3 ,-  
n  d

[6.8]

Substituting My and Mr into Eq. 6.2 yields:

1-0.5(3, — 
1 d

[6.9]

where cy/d is the relative depth o f neutral axis at yield and c/d is the relative depth of 

neutral axis at ultimate. (3i is the ratio o f the depth of stress block, a, to the depth o f 

neutral axis at ultimate, given as: (3i =0.97-0.0025 f' (CSA A23.3-94). cy/d was derived 

in Chapter 3, Eq. 3.5 as:

■ = -\/p2 n 2 + 2 pn -  pn [6.10]

Since there is a unique relationship between p and c/d at ultimate, Eq. 6.10 can be 

rewritten in terms of c/d as:

2„ 2/  v
- I  + 2 nn, — - n n ,  —

vdJ >d ' d
(6.11)

where n=Es/Ec and ni is given as:
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_  ^P lfc
1 ~ I' [6 .1 2 ]

where cq is the ratio o f average stress in the rectangular compression block to the 

specified concrete strength = 0.85-0.0015 fc but not less than 0.67 (CSA A23.3-94).

Fig. 6.2 shows the plot o f Eq. 6.9 for commonly used grades o f steel and concrete. No 

combination gives value o f X  lower than 0.949. It can be concluded that yield moments 

are at least as large as 95% of the computed ultimate moments.

6.2.2 Derivation of elastic moment coefficients p* and |Xf

The procedure used for determining moment coefficients is based on the general 

principles o f structural analysis and limit design methods (Furlong and Carlos, 1979). 

The coefficients for maximum elastic moments at critical sections are derived using 

“three moment equation” method of elastic analysis. Different load patterns and span 

variations, providing maximum load effects, are considered for each critical section. The 

maximum effect o f  load placement and span length variation occurs when a continuous 

beam is supported on knife-edge supports without any rotational restraint. The results can 

be applied as upper limits for beams with rotationally restrained supports. The spans used 

are clear spans to account for the reduction of moment at the face of supports. It is 

assumed that the structure and the loading met the following six conditions:

(1) There are two or more spans

(2) Adjacent spans do not differ by more than 50% of the shorter span.

(3) The loads are uniformly distributed.

(4) The service live load does not exceed 3 times the service dead load

1 9 2

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



(5) The members are prismatic

(6 ) The beam is in a braced frame without significant moments due to lateral loads.

The main parameters used to derive moment coefficients are the service live load to dead 

load ratio a  and the adjacent span ratio 7 . Variations o f these parameters are considered 

to produce the upper bound values o f moment coefficients. A minimum value o f a^O.5 is 

used to avoid moment redistribution under pennanent loads.

6.2.2.1 Serviceability moment coefficients ji«

The loading and span configurations for maximum moments at critical sections are 

shown in Fig. 6.3 to 6 .8 . Table 6.1 lists the expressions for service load moment Ms at the 

critical sections. Substituting the expressions for Ms in Eq. 6.5 and applying CSA A23.3- 

94 load factors (wf=1.25wd + 1 . 5w l )  gives the expressions for |is at critical sections. The 

expressions for ps are also listed in Table 6.1 and are plotted in Fig. 6.3 to 6 .8 .

6.2.2.2 Factored moment coefficients p.f

The factored elastic moment coefficients are determined in exactly the same fashion as 

the serviceability moment coefficients. The governing loadings and span configurations 

for each critical section are shown in Figs. 6.9 to 6.14. Table 6.2 lists the expressions for 

factored load moment Mf and factored moment coefficient |if at the critical sections. The 

expressions for p.f are plotted in Fig. 6.9 to 6.14.

6.2.3 Allowable Moment Redistribution for Serviceability Limit State

The allowable moment redistribution limits for serviceability limit-state are determined 

using Eq. 6.4. Equation 6.4 is plotted for all critical sections in Fig. 6.15 to Fig. 6.21. The 

plots show that the allowable moment redistribution increases with increasing values o f 

load ratio and adjacent span ratio. Table 6.3 provides the minimum and maximum values 

o f allowable moment redistribution for each critical section.
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T able 6.1 Expressions for service moments and serviceability m om ent coefficients

Location Expression for M s Expression for jLis

Interior support negative 

moment M . = ^
(2 + 7 y + 3 y 2 )(l + a ) - ( 2  + y)y3 

3 + 7y+ 3y2
_ ( 2  + 7 y + 3 y 2 )(1 + a )  -  ( 2  + y)y3 

s 8?i(l .25 + 1 .5a)(3 + 7y + 3y2)

First interior support 

negative moment
w dL2 

M. = d
16

(5y4 +6y3 +8y+8)(l + oc)-(2 + y)y3 
4+ 7y+ 3y2

_  ( 2  + 7y + 3y2 )(1 + q ) -  (2 + y)y3 
s 8A, (l .25 + 1 .5a) (3  + 7y + 3y2)

Interior span positive 

moment
w ,L

ML =
( 2  +  8y + 3y2 )(l + a ) -  2(2 +  y)y3 

6 + 10y + 3y2
_ ( 2  + 8y 4- 3y2 )(l +  a )  -  2 (2 + y)y3 

s 8?l (l .25 + 1 ,5a) (6 +1 Oy + 3y2)

Exterior span positive 

moment M. =-
w dL2 ( 9  +19y + 6y2 )(l + q ) -  y3 (3 + y)

2
1 (9 +19y + 6y2 )(l + a) -  (3 + y) y1

32(l + q) 6+10y+3y2 rs 32A. (l .25 +1,5a)(l + a) (6 + 10y + 3y2)

Two span beam negative 

moment at interior support M . =
w ,L (l + q)(l + y3) 

1 + y M-s =
(l + q)(l + y3) 

8A.(l.25 + 1.5q)(l + y)

Two span beam positive 

moment M = - W"L
8(1+ q)

(l + q)(3 + 4 y ) - y 3 
4(1 + y) 8A, (l + q) (l .25 + 1 .5q)

(l + q)(3 + 4 y ) - y 3 

4 (l + y)

MS
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T a b le  6.2 E x p re ss io n s  fo r  f a c to re d  m o m en ts  a n d  fa c to re d  m o m e n t coeffic ien ts

Location Expression for Mf Expression for

Interior support negative 

moment
M

(2 + 7y+3y2 )(l .25 +1,5a )-1.25 (2 + y )y3' _ (2 + 7y + 3y2 )(1.25 + 1 ,5a) -1 .25  (2 + y)y3
f 8 3 + 7Y+3Y2 8 (l .25 + 1 ,5a) (3 + 7y + 3y2)

First interior support 

negative moment m - WdL2r<5y4 + 6Y3 + 8y+8)(l.25 + 1.5a)-1.25(2 + y)yJ _ (5y4 +6y3 +8y+8)(1.25 + 1.5a)-1.25(2 + y)y3 
^  8(l.25 + 1.5a)(8 + 14y+6y2)

f 16 4 + 7Y+3Y2

Interior span positive 

moment
M

’ (2 + 8y+ 3Y2 )(l .25 +1,5 a )-2.5 (2 + y)-/3" _ (2 + 8y + 3y2 )(l .25 + 1 .5a) -  2.5 (2 + y)y31V1
f 8 6 + 10Y+3Y2 8 (l .25 + 1 .5a) (6 +1 Oy + 3 y2)

Exterior span positive 

moment
wdL2 [" (9 +19y + 6y2 )(l .25 + 1,5a) -1.25 (3 + y)"/3 T 1

M-r = —32
r (9 +19y + 6Y2 )(l .25 +1,5 a )-1.25 (3 + y) y3 T32 (1.25 + 1.5a) [ 6 + 10y+3y2 J

(l .25 +1.5a)(6 +10y+3Y2) J

Two span beam negative 

moment at interior support

11

00
 

“■ f" (l.25 + 1.5a)(l + y 3 )" 
1 + y

„ _  (> + r3)
8(1+ 7)

Two span beam positive 

moment
M _ w dL2 1” (1.25 + 1.5a)(3 + 4y)-1.25y3 "|2 1

M-r = “f 8
’(1.25+ 1.5a)(3 + 4 y ) - 1.25 y3] 2

f 8(l.25 + 1.5a)[ 4 (l + y) 4 (1 + y)(l.25 + 1.5a) J

VO



Table 6.3 Moment Redistribution Limits for Serviceability

Location Minimum p % Maximum (3 %

Interior Support 21.3 28.4

First Interior Support 21 27.1

Interior Span 21.7 34

Exterior Span 21.3 28.2

Two Span - Int. Support 21 26.7

Two Span - Span 21.3 28.6

The allowable moment redistribution for critical sections ranges from 21% to 34%. The 

lower limit o f (3 for all critical sections is about 21% and occurs for the case when the 

load ratio and adjacent span ratio are at their lowest value (a=0.5, y=0.67). The upper 

limit for (3 varies between 27% and 34% and occurs for the case when the load ratio and 

adjacent span ratio are at their maximum value (a=3, 7^1.5).

6.3 Comparison Between Serviceability and Ductility

For serviceability limit-state the moment redistribution limit varies from 21% to 34%, 

depending upon the location of critical section, the adjacent span ratio and the seivice 

live load to dead load ratio. Within given ranges of parameters, the lower limit for 

allowable moment redistribution is 21%. Ductility model developed in Chapter 4 

provides allowable moment redistribution for variations o f different parameters. The 

lower and upper limits o f the model were given in Fig. 6.21. Assuming a reinforcement 

index of 0.2 (co=Asfy/bd fc ) for most practical cases, the ductility model gives a minimum

allowable moment redistribution of 20% and a maximum value of 45%. For values o f 

reinforcement index below 0.2, the ductility model allows much higher redistribution 

than that allowed by serviceability. Thus for beams with reinforcement index below 0.2, 

the serviceability limit state dictates the allowable limit o f moment redistribution. For 

beams with reinforcement index greater than 0.2, either serviceability or ductility may 

govern depending upon the influencing parameters. For reinforcement index values o f 0.2
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or less, 20% moment redistribution can be used without explicit check o f ductility and 

serviceability.

6.4 Empirical Equations For (5 based on Serviceability

It was noted in previous chapters that ductility limit-state could allow moment 

redistribution in excess o f 50% for favourable combinations o f parameters. Detailed 

evaluation of serviceability requirements in this chapter reveals that serviceability can 

restrict the allowable moment redistribution to as low as 21%, depending upon the live 

load to dead load ratio and the ratio o f adjacent spans. Considering the lower limit o f 

serviceability as the basis for allowable moment redistribution, one can develop a set of 

empirical equations by putting serviceability limits on the ductility curves, produced in 

Chapter 5. These ductility curves o f (3 vs co are shown in Fig. 6.22 to Fig. 6.26 for 

different values of L/d. The range o f L/d values is the same as that used in the previous 

Chapter. The maximum value o f co used is 0.318, which corresponds to the maximum 

value of c/d=0.6 allowed by the code. Superimposing the requirements o f serviceability 

on ductility curves, gives the allowable limits o f (3 as shown in Fig. 6.22 to Fig. 6.26. The 

corresponding empirical equations for |3 are:

Case 1: L/d < 8.5, CO < 0.318 (Fig. 6.22 and 6.23)

(3 = 20%

Case 2: 8.5 <L/d < 12.5, co < 0.318 (Fig. 6.24)

[3 = 42 -  88co< 20% [6.13]

Case 3:12.5 <L/d < 16, co < 0.318 (Fig. 6.25)

(3 = 3 8 -8 2 ©  <20% [6 .1 4 ]
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Case 4: 16 <L/d < 21, CO <  0.318 (Fig. 6.26)

p = 38.6 -93(0 <20%  [6.15]

CSA A23.3-94 limits for moment redistribution are also superimposed in Figures 6.22 

through 6.26. Table 6.4 shows the comparison between the code limits and the proposed 

limits o f CO for 20% moment redistribution. The comparison shows that the code limits for 

co are very restrictive. The code allowable limit o f CO for 20% moment redistribution is 

only 0.106 (c/d = 0.2). The proposed equations would allow co as high as 0.318 (c/d = 

0.6) for 20% moment redistribution, depending upon the slenderness ratio. On the 

contrary code would allow 0% moment redistribution for co = 0.318. Even for the highest 

slenderness ratio o f 21, the proposed equations would allow co = 0.2 (c/d=0.38) for 20% 

moment redistribution.

Table 6.4 Comparison of allowable CO for 20% moment redistribution

Slenderness ratio (L/d) CO (Code Equation) CO (Proposed Equations)

6 0.106 0.318

8.5 0.106 0.318

12.5 0.106 0.25

16 0.106 0.22

21 0.106 0.2

Moment redistribution is often required to reduce the congestion o f reinforcement at a 

heavily reinforced section. Such a section would have a value o f co typically in excess o f 

0.1. The code limit o f co is very conservative and will not allow taking advantage of 

moment redistribution in such situations.

The proposed equations for moment redistribution take into account both the ductility and 

the serviceability limit states. Theses consider the effects o f various parameters both
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explicitly and implicitly. These equations are simple, yet not overly conservative, and 

hence can be used in place o f code equation for moment redistribution. For real 

simplicity, one could use Eq. 6.15, which is the most conservative o f the governing 

equations. Equation 6.15 can be rewritten in terms o f c/d as:

P = 38.6 - 4 9 . 3 -  [6.16]
d

6.5 Sum m ary and Conclusions

Moment redistribution limits are evaluated for the condition o f no yielding under service 

loads, for continuous reinforced concrete beams. For practical limits o f service live load 

to dead load ratio, the allowable moment redistribution ranges from 21% to 34%. While 

ductility criteria allow moment redistribution in excess o f 50% under favourable 

conditions, the maximum limit from serviceability criteria is in the range of 28% for most 

cases. Unless one allows for yielding of steel and cracking of concrete at service load 

level, serviceability rather than ductility would dictate the allowable limit o f moment 

redistribution for values o f reinforcement index below 0.2. For beams with a 

reinforcement index greater than 0.2, either serviceability or ductility may govern 

depending upon the values o f influencing parameters. For mechanical reinforcement 

index values of 0.2 or less, 20% moment redistribution can be used without explicit check 

o f ductility and yielding under service loads.

Empirical equations for allowable moment redistribution are derived considering both 

serviceability and ductility requirements. These consider the effects o f various parameters 

both explicitly and implicitly. The allowable values o f co (or c/d) using these equations 

are much more liberal than the code allowable values. These equations are simple, yet not 

overly conservative, and hence can be used in place o f code equation for moment 

redistribution. For real simplicity, one could use Eq. 6.16, which is the most conservative 

o f the governing equations.
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moment at interior support of a continuous beam
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Figure 6.10 Factored moment coefficients for negative 
moment at first interior support of a continuous beam
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moment in exterior span of a continuous beam

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



K
A

K

1.5gwd
1.25Wd

—

B *
Yl

□

c

. (1 + T3) 
8(1+y)

0.14

0.13

0.12

4—
rL 0.11 
c  a)
'o

o 0.10 o
cd)
£
o 0.09

0.08

0.07

0.06
0 0.25 0.5 0.75 1 1.25 1.5

Adjacent span ratio y

Figure 6.13 Factored elastic moment coefficient for negative 
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7. MOMENT REDISTRIBUTION AND ANALYSIS OF CONTINUOUS 

REINFORCED CONCRETE BEAMS

7.1 Introduction

Continuous beams are typically analysed for a number o f pattern load cases to obtain the 

design moment envelope. Since maximum values o f design moment do not occur 

simultaneously, at all critical sections, the beams reinforced on the basis of such elastic 

analysis are typically over-designed. Moment redistribution is a tool that can be used to 

obtain design moments without being overly conservative. However pattern load analysis 

followed by an analysis with plastic hinges to obtain design moments becomes too 

cumbersome even for simple structures like continuous beams. The purpose o f this 

chapter is:

1. To develop design moment coefficients, for continuous reinforced concrete beams, 

by taking into account the allowable moment redistribution.

2. To compare derived moment coefficients with the CSA A23.3-94 design moment 

coefficients.

3. To examine the need for pattern load analysis in the design o f continuous reinforced 

concrete beams and determine if  continuous beams can be designed for a single load 

case without performing the pattern load analysis.

7.2 Derivation of Design Moment Coefficients

The moment coefficients are derived for each critical section with the moment 

redistribution allowed based on ductility criteria at the ultimate limit state, and with the 

moment redistribution allowed to avoid any yielding at service load level. The largest 

coefficient from the two conditions provides the design moment coefficient. These 

coefficients may need to be adjusted to satisfy the limit strength criteria.
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The strategy adopted for determination o f design moment coefficients is the same as that 

used in the previous chapter. Different load patterns and span variations, providing 

maximum load effects, are considered for each critical section. The maximum effect of 

load placement and span length variation occurs when a continuous beam is supported on 

knife-edge supports without any rotational restraint. Results from analysis o f beams 

supported on knife-edges can be applied as upper limits for beams with rotationally 

restrained supports. The spans used are clear spans to account for the reduction o f 

moment at the face o f supports. For the derivation o f the design moment, it is assumed 

that the structure and the loading met the same five conditions as required for the use of 

CSA A23.3-94 moment coefficients. These conditions are:

1. There are two or more spans

2. The spans are approximately equal, with the longer o f two adjacent spans not 

greater than the shorter by more than 20%

3. The loads are uniformly distributed

4. The factored live load does not exceed 2 times the factored dead load

5. The members are prismatic

In addition there is a sixth condition that is not stated in CSA A23.3-94 but is necessary 

for the use o f approximate moment coefficients. This condition states; “the beams must 

be in a braced frame without significant moments due to lateral loads.”

In addition to pattern loading, the main parameters used to derive moment coefficients 

are the adjacent span ratio y and service live load to dead load ratio a .  For the purpose of 

this exercise the relevant range o f y is 0.833 to 1.2 and the maximum value of a  is 1.67, 

to meet the code limitations stated in 2 and 4 above. A minimum value o f a=0.5 is used 

to avoid moment redistribution under permanent loads.
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7.2.1 Serviceability moment coefficients

The expressions for serviceability coefficients (is were developed in Chapter 6. These 

expressions are plotted for the relevant range o f a  and y in  Figs. 7.1 to 7.6. The maximum 

values o f (is for each critical section are tabulated in Table 7.1.

Table 7.1 Serviceability moment coefficients

Location Maximum 

serviceability 

coefficient (is

LL to DL ratio 

a

Adjacent span 

ratio

Y

Interior support negative 

moment

0.0798 1.67 0.833

First interior support 

negative moment

0.0882 0.5 1

Interior span positive 

moment

0.0543 1.67 0.833

Exterior span positive 

moment

0.0694 0.5 0.833

Two span beam negative 

moment at interior support

0.0988 0.5 1

Two span beam positive 

moment

0.0652 1.67 0.833

7.2.2 Ductility moment coefficients

Ductility requirements are evaluated to ensure that the moments can redistribute without 

exhausting the ductility o f the plastic hinges. When a critical section yields, it undergoes 

inelastic rotation and redistributes the moment to other critical sections. The amount of 

moment redistribution depends upon the plastic rotation capacity o f the critical section.
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Given enough rotation capacity, the member continues to carry increasing load until all 

three critical sections o f the member reach their moment capacity. The section that yields 

first is the most critical because it undergoes the most plastic rotation. For a member to 

develop its full flexural capacity, the available rotation capacity o f this critical section 

must be greater than the required plastic rotation at that section.

Maximum ductility demand typically occurs at support regions, especially when the 

tangents at the ends must retain a slope o f zero. The ductility model developed in Chapter 

4 for this condition provides the allowable moment redistribution values. The upper and 

lower limit o f the model is given in Fig. 5.28 and is reproduced here in Fig. 7.7. Using 

lower limit o f the ductility model, the allowable moment redistribution for the range of go 

from 0.15 to 0.25 is:

For co = 0.15, (3 — 28.5% 

For to = 0.2, P = 20% 

For (0 = 0.25, (3 =  15%

For most practical cases the value of co rarely exceeds 0.2. The ductility moment 

coefficients can be obtained by applying the allowable moment redistribution (|3) to the 

elastic factored moment coefficients at critical sections. The factored elastic moment 

coefficient is given as:

M r
H r = — 7 7  1 7 - 1 ]w fL

The corresponding ductility moment coefficient is given as:

f  3 ^
f i d  =  1 - —  X f i f  [ 7 - 2 ]

d 100
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The factored elastic moment coefficients are determined in exactly the same fashion as 

the service limit moment coefficients were determined in the previous section. The limits 

for a  and y  are the same as considered for the serviceability moment coefficients. The 

expressions for (if are plotted in Figs. 7.8 to 7.13 and the maximum values o f  (if are 

tabulated in Table 7.2.

Table 7.2 Factored elastic moment coefficients

Location Itf a T

Interior Support 0.1073 1.67 0.833

First Interior Support 0.1161 1.67 1

Interior Span 0.0735 1.67 0.833

Exterior Span 0.0926 1.67 0.833

Two-Span Int. Support 0.125 n/a 1

Two-Span Span 0.0876 1.67 0.833

The corresponding ductility moment coefficients (id are tabulated in Table 7.3.

Table 7.3 Ductility moment coefficients

Location (id 

co = 0.15

(id 

co = 0.20

lid 

oo = 0.25

Interior Support 0.0767 0.0858 0.0912

First Interior Support 0.083 0.0929 0.0987

Interior Span 0.0525 0.0588 0.0625

Exterior Span 0.0662 0.0741 0.0787

Two-Span Int. Support 0.0894 0.10 0.106

Two-Span Span 0.0626 0.0701 0.0745
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7.2.3 Design moment coefficients

The design moment coefficients will be the maximum of the serviceability and ductility 

moment coefficients given in Tables 7.1 and 7.3 respectively, provided they satisfy the 

limit strength requirement for each span as given by Eq. 3.12. The interior span moment 

coefficients do not need any adjustment, however the exterior span positive moments are 

increased where required to satisfy this requirement. The factor for the increment o f 

positive moment is evaluated as follows:

0.125

K  = ---------------- 1 ------  [7-3]
M1 mid

The final adjusted design moment coefficients are given in Table 7.4. The exterior span 

positive moments that are adjusted to satisfy Eq. 3.12 are highlighted in the table.

Table 7.4 Design moment coefficients

Location fides

co = 0.15

Udes

CO = 0.20

(-tdes

co — 0.25

Interior Support 0.0798 0.0858 0.0912

First Interior Support 0.0882 0.0929 0.0987

Interior Span 0.0543 0.0588 0.0625

Exterior Span 0.081 0.0785 0.0787

Two-Span Int. Support 0.0988 0.10 0.106

Two-Span Span 0.0756 0.075 0.0745

For low to moderate values o f co (co < 0.15), serviceability governs the allowable moment 

redistribution limit and hence the design moment coefficients. For higher values o f co (co 

= 0.2 to 0.25), ductility governs the allowable moment redistribution limit and hence the 

design moment coefficients.
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7.2.4 Comparison with CSA A23.3-94 moment coefficients

Tables 7.5 to 7.7 show comparison of derived moment coefficients with CSA A23.3-94 

moment coefficients.

Table 7.5 Comparison between derived moment coefficients and CSA A23.3-94 

moment coefficients (co = 0.15)

Location (Lies

co-0 .15

CSA A23.3-94 Ratio

Interior Support 0.0798 0.091 0.87

First Interior Support 0.0882 0.1 0.88

Interior Span 0.0543 0.0625 0.87

Exterior Span 0.081 0.091 0.89

Two-Span Int. Support 0.0988 0.111 0.89

Two-Span Span 0.0756 0.091 0.83

Table 7.6 Comparison between derived moment coefficients and CSA A23.3-94 

moment coefficients (co = 0.20)

Location (Lies

co = 0.20

CSA A23.3-94 Ratio

Interior Support 0.0858 0.091 0.94

First Interior Support 0.0929 0.1 0.93

Interior Span 0.0588 0.0625 0.94

Exterior Span 0.0785 0.091 0.86

Two-Span Int. Support 0.10 0.111 0.9

Two-Span Span 0.075 0.091 0.82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Table 7.7 Comparison between derived moment coefficients and CSA A23.3-94

moment coefficients (co = 0.25)

Location M<les 

co = 0.25

CSA A23.3-94 Ratio

Interior Support 0.0912 0.091 1

First Interior Support 0.0987 0.1 0.99

Interior Span 0.0625 0.0625 1

Exterior Span 0.0787 0.091 0.86

Two-Span Int. Support 0.106 0.111 0.95

Two-Span Span 0.0745 0.091 0.82

The code design moment coefficients are conservative. For CO = 0.15, the derived 

coefficients are smaller than the code coefficients by 18% to 11%, depending upon the 

location o f critical section. For co = 0.20, the derived coefficients are smaller than the 

code coefficients by 18% to 6%. For CO = 0.25, the derived coefficients are comparable to 

code coefficients at most locations, yet smaller than 18% -14% at other locations. For 

most practical cases the maximum values o f CO are between 0.15 and 0.2 and hence 

savings can be achieved by using the derived moment coefficients.

7.3 Moment Redistribution and Pattern Loading

Continuous beams are typically analysed for pattern load cases to obtain the design 

moment envelope. This is tedious and time consuming, as a variety o f load cases need to 

be considered for the analysis o f the beam. Since maximum values o f design moment do 

not occur simultaneously at all critical sections, the beams reinforced on the basis o f  such 

elastic analysis are typically over designed. Moment redistribution can be used to 

detennine if  one really needs to perform pattern load analysis to obtain design moments.

The procedure for assessing the need for pattern load analysis would be as follows:
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1. Determine the design moment coefficients at critical sections based on pattern 

loading and moment redistribution. This has already been done in previous sections.

2. Next calculate the moment coefficients at critical sections due to a single case of 

non-pattern loading. This would be the case where full factored load is applied 

uniformly on all spans of the continuous beam.

3. Compare the non-pattern load moment coefficients with the redistributed design 

moment coefficients. If the non-pattern load moment coefficients are greater than 

the redistributed design moment coefficients, there is no need to perform pattern 

load analysis.

The expressions for the non-pattern load moment coefficients are derived by considering 

different variations o f adjacent span ratios. The range of y considered is the same as that 

used for deriving the redistributed design moment coefficients in this chapter. 

Redistributed design moment coefficients for co = 0.2 are used as this would be the case 

for most practical situations. The loading and span configurations for maximum moments 

at critical sections are given in Figs. 7.14 to 7.19. The moment coefficient expressions are 

obtained by dividing the maximum moment by WfL2 and are given in Table 7.8. These 

moment coefficient expressions for non-pattern load moment are plotted in Figs. 7.14 to 

7.19. The maximum values of the moment coefficients are tabulated in Table 7.9.

Table 7.10 shows comparison between the non-pattem load moment coefficients and the 

pattern load redistributed moment coefficients. The non-pattem load moment coefficients 

are greater than the redistributed moment coefficients for all critical sections except for 

the positive moment in the interior span. The difference between the two for the interior 

span positive moment is only 3% and hence for all practical purposes non-pattem load 

moment coefficients govern the flexural design o f reinforced concrete beams. 

Consequently it can be concluded that, within given range of parameters, there is no need 

for performing pattern load analysis to obtain the design moment coefficients. The
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continuous reinforced concrete beams can be safely designed for a single case o f 

uniformly distributed load.

Table 7.8 Expressions for non-pattern load moment coefficients

Location Expression for moment coefficient p.

Interior support negative moment (2 +  7y + 3y2) - ( 2  + y)Y3 
8(3 + 7y+3y2)

First interior support negative moment _ (5y4 + 6y3 + 8y + 8 )-  (2 + y)y3 
8(8 +  14y+6y2)

Interior span positive moment (2 +  8y +  3y2) -  2(2 +  y)y3 
8(6 +  10y+3y2)

Exterior span positive moment 1
It =  —  32

(9 +  19y + 6y2 )(l +  a ) -  (3 + y)y31 2

(6+10y+3y2) J
Two span beam negative moment at 

interior support

1= 11
00 

'T
ZT

'

+ 
2

1 
OJ

Two span beam positive moment 1 r
M' =  -  8

(3 + 4 y ) -y 3 "|2 
4(1 + y) J

Table 7,9 Maximum non-pattern load moment coefficients

Location M- y

Interior support negative moment 0.0948 0.833

First interior support negative moment 0.1071 1

Interior span positive moment 0.0569 0.833

Exterior span positive moment 0.0832 0.833

Two span beam negative moment at interior support 0.125 1

Two span beam positive moment 0.077 0.833
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Table 7.10 Comparison between non-pattern load moment coefficients and

redistributed moment coefficients

Location II M-red Ratio |Lt/(|J.red)

Interior Support 0.0948 0.0858 1.1

First Interior Support 0.1071 0.0929 1.15

Interior Span 0.0569 0.0588 0.97

Exterior Span 0.0832 0.0785 1.06

Two-Span Int. Support 0.125 0.10 1.25

Two-Span Span 0.077 0.075 1.03

7.4 Summary and Conclusions

Moment coefficients were determined for the design o f continuous reinforced concrete 

beams. The coefficients use moment redistribution limits that ensure that the plastic hinge 

ductility is not exhausted at the ultimate limit state and that yielding does not occur at 

service load level. The conditions for the use o f these coefficients are the same as those 

specified for the use o f CSA A23.3-94 moment coefficients. Three sets o f moment 

coefficients were determined, one each for co = 0.15, to = 0.2 and CO = 0.25. For lower 

value o f co (co = 0.15), serviceability (avoiding yielding at service load) governs the 

design moment coefficients, while for higher value o f co (co = 0.2 and 0.25) hinge 

ductility governs the design moment coefficients. Comparison between the CSA A23.3- 

94 coefficients and the derived coefficients show that the code moment coefficients are 

conservative especially for lower values o f co. For co = 0.15 the derived coefficients are 

smaller than the code coefficients by 11% to 18%. For co = 0.20, the derived coefficients 

are less than the CSA A23.3-94 coefficients by 6% to 18%. For co = 0.25, the derived 

coefficients are comparable to code coefficients at most locations. For most practical 

cases beams are designed with co between 0.15 and 0.2 and hence savings can be 

achieved by using the derived moment coefficients.
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The need for pattern load analysis is assessed for the design o f continuous reinforced 

concrete beams. It is assumed that the factored live load to dead load ratio is not greater 

than 2 and the adjacent longer span is not greater than the shorter span by 20%. These 

limits are the same as specified by CSA A23.3-94. The maximum elastic moments from a 

non-pattem single load analysis without moment redistribution are evaluated and 

compared with the redistributed design moments from pattern load analysis. The elastic 

moments from non-pattem load analysis are found to be greater than the redistributed 

moments from the pattern load analysis and hence govern the flexural design. The work 

o f running multiple pattern load cases and then applying moment redistribution to reduce 

the extreme moments can be avoided. Within given range o f parameters, continuous 

reinforced concrete beams can be analysed and designed on the basis o f a single load case 

without considering pattern load analysis.
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Figure 7.1 Serviceability moment coefficient for negative 
moment at interior support of a continuous beam
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Figure 7.2 Serviceability moment coefficient for negative 
moment at first interior support of a continuous beam
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Figure 7.5 Serviceability moment coefficient for negative 
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Figure 7.10 Factored elastic moment coefficient for positive 
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Figure 7.11 Factored elastic moment coefficient for positive 
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Figure 7.14 Non-pattern load moment coefficient for negative 
moment at interior support of a continuous beam
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Figure 7.15 Non-pattern load moment coefficient for negative 
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Figure 7.17 Non-pattern load moment coefficient for positive 
moment in exterior span of a continuous beam
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Figure 7.18 Non-pattern load moment coefficient for negative 
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8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary

Moment redistribution can be used as a tool to reduce the design moment envelope of 

indeterminate reinforced concrete structures. This, however, requires a realistic estimate 

of allowable moment redistribution. Significant differences exist among various design 

standards on the amount o f allowable moment redistribution. While the Canadian 

standard (A23.3-94) and the American standard (ACI 318-95) allow a maximum of 20% 

moment redistribution, other standards allow much higher moment redistribution. The 

Danish standard (DS 411-1986) allows moment redistribution as high as 66%. 

Furthermore, the code (CSA A23.3-94) considers c/d to be the only parameter affecting 

allowable moment redistribution. The literature review reveals that there are many other 

parameters that affect the allowable moment redistribution. This points to the need for a 

more thorough examination o f the code (A23.3-94) limit for moment redistribution.

Code (CSA A23.3-94) provisions for allowable moment redistribution are examined in 

Chapter 3 to assess the need for a rational ductility model. Ductility equations from 

plane-section analysis, combined with classical equilibrium method of analysis and 

subsequent hinge moment analysis, are used to establish the c/d limit for given amounts 

of moment redistribution. Comparison with code c/d limit shows that the code limit is 

very conservative and does not account for the influence of other important parameters.

An analytical model is developed in Chapter 4 to predict the plastic rotation capacity, 0P, 

and allowable moment redistribution, (3, in reinforced concrete sections. The model is 

developed by considering the mechanics o f reinforced concrete, concrete and steel 

constitutive laws and a bond-slip law that allows computation of stresses and strains 

within the cracked elements. The material constitutive relationships, used, allow the 

inclusion of the effect o f concrete confinement and steel strain hardening. The bond-slip 

relationship used allows including the effects o f tension stiffening. A linear moment -  

rotation (M-0P) relationship allows accounting for the finite stiffness o f hinge. Effects of 

shear cracking on 0P and p are taken into account by considering the shift of the tension
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force in the steel. An effort is made to incorporate the important variables identified in 

literature review, especially beam slenderness, concrete confinement, ultimate concrete 

strain, steel ductility, shear cracking, and the type o f loading.

The model considers the tension region of the beam to be composed of individual cracked 

elements. The analysis to determine 0P and (3 consists o f two parts. In the first part 0P is 

computed by summing up the individual rotations o f each cracked element. The steel 

strain distribution within each cracked element is determined, using the bond-slip law. 

The steel strain distribution leads to the curvature distribution, which is integrated over 

the plastic hinge length to provide the plastic hinge rotation. In the second part, 0P is 

computed using the stiffness, geometry and loading on the structure. The correct solution 

requires iteration in which the values o f loading and the steel strain at failure are adjusted 

to give same value o f 0P from the two approaches. It gives the maximum load that the 

member can carry without exhausting the ductility o f the plastic hinges in the collapse 

mechanism.

A parametric study is done to understand and quantify the effects o f various parameters 

on plastic rotation capacity and allowable moment redistribution. The study is carried out 

using the model developed in Chapter 4. The study reveals that although (0  is the most 

important parameter, there are several other parameters that affect plastic rotation 

capacity and allowable moment redistribution. The most important among these are the 

type o f plastic hinge, ultimate concrete strain, beam slenderness, amount o f compression 

reinforcement, amount o f transverse reinforcement, and the ratio o f the shear carried by 

the stirrups to the total shear. The ductility o f steel and the presence o f axial load also 

influence the plastic rotation capacity and allowable moment redistribution. For low 

ductility steel 0P and (3 are small compared to those for normal ductility steel, at low to 

moderate reinforcement ratios. The following observations are made with regard to the 

influencing parameters:

1. The reinforcement index and/or the c/d ratio are the most important parameters 

affecting plastic rotation capacity and moment redistribution. They incorporate
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within them the combined effects of material properties, section properties, and the 

amount o f flexural reinforcement. For nonnal ductility steel, such as that used in 

Canadian design, the failure is almost always governed by the crushing o f concrete 

unless the reinforcement provided is less than the minimum required reinforcement. 

For low ductility steel (£sU=0.04) on the other hand, the failure is governed by the 

rupture o f steel for low to moderate reinforcement ratios, while it is governed by the 

crushing o f concrete in regions o f higher reinforcement ratios.

2. The beam slenderness (L/d) affects both 0P and p. The plastic rotation capacity 

increases as the beam slenderness increases, while the allowable moment 

redistribution decreases as the slenderness increases. Thus relatively deep beams 

(smaller L/d) allow more redistribution o f moment provided that premature shear 

failure is prevented.

3. Concrete ultimate strain has significant effect on 0P and (3. Both 0P and (3 increase 

with an increase in the concrete ultimate strain.

4. Compression reinforcement is effective in increasing the plastic rotation capacity and 

allowable moment redistribution.

5. The confinement o f concrete by transverse reinforcement improves 0P and (3. While 

confinement increases the effective strength o f the concrete, it is the increase in 

ultimate concrete strain that is mostly responsible for increasing 0P and p.

6. The ratio o f the shear stress carried by the stirrups to the total shear stress affects the 

distribution o f tension steel force and hence 0P and (3. A smaller Vs/Vu gives greater 

0P and p and vice versa.

7. The type o f plastic hinge has a major influence on the plastic rotation capacity and 

allowable moment redistribution. The available rotation capacity and moment
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redistribution for the case o f a shear crack hinge is possibly twice as great as a hinge 

that only contains flexural cracks.

8. The presence o f a tensile axial load increases 0P and (3, while the presence of a 

compressive axial load reduces 0P and (3.

9. The type of loading, uniform or concentrated, has insignificant influence on plastic 

rotation capacity and allowable moment redistribution.

It is realized that although a complex ductility model is more appropriate for use as an 

analytical tool, it may not be entirely suitable for routine applications where one needs a 

quick estimate o f  allowable moment redistribution. Empirical equation seems to be a 

better alternative to rigorous analysis. With this in mind, a set o f empirical equations and 

curves are produced to determine the allowable moment redistribution in continuous 

reinforced concrete beams. These equations provide an explicit relationship between (3 

and (0  for a range of L/d values. The effects o f compression reinforcement are implicit in 

© while for the rest o f the parameters, constant values are assumed that provide 

conservative estimates o f (3. These equations can be used to detennine the allowable 

moment redistribution based on ductility criteria. These can particularly be useful in the 

strength evaluation o f existing structures when the structural collapse, rather than 

serviceability, is a prime concern.

Although ductility considerations may allow very high amounts of moment redistribution 

under favourable conditions, the serviceability must be considered when establishing an 

upper limit on allowable moment redistribution. In Chapter 6, allowable moment 

redistribution limits are established to prevent steel yielding at service load levels. These 

can govern the moment redistribution limits that only consider the ultimate limit state.

Empirical equations for the allowable moment redistribution are developed. Comparison 

with the code equation shows that the code is conservative if  one is considering the
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ultimate limit state and moderately conservative if  one wants to prevent yielding at 

service load level.

CSA A23.3-94 Clause 9.3 gives approximate moment coefficients for frame analysis. In 

Chapter 7 an alternative set of coefficients that utilize moment redistribution is 

developed. They allow a reduction in design moments o f about 10% for beams with co 

less than 0.2.

Moment redistribution is used to assess the need for pattern load analysis, for continuous 

reinforced concrete beams. The factored live load to dead load ratio is assumed not to be 

greater than 2 and the adjacent longer span is assumed not to be greater than the shorter 

span by 20%. These limits are the same as specified by CSA A23.3-94 for the use of 

approximate coefficients. The maximum elastic moments from non-pattem load analysis 

are evaluated and compared with the redistributed design moments from pattern load 

analysis. The elastic moments from non-pattem load analysis are found to be greater than 

the redistributed moments from the pattern load analysis and hence govern the flexural 

design. Thus allowing for moment redistribution can eliminate the need for pattern load 

analysis and the reinforced concrete beams can be analysed and designed on the basis of 

a single load case.

8.2 C onclu sions

The following conclusions are made:

1. A ductility model is developed and validated against test results from the literature. 

A set o f empirical equations derived from the ductility model allows one to assess 

the allowable moment redistribution in reinforced concrete beams.

2. The standard (CSA A23.3-94) limits for allowable moment redistribution are very 

conservative relative to the ultimate limit-state. Under favourable conditions 

moment redistribution in excess o f 50% is possible, provided that the serviceability 

is not an issue.
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3. Serviceability consideration can and generally will limit the allowable moment 

redistribution. With respect to avoiding yielding at service load level, the code 

limits on moment redistribution are conservative.

4. For low ductility steel (8sU less than 0.04) the plastic rotation capacity and the 

allowable moment redistribution is significantly reduced in regions o f low (0  (co 

less than 0.15), where the failure is governed by the rupture o f steel.

5. Higher ultimate strain in concrete allows higher moment redistribution. While the

0.0035 code limit is adequate for computing moment resistance, it is too 

conservative for computing hinge rotation capacity.

6. Non-slender beams with shear reinforcement provide much higher moment 

redistribution capacity than slender beams or slabs with little or no shear 

reinforcement.

7. Compression reinforcement can be effective in increasing the allowable moment 

redistribution by reducing the c/d ratio.

8. The presence o f shear cracking in a plastic hinge has a major impact on the 

allowable moment redistribution. Shear cracks substantially increase the plastic 

rotation capacity and allowable moment redistribution.

9. Use o f redistributed moment coefficients instead o f the code coefficients can 

provide potential savings in the amount o f  flexural reinforcement.

10. Considering moment redistribution can eliminate the need for a pattern load 

analysis, for the design of continuous reinforced concrete beams.
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8.3 Recommendations for Future Research

The following research needs are identified:

1. Ultimate strain in concrete has a major influence on the allowable moment 

redistribution. The standard (CSA A23.3-94) uses 0.0035 as the ultimate strain in 

concrete at failure. Experimental work done earlier has reported much higher 

strains at failure. There is a need to re-evaluate the limit for 8cU through 

experimental research.

2. Experimental and analytical studies need to be done to evaluate the effects of 

moment redistribution on the shear capacity of reinforced concrete beams.

3. Serviceability criteria need to be examined through analytical and experimental 

research to determine if more relaxed limits can be adopted to allow taking full 

advantage of moment redistribution.

4. A knife-edge support is assumed in the development of the model and the analysis 

of continuous beams. In reality, supports such as columns have finite width that 

contributes to the plastic hinge length and improves ductility. The benefits of finite 

width of support on rotation capacity and moment redistribution warrant further 

study.
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APPENDIX A

SPREAD SHEET SOLUTION FOR DUCTILITY MODEL

I N P U T  D A T A

S t r u c t u r e  G e o m e t r v

S p a n  l e n g t h L  = 1 2 m

S e c t i o n  P r o p e r t i e s

H e i g h t h  = 8 0 0 m m

W e b  W i d t h b  = 3 0 0 m m

C l e a r  C o v e r c c l  = 5 0 m m

c / c  C o v e r c c t  = 6 0 m m

E f f e c t i v e  D e p t h d  = 7 4 0 m m

D i s t a n c e  t o  C o m p r e s s i o n  S t e e l  

M a t e r i a l  P r o p e r t i e s

d c  = 6 5 m m

C o n c r e t e

C y l i n d e r  S t r e n g t h f c  = 3 0 M P a

M o d u l u s  o f  E l a s t i c i t y E c  = 2 . 4 6 E + 0 4 M P a

U l t i m a t e  S t r a i n  

S t e e l

e c u 0 . 0 0 5

T e n s i o n  S t e e l

Y i e l d  S t r e n g t h v 4 0 0 M P a

U l t i m a t e  S t r e n g t h f u  = 5 4 0 M P a

M o d u l u s  o f  E l a s t i c i t y E s t  = 2 . 0 0 E + 0 5 M P a

Y i e l d  S t r a in e s y  = 2 . 0 0 E - 0 3

U l t i m a t e  S t r a i n e s u  = 0 . 1

S t r a i n  H a r d e n i n g  M o d u l u s  

o f  E l a s t i c i t y

E s h  = 1 . 4 3 E + 0 3 M P a

C o m p r e s s i o n  S t e e l

Y i e l d  S t r e n g t h f y c  = 4 0 0 M P a

U l t i m a t e  S t r e n g t h f u c  = 6 0 0 M P a

Y i e l d  S t r a in e s y c  = 0 . 0 0 2

U l t i m a t e  S t r a i n e s u c  = 0 . 1

S t r a i n  H a r d e n i n g  M o d u l u s E s h c  = 2 . 0 4 E + 0 3 M P a

o f  E l a s t i c i t y  

S t i r r r u p s

Y i e l d  S t r e n g t h  f y s  =  4 0 0  M P a
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Amount of Reinforcement

T e n s i o n  R e i n f o r c e m e n t

N u m b e r  o f  b a r s n b  = 6
D i a .  o f  B a r d b  = 20 m m

A r e a  o f  R e i n f o r c e m e n t A s  = 1800 m m 2

r o h t = 0.0081
C o m p r e s s i o n  R e i n f o r c e m e n t

N u m b e r  o f  b a r s n b c  = 0
D i a .  o f  B a r d b c  = 0
A r e a  o f  R e i n f o r c e m e n t A s c  = 0

S T I R R U P S

n l e g  = 2
D i a .  o f  B a r d b s  = 10
S p a c i n g s  = 150 m m

A b s  = 100
A v s  = 200

R e i n f o r c e m e n t  I n d e x CO = 0.1081

C r a c k  s p a c i n g s m= 150 m m

C o m p r e s s i o n  s t r u t  a n g l e ot = 45 d e g r e e

c o t a = 1
v = 0.8

M a g n i t u d e  o f  b o n d  s h e a r  s t r e s s

Xbi=  0.6*(v*fc)A(2/3) = 5.0

Tb2= 0.3*(v*fc)A(2/3) = 2.5

R E S U L T S  O F  A N A L Y S I S

B a r  d i a . n o .  o f  bars c / d (0 q u M u O p P
k N / m k N m r a d %

2 0 6 0 . 1 3 4 8 0 . 1 0 8 1 0 8 1 5 6 . 3 2 8 8 4 5 8 1 . 0 0 . 0 2 8 0 3 1 8 4 2 . 7
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DETAILED CALCULATIONS

1 . C a l c u l a t i o n  o f  D e p t h  o f  N e u t r a l  A x i s , S t e e l  S t r a i n ,  a n d  S u p p o r t  M o m e n t

a ,  =  0 . 8 5 - 0 . 0 0 1 5 * f c  =  0 . 8 0 5

P ,  =  0 . 9 7 - 0 . 0 0 2 5  * f c  =  0 . 8 9 5

£s (Steel Strain) c a f s T d v M a

(A v  s t e e l  s tr a in  fr o m  p l a n e - s e c t i o n s  a n a ly s i s )

0 . 0 3 2 0 9  A---------------1

0 . 0 4 6 9 ( a s s u m e d  £ s) 9 9 . 7 6 8 9 . 2 8 4 6 4 . 1 4 8 3 5 . 4 6 6 9 5 . 4 1 5 8 1 . 0

0 . 0 2 6 6 2 9  A ------------ 1

(Av steel s train  from bond-model)

2 .  A s s u m e  a  v a l u e  o f  q  =  5 6 . 3 3  k N / m

M e l  =  1 0 1 3 . 9 2  k N m

M a  =  5 8 0 . 9 9  k N m

3 .  C a l c u l a t i o n  o f  T e n s i o n  F o r c e  a n d  S t r e s s  i n  S t e e l  a t  C r a c k  L o c a t i o n s

R u =  ( r e a c t i o n  a t  s u p p o r t )  3 8 6 . 3 9  k N  V u =  3 8 6 . 3 9  V c =  1 4 5 . 9 1

k N  k N

X V x M x F t ctcr |  E q n  f o r  c o m p u t i n g  F t

0 3 8 6 . 3 9 5 8 0 . 9 9 8 3 5 . 4 6 4 6 4 . 1 4 E q .  4 . 6 4

0 . 1 5 3 7 7 . 9 4 5 2 3 . 6 6 8 2 6 . 4 7 4 5 9 . 1 5 E q .  4 . 6 4

0 . 3 3 6 9 . 4 9 4 6 7 . 6 1 7 9 9 . 5 0 4 4 4 . 1 7 E q .  4 . 6 4

0 . 4 5 3 6 1 . 0 4 4 1 2 . 8 2 7 5 4 . 5 6 4 1 9 . 2 0 E q .  4 . 6 4

0 . 6 3 5 2 . 5 9 3 5 9 . 2 9 6 9 1 . 6 4 3 8 4 . 2 4 E q .  4 . 6 4

0 . 7 5 3 4 4 . 1 4 3 0 7 . 0 4 6 1 3 . 5 9 3 4 0 . 8 8 E q .  4 . 6 5

0 . 9 3 3 5 . 6 9 2 5 6 . 0 5 5 3 6 . 0 5 2 9 7 . 8 0 E q .  4 . 6 5

1 . 0 5 3 2 7 . 2 4 2 0 6 . 3 3 4 6 0 . 3 2 2 5 5 . 7 4 E q .  4 . 6 5

1 . 2 3 1 8 . 7 9 1 5 7 . 8 8 3 8 6 . 4 2 2 1 4 . 6 8 E q .  4 . 6 5

1 . 3 5 3 1 0 . 3 4 1 1 0 . 6 9 3 1 4 . 3 5 1 7 4 . 6 4 E q .  4 . 6 5

1 .5 3 0 1 . 9 0 6 4 . 7 7 2 4 4 . 0 9 1 3 5 . 6 1 E q .  4 . 6 5

1 . 6 5 2 9 3 . 4 5 2 0 . 1 2 1 7 5 . 6 6 9 7 . 5 9 E q .  4 . 6 5

1 . 8 2 8 5 . 0 0 - 2 3 . 2 6 1 0 9 . 0 5 6 0 . 5 8 E q .  4 . 6 5

1 . 9 5 2 7 6 . 5 5 - 6 5 . 3 8 4 4 . 2 6 2 4 . 5 9 E q .  4 . 6 5

2 . 1 2 6 8 . 1 0 - 1 0 6 . 2 2 - 1 8 . 7 0 - 1 0 . 3 9 E q .  4 . 6 5

2 . 2 5 2 5 9 . 6 5 - 1 4 5 . 8 0 - 7 9 . 8 4 - 4 4 . 3 6 E q .  4 . 6 5

2 . 4 2 5 1 . 2 0 - 1 8 4 . 1 2 - 1 3 9 . 1 6 - 7 7 . 3 1 E q .  4 . 6 5

2 . 5 5 2 4 2 . 7 5 - 2 2 1 . 1 6 - 1 9 6 . 6 6 - 1 0 9 . 2 5 E q .  4 . 6 5

2 . 7 2 3 4 . 3 0 - 2 5 6 . 9 4 - 2 5 2 . 3 3 - 1 4 0 . 1 9 E q .  4 . 6 5

2 . 8 5 2 2 5 . 8 5 - 2 9 1 . 4 5 - 3 0 6 . 1 9 - 1 7 0 . 1 0 E q .  4 . 6 5

3 2 1 7 . 4 0 - 3 2 4 . 7 0 - 3 5 8 . 2 1 - 1 9 9 . 0 1 E q .  4 . 6 5

3 . 1 5 2 0 8 . 9 5 - 3 5 6 . 6 8 - 4 0 8 . 4 2 - 2 2 6 . 9 0 E q .  4 . 6 5

3 . 3 2 0 0 . 5 0 - 3 8 7 . 3 8 - 4 5 6 . 8 1 - 2 5 3 . 7 8 E q .  4 . 6 5

3 . 4 5 1 9 2 . 0 5 - 4 1 6 . 8 3 - 5 0 3 . 3 7 - 2 7 9 . 6 5 E q .  4 . 6 5

3 . 6 1 8 3 . 6 0 - 4 4 5 . 0 0 - 5 4 8 . 1 1 - 3 0 4 . 5 0 E q .  4 . 6 5

3 . 7 5 1 7 5 . 1 6 - 4 7 1 . 9 1 - 5 9 1 . 0 2 - 3 2 8 . 3 5 E q .  4 . 6 5

3 . 9 1 6 6 . 7 1 - 4 9 7 . 5 5 - 6 3 2 . 1 2 - 3 5 1 . 1 8 E q .  4 . 6 5

4 . 0 5 1 5 8 . 2 6 - 5 2 1 . 9 2 - 6 7 1 . 3 9 - 3 7 2 . 9 9 E q .  4 . 6 5

4 . 2 1 4 9 . 8 1 - 5 4 5 . 0 2 - 7 0 8 . 8 4 - 3 9 3 . 8 0 E q .  4 . 6 5

4 . 3 5 1 4 1 . 3 6 - 5 6 6 . 8 6 - 7 4 4 . 4 7 - 4 1 3 . 5 9 E q .  4 . 6 5

4 . 5 1 3 2 . 9 1 - 5 8 7 . 4 3 - 7 7 8 . 2 7 - 4 3 2 . 3 7 E q .  4 . 6 5
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Computation of Distances. XL 1. XL2. XR1. XR2

Case 1 :  CTscrL >  f y ; O SCrR  >  fy? ®smin ^

X L 2 X L 1 X R 1 X R 2

c r a c k  1 8 0 . 0 0 0 7 0 . 0

c r a c k  2 9 0 . 0 0 0 6 0 . 0

c r a c k  3 1 0 0 . 0 0 0 5 0 . 0

c r a c k  4 1 1 0 . 0 0 0 4 0 . 0

c r a c k  5 1 1 8 . 4 0 0 3 1 . 6

c r a c k  6 1 1 8 . 1 0 0 3 1 . 9

c r a c k  7 1 1 7 . 1 0 0 3 2 . 9

c r a c k  8 1 1 6 . 1 0 0 3 3 . 9

c r a c k  9 1 1 5 . 1 0 0 3 4 . 9

c r a c k  1 0 1 1 4 . 1 0 0 3 5 . 9

Case 2: (5scrL >  f y j  O scrR  ^  fyS ®smin <  fy

X L 2 X L 1 X R 1 X R 2

c r a c k  1 1 2 8 . 5 - 4 8 . 5 - 4 8 . 5 1 1 8 . 5

c r a c k  2 1 1 8 . 5 - 2 8 . 5 - 2 8 . 5 8 8 . 5

c r a c k  3 8 8 . 5 1 1 . 5 1 1 . 5 3 8 . 5

c r a c k  4 3 8 . 5 7 1 . 6 7 1 . 6 - 3 1 . 6

c r a c k  5 - 3 1 . 6 1 5 0 . 0 1 5 0 . 0 - 1 1 8 . 4

c r a c k  6 - 1 1 8 . 4 2 3 6 . 6 2 3 6 . 6 - 2 0 4 . 7

c r a c k  7 - 2 0 4 . 7 3 2 1 . 8 3 2 1 . 8 - 2 8 9 . 0

c r a c k  8 - 2 8 9 . 0 4 0 5 . 1 4 0 5 . 1 - 3 7 1 . 2

c r a c k  9 - 3 7 1 . 2 4 8 6 . 3 4 8 6 . 3 - 4 5 1 . 4

c r a c k  1 0 - 4 5 1 . 4 5 6 5 . 5 5 6 5 . 5 - 5 2 9 . 6

Case 3: OscrL > fy5 OscrR ̂  fyj Osmj„ < fy
X L 2 X L 1 X R 1 X R 2

c r a c k  1 1 2 8 . 5 - 1 8 . 9 4 0 . 4 0

c r a c k  2 1 1 8 . 5 - 6 . 4 3 7 . 9 0

c r a c k  3 8 8 . 5 2 1 . 1 4 0 . 4 0

c r a c k  4 3 8 . 5 6 3 . 7 4 7 . 9 0

c r a c k  5 - 3 1 . 6 1 2 0 . 4 6 1 . 2 0

c r a c k  6 - 1 1 8 . 4 1 8 5 . 4 8 3 . 0 0

c r a c k  7 - 2 0 4 . 7 2 4 9 . 6 1 0 5 . 1 0

c r a c k  8 - 2 8 9 . 0 3 1 2 . 3 1 2 6 . 7 0

c r a c k  9 - 3 7 1 . 2 3 7 3 . 5 1 4 7 . 8 0

c r a c k  1 0 - 4 5 1 . 4 4 3 3 . 1 1 6 8 . 3 0
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Case 4: oscrL fy? cjsci-r < fy5 osmin fy
X L 2 X L 1 X R 1 X R 2

c r a c k  1 0 7 7 . 5 7 2 . 5 0

c r a c k  2 0 8 2 . 5 6 7 . 5 0

c r a c k  3 0 8 7 . 5 6 2 . 5 0

c r a c k  4 0 9 2 . 5 5 7 . 5 0

c r a c k  5 0 9 6 . 7 5 3 . 3 0

c r a c k  6 0 9 6 . 6 5 3 . 4 0

c r a c k  7 0 9 6 . 1 5 3 . 9 0

c r a c k  8 0 9 5 . 6 5 4 . 4 0

c r a c k  9 0 9 5 . 1 5 4 . 9 0

c r a c k  1 0 0 9 4 . 5 5 5 . 5 0

S T R E S S E S

C a s e  1 :  O s c rL >  f y i  O sc rR  ^  fy> O 'sm in ^  f y

L e f t L e f t  In t I n t R i g h t  I n t R i g h t

4 6 4 . 1 4 2 4 . 2 4 2 4 . 2 4 2 4 . 2 4 5 9 . 1

4 5 9 . 1 4 1 4 . 2 4 1 4 . 2 4 1 4 . 2 4 4 4 . 2

4 4 4 . 2 3 9 4 . 2 3 9 4 . 2 3 9 4 . 2 4 1 9 . 2

4 1 9 . 2 3 6 4 . 3 3 6 4 . 3 3 6 4 . 3 3 8 4 . 2

3 8 4 . 2 3 2 5 . 1 3 2 5 . 1 3 2 5 . 1 3 4 0 . 9

3 4 0 . 9 2 8 1 . 9 2 8 1 . 9 2 8 1 . 9 2 9 7 . 8

2 9 7 . 8 2 3 9 . 3 2 3 9 . 3 2 3 9 . 3 2 5 5 . 7

2 5 5 . 7 1 9 7 . 8 1 9 7 . 8 1 9 7 . 8 2 1 4 . 7

2 1 4 . 7 1 5 7 . 2 1 5 7 . 2 1 5 7 . 2 1 7 4 . 6

C a s e  2 .  O scrL ■>  f y? O scrR  ^  fy> O sm in ^  fy

L e f t L e f t  I n t I n t R i g h t  I n t R i g h t

4 6 4 . 1 4 0 0 . 0 4 4 8 . 4 4 0 0 . 0 4 5 9 . 1

4 5 9 . 1 4 0 0 . 0 4 2 8 . 4 4 0 0 . 0 4 4 4 . 2

4 4 4 . 2 4 0 0 . 0 3 8 8 . 5 4 0 0 . 0 4 1 9 . 2

4 1 9 . 2 4 0 0 . 0 3 2 8 . 6 4 0 0 . 0 3 8 4 . 2

3 8 4 . 2 4 0 0 . 0 2 5 0 . 2 4 0 0 . 0 3 4 0 . 9

3 4 0 . 9 4 0 0 . 0 1 6 3 . 8 4 0 0 . 0 2 9 7 . 8

2 9 7 . 8 4 0 0 . 0 7 8 . 7 4 0 0 . 0 2 5 5 . 7

2 5 5 . 7 4 0 0 . 0 - 4 . 5 4 0 0 . 0 2 1 4 . 7

2 1 4 . 7 4 0 0 . 0 - 8 5 . 6 4 0 0 . 0 1 7 4 . 6

1 7 4 . 6 4 0 0 . 0 - 1 6 4 . 6 4 0 0 . 0 1 3 5 . 6

Case 3: O scr^  >  fy; O scrR  — fy? O sm in fy

L e f t L e f t  I n t I n t R i g h t I n t R i g h t

4 5 9 . 1 4 0 0 . 0 4 0 6 . 4 4 4 4 . 2 4 4 4 . 2

4 4 4 . 2 4 0 0 . 0 3 7 8 . 9 4 1 9 . 2 4 1 9 . 2

4 1 9 . 2 4 0 0 . 0 3 3 6 . 4 3 8 4 . 2 3 8 4 . 2

3 8 4 . 2 4 0 0 . 0 2 7 9 . 8 3 4 0 . 9 3 4 0 . 9

3 4 0 . 9 4 0 0 . 0 2 1 4 . 9 2 9 7 . 8 2 9 7 . 8

2 9 7 . 8 4 0 0 . 0 1 5 0 . 8 2 5 5 . 7 2 5 5 . 7

2 7 7
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2 5 5 . 7 4 0 0 . 0 8 8 . 2 2 1 4 . 7 2 1 4 . 7

2 1 4 . 7 4 0 0 . 0 2 7 . 1 1 7 4 . 6 1 7 4 . 6

1 7 4 . 6 4 0 0 . 0 - 3 2 . 4 1 3 5 . 6 1 3 5 . 6

1 3 5 . 6 4 0 0 . 0 - 9 0 . 5 9 7 . 6 9 7 . 6

Case 4: Q ScrL ^  ^ s c rR  ^  f y ;  ^ sm in  ^  fy

L e f t L e f t  In t I n t R i g h t  I n t R i g h t

4 6 4 . 1 4 6 4 . 1 3 8 6 . 8 4 5 9 . 1 4 5 9 . 1

4 5 9 . 1 4 5 9 . 1 3 7 6 . 8 4 4 4 . 2 4 4 4 . 2

4 4 4 . 2 4 4 4 . 2 3 5 6 . 8 4 1 9 . 2 4 1 9 . 2

4 1 9 . 2 4 1 9 . 2 3 2 6 . 8 3 8 4 . 2 3 8 4 . 2

3 8 4 . 2 3 8 4 . 2 2 8 7 . 7 3 4 0 . 9 3 4 0 . 9

3 4 0 . 9 3 4 0 . 9 2 4 4 . 5 2 9 7 . 8 2 9 7 . 8

2 9 7 . 8 2 9 7 . 8 2 0 1 . 9 2 5 5 . 7 2 5 5 . 7

2 5 5 . 7 2 5 5 . 7 1 6 0 . 3 2 1 4 . 7 2 1 4 . 7

2 1 4 . 7 2 1 4 . 7 1 1 9 . 8 1 7 4 . 6 1 7 4 . 6

1 7 4 . 6 1 7 4 . 6 8 0 . 2 1 3 5 . 6 1 3 5 . 6

D eterm in ation  o f  A p p lica b le  C ase

c r a c k  1 C A S E  1

c r a c k  2 C A S E  1

c r a c k  3 C A S E  2

c r a c k  4 C A S E  3

c r a c k  5 C A S E  4

c r a c k  6 C A S E  4

c r a c k  7 C A S E  4

c r a c k  8 C A S E  4

c r a c k  9 C A S E  4

c r a c k  1 0 C A S E  4

4 . C a lcu la tion  o f  stress-stra in  d istr ibu tion  w ith in  cracked  e lem en ts and  total a n g le  o f  ro ta tio n

dx X crs E* 0 i 0|ot Esm
c r a c k  1 0 . 0 4 6 4 . 1 0 . 0 4 6 9

1 2 8 . 4 9 1 2 8 . 5 4 0 0 . 0 0 . 0 0 2 0

- 4 8 . 4 8 8 0 . 0 4 4 8 . 4 0 . 0 3 5 9

- 4 8 . 4 8 3 1 . 5 4 0 0 . 0 0 . 0 0 2 0

c r a c k 2 1 1 8 . 4 8 1 5 0 . 0 4 5 9 . 1 0 . 0 4 3 4 0 . 0 0 6 2 4 0 . 0 1 6 0 3 5 8 0 . 0 2 6 6

1 1 8 . 4 8 2 6 8 . 5 4 0 0 . 0 0 . 0 0 2 0

- 2 8 . 4 8 2 4 0 . 0 4 2 8 . 4 0 . 0 2 1 9

- 2 8 . 4 8 2 1 1 . 5 4 0 0 . 0 0 . 0 0 2 0

c r a c k  3 8 8 . 4 7 3 0 0 . 0 4 4 4 . 2 0 . 0 3 2 9 0 . 0 0 5 5 5

1 0 0 . 0 1 4 0 0 . 0 3 9 4 . 2 0 . 0 0 2 0

0 . 0 0 4 0 0 . 0 3 9 4 . 2 0 . 0 0 2 0

0 . 0 0 4 0 0 . 0 3 9 4 . 2 0 . 0 0 2 0

c r a c k  4 4 9 . 9 9 4 5 0 . 0 4 1 9 . 2 0 . 0 1 5 4 0 . 0 0 3 4 0

3 8 . 4 6 4 8 8 . 5 4 0 0 . 0 0 . 0 0 2 0

6 3 . 6 6 5 5 2 . 1 3 3 6 . 4 0 . 0 0 1 7

4 7 . 8 8 6 0 0 . 0 3 8 4 . 2 0 . 0 0 1 9

c r a c k  5 0 . 0 0 6 0 0 . 0 3 8 4 . 2 0 . 0 0 1 9 0 . 0 0 0 8 4

0 . 0 0 6 0 0 . 0 3 8 4 . 2 0 . 0 0 1 9
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9 6 . 7 1 6 9 6 . 7 2 8 7 . 7 0 . 0 0 1 4

5 3 . 2 9 7 5 0 . 0 3 4 0 . 9 0 . 0 0 1 7

c r a c k  6 0 . 0 0 7 5 0 . 0 3 4 0 . 9 0 . 0 0 1 7 0

0 . 0 0 7 5 0 . 0 3 4 0 . 9 0 . 0 0 1 7

9 6 . 5 7 8 4 6 . 6 2 4 4 . 5 0 . 0 0 1 2

5 3 . 4 3 9 0 0 . 0 2 9 7 . 8 0 . 0 0 1 5

c r a c k  7 0 . 0 0 9 0 0 . 0 2 9 7 . 8 0 . 0 0 1 5 0

0 . 0 0 9 0 0 . 0 2 9 7 . 8 0 . 0 0 1 5

9 6 . 0 7 9 9 6 . 1 2 0 1 . 9 0 . 0 0 1 0

5 3 . 9 3 1 0 5 0 . 0 2 5 5 . 7 0 . 0 0 1 3

c r a c k  8 0 . 0 0 1 0 5 0 . 0 2 5 5 . 7 0 . 0 0 1 3 0

0 . 0 0 1 0 5 0 . 0 2 5 5 . 7 0 . 0 0 1 3

9 5 . 5 6 1 1 4 5 . 6 1 6 0 . 3 0 . 0 0 0 8

5 4 . 4 4 1 2 0 0 . 0 2 1 4 . 7 0 . 0 0 1 1

c r a c k  9 0 . 0 0 1 2 0 0 . 0 2 1 4 . 7 0 . 0 0 1 1 0

0 . 0 0 1 2 0 0 . 0 2 1 4 . 7 0 . 0 0 1 1

9 5 . 0 5 1 2 9 5 . 1 1 1 9 . 8 0 . 0 0 0 6

5 4 . 9 5 1 3 5 0 . 0 1 7 4 . 6 0 . 0 0 0 9

c r a c k  1 0 0 . 0 0 1 3 5 0 . 0 1 7 4 . 6 0 . 0 0 0 9 0

0 . 0 0 1 3 5 0 . 0 1 7 4 . 6 0 . 0 0 0 9

9 4 . 5 5 1 4 4 4 . 5 8 0 . 2 0 . 0 0 0 4

5 5 . 4 5 1 5 0 0 . 0 1 3 5 . 6 0 . 0 0 0 7

5. Total rotation (Both sides) 0tot= 0.032072

6. Yield rotation 0y= 0.00404

7. Plastic rotation 0P= 0.028032

8. Stiffness of plastic hinge

ks= 3.64E+09

9. Cracked moment of inertia
lg= 1.28E+10 mmA4
lcr= 5.01 E+09 mmA4
Elcr= 1.24E+14

10. Recalculate the load "q"
q= 56.32884

Iterate till the values of q from step 2 and 10 converge.
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C alculation o f Yield Rotation

n =  8 . 1 1 4 4 0 8

r o h =  0 . 0 0 8 1 0 8

1 . D e p t h  o f  n e u t r a l  a x i s

c y=  2 2 4 . 1 2 5 4

l a =  6 6 5 . 2 9 1 5

2 .  Y i e l d  M o m e n t

M a y =  4 7 9 . 0 0 9 9

3 .  Y i e l d  l o a d  q y =  2 6 . 6 1 1 6 6

4 .  C a l c u l a t i o n  o f  T e n s i o n  F o r c e  a n d  S t r e s s  i n  S t e e l  a t  C r a c k  L o c a t i o n s

x  ( m ) V x  ( k N ) M x  ( k N . m ) F t  ( k N ) a s y  ( M p a )

0 1 9 9 . 5 9 4 7 9 . 0 0 9 9 7 2 0 4 0 0

0 . 1 5 1 9 5 . 6 0 4 4 9 . 3 7 1 1 6 7 1 4 . 9 2 7 0 4 3 9 7 . 1 8 1 7

0 . 3 1 9 1 . 6 0 4 2 0 . 3 3 1 1 9 6 9 9 . 7 0 8 1 4 3 8 8 . 7 2 6 7

0 . 4 5 1 8 7 . 6 1 3 9 1 . 8 8 9 9 7 6 7 4 . 3 4 3 3 2 3 7 4 . 6 3 5 2

0 . 6 1 8 3 . 6 2 3 6 4 . 0 4 7 5 2 6 3 8 . 8 3 2 5 8 3 5 4 . 9 0 7

0 . 7 5 1 7 9 . 6 3 3 3 6 . 8 0 3 8 4 5 9 6 . 0 6 4 3 6 3 3 1 . 1 4 6 9

0 . 9 1 7 5 . 6 4 3 1 0 . 1 5 8 9 1 5 5 4 . 0 1 8 4 8 3 0 7 . 7 8 8

1 . 0 5 1 7 1 . 6 5 2 8 4 . 1 1 2 7 5 5 1 2 . 8 7 2 6 1 2 8 4 . 9 2 9 2

1 .2 1 6 7 . 6 5 2 5 8 . 6 6 5 3 5 4 7 2 . 6 2 6 7 3 2 6 2 . 5 7 0 4

5 .  S t r e s s - s t r a i n  d i s t r i b u t i o n  w i t h i n  c r a c k e d  e l e m e n t s  a n d  t o t a l  y i e l d  r o t a t i o n

d x X a s y e s y d c r w c r q y i

c r a c k  1 0 4 0 0 0 . 0 0 2

0 0 4 0 0 0 . 0 0 2 0

7 6 . 4 1 1 3 5 8 0 7 7 6 . 4 1 1 3 5 8 3 2 3 . 7 0 7 8 3 0 . 0 0 1 6 1 9 0 . 1 3 8 2 4 8 7

7 3 . 5 8 8 6 4 1 9 3 1 5 0 3 9 7 . 1 8 1 6 9 0 . 0 0 1 9 8 6 0 . 1 3 2 6 2 3 2

c r a c k  2 0 1 5 0 3 9 7 . 1 8 1 6 9 0 . 0 0 1 9 8 6 0 0 . 2 7 0 8 7 1 9 0 . 0 0 0 5 2 5

0 1 5 0 3 9 7 . 1 8 1 6 9 0 . 0 0 1 9 8 6 0

7 9 . 2 3 4 0 7 4 2 2 2 9 . 2 3 4 0 7 3 1 8 . 0 7 1 2 0 . 0 0 1 5 9 0 . 1 4 1 6 8 1

7 0 . 7 6 5 9 2 5 8 3 0 0 3 8 8 . 7 2 6 7 5 0 . 0 0 1 9 4 4 0 . 1 2 5 0 4 3

c r a c k  3 0 3 0 0 3 8 8 . 7 2 6 7 5 0 . 0 0 1 9 4 4 0 0 . 2 6 6 7 2 4 0 . 0 0 0 5 1 7

0 3 0 0 3 8 8 . 7 2 6 7 5 0 . 0 0 1 9 4 4 0

8 2 . 0 5 6 7 9 0 3 4 3 8 2 . 0 5 6 7 9 3 0 6 . 7 9 7 9 5 0 . 0 0 1 5 3 4 0 . 1 4 2 6 8 1 3

6 7 . 9 4 3 2 0 9 6 6 4 5 0 3 7 4 . 6 3 5 1 8 0 . 0 0 1 8 7 3 0 . 1 1 5 7 4 6 9

c r a c k  4 0 4 5 0 3 7 4 . 6 3 5 1 8 0 . 0 0 1 8 7 3 0 0 . 2 5 8 4 2 8 2 0 . 0 0 0 5 0 1

0 4 5 0 3 7 4 . 6 3 5 1 8 0 . 0 0 1 8 7 3 0

8 4 . 8 7 9 5 0 6 4 7 5 3 4 . 8 7 9 5 1 2 8 9 . 8 8 8 0 7 0 . 0 0 1 4 4 9 0 . 1 4 1 0 1 1

6 5 . 1 2 0 4 9 3 5 3 6 0 0 3 5 4 . 9 0 6 9 9 0 . 0 0 1 7 7 5 0 . 1 0 4 9 7 3 4

c r a c k  5 0 6 0 0 3 5 4 . 9 0 6 9 9 0 . 0 0 1 7 7 5 0 0 . 2 4 5 9 8 4 4 0 . 0 0 0 4 7 7

0 6 0 0 3 5 4 . 9 0 6 9 9 0 . 0 0 1 7 7 5 0
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R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



8 6 . 8 9 8 6 1 9 8 9 6 8 6 . 8 9 8 6 2 2 6 8 . 1 4 3 9 1 0 . 0 0 1 3 4 1 0 . 1 3 5 3 5 5 7

6 3 . 1 0 1 3 8 0 1 1 7 5 0 3 3 1 . 1 4 6 8 6 0 . 0 0 1 6 5 6 0 . 0 9 4 5 4 0 2

c r a c k  6 0 7 5 0 3 3 1 . 1 4 6 8 6 0 . 0 0 1 6 5 6 0 0 . 2 2 9 8 9 5 8 0

0 7 5 0 3 3 1 . 1 4 6 8 6 0 . 0 0 1 6 5 6 0

8 6 . 6 9 7 6 5 5 2 8 3 6 . 6 9 7 6 6 2 4 4 . 5 8 4 4 4 0 . 0 0 1 2 2 3 0 . 1 2 4 7 8 6 4

6 3 . 3 0 2 3 4 4 8 9 0 0 3 0 7 . 7 8 8 0 5 0 . 0 0 1 5 3 9 0 . 0 8 7 4 1 6 2

c r a c k  7 0 9 0 0 3 0 7 . 7 8 8 0 5 0 . 0 0 1 5 3 9 0 0 . 2 1 2 2 0 2 6 0

0 9 0 0 3 0 7 . 7 8 8 0 5 0 . 0 0 1 5 3 9 0

8 6 . 4 4 7 2 6 4 6 5 9 8 6 . 4 4 7 2 6 2 2 1 . 4 7 5 6 2 0 . 0 0 1 1 0 7 0 . 1 1 4 3 8 3 5

6 3 . 5 5 2 7 3 5 3 5 1 0 5 0 2 8 4 . 9 2 9 2 3 0 . 0 0 1 4 2 5 0 . 0 8 0 4 5 8 5

c r a c k  8 0 1 0 5 0 2 8 4 . 9 2 9 2 3 0 . 0 0 1 4 2 5 0 0 . 1 9 4 8 4 2 0

0 1 0 5 0 2 8 4 . 9 2 9 2 3 0 . 0 0 1 4 2 5 0

C om putation of A verage Steel S tra in  and D epth of N eu tra l Axis 
F rom  Plane-Section Analysis

S p e c i f i e d  A x i a l  L o a d  P  =  0

S p e c i f i e d  M o m e n t  M  =

S p e c i f i e d  L e v e l  o f  S t r a i n  e c c  =  0 . 0 0 5

A s s u m e d  D e p t h  o f  N . A  x  =  9 9 . 7 5 8 6 0 8

W i d t h  o f  S t i r r u p  c / c  b s =  2 1 0

H e i g h t  o f  S t ir r u p  c / c  h s =  7 1 0

W i d t h  o f  S t i r r u p  O u t s i d e  b s o =  2 2 0

H e i g h t  o f  S t ir r u p  O u t s i d e  h s o  =  7 2 0

V o l u m e t r i c  R a t i o  o f  S t i r r u p s  r o h s =  0 . 0 0 7 7 4 4 1

C o n f i n e m e n t  I n d e x  k c o n  =  1 . 1 0 3 2 5 4 8

S l o p e  o f  F a l l i n g  B r a n c h  z m =  6 0 . 0 9 6 4 2 2

D i s t a n c e  F r o m  N e u tr a l S t r a i n S t r e s s F o r c e F o r c e  A r m M o m e n t

A x i s  " y " e c i f c i  ( M P a ) C c i  ( k N ) y c i  ( m m ) M c i  ( k N m )

0 0 0

4 . 9 9 0 . 0 0 0 3 7 . 0 8 5 . 2 9 2 . 4 9 3 9 6 5 0 . 0 1

9 . 9 8 0 . 0 0 0 5 1 3 . 3 0 1 5 . 2 4 7 . 4 8 1 8 9 6 0 . 1 1

1 4 . 9 6 0 . 0 0 0 8 1 8 . 6 8 2 3 . 9 2 1 2 . 4 6 9 8 3 0 . 3 0

1 9 . 9 5 0 . 0 0 1 0 2 3 . 2 0 3 1 . 3 3 1 7 . 4 5 7 7 6 0 . 5 5

2 4 . 9 4 0 . 0 0 1 3 2 6 . 8 8 3 7 . 4 7 2 2 . 4 4 5 6 9 0 . 8 4

2 9 . 9 3 0 . 0 0 1 5 2 9 . 7 0 4 2 . 3 3 2 7 . 4 3 3 6 2 1 . 1 6

3 4 . 9 2 0 . 0 0 1 8 3 1 . 6 8 4 5 . 9 3 3 2 . 4 2 1 5 5 1 . 4 9

3 9 . 9 0 0 . 0 0 2 0 3 2 . 8 1 4 8 . 2 5 3 7 . 4 0 9 4 8 1 . 8 0

4 4 . 8 9 0 . 0 0 2 3 3 3 . 0 1 4 9 . 2 4 4 2 . 3 9 7 4 1 2 . 0 9

4 9 . 8 8 0 . 0 0 2 5 3 2 . 5 1 4 9 . 0 3 4 7 . 3 8 5 3 4 2 . 3 2

5 4 . 8 7 0 . 0 0 2 8 3 2 . 0 2 4 8 . 2 8 5 2 . 3 7 3 2 7 2 . 5 3

5 9 . 8 6 0 . 0 0 3 0 3 1 . 5 2 4 7 . 5 4 5 7 . 3 6 1 2 2 . 7 3

6 4 . 8 4 0 . 0 0 3 3 3 1 . 0 2 4 6 . 7 9 6 2 . 3 4 9 1 3 2 . 9 2

6 9 . 8 3 0 . 0 0 3 5 3 0 . 5 2 4 6 . 0 5 6 7 . 3 3 7 0 6 3 . 1 0

7 4 . 8 2 0 . 0 0 3 8 3 0 . 0 3 4 5 . 3 0 7 2 . 3 2 4 9 9 3 . 2 8

7 9 . S I 0 . 0 0 4 0 2 9 . 5 3 4 4 . 5 6 7 7 . 3 1 2 9 2 3 . 4 5
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8 4 . 7 9 0 . 0 0 4 3 2 9 . 0 3 4 3 . 8 2 8 2 . 3 0 0 8 5 3 . 6 1

8 9 . 7 8 0 . 0 0 4 5 2 8 . 5 4 4 3 . 0 7 8 7 . 2 8 8 7 8 3 . 7 6

9 4 . 7 7 0 . 0 0 4 8 2 8 . 0 4 4 2 . 3 3 9 2 . 2 7 6 7 1 3 . 9 1

9 9 . 7 6 0 . 0 0 5 0 2 7 . 5 4 4 1 . 5 8 9 7 . 2 6 4 6 4 4 . 0 4

C o m p r e s s i o n  F o r c e  in  

C o n c r e t e

M o m e n t  o f  C o n c r e t  F o r c e  

A b o u t  N e u t r a l  A x i s  

C e n t r o i d  o f  C o m p r e s s i o n  

F o r c e  f r o m  N . A  

L e v e r  A r m  t o  C e n t r o i d  o f  

T e n s i o n  S t e e l

C c  =  

M e  =  

y c  =  

l a r m  =

7 9 7 . 3 7 3 0 8  k N  

4 3 . 9 9 1 9 0 3  k N m  

5 5 . 1 7 1 0 4 1  m m  

6 9 5 . 4 1 2 4 3  m m

C oncrete S tress-S tra in  Relationship C oncrete S tre ss  Variation

m
Q.

35

30

25

20
15

10
5

0
0 0.002 0 . 0 0 4 0 . 0 0 6

Strain

_  120 
E
E. 100

0 10 20 30 40

S tre ss  (MPa)

S ra in  and  S tress in C o m p ression  S teel

S t r a i n  i n  C o m p r e s s i o n  S t  e s c  =  0

S t r e s s  i n  C o m p r e s s i o n  S t  f s c  =  0  M P a

F o r c e  i n  C o m p r e s s i o n  St<  C s  =  0  k N

S tra in  and S tress  in T en sio n  S teel

S t r a i n  i n  T e n s i o n  S t e e l  e s t  =  0 . 0 3 2 0 8 9 5

S t r e s s  i n  T e n s i o n  S t e e l  f s t =  4 4 2 . 9 8 5 0 4  M P a

F o r c e  i n  T e n s i o n  S t e e l  F t =  7 9 7 . 3 7 3 0 8  k N
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C o m p u t a t i o n  o f  F a c t o r s  a ,  a n d  P ,

P i  = 0 . 8 9 3 9 0 9 2

a ,  = 0 . 9 9 3 5 1 7

C o m p u t a t i o n  o f  D e p t h  o f  N e u t r a l  A x i s

x  = 9 9 . 7 5 8 6 0 8

E quilibrium  o f  F orces

S u m m a t i o n  o f  A x i a l  F o r c e s  P = F t - ( C c + C s )

P = 0  k N

S u m m a t i o n  o f  M o m e n t  M  = 5 5 4 . 5 0 3 1 5  k N m

D e p t h  o f  N e u t r a l  A x i s ,  M o m e n t  o f  R e s i s t a n c e ,  a n d  C u r v a t u r e

D e p t h  o f  N e u t r a l  A x i s x  =  9 9 . 7 5 8 6 0 8  m m

A v  C u r v a t u r e c u r =  5 . 0 1 2 E - 0 5

A v  M o m e n t  o f  R e s i s t a n c e M r =  5 5 4 . 5 0 3 1 5  k N m

C o r r e c t  S o l u t i o n  
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