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Abstract

Information extraction (IE) is one of the most important technologies in the

information age. Applying information extraction to text is linked to the prob-

lem of text simplification in order to create a structured view of the informa-

tion present in free text. However, information extraction is a very challenging

task, due to the inherent difficulties to understand natural language and the

high cost to obtain large manual annotated training data. In this thesis, we

build on the premise of performing automatic information extraction without

manual annotated data following the distant supervision paradigm and present

novel neural models for different IE tasks which are particularly suited for this

setting.

In the first part of the thesis, we focus on one IE task – fine-grained entity

type classification (FETC) and propose the NFETC model – a single, much

simpler and more elegant neural network model that attempts FETC “end-

to-end” without post-processing or ad-hoc features. We study two kinds of

noise, namely out-of-context noise and overly-specific noise, for noisy type

labels and investigate their effects on FETC systems. We propose a neural

network based model which jointly learns representations for entity mentions

and their context. A variant of cross-entropy loss function is used to handle

out-of-context noise. Hierarchical loss normalization is introduced into our

model to alleviate the effect of overly-specific noise.

In the second part of the thesis, we focus on another IE task – relation

extraction (RE) and propose a neural model with multiple level of attention
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mechanisms. The model can make full use of all informative words and sen-

tences and alleviate the wrong labelling problem for distant supervised relation

extraction.

In the third part of the thesis, we attempt to leverage knowledge base

embedding methods to facilitate relation extraction and describe a novel neural

framework Hrere to jointly learning heterogeneous representations from both

text information and facts in an existing knowledge base. A novel loss function

is introduced to connect the heterogeneous representations seamlessly allowing

them to enhance each other.

Overall, the work in this thesis tackles different tasks of IE under the setting

of distant supervision with DNNs, different attentions, different loss functions

and the help of knowledge base embeddings. All the proposed models got

state-of-the-art performance in representative tasks.
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Chapter 1

Introduction

The process of Information Extraction (IE) is the task of automatically ex-

tracting structured information from unstructured documents, for example for

populating Knowledge Bases (KBs). In most of the cases, this process concerns

processing human language texts by means of Natural Language Processing

(NLP). Imagine that you are not a big fan of basketball but want to know

more about it for socializing. One day, you randomly found one news article

started with:

Steve Kerr has turned down Phil Jackson and the New York Knicks

to accept a five-year, $25 million offer to become the Golden State

Warriors’ next coach, saying “it just felt like the right move on

many levels.”

To understand the information encoded in this sentence, you will need to at

least know the people and organizations mentioned and the semantic relations

among them. The first step in most IE tasks is to find the named entities

in a text. The task of named entity recognition (NER) is to find each

mention of a named entity in the text and label its type. While traditional

named entity recognition systems (Manning et al. 2014; Ren, El-Kishky, et al.

2015) focus on a small set of coarse types (typically fewer than 10), recent

studies (Dan Gillick et al. 2014; Ling and Weld 2012) work on a much larger

set of fine-grained types which form a tree-structured hierarchy. We call this

task as fine-grained entity type classification (FETC).
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Having located all of the mentions of named entities in a text, we need

to find the semantic relations among the entities, for example, the relation

between Steve Kerr and Golden State Warriors becomes coach-of given the

above sentence. The task of relation extraction (RE) is to find and classify

semantic relations among entity mentions.

A major challenge in information extraction tasks like FETC and RE is the

absence of human-annotated data. The process of manually labeling a training

set with large number of fine-grained types or semantic relations is too expen-

sive and error-prone (hard for annotators to distinguish over many types or

relations consistently). Current systems resort to distant supervision (Mintz

et al. 2009) and annotate training corpora automatically using KBs. A typical

workflow of distant supervision is as follows: (1) identify entity mentions in

the documents; (2) link mentions to entities in KB; (3) assign, to each entity

mention or entity pair, all types or relations associated in a KB. However,

this approach introduces label noise to the mentions since it fails to take the

semantics of the mentions’ local context into account when assigning the la-

bels. This thesis mainly studies information extraction under the setting of

distant supervision which doesn’t require massive manual annotated data and

addresses the introduced noise in various ways.

A few years ago, almost all NLP problems were dominated by shallow ma-

chine learning methods with intensive feature engineering. The resurgence of

deep neural networks (DNNs) enables the possibility of solving NLP problems

via deep systems with no or fewer manual features. Most NLP tasks have

acquired state-of-the-art by DNN systems. A brief introduction to deep neu-

ral networks for NLP is given in Appendix A.1 with a special focus in the

subarea of information extraction. This thesis presents our work employing

neural models for the tasks of information extraction.

Since the training data are automatically labelled based on KBs, a related

task is that of Knowledge Base Embedding (KBE), which is concerned with

representing KB entities and relations in a vector space for link prediction.

Appendix A.2 will give a short introduction into the basic background and

popular methods of KBE. This thesis also investigates various ways to leverage
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KBE to facilitate neural information extraction.

1.1 Thesis Statement and Contributions

The present significance of IE pertains to the growing amount of information

available in unstructured form. Due to the inherent noise existing in the auto-

matically labelled data and the difficulties in understanding natural language,

traditional information extraction methods can hardly suffice nowadays. To

overcome these problems, this thesis is concerned with neural information

extraction without manual annotated data. More precisely, this thesis inves-

tigates whether information extraction can be effectively performed under the

setting of distant supervision with the help of deep neural networks and infor-

mation from state-of-the-art open knowledge bases. The main contributions

are as follows:

Neural Fine-Grained Entity Type Classification with Hierarchy-Aware

Loss. We propose an end-to-end solution with a neural network model that

uses a variant of cross-entropy loss function to handle out-of-context labels,

and hierarchical loss normalization to cope with overly-specific ones. Also, pre-

vious work solve FETC a multi-label classification followed by ad-hoc post-

processing. In contrast, our solution is more elegant: we use public word

embeddings to train a single-label that jointly learns representations for en-

tity mentions and their context. We show experimentally that our approach

is robust against noise and consistently outperforms the state-of-the-art on

established benchmarks for the task. This work has been accepted as a long

oral paper in the 16th Annual Conference of the North American Chapter of

the Association for Computational Linguistics (NAACL), 2018.

Neural Relation Extraction with Multi-Level Attention Mechanisms.

We propose a neural model with multi-level attention mechanisms for relation

extraction. In this model, we employ bi-directional long short term memory to

embed the semantics of sentences. Afterwards, we build both word-level and

sentence-level attention, which is expected to dynamically reduce the weights
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of those noisy instances. Experimental results on real-world datasets show

that, our model achieves significant and consistent improvements on relation

extraction as compared with baselines.

Incorporating Knowledge Base Embedding to Facilitate Neural Re-

lation Extraction. We describes and evaluates a novel neural framework for

jointly learning representation for RE and KBE tasks that uses a cross-entropy

loss function to ensure both representations are learned together, resulting in

significant improvements over the current state-of-the-art for relation extrac-

tion. This work has been submitted to Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2018.
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Chapter 2

Neural Fine-Grained Entity
Type Classification (NFETC)

In this chapter, we first give an introduction to the task of FETC in Section 2.1.

In Section 2.2, we briefly review some important methods for FETC, as well

as their advantages and disadvantages. In Section 2.3, we define the problem

of FETC in a formal way. At last, we propose a single, much simpler and more

elegant neural network model that attempts FETC “end-to-end” without post-

processing or ad-hoc features and improves on the state-of-the-art for the task

in Section 2.4 and 2.5.

2.1 Introduction

Entity type classification aims at assigning types or labels such as Person,

Organization to entity mentions in a document. There has been considerable

amount of work on Named Entity Recognition (NER) (Manning et al. 2014;

Ren, El-Kishky, et al. 2015), which classifies entity mentions into a small set of

mutually exclusive types. However, these types are not enough for some NLP

applications such as relation extraction, knowledge base completion, entity

linking and question answering.

Fine-grained Entity Type Classification (FETC) aims at labeling entity

mentions in context with one or more specific types organized in a hierarchy

(e.g., actor as a subtype of artist, which in turn is a subtype of person).

In relation extraction and knowledge base completion, knowing fine-grained
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provide evidence of only some of the types: person and coach from S1,

person and athlete from S2, and just person for S3. The importance of

the context motivates us to use attentive neural models to effectively encode

the contextual information.

Hierarchical structure of entity types. As shown in Figure 2.1, fine-

grained types form a tree-structured is-a hierarchy. This means that each

type-path can be uniquely represented by the terminal type (not necessarily

a leaf node). For example, a mention with type-path person → artist can

be uniquely represented by artist. The hierarchy can be seen as the prior

information which can be exploited to help the learning procedure.

Collapse of the mutual exclusion assumption. The assumption of the

traditional entity type classification that the labels of entities are mutually

exclusive, does not hold for FETC. For example, Steve Kerr is both coach,

athlete and person as shown in Figure 2.1. As a result, it’s natural to formu-

late the task as a multi-label classification problem, rather than a single label

classification problem as in the case of traditional entity type classification.

However, based on the assumption that each mention can only have one

type-path depending on the context and the fact that each type-path can be

uniquely represented by the terminal type, FETC can actually be transformed

into a single label classification problem. There are many advantages in adopt-

ing the single label setting. For example, it can simplify the problem and

benefit from previous research on hierarchical classification. Moreover, no

post-processing is needed anymore compared to the multi-label setting. Aside

from the advantages, one obvious disadvantage can be seen. That is, the per-

formance upper bounds of our proposed model are no longer 100%, since there

are samples in the testing set which violate the assumption that each mention

can only have type-path. But, as we can see in Section 2.5 later, the influence

of this disadvantage is negligible.
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Noise in automatically annotated data. As discussed above, direct dis-

tant supervision leads to noisy training data which can hurt the accuracy of

the FETC model. One kind of noise introduced by distant supervision is as-

signing labels that are out-of-context (athlete in S1 and coach in S2). The

most direct strategies to handle out-of-context noise are ignoring out-of-context

types or using simple pruning heuristics like discarding examples with multiple

types. However, both strategies are inelegant and hurt accuracy.

Another source of noise introduced by distant supervision is when the type

is overly-specific for the context. For instance, example S3 does not support

the inference that Mr. Kerr is either an athlete or a coach. Since existing

knowledge graphs give more attention to notable entities with more specific

types, overly-specific labels bias the model towards popular subtypes instead

of generic ones, i.e., prefer athlete over person. Instead of treating each type

equally and independently, the key to handle this kind of noise is to make the

models understand the given type hierarchy which encodes the underlying type

correlations.

2.2 Methods for Fine-Grained Entity Type Clas-

sification

The first work to use distant supervision (Mintz et al. 2009) to induce a large

but noisy training set and manually label a significantly smaller dataset to

evaluate their FETC system, was Ling and Weld (2012) who introduced both

a training and evaluation dataset FIGER (GOLD). They used a linear classifier

perceptron for multi-label classification. While initial work largely assumed

that mention assignments could be done independently of the mention con-

text, Dan Gillick et al. (2014) introduced the concept of context-dependent

FETC where the types of a mention are constrained to what can be deduced

from its context and introduced a new OntoNotes-derived manually annotated

evaluation dataset. Yogatama, Daniel Gillick, and Lazic (2015) proposed an

embedding-based model where user-defined features and labels were embedded

into a low dimensional feature space to facilitate information sharing among la-
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bels. Ma, Cambria, and Gao (2016) presented a label embedding method that

incorporates prototypical and hierarchical information to learn pre-trained la-

bel embeddings and adapted a zero-shot framework that can predict both seen

and previously unseen entity types.

Shimaoka et al. (2016) proposed an attentive neural network model that

used LSTMs to encode the context of an entity mention and used an attention

mechanism to allow the model to focus on relevant expressions in such context.

Shimaoka et al. (2017) summarizes many neural architectures for FETC task.

These models ignore the out-of-context noise, that is, they assume that all

labels obtained via distant supervision are “correct” and appropriate for every

context in the training corpus.

Ren, He, Qu, L. Huang, et al. (2016) have proposed AFET, an FETC sys-

tem, that separates the loss function for clean and noisy entity mentions and

uses label-label correlation information obtained by given data in its paramet-

ric loss function. Considering the noise reduction aspects for FETC systems,

Ren, He, Qu, Voss, et al. (2016) introduced a method called LNR to reduce

label noise without data loss, leading to significant performance gains on both

the evaluation dataset of FIGER(GOLD) and OntoNotes. Although these

works consider both out-of-context noise and overly-specific noise, they rely

on hand-crafted features which become an impediment to further improve-

ment of the model performance. For LNR, because the noise reduction step is

separated from the FETC model, the inevitable errors introduced by the noise

reduction will be propagated into the FETC model which is undesirable.

Most recently, following the idea from AFET, Abhishek, Anand, and Awekar

(2017) proposed a simple neural network model which incorporates noisy la-

bel information using a variant of non-parametric hinge loss function and gain

great performance improvement on FIGER(GOLD). However, their work over-

looks the effect of overly-specific noise, treating each type label equally and

independently when learning the classifiers and ignores possible correlations

among types.

We can see that all of these methods have flaws from different aspects,

including using manual features, without using attentive neural networks and
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ignoring out-of-context and overly-specific noise. Besides these limitations, all

these methods tread FETC as a multi-label classification problem: during

type inference they predict a plausibility score for each type, and then, either

classify types with scores above a threshold or perform a top-down search in

the given type hierarchy. While this post-processing step is inelegant and can

be removed by adopting the single label setting.

Our Approach. We adopt the single label setting and propose a neural

model to overcome all the above drawbacks of existing FETC methods. With

publicly available word embeddings as input, we learn two different entity

representations and use bidirectional long-short term memory (LSTM) with

attention to learn the context representation. We propose a variant of cross

entropy loss function to handle out-of-context labels automatically during the

training phase. Also, we introduce hierarchical loss normalization to adjust

the penalties for correlated types, allowing our model to understand the type

hierarchy and alleviate the negative effect of overly-specific labels. Finally, we

report on an experimental validation against the state-of-the-art on established

benchmarks that shows that our model can adapt to noise in training data and

consistently outperform previous methods. In summary, we describe a single,

much simpler and more elegant neural network model that attempts FETC

“end-to-end” without post-processing or ad-hoc features and improves on the

state-of-the-art for the task.

In the next section, we first give the formal problem formulation of FETC

in the single label setting, and then, describe the details of our proposed model

in Section 2.4.

2.3 Problem Formulation

The task of FETC is to automatically reveal the type information for entity

mentions in context. The input is a knowledge graph Ψ with type schema YΨ, a

target type hierarchy Y which covers a subset of types in Ψ, i.e., Y ⊆ YΨ, and

an automatically labeled training corpus D obtained by distant supervision
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Attentive AFET LNR AAA NFETC

without manual features 7 7 7 3 3

use attentive neural network 3 7 7 7 3

adopt single label setting 7 7 7 7 3

handle out-of-context noise 7 3 3 3 3

handle overly-specifc noise 7 3 3 7 3

Table 2.1: Summary comparison to related FETC work. FETC systems listed
in the table: (1) Attentive (Shimaoka et al. 2017); (2) AFET (Ren, He,
Qu, L. Huang, et al. 2016); (3) LNR (Ren, He, Qu, Voss, et al. 2016); (4)
AAA (Abhishek, Anand, and Awekar 2017).

with Y . The output is a type-path in Y for each mention from the test corpus

Dt.

A KB with a set of entities EΨ contains human-curated facts on both entity-

entity facts of various relation types and entity-type facts. For FETC, what

we care about is entity-type facts in a KB Ψ (with type schema YΨ) as TΨ =

{(e, y)} ⊂ EΨ × YΨ. A target type hierarchy is a tree where nodes represent

types of interests from YΨ.

Formally, an automatically labeled corpus for entity type classification con-

sists of a set of extracted entity mentions {mi}
N
i=1 (i.e., token spans represent-

ing entities in the text), the associated entities {ei}
N
i=1, the context (e.g ., sen-

tence, paragraph) of each mention {ci}
N
i=1, and the candidate type sets {Yi}

N
i=1

automatically generated for each mention. We represent the training corpus

using a set of mention-based triples D = {(mi, ei, ci,Yi)}
N
i=1.

If Yi is free of out-of-context noise, the type labels for mi should form a

single type-path in Yi, which serves as a context-dependent type annotation

for mi. However, Yi may contain type-paths that are irrelevant to mi in ci if

there exists out-of-context noise. We denote the type set including all termi-

nal types for each type-path as the target type set Y t
i . In the example type

hierarchy shown in Figure 1, if Yi contains type person, athlete, coach, Y t
i

should contain athlete, coach, but not person. In order to check the trade-

off between effect of out-of-context noise and the size of the training set, we

construct two different training sets. Dfiltered only with triples whose Yi form

a single type-path in D, and Draw with all triples in D.
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Then, the FETC problem can be formulated as a single-label classification

problem as follows:

Definition 1 Given an entity mention mi = (wp, . . . , wt)(p, t ∈ [1, T ], p ≤ t,

its associated entity ei and its context ci = (w1, . . . , wT ) where T is the context

length, our task is to predict its most specific type ŷi which is the terminal type

of the predicted type-path.

In practice, ci is generated by truncating the original context with words

beyond the context window size C both to the left and to the right of mi.

Specifically, we compute a probability distribution over all theK = |Y| types in

the target type hierarchy Y . The type with the highest probability is classified

as the predicted type ŷi which is the terminal type of the predicted type-path.

2.4 NFETC with Hierarchy-Aware Loss

In this section we describe Neural Fine-Grained Entity Type Classification

(NFETC) model in detail. Figure 2.2 shows the architecure of the NFETC

model.

2.4.1 Input Representation

As stated in Section 2.3, the input is an entity mention mi with its context

ci. First, we transform each word in the context ci into a real-valued vector

to provide lexical-semantic features. Given a word embedding matrix Wwrd

of size dw × |V |, where V is the input vocabulary and dw is the size of word

embedding, we map every wi to a column vector wd
i ∈ R

dw .

To additionally capture information about the relationship to the target

entities, we incorporate word position embeddings (D. Zeng, K. Liu, Lai, et al.

2014) to reflect relative distances between the i-th word to the entity mention.

Every relative distance is mapped to a randomly initialized position vector

in R
dp , where dp is the size of position embedding. For a given word, we

obtain the position vector wp
i . The overall embedding for the i-th word is

wE
i = [(wd

i )
>, (wp

i )
>]>.
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G = tanh(H) (2.2)

α = softmax(w>G) (2.3)

rc = Hα> (2.4)

where H ∈ R
ds×T , w is a trained parameter vector. The dimension of w, α, rc

are ds, T, ds respectively.

2.4.3 Mention Representation

Averaging encoder: Given the entity mention mi = (wp, . . . , wt) and its

length L = t − p + 1, the averaging encoder computes the average word em-

bedding of the words in mi. Formally, the averaging representation ra of the

mention is computed as follows:

ra =
1

L

t
∑

i=p

wd
i (2.5)

This relatively simple method for composing the mention representation is

motivated by it being less prone to overfitting (Shimaoka et al. 2017).

LSTM encoder: In order to capture more semantic information from the

mentions, we add one token before and another after the target entity to the

mention. The extended mention can be represented asm∗
i = (wp−1, wp, . . . , wt, wt+1).

The standard LSTM is applied to the mention sequence from left to right and

produces the outputs hp−1, . . . , ht+1. The last output ht+1 then serves as the

LSTM representation rl of the mention.

2.4.4 Optimization

We concatenate context representation and two mention representations to-

gether to form the overall feature representation of the input R = [rc, ra, rl].

Then we use a softmax classifier to predict ŷi from a discrete set of classes for

a entity mention m and its context c with R as input:
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p̂(y|m, c) = softmax(WR + b) (2.6)

ŷ = argmax
y

p̂(y|m, c) (2.7)

where W can be treated as the learnt type embeddings and b is the bias.

The traditional cross-entropy loss function is represented as follows:

J(θ) = −
1

N

N
∑

i=1

log(p̂(yi|mi, ci)) + λ‖Θ‖2 (2.8)

where yi is the only element in Y t
i and (mi, ci,Yi) ∈ Dfiltered. λ is an L2

regularization hyperparameter and Θ denotes all parameters of the considered

model.

In order to handle data with out-of-context noise (in other words, with

multiple labeled types) and take full advantage of them, we introduce a simple

yet effective variant of the cross-entropy loss:

J(θ) = −
1

N

N
∑

i=1

log(p̂(y∗i |mi, ci)) + λ‖Θ‖2 (2.9)

where y∗i = argmaxy∈Yt
i
p̂(y|mi, ci) and (mi, ci,Yi) ∈ Draw. With this loss

function, we assume that the type with the highest probability among Y t
i

during training as the correct type. If there is only one element in Y t
i , this

loss function is equivalent to the cross-entropy loss function. Wherever there

are multiple elements, it can filter the less probable types based on the local

context automatically.

2.4.5 Hierarchical Loss Normalization

Since the fine-grained types tend to form a forest of type hierarchies, it is

unreasonable to treat every type equally. Intuitively, it is better to predict an

ancestor type of the true type than some other unrelated type. For instance, if

one example is labeled as actor, it is reasonable to predict its type as person.

However, predicting other high level types like location or politician would

be inappropriate. In other words, we want to penalize less the cases where
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types are related in our loss function. Based on the above idea, we adjust the

estimated probability as follows:

p∗(ŷ|m, c) = p(ŷ|m, c) + β ∗
∑

t∈Γ

p(t|m, c) (2.10)

where Γ is the set of ancestor types along the type-path of ŷ, β is a hyperparam-

eter to tune the penalty. Afterwards, we re-normalize it back to a probability

distribution, which we denote this process as hierarchical loss normalization.

As discussed in Section 1, there exists overly-specific noise in the automat-

ically labeled training sets which hurt the model performance severely. With

hierarchical loss normalization, the model will get less penalty when it pre-

dicts the actual type for one example with overly-specific noise. Hence, it

can alleviate the negative effect of overly-specific noise effectively. Generally,

hierarchical loss normalization can make the model somewhat understand the

given type hierarchy and learn to detect those overly-specific cases. During

classification, it will make the models prefer generic types unless there is a

strong indicator for a more specific type in the context.

2.4.6 Regularization

Dropout, proposed by Hinton et al. (2012), prevents co-adaptation of hidden

units by randomly omitting feature detectors from the network during forward

propagation. We employ both input and output dropout on LSTM layers. In

addition, we constrain L2-norms for the weight vectors as shown in equation

2.8, 2.9 and use early stopping to decide when to stop training.

2.5 Experiments

2.5.1 Datasets

We evaluate the proposed model on two standard and publicly available datasets,

provided in a pre-processed tokenized format by Shimaoka et al. (2017). Ta-

ble 2.2 shows statistics about the benchmarks. The details are as follows:

16



FIGER(GOLD) Ontonotes
# types 113 89
# raw training mentions 2009898 253241
# raw testing mentions 563 8963
% filtered training mentions 64.46 73.13
% filtered testing mentions 88.28 94.00
Max hierarchy depth 2 3

Table 2.2: Statistics of the datasets

FIGER(GOLD): The training data consists of Wikipedia sentences and

was automatically generated with distant supervision, by mapping Wikipedia

identifiers in Wikipedia articles to Freebase. The test data, mainly consisting

of sentences from news reports, was manually annotated as described by Ling

and Weld (2012).

OntoNotes: The OntoNotes dataset consists of sentences from newswire doc-

uments present in the OntoNotes text corpus (Weischedel et al. 2013). DBpe-

dia spotlight (Daiber et al. 2013) was used to automatically link entity mention

in sentences to Freebase. For this corpus, manually annotated test data was

shared by Dan Gillick et al. (2014).

Because the type hierarchy can be somewhat understood by our proposed

model, the quality of the type hierarchy can also be a key factor to the per-

formance of our model. We find that the type hierarchy for FIGER(GOLD)

dataset following Freebase has some flaws. For example, software is not a

subtype of product and government is not a subtype of organization.

Following the proposed type hierarchy described by Ling and Weld 2012, we

refine the Freebase-based type hierarchy. The process is a one-to-one mapping

for types in the original dataset and we didn’t add or drop any type or sentence

in the original dataset. As a result, we can directly compare the results of our

proposed model with or without this refinement.
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2.5.2 Baselines

We compared the proposed model with state-of-the-art FETC systems 1: (1)

Attentive (Shimaoka et al. 2017); (2) AFET (Ren, He, Qu, L. Huang, et al.

2016); (3) LNR+FIGER (Ren, He, Qu, Voss, et al. 2016); (4) AAA (Ab-

hishek, Anand, and Awekar 2017).

We compare these baselines with variants of our proposed model: (1)

NFETC(f): basic neural model trained on Dfiltered (recall Section 2.4.4); (2)

NFETC-hier(f): neural model with hierarichcal loss normalization trained

on Dfiltered. (3) NFETC(r): neural model with proposed variant of cross-

entropy loss trained on Draw; (4) NFETC-hier(r): neural model with pro-

posed variant of cross-entropy loss and hierarchical loss normalization trained

on Draw.

2.5.3 Experimental Setup

For evaluation metrics, we adopt the same criteria as Ling and Weld (2012),

that is, we evaluate the model performance by strict accuracy, loose macro,

and loose micro F-scores. These measures are widely used in existing FETC

systems (Abhishek, Anand, and Awekar 2017; Ren, He, Qu, L. Huang, et al.

2016; Ren, He, Qu, Voss, et al. 2016; Shimaoka et al. 2017).

We use pre-trained word embeddings that were not updated during training

to help the model generalize to words not appearing in the training set. For this

purpose, we used the freely available 300-dimensional cased word embedding

trained on 840 billion tokens from the Common Crawl supplied by Pennington,

Socher, and Manning (2014). For both datasets, we randomly sampled 10% of

the test set as a development set, on which we do the hyperparameters tuning.

The remaining 90% is used for final evaluation. We run each model with the

well-tuned hyperparameter setting five times and report their average strict

accuracy, macro F1 and micro F1 on the test set. The proposed model was

implemented using the TensorFlow framework.

1The results of the baselines are all as reported in their corresponding papers.
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2.5.4 Hyperparameter Setting

In this paper, we search different hyperparameter settings for FIGER(GOLD)

and OntoNotes separately, considering the differences between the two datasets.

All the hyperparameters were obtained by evaluating the model performance

on the development set. The hyperparameters include learning rate lr for

Adam Optimizer, size of word position embeddings (WPE) dp, state size for

LSTM layers ds, input dropout keep probability pi and output dropout keep

probability po for LSTM layers 2, L2 regularization parameter λ and parameter

to tune hierarchical loss normalization β. Values of these hyperparameters for

the two datasets can be found in Table 2.3.

Parameter FIGER(GOLD) Ontonotes
lr 0.0002 0.0002
dp 85 20
ds 180 440
pi 0.7 0.5
po 0.9 0.5
λ 0.0 0.0001
β 0.4 0.3

Table 2.3: Hyperparameter Settings

2.5.5 Performance comparison and analysis

FIGER(GOLD) OntoNotes
Model Strict Acc. Macro F1 Micro F1 Strict Acc. Macro F1 Micro F1
Attentive 59.68 78.97 75.36 51.74 70.98 64.91
AFET 53.3 69.3 66.4 55.1 71.1 64.7
LNR+FIGER 59.9 76.3 74.9 57.2 71.5 66.1
AAA 65.8 81.2 77.4 52.2 68.5 63.3
NFETC(f) 57.9± 1.3 78.4± 0.8 75.0± 0.7 54.4± 0.3 71.5± 0.4 64.9± 0.3
NFETC-hier(f) 68.0± 0.8 81.4± 0.8 77.9± 0.7 59.6± 0.2 76.1± 0.2 69.7± 0.2
NFETC(r) 56.2± 1.0 77.2± 0.9 74.3± 1.1 54.8± 0.4 71.8± 0.4 65.0± 0.4
NFETC-hier(r) 68.9± 0.6 81.9± 0.7 79.0± 0.7 60.2± 0.2 76.4± 0.1 70.2± 0.2

Table 2.4: Strict Accuracy, Macro F1 and Micro F1 for the models tested on
the FIGER(GOLD) and OntoNotes datasets.

Table 2.4 compares our models with other state-of-the-art FETC systems

on FIGER(GOLD) and OntoNotes. The proposed model performs better than

2Following TensorFlow terminology.
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the existing FETC systems, consistently on both datasets. This indicates

benefits of the proposed representation scheme, loss function and hierarchical

loss normalization.

Discussion about Out-of-context Noise: For dataset FIGER(GOLD),

the performance of our model with the proposed variant of cross-entropy loss

trained on Draw is significantly better than the basic neural model trained on

Dfiltered, suggesting that the proposed variant of the cross-entropy loss function

can make use of the data with out-of-context noise effectively. On the other

hand, the improvement introduced by our proposed variant of cross-entropy

loss is not as significant for the OntoNotes benchmark. This may be caused

by the fact that OntoNotes is much smaller than FIGER(GOLD) and the

proportion of examples without out-of-context noise is also higher, as shown

in Table 2.2.

Investigations on Overly-Specific Noise: With hierarchical loss nor-

malization, the performance of our models are consistently better no matter

whether trained on Draw or Dfiltered on both datasets, demonstrating the effec-

tiveness of this hierarchical loss normalization and showing that overly-specific

noise has a potentially significant influence on the performance of FETC sys-

tems.

2.5.6 T-SNE Visualization of Type Embeddings

By visualizing the learned type embeddings (Figure 2.3), we can observe that

the parent types are mixed with their subtypes and forms clear distinct clusters

without hierarchical loss normalization. While the parent types tend to cluster

together and the general pattern is more complicated with hierarchical loss

normalization. It indicates that our model can learn rather subtle intricacies

and correlations among types latent in the data with the help of hierarchical

loss normalization, instead of sticking to a pre-defined hierarchy.
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Figure 2.3: T-SNE visualization of the type embeddings learnt from
FIGER(GOLD) dataset where subtypes share the same color as their par-
ent type. The seven parent types are shown in the black boxes. The below
sub-figure uses the hierarchical loss normalization, while the above not.

2.5.7 Error Analysis on FIGER(GOLD)

Since there are only 563 sentences for testing in FIGER(GOLD), we look into

the predictions for all the test examples of all variants of our model. Table 2.5

shows 5 examples of test sentence. Without hierarchical loss normalization, our

model will make too aggressive predictions for S1 with Politician and for S2

with Software. This kind of mistake is very common and can be effectively

reduced by introducing hierarchical loss normalization leading to significant

improvements on the model performance. Using the changed loss function

to handle multi-label (noisy) training data can help the model distinguish
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Test Sentence Ground Truth
S1: Hopkins said four fellow elections is curious , considering the . . . Person
S2: . . . for WiFi communications across all the SD cards. Product
S3: A handful of professors in the UW Department of Chemistry . . . Educational Institution
S4: Work needs to be done and, in Washington state, . . . Province
S5: ASC Director Melvin Taing said that because the commission is . . . Organization

Table 2.5: Examples of test sentences in FIGER(GOLD) where the entity
mentions are marked as bold italics.

ambiguous cases. For example, our model trained on Dfiltered will misclassify

S5 as Title, while the model trained on Draw can make the correct prediction.

However, there are still some errors that can’t be fixed with our model. For

example, our model cannot make correct predictions for S3 and S4 due to the

fact that our model doesn’t know that UW is an abbreviation of University of

Washington and Washington state is the name of a province. In addition,

the influence of overly-specific noise can only be alleviated but not eliminated.

Sometimes, our model will still make too aggressive or conservative predictions.

Also, mixing up very ambiguous entity names is inevitable in this task.

2.6 Summary

In this chapter, we studied two kinds of noise, namely out-of-context noise

and overly-specific noise, for noisy type labels and investigate their effects

on FETC systems. We proposed a neural network based model which jointly

learns representations for entity mentions and their context. A variant of cross-

entropy loss function was used to handle out-of-context noise. Hierarchical

loss normalization was introduced into our model to alleviate the effect of

overly-specific noise. Experimental results on two publicly available datasets

demonstrate that the proposed model is robust to these two kind of noise and

outperforms previous state-of-the-art methods significantly.
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Chapter 3

Neural Relation Extraction
(NRE)

In this chapter, we first give an introduction to the task of RE in Section 3.1. In

Section 3.2, we briefly review some important methods for RE. In Section 3.3,

we give the necessary background and define the problem of RE formally.

Then, we improve the existing neural architectures for RE by introducing

multi-level attention mechanisms and outperform the state-of-the-art for the

task in Section 3.4 and Section 3.5.

3.1 Introduction

Knowledge Bases (KBs) provide structured information about the world and

are used in support of many important natural language processing appli-

cations such as semantic search and question answering. Building KBs is a

non-trivial and never-ending task because, as the world changes, new knowl-

edge needs to be harvested while old knowledge needs to be revised. This

motivates the work on Relation Extraction (RE) task, whose goal is to assign

a KB relation to a phrase connecting a pair of entities, which in turn can be

used for updating the KB.

Most existing supervised RE systems require a large amount of labelled

relation-specific training data, which is very time-consuming and labor inten-

sive. Mintz et al. (2009) proposes distant supervision to automatically generate

training data via aligning KBs and texts. Although distant supervision is an
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effective strategy to automatically label training data, it always suffers from

wrong labelling problem. Hence, Riedel, Yao, and McCallum (2010), Hoff-

mann et al. (2011) and Surdeanu et al. (2012) adopt multi-instance learning

to alleviate the wrong labelling problem. The main weakness of these con-

ventional methods is that most features are explicitly derived from NLP tools

such as POS tagging and the errors generated by NLP tools will propagate

in these methods. Recently, neural models have shown superior performance

over approaches using hand-crafted features in the task of RE. We’ll review

some important methods in this category in the next section.

3.2 Methods for Neural Relation Extraction

Some recent works (Santos, Xiang, and B. Zhou 2015; D. Zeng, K. Liu, Lai, et

al. 2014; P. Zhou et al. 2016) attempt to use deep neural networks in relation

classification without handcrafted features. These methods build classifier

based on sentence-level annotated data, which cannot be applied in large-

scale KBs due to the lack of human-annotated training data. Therefore, D.

Zeng, K. Liu, Y. Chen, et al. (2015) incorporate multi-instance learning with

neural network model, which can build a relation extractor based on distant

supervision data. Although the method achieves significant improvement in

relation extraction, it is still far from satisfactory. The method assumes that at

least one sentence that mentions these two entities will express their relation,

and only selects the most likely sentence for each entity pair in training and

prediction. It’s apparent that the method will lose a large amount of rich

information containing in neglected sentences.

Y. Lin, Shen, et al. (2016) propose a sentence-level attention-based con-

volutional neural network for distant supervised relation extraction. They

employ a CNN to embed the semantics of sentences. Afterwards, to utilize

all informative sentences, they represent the relation as semantic composition

of sentence embeddings. To address the wrong labelling problem, they build

sentence-level attention over multiple instances, which is expected to dynam-

ically reduce the weights of those noisy instances.
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In the past few years, various neural models are proposed to improve the

performance by different techniques, including adversarial learning (Y. Wu,

Bamman, and Russell 2017), deep residual learning (Y. Y. Huang and W. Y.

Wang 2017), incorporating relation path (W. Zeng et al. 2016), leveraging

information from other sources (L. Liu et al. 2017), to name a few.

Our Approach. Based on the neural model with selective attention over

sentences proposed by Y. Lin, Shen, et al. (2016), we replace the sentence

encoder with bi-directional long short term memory networks with word-level

attention (P. Zhou et al. 2016) as compared to the original convolutional neural

networks. Experimental results show that our model can consistently outper-

form previous methods.

In the next section, we first give the necessary background and define the

problem of RE formally. The details of our proposed model is described in

Section 3.4.

3.3 Background and Problem

The task of RE is to predict a KB relation that holds for a pair of entities

given several text mentions, or NA if no such relation exists. The input is a

knowledge base Ψ with relation set RΨ, a target relation set R, R ⊆ RΨ, and

an automatically labeled training dataset D obtained via distant supervision.

(For example, in our setting RΨ is all 23K Freebase relations while R is a

smaller subset of relations of interest). The output is a relation in R∪ {NA}

for a test sentence. The catch-all relation NA applies when there is no relation

in R that holds over h, t (given the set of sentences).

3.3.1 Knowledge Base and Distant Supervision

As customary, we denote a KB Ψ with relation scheme RΨ as a set of triples

TΨ = {(h, r, t) ∈ EΨ × RΨ × EΨ}, where EΨ is the set of entities of interest.

Distant supervision exploits the KB to automatically annotate sentences in

a corpus containing mentions of entities with the relations they participate
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in. Formally, a labeled dataset for relation extraction consists of fact triples

{(hi, ri, ti)}
N
i=1 and a multi-set of extracted sentences for each triple {Si}

N
i=1,

such that each sentence s ∈ Si contains mentions to the head entity hi and

the tail entity ti.

3.3.2 Problem Statement

Given an entity pair (h, t) and a set of sentences S with mentions to them, the

RE task is to estimate the probability of each relation in R∪{NA}. Formally,

for each relation r, we want to predict P (r | h, t,S).

In practice, the input set of sentences S can have arbitrary size. For the

sake of computational efficiency, we normalize the set size to a fixed number T

by splitting large sets and oversampling small ones. We also restrict the length

of each sentence in the set by a constant L by truncating long sentences and

padding short ones.

3.4 Bi-LSTM with Multi-Level Attention Mech-

anisms

3.4.1 Input Representation

We represent each word in each sentence as a real-valued vector capturing

lexical and semantic features pertaining to relation extraction. Given a word

embedding matrixWwrd of size dw×|V |, we map every word wi in s to a column

vector wd
i ∈ R

dw where V is the input vocabulary and dw is the size of word

embedding. Further, we incorporate word position embeddings to capture the

distances between each word to the entities mentioned in the text. Similarly

to D. Zeng, K. Liu, Lai, et al. (2014), each relative distance is mapped to

a randomly initialized position vector in R
dp , where dp is the size of position

embedding. For word wi, we obtain the position vector wp
i . Finally, the overall

embedding of word wi is w
E
i = [(wd

i )
>, (wp

i )
>]>.
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3.4.2 Sentence Encoder

For a sentence si, we want to apply a non-linear transformation to the vector

representation of si to derive a feature vector zi = f(si; θ) given a set of

parameters θ. In this paper, we adopt bidirectional LSTM with ds hidden

units as f(si; θ). The network contains two sub-networks for the forward pass

and the backward pass respectively. Here, we use element-wise sum to combine

the forward and backward pass outputs. The output of the i-th word is shown

in the following equation:

zi = [−→zi ⊕
←−zi ] (3.1)

3.4.3 Multi-level Attention Mechanisms

We employ attention mechanisms at both word-level and sentence-level to

allow the model to softly select the most informative words and sentences

during training (Y. Lin, Shen, et al. 2016; P. Zhou et al. 2016).

Word-level attention. Let Hw = [z1, . . . , zL] be the matrix with output vectors

produced at the LSTM layer; the representation of sentence s (truncated to

length L) is:

Gw = tanh(Hw) (3.2)

αw = softmax(w>
wGw) (3.3)

s = Hα>
w (3.4)

where Hw ∈ R
ds×L, ww ∈ R

ds×1 α>
w ∈ R

L×1, s ∈ R
ds×1 and ww is a trained

parameter vector.

Sentence-level attention. Similarly, the language representation sL can be ob-

tained from the matrix of sentence representations Hs = [s1, s2, . . . , sT ] as

follows:

Gs = tanh(Hs) (3.5)

αs = softmax(w>
s Gs) (3.6)

sL = Hsα
>
s (3.7)
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where Hs ∈ R
ds×T , ww ∈ R

ds×1 α>
w ∈ R

T×1, sL ∈ R
ds×1 and ws is a trained

parameter vector.

With the language representation sL, the conditional probability p(r|S; Θ
(L))

is computed through a softmax layer as follows:

p(r|S; Θ(L)) = softmax(W (L)sL + b(L)) (3.8)

where b(L) ∈ R
K×1 is a bias vector, W (L) ∈ R

K×ds is the representation matrix

of relations, K = |R∪{NA}| and Θ(L) is the parameters of the model to learn

language representation.

3.4.4 Optimization and Implementation Details

Here we introduce the learning and optimization details of our proposed model.

We define the objective using cross-entropy as follows:

JL = −
1

N

N
∑

i=1

log p(ri|Si; Θ
(L)) + λ‖Θ(L)‖22 (3.9)

where N denotes the size of the training set. To solve the optimization

problem, we adopt the stochastic gradient descent with mini-batches and

Adam (Kingma and Ba 2014) to update Θ(L). In the implementation, we

employ both input on output dropout (Hinton et al. 2012) on LSTM layers to

prevent overfitting. In addition, we constrain L2-norms for the weight vectors

as shown in Eq. 4.8.

3.5 Experiments

We now report on an experimental evaluation of our framework against the

state-of-the-art for the RE task.

3.5.1 Datasets

We evaluate our model on the widely used NYT dataset, developed by Riedel,

Yao, and McCallum (2010) by aligning Freebase relations mentioned in the

New York Times Corpus. The Freebase relations are divided into two parts,
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learning rate lr 5× 10−4

size of word position embedding dp 25
state size for LSTM layers ds 320
input dropout keep probability pi 0.9
output dropout keep probability po 0.7
L2 regularization parameter λ 0.0003

Table 3.1: Hyperparameter setting

one for training and one for testing. Articles from years 2005-2006 are used

for training while articles from 2007 are used for testing.

3.5.2 Experimental Settings

Baselines: We choose five baseline approaches following Y. Lin, Shen, et al.

(2016) 1: Three feature-based methods, Mintz (Mintz et al. 2009), Mul-

tiR (Hoffmann et al. 2011), MIML (Surdeanu et al. 2012), and two convolu-

tional neural network based methods, CNN+ATT and PCNN+ATT (Y.

Lin, Shen, et al. 2016).

Evaluation Protocol: Following previous work (Mintz et al. 2009), we eval-

uate our model using held-out evaluation which approximately measures the

precision without time-consuming manual evaluation. We report both Preci-

sion/Recall curves and Precision@N (P@N) in our experiments, ignoring the

probability predicted for the NA relation. Moreover, to evaluate each sentence

in the test set as in previous methods, we append T copies of each sentence

into S for each testing sample.

Word Embeddings: In this paper, we use the freely available 300-dimensional

pre-trained word embeddings distributed by Pennington, Socher, and Manning

(2014) to help the model generalize to words not appearing in the training set.

Hyperparameter Settings: For hyperparameter tuning, we randomly sam-

ple 10% of the training set as a development set. All the hyperparameters are

obtained by evaluating the model on the development set. With the well-tuned

hyperparameter setting, we run each model five times on the whole training

set and report the average P@N. For Precision/Recall curves, we just select

1The results of baseline approaches are obtained from Y. Lin, Shen, et al. (2016)
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Chapter 4

Incorporating Encoded
Knowledge Information

In this chapter, we first give an introduction to the efforts we’ve made to in-

corporate knowledge base embeddings to facilitate relation extraction in Sec-

tion 4.1. In Section 4.2, we review the literature about combining text and

knowledge information. In Section 4.3, we investigate on the effectiveness of

knowledge base embedding models on the task of relation prediction and ex-

traction. Then, we describe and evaluate a novel neural framework for jointly

learning representations for RE and KBE tasks that uses a cross-entropy loss

function to ensure both representations are learned together, resulting in sig-

nificant improvements over the current state-of-the-art for relation extraction

in Section 4.4 and 4.5.

4.1 Introduction

Knowledge Bases (KBs) provide structured information about the world and

are used in support of many important natural language processing appli-

cations such as semantic search and question answering. Building KBs is a

non-trivial and never-ending task because, as the world changes, new knowl-

edge needs to be harvested while old knowledge needs to be revised. This

motivates the work on the Relation Extraction (RE) task, whose goal is to as-

sign a KB relation to a phrase connecting a pair of entities, which in turn can

be used for updating the KB. State-of-the-art techniques for this task build
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on neural methods leveraging distant (a.k.a. weak) supervision (Mintz et al.

2009) on large-scale corpora for training.

A related task is that of Knowledge Base Embedding (KBE), which is con-

cerned with representing KB entities and relations in a vector space for link

prediction. Weston et al. (2013) was the first to show that combining predic-

tions from RE and KBE models, trained in isolation, improves the effective-

ness on the RE task. However, the way in which they combine RE and KBE

predictions is rather naive (namely, by adding those scores). In Section 4.3,

extensive experiments have been conducted to evaluate the effectiveness of the

existing knowledge base embedding models for relation prediction and for rela-

tion extraction on a wide range of benchmarks. The results demonstrate that

knowledge base embedding models are generally effective for relation predic-

tion but unable to give improvements for the state-of-the-art neural relation

extraction model with the existing strategies, while pointing limitations of

existing methods.

In the next section, we will first review some existing works which attempt

to combine text and knowledge information. To the best of our knowledge,

there have been no systematic attempts to further unify RE and KBE, partic-

ularly during model training. We seek to close this gap in this chapter.

4.2 Related Work

Some works attempt to combine text information and knowledge base to fa-

cilitate knowledge base embedding. Z. Wang et al. (2014a) combined text

information and knowledge base by embedding entities and the words in their

names in the same vector space. Neelakantan, B. Roth, and Mc-Callum (2015)

learn the co-occurrence based textual relation representations to help with

knowledge base completion. Toutanova, D. Chen, et al. (2015) train contin-

uous representations of knowledge base and textual relations jointly, which

allows for deeper interactions between the sources of information and achieved

significant improvement. The success of this joint model on knowledge base

embedding inspires us to employ a similar idea on relation extraction.
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There are also some works trying to combine text information and knowl-

edge base to facilitate relation extraction, but not leveraging the knowledge

base embedding models. Riedel, Yao, McCallum, and Marlin (2013) propose

universal schema to transmit information between relations of KGs and tex-

tual patterns via their common entity pairs. Verga, Belanger, et al. (2015)

further incorporate neural networks to relax constraints imposed by entity

pairs in universal schema. Ren, Z. Wu, et al. (2017) extract typed entities

and relations jointly by learning embeddings from text corpora and knowledge

bases.

Despite rapid progress in both RE and KBE, limited efforts have gone

into connecting these two areas to improve relation extraction. Weston et

al. (2013) describe a method for doing so, although in their work the two

representations are trained independently with different loss functions and

only combined at inference time. Nevertheless, the authors show that taking

the KBE score into account improves on the predictions made by their RE

model alone. However, advances in RE and KBE models since then have

reduced the net gains achievable with simple combination schemes described

in this work. This claim is validated by the experimental results described in

the next section.

4.3 Investigations on Knowledge Base Embed-

ding for Relation Prediction and Extrac-

tion

4.3.1 Introduction

Representing information about real-world entities and their relations in struc-

tured knowledge bases (KBs) enables various applications such as structured

search, factual question answering, and intelligent virtual assistants. A major

challenge for using discrete representation of knowledge base is the lack of

capability of accessing the similarities among different entities and relations.

Knowledge base embedding (KBE) techniques have been proposed in recent

years to deal with this issue. The main idea is to represent the entities and
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relations in a vector space, and one can use machine learning technique to

learn the continuous representation of the knowledge base in the latent space.

Motivated by the fact that the existing KBs suffer from the problem of low

coverage, considerable effort has been committed in automatically deriving

new facts to extend a manually built knowledge base with information from

the existing knowledge base. As a result, most of KBE models focus on pre-

dicting missing entities or accessing the plausibility of a missing triple instead

of predicting missing relations. Another reason for such choice is that predict-

ing relations is relatively easier than predicting entities because the number of

relations is significantly smaller than the number of entities. Moreover, exist-

ing KBE models reach nearly perfect results for relation prediction on some

benchmark datasets (Y. Lin, Z. Liu, Luan, et al. 2015).

To the best of our knowledge, the literature lacks a comprehensive effort

in validating the effectiveness of state-of-the-art KBE models on the task of

relation prediction and extraction. To fill this gap, we report extensive ex-

periments conducted with different KBE models and different datasets for

relation prediction. We choose three KBE models considering their simplic-

ity, effectiveness, and flexibility: TransE, DistMult and ComplEx. We test on

four established benchmarks as well as on a new one we developed, covering

different levels of text complexity and corpus size.

Weston et al. (2013) were the first to combine representation learnt by

KBE models and representation learned from textual mentions for relation

prediction. The two representations were trained independently of each other,

and were only combined with a simple strategy at inference time. Since they

got remarkable improvement on performance of relation extraction, we expect

that more improvement can also be obtained with the recent development in

areas of both KBE and relation extraction. Following the same strategy, we

use the chosen KBE models to help the state-of-art neural models for relation

extraction. In addition, various combining strategies have been tried in order

to squeeze the most improvement from KBE models.

The experimental results reported here show that the chosen KBE mod-

els are enough to achieve satisfactory performance on all of the datasets we
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studied for relation prediction. However, the improvements we can squeeze

from KBE models are negligible for relation extraction which goes against

our expectation. This observation indicates that the strategies that combine

representations at inference time is not effective anymore due to the recent de-

velopment in areas of both KBE and relation extraction. New methods should

be proposed to make advantage of KBE to facilitate relation extraction.

4.3.2 Datasets

To evaluate KBE models for relation prediction, we use four common knowl-

edge base completion datasets from the literature and introduce a new one.

WN18 (Bordes et al. 2013) is a subset of WordNet which consists of 18 relations

and 40,943 entities. WN18RR is a subset of WN18 introduced by Dettmers

et al. (2017) which removes and dramatically increases the difficulty of reason-

ing. FB15k (Bordes et al. 2013) is a subset of Freebase which contains about

15k entities with 1,345 different relations. Likewise, FB15k-237 is a subset

of FB15k introduced by Toutanova and D. Chen (2015). FB15k-237 removed

redundant relations in FB15k and greatly reduced the number of relations.

To investigate the effectiveness of KBE models to facilitate relation extrac-

tion, we use the New York Times corpus (NYT) released by Riedel, Yao, and

McCallum (2010) as training and testing data. A new dataset, namely FB3M,

is introduced which is also a subset of Freebase restricted to the top 3 million

entities - where top is defined as the ones with the largest number of relations

to other entities. This dataset uses a large amount of entities and all possible

relationships in Freebase. Hence, it covers most entities and all the relations

to be predicted in the NYT dataset. Following Weston et al. (2013), we re-

moved all the entity pairs present in the NYT test set from this dataset and

translate the deprecated relationships into their new variants. This ensures

that we cannot just memorize the true relations for an entity pair - we have to

learn to generalize from other entities and relations. As the NYT dataset was

built on an earlier version of Freebase we also had to translate the deprecated

relationships into their new variants.
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Model TransE DistMult ComplEx
Dataset Filter Raw Filter Raw Filter Raw
WN18 0.971 0.969 0.623 0.622 0.991 0.989
FB15k 0.883 0.773 0.695 0.644 0.971 0.840
WN18RR 0.843 0.842 0.871 0.866 0.894 0.893
FB15k-237 0.955 0.950 0.926 0.921 0.956 0.950
FB3M 0.475 0.464 0.620 0.607 0.683 0.639

Table 4.1: MRR measures on relation prediction.

Model TransE DistMult ComplEx
Dataset Filter Raw Filter Raw Filter Raw
WN18 0.956 0.952 0.256 0.256 0.987 0.983
FB15k 0.829 0.650 0.463 0.408 0.950 0.726
WN18RR 0.735 0.734 0.810 0.802 0.813 0.813
FB15k-237 0.930 0.921 0.880 0.871 0.933 0.922
FB3M 0.364 0.347 0.439 0.432 0.460 0.410

Table 4.2: Hits@1 measures on relation prediction.

4.3.3 Relation Prediction

Relation prediction aims to predict relations given two entities. For each test-

ing triple with missing relation, models are asked to compute the scores for all

candidate entities and rank them in descending order.

Following Y. Lin, Z. Liu, Luan, et al. (2015), we use two measures as our

evaluation metrics: the mean reciprocal of correct relation ranks (MRR) and

the proportion of valid relations ranked in top-1(Hits@1). For each metric, we

follow evaluation regimes “Raw” and “Filter” as described by Bordes et al.

(2013).

Evaluation results of relation prediction are shown in Table 4.1 and 4.2.

From there we observe that: (1) Generally, KBE models are doing well in

the task of relation prediction. It indicates that relation information between

entities can be captured by the existing KBE models without any specific mod-

ifications to adapt this task; (2) ComplEx achieves the best performance on all

datasets. In addition, it significantly and consistently outperforms DistMult

which matches the observations for the task of link prediction; (2) Surpris-
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ingly, TransE has competitive performance with ComplEx on some datasets

which disagrees with the observations for the task of link prediction. It indi-

cates that there exists intrinsic difference between the task of link prediction

and relation prediction.

4.3.4 Facilitating Relation Extraction

Relation extraction from text aims at extracting relational facts from plain

text to enrich existing KBs. Recent works regard large-scale KBs as source

for distant supervision to annotate sentences as training instances and build

relation classifiers using neural models (Y. Lin, Shen, et al. 2016; Y. Wu,

Bamman, and Russell 2017; D. Zeng, K. Liu, Y. Chen, et al. 2015). All these

methods reason new facts only based on plain text. In this task, we explore

the effectiveness of KBE models to facilitate relation extraction from text.

In the experiments, we implemented the RNN-based model presented in

Y. Wu, Bamman, and Russell 2017. We combine the ranking scores from

the neural model with those from KBE to rank testing triples, and generate

precision-recall curves for both TransE and ComplEx. Formally, for each pair

of entities (s, o) that appear in the test set, all the corresponding sentences S

in the test set are collected to form a set S and a prediction is performed with

r̂s,o = argmax
r∈R

SRE(r|S) (4.1)

where SRE(r|S) indicates the plausibility of relation r given the sentences set

S predicted by the neural model. The predicted relation can either be a valid

relation or NA - a marker that means there is no relation between s and o

(NA is added to R during training and is treated like other relations). If r̂s,o

is a relation, a composite score is defined:

S(s, r̂s,o, o) = αSRE(r̂s,o|S) + (1− α)fr̂s,o(s, o) (4.2)

where α ∈ (0, 1] is a hyper-parameter to tune the balance between the text

information and the KB. That is, only the top scoring non-NA predictions are

re-scored. Hence, our final composite model favors predictions that agree with
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is produced by labeling facts (-1,1) depending on whether or not they belong

to Ψ.

Furthermore, the choice of scoring function φ(h, r, t) used to predict the

entries of the tensorX determines the model. Following Trouillon et al. (2016),

we use the following scoring function:

φ(h, r, t) = Re(〈eh, wr, ēt〉)

= Re(

dk
∑

k=1

ehkwrketk)

= 〈Re(eh),Re(wr),Re(et)〉

+ 〈Im(eh),Re(wr), Im(et)〉

+ 〈Re(eh), Im(wr), Im(et)〉

− 〈Im(eh), Im(wr),Re(et)〉

(4.5)

where dk is the representation size, wr ∈ C
dk is the relation representation

and eh, et ∈ C
dk are the entity representations for the head and tail entity

respectively. In Equation 4.5, Re(·) and Im(·) stand for the real and imaginary

parts of each complex number. One advantage of this scoring function is that

the composition of complex valued representations can handle different binary

relations, including symmetric and antisymmetric ones commonly found in

KBs.

Following the training procedure in Trouillon et al. (2016), we can get the

knowledge representations eh, wr, et ∈ C
dk by minimizing the negative log-

likelihood of the logistic model:

∑

(h,r,t)∈Ω

log(1 + exp(−Y
(r)
ht φ(h, r, t))) (4.6)

With the knowledge representations and the scoring function defined by

Eq. 4.5, we can obtain the conditional probability p(r|(h, t); Θ(G)) for each

relation r:

p(r|(h, t); Θ(G)) =
eφ(h,r,t)

∑

r′∈R∪{NA} e
φ(h,r′,t)

(4.7)

where Θ(G) corresponds to the knowledge representations eh, wr, et ∈ C
dk .

Since NA /∈ RΨ, we use a randomized complex vector as wNA.
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4.4.3 Connecting Heterogeneous Representations

As stated, this chapter seeks an elegant way of connecting language and knowl-

edge representations for the RE task. In order to achieve that, we use separate

loss functions (recall Figure 4.3) to guide the language and knowledge repre-

sentation learning and a third loss function that ties the predictions of these

models thus nudging the parameters towards agreement.

We found that better results were achieved if we started from stable knowl-

edge representations. In other words, we first train knowledge representations

eh, wr, et (as in the previous section) on the whole KB independently and then

use them as the initialization point for the joint learning of the final knowledge

representations with the language representation.

Loss Functions. The cross-entropy loss based on language representation

(recall Eq. 4.3) is defined as:

JL = −
1

N

N
∑

i=1

log p(ri|Si; Θ
(L)) (4.8)

where N denotes the size of the training set. Since the language representation

is learned from local context, the subscript L in JL means local.

Then the cross-entropy loss based on knowledge representations (recall

Eq. 4.7) can be defined as:

JG = −
1

N

N
∑

i=1

log p(ri|(hi, ti); Θ
(G)) (4.9)

Since the knowledge representation is learned from the whole KB, the subscript

G in JG means global.

Finally, we use a cross-entropy loss to measure the dissimilarity between

two distributions, thus connecting them, and formulate model learning as min-

imizing JD:

JD = −
1

N

N
∑

i=1

log p(r∗i |Si; Θ
(L)) (4.10)

where r∗i = argmaxr∈R∪{NA} p(r|(hi, ti); Θ
(G)).
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We also tried to use KL-divergence as JD but the cross-entropy loss gen-

erally performed better.

4.4.4 Model Learning

Based on Eq. 4.8, 4.9, 4.10, we form the joint optimization problem for model

parameters as

min
Θ
J = JL + JG + JD + λ‖Θ‖22 (4.11)

where Θ = Θ(L) ∪Θ(G) is all the parameters of the considered model.

Collectively optimizing Eq. 4.11 allows the heterogeneous representations

enhance each other. The language representation can leverage prior knowl-

edge existing in the whole KB but not in the training dataset D. Also, the

knowledge representations can be refined with the text information related to

the facts.

In order to solve the joint optimization problem in Eq. 4.11, we adopt

the stochastic gradient descent with mini-batches and Adam (Kingma and

Ba 2014) to update Θ. We employ different learning rates lr1 and lr2 on

Θ(L) and Θ(G) respectively, where lr2 is significantly smaller than lr1. The

regularizations employed are the same as described in Section 3.4.

4.4.5 Relation Inference

We now discuss the strategy for relation prediction, which is essentially the

same as the one of Weston et al. (2013). In order to get the conditional

probability p(r|(h, t),S; Θ), we use the weighed average to combine the two

distribution p(r|S; Θ(L)) and p(r|(h, t); Θ(G)):

p(r|(h, t),S; Θ) = α ∗ p(r|S; Θ(L))

+(1− α) ∗ p(r|(h, t); Θ(G)).
(4.12)

where α is the combining weight of the weighted average. Then, the predicted

relation r̂ is

r̂ = argmax
r∈R∪{NA}

p(r|(h, t),S; Θ). (4.13)
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4.5 Experiments

We now report on an experimental evaluation of our framework against the

state-of-the-art for the RE task.

4.5.1 Datasets

We evaluate our model on the widely used NYT dataset, developed by Riedel,

Yao, and McCallum (2010) by aligning Freebase relations mentioned in the

New York Times Corpus. Articles from years 2005-2006 are used for training

while articles from 2007 are used for testing.

As our KB, we used a subset with the 3M entities with highest degree (i.e.,

participating in most relations). Freebase is a manually curated Web-scale

KB with approximately 80M entities, 23k kinds of relations and 1.2B facts.

While Freebase is no longer maintained, it remains an invaluable resource in

this area. Moreover, to prevent the knowledge representation from memorizing

the true relations for entity pairs in the test set, we removed all entity pairs

present in the NYT. In this way our model has to learn to generalize from

other entities and relations.

4.5.2 Experimental Settings

Baselines: We choose five baseline appoaches following Y. Lin, Shen, et al.

(2016) 1: Three feature-based methods, Mintz (Mintz et al. 2009), Mul-

tiR (Hoffmann et al. 2011), MIML (Surdeanu et al. 2012), and two convolu-

tional neural network based methods, CNN+ATT and PCNN+ATT (Y.

Lin, Shen, et al. 2016). We also implement a baseline Weston based on the

strategy following Weston et al. (2013), namely use Equation 4.12 to combine

the scores directly without joint learning. Using α as 0.5 suggested by Weston

et al. (2013), the performance is significantly worse. We found that with the

models we trained α = 0.7 leads to much better performance.

There are four variants of our proposed framework: (1)Hrere-base: basic

neural model with local loss only; (2) Hrere-naive: neural model with both

1The results of baseline approaches are obtained from Y. Lin, Shen, et al. 2016
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learning rate on Θ(L) lr1 5× 10−4

learning rate on Θ(K) lr2 1× 10−5

size of word position embedding dp 25
state size for LSTM layers ds 320
input dropout keep probability pi 0.9
output dropout keep probability po 0.7
L2 regularization parameter λ 0.0003
combining weight parameter α 0.6

Table 4.3: Hyperparameter setting

local and global loss; (3) Hrere-full: neural model with both local and global

loss along with their dissimilarities. (4) Hrere-text: same as Hrere-full

except that the relation is inferred only by language representation (which is

equivalent to set α = 1.0 in Equation 4.12).

Evaluation Protocol: Following previous work (Mintz et al. 2009), we eval-

uate our model using held-out evaluation which approximately measures the

precision without time-consuming manual evaluation. We report both Preci-

sion/Recall curves and Precision@N (P@N) in our experiments, ignoring the

probability predicted for the NA relation. Moreover, to evaluate each sentence

in the test set as in previous methods, we append T copies of each sentence

into S for each testing sample.

Word Embeddings: We used the freely available 300-dimensional pre-trained

word embeddings distributed by Pennington, Socher, and Manning (2014) to

help the model generalize to words not appearing in the training set.

Hyperparameter Settings: For hyperparameter tuning, we randonly sam-

pled 10% of the training set as a development set. All the hyperparameters

were obtained by evaluating the model on the development set. With the

well-tuned hyperparameter setting, we run each model five times on the whole

training set and report the average P@N. For Precision/Recall curves, we just

select the results from the first run of each model. For training, we set the iter-

ation number over all the training data as 30. Values of the hyperparameters

used in the experiments can be found in Table 4.3.
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representation to perform relation inference. The difference between them

is that Hrere-text is trained with loss considering heterogeneous represen-

tations and their dissimilarities while Hrere-base is trained with language

representation only. The plot suggests that jointly learning the heterogeneous

representations bring mutual benefits which are out of reach of previous meth-

ods that learn each independently.

Hrere-naive simply optimizes both local and global loss at the same time

without attempting to connect them. In a sense, this is the closest approach

to the combining strategy of Weston et al. (2013), except of course for the

training procedure. As shown in the rightmost plot in Figure 4.5, Hrere-full

is not only consistently superior but also more stable when the recall is less

than 0.1. One possible reason for the instability is that the results may be

dominated by one of the representations and biased toward it, since there is

no connection between the two heterogeneous representations. This suggests

that connecting heterogeneous representations can increase the robustness of

our model.

In any case, these results demonstrate that connecting heterogeneous rep-

resentations can bring consistent improvements to our model.

4.5.4 Case Study

Table 4.5 shows four examples in the testing data. For each example, we show

the relation, the sentence along with entity mentions and the correspond-

ing probabilities predicted by Hrere-base, Hrere-naive, Hrere-text and

Hrere-full. The entity pairs in the sentence are highlighted with bold for-

matting.

From the table, we have the following observations: (1) The predicted

probabilities of four variants of our model in the table match the observations

and validate the analysis discussed in Section 4.5.3. (2) From the text of the

first two sentences, we can easily infer that middle east contains Iran and

Henry Fonda was born in Omaha. However, Hrere-base fails to detect these

relations, suggesting that it is hard for models based on language representa-

tions alone to detect implicit relations, which is reasonable to expect. With
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Relation Textual Mention base naive text full

contains Much of themiddle east ten-
sion stems from the sense that
shiite power is growing, led by
Iran.

0.311 0.864 0.687 0.884

place of birth Sometimes I rattle off the
names of movie stars from
Omaha: Fred Astaire,
Henry Fonda, Nick Nolte
. . .

0.109 0.605 0.229 0.646

neighborhood of Most of them also grew up
in New York City neighbor-
hoods like Hell’s Kitchen, For-
est Hills, Washington Heights
and Kew Gardens, whiling
away countless hours playing
. . .

0.196 0.427 0.740 0.946

country Spokesmen forGermany and
Italy in Washington said yes-
terday that they would re-
serve comment until the re-
port is formally released at a
news conference in Berlin to-
day.

0.237 0.200 0.479 0.880

Table 4.5: Some examples in NYT corpus and the predicted probabilities of
the true relations.

the help of KBE, the model can effectively identify implicit relations present

in the text. (3) Even if the relation is explicitly stated in the text, the third

example shows that models based only on language representation may fail

when the two entities are far apart in the text. Likewise, the model can be

improved for these cases with the help of KBE. (4) It may happen that the re-

lation cannot be inferred by the text as shown in the last example. It is a case

of an incorrectly labeled instance, a typical occurrence in distant supervision.

However, the fact is obviously true in the KBs. As a result, Hrere-full gives

the underlying relation according to the KBs. This observation may point

to one direction of de-noising weakly labeled textual mentions generated by

distant supervision.
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4.6 Summary

This chapter describes a novel neural framework for jointly learning hetero-

geneous representations from both text information and facts in an existing

knowledge base. A novel loss function is introduced to connect the hetero-

geneous representations seamlessly, also during training, allowing them to

enhance each other. Our framework was tested on established benchmarks

and built on publicly available datasets. We observe not only substantial

improvements over state-of-the-art RE methods but also gains over the previ-

ous approach of Weston et al. (2013). Furthermore, our experiments suggest

the textual mentions are likely to be incorrectly labeled by distant supervision

when the heterogeneous representations disagree with each other, pointing out

one direction of future as applying our framework to help de-noise the training

corpus generated by distant supervision.
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Chapter 5

Conclusion

In this thesis, we explored neural information extraction without manual an-

notated data following the distant supervision paradigm and presented novel

neural models for different IE tasks which are particularly suited for this set-

ting. All the proposed models achieved state-of-the-art performance in repre-

sentative tasks.

In the first part of this thesis, we proposed an end-to-end solution with a

neural network model for FETC that uses a variant of cross-entropy loss func-

tion to handle out-of-context labels, and hierarchical loss normalization to

cope with overly-specific ones. Also, previous work solve FETC a multi-label

classification followed by ad-hoc post-processing. In contrast, our solution

is more elegant: we used public word embeddings to train a single-label that

jointly learns representations for entity mentions and their context. We showed

experimentally that our approach is robust against noise and consistently out-

performs the state-of-the-art on established benchmarks for the task.

The second part of this thesis is a neural model with multi-level attention

mechanisms for relation extraction. In this model, we employed bi-directional

long short term memory to embed the semantics of sentences. Afterwards,

we built both word-level and sentence-level attention, which is expected to

dynamically reduce the weights of those noisy instances. Experimental results

on real-world datasets show that, our model achieves significant and consistent

improvements on relation extraction as compared with baselines.

The last main part of this thesis is that we described and evaluated a
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novel neural framework for jointly learning representation for RE and KBE

tasks that uses a cross-entropy loss function to ensure both representations

are learned together, resulting in significant improvements over the current

state-of-the-art for relation extraction.

Lastly, there are also some future directions for our proposed models. While

we proposed various neural models to effectively handle the noisy data due to

direct distant supervision, it remains open how one can effectively de-noise the

noisy data with different signals and different strategies instead of learning in

the noisy setting as we do in this thesis. In addition, we can also incorporate

more external information and different sources of supervision into our models

to further improve the model performance.
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As shown in Figure A.1, a typical feed-forward DNN consists at least of

three layer types: the input layer, the hidden layer and the output layer.

All these layers are formed by neurons which are denoted by circles, with

incoming arrows being the neuron’s inputs and outgoing arrows being the

neuron’s outputs. The input layer has no incoming arrows, and is the input

to the network. The output layer has no outgoing arrows, and is the output

of the network. The other layers are considered as “hidden”. By adding more

hidden layers, the neural network can describe highly complex functions. In

the figure, each neuron is connected to all of the neurons in the next layer,

which is called a fully-connected layer.

The units of the input layer represent different features xi of the input data,

while the units of the output layer represent one or more classes yi. A DNN

describes a function ŷ = f ∗(x) which maps the input features X over several

hidden layers to the output classes Y . This function thereby approximates a

real while unknown function y = f(x). A DNN approximates the function f()

by fitting the model’s parameters θ so that predicted outputs ŷ are as close as

possible to the real outputs y.

The learning process of a DNN consists of two iterative steps: 1) For-

ward propagation - computing the prediction ŷ by current parameters θ; 2)

Backpropagation - updating the parameters by the current loss between the

prediction ŷ and the ground truth y.

In the forward propagation, a neuron in successive layer is computed by

a weighted summation over all neurons of previous layer. The values of each

row of neurons in the network can be thought of as a vector. In Figure A.1

the input layer is a 4 dimensional vector x, and the layer above it is a 6

dimensional vector h1. The fully connected layer can be thought of as a linear

transformation from 4 dimensions to 6 dimension. A fully-connected layer

implements a vector-matrix multiplication, h = xW where the weight of the

connection from the ith neuron in the input row to the jth neuron in the

output row is Wij. The values of h are then transformed by a non-linear

function g that is applied to each value before being passed on to the next

input. In a similar way, all neuron values in subsequent layers can be derived
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layer-by-layer, until reaching the output layer. At the output layer, a loss

function L(ŷ, y; θ) is needed to estimate how good the prediction as compared

to the ground truth.

In order to minimize the loss function in neural networks, variants of the

gradient descent algorithm are used. The key insight of the gradient descent is

that the value of the loss function decreases if we adjust the parameters along

the direction of the gradients of the loss function with respect to the current

parameters. In gradient descent, the parameters are initialized randomly and

the parameters are iteratively moved toward the direction of the gradients

until the loss function coverages. The parameters θ can be updated as follows:

θnew = θold − η
∂L(ŷ, y; θ)

∂θ

∣

∣

∣

θ=θold

(A.1)

where coefficient η is called learning rate, affecting network learning speed.

The gradients of deep neural networks seem to be difficult to compute, but

there is an efficient algorithm called backpropagation popularized by Rumel-

hart, Hinton, and Williams (1986) in the middle eighties. Essentially, back-

propagation is just another name for the chain rule used in the basic calculus.

The details of this algorithm are well explained in the book by Goodfellow

et al. (2016).

Convolutional Neural Network. Due to the fact that the fully-connected

networks have complete connection between consecutive layers, the parameter

matrices become very large and the matrix multiplications are computationally

expensive. The idea of Convolutional Neural Networks (CNNs) (LeCun et al.

1998) is to reduce the connections between the input units and the hidden

units, instead of fully connecting them. Each hidden unit will obtain weighted

inputs only from selected input units. With a sequence of words as input, this

means only a local phrase (i.e., n-gram) will be processed by a hidden unit

in CNN. Then, we elaborate the architecture of a CNN for processing textual

inputs.

The input to the CNN is a sequence x containing m entries. Each entry is

represented by a d-dimensional dense vector; thus the input x is represented
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as a feature map of dimensionality d×m. Convolution layer is used for repre-

sentation learning by sliding n-grams. For an input sequence with m entries:

x1, x2, . . . , xm, let vector ci ∈ R
nd be the concatenated embeddings of n entries

xi−n+1, . . . , xi where n is the filter width and 0 < i < m + n. Embeddings

for xi, i < 1 or i > m, are zero padded. We then generate the represen-

tation pi ∈ R
d′ for the n-gram xi−n+1, . . . , xi using the convolution weights

W ∈ R
d′×nd:

pi = tanh(W · ci + b) (A.2)

where bias b ∈ R
d′ . All n-gram representations pi(i = 1, . . . ,m + n − 1)

are used to generate the representation of input sequence x by maxpooling:

xj = max(p1,j,p2,j, . . . )(j = 1, . . . , d). The objective of maxpooling is to

down-sample an input representation, reducing its dimensionality and allowing

for assumptions to be made about features contained in the sub-regions. This

is done in part to help prevent over-fitting by providing an abstracted form

of the representation. As well, it reduces the computational cost by reducing

the number of parameters to learn and provides basic translation invariance

to the internal representation.

Recurrent Neural Network. When dealing with text, it is very common

to work with sequences, such as words (sequences of letters), sentences (se-

quences of words) and documents. Recurrent neural networks (RNNs) allow

representing arbitrarily sized structured inputs in a fixed-size vector, while

paying attention to the structured properties of the input. For RNN, each

current input xt is composed with the previous hidden state ht−1 to generate

a new hidden state at time t as follow:

ht = σ(Vxt +Uht−1 + b) (A.3)

where xt ∈ R
d represents the token in x at position t, ht ∈ R

h is the hidden

state at t, supposed to encode the history x1, . . . , xt. V ∈ R
h×d and U ∈ R

h×h

are parameters.
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By this recurrent procedure, all inputs in X can be encoded sequentially

into a global representation. Unfortunately, vanishing gradient problem pre-

vents standard RNNs from learning long-term dependencies. Long Short Term

Memory (LSTMs) (Hochreiter and Schmidhuber 1997) were designed to com-

bat vanishing gradients through a gating mechanism. LSTM models the word

sequence x as follows:

it = σ(xtU
ixt +Wiht−1 + bi) (A.4)

ft = σ(Ufxt +Wfht−1 + bf ) (A.5)

ot = σ(Uoxt +Woht−1 + bo) (A.6)

qt = tanh(Uqxt +Wqht−1 + bq) (A.7)

pt = ft ◦ pt−1 + it ◦ qt (A.8)

ht = ot ◦ tanh(pt) (A.9)

LSTM has three gates: input gate it, forget gate ft and ouput gate ot. All

gates are generated by a sigmoid function over the ensemble of input xt and the

preceding hidden state ht−1. In order to generate the hidden state at current

step t, it first generates a temporary result qt by a tanh non-linearity over

the ensemble of input xt and the preceding hidden state ht−1, then combines

this temporary result qt with history pt−1 by input gate it and forget gate ft

respectively to get updated history pt, finally uses output gate ot over this

updated history pt to get the final hidden state ht.

A.1.2 Word Distributed Representations

The success of DNNs in NLP partially relies on the outstanding distributed

representations of words. We can also treat a DNN as a system with two

modules, one is representing input units, the other is composing the unit rep-

resentations. In this perspective, effective word representations acts as the

first backbone of a successful DNN system.

Word distributed representations, also called “word embeddings”, are low-

dimensional, dense vectors with continuous values. Given a vocabulary with
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size V , one-hot representation denotes each single word as a binary vector of

length |V | with one value 1 at the word-specific index and remaining values 0.

It enjoys simplicity, however, it is memory inefficient and the word similarity

is unable to be detected. Unlike the conventional one-hot representations, a

single word in embedding space is a d-dimensional vector (mostly d << |V |);

similar words will have similar vectors - information is shared between similar

words. One benefit of using dense and low-dimensional vectors is compu-

tational, the other is generalization power if we believe some features may

provide similar clues, it is worthwhile to provide a representation that is able

to capture these similarities.

Due to the importance of word embeddings in DNN systems, there are

large numbers of works specifically studying the learning of high-quality word

embeddings. When enough supervised training data is available, one can just

treat the embeddings the same as the other model parameters: initialize the

embedding vectors to random values, and let the network-training procedure

tune them into “good” vectors. However, the common case is that we do not

have sufficient annotated data. In such cases, we resort to “unsupervised”

methods, which can be trained on huge amounts of unannotated text.

The key idea behind the unsupervised approaches is that one would like

the embedding vectors of “similar” words to be similar. While word similarity

is hard to define and is usually very task-dependent, the current approaches

derive from the distributional hypothesis, stating that words are similar if

they appear in similar contexts. The different methods all created supervised

training instances in which the goal is to either predict the word from its

context, or predict the context from the word.

An important benefit of training word embeddings on large amounts of

unannotated data is that it provides vector representations for words that

do not appear in the supervised training set. Ideally, the representations for

these words will be similar to those of related words that do appear in the

training set, allowing the model to generalize better on unseen events. It is thus

desired that the similarity between word vectors learned by the unsupervised

algorithm captures the same aspects of similarity that are useful for performing
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A common paradigm of context representation learning by DNN is illus-

trated in Figure A.2. As input, each word is denoted by an embedding (ran-

domly initialized or pretrained). A DNN system works on this context input

format to generate a global context representation, which is finally fed into a

classifier to make final predictions. Literature mainly made progresses in terms

of enriching input representations, enriching DNN expressivity and improving

loss function.

Enriching Input Representation. The pioneering work (Collobert and

Weston 2008; Collobert, Weston, et al. 2011) obtained great success by pre-

senting words into word embeddings. This kind of initialization afterwards

acts as a mainstream in downstream NLP tasks. Some work (Kim 2014; Yin

and Schütze 2016) explored initializing words by multiple pretrained word em-

beddings, as different pretrained embedding versions are supposed to provide

complementary information.

In addition to the word embeddings as input layer, linguistic features are

often incorporated into DNNs for better performance. For example, Yu et al.

(2016) add part-of-speech tags to the words in machine comprehension task.

D. Zeng, K. Liu, Lai, et al. (2014) considered position features between generic

words and entity mentions for relation classification. Generally, linguistic fea-

tures can provide strong support to the DNN systems, especially in the case

of limited training set.

Enriching DNN expressivity. Collobert andWeston (2008) and Collobert,

Weston, et al. (2011) used basic convolution layer and max-pooling layer to

model sentences. Kalchbrenner, Grefenstette, and Blunsom (2014) proposed

k-max pooling for CNN. Vu et al. (2016) combined CNN and RNN for sentence-

level relation classification.

Improving Loss Functions. For sentence classification tasks, the most

commonly-used loss function is negative likelihood (a.k.a cross-entropy loss).

Santos, Xiang, and B. Zhou (2015) presented a ranking loss to make the true
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in Figure A.3, our goal is to extract the proper relations for two different en-

tity pairs given the same context. For the entity pair (Obama, Harvard Law

School), we should focus on the phrase enrolled in; while for the entity pair

(Obama, Harvard Law Review), we should give more attention to the phrase

president of.

As a result, attention mechanisms are intensively explored recently in the

domain of information extraction. For relation extraction, Y. Lin, Shen, et al.

(2016) and Luo et al. (2017) built a sentence-level attention over multiple in-

stances to reduce weights of noisy instances. Verga and McCallum (2016) used

neural networks with attention to merge similar semantic patterns in universal

schema. For fine-grained type classification, Shimaoka et al. (2016) proposed

an attentive neural network model that used LSTMs to encode context of an

entity mention and used an attention mechanism to allow the model to focus

on relevant expressions in such context. Mostly recently, Han, Z. Liu, and

Sun (2018) and X. Ji et al. (2018) attempted to incorporate encoded knowl-

edge information to build the attention to facilitate the tasks of information

extraction.

A.2 Knowledge Base Embeddings

Representing information about real-world entities and their relations in struc-

tured knowledge bases (KBs) enables various applications such as structured

search, factual question answering, and intelligent virtual assistants. A major

challenge for using discrete representation of knowledge base is the lack of

capability of accessing the similarities among different entities and relations.

Knowledge Base Embedding (KBE) techniques have been proposed in recent

years to deal with this issue. The main idea is to represent the entities and

relations in a vector space, and one can use machine learning technique to

learn the continuous representation of the knowledge base in the latent space.

For a given knowledge base, let E be the set of entities with |E| = n,

R be the set of relations with |R| = m, and T be the set of ground truth

triples. In general, a knowledge base embedding model can be formulated as a
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score function fr(s, o), s, o ∈ E , r ∈ R which assigns a score to every possible

triple in the knowledge base. The estimated likelihood of a triple being correct

depends only on its score given by the score function.

Different models formulate their score function based on different designs,

and therefore interpret scores differently, which further leads to various train-

ing objectives.

A.2.1 Translation-based Models

Translation based models are based on the principle first proposed by Bordes

et al. (2013) that if there exists a relationship r between entities s, o then the

following relationship between their respective embeddings holds: es+wr ≈ eo.

The scoring function is thus designed as

fr(s, o) = ‖es +wr − eo‖, (A.10)

where es, eo ∈ R
K are entity embedding vectors, wr ∈ R

K is the relation

embedding vector and K is the embedding size. TransE (Bordes et al. 2013) is

the first model to introduce translation-based embedding. Later variants, such

as TransH (Z. Wang et al. 2014b), TransR (Y. Lin, Z. Liu, Sun, et al. 2015),

TransD (G. Ji et al. 2015) extend TransE by projecting the embedding vectors

of entities into various spaces. ManifoldE (Xiao, M. Huang, and Zhu 2015)

embeds a triple as a manifold rather than a point. The objective of training a

translation-based model is typically minimizing the following marginal loss:

Jm =
∑

(s,r,o)∈T

[γ + fr(s, o)− fr′(s
′, o′)]+ (A.11)

where [·]+ = max(0, ·) is the hinge loss, γ is the margin (often set to 1), and

(s′, r′, o′) is a negative triple generated based on the positive triple.

A.2.2 Latent Factor Models

Latent factor models assume that the probability of the existence of a triple

(s, r, o) is given by the logistic link function:
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P (Y(r)
so ) = σ(X(r)

so ) = σ(fr(s, o)) (A.12)

where X(r) ∈ Rn×n is a latent matrix of scores of relation r. Latent factor

models try to find a generic structure for X(r) that leads to a flexible approxi-

mation of common relations in real world KBs with matrix factorization. The

goal here is to learn representations of the entities and relations capable of

predicting probabilities of Y
(r′)
h′t′ being true for unobserved triple (h′, r′, t′).

RESCAL (Nickel, Tresp, and Kriegel 2011) is one of the earliest studies

on embedding based on latent matrix factorization, using a bilinear form as

score function. DistMult (Yang et al. 2014) simplifies RESCAL by only using a

diagonal matrix. The score function is defined as follows:

fr(s, o) = 〈es,wr, eo〉. (A.13)

where wr ∈ R
K . However, this model loses much expressiveness due to its

simplicity and cannot describe antisymmetric relations accurately. In order to

handle these issues, ComplEx (Trouillon et al. 2016) transforms the embeddings

of DistMult from real space to complex space, which defines the score function

as:

fr(s, o) = Re(〈es,wr, eo〉), (A.14)

where wr ∈ C
K . HOLE (Nickel, Rosasco, Poggio, et al. 2016) employs circular

correlation to combine the two entities in a triple. ConvE (Dettmers et al.

2017) uses a convolutional neural network as the score function.
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