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Abstract

Ice skating requires high aerobic and anaerobic fitness levels, well-coordinated body

motion, and efficient neuromuscular systems functioning, requiring continuous per-

formance assessment. Inertial measurement units (IMUs), widely used in tracking

human motion for medical diagnostics and clinical evaluations, offer significant po-

tential for enhancing athletic performance. Therefore, we developed and validated

a wearable IMU technology for on-ice performance assessment, enabling us to assess

skating biomechanics across various ice skating modalities in real-world settings.

First, we validated the novel algorithms to estimate skating temporal and spatial

parameters by proposing an optimized configuration of wearable IMUs. Ten partici-

pants were recruited to skate on a 14-m synthetic ice surface built in a motion-capture

lab. Stride time, contact time, stride length, and stride velocity were obtained with

a 2-6% relative error compared to the in-lab motion capture reference system. We

demonstrated that our wearable IMU technology on skates and pelvis could accu-

rately and precisely estimate skating temporal and spatial parameters with similar

relative errors compared to those obtained in IMU-based gait analysis.

Second, we explored the effectiveness of the on-ice distinctive features measured

using these wearable sensors in differentiating low- and high-calibre skaters. Six high-

calibre and six low-calibre skaters were recruited to skate forward on a synthetic ice

surface. Five IMUs were placed on their dominant leg and pelvis. The 3D lower-

limb joint angles obtained by IMUs showed a maximum root mean square error of 5

degrees against those obtained by a motion capture system. Our findings indicated

that synthetic ice experiments impact skating 3D joint angles, blurring the differences

between low- and high-calibre skaters typically seen in on-ice skating.
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Third, we showed the potential of our wearable technology to track skaters’ perfor-

mance, predict perceived fatigue, and detect the onset of severe fatigue. In multistage

aerobic experiments, nineteen high- and low-calibre skaters clustered by our proposed

algorithm skated at a self-selected speed around an ice rink. Our developed algorithms

measured 22 kinematic metrics using IMUs mounted on the dominant lower limb. The

variations of inter-segment angle correlation, joint angle fluctuations, and trunk an-

gle with perceived fatigue during aerobic ice skating were considerable. Finally, using

the proposed kinematic metrics, we employed a gradient-boosting machine learning

model to predict severe fatigue onset with high performance.

Fourth, we assessed skating performance using an expanded range of performance

metrics obtained from our wearable technology in forward ice sprint tests. Nineteen

ice skaters were recruited to sprint on ice with maximal speed while six IMUs recorded

their movements. We found that stride velocity and stride length differed between

low- and high-calibre skaters, and stride velocity differed between figure and hockey

skaters. Also, figure skaters skated less complex and more coordinated than hockey

players during the tests. Finally, we showed that the metrics we introduced can guide

further research on exploring additional suitable off-ice tests, enabling the prediction

of on-ice performance through off-ice measurements.

The outcome of this thesis research is a user-friendly wearable sensor system to

provide an accurate outlook for ice skating coaches to improve their tutoring methods

and youth/adult athletes’ learning outcomes. This wearable technology demonstrated

a significant potential to deepen our understanding of skating biomechanics and offer

valuable insights for enhancing skating performance in multistage aerobic and sprint

tests. Future studies could broaden the scope of this technology to include different

skating styles and specific applications in hockey matches. Furthermore, IMU-based

evaluations have indicated a potential for early detection of fatigue, aiming to reduce

fatigue-induced injury risks in skaters of different calibres.
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Chapter 1

Introduction

Ice hockey and figure skating are dynamic sports that require high-velocity move-

ments on ice, necessitating skaters to develop and maintain significant power, speed,

and agility during their skating [1–3]. Consequently, ice skaters are required to mas-

ter highly coordinated body movements and ensure the optimal functioning of their

neuromuscular and cardiovascular systems—essential for achieving high performance.

Additionally, skating skills are upon which other skills like acceleration, stick han-

dling, shooting, and agility are built [4, 5]. Therefore, reliable skating performance

assessment tools provide essential information about skaters’ overall performance by

investigating skating biomechanics. Ice skating biomechanics has been studied using

various optical and image-based methods [5–8]. However, the incorporation of wear-

able inertial measurement unit (IMU) technology in sports science recently heralds a

new era for detailed and objective athletic performance analysis [9–11]. This thesis

research aims to present an innovative effort in this direction, focusing specifically on

skating performance assessment using IMU technology.

IMU technology has been widely implemented to measure human motion for med-

ical purposes and clinical outcome evaluation [12–15]. However, the application of

IMU technology for ice skating biomechanics assessment has been limited until now.

Skaters’ recorded kinematics and skating performance obtained from this wearable

technology also enable the detection of player performance drops and have the po-
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tential to be a powerful tool to improve player efficiency and prevent fatigue-related

injuries [16–18]. Therefore, by studying different skating modalities using IMU tech-

nology, we aimed to gain a holistic understanding of the skaters’ performance and

performance fatigue in ice skating.

We hypothesize that wearable IMUs can significantly enhance our understanding and

analysis of ice skating by providing a comprehensive assessment framework in different

on-ice skating modalities:

a. By estimating temporal and spatial parameters and three-dimensional (3D) joint

angles of the lower limb, ice skating performance can be comprehensively as-

sessed in natural settings. This foundational analysis sets the stage for deeper

insights into skating dynamics in different skating modalities.

b. Then, using the data captured in (a), novel kinematic metrics can be proposed

to quantify skating performance more effectively. These metrics will offer a

detailed understanding of skating biomechanics and propose a new standard for

assessing skaters’ performance.

c. Using the kinematic metrics established in (b), the onset of performance fatigue

can be detected during intermittent ice skating experiments, which is crucial

for understanding how performance decays over time.

d. Finally, by employing new performance metrics in sprint tests, the impact of

factors such as skill level and skating techniques in on-ice skating biomechanics

can be studied. This step will demonstrate the proposed metrics’ practical

applicability and highlight the relationship between technique, calibre, off-ice

measurements, and overall on-ice skating performance.

Together, this thesis research aims to form a comprehensive framework for assessing

ice skating performance in the field, offering insights that are critical for both skating

coaches and ice skaters.
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1.1 Thesis objectives

This thesis research aimed to develop wearable sensor technology for the comprehen-

sive on-ice assessment of skating performance. The targeted research outcome was a

validated technology to: 1. Help coaches monitor and characterize ice skating per-

formance quantitatively; 2. Determine the skating techniques of skaters of different

calibre; and 3. Acquire a comprehensive understanding of performance fatigue and its

relationship with perceived fatigue during different skating modalities. To this end,

the specific phases, integrated in Figure 1.1, of this research project are as follows:

Phase I Determine temporal and spatial parameters of ice skaters by proposing

an optimized configuration of IMUs and validating the technology’s accuracy

compared to in-lab systems,

Phase II Determine the technology’s accuracy in obtaining the skater’s 3D joint

angles compared to those obtained by in-lab reference systems,

Phase III Propose performance metrics using the validated measurements of the

proposed wearable technology (the output of Phases I and II) to characterize ice

skating performance, track skaters’ performance, and thus study performance

fatigue in on-ice intermittent skating experiments,

Phase IV Conduct ice sprint tests on ice to assess the effectiveness of wearable sen-

sor technology in comprehensively assessing hockey and figure skating biome-

chanics during on-ice sprint tests,

1.2 Thesis significance

Objective biomechanical assessment of athletes’ motion has the potential to work

toward improving skating performance and early detection of fatigue onset, thereby
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Figure 1.1: This flowchart illustrates the various phases involved in the study.

decreasing the subsequent fatigue-induced injuries. Our study has the potential sig-

nificance in the following aspects:

1. Skating coaches and trainers can keep track of skaters’ progress and improve

their efficiency by assessing skating performance during training sessions and

matches, even remotely,
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2. Automatic onset detection of players’ fatigue and on-time substitution with

fresh players avoids consequent injury of players with chronic sequelae,

3. Equipping coaches with unique performance metrics offers in-depth insight into

skating and the underlying inter-segment relationship during the skating,

4. Customizing training strategies aiming not only to boost the performance of

novice players but also to reduce their injury rate in the long run.

5. Our findings will not only benefit athletes and coaches but also have broader

implications for the design of training programs and the development of skating

equipment for skaters of different calibres.

1.3 Thesis outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents a comprehensive background on the current athletic per-

formance assessment and fatigue onset detection in ice skating, particularly

focusing on the application of IMU wearable technology. This chapter estab-

lishes an essential understanding of the innovative methodologies and studies

forming the basis for the following chapters of this thesis.

• In Chapter 3, the temporal and spatial parameters of skating are estimated

by proposing an optimized configuration of wearable IMUs and validating the

system on synthetic ice compared to in-lab reference systems. This chapter is

partially based on publication [19].

• In Chapter 4, the 3D angles of the lower limb joints of hockey skaters are

obtained and experimentally validated by IMUs on synthetic ice. Also, the

effectiveness of kinematic features obtained by IMUs in differentiating low- and

high-calibre hockey skaters on synthetic ice is explored in this chapter. This

chapter is partially based on publication [20].
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• In Chapter 5, the potential of our proposed wearable technology to track skaters’

on-ice performance is studied to predict perceived fatigue and detect severe

fatigue onset. This chapter is partially based on a submitted manuscript.

• In Chapter 6, the effectiveness of our proposed wearable technology is assessed

by comprehensively evaluating hockey and figure skating biomechanics during

an ice sprint test. This chapter also studies the relationship of countermovement

jump as an off-ice measure with a range of performance metrics, enabling a

thorough assessment of skaters’ overall performance. This chapter is partially

based on a submitted manuscript.

• In Chapter 7, we provide the conclusions and future directions.
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Chapter 2

Background and related work

This chapter presents an overview of the biomechanical studies of ice skating, employ-

ing a spectrum of analytical, statistical, and technical tools and methods and highlight-

ing research opportunities in this area.

2.1 Introduction

Understanding human movement biomechanics plays a key role in enhancing sports

performance and injury prevention by providing insights into the optimal techniques

for athletes [21–23]. Additionally, it is instrumental in the design of equipment,

assistive devices, training programs, and rehabilitation strategies to reduce injuries

and improve players’ quality of life and overall outcomes of the sports team [1, 24].

By employing techniques such as model-based estimation of muscle forces [25], sports

biomechanics analysis using wearable sensors [10], and video-based biomechanics tools

for injury assessment in sports [26], researchers and coaches can delve into the intricate

details of human movement biomechanics in various sports. Therefore, the applica-

tion of biomechanical principles in coaching has been proposed as a means to improve

the understanding of player performance in sports. As a highly technical and dynamic

sport, ice skating benefits significantly from understanding skating biomechanics to

enhance athletic performance and reduce injury risks. Biomechanical assessments in

ice hockey and ice skating can lead to targeted training interventions and equipment
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optimizations by analyzing the mechanics of skating movements. This approach sup-

ports skaters in achieving more precise, efficient, and powerful movement patterns,

ultimately contributing to their competitive success and longevity in the sport [18,

27, 28].

2.2 Skating assessment tools

Ice skating originated with a unique twist in a classic origin story, involving the

use of animal bones as skates in the frosty regions of the North [29], and now, ice

hockey is a fast-moving game with millions of followers around the world. With

the increasing popularity and market size, improvements in training and coaching

strategies [30], using advanced technology for objective performance assessment is

indispensable. Skating, among the required skills in hockey, is the skill upon which

other skills like acceleration, stick handling, shooting, and agility are built [4, 5].

In figure skating, skating is the fundamental element that blends technical skill and

artistic expression, allowing skaters to perform intricate maneuvers and choreography

on ice with grace and precision [3]. Reliable assessment of ice skating during training

sessions and matches helps coaches continuously monitor the players and the team

and assist them in enhancing the team’s overall performance. This performance

assessment is crucial for identifying player strengths and weaknesses [31], enhancing

training effectiveness [9, 32], and preventing fatigue-induced injuries by recognizing

signs of performance drop [9]. It is typically conducted using biomechanical analysis

with stationary, conventional motion capture systems or wearable sensors to measure

and analyze skaters’ temporal and spatial parameters and skating kinematics during

training sessions and matches.

2.2.1 Conventional assessment systems

Traditionally, video cameras have been used to obtain ice skating performance. Using

these cameras, the researchers studied two-dimensional (2D) or three-dimensional
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(3D) kinematics of the lower-limb joints of individuals skating on ice in different phases

and speeds [7, 33]. A motion capture video-based system was also used to assess the

body kinematics of hockey players on the ice in several studies. In 1997, Marino

used a Locam 16 mm camera to obtain and compare stride velocity, single support

time, double support time, and stride length of ice skating at three different speeds

[34]. They found out that single support time and double support time decreased

significantly as skating speed increased. In 1999, Drouin used two video cameras to

study the effects of fatigue on the mechanics of power skating and observed several

alterations in the skating mechanics with fatigue [35]. Additionally, Upjohn et al.

used a setup of digital video cameras to obtain 2D or 3D joint angles on a skating

treadmill to contrast skating techniques between low- and high-calibre hockey skaters

[7]. These studies were limited due to the static nature of camera angles, which

often failed to capture the full range of motion and intricate details of the skaters’

movements during skating. Additionally, the manual analysis of video footage has

been time-consuming and subject to human error [36], limiting the depth and accuracy

of performance assessments. These video camera-based methods also struggled with

capturing multiple skaters simultaneously, particularly during complex routines where

skaters rapidly change positions and orientations, hindering a comprehensive and

accurate performance analysis using only video cameras.

Ice skating biomechanical research has been mainly focused on obtaining joint an-

gles using motion capture systems in different environments. The kinematic and

kinetic parameters of ice skating on a treadmill were studied using a set of motion

capture cameras [8, 37, 38]. On the other hand, in 2010, Stidwill et al. used these

cameras to study the overall movement patterns exhibited by skaters on synthetic

ice and natural ice [39]. These researchers also used motion capture systems to com-

pare hockey kinematics between high- and low-calibre and between male and female

elite hockey players [4, 40]. Although these stationary motion systems are precise,

their application is also limited in on-ice measurements due to their limited availabil-
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ity and capturing volume. Instead, employing wearable technology for performance

assessment is a trended and acclaimed alternative [10, 36, 41].

2.2.2 Wearable technology

Wearable technology has been demonstrated to measure essential parameters in sports

activity [10]. Wearable technology has enabled real-time monitoring of biomechanical

parameters in athletes [10, 42, 43], providing valuable insights for optimizing workload

and reducing fatigue-induced injury burden. The application of preventive biome-

chanics measures can significantly impact athlete health by reducing injury incidence

[21]. Therefore, the integration of biomechanics in sports has paved the way for a

deeper understanding of human movements, leading to advancements in performance

optimization, injury prevention, and overall athlete health and well-being [44]. By

leveraging innovative technologies such as wearable technology, sports biomechanics

continues to evolve, offering valuable insights for athletes, coaches, and researchers.

A handful of studies on the application of wearable technologies in sports are

related to the GPS and were carried out in open-field sports, where GPS works

precisely [45, 46]. In a typical indoor ice hockey arena, smaller than a football,

rugby, or soccer field, GPS signal may be more affected by errors than other outdoor

areas. Besides, GPS does not provide physiologically relevant information, such as the

players’ phase of play or joint angle pattern. Therefore, despite the wealth of GPS

measurements, they might not be efficient enough for regular on-ice assessments.

Using a 3D accelerometer is another method to detect temporal events of ice skating

on ice. Stetter et al. developed an innovative approach to determine strides, ice

contact, and swing phases during ice hockey skating using a single accelerometer

fixed to a hockey skate [6]. Additionally, this team showed the feasibility of using

wearable accelerometers to identify the parameters to differentiate players of different

skill levels [9]. Although these studies investigated spatial parameters of skating by

3D accelerometers, none measured joint angles using IMU sensors composed of a 3D
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accelerometer, a 3D gyroscope, and sometimes a 3D magnetometer.

Utilizing IMUs has revolutionized the detection of temporal events and the analy-

sis of 3D joint angles in sports studies, enabling researchers to obtain 3D kinematics

with high precision [10, 36, 44]. IMU technology has been widely accepted to measure

human motion for clinical outcome evaluations [47–51] and performance monitoring

[2, 52]. IMUs can be attached directly to the athlete and provide real-time data

on movement patterns by measuring acceleration, angular velocity, and sometimes

magnetic field. This technology allows for detailed and accurate assessment of the

skater’s motions, postures, and biomechanics, offering insights that were previously

unattainable with traditional video analysis methods. The use of IMUs in ice skating

research not only enhances the understanding of the sport’s dynamics but also aids

in developing targeted training and injury prevention strategies. However, the ap-

plication of IMU technology for assessing ice skating biomechanics has been limited,

hindering comprehensive performance assessments of on-ice skating to date.

Therefore, IMU technology has the potential to enhance our ability to analyze and

understand the complex locomotor demands of various sports and our understanding

of sport-specific physical demands [2, 10]. These devices are embedded within wear-

able units, allowing for the precise capture of athletes’ movement patterns in real

time. This capability marks a substantial leap forward from traditional system and

analysis methods, enabling a more detailed and accurate assessment of athletic per-

formance and the physical demands of sports in the field. IMUs have been extensively

utilized across a broad spectrum of sports, including individual and team sports, wa-

ter sports, and snow sports, to detect and quantify movements intrinsic to each sport

[53–59]. These sensors thus can provide detailed insights into movement patterns, fre-

quencies, and the forces exerted during athletic activities underscores their potential

to revolutionize training methodologies, performance analysis, and injury prevention

strategies.

Despite the promising applications of IMUs in capturing the nuances of sport-
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specific movements, Chamber et al. underscored the mixed evidence regarding the

capability of IMUs to measure some movements precisely [53]. This gap in technol-

ogy highlights the need for further research to refine the accuracy and applicability of

IMU sensors in sports science. The call for additional validation studies emphasizes

the ongoing quest to fully harness the capabilities of wearable IMU technology to

understand the complexities of ice skating. In 2022, Evans discussed the integration

of wearable technology in ice hockey, focusing on their application for performance

analysis and injury prevention [2]. They highlighted how IMU technologies can cap-

ture detailed kinematic and kinetic data, offering insights into player movements, the

impact of hits, and overall performance metrics. Evans et al. also emphasized the

potential of IMU wearable technology to enhance understanding of the biomechan-

ics involved in ice hockey, aiding in developing targeted training and rehabilitation

programs to improve player safety and performance.

2.3 Skating performance assessment

Developing solid skating techniques is essential for hockey players as it enhances their

performance across all facets of the game, ultimately leading to improved effectiveness

and competitiveness on the ice [1]. In 2013, Pearsall et al. emphasized the importance

of mastering powerful and efficient skating techniques, as players must cover signif-

icant distances quickly and with agility during a hockey game [31]. They discussed

how the biomechanical principles underlying skating movements differ from those

of walking and running, necessitating unique muscle activation and joint mechanics

adaptations in skating. These adaptations enable athletes to execute the high-speed,

complex maneuvers characteristic of competitive ice hockey. Furthermore, the study

highlighted the significance of understanding these biomechanical factors for enhanc-

ing athletic training, injury prevention, and equipment design. By examining the

specific demands placed on hockey players, this research offers insights into how tar-

geted training and technological advancements can improve performance and safety.
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Finally, this study underscored the potential for biomechanical research to inform

practice and innovation in ice hockey, contributing to the ongoing development of the

sport. In 2019, Stetter et al. suggested that body-worn accelerometers are applica-

ble for obtaining skating performance data [9]. The study highlighted the potential

for wearable performance sensors to benefit player development and training. The

findings suggest that further research on monitoring biomechanical performance vari-

ables, such as stride propulsion, and the automated detection of such is informative.

While most ice skating studies predominantly concentrated on varsity-level to pro-

fessional hockey players, the biomechanical assessment of figure skaters has usually

been overlooked. The differences in biomechanics between hockey and figure skating

stem from distinct skate designs and the specialized training each discipline requires

[21, 60]. Despite these differences, hockey coaching often integrates figure skating

techniques to enhance agility and footwork. This integration necessitates a deep un-

derstanding by hockey coaches of the biomechanical nuances distinguishing the two

sports, ensuring the effective adaptation of figure skating skills to improve hockey

performance.

In figure skating, skating skills are also fundamental, serving as the bedrock for

performance. In 2022, Ionesco et al. highlighted that the most significant skill in

figure skating is skating effectively, as acknowledged by professionals in the field [60].

This study provided insights into the game-performance skating characteristics of fig-

ure skaters, stressing the relation between the performance of female figure skaters in

agility and balance tests and their competition scores. They suggested that a com-

prehensive understanding of skating biomechanics is crucial for developing training

programs to enhance figure skaters’ performance [60]. The ability to execute various

movements with precision and grace, from simple glides to complex jumps and spins,

is directly influenced by a skater’s proficiency in skating techniques. Speed, an es-

sential component, not only enhances the aesthetic appeal of performance but also

contributes to the technical execution of elements, allowing skaters to generate the
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necessary momentum for jumps and maintain control during spins. The mixture of

advanced skating skills and speed underpins the artistic and technical excellence in

figure skating, distinguishing elite skaters.

2.4 Skating environments

The skating environment, crucial to performance and training, varies widely, encom-

passing real ice, synthetic surfaces, and skating treadmills. Each environment presents

unique benefits and challenges, influencing training outcomes and skater adaptation.

Real ice offers authentic conditions but can be subject to weather and quality vari-

ability. Also, access to ice skating rinks can be seasonal and further restricted by the

limited availability of open time slots, making consistent training and recreational

skating challenging to schedule. Skating treadmill, on the other hand, is an alterna-

tive for focused training, allowing skaters to practice technique and endurance under

controlled conditions. Finally, synthetic ice provides a year-round option with lower

maintenance, and the skater’s experience is similar to real ice. However, these two

alternatives may not replicate the exact resistance and glide of real ice [37, 39, 61].

Skating on a treadmill has become a popular training environment for ice skaters,

offering a controlled, non-reflective environment for focused skill development and

conditioning. This environment allows for continuous skating without needing large

ice surfaces, enabling detailed analysis and feedback on technique [37, 61]. However,

the kinematic and kinetic parameters of ice skating on a treadmill were found differ-

ent from those of skating on ice using a set of motion capture cameras [8, 37, 38].

These differences highlight the importance of understanding how treadmill skating

may affect training outcomes and technique adjustments. Alternatively, synthetic ice

can replicate the overall experience of ice skating effectively.

During the COVID-19 pandemic, with most public ice rinks closed, synthetic ice

emerged as a viable alternative for skaters to maintain their training regime and for

coaches to monitor athletes remotely. In 2010, Stidwill et al. demonstrated that the
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overall movement patterns exhibited by skaters on synthetic ice were closely similar to

those on ice [39]. While gross movement patterns on synthetic ice closely mimic those

on natural ice, notable differences in kinematics and posture were reported. These

differences suggest that while synthetic ice can effectively mimic the general ice skating

experience, there are distinct biomechanical aspects that differ between ice skating

and skating on synthetic ice, including excessive knee extension on synthetic ice [39].

Therefore, an in-depth study is required to understand the impact of synthetic ice

skating on the performance of skaters.

2.5 Skating modalities

Ice skaters are expected to demonstrate well-coordinated body motion and efficient

functioning of neuromuscular and cardiovascular systems across various skating modal-

ities. Researchers have studied the kinematics of skating, analyzing how skaters ma-

neuver across various modalities on the ice, both in ice hockey and figure skating [3, 5,

60, 62, 63]. The use of on-ice aerobic testing, such as the 30-15 intermittent ice test,

helps in assessing the maximal oxygen uptake and neuromuscular fatigue mechanism

in professional hockey players [62, 63]. Furthermore, the skating ability of ice hockey

players studied in repeated shuttle sprint tests on ice is essential for evaluating an ice

hockey player’s capacity for repeated high-intensity efforts [64, 65]. Together, study-

ing skating kinematics in diverse skating modalities is essential in assessing skating

quality and proficiency comprehensively.

2.5.1 Intermittent tests and fatigue

Aerobic experiments in ice skating are crucial for assessing athletes’ endurance, ca-

pacity to maintain performance levels over time, and recovery rates. These tests,

often conducted on ice to simulate real-world conditions, help identify the aerobic

and anaerobic ability of ice skaters, guiding training programs toward improving car-

diovascular fitness and optimizing on-ice performance [23, 63, 66]. Given the impor-
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tance of aerobic capacity in prolonged activities and high-intensity intervals common

in figure skating and ice hockey, such testing is instrumental. It informs coaches

and athletes about the effectiveness of training regimens, potential areas for improve-

ment, and strategies for enhancing overall athletic endurance [63]. These insights

are valuable for tailoring conditioning programs that meet the unique demands of ice

skating disciplines, ultimately contributing to improved competitive performance and

reduced injury risk.

In aerobic on-ice experiments, the skating multistage aerobic test (SMAT) has been

designed to measure the aerobic capacity of ice hockey players, closely replicating the

actual playing conditions [63]. Participants skate forward back and forth over a 45-

meter distance at a constant speed of 3.5 m/s, guided by audible signals. The test

ends when a participant can no longer maintain the same pace. This setup effectively

replicates hockey’s specific ice skating patterns and intermittent nature, offering a

precise metric of an athlete’s aerobic capabilities. The skating multistage aerobic

test’s ability to simulate real conditions makes it an invaluable tool for assessing

aerobic capacity, providing insights into fatigue’s effect on performance and injury

risk.

Fatigue leads to weariness, diminished alertness, and decreased concentration and

affects muscle activity and lower limb kinematics during the activities. Thus, in-game

fatigue can impact the player’s injury risk [16, 18, 67] in hockey and ice skating, which

involves a high risk of injury. Fatigue affects muscle activity, altering the efficiency

and sustainability of performance and kinematics in athletes and impacting muscle

coordination and force generation, which are critical in high-stamina sports like ice

skating [16, 67–69]. Therefore, an objective performance study during ice skating must

be integrated into the current subjective and instrumental fatigue measurement tools

based on skaters’ muscle activity during different skating modalities. Furthermore,

despite some biomechanical studies examining fatigue mechanisms in skating [16, 67,

69], a comprehensive investigation into how fatigue impacts the kinematics of skaters
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has yet to be conducted. For instance, joint angle variability and inter-segment coor-

dination were observed to indicate fatigue level [70, 71] and countermovement jump

[72]. Fatigue can affect any skater’s biomechanics, regardless of their skill level or ex-

perience [68]; however, its effect on the skaters’ performance can differ between skaters

of different calibre [18, 68], necessitating further investigation. Therefore, objective

assessment of hockey players’ movements on ice can help researchers monitor player

performance to improve their efficiency and enable coaches to track player movement

coordination and its contribution to the onset of fatigue and thus prevent fatigue-

related injuries. Finally, this assessment facilitates the design and optimization of

skating equipment tailored to skaters’ biomechanics [30], enhancing performance by

ensuring that the gears meet the diverse needs of a broader spectrum of ice skaters.

Ice skating’s dynamic demands precise coordination and a balance between aerobic

and anaerobic capacity, enabling athletes to execute swift yet intricate movements.

2.5.2 Ice skating sprint

Ice skaters must master various skating modalities, including the ability to perform

effectively in ice sprint tests. Stationary motion capture systems enable precise mea-

surements of the skater’s kinematics on a small part of the ice during these tests. In

2017, Shell et al. conducted a kinematic analysis of skating start propulsion in elite

male and female ice hockey players using a stationary motion capture system. The

study aimed to determine the impacts of sex on the kinematics of the hip and knee

during the skating start and to identify the key performance indicators of skating start

propulsion. Data were collected from 18 participants, and kinematic measurements

were obtained using custom MATLAB scripts. In 2020, Budarick et al. focused on

the biomechanics of high-calibre male and female ice hockey skaters during on-ice

sprints [40]. The study analyzed the characteristics of the skater’s body centre of

mass (CoM) during the start and maximal speed phases and identified differences

between male and female athletes. Finally, Robbins et al. studied the differences in
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skating stride between high- and low-calibre ice hockey players using these stationary

systems [73]. While motion capture systems offer high precision, their use is limited in

on-ice measurements, constrained by their limited accessibility and capture volume.

Therefore, wearable technology has also been used to measure ice skating kinematics

during ice sprint tests.

In 2015, Buckeridge et al. studied hockey skating biomechanics across acceleration

and steady-skating phases of an ice sprint test using a variety of wearable technol-

ogy, including 3D accelerometers [5]. The study included nine varsity-level players

and nine recreational hockey players where they carried out a 30 m maximum effort

forward skating drill, and their muscle activity and 3D acceleration were measured

using various sensors. They found that varsity-level players showed significant differ-

ences from recreational hockey players in terms of several measured factors, including

increased push-time, stride length, and muscle activity during push-off. They found

that skating performance differed not only based on whether a player was on a var-

sity or recreational level but also on individual skating styles. In 2016, Stetter et al.

introduced an innovative technique for the automated detection of ice hockey skating

strides, employing 3D acceleration data to identify the blade-ice contact and swing

phases of strides during a 30-m forward sprint [6]. With a 3D accelerometer attached

to a skate and synchronized plantar pressure as a reference, the method’s accuracy

for various stride patterns was confirmed, showing minimal differences compared to

motion capture data. Although these studies investigated temporal parameters of

ice skating by 3D accelerometers, none measured 3D joint angles during ice sprint

test. Therefore, IMU, introduced earlier, is a requirement that enables us to capture

skating 3D kinematics and thus to develop skating kinematic metrics during ice sprint

tests.
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2.6 Skating kinematic metrics

Skating kinematic metrics have been shown to highlight the performance variations

between male and female ice skaters. Researchers used video cameras to study 2D or

3D kinematics of the lower-limb joints of individuals skating on ice in different phases

and speeds [34, 74, 75]. They found significant repeatability among participants of

the same sex and proficiency level and notable differences among participants across

different sexes and proficiency levels. In 2017, Shell et al. demonstrated that male

hockey skaters achieved a higher maximum skating speed compared to females during

skating start propulsion in ice sprint tests [76]. They observed notable differences in

skating technique between the sexes: females displayed approximately 10 degrees less

hip abduction during the skating stance and about 10 degrees more knee extension

during the initial ice contact. This was notably accompanied by a short cessation in

knee extension in female skaters at the moment of ice contact, a feature not present in

male skaters. Also, in 2017, Budarick et al. found that males produced more forward

acceleration during initial accelerative steps [4], but beyond this phase, stride-by-

stride accelerations were similar between males and females up to maximal speed.

Males exhibited increased hip abduction and knee flexion from ice contact to push-off

in all trials. Researchers also found noticeable differences between the kinematics of

skaters of different calibres.

Biomechanical differences between high- and low-calibre players’ skating have been

a focal point for understanding the link between skating biomechanics and perfor-

mance. Hockey skating literature has consistently shown significant disparities in

lower limb joint 3D angles and CoMmovements across skill levels in ice experiments [5,

73, 77, 78]. They have identified significant differences in parameters like ankle plan-

tar flexion, knee extension at push-off, and hip flexion, marking high-calibre hockey

skating as distinct from lower-calibre skating. Buckeridge et al. used a portable sys-

tem including accelerometers to assess on-ice hockey players’ performance and found
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differences in the hip adduction of hockey players of different calibres [5]. They found

that greater plantar-flexor muscle activity and hip extension were evident during ac-

celeration strides, while steady-state strides exhibited greater knee extensor activity

and hip abduction range of motion. Finally, Robbins et al. [73] employed principal

component analysis in on-ice experiments to discern critical features differentiating

the 3D joint angles of high and low-calibre hockey players. Nevertheless, replicating

these studies and inter-study comparisons is challenging due to the subjective and

not statistically-supported definition of skill level in the literature.

Current skill-based clustering approaches for skaters have frequently been impre-

cise. Being a part of a university team or having specific years of skating experience

or skating speed has been the most common criterion for being considered as a high-

calibre player [5, 73, 78]. However, interpretation of the results and inter-study com-

parisons are challenging due to three factors: 1) Being on a university team or having

long-time experience or faster skating on ice does not necessarily mean performing

well in all the skating aspects in the data acquisition time, 2) There is no statistical

evidence to support the claim that skaters should be classified into only two or three

distinct groups, and 3) It has not been investigated whether there is a significant

difference in the skills of the participants in these groups. Therefore, addressing these

challenges in clustering skaters is needed to investigate how the skaters’ performance

differs among skaters of different calibre.

Ice skating performance is influenced by myriad factors, including athletes’ skill

level, sex, and age, alongside the specific type of skating— figure skating or hockey.

Studies have shown that these elements significantly impact the biomechanics of skat-

ing, such as 3D joint kinematics, affecting how skaters execute sprints and maneuvers

on ice. While factors like calibre, sex, and age significantly influence skating per-

formance, the type of skating—whether figure or hockey—also plays a crucial role in

forward skating during ice sprint tests. While existing performance metrics offer some

insights into skater proficiency, developing and applying novel metrics could enhance
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the understanding of diverse aspects of skating performance. These performance met-

rics on ice could have been predicted through off-ice tests, saving considerable labour

and time. This approach suggests that assessing athletes’ physical capabilities off the

ice can offer valuable insights into their on-ice performance.

2.7 On- vs off-ice performance

Off-ice measurements have been shown to predict various on-ice parameters, offering

strategic benefits in training and performance analysis. Bracko’s series of studies

investigated speed dynamics in ice hockey [21, 79, 80]. Collectively, these papers

offered a unique perspective on how agility and quick directional changes impact per-

formance in a team sport setting. In 2004, they focused on predicting the performance

of female figure skaters using off-ice and on-ice variables. The study measured the

participants’ skinfold, height, and body mass. Then, various exercises such as push-

ups, sit-ups, sit-and-reach vertical jumps and 40-yard dashes were conducted by each

participant. In addition, the participants’ predicted fat percentage was determined

based on the skinfold measurements. On-ice variables such as acceleration, speed,

agility, and anaerobic power and capacity were also measured for each participant.

Results showed that off-ice variables such as vertical jump, 40-yard dash, and sit-ups

were highly correlated with on-ice measures such as acceleration, speed, and anaerobic

power.

In another study, Krause et al. examined the relationship between off-ice physical

activity and on-ice performance among ice hockey players [81]. They asked 21 male

participants to perform various off-ice tests, including five hops, three vertical jumps,

eight dynamic balance tests, and a 40-yard sprint. The tests measuring on-ice per-

formance used a crossover turn and the right and left short radii speed tests, among

others. The hierarchical multiple regression was then used to interpret the predictive

relationship of the off-ice performance variables to on-ice performance metrics. The

results showed that forward skate time, right crossover time, left crossover time, right
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short radius time, and left short radius time significantly correlated with off-ice per-

formance measures, indicating the predictive ability of off-ice performance. In 2009,

Meylan et al. studied the impact of strength and conditioning programs on skating

performance [82]. They assessed the horizontal and lateral jump abilities, as well as

10-m sprint times and change of direction (CoD) performance, of 80 men and women

using contact mat and timing light technology. They particularly highlighted the role

of lower body strength and power in improving propulsion and speed on the ice.

In 2015, the studies by Haukali et al. [83] and Janot et al. [84] explored the

relationships between off-ice physical activities and on-ice performance in ice hockey

players. They have also revealed key insights into how specific off-ice tests correlate

with on-ice speed and agility. Haukali et al. found significant correlations between

off-ice tests, such as sprints and jumps, and on-ice performance among young male

players. Janot et al. further identified lower-body power and off-ice agility as crucial

predictors of on-ice performance, emphasizing the importance of targeted physical

training in enhancing ice hockey skills. Finally, Daehlin et al. explored the correlation

between conditioning exercises and on-ice performance [85]. Their study emphasized

the importance of sport-specific training, demonstrating how targeted conditioning

exercises can lead to significant improvements in skating efficiency and endurance.

Looking forward, there is a need for continuous research in this area, particularly in

the context of evolving training methodologies and technological advancements. More

importantly, the relationships between off-ice measurements, such as the CMJ, and a

wide range of on-ice performance metrics for figure and recreational hockey skaters of

different ages remained unexplored. Therefore, future studies must aim to integrate

innovative methodologies and techniques, further enhancing our understanding of this

relationship.
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2.8 Toward a comprehensive performance assess-

ment in ice skating

A comprehensive performance assessment of ice skating necessitates the measurement

of joint forces and moments to gain essential insights into player mechanics and effec-

tiveness. Buckeridge et al. used muscle activation sensors (EMG) and force sensors

to assess on-ice hockey players’ performance during their forward skating technique

[5]. In 2019, Nassen et al. measured skate-ground interaction forces to investigate the

kinetic parameters of hockey, i.e., work, energy, and angular momentum [86]. They

explored a modified skating stride featuring an extended gliding phase in a circular

arc. Their suggested technique conserves angular momentum and increases speed

when the skater’s body CoM moves closer to the arc’s centre [86]. Later, Pearsal and

his team conducted a series of experiments to assess forces and pressures in different

ice skating environments and recruited different skaters with different skates. First,

they proposed a portable force measurement system for ice hockey skating, allow-

ing for natural, unrestricted movement and yielding clear, distinct signal responses

[87]. They also identified kinematic variations among ice hockey players using dif-

ferent skates and underscored the importance of a familiarization process for skaters

to fully adapt to and gain the advantages of newly designed skates [88]. In another

study [39], they studied skating in different environments, exploring the similarities

and differences between synthetic and real-ice skating. A comprehensive performance

assessment of ice skating necessitates analyzing muscle activity, joint forces, and mo-

ments to understand ice skating biomechanics thoroughly.

Understanding muscle activation and synergies is also crucial for effectively ana-

lyzing and enhancing on-ice performances [2, 89]. Also, it aids in identifying stress

points and improper techniques, thus guiding training and equipment design to pre-

vent muscle injuries [1, 30, 90]. Notably, hip adductor strains account for approxi-

mately 10% of all injuries sustained in ice hockey. Skating type (i.e., figure, hockey,
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or speed skating), skate design, and skating modalities require varied muscle activity

and synergies. Understanding these variations is essential for tailoring training and

rehabilitation programs that address the specific needs of the skaters, ensuring that

muscle development and activation are aligned with the specific demands of their

skating activities. Muscle activation and synergies in ice skating can also be influ-

enced by skating speed. In 2018, Kim et al. [91] revealed that while higher skating

speeds were associated with increased muscle activation, the muscle synergies remain

consistent regardless of speed. By analyzing the muscle activity of ice skaters, it is

also feasible to identify potential sources of injury, such as overuse, poor technique,

or muscular imbalances [68]. Detecting the onset of fatigue is also vital to compre-

hensive performance assessments. Therefore, incorporating the study of performance

fatigue and its effects on muscle activity and lower limb kinematics into research is

essential for identifying and avoiding fatigue-induced injuries early on.

2.9 Conclusion

The historical journey from primitive bone skates to the high-paced world of modern

ice hockey and figure skating highlights the evolution and significance of skating. Our

discussion in this chapter has highlighted the critical need for advanced technologies

to objectively assess skating performance—a skill foundational to the success and

artistry of on-ice skating. We discovered that studying the biomechanics of human

movement is integral not only for athlete development and performance enhancement

but also has the potential for injury prevention, including ACL injury, concussion,

and injuries related to loss of concentration. Therefore, ice skating, as the core skill

in hockey and a critical part of figure skating, requires thorough and multifaceted

assessment approaches to capture its complicated dynamics across different skating

modalities.

Building upon these insights and directly addressing the gaps identified in this

chapter, we are required to develop wearable sensor technology for a comprehensive
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on-ice assessment of skating performance. Drawing from the insights gained, our

research objectives were outlined to include: 1) Obtaining temporal and spatial pa-

rameters and 3D joint angles of the lower limb during skating in different skating

environments, 2) Extending the scope of performance metrics to monitor skating per-

formance in different skating modalities, thereby enhancing our understanding of the

correlation between off- and on-ice measurements; and 3) Investigating performance

fatigue and how these performance metrics decay over time using IMU wearable tech-

nology. Measuring temporal and spatial parameters using the proposed IMU tech-

nology is the first and foremost step toward this comprehensive skating assessment.
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Chapter 3

Measurement of temporal and
spatial parameters using wearable
sensors

This chapter proposed novel methods for estimating the temporal and spatial parame-

ters of ice skating using wearable IMUs and experimentally validated against the in-lab

reference systems. Portions of this chapter have been adopted and/or edited from:

A. Khandan, R. Fathian, J. P. Carey, and H. Rouhani, ”Measurement of tempo-

ral and spatial parameters of ice hockey skating using a wearable system,” Scientific

Reports, vol. 12, no. 1, pp. 22280, Dec. 2022.

3.1 Introduction

Ice hockey requires high levels of aerobic and anaerobic fitness, well-coordinated body

motion, and efficient functioning of the neuromuscular and cardiovascular systems [1,

33, 92]. Players with higher neuromuscular and cardiovascular abilities, capable of

starting quickly and skating at higher speeds, are more likely to possess the puck

and win face-to-face competitions in matches [9]. Accurate assessment of hockey

players’ skating movements during training sessions can help coaches continuously

monitor players’ performance with the aim of improving it during training. Spatial

(e.g.(stride length (SL) and velocity (SV)) and temporal (e.g., stride time (ST) and

ice contact time (CT)) parameters of skating serve as mobility biomarkers [93, 94]
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and are recognized as significant metrics to characterize any repetitive activity like

forward ice striding. These parameters, traditionally, were obtained in human motion

laboratories using stationary motion-capture (MoCap) systems. However, the appli-

cation of these instruments is limited since they are not available in every ice rink,

and their captured volume is confined to a small part of the rink, which can disrupt

the natural skating patterns of ice skaters [40, 95, 96]. Thus, wearable and garment-

embedded technologies are preferable for on-ice skating performance assessments [10,

97, 98].

Buckeridge et al. used a portable system composed of accelerometers, EMG mod-

ules, and force sensors to assess on-ice hockey player performance [5]. Also, Stetter

et al. studied the feasibility of using wearable accelerometers to identify skating pa-

rameters such as ST and CT to differentiate players in terms of their skill level [6, 9].

However, these studies investigated the skating parameters using 3D accelerometers

rather than inertial measurement units (IMU). IMU has been applied to measure

human motion for clinical outcome evaluation [49, 99, 100], sports biomechanics eval-

uations [41, 43, 56, 101–104], and movement modalities detection [12, 48, 96]. They

have the potential to obtain temporal and spatial parameters during hockey skating.

The computation of the temporal and spatial parameters, in the first step, requires

the detection of skating temporal events. The accuracy of event detection using IMUs

can vary significantly depending on the extraction method used [105, 106]. The second

step is to estimate the participant’s trajectory in each stride necessary to calculate

the spatial parameters [107]. Finally, temporal and spatial parameters can be calcu-

lated by the detected temporal events and the participants’ trajectories. Participants’

trajectories can be calculated using double-time integration of the participant’s ac-

celeration in a global reference frame. However, due to the cumulative error in the

numerical integration of IMU readouts, the obtained trajectory can be drifted and

erroneous [108]. There are two types of error in calculating the stride length: the

noise on the acceleration time series and the drift in the sensor orientation (used for
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double-integration of acceleration to estimate trajectory) obtained by the gyroscope

readouts. In the gait analysis application, it has been suggested to correct foot ve-

locity and, subsequently, foot trajectory time series by assuming zero velocity and

minimum foot height during foot-flat periods [93]. However, a similar period to the

foot-flat with zero velocity in all directions is absent in ice hockey skating strides,

making foot velocity and trajectory estimation more challenging in hockey skating

than on-land gait. This study addresses these challenges toward improving the accu-

racy of on-ice measurement of spatial and temporal parameters of ice skating using

a set of IMUs fixed on the participant’s skates, shanks, and pelvis on a synthetic ice

surface. Synthetic ice surface, as an alternative to real ice with comparable forward

skating mechanism [39], has the potential to be used in in-lab testing and training,

particularly where ice access is limited.

The objective of this study was to: (1) detect temporal events of skating using

skate-mounted IMUs, (2) estimate the skate trajectory using IMUs, (3) calculate

the temporal and spatial parameters of skating using the obtained temporal events

and corrected skate trajectory, and (4) experimentally validate the obtained results

against those measured by in-lab motion-capture systems on a synthetic ice surface.

3.2 Methods and procedure

3.2.1 Participants

Ten able-bodied individuals (age 25 ± 8 years, height 179 ± 9 cm, body mass 78 ± 11

kg; mean ± standard deviation (SD) among participants, six male and four female)

were recruited to participate in this study. All participants were free from injury and

capable of skating comfortably. The study was approved by the research ethics board

of the authors’ current institution (Pro00092821), and all methods were performed

in accordance with the relevant guidelines and regulations. All participants were

informed of the experimental procedures and gave informed written consent before
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the test.

3.2.2 Experiments

Tests were carried out at an indoor synthetic ice rink (14× 2m2). Five IMUs (Xsens

Technologies [109], The Netherlands, full-scale ranges are: acceleration: ±160 m/s2,

angular velocity: ±2000 deg/sec, and magnetic field: ±1.9 Gauss) were placed on

the pelvis, shanks, and two skates of the participants. No sensor-to-segment cali-

bration was used, and sensors’ readouts were directly used to extract the temporal

events. They were asked to wear tight-fitting pants or shorts, and the sensors were

placed on the skates and skin of the participants or on the fitted pants to minimize

the garment-to-skin motion artifact. Two reflective markers were placed on the two

posterior superior iliac spines (PSIS) of the body, as demonstrated in Figure 3.1. As

a reference system for temporal event detection, plantar pressure insoles (Pedar-X

[110], Novel, DE) were placed in the skates (Figure 3.1) to measure the ground reac-

tion force magnitudes and thus detect the instances of skate contacts on the ice. The

pressure insoles were calibrated at the beginning of each session as a standard practice

instructed by the manufacturer to remove the offset error. As the reference system for

spatial parameters, 12 motion-capture cameras (eight Vero and four Bonita, Vicon,

UK) were used to track the trajectory of retro-reflective markers. After 10 seconds

of standing still, the participants skated forward alongside the synthetic ice rink for

14 meters. At the end of the forward skating trial, they also stood for 10 seconds

quietly. During each trial, the IMUs, motion-capture cameras, and pressure insoles

recorded their motions and ground reaction forces simultaneously. All the systems’

sampling frequencies were 100 Hz, and each skating trial was repeated five times.

3.2.3 Temporal event detection

First, the IMU readouts measurements were filtered using a low pass 4th order Butter-

worth filter using 15 Hz. We developed eight original methods to detect skate strikes
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Figure 3.1: Five IMUs (orange boxes) were placed on the participants’ pelvis, shanks
and skates. Also, two pressure insoles placed in the skates and two retro-reflective
markers on the PSISs (green circles) were used as a reference system for temporal
event detection and stride length estimation, respectively.
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(SS) and blades-offs (BO) instants using the IMUs’ readouts. In addition to the

originally proposed methods of temporal event detection, described in Table 1, three

highly-cited gait event detection methods in literature [51, 107, 111] were adopted

and implemented to detect the temporal events in skating. These 11 methods were

implemented in MATLAB (Mathworks, USA) and obtained the events during five

trials of each participant. These detected SS and BO were validated against those

detected using the pressure insoles, with a 5 N threshold (Figure 3.2).

Figure 3.2: Exemplar recorded time series of skate upward and horizontal acceleration
measured by the skate-mounted IMU in a skating trial. The figure also shows the
temporal events (SS: skate strike and BO: blade off) detected by algorithms T1 and
T2 and the actual events detected using the pressure insoles (gold-standard), based
on a 5-N threshold on the vertical ground reaction force. Actual SS and BO were
obtained from the first data points after the vertical ground reaction force passed the
5-N thresholds.
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Table 3.1: Description of the methods originally proposed (T1 to T8) and adopted
from the literature and modified (T9 to T11) for detection of Skate Strike (SS) and
Blade off (BO) instants during forward skating using the readouts of IMUs placed
on the shanks or skates. Similar to the original gait analysis studies (T9-T11), it
was assumed that the participant starts skating from a stationary position and, thus,
starts by a BO (toe-off in original studies). Therefore, the odd negative peaks indicate
BO (toe-offs in original studies), and the even peaks indicate SS (heel-strike in original
studies).

Methods Time series used Event Features used in time series

T1 Upward acceler-
ation of skate

BO Positive peaks of the time series

SS The minimum of the time series occurred be-
tween two consecutive BOs

T2 Horizontal accel-
eration of skate

BO The minimum of the time series occurred be-
fore the positive peaks

SS The maximum of the time series occurred be-
tween two consecutive BOs

T3 Upward velocity
of skate

BO Negative peaks of the time series

SS Positive peaks of the time series

T4 Norm of skate
acceleration

BO The last minimum of the time series occurred
before the dominant positive peaks

SS The maximum of the time series occurred be-
tween two consecutive Bos

T5
Shank angular
velocity

BO Negative peaks in the sagittal plane angular
velocity

SS Positive peaks in the frontal plane angular
velocity

T6
Norm of shank
angular velocity

BO The minimum of the time series occurred be-
fore the dominant peak

SS The minimum of the time series occurred be-
tween two consecutive Bos

T7 Norm of skate
acceleration

BO Odd numbered positive peaks in wavelet co-
efficients in the highest energy concentra-
tion frequency obtained by a CWT (continu-
ous wavelet transform) utilizing Coiflet wave
shape
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SS Even numbered positive peaks in wavelet co-
efficients in the highest energy concentra-
tion frequency obtained by a CWT utilizing
Coiflet wave shape

T8 Norm of skate
acceleration

BO Positive peaks in the 3rd approximation of
the time series in a DWT (discrete wavelet
transform) using Coiflet wave shape

SS The minimum of the time series occurred be-
tween two consecutive Bos

T9
Shank angular
velocity

BO Odd-numbered negative peaks of the time se-
ries

SS Even-numbered negative peaks of the time
series

T10 Norm of skate
acceleration

BO Odd-numbered negative peaks of the time se-
ries

SS Even-numbered negative peaks of the time
series

T11 Norm of skate
acceleration

BO Local positive peaks of the time series

SS Local negative peaks of the time series

3.2.4 Skater’s stride length estimation

The spatial parameters were calculated using the IMUs placed on the skates, shanks

and pelvis. Any inherent signal bias in the sensor readouts is prone to accumulate in

the integration process and corrupt the obtained velocity and trajectory of the skater.

In the gait analysis application, the zero-velocity update (ZUPT) technique has been

used to force the foot velocity to be zero during the stationary foot-flat period in each

stride [93]. However, during contact time in ice skating, the skate keeps sliding on

ice, making the ZUPT algorithm impractical in this application. In this study, four

novel methods were proposed to eliminate the accumulating errors in the calculated

velocity and trajectory of skaters:
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• The accelerometer readout was transferred into the north-east-up (NEU) refer-

ence frame using the IMU orientation obtained by the Xsens software package.

• The gravitational acceleration was subtracted from the transformed acceleration

to obtain the free acceleration of the sensor in the NEU frame.

• The skater’s velocity was obtained using time integration of the free acceleration.

The obtained velocity, however, was not zero in the resting periods due to the

accumulated error of the IMU readouts,

• The accumulated error was removed, and the obtained velocity and acceleration

time series were corrected using the assumption of zero velocity and acceleration

in the resting periods. To this end, four original methods were developed and

implemented. These methods removed sensors’ acceleration biases (S1), accel-

eration bias and estimated noise profile (S2 and S3), and estimated velocity

error time series (S4) using the assumption of zero acceleration and velocity in

the resting periods (Table 2).

• The corrected velocity was used to obtain the skater position trajectory used to

obtain the SL for each stride (see section 3.2.5 below).

All these four algorithms (S1–S4) used IMU readouts during the resting period. The

effect of resting period duration was investigated on the stride length estimation

error to recommend a minimum resting period duration. To this end, IMU readouts

collected during time windows from 0.1 to 10 secs, by the increment size of 0.1 secs, out

of the two 10-sec resting periods originally considered for data collection before and

after the motion, were used in S1 to S4. Then, the shortest resting period duration

that would not significantly affect the stride length estimation error compared to

longer resting periods was explored. Temporal and spatial parameters estimation ST

was computed from one SS to the subsequent SS of the same skate, and CT, the

time when the skate is in contact with the ice, was calculated from one SS to its
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subsequent BO. Also, the SL in each stride was calculated using the estimated sensor

trajectory. The SL, then, was defined as the two norms of a 2D vector containing

the travel distance in the mediolateral (PML) and anteroposterior (PAP ) directions in

each stride (Equation 3.1).

SL =
√︂
P 2
ML + P 2

AP (3.1)

SL was calculated using each of the four proposed velocity and acceleration cor-

rection methods. Finally, SV is calculated based on the corrected velocity time series

obtained by the stride length estimation methods.

3.2.5 Data analysis

To compare the ability of the proposed methods against pressure insole in detecting

the temporal events, the accuracy (mean) and precision (SD) of the errors were com-

puted. To compare the SL estimated by the methods described in section 3.2.4, the

mean and SD of the relative error, in addition to the error against the camera record-

ing, were calculated. There was no significant difference between the stride length

obtained based on the markers on the pelvis and that obtained based on markers on

the skate (rank-sum test (r = 0.98) indicated a failure to reject the null hypothesis

at the 5% significance level). Additionally, unlike the markers on skates, markers on

the pelvis have smoother motion and would be a reliable reference for stride length

measurement during each stride. Therefore, the reference SL is taken as the average

travel distances of the PSIS markers in a stride. Finally, the set of best temporal

event detection and SL estimation methods were selected to estimate the temporal

and spatial parameters using IMU readout. These parameters were cross-validated

against those calculated by in-lab reference systems recordings presented as the mean

and SD of the relative error. Furthermore, a Bland-Altman plot modified for re-

peated measures [112, 113] has been provided to explore the agreement between the

temporal and spatial parameters obtained by IMUs and those obtained by the refer-
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ence parameters using Stata Statistical Software: Release 1741. Figure 3.3 shows the

flowchart to calculate the temporal and spatial parameters using IMU readouts and

validate the obtained parameters against the ones obtained by pressure insole data

and camera recordings.

Figure 3.3: Flowchart of the measurement of temporal and spatial parameters of ice skating
using IMU readouts and comparing it with the ones obtained by stationary in-lab reference
systems. Here, sqrt stands for square root, PML and PAP , respectively, are the travel
distance in the mediolateral and anteroposterior directions in each stride.

3.3 Results

3.3.1 Temporal event detection

In total, 184 SS and 186 BO were identified and then compared with those obtained

by the pressure insole. The finding from method T4 revealed that temporal event

detection with an average 0.01-sec error using IMU readouts is achievable, equivalent

to one sampling period (Table 3). Also, T9, adopted from gait analysis studies,

obtained comparably ’accurate’ results in skating event detection applications, i.e.,
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an average error of 0.04 sec and 0.05 sec for detecting SS and BO, respectively.

Yet, other event detection methods adopted from gait analysis studies (T1 to T8,

T10, T11) could not detect temporal events, particularly SS, with high ’precision,’

as indicated by the relatively high SD of the obtained errors. The mean ± standard

deviation (SD) of the errors among study participants, reported in Table 3, suggest

that the most effective methods in finding SS events were T1 (0.00 ± 0.03 sec), T2

(-0.01 ± 0.03 sec), and T4 (-0.01 ± 0.04 sec). Also, T3 (-0.00 ± 0.05 sec), T2 (-0.05

± 0.04 sec), and T1 (-0.03 ±0.08 sec) were more effective in detecting BO events in

skating (Table 3). The negative errors indicate the SS or BO were detected before

the actual event, as identified by the reference system (i.e., pressure insoles).

Table 3.3: Accuracy and precision of the developed and adopted methods in detecting
184 Skate strikes (SS) and 185 Blades offs (BO). The results are expressed as mean
and standard deviations (SD) of the errors (in second, across participants) obtained
by all methods described in Table 1 for detected temporal events using IMUs against
those obtained using pressure insoles.

Methods SS (sec) BO (sec)

T1 0.00± 0.03 −0.03± 0.08

T2 −0.01± 0.03 −0.05± 0.04

T3 −0.17± 0.09 0.00± 0.05

T4 −0.01± 0.04 −0.10± 0.04

T5 0.03± 0.20 0.09± 0.03

T6 −0.12± 0.06 −0.05± 0.07

T7 −0.19± 0.11 −0.06± 0.05

T8 −0.03± 0.04 −0.08± 0.04

T9 0.04± 0.18 0.05± 0.22

T10 0.04± 0.29 −0.09 + 0.13

T11 −0.25± 0.23 −0.05± 0.04
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3.3.2 Stride length estimation

The skaters’ speed was 1.71 ± 0.61 m/s and ranged from 0.88 to 2.63 m/s among

this study’s participants. The relative errors of SL estimation using IMU readouts

based on methods described in Table 2 compared to the ones obtained by motion-

capture cameras were investigated. S1–S3 required only a 0.5-sec resting period right

before the motion to correct the velocity, and longer resting periods did not enhance

their performance (rank-sum test (r = 0.96)). They decreased the SD of the relative

error to the range of 19% - 25% (compared to 47% when no correction method was

implemented) when the free acceleration of pelvis-mounted IMU was used (Table

4). On the other hand, the velocity correction method (S4) required at least two

3-sec resting periods right before and after the motion to correct the velocity, and

longer resting periods did not enhance its performance (rank-sum test (r = 0.99)).

However, S4 was able to decrease the relative error from 7 ± 47%, obtained without

any correction, to a range of 2 ± 6% based on pelvis IMU readout (Table 3.4). In

this method, the velocity was corrected by making the velocity time series to be zero

in the resting periods.

Table 3.4: The mean and standard deviation (mean ± SD) for errors and relative errors of the stride
length (SL) obtained by IMUs’ readout against the SL calculated based on markers trajectory captured
by the motion-capture cameras. The errors were calculated with and without applying the velocity
correction methods (S1–S4, described in Table 3.2) using IMUs placed on the participants’ pelvis,
shank, and skates.

METHOD

ERROR (cm) RELATIVE ERROR (%)

Pelvis IMU Shank IMU Skate IMU Pelvis IMU Shank IMU Skate IMU

NO

CORRECTION
−39± 109 −6± 58 −1± 106 −7± 47 −4± 26 −2± 41

S1 14± 53 14± 51 23± 47 9± 19 6± 22 9± 17

S2 14± 53 12± 49 19± 42 6± 23 6± 21 8± 16

S3 14± 53 14± 52 24± 47 7± 25 6± 23 9± 17

S4 3± 14 15± 30 −12± 40 2± 6 7± 13 −6± 14
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3.3.3 Temporal and Spatial parameters

ST and CT were calculated based on the temporal events identified by T1 and T3:

the best methods in detecting SS and BO, respectively. Also, SL was calculated based

on the trajectory estimated by the velocity correction method (method S4: the best

method in SL estimation). Finally, SV was calculated as the average of the sensor

velocity estimated by method S4. Using the IMU readout, ST, CT, SL, and SV were

estimated with 3 ± 3%, 4 ± 3%, 2 ± 6%, and 2 ± 8% relative error, respectively,

compared to those obtained from in-lab reference systems’ recordings. Other than

the bias errors mentioned above, the Bland-Altman plot (Figure 3.4) suggested no

apparent relationship between the errors of the IMU-based developed methods and

the magnitude of the temporal and spatial parameters.

3.4 Discussion

In this study, for the first time, the measurements of the wearable IMUs were used

to obtain the temporal and spatial parameters of forward skating (ST, CT, SL, and

SV) using various methods, and the results were validated against those obtained by

the reference system, i.e., pressure insole and motion-capture cameras. 11 methods

were implemented to obtain the temporal events with high accuracy and precision in

forward striding in ice skating using wearable IMU readouts. Also, four methods were

implemented to correct the stride length estimation using IMU readout. The accuracy

of temporal and spatial parameters in skating (on average less than 4% of relative

error) in this study was comparable with those reported in gait analysis (less than

2% relative error [13, 107]). Also, almost the same accuracy in calculating ST has

been obtained compared to the other studies on long-track speed skating (3.6%) [97].

Finally, the accuracy of CT and ST obtained by IMU in this study was comparable

with those reported in a previous study on ice skating [6], investigating the accuracy

of CT and ST estimated on the real ice (on average, 1% and 2%, respectively). The
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Figure 3.4: Bland–Altman plots modified for repeated measures, illustrating the
agreement between the IMU-derived estimates (ST (a), CT (b), SL (c), SV (d)) and
the actual values obtained from reference systems. Pressure insoles provided data for
ST (interquartile range: [1.14 s, 1.40 s]) and CT (interquartile range: [0.72 s, 0.86 s]),
while a motion capture system measured SL (interquartile range: [2.11 m, 2.86 m])
and SV (interquartile range: [1.55 m/s, 2.23 m/s]). The plots include lines of bias,
upper and lower 95% limits of agreement (LOA), and the line of equality (zero error).
These plots indicated no significant relationship between the measurement errors of
the developed IMU-based methods and the magnitudes of the measured temporal and
spatial parameters.

relatively higher errors in this study compared to the previously mentioned study

were due to three factors:

1. Lack of a foot-flat period in ice skating: The proposed methods for skater posi-
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tion estimation benefited from velocity correction only once at the end of each

measurement trial, while the ZUPT technique in gait analysis can be imple-

mented during the foot-flat period in each gait cycle [93].

2. Lack of familiarity with the synthetic ice: The skaters, even higher calibre

skaters, may not have much experience with synthetic ice skating, and thus,

they skated less consistently compared to real ice.

3. Skating in a shorter skating area requires faster acceleration and deceleration

compared to skating on a standard ice rink [39], where the players tend to skate.

Hence, skating on a 14m-length ice rink could result in more inconsistency in

the participants’ skating.

Due to the factors above, the performance of the proposed methods implemented for

estimating the spatial and temporal parameters of ice skating was more inconsistent

compared to gait or real ice skating. Thus, the standard deviation of obtained errors

was larger than those previously reported for gait or real ice skating. Finally, similar

to the findings in a gait analysis study [107], skate acceleration was the most effective

time series for on-off ice event detection. Also, to estimate spatial parameters, the

suggested methods work more precisely on the pelvis-mounted IMU readouts com-

pared to the readouts from shank- and skate-mounted IMUs. Therefore, only the

three IMUs mounted on the skates and pelvis are recommended for estimating the

temporal and spatial parameters of ice skaters in forward striding.

3.4.1 Temporal parameters estimation using skate-mounted
IMUs

IMU-based systems have been widely used for temporal event detection in gait analy-

sis and have advantages over other devices such as pressure insoles [107]. The pressure

insole has been validated for force measurement and temporal event detection during

gait [110, 114], and in this study, we carefully placed them in skates and used them as
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a reference for short-term trials. Yet, the insoles might not be suitable for long-term

skating trials due to: i) their slippage in the skates during long-term dynamic motions

and ii) the inconvenience of carrying a data logger and batteries in a belt connected

to the insoles via cables.

The temporal events (SS and BO) detected using IMU readouts showed high accu-

racy and precision (errors, on average, around one sampling period obtained by T1,

T2, and T4 to detect SS and T3 in detecting BO). The methods (T1–T4) that used

the upward and forward accelerations of the skate to detect SS and BO were more

effective than those that used angular velocities to detect SS and BO (T5, T6, T9,

and T10). Implemented methods from gait analysis (T9 and T10) strongly depend

on the false positive or false negative detection and the chain of the events detected

by these methods. Although these methods were comparably precise in skating event

detection, false positive or false negative detection (T9 and T10) of one event influ-

ences the proceeding event detections. As a result, the effectiveness of these methods

(T9 and T10) requires a repetitive skating pattern leading to repetitive time series

all over the trial, which may not be easily achievable, particularly in lower calibre

skaters. In summary, the most effective methods were T1, T2, and T4 in finding SS

events and T3, T2, and T1 in detecting BO events in skating when skate-mounted

IMUs’ readouts were used. Also, the skate-mounted IMUs’ readout outperformed the

shank-mounted IMUs’ readout in temporal events detection (i.e., T1-T4, T7, T8, and

T10 compared to the others). As a result, only the two skate-mounted IMUs are

recommended for detecting bilateral skating temporal events.

3.4.2 Spatial parameters estimation using a pelvis-mounted
IMU versus skate-mounted IMUs

Four methods were proposed and implemented to remove drifts in the acceleration and

velocity time series toward estimating the skater’s trajectory using the IMUs recorded

on the skater’s body. Methods S1–S3 improved the precision of SL estimation by up

42



to 60% compared to no correction scenario. Also, they required only a 0.5-sec resting

period, making them implementable when there is only one short quiet standing before

the motion. On the other hand, Method S4, which removed drifts and corrected the

velocity of the pelvis-mounted IMU using the resting periods at the beginning and

end of each trial, outperforms the other methods. The relative error obtained by S4

was comparable to those reported in the literature for gait analysis using the ZUPT

algorithm [93, 107, 115].

Furthermore, removing the acceleration’s DC offset (calculated at the beginning of

the trial in S1) considerably reduced the SL estimation error, and none of the added

noise estimation methods, i.e., white noise and discreet wavelet transform (DWT)

details, in S2 and S3 further reduced the SL estimation errors. This was evident

by the Pearson’s correlation coefficient of 0.99 between SL obtained by S1 and SL

obtained by S2 and S3. In summary, the acceleration obtained by the pelvis-mounted

IMU corrected by S4, among the other IMUs and methods, obtained the most precise

SL estimation. Also, according to the Bland-Altman plots (Figure 3.4), none of the

observed estimation errors were a function of the magnitude of the temporal and

spatial parameters. In summary, to estimate the temporal and spatial parameters

in skating, two skate-mounted IMUs—for temporal event detection—and one pelvis-

mounted IMU—for spatial parameter estimation—are recommended.

3.4.3 Limitations

Development and validation of the proposed methods to estimate the temporal and

spatial parameters of ice skating have potential limitations. First, unlike event detec-

tion algorithms developed for gait analysis [107], the norm of acceleration and angular

velocity measured by IMUs were less effective in detecting the temporal events of skat-

ing. Therefore, acceleration time series were used in the forward or upward directions

for temporal event detection, and thus, the obtained accuracy and precision can be

affected by the misalignment of the IMUs relative to the skate. Second, extrinsic fac-
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tors such as temperature, which is different on ice compared to the lab’s temperature,

can influence the value of IMU readouts. However, they can hardly affect the negative

and positive peaks of the IMU readouts [107] used in the developed event detection

methods. Third, our proposed methods were validated only in 14-meter trials and

forward skating slower than 2.63 m/s. Future studies are needed to investigate the

validation of our proposed methods for the measurement of temporal and spatial pa-

rameters of ice skating in longer distances, faster skating, and other skating types such

as turning. Yet, this study showed that methods S1–S3 by using only 0.5-sec resting

periods could significantly enhance the stride length estimation precision, at least in

short-term (i.e., 8 sec) forward striding experiments and the observed errors in esti-

mating temporal and spatial parameters were independent of skating speed. Fourth,

identification, modelling, and eliminating other sources of error during skating can

promise better precision and accuracy in IMU position estimation in miscellaneous

skating types in longer experiments. Finally, the effectiveness of IMU pelvis-based

methods for temporal event detection can be further investigated in future studies.

3.5 Conclusions

For the first time, novel methods were proposed for estimating the temporal and spa-

tial parameters of ice skating using wearable IMUs and their accuracy and precision

were validated against the in-lab reference systems. Among different sensor configu-

rations, the optimal set of IMUs for this purpose consists of two skate-mounted IMUs

(for temporal parameters measurement) and one pelvis-mounted IMU (for spatial

parameters measurement). The proposed methods estimated the ST, CT, SL, and

SV of the ice skaters with relative errors close to those previously reported for gait

analysis. The proposed methods detected SS and BO within 0.01-sec accuracy using

a skate-mounted IMU readout. We improved the SL estimation precision between

53% and 88% using a pelvis-mounted IMU readout. The next step toward developing

this wearable technology is to validate the 3D joint angles obtained by the IMUs.
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Table 3.2: The skater’s velocity and trajectory are obtained by time integration and double-
integration of the free acceleration obtained by the pelvis-mounted IMU. Methods were originally
proposed (S1 to S4) to remove the drift in these integration processes.

Method Procedure

S1

i. Calculate the mean of free acceleration value in the 0.5-sec window resting period
at the beginning of the trial right before the motion and subtract its representation
in sensor frames from the raw acceleration time series and store it as corrected
acceleration time series

ii. Calculate the corrected free acceleration (during motion) using the corrected accel-
eration time series (output of S1.i) and the sensor orientation

iii. Obtain trajectory using double-time integration of the corrected free acceleration

S2

i. Similar to S1.i
ii. Generate white Gaussian noise using a MATLAB wgn function (input arguments:

the signal-to-noise ratio: -15 decibels (dB), and its length equal to the sensor ac-
celeration time series). Then, scale it to match the corrected sensor acceleration
amplitude range in the selected resting period. Afterward, subtract the obtained
output from the corrected sensor acceleration time series and store it as corrected
acceleration time series

iii. Calculate the corrected free acceleration (during motion) using the corrected accel-
eration time series (output of S2.ii) and the sensor orientation

iv. Similar to S1.iii

S3

i. Similar to S1.i
ii. Apply DWT to the corrected sensor acceleration (output of S3.i). Then, remove

the first three DWT’s (discrete wavelet transform) details coefficients utilizing the
Coiflet wavelet basis function from the whole time series and store it as corrected
acceleration time series

iii. Calculate the corrected free acceleration (during motion) using the corrected accel-
eration time series (output of S3.ii) and the sensor orientation

iv. Similar to S1.iii

S4

i. Calculate velocity using time integration of free acceleration
ii. Estimate the noise profile using two resting periods at the beginning and end of each

trial (right before and after the motion and with a length of at least 3 secs), using
piecewise cubic Hermite interpolating polynomial curve fitting and subtracting it
from the output of S4.i and store it as corrected velocity

iii. Obtain trajectory using time integration of corrected velocity (output of S4.ii)
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Chapter 4

Assessment of three-dimensional
kinematics of high- and low-calibre
hockey skaters on synthetic ice
using wearable sensors

In this chapter, we calculate and experimentally validate the 3D angles of lower limb

joints of hockey skaters obtained by inertial measurement units and explore the ef-

fectiveness of the on-ice distinctive features measured using these wearable sensors in

differentiating low- and high-calibre skaters.

A. Khandan, R. Fathian, J. Carey, and H. Rouhani, ”Assessment of Three-Dimensional

Kinematics of High- and Low-Calibre Hockey Skaters on Synthetic Ice Using Wearable

Sensors,” Sensors, vol. 23, no. 1, pp. 334, Dec. 2022.

4.1 Introduction

One of the key components of ice hockey players’ skills is skating [1, 116]. Similar to

other sports activities, skating has traditionally been assessed by video and motion

capture cameras [7, 78, 117]. These cameras have been used to study two-dimensional

(2D) or three-dimensional (3D) kinematics of the lower-limb joints of individuals

skating. A setup of digital video cameras was used to obtain 2D or 3D joint angles on

ice [4, 75, 78] or on a skating treadmill [8, 37]. Also, in [4, 75, 76, 78], motion capture
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systems were used to obtain the kinematics of high- and low-calibre or male and female

high-calibre hockey players. Although these motion capture systems are precise and

taken as a reference system, their application is bound to in-lab measurements due

to their limited availability and capturing volume. Instead, wearable technology is

a trended and acclaimed alternative for performance assessment and can be used in

in-field measurements [53].

Wearable technologies like GPS and accelerometers measure essential kinematics

in team sports [6, 9, 46, 102, 118–120]. A 3D accelerometer enables researchers to

determine temporal events during ice hockey skating and also differentiate players in

terms of their skill levels [5, 6, 9]. However, neither 3D accelerometers alone nor GPS

can measure 3D joint angles. GPS works precisely in open-field sports; however, the

signals of GPS may be considerably affected by errors in indoor areas. Also, GPS

does not provide physiologically relevant information, such as the players’ phase of

play during ice hockey. Therefore, despite the wealth of accelerometers and GPS

measurements, they cannot provide inclusive biomechanical information for compre-

hensive on-ice assessments. Instead, inertial measurement unit (IMU) technology can

be used for on-ice athletics performance assessment, similar to their established ac-

ceptance in clinical outcome evaluations [49, 99, 107]. Moreover, IMUs’ readout can

precisely calculate the joint angles and temporal and spatial parameters of athletic

activities [13, 107] and potentially differentiate players according to their skill levels.

Biomechanical variances between high- and low-calibre players skating have been

emphasized to understand the relationship between skating biomechanics and play-

ers’ performance. Previous research has highlighted substantial differences between

groups of players with different skill levels in ice experiments [5, 76–78]. They have

found significant differences between 3D angles of lower limb joints and body center

of mass (CoM) movements between low- and high-calibre players. In another study,

Robbins et al. [73] used principal component analysis (PCA) to extract the most

significant features to differentiate high- and low-calibre players’ 3D joint angles in
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on-ice experiments. In these studies, parameters such as higher ankle plantar flex-

ion, knee extension at push-off, and higher hip flexion were found to be different in

high-calibre players’ skating compared to low-calibre players’ skating. These on-ice

calibre-based distinctive kinematic features (or simply distinctive features), however,

may not be distinctive on synthetic ice.

While most public ice rinks were closed due to COVID-19, synthetic ice showed to

be an alternative for skaters to exercise and be prepared for competitions and assists

coaches in monitoring their players remotely. Stidwill et al. [39] showed that the

gross movement patterns of skating on synthetic ice surfaces were similar to skating

on ice. However, they reported differences in the kinematics and postures of the

participants skating on synthetic ice compared to ice. Therefore, skating on synthetic

ice can also affect the distinctiveness of the on-ice distinctive features between high-

and low-calibre hockey skaters (or simply skaters) on synthetic ice. The objectives of

this study are to: 1) calculate the 3D angles of lower limb joints of participants skating

using IMUs, 2) experimentally validate the accuracy of the obtained angles against

those measured by a motion capture system, and 3) experimentally investigate if the

kinematic features of lower limb joints during skating on synthetic ice measured by

this wearable system can differentiate low- and high-calibre skaters. The outcome of

this technology will be an optimal set of wearable IMU sensors ready to be used in

on-ice and on-synthetic-ice experiments to measure the 3D kinematics of the skaters.

4.2 Methods

4.2.1 Participants

Twelve able-bodied individuals were recruited to participate in this study. By a K-

means clustering algorithm based on the participant’s years of ice skating experience,

they are clustered into two groups of six high-calibre skaters (age 24 ± 4 years,

height 164 ± 3 cm, body mass 66 ± 7 kg, ice skating experience 18 ± 4 years, four
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female and two male) and six low-calibre skaters (age 24 ± 4 years, height 174 ±

8 cm, body mass 72 ± 11 kg, ice skating experience 6 ± 6 years, two female and

four male). All participants were healthy individuals and could skate on synthetic

ice without trouble. They were informed of the experimental procedures and gave

informed written consent before the test. This study was approved by the University

of Alberta’s research ethics board (Pro00092821).

4.2.2 Experimental procedure

The tests were performed on a motion capture lab walkway covered with 14 × 2m2

synthetic ice panels. Five IMUs composed of accelerometers, gyroscopes, and magne-

tometers (Xsens Technologies, NL, full-scale ranges: acceleration: ±160m/s2, angular

velocity: 83± 2000 deg/s, and magnetic field: ±1.9Gauss, plate size: 10× 7 cm) were

placed on the pelvis, thighs, shanks, and hockey skates on the dominant legs of the

participants without constraining their movements (Figure 4.1). As the gold standard

for 3D joint angles, a motion capture system with 12 infrared cameras (eight Vero

and four Bonita, Vicon, UK) was used to obtain the 3D marker trajectories. These

markers were placed on the participant’s body’s anatomical landmarks following an

experimental protocol suggested by Cappozzo et al. ([121], Figure 4.2). The partic-

ipants were asked to skate until they confirmed that they were comfortable skating

on synthetic ice. Then, from a stationary position on one side of the synthetic ice

surface, they skated forward and stopped at the other end of the surface. This skating

trial was repeated five times, and marker trajectories and IMU readout were captured

simultaneously at a sampling frequency of 100 Hz.
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Figure 4.1: Four IMUs (orange boxes) were placed on the participants’ pelvis, shanks
and skate. Also, 14 retro-reflective markers were used for 3D joint angle estimation
using a motion capture system.

4.2.3 3D joint angles validation

IMU readouts, including the tri-axial gyroscope, accelerometer, and magnetometer

measurements, are used to obtain the sensor orientations using sensor fusion algo-

rithms [108, 122, 123]. These orientations are usually subject to uncertainties and

errors due to sensors’ biases and noises [108]. The sensor fusion algorithms address

these uncertainties and help obtain a more accurate sensor orientation used for 3D

joint angle estimation [123]. The 3D joint angles obtained in this study were estimated

using the sensor fusion algorithm developed and presented in the Xsens software pack-

age (MT manager [109]). In this study, the IMU readouts were first filtered using

a 4th-order low-pass Butterworth filter with a cut-off frequency of 15Hz. Then, the
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sensor orientations (also known as IMU frames) were obtained in lab global reference

frames using the retro-reflective markers fixed on the plates (plate orientations) and

sensor-to-plate orientations obtained following the procedure suggested in [50, 123,

124] (Figure 4.2). Next, the segment orientations were calculated using the corrected

sensor orientations of IMUs and sensor-to-body orientation obtained by sensor and

segment frames obtained from the plate and anatomical markers [121], respectively, at

the beginning of the capturing session [50, 123]. Finally, using the obtained segment

orientation, ankle, knee, and hip joint angles in the captured trials were calculated

and expressed by the joint coordinate system (JCS) [92]. At the same time, the 3D

joint angles were obtained using the markers placed on anatomical landmarks. The

flowchart of the 3D joint angles calculation using IMU readouts and validation of the

angles against those obtained by camera recordings as the reference system is shown

in Figure 4.2.

Finally, the Root mean square (RMS) between the 3D joint angles calculated from

the IMUs’ readout and the angles calculated from the reference system were obtained:

1. The RMS errors between IMU-based and camera recordings-based angles for

each trial of all participants were calculated,

2. The average of the RMS error was calculated over all trials of each participant,

and

3. The computed average value for each participant is presented as boxplots for

each 3D joint angle.

In the next step, using these validated angles and the on-ice distinctive parameters, a

supervised classification analysis was developed to differentiate low- and high-calibre

skaters’ profiles using the on-ice distinctive features.
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Figure 4.2: Flowchart of obtaining 3D joint angles of ice skating using IMU readouts
and comparing them with the ones obtained by a stationary motion capture system.

4.2.4 Calibre-based classification analysis

First, we experimentally investigated if the distinctive features measured by this wear-

able IMU system would be different between low- and high-calibre skaters on synthetic

ice. All the temporal events of skating were obtained based on the camera recordings

as the reference system in order to avoid mixing errors due to sensor orientation es-

timation and temporal event detection. Then, a Friedman’s test was used to verify

whether the distinctive features obtained from the literature studies (listed in Table

4.1) significantly differed between high- and low-calibre skaters skating in this exper-

iment. When a p-value was lower than or equal to 0.05, the feature was chosen to

classify high- and low-calibre skaters in this study. Then, the k-nearest neighbour

(KNN) model was used to classify high- and low-calibre skaters (Figure 4.3). This
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supervised classifier was selected because of its reliability, simplicity, and small sam-

ple size in this study. The KNN was implemented for k=1 to k=15 to classify high-

and low-calibre skaters using a cross-validation analysis using the following steps:

1. Each of the five trials of the participant was labelled according to the partici-

pant’s calibre,

2. Three participants’ data (25% of the data) were randomly selected and added

to the testing set, and the other participants’ data (75% of the data) were added

to the training set,

3. A KNN classification was trained for k = 1 to k = 15, and the sensitivity,

specificity, precision, and accuracy of these classifiers were calculated for the

testing sets,

4. Steps (1-3) were repeated 12 times so that each participant was added to the

testing set three times; and,

5. The average of all obtained sensitivity, specificity, precision, and accuracy for

these repeated measures was calculated for each k.

Alternatively, while preserving the essential information, a principal components anal-

ysis (PCA) was used to optimize the feature space dimensions used in the cross-

validation analysis. The best three components obtained from the PCA on on-ice

distinctive features were selected as the new feature space of the KNN classification,

and steps (1-5) were repeated (Figure 4.3).
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Table 4.1: On-ice distinctive features that differentiate high- and low-calibre hockey
players on ice are listed here. The Friedman test was used to investigate whether
they significantly differ in high- and low-calibre skating on synthetic ice experiments.
The features with a p-value lower than or equal to 0.05 was labelled by an asterisk
(*) and were used to classify high- and low-calibre skaters using KNN (Table 4.1).

Features Friedman test (p-value)

Dorsiflexion range* 0.03

Ankle adduction at the end of push-off instant 0.80

Hip flexion in initial contact instant 0.67

Hip adduction in push-off instant* 0.03

Hip adduction at initial contact instant 0.15

Dorsiflexion in push-off instant 0.39

Knee flexion in push-off instant* 0.03

Hip flexion average 0.73

The interquartile range of CoM1 motion2 in the body
mediolateral plane

0.23

Range of CoM motion in the body’s mediolateral plane 0.67

The interquartile range of CoM1 motion2 in the body
sagittal plane

0.73

Range of CoM motion in the body sagittal plane 0.67

4.3 Results

4.3.1 3D joint angles validation

Sixty measurement trials from the twelve participants, five trials for each, were ob-

tained (Figure 4.4); one complete skate stride of the dominant leg of the participants is

available in each trial. According to Figure 4.5, the maximum average RMS errors of

the lower limb 3D joint angles during skating obtained by IMUs readout against those

obtained by camera recordings across different joints was 5 deg (knee adduction).
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Figure 4.4: Exemplar 3D lower limb joint angles during five skating trials of a participant obtained from
IMU readouts. Skate strikes were indicated at 0% and 100% in the graph, and the vertical dashed line
represents the blades-off instant.
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Figure 4.5: Root mean square (RMS) errors between the 3D angles obtained by IMUs
readout and those obtained using camera recordings (as the reference system). First,
the RMS error was attained between IMU-based and motion capture-based angles for
each trial. Then, these values were averaged over all trials of each participant. Then,
the RMS of all the participants’ obtained average values is presented as boxplots.

4.3.2 Calibre-based classification analysis

Based on a Friedman’s test, only three out of 12 on-ice distinctive features were dif-

ferent between low- and high-calibre skaters skating, based on 3D lower limb joint

angles during skating on synthetic ice (Table 4.1, p-value < 0.05): (i) ankle dorsiflex-

ion range, (ii) hip adduction angle in push-off instant, and (iii) knee flexion angle in

a push-off instant, referred to hereafter as selected features. When the KNN classifi-

cation with k varying from 1 to 15 was used based on these three selected features to

differentiate high-calibre skaters from low-calibre skaters, the classifiers’ sensitivity,

specificity, precision, and accuracy ranged from 46% to 67%, 61% to 86%, 47% to

67%, and 59% to 75%, respectively (Table 2). Additionally, using PCA’s first three
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principal components implemented on these three selected features, the classifiers’

sensitivity, specificity, precision, and accuracy ranged from 46% to 71%, 58% to 78%,

53% to 58%, and 68% to 74%, respectively (Table 4.2).

Table 4.2: The sensitivity, specificity, accuracy, and precision from a cross-validation
analysis using the KNN models with k=1 to k=15 in classifying high- and low-calibre
skaters. The feature spaces of the KNN models are either selected kinematic features
of lower limb joint motions, obtained from Table 1, or the best three components
obtained from the PCA on on-ice distinctive features.

K
Sensitivity

(%)
Specificity

(%)
Accuracy

(%)
Precision

(%)

Using the selected
features

1 59 86 64 75

3 67 82 67 71

5 60 72 58 69

7 50 72 54 70

9 46 70 51 70

11 52 61 50 63

13 50 61 47 59

15 50 61 47 68

The three best
features obtained
from PCA

1 59 86 64 75

3 61 60 55 68

5 61 66 57 70

7 54 68 54 69

9 53 75 57 74

11 48 73 53 69

13 48 72 53 70

15 46 78 55 74
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4.4 Discussion

The 3D joint angles of ice skating were obtained by wearable IMUs and cross-validated

against the angles obtained by a motion capture system. The accuracy of the 3D joint

angles in synthetic ice skating (less than 5 deg of error) was comparable with those

reported in gait analysis as a well-studied application of IMUs (1 to 4 deg [13, 125]).

The slightly higher errors compared to gait analysis can be due to the higher range

of motions of lower limb joints in ice skating. The 3D joint angles of the lower limbs

of low- and high-calibre skater groups showed significant differences in several dis-

tinctive features (listed in Table 4.1). Nevertheless, in our experiments on synthetic

ice, only one-fourth of these on-ice distinctive features showed a significant difference

between lower limb joint angles of high- and low-calibre skaters. For instance, hip

adduction at initial contact – known to be effective in most on-ice studies [5, 73, 77],

was not significantly different between high- and low-calibre skaters in this study. We

concluded that skating on synthetic ice altered the kinematics of the participants’

lower limbs compared to ice such that most of the on-ice distinctive features were no

longer different between low- and high-calibre skaters on synthetic ice. Concurrently,

it was shown that skating on synthetic ice changes the skaters’ kinematics and tem-

poral and spatial parameters compared to on-ice skating [126] and lack of familiarity,

shorter skating distance, and different surface friction coefficients were introduced as

the possible factors:

1. Lack of familiarity with skating on synthetic ice may have affected the skating

patterns of the participants since most of the study’s participants, even high-

calibre ones, had not had much experience with synthetic ice skating prior to

the skating sessions,

2. Skating on a shorter distance – here, a 14m-distance – requires faster accelera-

tion and deceleration than real ice skating [39], which could affect the skating

patterns of the participants on the synthetic surfaces.
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3. The reported surface-skates blades friction coefficient of the synthetic surfaces

(0.27-0.37) is higher than the reported ice skating surfaces (0.002 to 0.007) [39,

127–129].

Furthermore, even the three best distinctive features could not increase the accuracy

and sensitivity of the KNN models by more than 64% and 53%, respectively. Even the

first three principal components obtained from the feature space could not increase the

accuracy and sensitivity by more than 65% and 53%, respectively, which are almost

the same as the previously selected feature space. Therefore, a newly updated feature

space extracted from a larger synthetic ice skating sample—from both male and female

ice skaters—is required in future studies to achieve improved KNN performance on

these synthetic surfaces.

One of the limitations of this study was the small sample size. However, the study’s

sample size was sufficient for the objective of this study and to observe significant

differences between the two groups (power = 0.88 using effect size F = 0.4, calculated

by G*Power 3 [130]). Second, the participants were asked not to hold hockey sticks

during their skating because of the lab’s safety issues. Not holding hockey sticks can

make a difference in the skaters’ skating patterns, which must be further investigated.

Third, comparing the kinematics of low- and high-calibre skaters on ice can support

the findings of this study and must be taken as a potential future direction. Fourth,

to validate the kinematics measured by the IMUs against the optical motion capture

system, we had to use the sensor-to-body frame alignment based on markers. Be-

cause we had to present the measurements of both systems in the same frame and

isolate only the IMUs’ orientation estimation error compared to the optical motion

capture system. In the field, however, one can use a functional calibration algorithm

(similar to our previous works [49] and [123]) that does not need recordings of an

optical motion capture system. Similarly, an algorithm to detect temporal events of

skating using IMUs should be used for in-field recordings. We recently proposed such
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algorithms in [19]. Fifth, the inconsistencies in the definition of low- and high-calibre

skaters can add more complexity to inter-study comparisons. Alternatively, obser-

vational indices using the camera recordings of participants’ skating or performance

questionnaires developed for on-ice skating analysis can make these comparisons more

consistent.

4.5 Conclusions

The first step toward improving hockey players’ efficiency in ice hockey matches and

training is accurate performance assessments, and wearable technology helps hockey

coaches do this assessment in a less intrusive way. In this study, 3D joint angles

of ice hockey skaters were obtained using an IMU-based wearable technology and

experimentally validated their accuracy against a camera-based motion capture sys-

tem. Further, a supervised learning algorithm was developed to classify low- and

high-calibre skaters’ kinematics using on-ice calibre-based distinctive features. We

discovered that skating on synthetic ice alters the skaters’ skating patterns such that

the on-ice distinctive features could not differentiate low- and high-calibre skaters

on synthetic ice with high accuracy and sensitivity. Characterizing the biomechan-

ics of skating on synthetic ice and comparing it with on-ice skating biomechanics is

important since it is an alternative to on-ice skating. The next step of this tech-

nology development would be using it on ice to analyze the player performance on

ice experiments. Using the output of this technology, skating coaches and trainers

can keep track of the skaters’ progress and improve their efficiency by assessing their

skating performance during training sessions and matches, even remotely. This wear-

able technology has the potential to assist hockey coaches in monitoring their players,

detecting their performance drop early, and predicting their perceived fatigue level.
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Figure 4.3: Flowchart of feature selection for KNN algorithms, checking the per-
formance of the algorithms utilizing the selected features or principal components
obtained by a PCA.
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Chapter 5

Variation of kinematic metrics with
perceived fatigue in ice skating
measured using wearable sensors

In this chapter, twenty-two kinematic metrics were developed based on wearable sen-

sors’ measurements, and their variation with perceived fatigue and skater calibre was

investigated during an intermittent skating experiment. This study also proposed a

novel approach to classify ice skaters based on recorded skating videos and implement-

ing optimal clustering algorithms, which has the potential to be implemented in sports

biomechanics research.

5.1 Introduction

Skating is the core skill upon which other hockey skills, including acceleration, stick

handling, shooting, and agility, are built [1]. Therefore, skating biomechanics assess-

ment can provide essential information about player performance in hockey. Hockey

and ice skating biomechanics have been studied using various tools, such as optical

motion capture systems, electromagnetic sensors, and wearable inertial measurement

units (IMU) [2, 19, 20, 30, 131].

Wearable IMUs, in particular, can be used to measure the skater’s Kinematics,

detect physical activity, and characterize players’ performance in large ice rinks and

thus have the potential to be widely used in fields [5, 6, 9, 19, 20]. Buckeridge et
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al. used a portable system composed of accelerometers, muscle activation sensors,

and force sensors to assess on-ice hockey players’ performance [5]. Also, Stetter et

al. developed an innovative approach to determine strides, ice contact, and swing

phases during ice hockey skating using a single accelerometer fixed to skates [6, 9].

Finally, Khandan et al. obtained skaters’ temporal and spatial parameters and 3D

joint angles with high accuracy and precision using wearable IMUs [19, 20]. These

recorded kinematic parameters obtained from wearable sensors can be used to detect

player performance drop or fatigue onset [52, 78].

Fatigue causes weariness, reduces alertness and concentration, and can increase

the player’s risk of injury, including ACL injury [18]. Hockey and ice skating are con-

sidered sports with a high risk of injury, and in-game fatigue is an important factor

when considering injury [16]. However, few biomechanical studies have investigated

performance fatigue mechanisms during skating [18, 67, 69], and none have compre-

hensively investigated the effect of fatigue on skaters’ Kinematics. For instance, joint

angle variability and inter-segment coordination were observed to indicate fatigue on-

set in ratcheting [40] and countermovement jump [102]. Fatigue can affect any skater’s

biomechanics, regardless of their skill level or experience [67]; however, its effect on

the skaters’ performance can be different between skaters of different calibre [68],

necessitating further investigation. During forward skating, inter-segment coordina-

tion, joint angles, temporal and spatial parameters, and center of mass movements

differed at some levels between high- and low-calibre players [5, 20, 73]. Nevertheless,

replicating these studies, inter-study comparisons, and investigating the fatigue effect

is challenging due to the subjective and not statistically supported definition of skill

level in the literature.

Current skill-based clustering approaches for skaters are frequently imprecise. Be-

ing a part of a university team or having certain years of skating experience or skating

speed has been the most common criterion for being considered a high-calibre player

[5, 73, 78]. However, interpreting these results and comparing them across studies
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is challenging for several reasons: 1) Membership in a university team or having

long-term experience or faster skating does not necessarily correlate with high per-

formance in all aspects of skating at the time of data acquisition, 2) There is no

statistical evidence to justify classifying skaters into only two or three distinct groups

is the optimum number of clusters, and 3) The significant differences in skills among

these groups have not been sufficiently studied. Thus, addressing these challenges in

clustering skaters is crucial for understanding how fatigue affects skaters of different

skill levels.

This study thus aimed to investigate how the body kinematics of skaters measured

on ice using wearable IMUs changes with fatigue and skill level in an intermittent

skating experiment and whether we can detect severe fatigue onset using body kine-

matics. For this purpose, we 1) developed a novel approach to classify ice skaters

based on the recorded skating videos, 2) introduced kinematic metrics recorded using

IMUs, and investigated their relationship with self-reported perceived fatigue during

an aerobic test considering the effect of players’ skill level, 3) investigated the kine-

matic metric’s variations with perceived fatigue among skaters of different calibres,

and 4) developed a machine learning method to detect the onset of severe fatigue by

observing these kinematic metrics.

5.2 Methods

5.2.1 Experimental procedure

Six IMUs (Xsens Technologies, The Netherlands, full-scale ranges are: acceleration:

±160 m/s2, angular velocity: ±2000 deg/s, and magnetic field: ±1.9 Gauss) were

placed on the trunk, pelvis, and skates of the participants and thigh and shank of

their dominant leg (Figure 5.1)). To minimize garment-to-skin motion artifact, each

participant was asked to wear tight-fitting pants or shorts, and the sensors were

placed on the skates and on either their skin or fitted pants. Before each experiment,
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participants did ten successive hip flexions and extensions and ten successive squats,

after five seconds of quiet standing, required by the protocol [132]. IMU readouts

recorded during these motions were used to calculate a sensor-to-segment rotation

matrix and find the body segments’ anatomical frame [123, 124]. IMU readouts during

the actual skating experiment were transformed into anatomical frames obtained via

this functional calibration procedure. The entire experimental procedure was adopted

from the multistage aerobic test (SMAT) [63] and modified due to the limitations of

our experimental setting: 1. The experimental procedure included a series of up to 15

skating stages. Each skating stage was composed of 10 sec of quiet standing and then

skating around the ice rink for one minute while the IMUs recorded the participants’

body motion at a sampling frequency of 100 Hz. 2. At the end of each stage, the

participants were asked to rate their perceived fatigue using a numeric fatigue rating

scale [95] (hereafter called Fatigue Index: FI), ranging from 0 (alertness vigorous) to

10 (extremely fatigued). 3. After a 30-second rest, they repeated this skating stage

around the ice rink at the same pace until they felt considerably fatigued (FI > 6.5).
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Figure 5.1: Six IMUs, coloured in orange, were placed on the participants’ trunk,
pelvis, skates, and thigh and shank of the dominant leg. Participants wore either
hockey or figure skates.

5.2.2 Participants

Nineteen ice skaters (age 26 ± 7 years, height 170 ± 10 cm, body mass 71 ± 12 kg)

participated in this study at our institution’s ice rink. This study was approved by

the research ethics board of the authors’ current institution, and all methods were
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performed in accordance with the relevant guidelines and regulations. All participants

were informed of the experimental procedures and gave informed written consent

before the experiment.

5.2.3 Clustering analysis

In this study, two hockey experts (certified by Hockey Canada) were asked to rate

the participant’s balance in the change of direction, stability, and fitness level from 0

to 5 [133] with an increment of 0.5 using the recorded videos from the experiments.

The experts rated participants’ performance from 0.5 to 4.5; none were rated 0 or

5 out of 5 in any item. Subsequently, employing the experts’ ratings, participants

were clustered using a k-means algorithm, while the optimal number of clusters was

determined through Silhouette analysis: A k-means algorithm with a varying k from

2 to 10 was used to cluster the participants into k groups. The Silhouette score, which

measures how well each point fits into its assigned cluster [134], was calculated for each

data point. The Silhouette score ranges from -1 to 1, with higher values indicating

better cluster assignments [134]. Then, the average Silhouette score was calculated

by averaging the Silhouette scores of all data points within that cluster configuration

for each number of clusters (i.e., k). The number of clusters maximizing the average

Silhouette score was obtained. Then, the final cluster assignment was obtained by

the k-means algorithm with this optimal cluster number (i.e., ko). This Silhouette

analysis showed that the optimal number of clusters (ko) for these participants was

two, meaning the participants can be optimally clustered into two groups of 7 low-

calibre (balance in the change of direction: 1.6 ± 0.9, stability: 1.5 ± 0.9, and fitness

level: 2.2 ± 0.3) and 12 high-calibre skaters (balance in the change of direction: 3.2 ±

0.5, stability: 3.2 ± 0.4, and fitness level: 3.6 ± 0.3), employing the experts’ rating.

Figure 5.2) shows the Silhouette scores of the k-means clustering algorithms with k

from 1 to 10.

67



Figure 5.2: Optimizing the number of clusters based on skaters’ calibre. Silhouette
score measures how well each point fits into its assigned cluster and was used to obtain
the optimum number of clusters (k).

5.2.4 Kinematic metrics

We calculated the kinematic metrics listed in the following using IMUs readouts based

on lower limb kinematics for the first time on ice, according to our previous works
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[19, 20]. We chose these kinematic metrics because they were mostly used in the

literature to characterize running and walking stability [135], inter-joint coordination

[131, 136], range of motion and acceleration [73, 78], motion jerkiness [73, 137], and

signal fluctuation and complexity [138] during the experiments.

Postural and step stability index

Postural stability index (PSI) and step stability index (SSI) were previously defined

based on the intrinsic mode functions (IMFs) using the obtained ensemble empirical

mode decomposition (EEMD [135]) of acceleration time series for gait analysis and

fall detection [135]. As the participant’s movement patterns got less stable, these

indices were expected to decrease. We slightly modified the original formulas [135] to

be applicable to skating in this study (Equations eq. (5.1) and eq. (5.2)).

PSI =
CI of IMF3

CI of IMF1 + CI of IMF2 + . . .+ CI of IMF6

(5.1)

SSI =
SD of IMF3

SD of IMF1 + SD of IMF2 + SD of IMF3

(5.2)

Where CI and SD are, respectively, the complexity index and the standard devia-

tion of each IMFs. IMF3 was selected as the dominant IMF because its frequency was

closely related to the frequency of skating strides (which is 1.4-2.0 Hz [38]) for differ-

ent skating speeds). PSI and SSI were calculated for pelvis acceleration time series

in superior/inferior (SI), anterior/posterior (AP), and mediolateral (ML) directions.

Impact acceleration on upper body

The upper body’s impact accelerations (or simply Impact) reflect the shock that

the upper body experiences with each stride and were defined as the size of the

acceleration peak generated by a skate strike, measured on the upper body [52].

Long runs were discovered to increase the Impact, which raised the risk of injury [52].

In the running, the body did not reduce the shock caused by the foot strike in the

later stages, which was seen as the body’s larger acceleration peaks [52]. Similarly,

in ice skating, as time went by, we expected to observe larger impacts as skaters got

fatigued.
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Trunk forward inclination

Trunk forward inclination (TFI) was defined as the angle between the upper body of

the skaters and the vertical line. In skating, the forward lean helps optimize weight

distribution and allows for proper leg extension [18]. Contrary to running [52], in

skating, we expected that as the participants felt fatigued, the skaters’ upper bodies

became more upright [18], possibly due to the decreased muscle control and loss of

focus.

Multi-scale entropy

Multi-scale entropy (MSE) identifies the differences in fluctuations of a time series

and extends sample entropy (SE) to multiple time scales or signal resolutions when

the time scale of relevance is unidentified [138–140]. MSE’s biomechanics application

has mainly focused on detecting driving fatigue using electroencephalogram signals

[141], and its application in human movement biomechanics has been limited. We

expected the complexity of the 3D joint angles to increase as time went by during

skating, and therefore, the higher value of MSE was anticipated at the later stages of

the experiment.

Continuous relative phase

The following steps were implemented to calculate the continuous relative phase

(CRP) between two segments angles suggested by [142]: 1) The amplitudes of the

angles were centred around zero, 2) Using the Hilbert transform, the analytic signals

were created for the two time series, 3) The phase angle was calculated based on

the analytic signals, 4) The CRP was obtained by subtracting these phase angles,

and 5) The root mean square of the obtained CRP was measured during each stage.

This metric was obtained for 1) shank angle in the sagittal plane (shank-sagittal)

vs. thigh angle in the sagittal plane (thigh-sagittal), 2) shank angle in the sagittal

plane (shank-sagittal) vs. thigh angle in the frontal plane (thigh-frontal), and 3)

foot angle in the sagittal plane (foot-sagittal) vs. shank angle in the sagittal plane

(shank-sagittal). These are known to be the most significant segment angles used
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for the biomechanical characterization of ice skating [73]. A CRP analysis studies

inter-segment coordination [142], and we expected the inter-segment coordination to

decrease as participants got fatigued during the experiment, and therefore, a higher

root mean square of CRP was anticipated at the later skating stages.

5.2.5 Statistical analysis

In the first step, the relationship between perceived fatigue and calibre on the intro-

duced kinematic metrics was investigated by employing a linear mixed model. A linear

mixed model analyzed data considering fixed and random effects and estimated the

variance for each effect using R. In linear mixed models, fixed effects represent pop-

ulation parameters assumed to be present in each collected data point, and random

effects are sample-dependent random variables. Then, a machine learning algorithm

was employed to detect the onset of severe fatigue using the proposed kinematic met-

rics. These steps are described in the sections below and depicted as a flowchart in

Figure 5.3.
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Figure 5.3: The flowchart of the data analysis steps of this study (see highlighted in bold in
the flowchart). * The algorithms to obtain the temporal and spatial parameters, the segment
Kinematics, and the 3D joint angles of skating based on the IMU readouts were previously
described and validated [19, 20]. ** The calibration experiments consisted of ten successive
hip flexions and extensions and ten successive squats after five seconds of quiet standing,
which we asked the participants to perform prior to the skating experiments [124, 132].

5.2.6 Change of kinematic metrics with perceived fatigue
(perceived fatigue-performance relationship)

In this part, fatigue index (or FI) and participants’ calibre obtained by clustering

algorithm were taken as the model’s fixed and random effects, respectively. This

study used the random-intercept/random-slopes approach to determine each group’s
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regression lines. Then, the slope of these regression lines was 1) multiplied by the

FI range, 2) normalized by each metric’s range, and 3) reported in percentage as the

metric’s normalized change during the experiment.

5.2.7 Change of kinematic metrics with calibre (calibre ef-
fect)

Then, in the next step, the fatigue index (FI) was taken as the random effect, while

the participants’ calibre was the model’s fixed effect. Similar to the previous step, this

study used the random-intercept/random-slopes approach to determine the corrected

regression line of the metrics versus calibre. The slope of these regression lines was

1) normalized by each metric’s range and 2) reported in percentage as the metric’s

normalized inter-calibre change.

5.2.8 Severe fatigue onset prediction using a gradient-boosting
method

Gradient boosting methods (GBMs) perform favourably for classifying tabular data

due to their architecture for handling structured data with many features [143]. In this

study, LightGBM [144] was fed with tabular data containing our calculated kinematic

metrics and participants’ calibre during each stage. The dataset was split into training

and test sets using a four-fold leave-one-out cross-validation where each fold contained

the data of four to six participants randomly grouped together. Finally, each data

row was labelled as 1 (indicating severe fatigue, FI > 6) or 0.

5.3 Results

5.3.1 Perceived fatigue-performance relationship

A linear mixed model assessed the normalized changes of the kinematic metrics with

perceived fatigue. As an exemplar figure, Figure 5.4 visualizes the data points and

regression line for each group as well as the model’s regression line for participants in
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all groups with the inter-calibre error around the regression line. Table 5.1 shows that

TFI, Impact, MSE for hip adduction (HA) angle, MSE for hip flexion (HF) angle,

CRP for shank-sagittal vs. thigh-sagittal, CRP for foot-sagittal vs. shank-sagittal, in-

terquartile range (IQR) of pelvis acceleration and motion jerk in the superior-inferior

(SI) direction, and PSI in the SI direction had an absolute normalized change of higher

than 5% for over all participants (6 to 17% of absolute normalized changes). Impact

and PSI did not show an absolute normalized change higher than 5% for low-calibre

skaters among these metrics. On the other hand, MSE for ankle dorsiflexion (AD)

showed an absolute normalized change of higher than 5% only for low-calibre skaters.

Other metrics did not show consistent change with perceived fatigue.
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Figure 5.4: A representative presentation of a kinematic metric (MSE) against fa-
tigue index (FI) grouped by the participants’ calibre (a) and for all participants (b)
considering the inter-group variations between skaters of different calibre.
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Table 5.1: The percentage of increase in the kinematics metrics by fatigue index (FI) during the session
(Fatigue effect) or being a high-calibre vs. low-calibre skater (Calibre effect), normalized with the metric
range in all of the experiments, was obtained by the linear mixed model.

Kinematic
metric

Component
Fatigue effect

calibre effect
Low-
calibre

High-
calibre

All
calibres

PSI

AP 2% 4% 3% 8%

ML -2% 4% 2% 5%

SI -1% -9% -6% -7%

SSI

AP -2% 1% 0% -6%

ML 1% 0% 0% -6%

SI 2% 2% 2% 6%

IQR of pelvis
acceleration

AP 4% 4% 4% 4%

ML 1% 3% 2% 4%

SI 9% 8% 8% 13%

Norm 1% 1% 1% 8%

IQR of pelvis
motion jerk

AP 3% 3% 3% 4%

ML 2% 2% 2% 2%

SI 2% 5% 4% 6%

TFI 17% 17% 17% 6%

Impact 3% 12% 9% 18%

MSE

HF 12% 6% 8% -2%

HA 9% 10% 10% -13%

KF -6% 8% 3% -5%

AD 11% -2% 2% -19%

CRP

shank-sagittal vs. thigh-sagittal 6% 6% 6% 2%

shank-sagittal vs. thigh-frontal 11% 7% 8% 2%

foot-sagittal vs. shank-sagittal -1% -2% -2% -4%

76



5.3.2 Calibre effect

Intergroup variation analysis showed a significant difference (>5% variation) between

high- and low-calibre skaters in the following kinematic metrics: IQR of pelvis acceler-

ation and pelvis motion jerk in the SI direction, TFI, Impact, MSE, and PSI and SSI

of high-calibre in all directions. PSI (SSI) was higher (lower) in high-calibre skaters

in AP and ML directions in contrast to the SI direction, where low-calibre skaters

had higher PSI (lower SSI). Again, only in the SI direction was the IQR of pelvis

acceleration and pelvis motion jerk significantly higher in high-calibre skaters. Addi-

tionally, Impact and TFI were higher, and MSE was generally lower in high-calibre

skaters.

5.3.3 Severe fatigue onset prediction

In a total of 196 stages captured from 19 participants, the average precision of 78%,

the sensitivity of 81%, the accuracy of 74%, and the F1 score of 78% were obtained by

LightGBM in detecting severe fatigue during skating. Figure 5.5 shows the contribu-

tion of each kinematic metric as a feature input for LightGBM. Also, it was observed

that the distribution of feature importance represented was consistent among fea-

tures and had higher variation represented by its relatively high standard deviation.

The kinematic metrics that contributed the most to detecting severe fatigue onset

(see Figure 5.5) were not necessarily the same ones that showed change with fatigue

based on the linear mixed model (see Table 5.1). Only TFI, MSE for hip flexion

and hip adduction, and IQR of pelvis acceleration in the SI direction both showed

change with fatigue in an aerobic skating test and contributed much to detecting

severe fatigue onset.
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Figure 5.5: Feature importance in the LightGBM model to predict severe fatigue onset (FI
> 6) expressed as percentage using the kinematic metric as the model’s features. Mean and
standard deviation are shown as horizontal bar plots. Calibre and MSE for knee flexion,
hip adduction, hip flexion, PSI in the SI direction, SSI in the AP direction, IQR of pelvis
acceleration in the AP and ML directions, and TFI altogether presented more than 50% of
feature importance.

5.4 Discussion

In this study, ice skaters’ performance quantified by kinematic metrics obtained from

the output of wearable IMUs was investigated over a fatiguing aerobic test. Below,

we discuss the original contributions and main findings of this study.
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5.4.1 Clustering analysis

Reliable clustering of the skaters into groups based on their calibre is a prerequisite to

investigating any association between skating kinematics and skaters’ skills in the ex-

periments. We proposed a novel approach to cluster the study’s participants into two

groups based on their skills and performance in their experiments using the recorded

skating videos rated by two hockey experts. Instead of the less precise and subjective

approach of clustering ice skaters into only two or three skill-based groups, our pro-

posed clustering approach combined the stability, balance in the change of direction

and fitness scores rated by experts and formed clusters to maximize the distinction

between the groups determined by a k-means clustering algorithm. Thus, using the

experts’ ratings, the Silhouette score analysis discovered that the optimized number

of clusters in the k-means algorithm was two, and the participants can be optimally

clustered into two groups with distinct performance. The proposed algorithm also

has the potential to be the new standard for clustering players not only in ice hockey

and ice skating but in all sports applications.

5.4.2 Perceived fatigue-performance relationship

We used a linear mixed model to characterize the change of each kinematic metric

as an indicator of performance with perceived fatigue. Performance and perceived

fatigue are intertwined, driven by different factors, including intermittent tests, and

influenced by various factors, including skill level [68]. The linear mixed model finds

the relationship between variables while accounting for the variance introduced by

other fixed and random effects. Using this model, kinematic metrics TFI, Impact,

MSE for hip adduction (HA) angle, MSE for hip flexion (HF) angle, CRP for shank-

sagittal vs. thigh-sagittal, and CRP for foot-sagittal vs. shank-sagittal displayed the

largest relative changes with perceived fatigue, indicating that these metrics could

serve as potential fatigue indicators during the ice skating aerobic experiments. Con-

sistent with this finding, Coweley et al. discovered that the pattern of inter-joint
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coordination—measured by CRP—changed when participants felt fatigued during

ratcheting [131]. In our study, TFI decreased during the experiment, consistent with

the other observations of fatigued ice skaters and hockey [145]. The acceleration im-

pact, in our study and similar to running [52], increased in high-calibre skaters as

time passed, and the participant felt fatigued during the skating experiment. Finally,

the increase in MSE in the 3D joint angles indicated higher complexity, fluctuations,

and potentially irregularity and instability in the later skating stages of participants

when they felt fatigued. MSE changing pattern, however, was not consistent among

all joint angles and was different in knee flexions in low-calibre skaters. Flexing knees

in ice skating helps them to maintain balance and exert more power during push-offs.

Therefore, lower knee flexion fluctuation measured by MSE during the later stages

can indicate the existence of a learning curve in the skating of low-calibre skaters as

time passed.

Furthermore, PSI decrease in the SI direction showed that the participants’ stabil-

ity was compromised [135] in this direction as time went by in the skating experiments.

Concurrently, an increase in the IQR of pelvis acceleration also suggests that stability

was diminished in the SI direction as participants’ fatigue set in. Additionally, PSI in

the SI direction in the low-calibre skaters showed less variation with fatigue compared

to the high-calibre skaters, probably due to the lower skating speed and differences

in the dominant frequency during their skating, affecting this frequency-based met-

ric. However, both PSI and IQR of pelvis acceleration in other directions did not

exhibit significant changes, indicating lesser variation in stability in other directions.

Comparably, the variations of SSI and IQR of the jerk measurement variations were

small as the participants felt fatigued, meaning that they were not the best indicator

of fatigue during skating.
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5.4.3 Calibre effect

The linear mixed model not only analyzed the relationship of perceived fatigue with

the kinematic metrics but also enabled the investigation of the participant’s calibre

effect on these metrics. We observed that TFI, PSI, and MSE could not only set

apart fatigued from non-fatigued skaters but also differentiate high-calibre skaters

from low-calibre ones. As expected, PSI in AP and ML directions correlated to

higher movement stability in high-calibre players in those directions. However, PSI

in the SI direction was lower in high-calibre players, which can be due to the spikes

in the acceleration in the SI direction caused by skate-ice contacts. As shown by

acceleration Impact, there was a significant normalized difference between high- and

low-calibre skaters, with a higher increase in high-calibre skaters as they felt fatigued.

Therefore, high-calibre skaters experienced higher acceleration impact and, therefore,

higher forces on their joints and bones during skating, which can lead to increased

risk of injury in the long run [52]. This higher acceleration impact was also observable

in increased motion jerks in high-calibre skaters which must be further analyzed in

the future and, if deemed necessary, incorporated into training strategies. Finally,

contrary to this study, Robbins et al. observed different CRP patterns between

low- and high-calibre hockey players in an ice sprint test [73], possibly due to the

different definitions of calibre and different skating modalities, which highlights the

importance of a consistent clustering approach suggested in this study. Although

many of these kinematic metrics change with fatigue, these slow changes might not

precisely detect the onset of severe fatigue. Therefore, a follow-up question would be

whether a combination of these metrics can predict the onset of severe fatigue during

a fatiguing aerobic test, which is discussed in the next section.

5.4.4 Severe fatigue onset prediction

We predicted the onset of severe fatigue using the kinematic metrics, as input fea-

tures, by a machine learning approach (i.e., LightGBM). Using proposed kinematic
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metrics, this method effectively predicted severe fatigue onset during the aerobic ice

skating test, with good (i.e., 70% or above) average accuracy, precision, and sensitiv-

ity. Among these kinematic metrics, calibre and MSE in knee flexion had the highest

feature importance. In GBMs, feature importance is defined based on the contribu-

tion of each feature to the reduction in the cost function[143, 144], and it assesses

how much each feature improves the model’s performance and interprets the model.

Therefore, contrary to the linear mixed model, the high importance of the calibre and

MSE in severe fatigue detection using the LightGBM model does not mean a high

correlation of these metrics with fatigue. For instance, while SSI in the AP direction

is another significant contributor to our GBM, this metric did not show significant

changes as time passed in the skating experiment.

Monitoring the body kinematics changes with perceived fatigue in ice skating us-

ing wearable IMU sensors has potential limitations. First, even though the GBMs

were designed to perform well on small sample sizes, the model’s performance can

be further enhanced by increasing the size and diversity of the data. For instance,

integrating professional skaters can broaden the study’s output to a more diverse

group of skaters. Second, the participants did not hold hockey sticks during their

skating due to the experiment’s ice rink limitations. Therefore, the results of this

study must be treated with caution for hockey players holding hockey sticks during

their skating trials. Third, this wearable technology’s output has been validated for

forward striding during a practice session. Thus, further investigation is required to

determine the applicability of this technology in real hockey games, as many deter-

mining factors can affect the collected data, such as game intensity, higher impacts,

time constraints, psychological factors, and variations in skating style. Fourth, the

application of wearable IMUs can be further expanded if the obtained kinematics and

temporal and spatial parameters of skating can be validated in various skating types

in longer experiments. Finally, since fatigue is a multifactorial experience, a more

comprehensive understanding of fatigue during ice skating can be gained by integrat-
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ing these kinematic metrics with non-kinematic metrics such as EMG and heart rate

and perceived fatigue ratings for future studies.

5.5 Conclusions

The concurrent study of perceived and performance fatigue will elucidate the intricate

relationships among different fatigue dimensions and thus enhance our understanding

of how these dimensions interact and are influenced by various modulating factors in

ice skating. In an aerobic skating test, we showed the relationship between perceived

and performance fatigue in skaters of different skill levels, where we showed how

proposed kinematic metrics could also indicate perceived fatigue. We also showed

how machine learning could detect the onset of severe fatigue using a combination

of kinematic metrics and observed that these kinematic metrics could predict severe

self-reported fatigue similarly across different skill levels. Objective biomechanical

assessment of ice skating can thus be extended to use for early detection of severe

fatigue onset, thereby decreasing the subsequent risk of fatigue-related injuries. Au-

tomatic onset detection of players’ fatigue and on-time substitution with fresh players

reduces the risk of injuries with chronic sequelae. Therefore, this wearable technology

can highlight the limitations of existing training strategies and thus help diminish in-

ternal forces on joints and bones during skating. These applications of our proposed

technology and measurement methodology must be further studied in the future.
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Chapter 6

A novel approach to assessing ice
skating sprint performance using
wearable sensors

In this chapter, we proposed an extended range of performance metrics obtained from

wearable sensors to assess skating performance in forward ice sprint tests. These

metrics showed evidence of validity against traditional skating performance metrics

in our experimental study. As such, they can enrich the assessments of ice skaters’

performance and provide a deeper insight into the relationship between off- and on-ice

skating parameters.

6.1 Introduction

The dynamic nature of ice skating requires well-coordinated body motion and neces-

sitates high aerobic and anaerobic fitness to perform high-speed but delicate on-ice

movements while balancing on a thin blade [1, 2, 40]. Faster sprints empower skaters

to outmaneuver their opponents; for example, they enable hockey players to catch and

cover effectively and gain an advantage in the race for the puck [40]. Faster sprints are

also crucial in figure skating, enabling them to execute intricate maneuvers, achieve

impressive jumps, and add dynamic elements to their performances [3, 60]. Skating

performance assessments allow for a more detailed and comprehensive assessment of

the skater’s technical proficiency and physical conditioning [2, 31]. Therefore, ice skat-
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ing sprint analysis allows us to comprehensively understand and characterize skating

mechanisms by considering the factors affecting skater performance in hockey and

figure skating.

Skating performance research has been performed to obtain two-dimensional (2D)

or three-dimensional (3D) kinematics of the lower-limb joints of skaters using sta-

tionary video cameras and motion capture systems, force transducers, and wearable

technology in different phases and speeds [6, 7]. For instance, Upjohn et al. and

Hellyar et al. used digital video cameras on a skating treadmill to determine hockey

players’ lower limb kinematics during forward skating [7, 117]. In other studies, no-

ticeable differences between the 3D joint kinematics of individuals of different sexes

and calibres were discovered in different hockey skating modalities [5, 6, 20]. However,

calibre, sex, and age are not the sole impacting factors on skaters’ performance. Skat-

ing types (i.e., figure or hockey skating) can also impact ice skaters’ performance in an

ice sprint test and have not been fully studied. However, there has been no compre-

hensive research on the impact of different impacting factors on skating biomechanics

in ice sprint tests.

While most ice skating studies predominantly concentrated on varsity-level to pro-

fessional hockey players, biomechanical assessment of figure skaters and average and

below-average recreational and younger skaters have usually been overlooked. In

hockey, 7% to 30% of all winter sports injuries are related to collegiate/youth-level

players [146, 147]. Understanding the biomechanics of recreational skaters can help

identify potential risk factors for skating injuries and help develop guidelines and

training programs to reduce injury risks [40, 146, 148]. Also, this understanding can

guide the design and improvement of skating gears to better suit figure and recre-

ational hockey skaters’ needs [30].

On-ice training can be limited due to costs and ice time availability, and off-ice

measurements such as countermovement jump (CMJ) have been a valuable tool to

enhance our understanding of and predict skaters’ on-ice performance before skating
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[81]. Researchers have discovered that the 40-yard dash, vertical jump, and CMJ are

key predictors of skating speed in different groups of hockey players, but with vary-

ing correlations based on age, sex, and skill level [21, 82, 84]. Yet, the relationship

between off-ice measurements, such as the CMJ, and a wide range of on-ice perfor-

mance metrics for figure and recreational hockey skaters remains unexplored. At the

same time, wearable inertial measurement units (IMU) technology has demonstrated

accurate measurements of the CMJ [102] and has been validated for capturing tem-

poral and spatial parameters and sensor orientations and kinematics across different

environments, including ice skating [19, 20, 44, 49, 108]. Therefore, IMU technol-

ogy could be used to assess skaters’ performance off and on ice comprehensively.

By investigating whether on-ice performance metrics and off-ice measurements (such

as CMJ), both measured by wearable IMUs, have significant relationships, we can

characterize the effectiveness of off-ice measurements in accurately predicting on-ice

performance. Additionally, this exploration will allow us to identify which specific

on-ice performance metrics are associated with particular off-ice training activities.

This study aimed to assess the effectiveness of wearable IMUs in evaluating skating

performance through on-ice measurement of a broad set of performance metrics during

ice sprint tests. This study, therefore, used wearable IMUs during forward ice sprint

tests to 1) calculate 3D joint angles and temporal and spatial parameters, 2) obtain

an extended set of performance metrics based on the skater’s kinematics, 3) assess the

variation of these metrics concerning participants’ calibre and skating types, and 4)

determine the effectiveness of these IMU-measured metrics during an ice sprint test

by evaluating their correlation with lower-body strength, assessed by CMJ height, as

an off-ice measure.
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6.2 Methods

6.2.1 Experimental procedure

Nineteen skaters of different calibre (Table 1) skated as fast as they could on an ice

rink. Six IMUs (Xsens Technologies, The Netherlands) were attached to the trunk,

pelvis, skates, and thigh and shank of the dominant leg of the participants. Prior

to each experiment and before putting on their skates, all participants performed

two CMJs off the ice. The jump height was determined using an IMU attached to

their pelvis, employing a validated algorithm [102]. The highest jump out of the two

attempts was recorded as the CMJ height. After a 5-minute warm-up period on the

ice, participants were asked to skate forward as fast as possible (sprint) from one

end of the testing area to the other without using a crossover start, taking up to

two minutes of active rest between each trial, according to Figure 1. This reciprocal

activity was repeated three times. Our previously validated algorithm [19] was used

for the detection of 219 skating strides for 19 participants.

Figure 6.1: Testing area experiment schematic: Participants skated forward as fast
as possible from one side to another without using a crossover start. Subsequently,
they were allowed one to two minutes for an active break on ice, depending on their
preference. After the break, this whole process was repeated twice.
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Table 6.1: Participants’ demographic information and expert rating.

Participant
Average expert rating

calibre Sex
Height
(cm)

Skating
typeStability Balance Fitness

1 1 1 2 LC M 174 HS

2 0.5 0.5 2 LC M 180 HS

3 4 4 4 HC M 174 HS

4 3 3 3.5 HC M 183 HS

5 4 4 4 HC F 164 FS

6 3 3 3.5 HC F 157 HS

7 3.5 3.5 3.5 HC F 160 HS

8 1 1 2 LC F 167 FS

9 2.5 2.5 2 LC M 178 HS

10 3.5 3 3.5 HC F 165 FS

11 3.5 3 3.5 HC M 180 HS

12 3 2.5 3 HC M 173 HS

13 1.5 1 2.5 LC M 188 HS

14 3.5 3 4 HC F 165 HS

15 2 1.5 2.5 LC F 156 FS

16 3 3 2.5 LC F 152 HS

17 3 3 3.5 HC F 170 HS

18 2.5 3 3.5 HC F 170 HS

19 2.5 3 3.5 HC M 180 HS

6.2.2 Optimized k-means clustering

Clustering skaters based on team status or years of experience in ice skating can lead

to imprecise and indistinct groupings. This imprecision complicates the interpreta-

tion of results and hinders consistent comparisons across different studies due to the

variability in how skill groups are defined. In this study, two hockey coaches (certi-

fied by Hockey Canada) were asked to rate the participant’s balance in the change
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of direction, stability, and fitness level from 0 to 5 using recorded videos from the

intermittent skating experiments. Subsequently, employing the coaches’ ratings, par-

ticipants were clustered using a k-means algorithm into two groups of 7 low-calibre

(height: 171 ± 13 cm, weight: 69 ± 10 kg, balance in the change of direction: 1.6 ±

0.9, stability: 1.5 ± 0.9, fitness level: 2.2 ± 0.3, three female, and four male) and 12

high-calibre skaters (height: 170 ± 8 cm, weight: 74 ± 16 kg, balance in the change

of direction: 3.2 ± 0.5, stability: 3.2 ± 0.4, fitness level: 3.6 ± 0.3, six female, and

six male), optimized by Silhouette analysis.

6.2.3 Primary performance metrics

Primary performance metrics were stride velocity, stride time, contact time, swing

time, and stride length, traditionally used to evaluate the overall performance of ice

skaters during sprint tests and can be utilized to rank the performance of different

ice skaters. We calculated metrics in the steady-state phase [5, 19, 20] using our

previously validated algorithms [19, 20].

6.2.4 Secondary performance metrics

Secondary performance metrics are not primarily used to assess the performance of

ice skaters during an ice sprint test but can contribute to a broader understanding of

sprint performance and can impact primary performance metrics. It has been discov-

ered that inter-segment coordination, center of mass movements, and morphology of

the 3D joint angles differed between varsity level and recreational hockey players [5,

40] during forward skating sprint tests and, thus, were also used to obtain secondary

performance metrics. Also, hip flexion, hip adduction, and knee flexion— among the

most significant angles for the biomechanical characterization of ice skating [73]—were

the focus of this study. As a result, the following parameters based on these 3D joint

angles were considered as the secondary performance metrics:

(a) Range of motion: Joint angles’ range of motion can impact a runner’s stride
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length, joint stability, and foot strike pattern [1, 73, 75].

(b) Stance peaks: Stance peaks refer to the extreme values of the most significant

3D joint angles in ice skating, centred around zero and occurring during the

weight-bearing phase of the skating stride.

(c) 3D joint angles standard deviation: We first calculated the inter-stride standard

deviation of the 3D joint angles for each participant in each trial. Then, the root

mean square of these standard deviations was calculated for each trial. Finally,

the average root mean square value was calculated for each participant.

(d) Multi-scale entropy: Multiscale entropy identifies the time series fluctuations,

measures the amount of information each signal contains, and assesses the ir-

regularity of significant 3D joint angles in this study [140, 149].

(e) Lower-body angular velocity: High angular velocity of the pelvis, thigh, shank,

and foot segments determines the speed and efficiency of the runner’s leg move-

ments and can lead to a longer stride length and a faster running pace [1, 73,

75]. We calculated the root mean square of the angular velocity norm during

each stride and averaged them in each trial. Finally, the average value for the

lower-body segments was reported for each participant.

(f) Continuous relative phase: The continuous relative phase was calculated using

the steps proposed and validated by Lamb et al. [142] for shank angle in the

sagittal plane (shank-sagittal) vs. thigh angle in the sagittal plane (thigh-

sagittal), shank angle in the sagittal plane (shank-sagittal) vs. thigh angle in the

frontal plane (thigh-frontal), and foot angle in the sagittal plane (foot-sagittal)

vs. shank angle in the sagittal plane (shank-sagittal) (see Figure (6.2)).
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Figure 6.2: An exemplar figure showing continuous relative phase between shank-
and thigh-sagittal for a hockey (red) and a figure skater (blue). Solid lines indicate
the mean phase angles, and shaded areas represent the standard deviation across
three trials for each skater. The study showed lower continuous relative phase angle
(indicative of higher inter-segment coordination) in figure skaters compared to hockey
skaters (see Table 6.3).

6.2.5 Impacting factors in ice skating

The trials were classified participants’ calibre and skating type to evaluate the impact

of these factors on the primary and secondary performance metrics.

a. Skater’s calibre: High-level skaters have higher training and frequently demon-

strate higher technical skills and accurate movements, resulting in a more op-

timized performance on the ice [5, 75]. On the other hand, low-calibre skaters

were previously found to skate slower in sprint tests and used different joint

angles compared to high-calibre skaters [5].

b. Skating type: Four out of 19 participants were figure skaters (two high- and two
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low-calibre skaters), and the others were hockey skaters. While figure skaters

may incorporate sprinting into their training program, it is not typically a key

training of their sport [3]. On the other hand, an ice hockey sprint is a typical

training drill used at all levels of ice hockey, from youth leagues to professional

teams [150]. As such, we expect this training to impact the sprint performance

metrics differently in these two groups.

6.2.6 Lower body strength

Lower-body strength as an off-ice measurement could impact primary and secondary

performance metrics. Consequently, our data analysis aimed to uncover the relation-

ships between lower-body strength, quantified by the CMJ height, and the skater’s

performance, quantified by the performance metrics. Because CMJ height is a contin-

uous variable rather than a binary variable similar to the two impacting factors above,

so its corresponding data analysis approach differed. Therefore, first, acceleration and

angular velocity signals were low-pass filtered using a recursive 6th-order Butterworth

filter with a 40 Hz cut-off. Next, the pelvis orientation was determined from 3D ac-

celeration during quiet standing, using this data to transform IMU readouts into the

pelvis’ anatomical frame, aligning the y-axis vertically. Then, the accelerometer data

from a sacrum-mounted IMU was converted into a global frame, and gravitational

acceleration was subtracted to obtain the sensor’s free acceleration. Then, numerical

double-integration of the CoM acceleration was conducted, applying zero velocity and

zero vertical displacement corrections to minimize integration errors using piecewise

cubic Hermite interpolating polynomial. The detailed procedure can be found here

[102].

6.2.7 Data analysis

In this study, the mean values of the performance metrics in each trial were used for

the statistical analysis. First, we assessed data sphericity, using Mauchly’s test to
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measure the equality of variances among different participant trials. Then, a non-

parametric Wilcoxon rank-sum test was used to examine the significance (p-value

< 0.05) of variations between ice skating performance metrics grouped by different

impacting factors. Then, a post-hoc analysis was performed to find the group with

a higher median. Finally, Spearman’s correlation coefficients were used to determine

the strength of the monotonic relationship between CMJ height and the performance

metrics (Figure 6.3). Also, the post-hoc power analysis was conducted using G*power

[130] using a one-tailed bivariate normal model with α = 0.05.
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Figure 6.3: The flowchart of the data analysis steps of this study. 1,2,4. The algo-
rithms to obtain the temporal and spatial parameters [19], the segment kinematics,
and the 3D joint angles of skating [20], countermovement jump (CMJ) height [102]
based on the IMU readouts were previously validated. 3. The calibration experiments
consisted of ten successive hip flexions and extensions and ten successive squats after
five seconds of quiet standing, which we asked the participants to perform prior to
the skating experiments [124, 132].
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6.3 Results

6.3.1 calibre and skating-type impact

Primary performance metrics: Skaters’ stride and contact times were unaffected

by any impacting factors (Table 6.2). However, stride velocity and swing time differed

between low -and high-calibre skaters and the type of skating. Stride length was only

significantly different between skaters of different calibres.

Table 6.2: The impact of the different impacting factors on the skater’s primary performance metrics (using
p-value) and the mean ± standard deviation in each group were presented.

Primary performance
metrics

Calibre
effect

LC HC
Skating
type

HS FS

Stride time (s) 0.17 1.11 ± 0.10 1.13 ± 0.16 0.08 1.15 ± 0.14 1.04 ± 0.13

Contact time (s) 0.29 0.66 ± 0.11 0.61 ± 0.08 0.12 0.63 ± 0.07 0.63 ± 0.16

Swing time (s) 0.04 0.36 ± 0.19 0.52 ± 0.11 0.00 0.52 ± 0.1 0.41 ± 0.06

Stride length (m) 0.02 3.93 ± 2.34 6.74 ± 1.4 0.15 6.40 ± 2.1 4.29 ± 2.12

Stride velocity (m/s) 0.02 3.63 ± 1.55 6.11 ± 0.93 0.01 5.63 ± 1.31 2.40 ± 1.92

Secondary performance metrics: The metrics describing the 3D joint angles

morphology, including stance peaks, joint angles standard deviation, range of motion,

and the one directly related to the angles, i.e., lower-body angular velocities, signifi-

cantly differed between skaters of different calibre (Table 6.3). However, no significant

difference was discovered between multiscale entropy and continuous relative phase

between high- and low-calibre skaters, except for those related to the frontal plane.

Conversely, while continuous relative phase and multiscale entropy were higher in

higher skaters, other secondary performance metrics were not significantly different

between figure and hockey skaters.

95



Table 6.3: The impact of different impacting factors on the secondary metrics on the skater’s performance
(using p-value) and the mean ± standard deviation in each group were presented.

Secondary performance metrics calibre

effect

LC HC Skating

type

HS FS

Range of motion
(deg)

HF 0.03 19 ± 3 41 ± 18 0.21 37 ± 19 15 ± 5

HA 0.05 12± 2 23 ± 9 0.56 20 ± 10 23 ± 10

KF 0.01 22 ± 10 40 ± 16 0.11 37 ± 17 20 ± 6

Lower-body
angular velocity
(deg/sec)

Pelvis 0.00 2 ± 1 6 ± 2 0.06 5± 2 3 ± 2

Thigh 0.00 7 ± 4 19 ± 6 0.30 15 ± 8 7 ± 2

Shank 0.01 14 ± 5 22 ± 9 0.25 21 ± 9 13 ± 5

Foot 0.00 18 ± 7 32 ± 11 0.36 31 ± 10 15 ± 6

Stance peaks (deg)

HF 0.01 26 ± 11 47 ± 19 0.30 43 ± 19 27 ± 17

HA 0.00 15 ± 3 32 ± 9 0.56 26 ± 10 31 ± 10

KF 0.00 23 ± 5 52 ± 15 0.08 45 ± 18 36 ± 19

Joint angles
standard
deviation (deg)

HF 0.00 3 ± 1 5 ± 2 0.25 5 ± 2 5 ± 2

HA 0.02 3 ± 1 4 ± 1 0.93 4 ± 1 4 ± 1

KF 0.00 4 ± 1 5 ± 2 0.33 4 ± 1 5 ± 1

Continuous
relative
phase (deg)

shank-
sagittal vs.

thigh-sagittal
0.48 93 ± 21 109 ± 32 0.03 110 ± 27 75 ± 13

shank-
sagittal vs.
thigh-frontal

0.02 105 ± 14 131 ± 25 0.05 126 ± 25 106 ± 20

foot-sagittal
vs. shank-
sagittal

0.10 83 ± 21 110 ± 33 0.01 106 ± 29 80 ± 38

Multiscale entropy

HF 0.66 0.29 ± 0.06
0.28 ±
0.07

0.01
0.61 ±
0.13

0.52 ±
0.12

HA 0.38 0.31 ± 0.11
0.38 ±
0.13

0.05
0.85 ±
0.29

0.54 ±
0.02

KF 0.48 0.32 ± 0.08
0.33 ±
0.09

0.18
0.73 ±
0.25

0.54 ±
0.11
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6.3.2 Effect of lower-body strength

High- and low-calibre skaters jumped 66 ± 18 cm and 53 ± 15 cm, respectively, off

the ice, as estimated by a previously validated algorithm [102]. Also, shank-sagittal

vs. thigh-frontal inter-limb coordination, stance peaks in hip adduction and knee

flexion, and lower-body angular velocities and range of motion only in knee flexion

had a medium correlation with CMJ height. Also, a medium correlation with higher

power (power > 0.8) was observed between CMJ height range of motion and stance

peaks in knee flexion. The results showed a weak or negligible correlation between

CMJ height and all the other primary and secondary metrics (Table 6.4).

6.4 Discussion

We studied the 3D kinematics of figure and hockey skaters using wearable IMUs and

assessed their performance during an ice skating sprint test. For the first time, the

skater’s performance was expressed into two groups of primary and secondary perfor-

mance metrics, both measured using the wearable IMU, where primary metrics are

traditionally regarded as the skater’s overall performance. Secondary performance

metrics, on the other hand, enrich the assessments of ice skaters’ performance and

enhance our understanding of the relationship between off-ice and on-ice skating pa-

rameters. First, we assessed the effects of different impacting factors, i.e., skater’s

calibre and skating type (figure or hockey skating) on the skaters’ performance met-

rics. We showed how both primary and secondary performance metrics could highlight

their impacts. We found that the rhythm of skating, indicated by stance time and

contact time, was barely affected by any of the impacting factors, while the spatial

parameters of skaters were impacted by skating type and skater’s calibre. As such, we

investigated how primary and secondary metrics, all measured on ice using wearable

IMUs, may reveal different aspects of skaters’ performance. Finally, we investigated

how primary and secondary performance metrics correlated with the skaters’ lower-
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Table 6.4: The correlation between the primary and secondary performance metrics
and the CMJ height. The post-hoc power analysis was conducted using a one-tailed
bivariate normal model with = 0.05, shown in the bracket.

Performance metrics
Correlation
coefficient
(power)

Primary
performance
metrics

Stride time 0.16 (0.16)

Contact time 0.05 (0.07)

Swing time 0.22 (0.23)

Stride length 0.27 (0.30)

Stride velocity 0.25 (0.27)

Secondary
performance
metrics

Range of motion

HF -0.10 (0.10)

HA 0.38 (0.5)

KF 0.59 (0.88)

Lower body angular
velocity

Pelvis 0.32 (0.39)

Thigh 0.39 (0.53)

Shank 0.41 (0.56)

Foot 0.32 (0.39)

Stance peaks

HF -0.20 (0.21)

HA 0.42 (0.58)

KF 0.61 (0.90)

Joint angles standard
deviation

HF 0.15 (0.15)

HA -0.04 (0.06)

KF 0.19 (0.12)

Continuous relative
phase

shank-sagittal vs.
thigh-sagittal

-0.04 (0.06)

shank-sagittal vs.
thigh-frontal

0.40 (0.54)

foot-sagittal vs.
shank-sagittal

-0.23 (0.25)

Multiscale entropy

HF 0.27 (0.30)

HA 0.08 (0.09)

KF -0.08 (0.09)
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body strength characterized by CMJ height off the ice. Therefore, the introduced

IMU-measured metrics not only broaden our understanding of on-ice skating but also

can potentially identify relevant off-ice tests that can predict on-ice performance or

vice versa.

6.4.1 Skaters’ calibre impact

The stride length and stride velocity of the high-calibre participants were signifi-

cantly higher than those of low-calibre skaters (Table 6.2), consistent with Upjohn

et al. [7]. Larger strides can help players cover more distance with each push and

also require more power for high-calibre skaters, while the skating rhythm (indicated

by stance time and contact time) was not significantly different between the calibre-

based groups. High-calibre skaters had significantly higher standard deviations in

the 3D joint angles of their dominant leg in each repetition of sprint tests, which

occurred despite no significant difference in multiscale entropy between these two

groups (Table 6.4). A difference in joint angles standard deviation indicated a differ-

ence in the variability of joint angles in different strides of their skating trial between

high- and low-calibre skaters, whereas similar multiscale entropy values suggest that

the complexity or irregularity of the joint angle patterns were not different in both

groups. Contrary to Robbins et al. [73], continuous relative phase analysis revealed

no significant difference between high- and low-calibre skaters, which might stem from

the different definitions of calibre and different levels of participants in their study.

This inconsistency further highlights the necessity and rationale behind proposing

a more objective clustering method proposed in this study. Only shank-sagittal vs.

thigh-frontal coordination was found in our study to be higher in high-calibre skaters.

Finally, high-calibre skaters exhibited a greater range of motions, stance peaks, and

higher angular velocities (Table 6.3). Higher ranges of motion, stance peaks, and

higher segment speed during skating are crucial for executing robust and stable skat-

ing movements, efficient weight transfer, and proper push and blades off during skat-
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ing. Specifically, the hip ranges of motion during skating are crucial for proper stride

length and power generation and are essential for generating power and propulsion

during skating strides. Also, proper knee flexion range is essential for executing robust

and stable skating movements during skating. Therefore, higher ranges of motion in

high-calibre skaters result in more efficient weight transfer, higher stride length, and

proper push and blades off during skating.

6.4.2 Skating type impact

The biomechanics of hockey and figure skating differ due to the different skate designs

and the specialized skill training required for each sport [21, 60]. However, hockey

coaches may incorporate figure skating skills, drills, and techniques into their drills

[21], and thus, hockey coaches must fully understand the difference between figure

and hockey skating biomechanical performance. In this study, it was observed that

hockey skaters (height: 172 ± 10 cm, weight: 73 ± 13 kg, stability: 2.7 ± 1.0,

balance: 2.6 ± 1.0, fitness: 3.1 ± 0.7, ten male and five female) had higher swing

time and stride velocity than figure skaters (height: 163 ± 5 cm, weight: 64 ± 6 kg,

stability: 2.6 ± 1.4, balance: 2.4 ± 1.4, fitness: 3.0 ± 0.9, four female). Notably,

there was no significant difference between the rated performance of figure and hockey

skaters in this study. Additionally, these groups had no significant difference in stride

time, stride length, and contact time (Table 6.2). In contrast to the difference between

skaters of different calibre, higher multiscale entropy and lower inter-limb coordination

values suggest that the irregularity and the coordination of the 3D joint angle were

higher in hockey skaters than figure skaters (Table 6.3). Figure skates have been

designed to maximize stability and control during intricate movements and have a

longer blade with toe picks at the front for a larger surface area for precise movements.

Conversely, hockey skates are designed for speed and agility, have shorter blades,

and lack toe picks for quicker turns and acceleration [1, 30]. Therefore, the observed

differences in inter-limb coordination and variations in skating patterns between figure
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and hockey skaters were likely attributable to their training and their skate designs.

These differences in the performance metrics could have also been estimated prior to

measurements on ice using off-ice measurements, such as vertical jump tests.

6.4.3 Effect of lower leg strength

CMJ requires motor coordination and complex lower and upper limb movements

[82, 151]. In this study, the CMJ height, as one off-ice measurement, weakly cor-

related with both stride velocity and stride length, with correlation coefficients of

0.27 and 0.19, respectively, consistent with the results observed in previous studies

involving various age groups [82, 84]. The CMJ height also had a moderate corre-

lation (correlation coefficient > 0.4) with lower-body angular velocities. However,

the CMJ height showed a stronger correlation (correlation coefficient: 0.59 and 0.61,

power > 0.8) with the range of motion and stance peaks in knee flexion (Table 6.4).

Therefore, the CMJ height can only predict a few secondary performance metrics

with moderate correlation, which supports lower CMJ height dependencies of skat-

ing velocity as a primary performance metric. From ice skating physiology, only a

few lower-body muscles, such as the Biceps Femoris and hip adductors, are involved

during a vertical jump [152]. Consequently, a higher CMJ height may only exhibit

a moderate-to-strong correlation with performance metrics that require activation of

the same muscle groups. Therefore, the broadened performance metrics introduced in

this study can potentially direct research toward identifying more appropriate off-ice

measurements. These tests, which target various muscle groups and synergies, could

significantly improve the accuracy of predicting on-ice skating performance based on

off-ice measurements. Consequently, the correlation of other off-ice tests on these

primary and secondary metrics must be further explored.
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6.4.4 Limitations

First, a larger sample size can enhance the performance and power of the study analy-

ses. Also, including Olympic-level professional hockey and professional figure skaters

will broaden the study’s output to a more diverse group of skaters. Second, hockey

skaters did not use their hockey sticks while skating, primarily due to constraints

posed by the experimental setup and the ice rink’s limitations. The absence of hockey

sticks could potentially influence their skating patterns. Nevertheless, it facilitated

the comparison of skating profiles between figure and hockey skaters, as neither group

used hockey sticks. Third, besides the skater’s calibre and skating type, the skaters’

demographics (such as sex and height) could also impact performance metrics such

as stride length and speed, as reported by [4]. Although this is a limitation in our

study, our primary goal was to show how the wearable IMUs could show the difference

between groups rather than isolating the impact of a skater’s calibre or skating type

on a single performance metric.

6.5 Conclusions

In this study, we examined the on-ice kinematics measurement of ice skaters using

IMUs and studied the difference between the ice skating kinematics as a function

of participants’ calibre and skating type during an ice skating sprint test. It was

discovered that figure skaters skated with lower irregularity and more inter-limb co-

ordination but slower than hockey skaters in ice sprint tests. Although lower body

strength seemed to affect a few of the performance metrics, it still could not explain

all the overall performance differences of this study population. The outcome of this

study can assist coaches in making more informed decisions when selecting figure

skating drills for hockey players. Additionally, secondary performance metrics have

the potential to facilitate the introduction of more explanatory off-ice tests capable

of predicting on-ice test performance by expanding our understanding of ice skating
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performance. Finally, IMU-based wearable technology has the potential to help us

understand the skating of recreational hockey and figure skaters, who are usually

overlooked in ice skating studies. Further, this technology has the potential to of-

fer valuable insights and recommendations for enhancing sprint performance while

mitigating the risk of injuries.
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Chapter 7

Conclusions, recommendations, &
future work

This chapter summarizes the results and presents the future directions for this thesis

research.

7.1 Main outcomes and original contributions

7.1.1 Development of IMU wearable technology

Employing the technical innovations and novel algorithms presented in this thesis, we

developed and validated a wearable sensor technology for measuring temporal and

spatial parameters and 3D joint angles for ice skating performance assessment.

Measurement of temporal and spatial parameters using wearable sensors

First, we optimized this technology to measure physiologically relevant lower-limb

joint angles and detect temporal and spatial events in ice skating. We implemented

11 methods to detect temporal events in ice skating using IMU readouts. We showed

that the proposed algorithms effectively identified skating events with an average

one sampling period (0.01 sec) error. Additionally, we introduced four innovative

approaches to correct the estimated player position used for stride length estimation,

addressing issues of sensor drift and integration of errors. Therefore, we were able to

accurately obtain contact time, stride time, length, and velocity for ice skaters and
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achieve a similar level of accuracy to conventional IMU-based gait analysis.

Assessment of three-dimensional kinematics of high- and low-calibre hockey
skaters on synthetic ice

Furthermore, we successfully obtained 3D joint angles of ice hockey skaters using our

IMU-based wearable technology and validated its accuracy against a camera-based

motion capture system. An intriguing finding from our research was the change in

skating patterns observed when skaters used synthetic ice. We showed that synthetic

ice alters the skaters’ skating patterns such that the on-ice distinctive features could

not differentiate low- and high-calibre skaters on synthetic ice. Therefore, under-

standing the biomechanics of skating on synthetic ice and comparing it to those on

ice is crucial, as synthetic ice presents a viable alternative for on-ice skating. Finally,

to adapt effectively, we suggest skaters of all levels dedicate time to becoming fa-

miliar with synthetic ice through consistent practice. Additionally, skating coaches

must understand these differences when they train their players for competitions when

monitoring is conducted remotely.

7.1.2 Biomechanical assessment of on-ice skating

The validated 3D skating kinematic measurements are instrumental in developing

performance metrics that quantitatively capture skating effectively. The next phases

of this thesis research involved on-ice experiments to analyze player performance

directly in their natural environment using this validated 3D kinematics.

Variation of kinematic metrics with perceived fatigue

First, we developed a novel algorithm to classify the participants into skill-based

groups using the skating videos rated by hockey experts. This algorithm not only

proved effective for our study but also has the potential to be a standard classifica-

tion tool across various sports. Then, nineteen ice skaters were recruited to perform

multistage aerobic skating. We showed the relationship between perceived and perfor-
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mance fatigue in skaters of different skill levels, where we showed how our proposed

kinematic metrics could also indicate perceived fatigue. In the multistage aerobic

skating test, we also showed how machine learning could detect the onset of severe fa-

tigue using a combination of our proposed kinematic metrics. We observed that these

kinematic metrics were able to predict severe self-reported fatigue across different

skill levels. The concurrent study of perceived and performance fatigue will eluci-

date the intricate relationships among different fatigue dimensions and thus enhance

our understanding of how these dimensions interact and are influenced by various

modulating factors.

Assessing ice skating sprint performance using wearable sensors

In the next phase, the ice skater’s performance, for the first time, was expressed

into two groups of primary and secondary performance metrics. Primary perfor-

mance metrics, including stride length, stride velocity, stride time, contact time, and

swing time, are traditionally regarded as the skater’s overall performance metrics

in ice sprint tests. Secondary performance metrics, on the other hand, enrich the

assessments of ice skaters’ performance regarding skating regularity, inter-limb coor-

dination, and segment kinematics and enhance our understanding of the relationship

between off- and on-ice measurements. Using the proposed metrics, we discovered

that figure skaters skated with lower irregularity and more inter-limb coordination

but slower than hockey skaters in ice sprint tests. We also observed that although

lower body strength seemed to moderately affect the metrics related to knee flexion,

it still could not explain all the differences in the performance metrics of this study

population. Therefore, by expanding our understanding of ice skating performance,

secondary performance metrics have the potential to facilitate the introduction of

more explanatory off-ice tests capable of predicting on-ice performance.

The performance metrics on ice can be predicted through off-ice measurements,

saving considerable labour and time. The IMU-measured metrics introduced in this
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study not only enhance our comprehension of on-ice skating dynamics but also hold

promise for identifying off-ice tests that can predict on-ice performance. Furthermore,

this investigation will enable the identification of specific on-ice performance metrics

that correlate with certain off-ice training activities. Consequently, by utilizing these

comprehensive insights, athletes can concentrate on off-ice exercises that are most

effective in enhancing their on-ice abilities, thereby improving performance outcomes.

This targeted approach to training could also contribute to more effective performance

enhancement by ensuring athletes engage in physical preparations that directly benefit

their on-ice performance.

7.1.3 Thesis research outcome and significance

The outcome of this thesis research equips skating coaches with precise tools for

analyzing and improving their training strategies, enhancing the learning outcomes

for their trainees. This wearable IMU technology enables coaches and trainers to

monitor skaters’ progress with detailed performance assessments, offering the added

advantage of remote supervision during their training sessions on ice and synthetic

ice. Our research extended its potential benefits to the often-overlooked demographic

of recreational hockey and figure skaters, showcasing its broad applicability. Finally,

considering the significant financial implications of injuries such as NHL players’

concussions, our findings represent an important step towards a more data-centric

approach in hockey skating. This approach was an essential step toward understand-

ing fatigue and preventing fatigue-induced injuries, marking a potential giant leap in

ice skating health and safety.

7.2 Future work

Objective biomechanical assessment in ice skating can be effectively leveraged for early

detection of severe fatigue onset, consequently reducing the risk of fatigue-induced

injuries. This wearable technology has the potential to uncover the shortcomings
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in current training methods, potentially aiding in reducing internal joint forces and

moments and analyzing muscle activation during skating. The broader applications

and implications of this technology and related methodology warrant further use of

this technology for professional matches in future studies.

7.2.1 Expanding applications

This technology’s inherent flexibility and adaptability make it an indispensable re-

source capable of accommodating a variety of skating styles and modalities, includ-

ing specific adaptations for hockey matches. Additionally, using this IMU wearable

technology allows for a more feasible data collection during puck shooting due to

its reduced obstruction and more accessibility compared to motion capture systems.

Moreover, integrating this wearable technology with cutting-edge machine learning

algorithms enhances its accuracy and precision, thereby boosting its marketability.

Therefore, this technology’s adaptability opens avenues for its application in a wide

range of skating disciplines and a promising future for athlete training and skill de-

velopment.

Another key direction for future work involves addressing the challenges associ-

ated with implementing this technology and developing an efficient user interface.

Enhancing the user experience through user-friendly interfaces will ensure that ath-

letes, trainers, and coaches can easily access and interpret the data obtained from

the wearable technology’s output. Making the technology user-friendly will not only

increase its adoption in training routines but also maximize its potential to facilitate

skating assessments by coaches and trainers.

Finally, expanding the scope of this technology to other winter sports represents a

promising opportunity for future work. By adapting and applying the wearable tech-

nology developed for ice skating to sports like skiing, snowboarding, and speed skating,

researchers can provide more comprehensive biomechanical insights across a broader

spectrum of winter athletics. This expansion can further facilitate cross-disciplinary
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improvements in training methods, injury prevention strategies, and performance op-

timization in other winter sports.

7.2.2 Expanding biomechanical analysis

Another promising avenue for future research is expanding the biomechanical analysis

to estimate joint forces and moments. A comprehensive kinetic analysis of skaters of

different calibres can be conducted using a combination of the proposed technology

with wearable pressure insoles fitted in the skates. This approach would allow for a

more detailed study of the forces exerted by skaters on the ice, providing insights into

biomechanical efficiency and potential areas for improvement for junior ice skaters.

Such analysis could lead to better-informed decisions regarding training modifications

and equipment choices, ultimately enhancing skating performance.

Furthermore, to fully harness the potential of this technology, future research

should expand its scope to muscle activity analysis through musculoskeletal modelling

or EMG analysis, promising a comprehensive biomechanical skating study. Under-

standing the variations in muscle activity will enhance the customization of training

programs, addressing each athlete’s unique physiological and biomechanical needs.

This comprehensive approach to skater development promises not only to elevate in-

dividual performance but also to contribute significantly to the broader field of sports

science.

7.2.3 Expanding insights into fatigue dynamics

Drawing on the findings of this study, IMU-based performance assessments have the

potential to offer a strategic advantage in identifying early signs of severe fatigue,

thereby minimizing the risk of injuries associated with fatigue. By employing auto-

matic detection of players’ fatigue, timely substitutions can be made, thereby decreas-

ing the likelihood of injuries with chronic consequences. Also, coaches and trainers

can gain insights into the physical condition of athletes in real time. This data-driven
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strategy ensures that interventions are not just reactive but also proactive, allowing

for adjustments in training intensity, duration, and recovery periods based on objec-

tive measures of fatigue. Furthermore, this wearable technology’s output can inspire

a solution to a pivotal challenge in ice skating training: minimizing impact forces on

joints and the upper body during skating. Such technological advancements in sports

science can revolutionize how athletes are managed, promoting longer, healthier ca-

reers and optimizing performance through enhanced injury prevention strategies.

Finally, our research opens the door to exciting novel studies by illustrating how

performance and perceived fatigue interact in ice skating. However, fatigue encom-

passes a complex interplay of factors that extend beyond mere physical exhaustion,

making its assessment during activities like ice skating particularly multifaceted.

Thus, we highlight the necessity of a holistic approach to fatigue measurement, com-

bining kinematic metrics obtained by the proposed technology with non-kinematic

metrics that provide insight into the physiological and psychological dimensions of

fatigue. By integrating these diverse metrics—kinematic, physiological, psycholog-

ical, and cognitive—future studies can offer a more comprehensive understanding

of fatigue in ice skating. Additionally, these future studies will broaden our under-

standing of the interactions and effects between different dimensions of fatigue. They

will set the stage for the development of innovative training and recovery strategies

tailored to the complex nature of fatigue, showcasing the transformative potential

impact of this line of research in advancing the field of sports science.

110



Bibliography

[1] D. J. Pearsall, R. A. Turcotte, and S. D. Murphy, “Biomechanics of ice hockey,”
Exercise and sport science, vol. 43, pp. 675–692, 2000, Publisher: Philadelphia:
Lippincott, Williams, and Wilkins.

[2] S. A. Evans, “The biomechanics of ice hockey: Health and performance using
wearable technology,” Journal of Men’s Health, vol. 18, no. 9, pp. 193–193,
Sep. 2022.

[3] L. V. Slater, M. Vriner, P. Zapalo, K. Arbour, and J. M. Hart, “Difference
in agility, strength, and flexibility in competitive figure skaters based on level
of expertise and skating discipline,” The Journal of Strength & Conditioning
Research, vol. 30, no. 12, pp. 3321–3328, 2016, Publisher: LWW.

[4] A. Budarick, “Ice hockey skating mechanics: Transition from start to maximum
speed for elite male and female athletes,” 2017.

[5] E Buckeridge, M. C. LeVangie, B Stetter, S. R. Nigg, and B. M. Nigg, “An on-
ice measurement approach to analyse the biomechanics of ice hockey skating,”
PLoS ONE, vol. 10, no. 5, p. 127 324, 2015.

[6] B. J. Stetter, E. Buckeridge, V. von Tscharner, S. R. Nigg, and B. M. Nigg, “A
novel approach to determine strides, ice contact, and swing phases during ice
hockey skating using a single accelerometer,” Journal of applied biomechanics,
vol. 32, no. 1, pp. 101–106, Feb. 2016.

[7] T. Upjohn, R. Turcotte, D. J. Pearsall, and J. Loh, “Three-dimensional kine-
matics of the lower limbs during forward ice hockey skating,” Sports Biome-
chanics, vol. 7, no. 2, pp. 206–221, May 2008, issn: 1476-3141.

[8] M. R. Hellyer, M. J. L. Alexander, C. M. Glazebrook, and J. Leiter, “Dif-
ferences in lower body kinematics during forward treadmill skating between
two different hockey skate designs,” International Journal of Kinesiology and
Sports Science, vol. 4, no. 1, pp. 1–16, 2016.

[9] B. J. Stetter, E. Buckeridge, S. R. Nigg, S. Sell, and T. Stein, “Towards a
wearable monitoring tool for in-field ice hockey skating performance analysis,”
European journal of sport science, vol. 19, no. 7, pp. 1–9, Jan. 2019.

[10] M. Rana and V. Mittal, “Wearable sensors for real-time kinematics analysis in
sports: A review,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1187–1207, Jan.
2020, Publisher: IEEE.

111



[11] Y.-J. Zheng, W.-C. Wang, Y.-Y. Chen, W.-H. Chiu, R. Chen, and C.-Y. Lo,
“Wearable and wireless performance evaluation system for sports science with
an example in badminton,” Scientific Reports, vol. 12, no. 1, pp. 16 855–16 855,
Oct. 2022.

[12] R. Fathian, S. Phan, C. Ho, and H. Rouhani, “Face touch monitoring using
an instrumented wristband using dynamic time warping and k-nearest neigh-
bours,” Plos one, vol. 18, no. 2, e0281778, 2023.

[13] T. Seel, J. Raisch, and T. Schauer, “IMU-based joint angle measurement for
gait analysis,” Sensors, vol. 14, no. 4, pp. 6891–6909, 2014, Publisher: Multi-
disciplinary Digital Publishing Institute.

[14] J.-F. Lemay, A. Noamani, J. Unger, D. J. Houston, H. Rouhani, and K. E.
Musselmann, “Using wearable sensors to characterize gait after spinal cord
injury: Evaluation of test–retest reliability and construct validity,” Spinal cord,
vol. 59, no. 6, pp. 675–683, 2021.

[15] A. Noamani, K. Agarwal, A. H. Vette, and H. Rouhani, “Predicted threshold
for seated stability: Estimation of margin of stability using wearable inertial
sensors,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 9,
pp. 3361–3372, 2021.

[16] S. T. Stevens, M. Lassonde, L. De Beaumont, and J. Paul Keenan, “In-game
fatigue influences concussions in national hockey league players,” Research in
sports medicine, vol. 16, no. 1, pp. 68–74, 2008, Publisher: Taylor & Francis.

[17] R. Bartlett, Sports biomechanics: reducing injury and improving performance.
Routledge, 2002, isbn: 0-203-47456-2.

[18] G. Weir, J. Alderson, D. Hiscock, M. Smith, A. Alicea, and C. J. Donnelly,
“The effect of fatigue induced from a simulated hockey match on biomechanical
ACL injury risk factors in elite female field hockey players,” ISBS Proceedings
Archive, vol. 35, no. 1, pp. 98–98, 2017.

[19] A. Khandan, R. Fathian, J. P. Carey, and H. Rouhani, “Measurement of tem-
poral and spatial parameters of ice hockey skating using a wearable system,”
Scientific Reports, vol. 12, no. 1, pp. 22 280–22 280, Dec. 2022.

[20] A. Khandan, R. Fathian, J. Carey, and H. Rouhani, “Assessment of three-
dimensional kinematics of high- and low-calibre hockey skaters on synthetic
ice using wearable sensors,” Sensors, vol. 23, no. 1, pp. 334–334, Dec. 2022.

[21] M. R. Bracko, “Biomechanics powers ice hockey performance,” Biomechanics,
vol. 9, pp. 47–53, 2004.

[22] S. T. McCaw, “A biomechanical comparison of novice, intermediate and elite
ice skaters,” 1984, Place: Montreal, Quebec.

[23] G. Mario and J Potvin, “The effects of anaerobic fatigue on biomechanical
features of the ice skating stride,” in ISBS-Conference Proceedings Archive,
1989.

112



[24] J. Favre, B. M. Jolles, R. Aissaoui, and K Aminian, “Ambulatory measurement
of 3d knee joint angle,” Journal of Biomechanics, vol. 41, no. 5, pp. 1029–1035,
2008.

[25] D. Pagnon, M. Domalain, and L. Reveret, “Pose2sim: An end-to-end workflow
for 3d markerless sports kinematics—part 1: Robustness,” Sensors, vol. 21,
no. 19, p. 6530, 2021, ISBN: 1424-8220 Publisher: MDPI.

[26] V. E. Ortiz-Padilla, M. A. Ramı́rez-Moreno, G. Presb́ıtero-Espinosa, R. A.
Ramı́rez-Mendoza, and J. d. J. Lozoya-Santos, “Survey on video-based biome-
chanics and biometry tools for fracture and injury assessment in sports,” Ap-
plied Sciences, vol. 12, no. 8, p. 3981, 2022, ISBN: 2076-3417 Publisher: MDPI.

[27] K Lockwood and G Frost, “When metal meets ice: Potential for performance or
injury,” Journal of ASTM International, vol. 6, no. 2, pp. 1–8, 2009, Publisher:
ASTM International.

[28] A. M. Smith, M. J. Stuart, D. M. Wiese-Bjornstal, and C. Gunnon, “Predictors
of injury in ice hockey players: A multivariate, multidisciplinary approach,”
The American Journal of Sports Medicine, vol. 25, no. 4, pp. 500–507, 1997,
Publisher: Sage Publications.

[29] B. A. Thurber, “The myth of skating history: Building elitism into a sport,”
Leisure Sciences, vol. 43, no. 6, pp. 562–574, 2021, ISBN: 0149-0400 Publisher:
Taylor & Francis.

[30] D Pearsall and S Robbins, “Design and materials in ice hockey,” in Materials
in sports equipment, Elsevier, 2019, pp. 297–322.

[31] D. J. Pearsall, R. A. Turcotte, M. C. Levangie, and S. Forget, “Biomechanical
adaptation in ice hockey skating,” in Routledge handbook of ergonomics in
sport and exercise, Routledge, 2013, pp. 37–44.

[32] J.-V. Kinnunen, H. Piitulainen, and J. M. Piirainen, “Neuromuscular adapta-
tions to short-term high-intensity interval training in female ice-hockey play-
ers,” The Journal of Strength & Conditioning Research, vol. 33, no. 2, pp. 479–
485, 2019, Publisher: LWW.

[33] A. J. Mullen, “A biomechanical comparison between novice and elite ice hockey
skaters,” pp. 1–7, Nov. 1992, Place: Montreal.

[34] G. W. Marino, “Kinematics of ice skating at different velocities,” Research
Quarterly. American Alliance for Health, Physical Education and Recreation,
vol. 48, no. 1, pp. 93–97, Mar. 1977.

[35] D. F. Drouin, “The effects of fatigue on the mechanics of forward maximum
velocity power skating in skilled and less-skilled skaters.,” 1999.

[36] V. Camomilla, E. Bergamini, S. Fantozzi, and G. Vannozzi, “Trends supporting
the in-field use of wearable inertial sensors for sport performance evaluation:
A systematic review,” Sensors, vol. 18, no. 3, pp. 873–873, 2018, Publisher:
Multidisciplinary Digital Publishing Institute.

113



[37] R. A. Turcotte, D. J. Pearsall, D. L. Montgomery, R. Lefebvre, D. Ofir, and
J. J. Loh, “Comparison of ice versus treadmill skating—plantar force distribu-
tion patterns,” in Safety in ice hockey: Fourth volume, ASTM International,
2004.

[38] K. J. Nobes, D. L. Montgomery, D. J. Pearsall, R. A. Turcotte, R Lefebvre,
and F Whittom, “A comparison of skating economy on-ice and on the skating
treadmill,” Canadian journal of applied physiology, vol. 28, no. 1, pp. 1–11,
2003, Publisher: NRC Research Press.

[39] T. J. Stidwill, D. Pearsall, and R. Turcotte, “Comparison of skating kinetics
and kinematics on ice and on a synthetic surface,” Sports Biomechanics, vol. 9,
no. 1, pp. 57–64, Mar. 2010.

[40] A. R. Budarick, J. R. Shell, S. M. K. Robbins, T. Wu, P. J. Renaud, and D. J.
Pearsall, “Ice hockey skating sprints: Run to glide mechanics of high calibre
male and female athletes,” Sports biomechanics, vol. 19, no. 5, pp. 601–617,
2020, Publisher: Taylor \& Francis.

[41] K. V. R. Kumar, A. A. Zachariah, S. Elias, K. V. Rajesh Kumar, and A.
Abraham Zachariah, “Quantitative analysis of athlete performance in artistic
skating using IMU, and machine learning algorithms.,” Design Engineering
(Toronto), vol. 2021, no. 9, pp. 11 236–11 252, 2021.

[42] M. Kos and I. Kramberger, “A wearable device and system for movement
and biometric data acquisition for sports applications,” IEEE Access, pp. 1–1,
2017.

[43] J. Taborri et al., “Sport biomechanics applications using inertial, force, and
EMG sensors: A literature overview,”Applied bionics and biomechanics, vol. 2020,
pp. 2 041 549–2 041 549, 2020, Publisher: Hindawi.

[44] N. Ahmad, R. A. R. Ghazilla, N. M. Khairi, and V. Kasi, “Reviews on various
inertial measurement unit (IMU) sensor applications,” International Journal
of Signal Processing Systems, vol. 1, no. 2, pp. 256–262, 2013.

[45] T. Gabbett, “GPS analysis of elite womens field hockey training and competi-
tion,” Journal of Strength and Conditioning Research, vol. 24, no. 5, pp. 1321–
1324, May 2010.

[46] H. T. Hurst et al., “GPS-based evaluation of activity profiles in elite downhill
mountain biking and the influence of course type,” Journal of Science and
Cycling, vol. 2, no. 1, pp. 25–32, 2013.

[47] H Rouhani, J Favre, X Crevoisier, and K Aminian, “Ambulatory measurement
of ankle kinetics for clinical applications,” Journal of Biomechanics, vol. 44,
no. 15, pp. 2712–2718, 2011.

[48] M. Nazarahari and H. Rouhani, “Detection of daily postures and walking
modalities using a single chest-mounted tri-axial accelerometer,” Medical en-
gineering \& physics, vol. 57, pp. 75–81, 2018, Publisher: Elsevier.

114



[49] N. Ahmadian, M. Nazarahari, J. L. Whittaker, and H. Rouhani, “Instrumented
triple single-leg hop test: A validated method for ambulatory measurement of
ankle and knee angles using inertial sensors,” Clinical Biomechanics, vol. 80,
pp. 105 134–105 134, 2020, Publisher: Elsevier.

[50] A. Noamani, M. Nazarahari, J. Lewicke, A. H. Vette, and H. Rouhani, “Va-
lidity of using wearable inertial sensors for assessing the dynamics of standing
balance,” Medical engineering \& physics, vol. 77, pp. 53–59, 2020, Publisher:
Elsevier.
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