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Abstract

How growth, mortality, and dispersal in a species affect the species’ spread
and persistence constitutes a central problem in spatial ecology. We propose
impulsive reaction-diffusion equation models for species with distinct repro-
ductive and dispersal stages. These models can describe a seasonal birth pulse
plus nonlinear mortality and dispersal throughout the year. Alternatively they
can describe seasonal harvesting, plus nonlinear birth and mortality as well
as dispersal throughout the year. The population dynamics in the seasonal
pulse is described by a discrete map that gives the density of the population
at the end of a pulse as a possibly nonmonotone function of the density of
the population at the beginning of the pulse. The dynamics in the dispersal
stage is governed by a nonlinear reaction-diffusion equation in a bounded or
unbounded domain. We develop a spatially explicit theoretical framework
that links species vital rates (mortality or fecundity) and dispersal character-
istics with species’ spreading speeds, traveling wave speeds, as well as minimal
domain size for species persistence. We provide an explicit formula for the
spreading speed in terms of model parameters, and show that the spreading
speed can be characterized as the slowest speed of a class of traveling wave
solutions. We also give an explicit formula for the minimal domain size us-
ing model parameters. Our results show how the diffusion coefficient, and the
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combination of discrete- and continuous-time growth and mortality determine
the spread and persistence dynamics of the population in a wide variety of
ecological scenarios. Numerical simulations are presented to demonstrate the
theoretical results.
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traveling wave, minimal domain size
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1 Introduction

Mathematical models have long been central to the development of spatial theory
in ecology (e.g., Murray 2002, Okubo and Levin 2001, Tilman and Kareiva 1997,
Shigesada and Kawasaki 1997, Skellam 1951, Cantrell and Cosner 2003). A large
portion of the mathematical literature on spread and persistence is couched in terms
of reaction-diffusion equations, which often yield appealingly tractable and compact
models of spread and persistence. Reaction-diffusion equations assume that dis-
persal is governed by random diffusion and that dispersal and growth take place
continuously in time and space. They have had remarkable success in explaining
the rates at which species have invaded large open environments as well as spa-
tial patterns that species have had established in bounded-patch habitats. It has
been well-documented that the spatial theory about species spread and persistence
matches the field observations well in a number of cases (Murray 2002, Shigesada
and Kawasaki 1997, and Cantrell and Cosner 2003).

Many species such as fishes or large mammal populations exhibit what Gaughley
termed a birth pulse growth pattern (Caswell 2001). That is, reproduction takes
place in a relatively short period each year. In between these pulses of growth,
mortality takes its toll, and the population decreases. The population dynamics
consist of a within-season stage and a between-season stage. Within a season popu-
lation mortality is continuous while between seasons population growth is discrete.
Models incorporating both discrete and continuous components are referred to as
semi-discrete models (Singh and Nisbet 2007, Pachepsky et al. 2008). There have
been extensive studies regarding the dynamics of nonspatial semi-discrete models in
the form of impulsive ordinary differential equations; see for example, Eskola and
Geritz (2007), Geritz and Kisdi (2004), Eskola and Parvinen (2007), Pachepsky et
al. (2008), Gyllenberg et al. (1997), Thieme (2003), Brauer and Castillo-Chávez
(2001). The results given by these authors show that various discrete-time popula-
tion models can be derived mechanistically just by altering the patterns of repro-
duction and interaction. These models include classical examples such as the Ricker
model (Ricker 1954), the Beverton and Holt model (Beverton and Holt 1957), the
Skellam model (Skellam 1951), and others, which generate equilibrium dynamics,
limit cycles, and sometimes chaos. When population dynamics contain growth and
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dispersal, as well as continuous and discrete components, classical reaction-diffusion
equations are not suitable to describe spread and persistence of the population, and
impulsive reaction-diffusion equations (hybrid dynamical systems) provide a natural
description of the spatial dynamics of the population.

In this paper, we propose simple impulsive reaction-diffusion equation models to
study persistence and spread of species with a reproductive stage and a dispersal
stage in bounded and unbounded domains. It is assumed that in a reproductive stage
pulse growth occurs, and in a dispersal stage movement and mortality take place.
The formulations of the models consist of discrete maps and nonlinear reaction-
diffusion equations. The discrete maps describe pulse growth, which are allowed to
be nonmonotone (i.e., there may be overcompensation in population growth). We
also discuss how the model can be extended to the case of impulsive harvesting in a
continuously growing and dispersing population.

We shall address two fundamental questions for the models: what are the spread-
ing speed and traveling wave speeds when a population invades an unbounded do-
main? and what is the minimal domain size in which the population can persist
when the spatial domain is bounded and has a lethal exterior? We demonstrate
that, although the underlying dynamics of the models can be complicated, explicit
analytical solutions to the questions can be given. We particularly show that when
a species spreads into an unbounded domain, there is a spreading speed that can be
formulated in terms of species vital rates (survival, fecundity, or development rates)
and dispersal characteristics, and the spreading speed can be characterized as the
slowest speed of a class of traveling wave solutions. Loosely speaking, the spread-
ing speed describes the asymptotic rate at which a species initially concentrated in
a finite region, will expand its spatial range. A traveling wave solution describes
the propagation of a species as a wave with a fixed shape and a fixed speed. The
spreading speeds and traveling wave solutions provide important insight into the
spatial patterns and rates of invading species in space. In the case that the spatial
domain of a population is bounded with a lethal exterior, we prove the existence of
a minimal domain size that can be determined explicitly by the same set of model
parameters used for computing the spreading speed. We present simulations for the
models. We observe that the numerical solutions for the unbounded domain case
can exhibit oscillations, and that the numerical solutions for the bounded domain
case can have different spatial patterns of species distributions.

This paper is organized as follows. In the next section we present an impul-
sive reaction-diffusion model with an unbounded domain, establish the existence of
spreading speed and traveling wave solutions for the model, and provide a formula
for the spreading speed. In Section 3, we provide an impulsive reaction-diffusion
model in a bounded domain that has a lethal exterior, and determine the minimal
domain size. Section 4 is about simulations for the models. Section 5 includes some
concluding remarks and discussions. Section 6 contains a justification of nonlinearity
of a reproduction function in the models and proofs of several theorems.
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2 Spread in an unbounded domain

2.1 Model formulation

We consider a population with two development stages: a reproductive stage and
a dispersal stage. In a reproductive stage, population growth occurs impulsively
via a discrete-time map. We use g to describe the population density at the end
of a reproductive stage as a function of the population density at the beginning of
the stage. The population diffuses with a diffusion coefficient d (d > 0) and dies
continuously in a dispersal stage. For simplicity, we assume that a dispersal stage
occurs for time t ∈ [0, 1]. In a dispersal stage, α (α < 0) denotes the death rate of
the population due to the interaction of the population with the environment, and
the interspecific competition between individuals follows the mass action law and γ
is used to describe the effect of competition. Let Nn(x) denote the density of the
population at point x at the beginning of the reproductive stage in the nth year.
Then the mathematical model that describes the spatial dynamics of the population
in a one-dimensional unbounded space is given by

∂u

∂t
= d

∂u

∂x2
+ αu− γu2, −∞ < x < ∞,

u(x, 0) = g(Nn(x)),

Nn+1(x) = u(x, 1).

(2.1)

In this model, reproduction occurs only once a year, as with many mammal species
or the spawning season for many fish species. Outside a production season mortality
takes its toll, and the population decreases and diffuses continuously in time.

Model (2.1) can be also used to study the case that impulsive harvesting occurs
periodically in a continuously growing and dispersing population. For such a case
we assume that α (α > 0) is the intrinsic growth rate of the population, and 0 <
g(N)/N < 1 so that 1 − g(N)/N represents the harvesting rate. Alternatively, it
can be employed to describe the situation that outside the winter the population
dynamics is governed by a reaction-diffusion equation, and during the winter the
population stops reproducing and moving, and the population of the following season
is recruited from the individuals that survive the winter.

We shall make the following assumptions on the model

Hypothesis 2.1.

i. α is a real number, and γ is a positive number.

ii. g(N) is a continuous function for N ≥ 0, g(0) = 0, g′(0) > 0, g(N) > 0 for
N > 0, and g(N)/N is nonincreasing for N > 0.

In the simplest case, g(N) = kN where k > 0 is a constant. If α > 0 and g(N) =
N , model (2.1) is essentially the classical Fisher equation. The reproductive process
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can be complicated by interactions between individuals, and g(N) may be nonlinear.
A nonlinear g can be derived in the context of competition for breeding sites and
Poisson distributing of individuals in space; see Appendix A for a justification.
Another approach involves the assumption that, in a reproductive stage, individuals
are sessile, and new born juveniles are also immobile for some period of time. The
results in Eskola and Geritz (2007) show that g(N) is the Beverton-Holt function if
there is competition between reproductive adults in a reproductive stage, and g(N)
is the Ricker function if adults attack juveniles in a reproductive stage. Geritz and
Kisdi (2004) derived these functions based on a mechanistic underpinning involving
resource consumption.

When α = γ = 0 and d > 0, the reaction-diffusion equation in (2.1) represents a
pure diffusion process. In this case system (2.1) is equivalent to an integrodifference
equation where growth is determined by g and dispersal is governed by the normal
distribution (see Neubert et al. (1995)). Integrodifference equations have been used
to study spread of species that have separate growth and dispersal stages; see for
example Diekmann (1978), Lui (1982), Weinberger (1982), Kot et al. (1986, 1996),
Neubert et al. (1995), Weinberger et al. (2002), and Li et. al (2005). Here complex
non-Gaussian dispersal kernels can also play a role (e.g., Neubert et al. (1995), Kot
et al. (1996)).

If d = 0, i.e., individuals do not diffuse, we use N̄n to denote the number of indi-
viduals at the beginning of the reproductive stage in the nth year. N̄n is described
by

du

dt
= αu− γu2,

u(0) = g(N̄n),

N̄n+1 = u(1).

(2.2)

For α 6= 0, one can solve this problem and find that

N̄n+1 =
αg(N̄n)

(1− e−α)γg(N̄n) + αe−α
. (2.3)

The limiting case of (2.3) as α → 0 is

N̄n+1 =
g(N̄n)

γg(N̄n) + 1
(2.4)

which is the solution of (2.2) when α = 0.

Note that the right-hand sides of both (2.3) and (2.4) are compositions of the
Beverton-Holt function and g. Model (2.3) always has the trivial equilibrium 0. In
the case of α 6= 0, a positive constant equilibrium of (2.1) or (2.3) is a root of the
equilibrium equation

αg(N)

(1− e−α)γg(N) + αe−α
= N,
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which is equivalent to
F (N, g(N)) = 0 (2.5)

where

F (N, g(N)) := (1− e−α)γN + αe−α N

g(N)
− α.

In the case of α > 0, since N/g(N) is nondecreasing for N > 0, F (N, g(N))
increases to ∞ as N →∞. Consequently the above equation has a positive root if
and only if the limit of F (N, g(N)), as N approaches zero, is negative, that is

g′(0)eα > 1. (2.6)

One can verify that (2.6) is also a necessary and sufficient condition for (2.5) to have
a positive root if α ≤ 0. We use β to denote the smallest of such roots when (2.6)
holds. Note that if (2.6) is not satisfied, then the solution N̄n of (2.2) satisfies

lim
n→∞

N̄n = 0. (2.7)

To understand the spatial dynamics of (2.1) we first consider the case where g is
monotone and then the case where g is nonmonotone.

2.2 Monotone case

We begin with the hypothesis

Hypothesis 2.2. g(N) is nondecreasing for N ≥ 0.

The condition (2.6) is necessary for the population described by (2.1) to grow and
spread in space. In fact, let Nn(x) be a solution of (2.1) with N0(x) bounded above
by a constant N̄0 < β. Then the comparison theorem for parabolic systems based
on the maximum principle (Protter and Weinberger 1985) shows that the solution
Nn(x) of (2.1) and the solution of N̄n of (2.2) satisfy Nn(x) ≤ N̄n. It follows from
(2.7) that if (2.6) is not satisfied, then Nn(x) approaches zero uniformly in x as
n →∞.

The following theorem shows that if (2.6) is satisfied, then model (2.1) has a
positive asymptotic spreading speed given in terms of model parameters, and the
spreading speed can be characterized as the slowest speed of a class of traveling
wave solutions.

Theorem 2.1. Assume that Hypotheses 2.1 -2.2, and the condition (2.6) are satis-
fied. Then

c∗ := 2
√

d ln(g′(0)eα) (2.8)

is the spreading speed of system (2.1) in the following sense:

If the continuous initial function is zero outside a bounded interval, u0(x) 6≡ 0,
and 0 ≤ u0(x) < β, then for any positive ε the solution of un of (2.1) has the
following properties
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i.
lim

n→∞
sup

|x|≥n(c∗+ε)

Nn(x) = 0. (2.9)

ii.
lim

n→∞
sup

|x|≤n(c∗−ε)

(β − un(x)) = 0. (2.10)

Furthermore, for c ≥ c∗, system (2.1) has a continuous nonincreasing traveling
wave wc(x − nc) with wc(−∞) = β and wc(+∞) = 0. A continuous nonnegative
traveling wave solution wc(x−nc) in (2.1) with wc(∞) = 0 and lim infx→−∞ wc(x) >
0 does not exist if c < c∗.

The properties (2.9) and (2.10) indicate that if Nn(x) is a solution of (2.1) with
nonzero initial data which vanish outside a bounded interval, then an observer who
travels to the left or right with speed greater than c∗ will eventually see Nn going
to 0, while an observer who travels with a speed below c∗ will eventually see Nn

approaching β.

The formula (2.8) shows that the spreading speed of (2.1) is determined by d,
g′(0), and α, which are all linearization parameters. It is well defined if (2.6) is
satisfied. In the case of α > 0 and g′(0) = 1, c∗ = 2

√
dα. This is the well-known

spreading speed formula for the Fisher equation. Theorem 2.1 shows that c∗ is also
the slowest speed of traveling wave solutions connecting 0 with β.

2.3 Nonmonotone case

To analyze the nonmonotone case we require that the growth function is monotone
near N = 0 and so make the following hypothesis.

Hypothesis 2.3. There is σ > 0 such that g(N) is nondecreasing for 0 ≤ N ≤ σ.

This hypothesis assumes that g(N) is nondecreasing near 0, which is weaker than
Hypothesis 2.2. It is satisfied by biological meaningful models with overcompensa-
tion in growth. For example the Ricker function g(N) = Ner−bN is increasing for
0 < N < 1/b and decreasing for N > 1/b.

Define
g+(N) = max

0≤u≤N
g(u) (2.11)

for N ≥ 0. (This function is called G(u, 0) in Thieme 1979.) It is easily seen that
g+(N) is nondecreasing for N ≥ 0, g+(N) ≥ g(N) for N ≥ 0, g+′(0) = g′(0), and
g+(N) = g(N) for small positive N . The condition (2.6) ensures that the equilibrium
equation (2.5) with g replaced by g+ has a positive root. We use β+ to denote the
smallest of such roots. Clearly β ≤ β+.

We next define
g−(N) = min

N≤u≤β+
g(u) (2.12)
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for 0 ≤ N ≤ β+. (This function is called G(u, α) in Thieme 1979.) It is easily seen
that g−(N) is nondecreasing for N ≥ 0, g−(N) ≤ g(N) for N ≥ 0, g−′(0) = g′(0),
and g−(N) = g(N) for small positive N . The condition (2.6) implies that the
equilibrium equation (2.5) with g replaced by g− has a positive root. We use β− to
denote the smallest of such roots. It is easily seen that β ≥ β−.

We have that g± are nondecreasing functions,

g−(N) ≤ g(N) ≤ g+(N), g±′(0) = g′(0), g±(N) ≤ g′(0)N,

and there is σ0 > 0 with σ0 < σ such that

g±(N) = g(N)

We have two auxiliary systems

∂u

∂t
= d

∂u

∂x2
+ αu− γu2, −∞ < x < ∞

u(x, 0) = g+(N+
n (x)),

N+
n+1(x) = u(x, 1),

(2.13)

and
∂u

∂t
= d

∂u

∂x2
+ αu− γu2, −∞ < x < ∞

u(x, 0) = g−(N−
n (x)),

N−
n+1(x) = u(x, 1).

(2.14)

The comparison theorem shows that if N+
n (x) is a solution of (2.13), N−

n (x) is
a solution of (2.14), and un(x) is a solution of (2.1), and if 0 ≤ u−0 (x) ≤ u0(x) ≤
u+

0 (x) ≤ β+, then
0 ≤ u−n (x) ≤ un(x) ≤ u+

n (x) ≤ β+ (2.15)

for all n and x.

Note that (2.13) and (2.14) have the same linearized system and thus have the
same spreading speed given by (2.8). The property (2.15) implies that c∗ given by
(2.8) is also the spreading speed for (2.1). Furthermore c∗ represents the slowest
speed of a class of traveling wave solutions for (2.1).

Theorem 2.2. Assume that Hypotheses 2.1 and 2.3, and the condition (2.6) are
satisfied. Then c∗ given by (2.8) is the asymptotic spreading speed of system (2.1)
in the following sense:

If the continuous initial function u0(x) is zero outside a bounded interval, u0(x) 6≡
0, and 0 ≤ u0(x) < β+, then for any positive ε the solution of un of (2.1) has the
following properties
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i.
lim

n→∞
sup

|x|≥n(c∗+ε)

Nn(x) = 0.

ii.
lim

n→∞
inf

|x|≤n(c∗−ε)
un(x) ≥ β−.

Furthermore, for c ≥ c∗, system (2.1) has a continuous traveling wave wc(x−nc)
with wc(∞) = 0 and lim infx→−∞ wc(x) ≥ β−. A continuous nonnegative traveling
wave solution wc(x − nc) in (2.1) with wc(∞) = 0 and lim infx→−∞wc(x) > 0 does
not exist if c < c∗.

In the case that g(N) is a nonmonotone function such as the Ricker function,
the underlying dynamics of model (2.1) can be complicated. Theorem 2.2 shows
that for such a case the existence of traveling wave solutions can still be established.
The numerical simulations provided in Section 4 demonstrate that (2.1) can have
oscillating traveling waves if g(N) is the Ricker function.

3 Minimal domain size

3.1 Model formulation

In this section, we consider the model

∂u

∂t
= d

∂u

∂x2
+ αu− γu2, 0 < x < `,

u(0, t) = u(`, t) = 0,

u(x, 0) = g(Nn(x)),

Nn+1(x) = u(x, 1).

(3.1)

Here we have assumed that the spatial domain of the population is the interval [0, `]
with a lethal exterior. We are interested in the minimal domain size for which the
population can persist.

3.2 Monotone case

We first assume that Hypothesis 2.2 is satisfied so that g(N) is a nondecreasing
function for N ≥ 0. In order to determine the minimal domain size we need the
following hypothesis

Hypothesis 3.1. There are positive numbers D, δ < σ, and ν > 1 such that
g(N) ≥ g′(0)N −DN ν for 0 ≤ N ≤ δ.
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This assumption is satisfied by biologically reasonable growth functions.

Theorem 3.1. Assume that Hypotheses 2.1, 2.2, and 3.1, and the condition (2.6)
are satisfied. Then

`∗ := π

√
d

ln(g′(0)eα)
(3.2)

represents the minimal domain size for (3.1) in the following sense:

i. if ` < `∗, then the solution Nn(x) of (3.1) satisfies

lim
n→∞

Nn(x) = 0

for all x; and

ii. if ` > `∗, then (3.1) has a minimal positive equilibrium N(x), and if N0(x)
is positive on an open subinterval of (0, `) then the solution sequence Nn(x)
satisfies

lim inf
n→∞

Nn(x) ≥ N(x).

If g′(0)eα ≤ 1, the proof presented in Appendix C shows that the solution Nn(x)
satisfies limn→∞ Nn(x) = 0. It follows that if (2.6) is not satisfied, then the popula-
tion cannot persist in space no matter how big ` is.

Observe that the minimal domain size `∗ for (3.1) is determined by the same set
of parameters used for computing the spreading speed c∗ for (2.1). It is interesting to
note that c∗`∗ = 2dπ. When d is fixed, increasing g′(0)eα will increase the spreading
speed but will decrease the minimal domain size.

3.3 Nonmonotone case

We now assume that Hypothesis 2.3 is satisfied so that g(N) is a nondecreasing for
small N . We consider two auxiliary systems

∂u

∂t
= d

∂u

∂x2
+ αu− γu2, 0 < x < `

u(0, t) = u(`, t) = 0,

u(x, 0) = g+(N+
n (x)),

N+
n+1(x) = u(x, 1),

(3.3)
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and
∂u

∂t
= d

∂u

∂x2
+ αu− γu2, 0 < x < `

u(0, t) = u(`, t) = 0,

u(x, 0) = g−(N−
n (x)),

N−
n+1(x) = u(x, 1),

(3.4)

where g± are defined by (2.11) and (2.12). Recall that g−(N) ≤ g(N) ≤ g+(u) for
u ≥ 0. The comparison theorem shows that if N+

n (x) is a solution of (3.3), N−
n (x)

is a solution of (3.4), and un(x) is a solution of (3.1), and if 0 ≤ u−0 (x) ≤ u0(x) ≤
u+

0 (x) ≤ β+, then
0 ≤ u−n (x) ≤ un(x) ≤ u+

n (x) ≤ β+ (3.5)

for all n.

Observe that models (3.3) and (3.4) have the same minimal domain size given
by (3.2) according to Theorem 3.1. By using this and (3.5), we immediately obtain
the following theorem.

Theorem 3.2. Assume that Hypothesis 2.1, 2.3, and 3.1, and the condition (2.6)
are satisfied. Then

`∗ := π

√
d

ln(g′(0)eα)
.

represents the minimal domain size for (3.1) in the following sense:

i. if ` < `∗, then the solution Nn(x) of (3.1) satisfies

lim
n→∞

Nn(x) = 0

for all x; and

ii. if ` > `∗, then (3.4) has a minimal positive equilibrium N(x), and if N0(x) is
positive on an open subinterval of (0, `) then the solution sequence Nn(x) of
(3.1) satisfies

lim inf
n→∞

Nn(x) ≥ N(x).

This theorem shows that when g(N) is nonmonotone, the minimal domain size
for (3.1) can still be completely determined. Our numerical simulations in Section
4 show that different spatial patterns of solutions for (3.1) can be found when g(N)
is the Ricker function with different parameter values.
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4 Numerical simulations

In this section, we present some approximations to the solutions of models (2.1) and
(3.1). We first consider the case where g is the Beverton-Holt function

g(N) = mN/(a + N). (4.1)

Clearly g(N) is a monotone function for all N ≥ 0, g′(0) = m/a, and g(N) ≤ g′(0)N
for all N ≥ 0. In this case (2.6) becomes (m/a)eα > 1. This condition ensures that
model (2.1) has a positive equilibrium

β =
α(m− ae−α)

mγ(1− e−α) + αe−α
.

Theorem 2.1 shows that model (2.1) has a spreading speed given by (2.8) that is
also the slowest speed of nondecreasing traveling wave solutions connecting 0 with
β.

We choose α = −1, γ = 0.01, m = 8, and a = 0.2. Then β = 2.61100, and
c∗ = 3.27956. Fig. 1 shows a solution of (2.1) for this set of parameter values. The
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Figure 1: A numerical approximation to the graph of Nn(x) for (2.1) with d = 1,
α = −1, γ = 0.01, and g given by (4.1) where m = 8 and a = 0.2. N0(x) is chosen
to be a cosine function with a compact support from −5 to 5. The left figure depicts
the spread of the solution in two directions; and the right figure shows the contour
plots of the wave front.

minimal domain size for (3.1) with g given by (4.1) is `∗ = π
√

d/ ln(m/aeα). It is
1.91586 for d = 1, α = −1, m = 8, a = 0.2. Fig. 2 shows a solution of (3.1) for this
set of parameters.

We now choose g(N) to be the Ricker function, i.e,

g(N) = Ner−N . (4.2)
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Figure 2: A numerical approximation to the graph of Nn(x) for (3.1) with d = 1,
α = −1, γ = 0.01, and g given by (4.1) where m = 8 and a = 0.2. The domain
is [−1, 1]. N0(x) is chosen to be a cosine function that is positive in (−1, 1) and
becomes 0 at −1 and 1. The left figure depicts the solution; and the right figure
shows the contour plots of the solution.

Clearly g′(0) = er and g(N) ≤ g′(0)N for all N ≥ 0. In this case (2.6) becomes
r + α > 0. This condition ensures that model (2.1) has a positive equilibrium.
Theorem 2.2 shows that model (2.1) has a spreading speed c∗ = 2

√
d(r + α) that

is also the slowest speed of positive traveling wave solutions with value 0 at ∞.
Fig. 3 and Fig. 4 show two particular solutions for (2.1) for two different sets of
parameters.

−50

0

50 0
2

4
6

8
10

0

1

2

3

4

5

t

N
t
(x)

x

N
t

x

t

Contour Plot 

−50 0 50
0

1

2

3

4

5

6

7

8

9

10

Figure 3: A numerical approximation to the graph of Nn(x) with d = 1, α = −1,
γ = 0.04, and g given by (4.2) where r = 2.5, giving c∗ = 2.44949. N0(x) is chosen
to be a cosine function with a compact support from −5 to 5. The left figure depicts
the spread of the solution in two directions; and the right figure shows the contour
plots of the wave front.
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Figure 4: A numerical approximation to the graph of Nn(x) with d = 1, α = −1,
γ = 0.04, and g given by (4.2) where r = 4.5 , giving c∗ = 3.74166. N0(x) is chosen
to be a cosine function with a compact support from −5 to 5. The left figure depicts
the spread of the solution in two directions; and the right figure shows the contour
plots of the wave front.

It appear that the tail of the wave in Fig. 3 approaches an equilibrium value,
while the tail of the wave in Fig. 4 is oscillatory.

The minimal domain size for (3.1) with g given by (4.2) is `∗ = π
√

d/(r + α).
If we choose d = 1, α = −1, γ = 0.04, R = 2.5 as in Fig. 3, the minimal domain
size is 2.56380. Our simulation work shows that the simulation figure in this case
for a domain with length greater than this number is qualitatively similar to Fig. 2.
For d = 1, α = −1, γ = 0.04, R = 4.5, the minimal domain size is 1.67840. Fig. 5
shows a solution of (3.1) for this set of parameters.

We note in Fig 2 and Fig 5 that the spatial patterns of solutions are different.
Particularly, in Fig 2 the solution approaches an equilibrium distribution that has
only one maximum value, while in Fig 5 the solution approaches an equilibrium
distribution that has two maximum values.

5 Discussion

We studied impulsive reaction-diffusion models with a reproductive stage and a dis-
persal stage in bounded and unbounded domains. In a reproductive stage pulse
growth occurs, and in a dispersal stage dispersal and mortality take place. The
models can be also used to describe a continuously growing and dispersing pop-
ulation with pulse harvesting and a population with individuals immobile during
the winter. In the case where the spatial domain is unbounded, we provided a for-
mula for the spreading speed in terms of the linearization parameters including the
pulse recruitment rate of the population about zero, the diffusion coefficient, and
the death rate of the population about zero in a dispersal stage stage. We showed
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Figure 5: A numerical approximation to the graph of Nn(x) for (3.1) with domain
[−1.5, 1.5], d = 1, α = −1, γ = 0.04, and g given by (4.2) with r = 4.5, giving
`∗ = 1.67925. N0(x) is chosen to be a cosine function that becomes 0 at 1.5 and
−1.5. The right figure depicts the solution; and the left figure shows the contour
plots of the solution.

that the spreading speed can be characterized as the slowest speed of a class of trav-
eling wave solutions. When the spatial domain is bounded with a lethal exterior, we
found a formula for the minimal domain size in terms of the model parameters used
for computing the spreading speed. Our numerical simulations suggest that differ-
ent spatial patterns of solutions can be obtained even for the same (nonmonotone)
growth function with different parameters.

The model formulations of the present investigation could be generalized in sev-
eral biologically meaningful ways. It was assumed in the models that all individuals
have the same growth and mortality rates, as well as the same dispersal rate. These
rates, however, likely depend on the age of individuals in the population, with age-
structured reproductive and dispersal stages. While the single species model were
considered here, more general models could include two species and competition
interaction between them. Impulsive reaction-diffusion equations have been intro-
duced (e.g., Al-arydah and Smith? (2011)) to investigate population dynamics in
some other contexts in biology. It is of interest to extend the techniques developed
in this paper to other kinds of impulsive reaction-diffusion equations.

We studied the dynamics of a population at the beginning of a reproductive stage
within a year. One can of course choose a different point in the life cycle of the pop-
ulation to investigate. The analyzes provided in this paper still work to show that
similar results can be obtained if a different life cycle point is chosen. The present
paper only treated one-dimension habitats. However, it is known (Weinberger 1982)
how to use the one-dimensional results to determine the spreading speeds and trav-
eling waves in higher-dimensional habitats by looking at one direction at a time. In
the case that the domain in (3.1) is two or three-dimensional, one might use the
framework developed in this paper to determine the minimal domain size.
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6 Appendix

In this section we provide a justification for nonlinearity of g and the proofs for
Theorem 2.1-Theorem 3.1.

6.1 Justification of nonlinearity of g

We consider a population with the following properties: (i) an individual needs a
unit of resource to produce offspring; and (ii) each resource unit occupies area b
and the mean density of individuals in space is N . Suppose that the population is
randomly distributed in space via a Poisson process and individuals are sessile in
productive stage. Then the number of individuals in each unit is a Poisson RV with
mean Nb. The probability of k individuals in a unit is

(Nb)ke−Nb/k!

Suppose that there is contest competition. If there is more than one individual per
unit, then they compete so that only one reproduces. Then the expected number
of offspring arising from the unit would be R times the probability that the unit is
occupied, where R is the number offspring per adult:

R(1− e−bN).

This is the Skellam function (Skellam, 1951), which is qualitatively similar to the
Beverton-Holt function (4.1).

We next assume that there is scramble competition. If two or more individuals
chose the same unit then they would each get a smaller amount of resource, but
not enough to reproduce, and so none would reproduce. In this case the expected
number of offspring arising from a unit would be R time the probability that there
was one individual occupying the location:

RbNe−bN .

Choosing r = log(Rb) yields the Ricker function (4.2).

The first model would apply to animals such as birds which have contest compe-
tition for nesting sites, and the second to animals such as salmon, where they spawn
in river beds and can spawn on top of a previous site.

B. Proof of Theorem 2.1

Let Q denote the time one solution operator of the reaction-diffusion equation
in (2.1). It is well-known that Q is continuous and compact in the topology of
uniform convergence on every bounded interval, and Q is monotone in the sense
Q[u](x) ≥ Q[v](x) if u(x) ≥ v(x) ≥ 0. Nn(x) satisfies the abstract recursion

Nn+1(x) = Q[g(Nn)](x). (6.3)
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Consider the initial value problem

∂p

∂t
= d

∂p

∂x2
+ αp− γp2, −∞ < x < ∞,

p(x, 0) = ρN(x).

(6.4)

Then v := p/ρ where 0 < ρ ≤ 1 satisfies

∂v

∂t
= d

∂v

∂x2
+ αv − γρv2, −∞ < x < ∞,

v(x, 0) = N(x).

(6.5)

We introduce the system

∂u

∂t
= d

∂u

∂x2
+ αu− γu2, −∞ < x < ∞,

u(x, 0) = N(x).

(6.6)

Since 0 < ρ ≤ 1, the comparison theorem shows that the solution v(x, t) of (6.5)
and the solution u(x, t) of (6.6) satisfy v(x, t) ≥ u(x, t) for t > 0, and particularly,

v(x, 1) ≥ u(x, 1),

so that p(x, 1) ≥ ρu(x, 1) where p(x, t) is the solution of (6.4). This shows that,
Q[ρN ](x) ≥ ρQ[N ](x). On the other hand, Hypothesis 2.1 ii implies that for 0 <
ρ < 1, g(ρN) ≥ ρg(N) for N ≥ 0. It follows that for 0 < ρ ≤ 1

Q[g(ρN)](x) ≥ ρQ[g(N)](x). (6.7)

We use M [N ] to denote the linearization of Q[g(N)] about 0. M is the solution
operator of the problem

∂u

∂t
=

∂u

∂x2
+ αu, −∞ < x < ∞,

u(x, 0) = g′(0)Nn(x),

Nn+1(x) = u(x, 1).

(6.8)

Solving the linear problem (6.8) explicitly, we obtain that

Nn+1(x) = M [Nn](x) :=

∫ +∞

−∞
k(x− y)g′(0)eαNn(y)dy

where k(x) is the normal distribution given by

k(x) =
1√
2πd

e−
x2

4d .

17



The moment generating function of k(x) is

K(x) =

∫ ∞

−∞
eµxk(x)dx = edµ2

,

so that

inf
µ>0

ln[g′(0)eαK(µ)]/µ = inf
µ>0

(1/µ)[ln(g′(0)eα) + dµ2] = 2
√

d ln(g′(0)eα). (6.9)

The condition g(N) ≤ g′(0)N and the fact that αu − γu2 ≤ αu, as well as the
comparison theorem show that

Q[g(N)](x) ≤ M [N ](x).

On the other hand, differentiability of g at 0 and Lemma 4.1 in Weinberger et al.
(2002) show that there exists a family M (κ) of linear order preserving operators with
the properties that for every sufficiently large positive integer κ there is a constant
ω > 0 such that Q[g(v)](x) ≥ M (κ)[v](x) for 0 ≤ v(x) ≤ ω and that for every µ > 0,

B
(κ)
µ defined by B(κ)α := M (κ)[e−µxα]|x=0 for all α > 0 converge to g′(0)eαK(µ)

as κ → ∞. It follows from Theorem 6.1 - Theorem 6.5 in Weinberger (1982) that
system (6.3) has the spreading speed c∗ given by (6.9) satisfying (2.9) and (2.10).

The second part of the Theorem follows immediately from Theorem 6.6 in Wein-
berger (1982). The proof is complete.

B. Proof of Theorem 2.2

A comparison argument that makes use of property (2.15), similar to the proof
of Proposition 3.1 in Li et al. (2009), shows that c∗ is the spreading speed of (2.1).
We shall omit the details here.

The nonexistence of traveling wave solutions with speeds c < c∗ is similar to the
last part of the proof of Theorem 4.1 in Li et al. (2009) and is omitted here.

We now establish the existence of traveling wave solutions with speeds c ≥ c∗.
Hypothesis 2.1 ii and the definition of g+ imply that

g+(ρN) ≥ ρg+(N)

so that (6.7) with g replaced by g+ holds, i.e.,

Q[g+(ρN)](x) ≥ ρQ[g+(N)](x).

The results about the traveling wave solutions obtained in Section 2.2 show that for
c ≥ c∗, system (2.13) has a nonincreasing traveling wave solution Nn(x) = w+(x−nc)
with w+(−∞) = β+ and w+(∞) = 0. We now choose a positive number 0 < ρ < 1 so
small such that ρw+(x) ≤ σ0 and g(ρw+(x)) ≤ σ0. It follows that for N(x) ≥ ρw+(x)

Q[g(N)](x) ≥ Q[g−(ρw+)](x) = Q[g+(ρw+)](x) ≥ ρQ[g+(w+)](x) = ρw+(x− c).
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On the other hand for 0 ≤ N(x) ≤ w+(x),

Q[g(N)](x) ≤ Q[g+(N)](x) ≤ Q[g(w+)](x) = w+(x− c).

We therefore have that the set

Ec = {u(x) : u(x) is continuous , ρw+(x) ≤ u(x) ≤ w+(x)}

is an invariant set for the operator Tc[Q[(g(·))] with Tc[u](x) = u(x + c). Since
g is continuous and Q is compact, the composition operator Q[(g(·))] is compact.
It follows that the image of Ec under Tc[Q[(g(·))] is compact in the topology of
uniform convergence on every bounded interval. Because the set of bounded vector-
valued functions with this topology is a locally convex topological vector space,
the existence of a solution w of the equation Tc[Q[(g(w))] = w follows from what
Rudin (1991) calls the Schauder-Tychonoff fixed point theorem. Clearly w(∞) = 0.
An argument similar to what in the second paragraph on page 332 in the proof of
Theorem 4.1 in Li et al. (2009) shows lim infx→∞ w(x) ≥ β−. The proof is complete.

C. Proof of Theorem 3.1

Consider the eigenvalue problem

d
d2u

∂x2
+ αu = λu, 0 < x < `,

u(0, t) = u(`, t) = 0.

It is easily seen that
λ1 = α− dπ2/`2

is the principal eigenvalue and a corresponding eigenfunction is

φ(x) = sin
π

`
.

Let
Ñn(x) = κ(g′(0)eλ1)nφ(x), n = 0, 1, ...

where κ is a positive constant. Ñn(x) is a solution of the linear problem

∂u

∂t
= d

∂2u

∂x2
+ αu, 0 < x < `,

u(0, t) = u(`, t) = 0,

u(x, 0) = g′(0)Ñn(x),

Ñn+1(x) = u(x, 1).

(6.10)
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In fact, u(t, x) = κg′(0)eλ1tφ(x) satisfies the linear reaction-diffusion equation and
the boundary condition in (6.10), as well as the initial condition u(x, 0) = g′(0)Ñ0(x) =
κg′(0)φ(x). It follows that

u(x, 1) = κg′(0)eλ1φ(x)

which is Ñ1(x). Induction shows that Ñn(x) is a solution of (6.10).

For any given initial value function u(x, 0) = N0(x) in (3.1), we can choose κ
sufficiently large such that N0(x) ≤ Ñ0(x). Since the reaction term in the equation
(3.1) is no greater than that in (6.10) for nonnegative u, the comparison theorem and
induction show that the solution Nn(x) of (3.1) has the property that Nn(x) ≤ Ñn(x)
for all n ≥ 0. If g′(0)eλ1 < 1, then limn→∞ Ñn(x) = 0 for all x and thus

lim
n→∞

Nn(x) = 0.

for all x. The proof of the statement (i) is complete.

We now assume g′(0)eλ1 > 1 or equivalently ` > π
√

d
ln g′(0)+α

and prove the

statement (ii). We choose λ̂ < λ1 and ρ1 < g′(0) such that ρ1e
λ̂ > 1. Let v(x, t) =

ερ1e
λ̂tφ(x). It follows from Hypothesis 3.1 that for sufficiently small ε > 0 and

0 < t ≤ 1

g(v(x, t)) ≥ ρ1v(x, t) + v(x, t){(g′(0)− ρ1)−Dεν−1[ρ1e
λ̂tφ(x)]ν−1} ≥ ρ1v(x, t).

On the other hand, for 0 < t ≤ 1

∂v
∂t
− [d ∂2v

∂x2 + αv − γv2]

= ερ1e
λ̂t[λ̂φ− dφ′′ − αφ] + ε2γ(ρ1)

2(eλ̂tφ)2

= ερ1eλ̂t[λ1φ− dφ′′ − αφ] + ερ1e
λ̂t(λ̂− λ1) + ε2γ(ρ1)

2(eλ̂tφ2)

= ερ1e
λ̂t(λ̂− λ1)e

λ̂t + ε2γ(ρ1)
2(eλ̂tφ2)

= ε[λ̂− λ1 + εγρ1e
λ̂tφ]ρ1e

λ̂tφ
< 0

for sufficiently small ε. This shows that for 0 < t ≤ 1, v(x, t) is a lower solution of

∂u

∂t
= d

∂2u

∂x2
+ αu− γu2,

u(0, t) = u(`, t) = 0.

We use S to denote the time 1 solution map of

∂u

∂t
= d

∂u

∂x2
+ αu− γu2,

u(0, t) = u(`, t) = 0,

u(x, 0) = u0(x).
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Then u(x, 1) = S[u0](x). A comparison argument shows that S is a monotone
operator in the sense that S[u1](x) ≥ S[u2](x) whenever u1(x) ≥ u2(x) ≥ 0. Using
S, we find that the solution Nn(x) of (3.1) satisfies the abstract recursion

Nn+1(x) = S[g(Nn)](x).

Let N0(x) = εφ(x) and Nn+1(x) = S[g(Nn)](x). The properties of v(x, t) show that
for sufficiently small ε

S[g(N0)](x) ≥ S[ρ1N0](x) ≥ v(x, 1) ≥ N0(x).

Induction shows that Nn+1(x) ≥ Nn(x) for all n ≥ 0.

On the other hand, for sufficiently small ε, the equilibrium value β > εφ(x) =
N0(x) is a super solution of (3.1). It follows that

β ≥ Nn+1(x) ≥ Nn(x)

for all n ≥ 0. We therefore have that Nn(x) increases to a limit function N(x),
which is the minimum positive equilibrium solution of (3.1). If N0(x) in (3.1) is
initially nonnegative and is positive on an open subinterval of (0, `), then the strong
maximum principle shows that N1(x) > 0 for 0 < x < `. Choose ε sufficiently
small so that N0(x) = εφ(x) < N1(x). Then the comparison theorem shows that
Nn+1(x) ≤ Nn(x) for all n ≥ 0, and thus lim infn→∞ Nn(x) ≥ N(x). The proof is
complete.
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