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Abstract

Information extraction (IE) is one of the most important tedinologies in the
information age. Applying information extraction to text is linked to the prob-
lem of text simpli cation in order to create a structured view of the informa-
tion present in free text. However, information extractions a very challenging
task, due to the inherent di culties to understand natural language and the
high cost to obtain large manual annotated training data. Inthis thesis, we
build on the premise of performing automatic information etxaction without
manual annotated data following the distant supervision padigm and present
novel neural models for di erent IE tasks which are particudrly suited for this
setting.

In the rst part of the thesis, we focus on one IE task { ne-graned entity
type classi cation (FETC) and propose the NFETC model { a single much
simpler and more elegant neural network model that attempt§ETC \end-
to-end" without post-processing or ad-hoc features. We dly two kinds of
noise, namelyout-of-context noise andoverly-speci ¢ noise for noisy type
labels and investigate their e ects on FETC systems. We prope a neural
network based model which jointly learns representation®if entity mentions
and their context. A variant of cross-entropy loss functions used to handle
out-of-context noise Hierarchical loss normalization is introduced into our
model to alleviate the e ect ofoverly-speci c noise.

In the second part of the thesis, we focus on another IE task glation

extraction (RE) and propose a neural model with multiple legl of attention
i



mechanisms. The model can make full use of all informative wis and sen-
tences and alleviate the wrong labelling problem for distasupervised relation
extraction.

In the third part of the thesis, we attempt to leverage knowldge base
embedding methods to facilitate relation extraction and decribe a novel neural
frameworkHrere to jointly learning heterogeneous representations from bo
text information and facts in an existing knowledge base. Aavel loss function
is introduced to connect the heterogeneous representatsoseamlessly allowing
them to enhance each other.

Overall, the work in this thesis tackles di erent tasks of IEunder the setting
of distant supervision with DNNs, di erent attentions, di er ent loss functions
and the help of knowledge base embeddings. All the proposed dals got

state-of-the-art performance in representative tasks.
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Chapter 1

Introduction

The process of Information Extraction (IE) is the task of aubmatically ex-
tracting structured information from unstructured documents, for example for
populating Knowledge Bases (KBs). In most of the cases, thsocess concerns
processing human language texts by means of Natural Langua@ecessing
(NLP). Imagine that you are not a big fan of basketball but wantto know
more about it for socializing. One day, you randomly found anews article

started with:

Steve Kerr has turned down Phil Jackson and the New York Knicks
to accept a ve-year,$25 million o er to become the Golden State
Warriors' next coach, saying \it just felt like the right move on

many levels."

To understand the information encoded in this sentence, yauill need to at
least know the people and organizations mentioned and thensantic relations
among them. The rst step in most IE tasks is to nd the named entities
in a text. The task of named entity recognition  (NER) is to nd each
mention of a named entity in the text and label its type. While traditional
named entity recognition systems (Manning et al. 2014; Rek]-Kishky, et al.
2015) focus on a small set of coarse types (typically feweratin 10), recent
studies (Dan Gillick et al. 2014; Ling and Weld 2012) work on enuch larger
set of ne-grained types which form a tree-structured hierghy. We call this

task as ne-grained entity type classi cation (FETC).
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Having located all of the mentions of named entities in a textywe need
to nd the semantic relations among the entities, for examg@, the relation
betweenSteve Kerrand Golden State Warriorsbecomescoach-of given the
above sentence. The task aklation extraction (RE) is to nd and classify
semantic relations among entity mentions.

A major challenge in information extraction tasks like FETC ad RE is the
absence of human-annotated data. The process of manuallipdding a training
set with large number of ne-grained types or semantic rel&ns is too expen-
sive and error-prone (hard for annotators to distinguish @r many types or
relations consistently). Current systems resort to distansupervision (Mintz
et al. 2009) and annotate training corpora automatically usg KBs. A typical
work ow of distant supervision is as follows: (1) identify atity mentions in
the documents; (2) link mentions to entities in KB; (3) assig, to each entity
mention or entity pair, all types or relations associated ira KB. However,
this approach introduceslabel noiseto the mentions since it fails to take the
semantics of the mentions' local context into account whensaigning the la-
bels. This thesis mainly studies information extraction uder the setting of
distant supervision which doesn't require massive manuahaotated data and
addresses the introduced noise in various ways.

A few years ago, almost all NLP problems were dominated by sta ma-
chine learning methods with intensive feature engineeringhe resurgence of
deep neural networks (DNNs) enables the possibility of soh\grNLP problems
via deep systems with no or fewer manual features. Most NLP tes have
acquired state-of-the-art by DNN systems. A brief introdudbn to deep neu-
ral networks for NLP is given in Appendix A.1 with a special focusn the
subarea of information extraction. This thesis presents owork employing
neural models for the tasks of information extraction.

Since the training data are automatically labelled based oKkBs, a related
task is that of Knowledge Base Embedding (KBE), which is comened with
representing KB entities and relations in a vector space fdink prediction.
Appendix A.2 will give a short introduction into the basic baclground and

popular methods of KBE. This thesis also investigates vaus ways to leverage
2



KBE to facilitate neural information extraction.

1.1 Thesis Statement and Contributions

The present signi cance of IE pertains to the growing amountf information
available in unstructured form. Due to the inherent noise agting in the auto-
matically labelled data and the di culties in understanding natural language,
traditional information extraction methods can hardly su ce nowadays. To
overcome these problems, this thesis is concerned with naglumformation
extraction without manual annotated data. More preciselythis thesis inves-
tigates whether information extraction can be e ectively grformed under the
setting of distant supervision with the help of deep neuraletworks and infor-
mation from state-of-the-art open knowledge bases. The macontributions

are as follows:

Neural Fine-Grained Entity Type Classi cation with Hierarchy-Awa re
Loss. We propose an end-to-end solution with a neural network mob#hat
uses a variant of cross-entropy loss function to handle oof-context labels,
and hierarchical loss normalization to cope with overly-gzi c ones. Also, pre-
vious work solve FETC a multi-label classi cation followed kg ad-hoc post-
processing. In contrast, our solution is more elegant: we augpublic word
embeddings to train a single-label that jointly learns reprsentations for en-
tity mentions and their context. We show experimentally tha our approach
is robust against noise and consistently outperforms the age-of-the-art on
established benchmarks for the task. This work has been aptsl as a long
oral paper in the 16th Annual Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL), 2018.

Neural Relation Extraction with Multi-Level Attention Mechanism S.
We propose a neural model with multi-level attention mechasms for relation
extraction. In this model, we employ bi-directional long sbrt term memory to
embed the semantics of sentences. Afterwards, we build botlond-level and

sentence-level attention, which is expected to dynamicglreduce the weights
3



of those noisy instances. Experimental results on real-idrdatasets show
that, our model achieves signi cant and consistent improvaents on relation

extraction as compared with baselines.

Incorporating Knowledge Base Embedding to Facilitate Neural Re-

lation Extraction. We describes and evaluates a novel neural framework for
jointly learning representation for RE and KBE tasks that ugs a cross-entropy
loss function to ensure both representations are learnedgether, resulting in
signi cant improvements over the current state-of-the-arfor relation extrac-
tion. This work has been submitted toConference on Empirical Methods in
Natural Language Processing (EMNLP), 2018.



Chapter 2

Neural Fine-Grained Entity
Type Classi cation (NFETC)

In this chapter, we rst give an introduction to the task of FETC in Section 2.1.
In Section 2.2, we brie y review some important methods for FEC, as well
as their advantages and disadvantages. In Section 2.3, werdgethe problem

of FETC in a formal way. At last, we propose a single, much simgt and more
elegant neural network model that attempts FETC \end-to-end without post-

processing or ad-hoc features and improves on the statetloé-art for the task
in Section 2.4 and 2.5.

2.1 Introduction

Entity type classi cation aims at assigning types or labelsuch asPerson,
Organization to entity mentions in a document. There has been considerabl
amount of work on Named Entity Recognition (NER) (Manning et al 2014;
Ren, El-Kishky, et al. 2015), which classi es entity mentias into a small set of
mutually exclusive types. However, these types are not endufpr some NLP
applications such as relation extraction, knowledge bas®ropletion, entity
linking and question answering.

Fine-grained Entity Type Classi cation (FETC) aims at labeling entity
mentions in context with one or more speci ¢ types organizeth a hierarchy
(e.g., actor as a subtype ofartist , which in turn is a subtype of person).

In relation extraction and knowledge base completion, knomg ne-grained






provide evidence of only some of the typesperson and coach from S1,
person and athlete from S2, and just person for S3. The importance of
the context motivates us to use attentive neural models to ectively encode

the contextual information.

Hierarchical structure of entity types. As shown in Figure 2.1, ne-
grained types form a tree-structured is-a hierarchy. This gans that each
type-path can be uniquely represented by the terminal type (not necesdy
a leaf node). For example, a mention withtype-path person ! artist can
be uniquely represented byartist . The hierarchy can be seen as the prior

information which can be exploited to help the learning praedure.

Collapse of the mutual exclusion assumption. The assumption of the
traditional entity type classi cation that the labels of entities are mutually
exclusive, does not hold for FETC. For exampleSteve Kerris both coach,
athlete andperson as shown in Figure 2.1. As a result, it's natural to formu-
late the task as a multi-label classi cation problem, rathethan a single label
classi cation problem as in the case of traditional entity ype classi cation.
However, based on the assumption that each mention can onlyveaone
type-path depending on the context and the fact that eachype-path can be
uniquely represented by the terminal type, FETC can actuallype transformed
into a single label classi cation problem. There are many adntages in adopt-
ing the single label setting. For example, it can simplify tB problem and
benet from previous research on hierarchical classi catn. Moreover, no
post-processing is needed anymore compared to the multb&d setting. Aside
from the advantages, one obvious disadvantage can be seehatflis, the per-
formance upper bounds of our proposed model are no longer20@ince there
are samples in the testing set which violate the assumptiohat each mention
can only havetype-path But, as we can see in Section 2.5 later, the in uence

of this disadvantage is negligible.



Noise in automatically annotated data. As discussed above, direct dis-
tant supervision leads to noisy training data which can hurthe accuracy of
the FETC model. One kind of noise introduced by distant supersion is as-
signing labels that areout-of-context (athlete in S1 and coach in S2). The
most direct strategies to handleut-of-contextnoise are ignoringput-of-context
types or using simple pruning heuristics like discarding emples with multiple
types. However, both strategies are inelegant and hurt acaay.

Another source of noise introduced by distant supervision ¥ghen the type
is overly-speci c for the context. For instance, exampleS3 does not support
the inference that Mr. Kerr is either anathlete or a coach. Since existing
knowledge graphs give more attention to notable entities i more specic
types, overly-speci c labels bias the model towards popular subtypes instead
of generic onesi.e., preferathlete overperson. Instead of treating each type
equally and independently, the key to handle this kind of nee is to make the
models understand the given type hierarchy which encodestinderlying type

correlations.

2.2 Methods for Fine-Grained Entity Type Clas-
si cation

The rst work to use distant supervision (Mintz et al. 2009) © induce a large
but noisy training set and manually label a signi cantly sméler dataset to
evaluate their FETC system, was Ling and Weld (2012) who intrduced both
a training and evaluation dataset FIGER (GOLD). They used a hear classi er
perceptron for multi-label classi cation. While initial work largely assumed
that mention assignments could be done independently of theention con-
text, Dan Gillick et al. (2014) introduced the concept of cotext-dependent
FETC where the types of a mention are constrained to what can baeduced
from its context and introduced a new OntoNotes-derived marally annotated
evaluation dataset. Yogatama, Daniel Gillick, and Lazic (@15) proposed an
embedding-based model where user-de ned features and labgere embedded

into a low dimensional feature space to facilitate informa&in sharing among la-
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bels. Ma, Cambria, and Gao (2016) presented a label embedglimethod that
incorporates prototypical and hierarchical information o learn pre-trained la-
bel embeddings and adapted a zero-shot framework that caneglict both seen
and previously unseen entity types.

Shimaoka et al. (2016) proposed an attentive neural networkodel that
used LSTMs to encode the context of an entity mention and useth attention
mechanism to allow the model to focus on relevant expressson such context.
Shimaoka et al. (2017) summarizes many neural architectsréor FETC task.
These models ignore theut-of-context noise that is, they assume that all
labels obtained via distant supervision are \correct” and propriate for every
context in the training corpus.

Ren, He, Qu, L. Huang, et al. (2016) have proposed AFET, an FETC sys-
tem, that separates the loss function foclean and noisy entity mentions and
uses label-label correlation information obtained by givedata in its paramet-
ric loss function. Considering the noise reduction aspedisr FETC systems,
Ren, He, Qu, Voss, et al. (2016) introduced a method called LNR treduce
label noise without data loss, leading to signi cant perfanance gains on both
the evaluation dataset of FIGER(GOLD) and OntoNotes. Althoughthese
works consider bothout-of-context noiseand overly-speci ¢ noise they rely
on hand-crafted features which become an impediment to fimr improve-
ment of the model performance. For LNR, because the noise retion step is
separated from the FETC model, the inevitable errors introdced by the noise
reduction will be propagated into the FETC model which is undsirable.

Most recently, following the idea from AFET, Abhishek, Anand, ad Awekar
(2017) proposed a simple neural network model which incomabes noisy la-
bel information using a variant of non-parametric hinge Issfunction and gain
great performance improvement on FIGER(GOLD). However, thework over-
looks the e ect of overly-speci c noise treating each type label equally and
independently when learning the classi ers and ignores mBle correlations
among types.

We can see that all of these methods have aws from di erent ggcts,

including using manual features, without using attentive aural networks and
9



ignoring out-of-contextand overly-speci ¢ noise. Besides these limitations, all
these methods tread FETC as a multi-label classi cation prdem: during
type inference they predict a plausibility score for each pe, and then, either
classify types with scores above a threshold or perform a talown search in
the given type hierarchy. While this post-processing step iselegant and can

be removed by adopting the single label setting.

Our Approach.  We adopt the single label setting and propose a neural
model to overcome all the above drawbacks of existing FETC nteids. With
publicly available word embeddings as input, we learn two d@rent entity
representations and use bidirectional long-short term mesry (LSTM) with
attention to learn the context representation. We propose aariant of cross
entropy loss function to handleout-of-contextlabels automatically during the
training phase. Also, we introduce hierarchical loss normahtion to adjust
the penalties for correlated types, allowing our model to werstand the type
hierarchy and alleviate the negative e ect obverly-speci c labels. Finally, we
report on an experimental validation against the state-ofhe-art on established
benchmarks that shows that our model can adapt to noise in tirsing data and
consistently outperform previous methods. In summary, weedcribe a single,
much simpler and more elegant neural network model that attepts FETC
\end-to-end" without post-processing or ad-hoc featuresra improves on the
state-of-the-art for the task.

In the next section, we rst give the formal problem formulaton of FETC
in the single label setting, and then, describe the details our proposed model

in Section 2.4.

2.3 Problem Formulation

The task of FETC is to automatically reveal the type informaton for entity
mentions in context. The input is a knowledge graph with type schema& , a
target type hierarchy Y which covers a subset of typesin j.e.,Y Y ,and

an automatically labeled training corpusD obtained by distant supervision

10



Attentive | AFET | LNR | AAA | NFETC
without manual features 7 7 7 3 3
use attentive neural network 3 7 7 7 3
adopt single label setting 7 7 7 7 3
handle out-of-context noise 7 3 3 3 3
handle overly-specifcnoise 7 3 3 7 3

Table 2.1: Summary comparison to related FETC work. FETC systas listed
in the table: (1) Attentive (Shimaoka et al. 2017); (2 AFET (Ren, He,
Qu, L. Huang, et al. 2016); (3)LNR (Ren, He, Qu, Voss, et al. 2016); (4)
AAA (Abhishek, Anand, and Awekar 2017).

with Y. The output is a type-pathin Y for each mention from the test corpus
Dy.

A KB with a set of entities E contains human-curated facts on both entity-
entity facts of various relation types and entity-type facs. For FETC, what
we care about isentity-type factsin a KB (with type schema Y )asT =
f(e;y)g E Y . A target type hierarchyis a tree where nodes represent
types of interests fromY .

Formally, an automatically labeled corpus for entity type tassi cation con-
sists of a set of extractedntity mentionsf m;gll, (i.e., token spans represent-
ing entities in the text), the associatedentities fe g, , the context(e.g., sen-
tence, paragraph) of each mentiofc g, , and the candidate type setsY g,
automatically generated for each mention. We represent thteaining corpus
using a set of mention-based triple® = f(m;;e;c; Yi)dY, .

If Y; is free ofout-of-context noise the type labels form; should form a
single type-path in Y;, which serves as aontext-dependentype annotation
for m;. However,Y; may contain type-pathsthat are irrelevant to m; in ¢ if
there existsout-of-context noise We denote the type set including all termi-
nal types for eachtype-path as the target type setY!. In the example type
hierarchy shown in Figure 1, ifY; contains type person, athlete , coach, Y/
should containathlete , coach, but not person. In order to check the trade-
o0 between e ect of out-of-context noiseand the size of the training set, we
construct two di erent training sets. Dsjrereq ONly with triples whoseY; form

a singletype-pathin D, and D,,, with all triples in D.

11



Then, the FETC problem can be formulated as a single-label dsi cation

problem as follows:

length, our task is to predict its most speci ¢ typg; which is the terminal type
of the predictedtype-path.

In practice, ¢ is generated by truncating the original context with words
beyond the context window sizeC both to the left and to the right of m;.
Speci cally, we compute a probability distribution over al the K = jY| typesin
the target type hierarchyY. The type with the highest probability is classi ed
as the predicted typey®which is the terminal type of the predictedtype-path

2.4 NFETC with Hierarchy-Aware Loss

In this section we describe Neural Fine-Grained Entity Type Clssi cation
(NFETC) model in detail. Figure 2.2 shows the architecure of th&lFETC
model.

2.4.1 Input Representation

As stated in Section 2.3, the input is an entity mentionm; with its context
¢. First, we transform each word in the contextc into a real-valued vector
to provide lexical-semantic features. Given a word embeddj matrix W%
of sized,, | Vj, whereV is the input vocabulary andd, is the size of word
embedding, we map every; to a column vectorw® 2 R,

To additionally capture information about the relationshp to the target
entities, we incorporate word position embeddings (D. Zeng. Liu, Lai, et al.
2014) to re ect relative distances between theth word to the entity mention.
Every relative distance is mapped to a randomly initialize¢position vector
in R%, where d, is the size of position embedding. For a given word, we
obtain the position vector wP. The overall embedding for thei-th word is
wE = [(w)”; (WD) .
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G =tanh(H) (2.2)
= softmax (w” G) (2.3)
re= H > (2.4)

whereH 2 R% T, wis a trained parameter vector. The dimension of; ;r .

are ds; T; ds respectively.

2.4.3 Mention Representation

Averaging encoder:  Given the entity mention m; = (Ww,;:::;w) and its
lengthL =t p+1, the averaging encoder computes the average word em-
bedding of the words inm;. Formally, the averaging representatiorr, of the
mention is computed as follows:
— 1 X d
ra = L Wi (2.5)
i=p

This relatively simple method for composing the mention repsentation is
motivated by it being less prone to over tting (Shimaoka et & 2017).

LSTM encoder: In order to capture more semantic information from the

mentions, we add one token before and another after the tatgentity to the

LSTM representationr, of the mention.

2.4.4 Optimization

We concatenate context representation and two mention repsentations to-
gether to form the overall feature representation of the ing R = [r¢;ra; ).
Then we use a softmax classi er to predicy;"from a discrete set of classes for

a entity mention m and its context c with R as input:

14



pP(yjm; c) = softmax(WR + b) (2.6)
y=arg max A(yjm; c) (2.7)

whereW can be treated as the learnt type embeddings artalis the bias.

The traditional cross-entropy loss function is representieas follows:

X
10)= o log@yimia)+ k K 28)

i=1
wherey; is the only element inY! and (m;;G;Y:) 2 Dritered - is an L2
regularization hyperparameter and denotes all parametes of the considered
model.
In order to handle data with out-of-context noise(in other words, with
multiple labeled types) and take full advantage of them, wentroduce a simple

yet e ective variant of the cross-entropy loss:

X
J()= o log(y imic))+ k K (2.9)

i=1
wherey; = argmaXxy,y: pyjmi;¢) and (mi;c;Yi) 2 Draw. With this loss
function, we assume that the type with the highest probabily among Y!
during training as the correct type. If there is only one eleemt in Y!, this
loss function is equivalent to the cross-entropy loss funoh. Wherever there
are multiple elements, it can Iter the less probable types &sed on the local

context automatically.

2.4.5 Hierarchical Loss Normalization

Since the ne-grained types tend to form a forest of type hiarchies, it is
unreasonable to treat every type equally. Intuitively, it 8 better to predict an
ancestor type of the true type than some other unrelated typd-or instance, if
one example is labeled aactor , it is reasonable to predict its type agperson.
However, predicting other high level types likéocation or politician would

be inappropriate. In other words, we want to penalize less ¢hcases where

15



types are related in our loss function. Based on the above aeve adjust the

estimated probability as follows:

X
p (§jm;c) = p(9jm;c) + p(tjm;c) (2.10)

t2
where is the set of ancestor types along theg/pe-pathofy, is a hyperparam-

eter to tune the penalty. Afterwards, we re-normalize it backd a probability
distribution, which we denote this process akierarchical loss normalization
As discussed in Section 1, there existaserly-speci ¢ noisein the automat-
ically labeled training sets which hurt the model performace severely. With
hierarchical loss normalization the model will get less penalty when it pre-
dicts the actual type for one example withoverly-speci ¢ noise Hence, it
can alleviate the negative e ect ofoverly-speci ¢ noisee ectively. Generally,
hierarchical loss normalizationcan make the model somewhat understand the
given type hierarchy and learn to detect those overly-specicases. During
classi cation, it will make the models prefer generic typesinless there is a

strong indicator for a more speci c type in the context.

2.4.6 Regularization

Dropout, proposed by Hinton et al. (2012), prevents co-adagtion of hidden
units by randomly omitting feature detectors from the netwek during forward
propagation. We employ both input and output dropout on LSTMIlayers. In
addition, we constrain L2-norms for the weight vectors as stwvn in equation

2.8, 2.9 and use early stopping to decide when to stop traimgn

2.5 EXxperiments
2.5.1 Datasets

We evaluate the proposed model on two standard and publiclyailable datasets,
provided in a pre-processed tokenized format by Shimaoka &t (2017). Ta-
ble 2.2 shows statistics about the benchmarks. The detailseaas follows:
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FIGER(GOLD) | Ontonotes
# types 113 89
# raw training mentions 2009898 253241
# raw testing mentions 563 8963
% Itered training mentions | 64.46 73.13
% Itered testing mentions | 88.28 94.00
Max hierarchy depth 2 3

Table 2.2: Statistics of the datasets

FIGER(GOLD): The training data consists of Wikipedia sentences and
was automatically generated with distant supervision, by @pping Wikipedia
identi ers in Wikipedia articles to Freebase. The test datamainly consisting
of sentences from news reports, was manually annotated ascl&éed by Ling
and Weld (2012).

OntoNotes: The OntoNotes dataset consists of sentences from newswire-do
uments present in the OntoNotes text corpus (Weischedel et.&013). DBpe-
dia spotlight (Daiber et al. 2013) was used to automaticalliink entity mention

in sentences to Freebase. For this corpus, manually annotalt test data was
shared by Dan Gillick et al. (2014).

Because the type hierarchy can be somewhat understood by quoposed
model, the quality of the type hierarchy can also be a key famt to the per-
formance of our model. We nd that the type hierarchy for FIGERGOLD)
dataset following Freebase has some aws. For examplftware is not a
subtype of product and government is not a subtype oforganization .
Following the proposed type hierarchy described by Ling and/eld 2012, we
re ne the Freebase-based type hierarchy. The process is aetio-one mapping
for types in the original dataset and we didn't add or drop anyype or sentence
in the original dataset. As a result, we can directly comparehe results of our

proposed model with or without this re nement.
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2.5.2 Baselines

We compared the proposed model with state-of-the-art FETC syems?: (1)
Attentive  (Shimaoka et al. 2017); (2AFET (Ren, He, Qu, L. Huang, et al.
2016); (3)LNR+FIGER (Ren, He, Qu, Voss, et al. 2016); (4pAA  (Ab-
hishek, Anand, and Awekar 2017).

We compare these baselines with variants of our proposed netid (1)
NFETC(f) : basic neural model trained oDsjereq  (recall Section 2.4.4); (2)
NFETC-hier(f) : neural model with hierarichcal loss normalization traine
oN Dyitered - (3) NFETC(r) : neural model with proposed variant of cross-
entropy loss trained onD,,, ; (4) NFETC-hier(r) : neural model with pro-
posed variant of cross-entropy loss and hierarchical lossrmalization trained

on Dyaw -

2.5.3 Experimental Setup

For evaluation metrics, we adopt the same criteria as Ling @anWeld (2012),
that is, we evaluate the model performance by strict accurgcloose macro,
and loose micro F-scores. These measures are widely used istiegy FETC
systems (Abhishek, Anand, and Awekar 2017; Ren, He, Qu, L. Huang, &.
2016; Ren, He, Qu, Voss, et al. 2016; Shimaoka et al. 2017).

We use pre-trained word embeddings that were not updated dag training
to help the model generalize to words not appearing in the tir@ing set. For this
purpose, we used the freely available 300-dimensional casemtd embedding
trained on 840 billion tokens from the Common Crawl suppliedy Pennington,
Socher, and Manning (2014). For both datasets, we randomlgrapled 10% of
the test set as a development set, on which we do the hyperparaters tuning.
The remaining 90% is used for nal evaluation. We run each medl with the
well-tuned hyperparameter setting ve times and report the average strict
accuracy, macro F1 and micro F1 on the test set. The proposed nedvas

implemented using the TensorFlow framework.

1The results of the baselines are all as reported in their correspondqpapers.
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2.5.4 Hyperparameter Setting

In this paper, we search di erent hyperparameter settingsof FIGER(GOLD)
and OntoNotes separately, considering the di erences betemthe two datasets.
All the hyperparameters were obtained by evaluating the modiperformance
on the development set. The hyperparameters include leang rate Ir for
Adam Optimizer, size of word position embeddings (WPEJ,, state size for
LSTM layers ds, input dropout keep probability p; and output dropout keep
probability p, for LSTM layers?, L2 regularization parameter and parameter
to tune hierarchical loss normalization . Values of these hyperparameters for
the two datasets can be found in Table 2.3.

Parameter | FIGER(GOLD) | Ontonotes
Ir 0.0002 0.0002
d, 85 20
ds 180 440
pi 0.7 0.5
Po 0.9 0.5
0.0 0.0001
0.4 0.3

Table 2.3: Hyperparameter Settings

2.5.5 Performance comparison and analysis

FIGER(GOLD) OntoNotes
Model Strict Acc.  Macro F1 Micro F1 Strict Acc.  Macro F1 Micro F1
Attentive 59:68 7897 75:36 51:74 70:98 64:91
AFET 53:.3 69:3 66:4 55:1 711 64:7
LNR+FIGER 59:9 76:3 74:9 57:2 715 66:1
AAA 65:8 81:2 74 52.2 68:5 63:3
NFETC(f) 579 1.3 784 08 750 07 54:.4 0.3 715 04 64:9 0:3
NFETC-hier(f) 68.0 0:8 81:4 08 779 07 59.:6 0:2 76:1 0:2 697 02
NFETC(r) 56:2 1.0 772 09 743 1.1 54.8 04 71.8 04 650 04
NFETC-hier(r) 68 9 0:6 819 07 79:0 0:7 60:2 0:2 76:4 0:1 70:2 0:2

Table 2.4: Strict Accuracy, Macro F1 and Micro F1 for the modelseisted on
the FIGER(GOLD) and OntoNotes datasets.

Table 2.4 compares our models with other state-of-the-art FEC systems
on FIGER(GOLD) and OntoNotes. The proposed model performs bietr than

2Following TensorFlow terminology.
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the existing FETC systems, consistently on both datasets. Ti& indicates
bene ts of the proposed representation scheme, loss furmstiand hierarchical

loss normalization.

Discussion about Out-of-context Noise : For dataset FIGER(GOLD),
the performance of our model with the proposed variant of css-entropy loss
trained on D,y is signi cantly better than the basic neural model trained o
Driered ,» SUggesting that the proposed variant of the cross-entropgss function
can make use of the data without-of-context noisee ectively. On the other
hand, the improvement introduced by our proposed variant ofross-entropy
loss is not as signi cant for the OntoNotes benchmark. This nyabe caused
by the fact that OntoNotes is much smaller than FIGER(GOLD) andthe
proportion of examples withoutout-of-context noiseis also higher, as shown
in Table 2.2.

Investigations on  Overly-Speci ¢ Noise : With hierarchical loss nor-
malization, the performance of our models are consistenthetter no matter
whether trained onD,, Or Dfitereq ON both datasets, demonstrating the e ec-
tiveness of this hierarchical loss normalization and shaug that overly-speci ¢
noise has a potentially signi cant in uence on the performance oFETC sys-

tems.

2.5.6 T-SNE Visualization of Type Embeddings

By visualizing the learned type embeddings (Figure 2.3), wea observe that
the parent types are mixed with their subtypes and forms clealistinct clusters
without hierarchical loss normalization. While the parent ypes tend to cluster
together and the general pattern is more complicated with &rarchical loss
normalization. It indicates that our model can learn rathersubtle intricacies
and correlations among types latent in the data with the helpf hierarchical

loss normalization, instead of sticking to a pre-de ned hrarchy.
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Figure 2.3: T-SNE visualization of the type embeddings learnfrom
FIGER(GOLD) dataset where subtypes share the same color asetih par-
ent type. The seven parent types are shown in the black boxe¥he below
sub- gure uses the hierarchical loss normalization, whildhe above not.

2.5.7 Error Analysis on FIGER(GOLD)

Since there are only 563 sentences for testing in FIGER(GOLDWye look into
the predictions for all the test examples of all variants ofur model. Table 2.5
shows 5 examples of test sentence. Without hierarchical loggrmalization, our
model will make too aggressive predictions for S1 witRolitician and for S2
with Software . This kind of mistake is very common and can be e ectively
reduced by introducing hierarchical loss normalization &ling to signi cant
improvements on the model performance. Using the changed dosinction
to handle multi-label (noisy) training data can help the moel distinguish
21



Test Sentence Ground Truth

S1: Hopkins said four fellow elections is curious , considering the ... Person

S2: ...for WiFi communications across all the SD cards. Product

S3: A handful of professors in the UW Department of Chemistry ... Educational Institution
S4: Work needs to be done and, in Washington state , ... Province

S5: ASC Director Melvin Taing said that because the commission is .. . Organization

Table 2.5: Examples of test sentences in FIGER(GOLD) where ¢hentity
mentions are marked as bold italics.

ambiguous cases. For example, our model trained @Njereq Will misclassify
S5 asTitle , while the model trained onD,,, can make the correct prediction.
However, there are still some errors that can't be xed with oumodel. For
example, our model cannot make correct predictions for S3&®4 due to the
fact that our model doesn't know thatUW is an abbreviation ofUniversity of
Washingtonand Washington state is the name of a province. In addition,
the in uence of overly-speci ¢ noisecan only be alleviated but not eliminated.
Sometimes, our model will still make too aggressive or congive predictions.

Also, mixing up very ambiguous entity names is inevitable inhis task.

2.6 Summary

In this chapter, we studied two kinds of noise, namelput-of-context noise
and overly-speci ¢ noise, for noisy type labels and investigate their e ects
on FETC systems. We proposed a neural network based model whijointly
learns representations for entity mentions and their conkt. A variant of cross-
entropy loss function was used to handleut-of-context noise. Hierarchical
loss normalization was introduced into our model to allevia the e ect of
overly-speci ¢ noise. Experimental results on two publicly available datets
demonstrate that the proposed model is robust to these tword of noise and

outperforms previous state-of-the-art methods signi caty.

22



Chapter 3

Neural Relation Extraction
(NRE)

In this chapter, we rst give an introduction to the task of RE in Section 3.1. In
Section 3.2, we brie y review some important methods for RHn Section 3.3,
we give the necessary background and de ne the problem of RErmally.
Then, we improve the existing neural architectures for RE byntroducing
multi-level attention mechanisms and outperform the statef-the-art for the

task in Section 3.4 and Section 3.5.

3.1 Introduction

Knowledge Bases (KBs) provide structured information abduhe world and
are used in support of many important natural language prossing appli-
cations such as semantic search and question answering. |8ug KBs is a
non-trivial and never-ending task because, as the world anges, new knowl-
edge needs to be harvested while old knowledge needs to basexl; This
motivates the work on Relation Extraction (RE) task, whose gal is to assign
a KB relation to a phraseconnecting a pair of entities, which in turn can be
used for updating the KB.

Most existing supervised RE systems require a large amount labelled
relation-speci ¢ training data, which is very time-consunng and labor inten-
sive. Mintz et al. (2009) proposes distant supervision to &mmatically generate

training data via aligning KBs and texts. Although distant sypervision is an
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e ective strategy to automatically label training data, it always su ers from
wrong labelling problem. Hence, Riedel, Yao, and McCallum @20), Ho -

mann et al. (2011) and Surdeanu et al. (2012) adopt multi-itsnce learning
to alleviate the wrong labelling problem. The main weaknessf these con-
ventional methods is that most features are explicitly devied from NLP tools
such as POS tagging and the errors generated by NLP tools wiligpagate
in these methods. Recently, neural models have shown supenperformance
over approaches using hand-crafted features in the task oERWe'll review

some important methods in this category in the next section.

3.2 Methods for Neural Relation Extraction

Some recent works (Santos, Xiang, and B. Zhou 2015; D. Zeng, Ku, Lai, et

al. 2014; P. Zhou et al. 2016) attempt to use deep neural netiks in relation

classi cation without handcrafted features. These methasl build classi er

based on sentence-level annotated data, which cannot be aeg in large-
scale KBs due to the lack of human-annotated training data. fierefore, D.
Zeng, K. Liu, Y. Chen, et al. (2015) incorporate multi-instage learning with
neural network model, which can build a relation extractor ased on distant
supervision data. Although the method achieves signi cantmprovement in

relation extraction, it is still far from satisfactory. The method assumes that at
least one sentence that mentions these two entities will ebgss their relation,
and only selects the most likely sentence for each entity pan training and

prediction. It's apparent that the method will lose a large anount of rich

information containing in neglected sentences.

Y. Lin, Shen, et al. (2016) propose a sentence-level attentitvased con-
volutional neural network for distant supervised relationextraction. They
employ a CNN to embed the semantics of sentences. Afterwards, utilize
all informative sentences, they represent the relation agmmantic composition
of sentence embeddings. To address the wrong labelling pieoh, they build
sentence-level attention over multiple instances, whicls iexpected to dynam-

ically reduce the weights of those noisy instances.
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In the past few years, various neural models are proposed tagrove the
performance by di erent techniques, including adversaridearning (Y. Wu,
Bamman, and Russell 2017), deep residual learning (Y. Y. Huang&W. Y.
Wang 2017), incorporating relation path (W. Zeng et al. 2016)leveraging
information from other sources (L. Liu et al. 2017), to name &w.

Our Approach. Based on the neural model with selective attention over
sentences proposed by Y. Lin, Shen, et al. (2016), we repla¢e tsentence
encoder with bi-directional long short term memory network with word-level
attention (P. Zhou et al. 2016) as compared to the original ewolutional neural
networks. Experimental results show that our model can coissently outper-
form previous methods.

In the next section, we rst give the necessary background drde ne the
problem of RE formally. The details of our proposed model isedcribed in
Section 3.4.

3.3 Background and Problem

The task of RE is to predict a KB relation that holds for a pair d entities
given several text mentions, oNA if no such relation exists. The input is a
knowledge base with relation setR , a target relationsetR; R R , and
an automatically labeled training datasetD obtained via distant supervision.
(For example, in our settingR is all 23K Freebase relations whildR is a
smaller subset of relations of interest). The output is a ration in R[f NAg
for a test sentence. The catch-all relatioNA applies when there is no relation

in R that holds over h;t (given the set of sentences).

3.3.1 Knowledge Base and Distant Supervision

As customary, we denote a KB with relation schemeR as a set oftriples
T =f(h;rnt) 2E R E g, whereE is the set of entities of interest.
Distant supervision exploits the KB to automatically annotaite sentences in

a corpus containing mentions of entities with the relationghey participate
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in. Formally, a labeled dataset for relation extraction cosists of fact triples
f(hi;ri;t)gl; and a multi-set of extracted sentences for each triplS;glY, ,
such that each sentence 2 S; contains mentions to the head entityh; and
the tail entity t;.

3.3.2 Problem Statement

Given an entity pair (h;t) and a set of sentenceS with mentions to them, the
RE task is to estimate the probability of each relation irR[f NAg. Formally,
for each relationr, we want to predict P(r j h;t; S).

In practice, the input set of sentence$ can have arbitrary size. For the
sake of computational e ciency, we normalize the set size ta xed number T
by splitting large sets and oversampling small ones. We alssstrict the length
of each sentence in the set by a constaht by truncating long sentences and

padding short ones.

3.4 Bi-LSTM with Multi-Level Attention Mech-
anisms

3.4.1 Input Representation

We represent each word in each sentence as a real-valued eedapturing
lexical and semantic features pertaining to relation extietion. Given a word
embedding matrixW" of sized,, j V], we map every wordw; in s to a column
vector wl 2 R% whereV is the input vocabulary andd, is the size of word
embedding. Further, we incorporate word position embeddys to capture the
distances between each word to the entities mentioned in thext. Similarly
to D. Zeng, K. Liu, Lai, et al. (2014), each relative distances mapped to
a randomly initialized position vector in R%, whered, is the size of position
embedding. For wordw;, we obtain the position vectorw?. Finally, the overall

embedding of wordw; is wE = [(wd)>; (wP)> .
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3.4.2 Sentence Encoder

For a sentences;, we want to apply a non-linear transformation to the vector
representation ofs; to derive a feature vectorz; = f(s;; ) given a set of
parameters . In this paper, we adopt bidirectional LSTM with ds hidden
units asf (si; ). The network contains two sub-networks for the forward pas
and the backward pass respectively. Here, we use elementersgam to combine
the forward and backward pass outputs. The output of the-th word is shown
in the following equation:

z={z z] (3.1)

3.4.3 Multi-level Attention Mechanisms

We employ attention mechanisms at both word-level and semtee-level to
allow the model to softly select the most informative words ral sentences
during training (Y. Lin, Shen, et al. 2016; P. Zhou et al. 2016)

produced at the LSTM layer; the representation of sentence (truncated to

length L) is:
Gy =tanh(Hy) (3.2
w = softmax(w;, G,) (3.3)
s=H | (3.4)

whereH,, 2 R% ' w, 2 R 1 > 2 R 1 52 R% !andw, is a trained
parameter vector.

Sentence-level attentionSimilarly, the language representatiors, can be ob-

tained from the matrix of sentence representationsls = [Sy;Sy;:::;St] as
follows:

G =tanh(Hy) (3.5)

s = softmax(wg Gs) (3.6)

S. = HS ; (37)
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whereHs 2 R% T w, 2 R& * > 2 RT 1 g 2 R% !andw;is a trained
parameter vector.
With the language representatiors,_, the conditional probability p(rjS; )

is computed through a softmax layer as follows:
p(riS; ) = softmax(W®)s_ + HY) (3.8)

wheretft) 2 RX 1is a bias vector W) 2 RX 9 js the representation matrix
of relations,K = jR[f NAgjand &) isthe parameters of the model to learn

language representation.

3.4.4 Optimization and Implementation Details

Here we introduce the learning and optimization details of ayproposed model.

We de ne the objective using cross-entropy as follows:

1 X
du= [ egprisi M)+ ki (3.9)
where N denotes the size of the training set. To solve the optimizain
problem, we adopt the stochastic gradient descent with misbatches and
Adam (Kingma and Ba 2014) to update (). In the implementation, we
employ both input on output dropout (Hinton et al. 2012) on LST™ layers to
prevent over tting. In addition, we constrain L2-norms for the weight vectors

as shown in Eq. 4.8.

3.5 Experiments

We now report on an experimental evaluation of our frameworkgainst the
state-of-the-art for the RE task.

3.5.1 Datasets

We evaluate our model on the widely useNYT dataset, developed by Riedel,
Yao, and McCallum (2010) by aligning Freebase relations miégoned in the

New York Times Corpus. The Freebase relations are divided mttwo parts,
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learning rate Ir [5 104
size of word position embedding| d, | 25

state size for LSTM layers ds | 320
input dropout keep probability pi | 0:9
output dropout keep probability | p, | 0:7

L2 regularization parameter 0:0003

Table 3.1: Hyperparameter setting

one for training and one for testing. Articles from years 2008006 are used

for training while articles from 2007 are used for testing.

3.5.2 Experimental Settings

Baselines: We choose ve baseline approaches following Y. Lin, Shen, dt a
(2016) 1: Three feature-based methodsMintz (Mintz et al. 2009), Mul-
tiR (Ho mann et al. 2011), MIML (Surdeanu et al. 2012), and two convolu-
tional neural network based methodsCNN+ATT  and PCNN+ATT (Y.
Lin, Shen, et al. 2016).

Evaluation Protocol:  Following previous work (Mintz et al. 2009), we eval-
uate our model using held-out evaluation which approximalg measures the
precision without time-consuming manual evaluation. We port both Preci-
sion/Recall curves and Precision@N (P@N) in our experimenignoring the
probability predicted for the NA relation. Moreover, to evaluate each sentence
in the test set as in previous methods, we appentd copies of each sentence
into S for each testing sample.

Word Embeddings: Inthis paper, we use the freely available 300-dimensional
pre-trained word embeddings distributed by Pennington, Ser, and Manning
(2014) to help the model generalize to words not appearing the training set.
Hyperparameter Settings:  For hyperparameter tuning, we randomly sam-
ple 10% of the training set as a development set. All the hypepameters are
obtained by evaluating the model on the development set. Witthe well-tuned
hyperparameter setting, we run each model ve times on the vatte training

set and report the average P@N. For Precision/Recall curvesge just select

1The results of baseline approaches are obtained from Y. Lin, Shen, et al. (2016)
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Chapter 4

Incorporating Encoded
Knowledge Information

In this chapter, we rst give an introduction to the e orts we've made to in-
corporate knowledge base embeddings to facilitate relati@xtraction in Sec-
tion 4.1. In Section 4.2, we review the literature about conibing text and

knowledge information. In Section 4.3, we investigate on ¢he ectiveness of
knowledge base embedding models on the task of relation patidn and ex-

traction. Then, we describe and evaluate a novel neural fraawork for jointly

learning representations for RE and KBE tasks that uses a @s-entropy loss
function to ensure both representations are learned togeth resulting in sig-
ni cant improvements over the current state-of-the-art fo relation extraction

in Section 4.4 and 4.5.

4.1 Introduction

Knowledge Bases (KBs) provide structured information abduhe world and

are used in support of many important natural language prossing appli-
cations such as semantic search and question answering. l&unig KBs is a

non-trivial and never-ending task because, as the world ahges, new knowl-
edge needs to be harvested while old knowledge needs to basexl; This
motivates the work on the Relation Extraction (RE) task, whe goal is to as-
sign a KB relation to a phraseconnecting a pair of entities, which in turn can

be used for updating the KB. State-of-the-art techniques fathis task build
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on neural methods leveraging distant (a.k.a. weak) supesion (Mintz et al.
2009) on large-scale corpora for training.

A related task is that of Knowledge Base Embedding (KBE), with is con-
cerned with representing KB entities and relations in a veot space for link
prediction. Weston et al. (2013) was the rst to show thatcombining predic-
tions from RE and KBE models, trained in isolation, improveghe e ective-
ness on the RE task. However, the way in which they combine RE éiKBE
predictions is rather naive (namely, by adding those sconesin Section 4.3,
extensive experiments have been conducted to evaluate theativeness of the
existing knowledge base embedding models for relation piettbn and for rela-
tion extraction on a wide range of benchmarks. The results o®nstrate that
knowledge base embedding models are generally e ective fefation predic-
tion but unable to give improvements for the state-of-the4d neural relation
extraction model with the existing strategies, while poinhg limitations of
existing methods.

In the next section, we will rst review some existing works Wwich attempt
to combine text and knowledge information. To the best of ouknowledge,
there have been no systematic attempts to further unify RE ahKBE, partic-

ularly during model training. We seek to close this gap in this chapter.

4.2 Related Work

Some works attempt to combine text information and knowledgbase to fa-
cilitate knowledge base embedding. Z. Wang et al. (2014a)nabined text
information and knowledge base by embedding entities anddlwords in their
names in the same vector space. Neelakantan, B. Roth, and Meilom (2015)
learn the co-occurrence based textual relation represenhtms to help with
knowledge base completion. Toutanova, D. Chen, et al. (201&ain contin-
uous representations of knowledge base and textual relatg jointly, which
allows for deeper interactions between the sources of infaation and achieved
signi cant improvement. The success of this joint model onrlowledge base

embedding inspires us to employ a similar idea on relation eattion.
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There are also some works trying to combine text informatioand knowl-
edge base to facilitate relation extraction, but not leverging the knowledge
base embedding models. Riedel, Yao, McCallum, and MarlinQ23) propose
universal schema to transmit information between relatiasn of KGs and tex-
tual patterns via their common entity pairs. Verga, Belange et al. (2015)
further incorporate neural networks to relax constraints mposed by entity
pairs in universal schema. Ren, Z. Wu, et al. (2017) extraclyped entities
and relations jointly by learning embeddings from text corpra and knowledge
bases.

Despite rapid progress in both RE and KBE, limited e orts hae gone
into connecting these two areas to improve relation extrain. Weston et
al. (2013) describe a method for doing so, although in theirosk the two
representations are trained independently with di erent déss functions and
only combined at inference time. Nevertheless, the authorbav that taking
the KBE score into account improves on the predictions madeyltheir RE
model alone. However, advances in RE and KBE models since thbave
reduced the net gains achievable with simple combinationrsemes described
in this work. This claim is validated by the experimental reslts described in

the next section.

4.3 Investigations on Knowledge Base Embed-
ding for Relation Prediction and Extrac-
tion

4.3.1 Introduction

Representing information about real-world entities and tair relations in struc-
tured knowledge bases (KBs) enables various applicationsch as structured
search, factual question answering, and intelligent virtal assistants. A major
challenge for using discrete representation of knowledgase is the lack of
capability of accessing the similarities among di erent dities and relations.
Knowledge base embedding (KBE) techniques have been propdsn recent
years to deal with this issue. The main idea is to represent ¢hentities and
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relations in a vector space, and one can use machine learnteghnique to
learn the continuous representation of the knowledge basethe latent space.

Motivated by the fact that the existing KBs su er from the problem of low
coverage, considerable e ort has been committed in automeally deriving
new facts to extend a manually built knowledge base with infomation from
the existing knowledge base. As a result, most of KBE modelscfts on pre-
dicting missing entities or accessing the plausibility of enissing triple instead
of predicting missing relations. Another reason for such clua is that predict-
ing relations is relatively easier than predicting entitis because the number of
relations is signi cantly smaller than the number of entites. Moreover, exist-
ing KBE models reach nearly perfect results for relation pdéction on some
benchmark datasets (Y. Lin, Z. Liu, Luan, et al. 2015).

To the best of our knowledge, the literature lacks a comprehsive e ort
in validating the e ectiveness of state-of-the-art KBE models on the task of
relation prediction and extraction. To Il this gap, we repat extensive ex-
periments conducted with di erent KBE models and di erent datasets for
relation prediction. We choose three KBE models considegrtheir simplic-
ity, e ectiveness, and exibility: TransE, DistMult and ComplEx We test on
four established benchmarks as well as on a new one we dewethovering
di erent levels of text complexity and corpus size.

Weston et al. (2013) were the rst to combine representatiohearnt by
KBE models and representation learned from textual mentianfor relation
prediction. The two representations were trained indepermatly of each other,
and were only combined with a simple strategy at inferencentie. Since they
got remarkable improvement on performance of relation extction, we expect
that more improvement can also be obtained with the recent gelopment in
areas of both KBE and relation extraction. Following the sam strategy, we
use the chosen KBE models to help the state-of-art neural meld for relation
extraction. In addition, various combining strategies ha& been tried in order
to squeeze the most improvement from KBE models.

The experimental results reported here show that the chos&¢BE mod-

els are enough to achieve satisfactory performance on alltbé datasets we
34



studied for relation prediction. However, the improvementsve can squeeze
from KBE models are negligible for relation extraction whiec goes against
our expectation. This observation indicates that the straggies that combine
representations at inference time is not e ective anymoreug to the recent de-
velopment in areas of both KBE and relation extraction. New ntdods should

be proposed to make advantage of KBE to facilitate relationxéraction.

4.3.2 Datasets

To evaluate KBE models for relation prediction, we use fouroenmon knowl-
edge base completion datasets from the literature and intloce a new one.
WN18 (Bordes et al. 2013) is a subset of WordNet which consistsldf relations
and 40,943 entities. WN18RR is a subset of WN18 introduced by Deters
et al. (2017) which removes and dramatically increases theallty of reason-
ing. FB15k (Bordes et al. 2013) is a subset of Freebase whicmi@ns about
15k entities with 1,345 di erent relations. Likewise, FB15K237 is a subset
of FB15k introduced by Toutanova and D. Chen (2015). FB15k-23/&moved
redundant relations in FB15k and greatly reduced the numberfaelations.

To investigate the e ectiveness of KBE models to facilitateelation extrac-
tion, we use the New York Times corpus (NYT) released by Riedelay, and
McCallum (2010) as training and testing data. A new datasethamely FB3M,
is introduced which is also a subset of Freebase restrictedttee top 3 million
entities - where top is de ned as the ones with the largest numer of relations
to other entities. This dataset uses a large amount of entés and all possible
relationships in Freebase. Hence, it covers most entitiescaall the relations
to be predicted in the NYT dataset. Following Weston et al. (203), we re-
moved all the entity pairs present in the NYT test set from this étaset and
translate the deprecated relationships into their new vaants. This ensures
that we cannot just memorize the true relations for an entitypair - we have to
learn to generalize from other entities and relations. As thRYT dataset was
built on an earlier version of Freebase we also had to trantdathe deprecated

relationships into their new variants.
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Model TransE DistMult ComplEx

Dataset Filter Raw Filter Raw | Filter Raw

WN18 0.971 0.969 | 0.623 0.622 0.991 0.989
FB15k 0.883 0.773| 0.695 0.644 0.971 0.840
WN18RR | 0.843 0.842| 0.871 0.866 0.894 0.893
FB15k-237| 0.955 0.950 | 0.926 0.921 0.956 0.950
FB3M 0.475 0.464| 0.620 0.607 0.683 0.639

Table 4.1: MRR measures on relation prediction.

Model Transk DistMult ComplEx

Dataset Filter Raw | Filter Raw | Filter Raw

WN18 0.956 0.952 | 0.256 0.256 0.987 0.983
FB15k 0.829 0.650| 0.463 0.408 0.950 0.726
WN18RR | 0.735 0.734| 0.810 0.802 0.813 0.813
FB15k-237| 0.930 0.921 | 0.880 0.871 0.933 0.922
FB3M 0.364 0.347| 0.439 0.432 0.460 0.410

Table 4.2: Hits@1 measures on relation prediction.

4.3.3 Relation Prediction

Relation prediction aims to predict relations given two enties. For each test-
ing triple with missing relation, models are asked to compatthe scores for all
candidate entities and rank them in descending order.

Following Y. Lin, Z. Liu, Luan, et al. (2015), we use two meas@&s as our
evaluation metrics: the mean reciprocal of correct relatioranks (MRR) and
the proportion of valid relations ranked in top-1(Hits@1). Br each metric, we
follow evaluation regimes \Raw" and \Filter" as described byBordes et al.
(2013).

Evaluation results of relation prediction are shown in Tablet.1 and 4.2.
From there we observe that: (1) Generally, KBE models are day well in
the task of relation prediction. It indicates that relation information between
entities can be captured by the existing KBE models withoutay speci ¢ mod-
i cations to adapt this task; (2) ComplExachieves the best performance on all
datasets. In addition, it signi cantly and consistently ouperforms DistMult

which matches the observations for the task of link prediain; (2) Surpris-
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ingly, TransE has competitive performance withComplExon some datasets
which disagrees with the observations for the task of link pdiction. It indi-
cates that there exists intrinsic di erence between the tdsof link prediction

and relation prediction.

4.3.4 Facilitating Relation Extraction

Relation extraction from text aims at extracting relationd facts from plain
text to enrich existing KBs. Recent works regard large-saalKBs as source
for distant supervision to annotate sentences as trainingngtances and build
relation classi ers using neural models (Y. Lin, Shen, et akR016; Y. Wu,
Bamman, and Russell 2017; D. Zeng, K. Liu, Y. Chen, et al. 20153l these
methods reason new facts only based on plain text. In this taswe explore
the e ectiveness of KBE models to facilitate relation extration from text.

In the experiments, we implemented the RNN-based model presed in
Y. Wu, Bamman, and Russell 2017. We combine the ranking scorsm
the neural model with those from KBE to rank testing triples,and generate
precision-recall curves for bothTransE and ComplEx Formally, for each pair
of entities (s; 0) that appear in the test set, all the corresponding sentensé&

in the test set are collected to form a se® and a prediction is performed with

fs.o = argmax Sge (r]S) 4.1)
r2R

where Sge (rjS) indicates the plausibility of relationr given the sentences set
S predicted by the neural model. The predicted relation can tier be a valid
relation or NA - a marker that means there is no relation betwees and o
(NA is added to R during training and is treated like other relations). Ifr},

is a relation, a composite score is de ned:

S(S;fs0;0) = Sre(fs0jS)+ (1 )fn,(s;0 (4.2)

where 2 (0;1] is a hyper-parameter to tune the balance between the text
information and the KB. That is, only the top scoring non-NA piedictions are

re-scored. Hence, our nal composite model favors prediatie that agree with
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is produced by labeling facts (-1,1) depending on whether apt they belong
to .

Furthermore, the choice of scoring function (h;r;t) used to predict the
entries of the tensofX determines the model. Following Trouillon et al. (2016),
we use the following scoring function:

(h;r;t) = Re(hen;wi; &i)
N

=Re(  ewWkex)
k=1

= hRe(ey); Re(w;); Re(®)i (4.5)
+ Hm(e,); ReW;); Im(&)i
+ Re(ey); Im(w;); Im(&)i
h Im(ey); Im(w;); Re(e)i

where di is the representation sizew, 2 C% is the relation representation
and e,;e 2 C% are the entity representations for the head and tail entity
respectively. In Equation 4.5, Re() and Im( ) stand for the real and imaginary
parts of each complex number. One advantage of this scoringnttion is that
the composition of complex valued representations can hdedli erent binary
relations, including symmetric and antisymmetric ones comonly found in
KBs.

Following the training procedure in Trouillon et al. (2016) we can get the
knowledge representations,;w;;e 2 C% by minimizing the negative log-
likelihood of the logistic model:

X
log(1 +exp( Y (h;ir;t)) (4.6)

(h;rit)2
With the knowledge representations and the scoring functiode ned by
Eqg. 4.5, we can obtain the conditional probabilityp(rj(h;t); (®)) for each

relation r:
e (hirt)

p(rith;t); )= P (4.7)

coortt nag € (M
where () corresponds to the knowledge representatiores; w,;e 2 Cl.
SinceNA 2R , we use a randomized complex vector ag, .
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4.4.3 Connecting Heterogeneous Representations

As stated, this chapter seeks an elegant way of connecting ¢arage and knowl-
edge representations for the RE task. In order to achieve thave use separate
loss functions (recall Figure 4.3) to guide the language anchéwledge repre-
sentation learning and a third loss function that ties the pedictions of these
models thus nudging the parameters towards agreement.

We found that better results were achieved if we started frorstable knowl-
edge representations. In other words, we rst train knowlegk representations
e; W, ; & (as in the previous section) on the whole KB independently arthen
use them as the initialization point for thejoint learning of the nal knowledge

representations with the language representation.

Loss Functions.  The cross-entropy loss based on language representation
(recall Eg. 4.3) is de ned as:

X

J. = logp(rijSi; ) (4.8)

L
N i=1
whereN denotes the size of the training set. Since the language repentation
is learned from local context, the subscript. in J| means local.
Then the cross-entropy loss based on knowledge represeiatas (recall

Eg. 4.7) can be de ned as:

X

Jo= i logpriChit); ) *9)

i=1
Since the knowledge representation is learned from the wadB, the subscript
G in Jg means global.
Finally, we use a cross-entropy loss to measure the dissimiya between
two distributions, thus connecting them, and formulate modl learning as min-
imizing Jp:

X

Jp = Ni logp(r;jSi; ) (4.10)

i=1
wherer; =argmax,ori nagP(rj(hiti);  (©)).
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We also tried to use KL-divergence adp but the cross-entropy loss gen-

erally performed better.

4.4.4 Model Learning

Based on Eq. 4.8, 4.9, 4.10, we form the joint optimization pblem for model
parameters as
mnJ =J_ +Jg+Jp+ k k3 (4.11)

where = O] (© s all the parameters of the considered model.

Collectively optimizing Eq. 4.11 allows the heterogeneouspresentations
enhance each other. The language representation can leggagrior knowl-
edge existing in the whole KB but not in the training datasetD. Also, the
knowledge representations can be re ned with the text infonation related to
the facts.

In order to solve the joint optimization problem in Eq. 4.11,we adopt
the stochastic gradient descent with mini-batches and AdamK{ngma and
Ba 2014) to update . We employ dierent learning rates Ir; and Ir, on

L) and (©) respectively, wherelr, is signi cantly smaller than Ir;. The

regularizations employed are the same as described in SactB.4.

4.4.5 Relation Inference

We now discuss the strategy for relation prediction, whichsiessentially the
same as the one of Weston et al. (2013). In order to get the catmohal
probability p(rj(h;t);S; ), we use the weighed average to combine the two
distribution p(rjS; M) and p(rj(h;t); ©)):
pri(h;t);S; )= p(ris; )
+1 ) p(rithit); ©):

where is the combining weight of the weighted average. Then, the @dicted

(4.12)

relation i is

f= argmax p(rj(h;t);S;) : (4.13)
r2R[f NAg
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4.5 EXxperiments

We now report on an experimental evaluation of our frameworkgainst the
state-of-the-art for the RE task.

451 Datasets

We evaluate our model on the widely used NYT dataset, developég Riedel,
Yao, and McCallum (2010) by aligning Freebase relations miégoned in the
New York Times Corpus. Articles from years 2005-2006 are usext fraining
while articles from 2007 are used for testing.

As our KB, we used a subset with the 3M entities with highest dege (i.e.,
participating in most relations). Freebase is a manually cated Web-scale
KB with approximately 80M entities, 23k kinds of relations ad 1.2B facts.
While Freebase is no longer maintained, it remains an invalbke resource in
this area. Moreover, to prevent the knowledge representati from memorizing
the true relations for entity pairs in the test set, we remowe all entity pairs
present in the NYT. In this way our model has to learn to generae from

other entities and relations.

4.5.2 Experimental Settings

Baselines: We choose ve baseline appoaches following Y. Lin, Shen, et al
(2016) 1: Three feature-based methodsMintz (Mintz et al. 2009), Mul-
tiR (Ho mann et al. 2011), MIML (Surdeanu et al. 2012), and two convolu-
tional neural network based methodsCNN+ATT  and PCNN+ATT (Y.
Lin, Shen, et al. 2016). We also implement a baselideston based on the
strategy following Weston et al. (2013), namely use Equatio4.12 to combine
the scores directly without joint learning. Using as Q5 suggested by Weston
et al. (2013), the performance is signi cantly worse. We foud that with the
models we trained = 0:7 leads to much better performance.

There are four variants of our proposed framework: (Hrere -base: basic

neural model with local loss only; (2Hrere -naive : neural model with both

IThe results of baseline approaches are obtained from Y. Lin, Shen, et al. 2016
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learning rate on (1) Ir, |5 10 %

learning rate on  (K) Ir, |1 10 °
size of word position embedding| dp | 25
state size for LSTM layers ds | 320

input dropout keep probability pi | 0:9
output dropout keep probability | p, | 0:7
L2 regularization parameter 0:0003
combining weight parameter 0:6

Table 4.3: Hyperparameter setting

local and global loss; (3Hrere -full : neural model with both local and global
loss along with their dissimilarities. (4)Hrere -text : same asHrere -full
except that the relation is inferred only by language represtation (which is
equivalent to set =1:0 in Equation 4.12).

Evaluation Protocol:  Following previous work (Mintz et al. 2009), we eval-
uate our model using held-out evaluation which approximalg measures the
precision without time-consuming manual evaluation. We port both Preci-
sion/Recall curves and Precision@N (P@N) in our experimenignoring the
probability predicted for the NA relation. Moreover, to evaluate each sentence
in the test set as in previous methods, we appentd copies of each sentence
into S for each testing sample.

Word Embeddings: We used the freely available 300-dimensional pre-trained
word embeddings distributed by Pennington, Socher, and Mamg (2014) to
help the model generalize to words not appearing in the traimg set.
Hyperparameter Settings:  For hyperparameter tuning, we randonly sam-
pled 10% of the training set as a development set. All the hypgsrameters
were obtained by evaluating the model on the development seWith the
well-tuned hyperparameter setting, we run each model vemnes on the whole
training set and report the average P@N. For Precision/Redalurves, we just
select the results from the rst run of each model. For traimg, we set the iter-
ation number over all the training data as 30. Values of the Iperparameters

used in the experiments can be found in Table 4.3.
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representation to perform relation inference. The di erece between them
is that Hrere -text is trained with loss considering heterogeneous represen-
tations and their dissimilarities while Hrere -base is trained with language
representation only. The plot suggests that jointly learmg the heterogeneous
representations bring mutual bene ts which are out of reacbf previous meth-
ods that learn each independently.

Hrere -naive simply optimizes both local and global loss at the same time
without attempting to connect them. In a sense, this is the dsest approach
to the combining strategy of Weston et al. (2013), except ofoarse for the
training procedure. As shown in the rightmost plot in Figure &, Hrere -full
is not only consistently superior but also more stable wherhé recall is less
than 0.1. One possible reason for the instability is that theesults may be
dominated by one of the representations and biased toward gince there is
no connection between the two heterogeneous representatio This suggests
that connecting heterogeneous representations can incseahe robustness of
our model.

In any case, these results demonstrate that connecting hetgeneous rep-

resentations can bring consistent improvements to our molde

45.4 Case Study

Table 4.5 shows four examples in the testing data. For eachample, we show
the relation, the sentence along with entity mentions and th correspond-
ing probabilities predicted byHrere -base, Hrere -naive, Hrere -text and
Hrere -full . The entity pairs in the sentence are highlighted with bolddr-
matting.

From the table, we have the following observations: (1) Therpdicted
probabilities of four variants of our model in the table math the observations
and validate the analysis discussed in Section 4.5.3. (2)dfn the text of the
rst two sentences, we can easily infer thatmiddle east contains Iranand
Henry Fonda was born in OmahaHowever,Hrere -base fails to detect these
relations, suggesting that it is hard for models based on lgnage representa-

tions alone to detect implicit relations, which is reasondb to expect. With
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Relation Textual Mention base | naive | text | full
contains Much of the middle east ten- | 0:311 | 0:864 | 0:687 | 0:884
sion stems from the sense that
shiite power is growing, led by
Iran .

place.of_birth Sometimes | rattle o the | 0:109 | 0:605 | 0:229 | 0.646
names of movie stars from
Omabha : Fred Astaire,
Henry Fonda , Nick Nolte

neighborhoodof | Most of them also grew up| 0:196 | 0:427 | 0:740 | 0.946
in New York City  neighbor-
hoods like Hell's Kitchen, For-
est Hills, Washington Heights
and Kew Gardens , whiling
away countless hours playing

country Spokesmen foiGermany and | 0:237 | 0:200 | 0:479 | 0:880
Italy in Washington said yes-
terday that they would re-
serve comment until the re-
port is formally released at a
news conference irBerlin to-
day.

Table 4.5: Some examples in NYT corpus and the predicted prolbties of
the true relations.

the help of KBE, the model can e ectively identify implicit relations present
in the text. (3) Even if the relation is explicitly stated in the text, the third
example shows that models based only on language represaatamay falil
when the two entities are far apart in the text. Likewise, themodel can be
improved for these cases with the help of KBE. (4) It may happethat the re-
lation cannot be inferred by the text as shown in the last exaple. Itis a case
of an incorrectly labeled instance, a typical occurrence mlistant supervision.
However, the fact is obviously true in the KBs. As a resultHrere -full gives
the underlying relation according to the KBs. This observabn may point
to one direction of de-noising weakly labeled textual memtns generated by

distant supervision.
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4.6 Summary

This chapter describes a novel neural framework for jointlearning hetero-
geneous representations from both text information and feein an existing
knowledge base. A novel loss function is introduced to corotehe hetero-
geneous representations seamlessly, also during trainirgjlowing them to
enhance each other. Our framework was tested on establisneeihchmarks
and built on publicly available datasets. We observe not owylsubstantial
improvements over state-of-the-art RE methods but also gas over the previ-
ous approach of Weston et al. (2013). Furthermore, our experents suggest
the textual mentions are likely to be incorrectly labeled bylistant supervision
when the heterogeneous representations disagree with eatier, pointing out
one direction of future as applying our framework to help deeise the training

corpus generated by distant supervision.
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Chapter 5

Conclusion

In this thesis, we explored neural information extraction whout manual an-
notated data following the distant supervision paradigm ath presented novel
neural models for di erent IE tasks which are particularly sited for this set-
ting. All the proposed models achieved state-of-the-art pfarmance in repre-
sentative tasks.

In the rst part of this thesis, we proposed an end-to-end sation with a
neural network model for FETC that uses a variant of cross-erdpy loss func-
tion to handle out-of-context labels, and hierarchical I normalization to
cope with overly-speci ¢ ones. Also, previous work solve FET& multi-label
classi cation followed by ad-hoc post-processing. In camtst, our solution
is more elegant: we used public word embeddings to train a gla-label that
jointly learns representations for entity mentions and thie context. We showed
experimentally that our approach is robust against noise anhconsistently out-
performs the state-of-the-art on established benchmarkerfthe task.

The second part of this thesis is a neural model with multi-ieel attention
mechanisms for relation extraction. In this model, we empjed bi-directional
long short term memory to embed the semantics of sentences. tekivards,
we built both word-level and sentence-level attention, whh is expected to
dynamically reduce the weights of those noisy instances. ferimental results
on real-world datasets show that, our model achieves signant and consistent
improvements on relation extraction as compared with baseés.

The last main part of this thesis is that we described and evahted a
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novel neural framework for jointly learning representatio for RE and KBE
tasks that uses a cross-entropy loss function to ensure botepresentations
are learned together, resulting in signi cant improvemerst over the current
state-of-the-art for relation extraction.

Lastly, there are also some future directions for our proped models. While
we proposed various neural models to e ectively handle theoisy data due to
direct distant supervision, it remains open how one can e &@gely de-noise the
noisy data with di erent signals and di erent strategies instead of learning in
the noisy setting as we do in this thesis. In addition, we canso incorporate
more external information and di erent sources of supervign into our models

to further improve the model performance.
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As shown in Figure A.1, a typical feed-forward DNN consists at st of
three layer types: the input layer, the hidden layer and the wtput layer.
All these layers are formed by neurons which are denoted by a@s, with
incoming arrows being the neuron's inputs and outgoing ame being the
neuron's outputs. The input layer has no incoming arrows, a@his the input
to the network. The output layer has no outgoing arrows, andsithe output
of the network. The other layers are considered as \hidden'By adding more
hidden layers, the neural network can describe highly cong functions. In
the gure, each neuron is connected to all of the neurons in ¢hnext layer,
which is called afully-connectedlayer.

The units of the input layer represent di erent featuresx; of the input data,
while the units of the output layer represent one or more classy;. A DNN
describes a functiony”= f (x) which maps the input featuresX over several
hidden layers to the output classe¥ . This function thereby approximates a
real while unknown functiony = f (x). A DNN approximates the functionf ()
by tting the model's parameters so that predicted outputsy*are as close as
possible to the real outputsy.

The learning process of a DNN consists of two iterative stepsl) For-
ward propagation- computing the prediction y* by current parameters ; 2)
Backpropagation - updating the parameters by the current ks between the
prediction ¥ and the ground truth y.

In the forward propagation, a neuron in successive layer i®roputed by
a weighted summation over all neurons of previous layer. Thalues of each
row of neurons in the network can be thought of as a vector. In fure A.1
the input layer is a 4 dimensional vectorx, and the layer above it is a 6
dimensional vectorh!. The fully connected layer can be thought of as a linear
transformation from 4 dimensions to 6 dimension. A fully-amected layer
implements a vector-matrix multiplication, h = xXW where the weight of the
connection from theith neuron in the input row to the jth neuron in the
output row is W . The values ofh are then transformed by a non-linear
function g that is applied to each value before being passed on to the mex

input. In a similar way, all neuron values in subsequent lays can be derived
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layer-by-layer, until reaching the output layer. At the output layer, a loss
function L(9;y; ) is needed to estimate how good the prediction as compared
to the ground truth.

In order to minimize the loss function in neural networks, vaants of the
gradient descent algorithm are used. The key insight of theadient descent is
that the value of the loss function decreases if we adjust thgarameters along
the direction of the gradients of the loss function with resgct to the current
parameters. In gradient descent, the parameters are initiaed randomly and
the parameters are iteratively moved toward the direction fothe gradients

until the loss function coverages. The parameterscan be updated as follows:

= @y )
new (o] @ _

where coe cient is called learning rate, a ecting network learning speed.

(A.1)

The gradients of deep neural networks seem to be di cult to ampute, but
there is an e cient algorithm called backpropagation popudrized by Rumel-
hart, Hinton, and Williams (1986) in the middle eighties. Essdtially, back-
propagation is just another name for the chain rule used in ¢hbasic calculus.
The details of this algorithm are well explained in the book Yy Goodfellow
et al. (2016).

Convolutional Neural Network. Due to the fact that the fully-connected
networks have complete connection between consecutivedes; the parameter
matrices become very large and the matrix multiplicationsra computationally
expensive. The idea of Convolutional Neural Networks (CNNs) (IGun et al.
1998) is to reduce the connections between the input units érthe hidden
units, instead of fully connecting them. Each hidden unit Wi obtain weighted
inputs only from selected input units. With a sequence of wosdas input, this
means only a local phrasei.€., n-gram) will be processed by a hidden unit
in CNN. Then, we elaborate the architecture of a CNN for processj textual
inputs.

The input to the CNN is a sequence containing m entries. Each entry is

represented by ad-dimensional dense vector; thus the inpux is represented
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as a feature map of dimensionalitgl m. Convolution layer is used for repre-

sentation learning by slidingn-grams. For an input sequence withm entries:

tation p; 2 RY for the n-gram X; n+1;:::;X; using the convolution weights
W 2 R® nd:

pi =tanh(W c¢; + b) (A.2)
where biasb 2 RY. All n-gram representationspi(i = 1;:::;m+ n 1)

X; = max(paj;pzj;:::)(J = 1;:::;d). The objective of maxpooling is to
down-sample an input representation, reducing its dimergiality and allowing
for assumptions to be made about features contained in thelsvegions. This
is done in part to help prevent over- tting by providing an abstracted form
of the representation. As well, it reduces the computationadost by reducing
the number of parameters to learn and provides basic transian invariance

to the internal representation.

Recurrent Neural Network. When dealing with text, it is very common
to work with sequences, such as words (sequences of lettesgntences (se-
guences of words) and documents. Recurrent neural networ@NNs) allow
representing arbitrarily sized structured inputs in a xedsize vector, while
paying attention to the structured properties of the input. For RNN, each
current input x; is composed with the previous hidden stath; ; to generate

a new hidden state at timet as follow:

he= (Vx¢+ Uh; 1+ b) (A.3)

wherex; 2 RY represents the token inx at position t, h; 2 R" is the hidden

are parameters.
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By this recurrent procedure, all inputs inX can be encoded sequentially
into a global representation. Unfortunately, vanishing grdient problem pre-
vents standard RNNs from learning long-term dependencies. g Short Term
Memory (LSTMs) (Hochreiter and Schmidhuber 1997) were desigd to com-
bat vanishing gradients through a gating mechanism. LSTM nuels the word

sequence as follows:

ii= (xU'xc+ Whhy 1+ by) (A.4)
fi= (U'x¢+ WThy 1+ by) (A.5)
o= (U%%+ W°h; 1+ by) (A.6)
q: = tanh(U %, + W%y, 1 + bg) (A.7)
pe="Fft peatic o (A.8)
hy = oy tanh(p:) (A.9)

LSTM has three gates: input gatd,, forget gatef, and ouput gateo,. All
gates are generated by sigmoidfunction over the ensemble of inpuk; and the
preceding hidden stateh; ;. In order to generate the hidden state at current
stept, it rst generates a temporary result g by a tanh non-linearity over
the ensemble of inputx; and the preceding hidden statdéy, ;, then combines
this temporary result g with history p; ; by input gate i; and forget gatef,
respectively to get updated historyp;, nally uses output gate o, over this

updated history p; to get the nal hidden state h;.

A.1.2 Word Distributed Representations

The success of DNNs in NLP partially relies on the outstanding sliributed
representations of words. We can also treat a DNN as a systemtlwiwo
modules, one is representing input units, the other is comping the unit rep-
resentations. In this perspective, e ective word represéations acts as the
rst backbone of a successful DNN system.

Word distributed representations, also called \word embatings”, are low-
dimensional, dense vectors with continuous values. Givenvacabulary with
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sizeV, one-hot representation denotes each single word as a binaector of
length jVj with one value 1 at the word-speci ¢ index and remaining vales 0.
It enjoys simplicity, however, it is memory ine cient and the word similarity

is unable to be detected. Unlike the conventional one-hot regsentations, a
single word in embedding space is &dimensional vector (mostlyd << jVj);

similar words will have similar vectors - information is shieed between similar
words. One benet of using dense and low-dimensional vecsors compu-
tational, the other is generalization power if we believe sme features may
provide similar clues, it is worthwhile to provide a represeation that is able

to capture these similarities.

Due to the importance of word embeddings in DNN systems, thel@e
large numbers of works speci cally studying the learning dfigh-quality word
embeddings. When enough supervised training data is availabone can just
treat the embeddings the same as the other model parameteinitialize the
embedding vectors to random values, and let the network-ti@ing procedure
tune them into \good" vectors. However, the common case is thave do not
have su cient annotated data. In such cases, we resort to \usupervised"
methods, which can be trained on huge amounts of unannotateeixt.

The key idea behind the unsupervised approaches is that onewld like
the embedding vectors of \similar" words to be similar. Whilevord similarity
is hard to de ne and is usually very task-dependent, the cuent approaches
derive from the distributional hypothesis, stating that words are similar if
they appear in similar contexts The di erent methods all created supervised
training instances in which the goal is to either predict theword from its
context, or predict the context from the word.

An important bene t of training word embeddings on large amoaots of
unannotated data is that it provides vector representatios for words that
do not appear in the supervised training set. Ideally, the presentations for
these words will be similar to those of related words that dopgear in the
training set, allowing the model to generalize better on ueen events. Itis thus
desired that the similarity between word vectors learned bthe unsupervised

algorithm captures the same aspects of similarity that areseful for performing
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A common paradigm of context representation learning by DNNsiillus-
trated in Figure A.2. As input, each word is denoted by an embedag (ran-
domly initialized or pretrained). A DNN system works on this ontext input
format to generate a global context representation, whictsi nally fed into a
classi er to make nal predictions. Literature mainly madeprogresses in terms
of enriching input representations enriching DNN expressivityand improving

loss function

Enriching Input Representation. The pioneering work (Collobert and
Weston 2008; Collobert, Weston, et al. 2011) obtained greaticcess by pre-
senting words intoword embeddings This kind of initialization afterwards
acts as a mainstream in downstream NLP tasks. Some work (Kim 249, Yin
and Schutze 2016) explored initializing words by multipleretrained word em-
beddings, as di erent pretrained embedding versions are [goosed to provide
complementary information.

In addition to the word embeddings as input layer, linguist features are
often incorporated into DNNSs for better performance. For exapie, Yu et al.
(2016) add part-of-speech tags to the words in machine congpiension task.
D. Zeng, K. Liu, Lai, et al. (2014) considered position feates between generic
words and entity mentions for relation classi cation. Genglly, linguistic fea-
tures can provide strong support to the DNN systems, espediain the case

of limited training set.

Enriching DNN expressivity. Collobert and Weston (2008) and Collobert,
Weston, et al. (2011) used basic convolution layer and maxepling layer to

model sentences. Kalchbrenner, Grefenstette, and Blunsq@014) proposed
k-max poolingfor CNN. Vu et al. (2016) combined CNN and RNN for sentence-

level relation classi cation.

Improving Loss Functions. For sentence classi cation tasks, the most
commonly-used loss function is negative likelihood (a.k@oss-entropy loss).

Santos, Xiang, and B. Zhou (2015) presented a ranking loss taake the true
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in Figure A.3, our goal is to extract the proper relations for tw di erent en-
tity pairs given the same context. For the entity pair(Obama, Harvard Law
School) we should focus on the phrasenrolled in; while for the entity pair
(Obama, Harvard Law Review)we should give more attention to the phrase
president of

As a result, attention mechanisms are intensively exploreecently in the
domain of information extraction. For relation extraction Y. Lin, Shen, et al.
(2016) and Luo et al. (2017) built a sentence-level attentioover multiple in-
stances to reduce weights of noisy instances. Verga and MdGa (2016) used
neural networks with attention to merge similar semantic perns in universal
schema. For ne-grained type classi cation, Shimaoka et a{2016) proposed
an attentive neural network model that used LSTMs to encodeontext of an
entity mention and used an attention mechanism to allow the wdel to focus
on relevant expressions in such context. Mostly recently, HHa Z. Liu, and
Sun (2018) and X. Ji et al. (2018) attempted to incorporate encied knowl-
edge information to build the attention to facilitate the tasks of information

extraction.

A.2 Knowledge Base Embeddings

Representing information about real-world entities and téir relations in struc-
tured knowledge bases (KBs) enables various applicationsch as structured
search, factual question answering, and intelligent virtal assistants. A major
challenge for using discrete representation of knowledgade is the lack of
capability of accessing the similarities among di erent dities and relations.
Knowledge Base Embedding (KBE) techniques have been propdsin recent
years to deal with this issue. The main idea is to represent ¢hentities and
relations in a vector space, and one can use machine learnteghnique to
learn the continuous representation of the knowledge basethe latent space.
For a given knowledge base, |eE be the set of entities withjEj = n,
R be the set of relations withjRj = m, and T be the set of ground truth

triples. In general, a knowledge base embedding model canfbenulated as a
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score functionf,(s;0), s;02 E;r 2 R which assigns a score to every possible
triple in the knowledge base. The estimated likelihood of aiple being correct
depends only on its score given by the score function.

Di erent models formulate their score function based on dierent designs,
and therefore interpret scores di erently, which further €ads to various train-

ing objectives.

A.2.1 Translation-based Models

Translation based models are based on the principle rst ppmsed by Bordes
et al. (2013) that if there exists a relationshipr between entitiess; o then the
following relationship between their respective embeddis holds:es+w,  e,.

The scoring function is thus designed as

fi(s;0 = kes+ W, ek; (A.10)

wherees; e, 2 RK are entity embedding vectorsw, 2 RX is the relation
embedding vector anK is the embedding sizeTransE (Bordes et al. 2013) is
the rst model to introduce translation-based embedding. hter variants, such
as TransH (Z. Wang et al. 2014b),TransR (Y. Lin, Z. Liu, Sun, et al. 2015),
TransD(G. Ji et al. 2015) extendTransE by projecting the embedding vectors
of entities into various spaces.ManifoldE (Xiao, M. Huang, and Zhu 2015)
embeds a triple as a manifold rather than a point. The objeate of training a
translation-based model is typically minimizing the follaving marginal loss:

X

Im = [ +fi(s;0 fro(so; 0()]+ (A.11)
(s;r;0)2T

where []+ = max(0; ) is the hinge loss, is the margin (often set to 1), and

(s%r%d) is a negative triple generated based on the positive triple

A.2.2 Latent Factor Models

Latent factor models assume that the probability of the exience of a triple

(s;r;0) is given by the logistic link function:
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PYD)= (X@)= (fi(s;0) (A.12)

where X (M) 2 R™ " js a latent matrix of scores of relationr. Latent factor
models try to nd a generic structure forX (") that leads to a exible approxi-
mation of common relations in real world KBs with matrix facbrization. The
goal here is to learn representations of the entities and atlons capable of
predicting probabilities onf]ZtO% being true for unobserved triple K% rt9.
RESCAINickel, Tresp, and Kriegel 2011) is one of the earliest stush
on embedding based on latent matrix factorization, using ailmear form as
score function.DistMult (Yang et al. 2014) simpli esRESCAhy only using a

diagonal matrix. The score function is de ned as follows:

fr(s;0 = hes;w,; el (A.13)

wherew, 2 RK. However, this model loses much expressiveness due to its
simplicity and cannot describe antisymmetric relations amrately. In order to
handle these issuesComplEXTrouillon et al. 2016) transforms the embeddings
of DistMult from real space to complex space, which de nes the score ftioo

as:

fr(s;0) = Re(hes;w;;e); (A.14)

wherew, 2 CX. HOLHENickel, Rosasco, Poggio, et al. 2016) employs circular
correlation to combine the two entities in a triple. ConvE(Dettmers et al.

2017) uses a convolutional neural network as the score fuioct.
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