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Abstract

ANNIE is a neural network that removes noise and sharpens edees i digital im

ages. For noise removal. ANNIE makes a weighted average of the values of the
pixels over a certain neighborhood. For edge sharpening. ANNIE detects odges
and applies a correction aronnd them. MMthonell averaging is o simple operation
and needs only a two-layver network. detecting edees is more complex and denands
several hidden lavers. Based on Marr's theory of nataral vision, the edee detee
tion method uses zero-crossings in the image liltered by the X400 operator (where
V% is the Laplacian operator and ¢ stands for a two-dimensional Gaussian distri

bution). and uses two channels with ditferent spatial frequencies. Edge detectors
are tuned for vertical and horizontal orientations. Lateral inhibition implemented
through one-step recursion achieves both edee relaxation and correlation of the two
channels. Training by means of the quickprop algorithm determines the shapes of
the weighted averaging filter and the edge correction filters, and the rales for edec
relaxation aud channel interaction. ANNTE nees pairs of pictares as tranine pit

terns: one picture is a reference for the outpnt of the network and the same pictore

deteriorated by noise and/or blur is the inpnt of the network.
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Chapter 1

Introduction

The purpose of this work is a practical oue:r 1o perforin noise omoval and edge
sharpening. (wo operations of image enhancement. The method is based on an
adaptive nenral network. The algorithims traditionally used in image enliancement
are rarcly related to techniques from natural vision. However: hecause nature still
surpasses these artificial methods. emulating some of nature’s techniques is not
only challenging from a scientific point of view. but also practical. Moreover. such
cmlations are more feasible todav. thanks to the emergence of artificial neural
networks. ANNIE is an attempt in this direction. It combines natural vision
techniques with artiicial nearal HeLWoUrks for the purposc of linege cibanceinent.
RBefore presenting the implementation of ANNIE. it is necessary to introduce
the three scientific areas to which this work is refated. The first section lavs down
the purpose of digital image enhancement and some traditional rechuiques of notse
removal and edee sharpening. The second section offers a background in the nearo-
physiology of natural vision: the emphasis is put on the processes that are related
to notxe removal and edge detection. Finallve the thivd section eives an ontline of

artificial nearal networks and their applications.



1.1 About lmage Enhancement

Whenever a picture is converted from o ~ t to another. for mstance digitised,
copied. scanned. transmitted. or displave . 7 - ¢ v of the resubtant output may
be lower than that of the input. Among such fisage degradations, hlur and noise
are two of the most frequent. Some offects of the degradation processes can be con

pensated by tmage enhancement techniques [1. 2] Because blurring is an averaging.
or integration operation. most sharpening techniques are based on ditferentiation
operations. particularly on the Laplacian operator. (9% /de? + 7 /dy%). On the other
hand. because blurring weakens high spatial frequencies more than low ones. some
sharpening technigies use filtering to emphasize the high spatial frequencies of pic

tures. However. both differentiation and high-frequency filtering cannot be nsed
mdiscriminately to sharpen a picture when it s noisy as well as bhiored, These
methods have to be restricted 1o frequency ranges where the pictore s stronger
than the noise. because noise generally involves high rates of change ingrayv level
and it usually becomes stronger than the picture signal at hieh frequencies. When
knowledge abont the blur that is to he corrected is available, restoration technignes
such as inverse filtering are nsed mstead.

In noise removal and smoothing technigues. the Lasie difiienlty s that they
Dlur the picture when appiica indiscriminaicis. There are methods that pern
smoothing without introducing nndesirable blurring. hut they are more complex
than simple averaging and can be nsed only in restricted cases. To smooth a picture
without blurring. averaging can be used if it is performed only at selected points
or only with selected neighbors. i such a way that averagine never happens across
edges. For this purpose. an edge {or line) detection operator has to he apphied.
and then averaging has to be performed only at point< where snch featares are not
present. When noise consists of isolated points that contrast with b i neighbors
(e.g.. “salt-and-pepper” noise). noise removal 1s casy, Such i noi-e can be detected
by comparing cach point’s grav level to the levels of its neighbors. I the point

is substantially different from all 1ts neighbors (or nearly all of them it can be



classified as a noise point. and it can be removed by interpolation. replacing it with
the average of the neighbors. A powerful sinoothing technique that does not blur
edges is median filtering. in which a value at a point is repla.ed by the median of
the values in a neighborhood of the point. Rather than the median. the value to be
taken by the point can be the lowest. highest. or middle ranking value - - even any
desired rank like the mode of the neighborhood (i.e.. the value that occurs most

L isolated pomnts. and it

often). However. {his technique can destroy thin lines anc
can clip corners.

All the image enhancement techniques presented above are heuristic in nature.
Thev have several parameters that must be adjusted to suit the characteristices of
the degradations to be removed. These parameters must be tuned by trial-and-
error procedures ' For example. edge detection {3] can be perforined by applying
a threshold operation. preferably after enhancing the gray scale of the pictnre. But
a threshold level set too high will not permit detection of low-amplitude structural
image elements, and conversely. a threshold level set too low will cause notse to be
falsely detected as an image edge. Because the resulting performance can be only

measured, not predicted, it is difiicult to determine a divection for optimization.

1.2 About Natural Vision

The human visual system has a complexity and a degree of excellence not even
remotely equaled by any of the artificial systems. However. natural vision itself is
not perfect. becanse it can create visnal illusions like neon color spreading. Mach
bands. brightness and color illusions. and others [1]. This is why ANNIE uses only
some neural techniques for image processing but does not fry to replicate the exact
neural architecture used by the brain. The intention is only to use some mechanisms
of the visual system as a basis for edge detection. This section presents information
about these functions in huiman vision to support the neural network architecture

used by ANNIE.

Hn an adaptive neural network, such parameters are tuned by training.



The retina is the part of the vision system that is studied most and anderstood
best [5. 6], The vertebrate retina consists of five classes of nenvons: recepton. hipo
lar. horizontal, amacrine. and ganglion cells. Receptors are the first stage in the
information path. Ganglions are the last stage and represent the only conneetion
that the retina has with the cortex. There are two tvpes of ganglion cells, each
of which responds differently to ih nination patterns. Both types do not convey
information about absolute levels of illumination. The depolarizing ganglions are
activated in response to central illumination of their receptive lield and are inhih
ited in response to surround illumination. The second type. the hyperpolavizing
ganglions. are inhibited in direct illumination and are activated in surround ilhinmi-
nation. This mechanism makes ganglion cells sensitive to cdees erossing hotween
the opposing regions of the receptive field.

The retina is charvacterized by having several receptive held sizes {7080 This b
generated the idea of channels sensitive to particular bands of spatial Trequencies,
Their existence can be proved psychophysicallv in man hy adaptation experiments
[9]. The first evidence for these channels was found by Caraphell and  Robson
[10]. They stated that —a picture emerges of functionally separate mechanisms in
the visual nervous systenm. cach responding maximally at some particular spatial
frequency and hardly at all at spatiad frequencies differing by o factor of twos.”

Front the retina signals provecd via the optic norve to the Tataoral gonncalate,
Here. no further processing but only a re-encoding of the information is perforned.
Then the signals proceed to the primary visual cortex. Its cells are divided into fonr
categories: simple. complex. hypercomplex. and higher order hivpercompiex [11].
Just like ganglion cells in the retina. cortical cells are not signiticantly intlunenced
by diffuse illumination of the retina. There ave several tvpes of sitaple tvpe cells,
detecting special features like edges or narrow bars, oricnted ot specific aneles. The
width of the narrow light or dark bar is comparable 1o the virious diameters of

the center regions in the receptive field of eanelion or lateral cenienlate cells. The

=The importanc -~ separate mechanisins with different spatial frequencies is discussed m Chiags
ter 2.



spot-like contrast representation of ganglion cells is just transformed and extended
into a line or an edge.

Complex cells also require a specific field axis orientation of a dark-light bound-
ary, while illimnination of the entire field is ineffective. The demand. however. for
precise positioning of the stimulus is relaxed. In addition. there are no longer dis-
tinct on- and off- arcas. Complex cells signal the abstract concept of ortentation
without strict reference to position. In hypercomplex cells. the best stimmlus still
requires a certain orientation. but also involves some discontinuity. such as a line
that stops, an angle, or a corner. And again, as in simple cells. position within the

receptive field is important.

1.3 About Neural Networks

A recent interest in artificial nearal networks has been brought during the last
decade by recent advances in technology and a better understanding of how the
brain works. Consequently. neurocomputing is establishing itself more and more as
an alternative form of information processing. Neural networks have already proven
themselves to be good in many applications for which conventional computers are
bad. They do well at solving complex pattern-recognition problems such as under-
standing continuous speech. identifving handwritten characters. or at performing
operations like optimizations and market or weather forecast. Signal processing
and image processing have been two of the areas most explored for neural networks
applications.

Nearly all automated information processing is at present based on an algorith-
mic approach. To execute it. a function must be understood and an algorithim has
to be implemented for it. But there are complex tasks for which it is virtually
impossible to devise a series of logical or arithmetical steps that will arrive at the
answer. However. in some of these cases it is possible to specify the tasks exactly
and even develop an endless set of examples of the function being carried out. More

so, they are implementable. since humans are capable of doing them. A general

wt



characteristic of these tasks is that they involve associating objects in one set with
objects in another set. Reading aloud a text is an example of associating gronps of
letters, spaces. and punctuation with specific sounds. pauses. and intonations.

Another motivation for the recent interest in neurocomputing is its massively
parallel nature. As new aud more powerful parallel computers are developed, neural
networks stand as one of their most natural applications. Straightforwardiv imple
mentable on parallel architectures 20 and with a great power of adapting. neural
networks offer the fault-tolerance and speed of natural brain,

There are several introductions to neural networks [120 13]. A neural network
consists of a collection of processing elements. Each processing element has many
input signals. but only a single ontput signal. The outpat signal fans out along manv
pathways to provide input signals to other processing elements. These pathways
connect the processing clements into a network. The processing that cacly element
does is determined by a transfer function  a mathemarical formmla that detines the
element’s output signal as a function of the input signals. Often a nearal network
is divided into layers —- groups of processing elements that veccive inputs from the
same other lavers and have the same transfer lunction.

In general. every connection entering a processing clement has an adaptive co
efficient called a weight assigned to it These weights determine the strength of the
connect:ons from other processing clements. Morcover. thev are not fixed hat may
change. Most transfer functions include a learning law  an cquation that modities
all or some of the weights according to the input signals and the values resnlting,
from applying the transfer function. It is with these changes that a nenral network
adapts itself and therefore learns.

Several learning paradigims exist. Detailed classifications of learning methods
have been presented [1:4. 15]. Broadly. learning procedures can be divided into

three classes: supervised procedures requiring the specification of the desired ont.-

SANNIE is not implemented in a parallel manner, because an appropriate parallel com
puter (with fine grain parallelisin) was not available, However, it ean be modified for sueh an
implementation.

6



puts. reinforcement procednres requiring the specification of a gnality measure for
the outputs, and unsupervised procedures that build internal models that capture
regularities in their inputs, without receiving any additional information. Among su-
pervised learning paradigms. variations based on backpropagation [16] have emerged
a< being the most widely nsed.

Two separate schools have evolved in modeling neural networks, focusing on
different goals. In biological modeling the goal is to study the structure and function
of real brains in order to explain biological data on aspects such as behavior. In
technological modeling the goal is to study brains in order to extract concepts
to be used in new computational methodologies. To achiceve this objective. it is
ceven admissible to incorporate features in a model even if those features are not

neurobiologically possible. ANNIE falls into the frame of this latter school.



Chapter 2

Theoretical Background of Edge

Detection

The task of low-level vision ix to map from the original pattern of light intensities
to intermediate abstract representations. providing the positions of surfaces in the
environment. their depths. and how they are movine. Hiah level vision processes
receive these representations and use knowledge of the world 1o postnlate whadt
objects there could be tha. have surfaces positioned. shaped. or moving in the
observed ways.

One of low-level vision's tasks is segmentation. the process of extracting informa-
tion about areas of the nnage (called regions or segrments) that are visnally distine
from one another and are continuous in some feature, This feature is usually inten
sity. but possibly color or less often some textural featnre, Segmentation can use
edge detection as a preliminary stage. where edges represent local points of discon
tinuity m that particular feature. I the case of mtensity discontinnitios. some edge
models include ramps along with steps in the definition of edges. We will consider
}

only steps or approximate steps (i.e. steep ranps) Fdees can be deseribed by

their image location (usnally related to a pixel). their direction Cusnally aligned with

'Because we are concerned with edges as they are perecived i watural vision. it s worth
mentioning that Shapley and Tolhurst [17] show that broad ranps and steps are ddeteeted by
different mechanisims of the visual systen.



the direetion of maximum change in the feature being nsed). and their magnitude
(which measures the amonnt of change in the feature).

Several vision theories live emerged in recent vears. Ina widely aceepted vision
theory, Marr [18] builds a “primal sketeh™ (low-level deseription of an image) ‘rom
information that is gathered through edge detection. The edge detection theory
that Marr uses for this purpose was developed Ly himself and Hildreth [19] and is

at the basis of ANNIE s implementation.

2.1 Center-Surround Filters and Zero-Crossings

In their theory, Marr and Hildreth choose the operator Y20 for edge detection,
where W2 s the Laplacian operator (J7/da? + 7 /dy?) and (7 stands for the two-
dimensional Gaussian distribution

[

2er?

1 -
'.'I/)IW._E?( -

which has standard deviation . ¥2¢ is then a civcularly svinmetrie Mexican-hat

(;( N

shaped operator whose distribution in two dimensions may be expressed in terms
of the radial distance r from the origin by the formula
3., - l I'_) %"i .

V'(.(r):——,———: .2—'— (Ll ()l)

The shape of the Mexican-hat operator is shown in Figure 1. There are two reaxons

behind the choice of this operator:

1. It is a differential operator. taking the second spatial derivative of the image.
Fdge detection usually uses differential operators because a sudden intensity
gL -3 o . . 5 P . . M e . N
change will cause a peak or a trough in the fivst derivative or. equivalently,
will cause a zcro-crossing in the second derivative.  The Laplacian is also
the lowest-order isotropic differential operator. Its orientation-independence

makes it more computationally efficient.

2. 1t is capable of being tuned to any desired scale. This is necessary because

intensity changes occur at different scales in an image. and so their optimal

9



Mexican—hat distribution

Figure [: The shape of the Mexican-hatr operator,

detection requires the use of operators of ditferent sizes. Sharp edges are
detected at all scales. Large filters can detect soft or blurred edges and overall
iHlumination changes. while small {ilters cannot do that. Also. large filters
can smooth out nportant discontinuities. while with small tilters. noise in
the picture may introduce edge irregularities. On the other hand. large filters
have a lower accuracy in detecting edees that are close 1o cacli other: sinall

filters can detect finer details.

The response to this operator for an isolated edge is shown iu Figure 2. The shape
of this response suggests that the way to detect intensity changes at a given scale
is to filter the image with the Y260 operator and 1o locate the zero-crossings in
the filtered tmage. It is not necessary to use the zero vadues for detecting zero
crossings. Instead. it is possible to take advantage of the peak positive valne and
the peak negative value Iving on cach side of the zero-crossing. Marr and others
[20] prove that the YV2¢(¢ transformation incurs no loss of inforimation. meaning that
zero-crossing maps obtained at different scales can represent the orviginal hnage

completely.

14)



Almugc intensity

?Mcxican—hut output

Figure 2 The response of the Mexican-hat operator to an isolated step edge.

A paridiel can be drawn between this mechanism and natural vision. It makes
the V2¢ equivalent to the on-center and off-center ganglions in the retina. while

zero-crossing detection would be achieved by simple eclls in the visual cortex?.

2.2 Spatial-Frequency Channels

As the previous section shows. Marr [13. 19] suggests the use of filter channels
of different sizes for detecting intensity changes at different scales. Related work
supports this idea: the efficiency of using multiple resolutions has been stressed in
image processing [21. 22, 23], and experiments [10. 9] have proven the existence
of spatial-frequency channels in the visnal cortex. Carpenter together with Gross-
berg and Mehanian [21] also use multiple space scales in boundary detection to
achieve a trade-olf between boundary localization, noise suppression, and boundary

completion.

e - . o . . . ..
“See Section 1.2 for a discussion of natural vision.



If a zero-crossing is present in an boage tiltered throngh 20 at one sicel then
it should be present at the same location for all larger sizves. I can cease to be so.
at some larger sizeo for one of two reasons: cither two or more intensi:v changes
that are close to cach other interfere in the larger channel or intensity changes of
different scales are superimposed in the same region. This means that in the general
case, the zero-crossings from independent channels of adjacent sizes cotneide and
can be taken together: they may not coincide in two special cases. I the first case
this occurs becanse es that are close to one another and so can be accounted
by the outputs of tne ~maller channel: the false edges outputted by the larger
channel must be discounted. In the second case. the zero-crossings probably arise
from distinct surfaces or physical phenomena and some edges are acconnted by the
large chanuels. some by the small channels. Tt follows that i there is a range of
channel sizes. reasonably well separated in the freguencey domain and eovering an
adequate range of the frequency spectrum. rules can be dervived for combinine their
zero-crossings into a deseription whose primitives are physicatlvy meaningful, The
channels must interact to correlate the zero-crossines and thas identify 1the real
edges.

The rules that Marr suggests for channel interaction are cotuplex becinse several
special cases must be taken into account.  Because edges that are close to one
another can confuse larger channels. they have to he detected explicitly in the
smaller channels as thin bars. blobs or terminations. More new descriptive elements
are necessary for the cases in which larger channels are vecording different physical
phenomena. As Section 1.2 shows, the visual cortex contains such detectors, and
their existence supports the vision system proposed by Marvr, The task of detecting
teatures like thin bars. blobs. and edge terminations is computationally too complex
and is avoided in ANNIE's implementation. Instead of chaunel interaction as
proposed by Marr. ANNIE uses lateral inhibition between the units in different
channels and in the same channel. This alternative cannot offer the same resalts in
preventing the detection of false edges. but it is more casily implementable, Besides

that, lateral inhibition is a natural characteristic of nevral svstems and. as the next



section shows, it can improve feature detection. The experiments show that with
this method, ANINIE achieves the identification of the correct edges.,

Research in himan vision [25] points out that when a stimulus activates two or
more mechanisms, detection of the stimulus can use the response of either mecha-
nism, and so detection should combine probabilistically all the activated psychomet-
ric functions. ANNIE follows this principle and detects edges with a weighted sum
of the outputs from two channels. The weights involved are determined through

training.

2.3 Edge Relaxation. Its Relation with Lateral

Inhibition in Neural Mechanisms

One way to improve edge detection measurements is to adjust them based on mea-
surements of neighboring edges. The existence of a weak edge should be reinforced
if its direction is compatible with neighboring edges and it should be inhibited in
the contrary case. T'he process of propagating local constraints is analogous to the
relaxation methods used in numerical analysis to solve lincar equations. Based on
this process, relaxation algorithms can be developed to provide an efficient low-level
process for machine vision [26. 27, 28].

Relaxation has an obvious equivalent at the level of nenron interactions in the
bhrain: lateral inhibition isx a pervasive feature of the wiving of arravs of nenrons
and it has been stadied in both visual systems and somato-sensory syvstems. It
manifests itself through a peak of excitatory connections bhetween nearby cells and
a trough of inhibition between cells somewhat further apart. Lateral inhibition at
the receptors level has itself an effect on sharpening edges. This process is not used
tn the implementation of ANNIE. because it can introduce unwanted effects {like
Mach bands) [1]. Still. the possibility that it could bring an improvement is not

exchided. Nore researel is necessary for a confirmation.
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2.4 Related Work

Grossberg and Mingolla [29] propose a theory ol form perception that can explain
some illusory contonr formations. According to this theory, two types ol perceptoal
process — boundary completion and featural filling-in - work together to svnthesize
a final percept. The two distinet types of computations are carried ont within
parallel systems during brightness, color, and form perception. These two svstems
arc called the boundary contour system (BCS) and the feafure contour syste m (FCS).

Boundary contour signals are used to generate perceptual edges, both real and
illusory. Building up boundary contours is started by the activation of oriented
masks at cach position of perceptual space. These oriented masks arve sensitive
to the edges’ orientation and to their amonnt of contrast. but not to the edges’
direction of contrast. The outputs from the masks activate three snccessive stages
of interaction. The first stage implements the competition between like orientations
at different (but nearby) positions, and is followed by a stage of competition hetween
perpendicular orientations at the same position. T'he ont puts from this second stage
input to a cooperative process that achieves boundary completion.

More recently. Carpenter et al. {24} have implemented a cireunit for honndary
segmentatior,. called CORT-NX filter. that detects, regularvizes. and completes image
edges in up to 50% noise. while simultancously suppressing the noise. The process.
ing levels of the CORT-X filter are analogous to those of the Grossherg-Mingolla
Boundary Contour Systetn. but contain only fced-forward operations that are casier
to implement in hardware. CORT-X also uses two interacting spatial scales to re
solve a design trade-off that exists between the properties of houndary localization.,
boundary completion. and noise suppression.

In both works described above. the anthors support their theory with nenral
data. The network nodes are analogous to cortical siimple cells. comnplex cells. hyper-
complex cells, and unoriented and oriented cooperative cells. while the interactions
of competition and cooperation between nodes are similar with the process of lateral

inhibition existent in the brain. The BCS and the CORT-X are concerned only with



the logical detection of edges and neglect the aspects of edge intensity of contrast
and direction of contrast. The networks cannot learn. and therefore cannot adapsi
themselves *. They use many parameters that have to be tuned heuristically: they
also nse manyv constraints in the interaction betswveen nodes. based on assumptions
that are hard to be verified.

Fdge detection from zero-evossings has been implemented i hardware by a Cal-
el team [30]. Their one-dimensional 64 pixel. analog CMOS VLSI chip localizes
intensity edges in real-time. using on-chip photoreceptors.  To approximate the
Laplacian of the Gaussian V2L they replace the difference of gaussians {DGG)
proposed by Marr and Hildreth 1101 with a difference of exponentials (DOR. snore
casily implementable i silicon. The chip outputs the logical presence or absence of
zevo-crossings and their slopes as a measure of the edge’s contrast intensity. To sup-
press the noise inherent in the silicon implementation of photoreceptors. only zero-
crossings having the slope over a certain threshold are detected. A two-dimensional

version of the chip was only simulated.

Grossherg, one of the most prominent figures in the field of neural networks. opposes the
backpropagation learming algortthin for not having a neurophysiologigical equivalent. He is the
main exponent of a school of thought elabming that nearal networks should be based only on
replicating the natural braiu.



Chapter 3

Implementation

ANNIE is implemented in the C programming langnage. and vses the Rochester
Connectionist Simulator (RCS) [31]. which ix a packace of programs developed at
the University of Rochester. Because ROS s incllicient in terins of speced and use of
memory. only some of its features were used. Replacing somie of the ROS featnres
causes ANNIE to have a structure atypical for nearal networks. 1t is not o
plemented as an architecture of mdependent nuits connected with cach other and
capable of being simulated on different processors. Instead, its nnits and the links
between them are only simulated by numerical computation. In terns of structure
and hehavior, howevers ANNIE i< eqnivalent tooa nenreal netes ol aned therefore,

its architecture will be deseribed in a nearal network framework.

3.1 The Method Used to Enhance Images

Figure 3 illustrates the general strnetnre of ANNIE. which perforis two enbanee
. . . oy

ment operations on a degraded picture: noise removal and edec sharpenine 70 The

output layer is connected to the input laver and to edge detectors gronped into two

channels. The information conveved by the input Laver is nsed for noise removal

TEven if there is ne blur in the input picture. averaging for nocise retnovad introduees o blur
in the output. The edge sharpening operation ¢ arects hoth the inpat blure and tiie blur resaltted
from averaging.
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Figure 3: The general structure of ANNIE. The arrows indicate communication
between units.

through weighted averaging. and the information conveyed by the edge detectors is
used for blur correction in the vicinity of edges. The edge detectors provide infor-
mation about the edges’ orientation. direction of contrast. and intensity of contrast.
Two orientations are detected: vertical and horizontal. Inclined edges are detected
by both detectors and interpolation of the detectors” outputs determines the in-
tensity of contrast. The sign of the detector’s output determines the direction of
contrast: one direction causes positive outputs. the other direction causes negative
outputs. In both cases. the intensity ol the edge is proportional to the absolute
value of the detector’s output.

ANNIE hehaves like five filters - an averaging filler and four edge correcting
filters (each one of the two channels has one filter for each of the two edge orienta-
tions). These filters act separately and their effects are added for giving the final
output. The shapes of the filters are determined by the weights of the connections
coming inte e output unit. Figures -4 and 5 illustrate examples of these shapes.
as they resulted from one of the training cases presented i Chapter 5 and in the
Appendices. Training the neural network determines the weights of its connections.
and therefore the shapes of the five filters. It ensures an optimal combination be-
tween averaging and correcting the edges and an optimal combination between the
effects of the two edge detection channels. It determines also the edge relaxation

for a more accurate detection of edges.
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For an inpat pattern X € R the outpnt O(X) € ™™™ can be regarded
as the sum of the outputs from the two channels (two filters cach) and from the
averaging filter:

O(X) = A(X) + B(X)+ W(X). (3.1)

where A(X) is the output of channel A, B(X) is the output of channel B. and
W (X) is the output of the averaging filter. Because of the interaction between the
two channels, A(X) and [3(.X) are defined recursively. based on two other functions

A and B:
ACX) = A(X. A(X). B(X)) (3.2)
3(X)=B(X.A(X). B(X)).
This recursion represents an interaction that evolves in time. Therefore the two
functions A(X) and B(X) are the stabilized values of two fuuctions that are depen-
dent also on the time variable:
A(XN) = lim AY(X ./
) = fim A1) )
B(X) = ’lim BI(X. 1.
The functions AN 1) and BY(X.t) can be based on A and B.if we include an

interaction delay At between the two channels:

AN ) = A(X. AN~ Al BI(X. 1 — A1)

(3.4)
BNy = BN AN = A, B{X - A

The use of two channels instead of a single one allows ANNIE to detect intensity
changes at different scales. as suggested by Marr [18. 19]. because each channel is
tuned for components in a different. spatial frequency range. Each channel has edge
detectors tuned for horizontal and vertical orientations. All edge detectors interact
with other neighboring detectors to achieve channel correlation and edge relaxation.
Zero-crossings between outputs of Mexican-hat filters. as presented in Chapter 2,
are at the base of the edge detection method. Each channel described above has
one array of Mexican-hat lilters as the first stage: the size of cach such array is

proportional to the space coustant of the respective channel.
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Lateral inhibition (interaction hetween detectors) achieves both channel corre
lation and edge relaxation. For relaxation, edge detectors should be reinforeed by
neighboring detectors that are activated by the same edge. On the other hand.,
inhibition has to be caused by neighboring detectors that are activated by all other
edges. To prevent the detection of edge interferences. detectors in Channel 3 have
to be inhibited by edges detected in Channel A placed close enough to he a canse
of interference. but far enough to consider that they are not the same as the edge
detected in Channel B. Only absolute values of the neighboring detectors” ontputs
are used because edge interference can occur between edges of any directions of
contrast. One-step recursion simnlates lateral inhibition and offers & very coarse
approximation of equations 3.3 and 3.1, In feed-forward nearal networks Tike AN-
NIE recursion is done through multiple lavers, Therefore, there are two lavers that
perform two different stages in cdge detection: zero-crossing detection and edge
identification.

Training uses pairs of images. Each pair consists of an original picture as a
reference to which the outpit is compared. and of an iuput picture that is ohtained
by applying noise and/or blur to the original one. The criterion nsed for training is
to minimize the mean square error of the output compared 1o the reference picture,
All the units of the network are analog. The reference picture has continnous pixel
values between -1 and 1. and the input picture has its values inoa shimilav range
(the difference comes from the added noise). Through training. ANNIE learns the
shapes of the weighted averaging filter and the edge correction filters. and the rales

for edge relaxation and channel interaction.

3.2 The Operation of ANNIE

Each layer can be associated with a picture of its results. e following deseription
of the neural network uses these pictures to illastrate the results inall Levers, for
a sample input pattern shown in Figure 6. ANNIE builds the output picture by

scanning it pixel by pixel. The hidden lavers use the same mnethod to process the



Fignre 6: Sample input pattern. It has 175 X 175 pixels.

inputs from other layers. Only one unit is used in each layer to scan the results from
inputting layers and to build a new picture of results. Although cach layer contains
only one unit used repeatedly while scanning. it is easier to understand the operation
of the network if each layer is considered to be formed of an array of units. each
corresponding to one pixel in the picture of results. In the network used {or training.
from lower layvers to higher layers. the pictures of results arve smaller. becanse units
at the boundaries of the picture cannot have full connectivity to lower layers. After
training. another network can be used. with all pictures of results having the same
sizes as the input picture. In this case. units placed close to the boundaries would
use only a partial connectivity. with weights derived from those used by units with
full connectivity. However. the boundary pixels of the output picture will not he
enhanced to the same degree as the other pixels.

Figure 7 illustrates the architecture of ANNIE. The input layer (0) conveys
the degraded image to the network. The output layer (11) produces the processed
picture and compares it to the reference picture. The hidden layers (1 to 10) consti-
tute the edge detectors grouped into two channels. Channel A with a smaller space
constant (for higher spatial frequency components) and Channel B with a larger
space constant (for lower spatial frequency components). Each channel contains a

layer (1 and 2. respectively) of Mexican-hat filters. two zero-crossings layers (3 and
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1. 5 and 6). and two edge idcniification layers (7 and 809 and 10). "The operation
of the Mexican-hat filters ¢onld be exeented by the zero-crossings lavers: however.
the Mexican-hat layers were used to separate the different functions in different
layers and thus achieve modularity in the neural network. Edge detectors are dupli-
cated into zero-crossings layvers and edge identification layers to simulate recursive
interaction in the feed-forward neural network: considering the Equations 3.1, zero-
crossings lavers simulate the values A'(X.0) and BY(X.0). while edge identification
layers simulate the values AY(X.A¢t) and BY(X,At). Units are hinked to arrayvs of
units from other layers. Therefore, links connecting one unit to a specific layer
can be considered as being grouped in an array of links and their weights also as
grouped in an array., These arrays will be referred as link arrays and weight arrays.
respectively. Table 3.1 sumimarizes the links between lavers. In Chapter 5 and in
the Appendices. weights ol all the links are illustrated with the values determined
through training for different types of picture degradations.

All link arravs were chosen to be square to simplify the equivalence between
vertical and horizontal edge detection. The larger the link arrays. the higher the
accuracy i image enhancement would be. However. computational considerations
restrict the sizes of the arrayvs. Apart from that. results are almost the same when
these sizes are above a certain value, dependent on the spatial frequency of the
channel. Edges detected in either channel can interfere only with edges situated at
a distance equal to twice the space constant of the respective channel. Therefore.
in the case of intra-channel and inter-channel links. arrays having the size equal to
twice the space constant would be sufficient to correct edges affected by interfer-
ence. After simulating the network with link arrays having the dimensions of the
interference neighborhoods. smaller dimensions were chosen. in such a way that the
speed of processing was increased without affecting the accuracy in a significant
measure. For edge-detector - output and input - output links. different noise re-
moval simulations were made first with large sizes and subsequently with smaller
sizes, stopping when the accuracy was affected in a significant measure. Table 3.1

indicates the dimensions of the link arrays.
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Table 3.1: The links between ANNIE s Livers,
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IPigure 8: The links entering the ontput layer.

The weights of the links between the input layer and the Mexican-hat layer:
are determined by initial calculations to simulate the shape of the Mexican-hat
filters. These weights are not changed during the training process. The weights o
the links between the Mexican-hat lavers and the zero-crossing layers are not used
and for this reason. they also are not changed during the training process. Some
weights are expected to have a specific sign and some weight arrays are expectec
to be symmetrical: some arrays are expected to be the transpose of others. Thes

features are reinforced during training, as shown in Section -1.4.

3.2.1 The Operation of the Output Layer

To calculate the value of cach pixel, the out put unit of the network makes a weighte
average of the input units in a 9 x 9 neighborhood and adds to this result edg
corrections from the two edge-detection channels. There are two edge identificatio
layers at the top of each chaunel: one layer is tuned for vertical edges, the othe
layer is tuned for horizontal edges. Diagonal edges are detected by both layers and
are sharpened with a sum of both layers’ outputs. The output unit receives input
from arrays (8 x 8) of units in the top two layers of each channel. Figure 8 show

how the output laver is connected and from which lavers it receives inputs. Th

I
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Figure 9: The output for the sample picture. Tt has 1D < 1D pixels

operation of the out put laver is lincar: for cach pixel. its value in the output picture
is:

x0 Sxy |BXS Sx S RANS
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and w!”" are the weights of the corresponding, links. The first term of the sumn

represents the operation of weighted averaging and the other four terms represent

the edge corrections. The weights «? implement the filter ilnstrated in Fignre .

t
YR L oA uB. B.1
.. e

while the weights w!™", SEand w77 naplement fonr filters like the one

illustrated in Figure 5. Figure 9 presents the output of ANNIE for the sample

picture shown in Figure 6.

3.2.2 The Operation of the Edge Detection Channels

Each channel executes three operations:

1. It applies a Mexican-hat operator with a specific size over the inpat picture,



2. It detects zero-crossines in the pictures resulting from the lirst operation,

3. Considering cach zero-crossing as an edge. it removes or at least attenuates

false cdges cansed by noise or interference.

The Mexican-hat Layers

In cach channel, a first layer (layers 1.2 in Figure 7) applies a Mexican-hat operator
over the input picture. Each unit in these layers is connected to an array of units
from the input layer. The weights of these connections determine the shapes of the
Mexican-hat operators. The size of the array is proportional to the space constant
of the respective channel. For Channel AL the array is T x 70 a 3 x 3 array of weights
in the center are positive, while the others are negative. These are the minimal
dimensions with which a Mexican-hat filter can achieve smoothing before applying
the Laplacian operator. For Channel B. the array is 21 x 21. This dimension.
while relatively still small. allows Channel B to be significantly less sensitive to
noise than Channel Ao Campbell and Robson [10] stated that mechanisms in the
visual nervous systen respond maximally at some particular spatial frequency and
hardly at all at spatial frequencies differing by a factor of two. This suggests that a
system like ANNIE should use channels having space constants differing at most
by a factor of two. But because only two such channels are used. a factor of three
was preferred to illustrate better the differences and the interaction between the
channels. Figure 10 illustrates the resnlts of processing the sample picture with
cach of the two Mexican-hat operators having different space constants.

Equation 2.1 determines the weights of the links coming into the units of these

layers, with two changes:

I. The weight of the central connection is modified such that the sum of all the
weights is null. This ensures that the response of a Mexican-hat unit is zero

over an array of equal input values.

2. All the weights are normalized such that the sum of the negative ones and the

sum of the positive ones are both equal in absolute value to 1, in both channels.



(a) (b)

Figure 10: The sample picture processed by Mexican-hat layvers. (a) processed by
Channel A's 7 x 7 Mexican-hat layvers (169 x 169 pixels). (b)) processed by Channel
B’s 21 x 21 Mexizan-hat layers (155 x 155 pixels).
This ensures that the responses of Mexican-hat units in both channels are of
the same order of magnitude for a particular edge. Withont this restriction,

training would erroncously favor the channel with a higher response.

Training these weights can improve the performance of the network. but affec

S
negatively the learning specd. Therefore, they are calculated when the network is
built and are kept with the same values while the network is trained. A factor in
optimizing the Mexican-hat units is choosing a value for a. the space constant in
Equation 2.1. 'Through trial-and-crror. o was chosen as /8.5 the size of the link
array. This value is roughly the best one for which the distribution of the weights

reproduces closely enough the shape presented in Figure .

The Zero-crossing Layers

Each Mexican-hat layer sends its outputs to two other tavers (3. 1 and 5, 6 n Fig-
ure 7), one tuned to detect vertical zero-crossings and one tuned to detect horizontal
zero-crossings in the picture resulting from the Mexican-hat filtering. Choosing a

zero-crossing operator was a difficult task. because of several requirements whose

.')8
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Figure i1: The array of outputs of the Mexican-hat layers. used for ZOero-crossing
detection.

Licompdete fulfilliment is the most serions source of errors:

e Lincarity of the measurement operation’s characteristic: the output should be

proportional 1o the contrast magnitude of the edge.

e Tianness of edges: edges should e detected as hines only one or at most two
pixels thick. according to whether the edge is placed between or over pixels:
when edges are detected as lines two pixels thick. measurement of the contrast
magnitude shonld be corvelated with the effeet thar a thick line has on the

cdge correction operation.

o Simplicity: operators used for different orientations should be as similar as

possible. to keep the program simple and casy to maintain.

Units in these lavers are connected to an array of 1 x 1 units in the Mexican-hat
laver. The size of the operator was chiosen on the consideration that a larger one.
although less sensitive to noise. would have omitted more edge pixels. This factor
is more important than noise because edge pixels cansed by noise are removed or
at least attenuated by edge relaxation.

The weights of the corresponding links have no significance: only the ontputs
P to prg of the units are used as presented 1 Figure 110 Two values. ¢ and o,
are caleulated. A zero-crossing is detected if o] and v2 are of opposite signs. The
amplitude of the zero-crossing s

= /=(er- 1. (3.6)
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From Figure 11. for vertical detectors

vy = pr+prtpa ot ped po oo R+ ooy {(3.7)
and
v = p3 4+ py +pPr o+ IS + pyy e A pes e PN

For horizontal deted ors

vy =pp+ pot ps At pyrtops 4 ope o+ pr o+ ps (3.0

and
Cr = po+ o= e s et pes . (3.0
Figure 12 illustrates how zero-crossings are detected in both channels for the sample
picture. While Channel A is more sensitive to noise. Channel B s more sensitive to
edge mterferences. It edges are closeto cach other. they can he detected as displaced

or as only one edge. or they can cause a false edec i hetween,

Lateral Inhibition and the Edge Identification Layvers

If we consider that the two chiannels are {ormed of edee detectors with vertical and
horizontal orientation~. edge rolaxation and inter-channel correlation are achieved
by simulated lateral inhibition from edge detectors of Loth orientations. To achieve
a lateral inhibition effect. every edge detecior ¢ should be conneeted 1o detectors
from both channels. placed 1 a neighborhood N4 and in i neighborhood N(f3).
respectively. around pixel 7o mcluding pixel 7 in the other channel, With the ampli
tude of the zero-crossing =, defined by FEquation 3.60 g the onmtpnt of edge detector
i. should satisf{y the relation:

N(AJUN (B

yo= syn(sdopos Uz db+ 0 30w i (3.01)
where
-1 fr<0
_ J G il 0
sgn(r) = O =0 and postr) = . (3.12)

l‘r e - h

I if >0
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Figure 12: Zero-crossing

s detected in both channels for the sample picture. (a)
vertical and horizontal zero-crossings detected by Channel AL Both pictures have
166 x 166 pixels. (b) vertical and horizontal zero-crossings detected by Channel B.
Both pictures have 1441 x 1 pixels




y; are outnuts of the cdge detectors connected to unit 0 and w,, arve the weights
of the corresponding links. With this velation. lateral inhibition is not allowed to
create edges by itself or to reverse the direction of contrast for a detected zero-
crossing. It can only reinforce or attenuate edges already detected, The function in
Equation 3.11 is recursive because the outputs y, are also dependent on y,. Because
the neural network is a feed-forward one and units cannot be connected to units
from the same layer or a lower laver. the function cannot he implemented as such.
Instead, it can be approximated by a finite iteration:

N(A4) N(B)
v =m0 - pos [0+ 3wt [ 4 30w ) L sy

’

where

y}m = z,. (3.11}
Only two steps of this iteration are implemented in ANNIE. Using more steps
would improve the performance but would also make the network more complex.
Every edge detector is dunlicated as a zero-crossing untt and an edge identification
unit pair: the two mainbers of a pair are connected but the weight of the hink
between them is not used. The edge identification layvers are connected to the zero
crossing lavers and only in Channel B the zero-crossing layvers are connected to the
zero-crossing lavers of Channel AL The zoro-crossing favers excente the fivst iteration
step. by calculating the zero-crossing intensities z; as in Fqguation 3.6, The outpats

of these layers in Channel A are:

g = (3.17)

In Channel B. units in the zero-crossing lavers are connected 1o a neighborhood
NB(A) of units in Channel A's zero-crossing, layvers and the outputs are
NB(A) :
0 . A0 . .
SO = g o ([ 450 ) o
.4 J

E)

0 . - . . .
because the outputs yj-(j“ are already available. The edge identification layers exc

cute the second iteration step. In Channel AL the units i these Javers are connected



to a neighborhood NA(A) of units in Channel A’s zero-crossing lavers and to a neigh-

borhood NA(B) of units in Channel B’s zero-crossing layvers. The outputs are given

by:
A 1 1(0 gl 1(0 N B B0
s = sgn(u ) pos {102+ 2wl o+ 2wl ) 6
J#i J

In Channel B, the units in the edge identification layers are connected to a neigh-

borhood NB(B) of units in Channel B’s zero-crossing layers and the outputs are

~ NB(B)
y,-B“) = .-;_qn.(_:,f’w)) - pos \y;-B(U)l + Z u'ij . |;/JH(U)t (3.18)
J#E

Edge identification units in Channel A are connected to arrays of 9 x 9 units in the
zero-crossing lavers of both orientations. from both channels. Edge identification
units in Channel A are connected 1o arravs of 23 x23 units in the zero-viossing layers
of both orientations from the same channel. Zero-crossing units in L hannel B are
connected to arrays of 23 x 23 units in the zero-crossing layers of Loth orientations
from Channel A. Figure 13 illustrates the connectivity inside aud between the two
channels. Unlike in Figure 7. the zero-crossing and edge identification fayers are
shown separately as vertical and horizontal detector layers. and the links between
them are also shown separately. Figure 14 illustrates the resalts from the edge
identification laver tor the sample picture shown in Figure v, The effects of lTateral

inhibition can by detected by comparing these pictures to the ones in Figure 12
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(b)

Figure 11: Edges identified in both channels for the sample picture. (a) vertical and
horizontal edges identified by Channel A. Both pictures have 136 x 136 pixels. (b):
vertical and horizontal edges identified by Channel B. Both pictures have 122 x 122
pixels.




Chapter 4

The Training Method

The algorithm used for training is quickprop [32]. a derivation of the hackpropaga-

tion algorithm [13]. There were several reasons hehind this chotee:

ANNIE is a neural network with continuons-valued outputs,

A supervised procedure is necessary for this task. An nnsupervised procedure
cannot guarantee that of all possible image processing operations. the netwaork
will learn the ones of noise removal and edge sharpening. A reinforcement
procedure needs a quality measure, and such a mecasure is hard to find for the

task of image enhanceiment.

The complexity of edge sharpening requires hidden lavers in the neural net
A 3 5 | .

work. The hidden layers are used for edge detection and the inforniation they

provide is used to correct the blur. Without the hidden Lavers. the nearal

network cannot learnu to correct the biar.

For most applications. quickprop is much faster than conventional backpropa-
gation or other backpropagation dervivations. and lias a reduced computational

complexity.

Weights are updated not in an on-line mode. but in a bateh mode. In both modes.

during one training cycle, the values of all the output pictures” pixels are caleulated.
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For cach pixel. a correction is calenlated for cach weight in the network. In an
on-line mode. weights are changed after cach ontput pixel calculation. by their
determined corrections. In a bateh mode. weights are changed by the average of
all their corrections determined during the entire training cycle. This ensures a
stoother search for the optimal solution. An on-line method can be faster, but for

a complex network it can cause instability.

4.1 Overview of Backpropagation

The backpropagation training algorithm {13, Chapter 8] is an iterative gradient
algorithm designed to minimize the mean square ervor between the actual output of
a multilayer feed-forward neural network and the desired output. Training through
backpropagation corresponds to performing gradient descent on a surface in weight
space whose height at any point in weight space is cqual to the error measure. This
surface is called the ~error surface.”

Let the measure of the network’s error to input pattern p from among £ input

patterns be given by the mean square sumn
. 2
LP = 5 2 :(d'/)./ - Ul)_/) . ('11)

where o, is the actual output of output unit j and d,, is its desired output. Then.
the overall measure of error is £ = Z £,. In batch mode training. minimizing
this error through gradient descent (:Zm be achieved by starting with any set of
weights and repeatedly changing cach weight w;; from unit / to unit j by an amount

proportional to JI7/dw;:
n al
Aw, = ==y (4.2}
’ P dwy;
where 7 is the constant of proportionality representing the learuing rate. To calen-

late DK, [Ow,,. we can write
L, Jdl, do,, ‘
P p . Y. (4.3)

i‘)w,,- E)o;,j a'l(?,",'




If we define

o = b
I'J - . )
()()I,J'
there are two cases for calculating o, ':
1. For an output unit of the network
& = (dy; — o) (1)
2. For a hidden unit of the network
i)o,,k -
by = E bk - . (1.5)
T Jdu,,

where o, are the outputs of the units for which o, is an input.

Rumelhart. Hinton. and Williams [13. Chapter 8] show how the backpropagation
procedure can be applied to recurrent networks. A network in which the states of
the units at time ¢ determine the states of the units at time £ 4§ s equivalent to a
net that has one laver for cach time slice. Fach weieght in the recurrent network s
implemented by a whole set of identical weights in the corresponding, lavered net.

one for each time slice.

4.2 Quickprop as an Improvement to Backprop-
agation

Despite its impressive performance on sinall problems. and its promise as a widely

applicable mechanism. backpropagation is inadequate for larger tasks becanse the

Usually [13, Chapter 8], backpropagation is described sl htly differently. by defining 8, =
—%3{:. where nety; is the net input of the unit j for input/output pairv po Fhis difference exists
because usually. op; is a function of neipj and nety,, = 5" wjo., . For ANNIE, o, are direetly a
function of wj; and o,;. That is why the above deseription was prefereed although it is cquivalen
to the usual one.



learning time scales poorly. T'wo approaches to the problem of increasing the learn-
ing speed have been tried. The first approach is to adjust the learning rate dy-
namically, cither globally or separately for cach weight, based on the history of the
learning procedure. The momentum term used in standard backpropagation [13.
Chapter 8] is a form of this strategy; Jacobs [33] has proposed heuristics that allow
every weight to have its own adjustable learning rate. The other approach makes
explicit use of the second derivative of the error with respect to cach weight. Given
this information, we can select a new set of weights using Newton’s method or
some more sophisticated optimization technique. Unfortunately. it requires a costly
global computation to derive the true second derivative. so some approximation is
used. Parker [34]. Watrous [35]. and Becker and LeCun [36] have all been active in
this arca.

Quickprop, developed by Fahlman [32], is a second-order method. based loosely
on Newton’s method. Everything proceeds as in standard backpropagation. but for
cach weight a copy is kept of (DFE/dw) (1 — 1). the error derivative computed during
the previous training cyvele. along with the previous change of the weight. The
(D Jhe) (t) value for the current training cycle is also available at weight-update
time.

Quickprop is based on two assumptions: first. that the crror versus weight curve
for each weight can be approximated by a parabola whose arms open upward: sec-
ond, that the change in a weight does not aflect the slope of the error curve seen
by other weights. For each weight. independently. the procedure uses the previous
and current error slopes to determine a parabola. Then. considering the last weight
change. training changes the weight to the minimum point of this parabola. The
computation is made according to the formula:

S(1)
St —1)—5(t)

Aw(l) = At - 1), (4.6)

where S(t) and S(7 — 1) are the current and previous values of @£ /dw.
A difficulty occurs when the current slope is in the same direction as the previous

slope, but is the same size or larger in magnitude. Applying Equation 4.6 blindly
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would cause taking an infinite step or moving uphill, In these cases. the new step
is equal instead to g times the previous step, where gois a parameter called the
maximum growth factor. Besides the cases mentioned hefore, no weight step s
allowed to be greater in magnitude than g times the previous step for that weight.
According to Fahlman. a value of 1.75 for g works well for a wide range of problems.,
In some simulations. this value has caused ANNIE to oscillate when close to the
convergence point. In these cases, smaller values for g were used, down to 1.1,
Since quickprop changes weights based on what happencd during the previous
weight update, a way to bootstrap the process is necessary. The solution is to use
gradient descent, based on the current slope and a learning rate . to start the
process. This method is used also to restart the process for any weight that has a
previous step size of zero. Because y is mostly used only when the simualation is
started, its value is not of high importance. 5 was therefore chosen to he 0,001,

small enough not to cause instability in any simulation.

4.3 Error Backpropagation and Weight Changes
for ANNIE

This section shows in more detail how Fquations 1.20 L4 050 aned 1.6 are applied
in training ANNIE. The elements necessary for caleulating weight changes are
the values ¢,; trom Equations 4.1 and 1.5, and the values S{f) = JF /dw from
Equation 4.6. Training changes only the links going into the ontput unit and the
links implementing lateral inhibition.

To eliminate the division by the number of output pixels 120 Fqguation 4.2 {used
for every laver). Fquation 1.1 was changed into
d; — o;

I)

for each output pixel ¢. Then for any link to the ontput taver. its weight is changed

O
O =

according to _
ar

tr 'l)
o=
4

; s
(Ill'[-J

A0



where yf” is the input that affects output pixel ¢ combined with the weight wy.

For all the edge identification layers, the error propagated to cach pixel is
‘(l) —_ 7 W
o = Z 0F - wi,
J

where 87 is the error in the ontput pixel connected to the edge identification pixel
¢ by o hak with the weight ey With the propagated errors (‘55”. the weights of the

links going into edge identification layers are changed respectively according to

ol A(1) 4(0)
—— = s ‘I/ | .
(')u.';'}"‘ 21: ! i
Z‘Sm) ‘ B(O)‘.
()w
and
oI B(1) B(v)
——y = &7 |r/~ '
BB zl: ' . '
where _1/;‘(“) and yfﬂ“) are respectively the inputs from the first and second channel
that aflect edge identifictaion pixel /i combined with the weight u*;‘}“‘. u “3. or IL'BB._

A1 B(1 . e
and &, M and o; U are the errors propagated to the edge identification layers.

For the zero-crossing layers in Channel Bl the error propagated to cach pixel is

B(0)

éi B(1) B(u)

A Ky cB(1 >
= 6P sgn(yP) AT oM P+ 3087 P )
7 J

(0) - B(])

B
where y; is the value of pixel 7 in the zero-crossing layer of channel B. é;

. .. . . . ST
the error propagated to pixel 7 in the edge identification laver. (‘?/( ) and b B are

the errors propagated to pixels j in the edge identification layers of channel A and

1H B

chaouel B, and w{}® and u',HI. are the weights connecting zero-crossing pixel 2 to

the respective pl.\'('ls J in the edge identification layers of channel A and channel B

B(0}

respectively. With the propagated errors 6. the weights of the links going into

zero-crossing layvers of Channel B are changed according to
B(0) | A(0)]
Z o ‘!/.;' l :

are the inputs from the first channel that affect output pixel ¢ combined
H A

()u'

ET(
where y; ()

with the weight wy
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4.4 Constraints in Updating Weights

We expect the weight arrayvs to have some characteristios atter training:
e Some weight arrays should have onel two, or four axes of svmmetry.
e Some of these weight arrays should be the transpose of other arrays.
e Some weights should have a certain sign.

e In some arrays. there are weights that should be equal in absolute value, but

of opposite sign.

These constraints can be forced during training. Forcing them has the advantage of
increasing the learning speed because it does not allow the search to go in a wrong
direction. It also prevents the network from loosing its generality and becoming,
trained to features specific to the training pattern.

Let us use the notation wy; for all the weights with the meaning that they have
the position (i. j} in an array of dimension <. In the weighted averaging of the
input picture, pixels placed at the same distance from the center should have the
same weight. indifferent to their orientation to the center. Therefore. the weights
of the input - output links should form an array svmmetrie to the center. Phis can
be achieved only by comiplex calculations and instead. a more relaxed. four-axes
symmetry is used. and the weights of the mnput ontput hinks have to satisfy the
following constraints:

[}3 —_— "J L = I'I . -— “.‘l . . _ N — “I — R - "l -
Wi = Wiy, Wits— ;) Ol iys-) i, 1w Wl W e (1.7)

Edge identification -output hnk weights that are svimmetrical to the axis with the
orientation for which the detectors are tuned have 1o be equal i absolate value
but with opposite signs. Weight arrays that arc used by horizontal edge detectors
must be the transposc of weight arrays used by vertical edge detectors. Therefore,

for each channel, the weights between the edge identification Tavers and the outpui



Faver are forced 1o satisfv the following constraints:

— o — I" —_— y,‘l' - ({\I !
= s T Cis—ais—n = =y

a = = = = —uy

o tx=s) s ){s—e)"

(1.8)
where 10" are weights of links coming from vertically tuned layers and w! are weights
of links coming from horizontzallyv tuned layers. In the same manner. the weight
arravs implementing lateral inhibition in horizontal detectors must be the transpose
of weight arravs in vertical detectors, These weights. identified in Equations 3.16-

3R as w0 B and PP have to satisfy separately the following constraints:

ok vh . rh ke e e A ke {
w, = ey, T Wis—) = Wa-nts-0) = W, = oy = W) = W s—=1) (1”
and
N N S _ RRE Lt Y A 7 ¥ 1 Wk __ Ak
W =Ly, T W) T W sy T T ey T W= T T e=n =0 (1.10)
I i . 3 . -y . .
where a w0 and e wre respectively weights of Hnks from vertical to

horizontal lavers. from horizontal to vertical layers. from vertical 1o vertical lavers,
and from horizomal to horizontal lavers. 1o implement weighted averaging. the
input outpnt link weights are forced 1o be positive.

To force these constraints on weights that have 1o he equal. their changes are
averaged together and then applied to all the corresponding weights. Consequently.
during the trainiug of the nenral network. information has to be exchanged between
units., This communication represents a violation of the locality of processing con-
straint and therefore limits the implementability of the nearal network in a massively
parallel architecture, However, a massively parallel implementation is possible after
traiuing is finished. A certain degree of paratlelisi is achievable even while training,

and a parallel iuplementation can otfer better performance.



Chapter 5
Simulations

Through training. ANNIE has the ability to learn how 1o eliminate noise and how
to sharpen edges. It generalizes this knowledge to enbiance pictures that have the
same type of noise a the same type of blur as the pictures used for traning.
To prove this abilita. ANNIE was trained with nine pictnres and then was tested
on a terrh. Figure 15 ~hovs the nine pictures used for trainine and Fignre 16
shows 1he ety ool for test f‘llj_’,. Adl these pirtnn-.\' are arl iliﬂ'inll_\' g('llt‘l'.‘nl«'(l. The
original picti: o ho o o noixe and no blur and are nsed ax reference patterns at
the output of t. conwork. The same pictures degraded by noise and /or blur are
used as irnput patterus. During training. ANNIE processes the input patterns aned
compares the resuits to the reerence patterns. | he diferences hetween the ot pn
and the reference are used for changing the weight< of 1he network. Simmlations
were performed for several types of image degradation: noise and blur. onbv blar.
and only noise. This chapter (Section 5.2) presents onlyv the resalts for removine
both noise and blur. Appendix A presents the results for edee <harpening in the
presence of noise. Appendix B presents vesults for removing noise, and Appendiz €
presents results for edge sharpening. Appendis D illustrates the reanlts obtained on
digitized real pictures and a short compari-on between ANNIE o= o noise removal

method and median filtering.
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Figure 16: The picture used for testing,

5.1 Methodology of Simulation

Performance Criterion

The criterion for judging the performance of ANNIE is the mean square error

1

=3 (d, ~ 0,)?. caleulated for all the pixels j in a set of patterns. This error is
N

minumized during training for the set of training patterns. The final error has 1o be

judged by comparing it to the initial error. which represents the difference between

the input pattern and the reference pattern. For the trainine patterns. the final

mean square error represents the limitations of the system. The error cannot b

chiminated completely t - ause:

e Not all edges can be detected even by the channel with a simaller spatial

coustant because of edge interference.
o Not all false edges and not all edge pixels caused by noise can be eliminated.

e There s no edge correction that is perfect for edges of all orientations and

placements relative to the picture pixels.

e There ix alwavs a tradeofl hetween noise removal and edge sharpening,.



for the test pattern. the proportion in which the mean square error is rediced shows
the power of the system te generalize the knowledge acquired during training. For a
good performance. the training set has to include all the significant features. Fven
s0. the neural network makes a tradeofl hetween averaging for noise elimination on
one hand. aud edge correction on the other. That is why the proportion of edge
pixels affects the optimization of the mean square ervor. If the trainiug, patterns have
only few edges. noise removal will he emphasized to the detriment of deblurring:
the opposite is also true. Therefore, results are not optimal for the test pattern if

it has a proportion of edge pixels different {rom the one in the trainiy set,

Training Patterns

There are several “atures that ANNIE must icarn to discern, The training patterns

attempt to include all these features:
e Parallel edges placed at different distances from cacli other.
e Ldges oriented at different angles.
e One-pixel and two-pixel wide edges.
o [ldges of different contrast imagnitudes.

Two edges interfere in channel A il theyv arve placed ot o distance spudler than S
pixels from each other. and in channel B at o distance smaller than 22 pixels. 1o
train ANNIE to prevent such interferences. the fivst seven training pictures have
parallel edges placed at distances from 2 to 22 pixels. The cighth and the ninth
training pictures have cedges oriented at different aneles. Hall of the first cight
pictures have one-pixel wide edges and the other hall have 1wo picel wide edges.
Two-pixel wide cdges ave generated {from one-pixel wide edecs by blurring them

through an averaging 2 x 2z matrix. The uinth training picture is used especiatly

because it is generated with characteristios sitnilinr 1o those of the test picture.



Internal Representation and External Visualization of Pictures

The pictures are represented by arrays of pixels. When running a simulation of
ANNIE. the pictures are read from separate files. In these files, pixels are repre-
sented by integer values between 0 and 255, Once read by the program. pixcls are
represented by floating point variables that take values between -1.0 and 1.0, The
values written into the input layer and written out by the output layver can be out-
side this range because of the added noise. The conversion is made by mapping the
[0, 255] range directly into the range [-1.0. 1.0]. This internal normalization is useful
because training of the averaging links is faster when there are both negative and
positive values. Internal pictures in hidden layvers take values in different ranges.
These pictures are normalized to the range [0. 255]) when printed for visualization.
All pictures presented in this thesis are executed on laser printers that have only 16
grey levels. Therefore, gradual variations in the grev intensity may appear in print
as sudden variations (apparent edges), because 16 small steps on the 0 to 255 grey

scale are represented by one large, single step on the 0 to 15 scale.

Picture Degradations

Blur was generated by replacing the value of each pixel with the average of the
pixels in a3 x 3 neighborheod. In most simulations. noise was generated by adding
random values uniformly distributed in a range [-0.15. 0.153]. For one simulation
in which pictures are degraded only by noise. this range is -0.3. 03], Figure 17
shows results of degrading one of the training pictures with these methods. These
are only examples of picture degradations, used for demonstrating the the system’s

functionality. ANNIE is capable of correcting other types of blur and noise as well.

Modular training

Every link array or group of arravs can be trained separately as a module. Modular

training has many advantages. One is ease of testing. In a simpler network. local



(d)

Figure 17: Deg

adations applied to one of the training patterns. (a) the original
picture, (b) the same picture with noise. (¢) with blure. (dj with both Llur and noise.
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minima are less probable and we can obtain estimations of the performance that can
be reached. I the network inits full complexity does not show a better performance,
it is because it has reached a local minimmun or because of a programming crror.
For a simpler network. we can also estimate more casily what the weights should be.
and what is the cause for not reaching that state. Another advantage of modular
training is increased learning speed. as suggested by Hinton [11]. Learning times
increase faster than linearly with the size of the networks. Therefore, for smaller
modules training is faster than for the cntire network. Eventu: L vraining the entire
network uses an initial state based on results from training cach module separately.

Training cach module also can use results from training other modules.

Testing and debugging

Testing and debugging was an essential stage in developing ANNIE and it used
several procedures. One of these procedures was visnalizing the weights of hnks
at intermediate stages of training. Other procedures were based on visualizing the
outputs of lavers and the errors propagated 1o lavers as pictures. Sometimes. more
complex operations with these pictures were vsed. such as detecting where the error

is increasing from one step to another.

Weights Initialization

All the weights that are Kkept fixed are initialized with the desired values. These
are the weights ol the links that implement the Mexican-Hat filters and the weights
of the links between the edge identification units and their duplicate zero-crossing
units. The weight at the center of the input-ontput averaging weight array is ini-
tialized as equal to the unit. All the other weights ave mtialized as null. This
initialization determines the svstem to create an initial output pattern identical to
the input pattern. The initial error of the system is determined by the difference
between the degraded picture and the reference picture. 1t is better to start the
error’s minimization from this value because it is much lower than the one obtained

when all weights are null. and because it is hard to estimate a set of weights with



which error is lower.

Identifying Convergence and Stopping the Training Process

Experiments with training ANNIE poiut out a general behavior: during an initial
stage, the mean square error decreases rapidly. until it is close to the minimal value
that can be achicved: in a sccond stage. the mean square crror decreases slowly
and training after this point has low efficiency: eventuallv, in a third stage. the
mean square error is practically oscillating slowly around a certain value, increasing
slightly for a few cycles and then decreasing again for an approximately equal num
ber of cycles. During the last stage. the weight changes are very small compared
to the weights: in @ hsolute value. the changes are about two size orders (or more)
smaller than the weights themselves. It can be considered that the valne around
which the mean square error is oscillating during the third staee is the minima
value of convergence. However. it is not necessary to train the nearal network
this point. Even during the second stage. another point is attained when the per
formance on the test pattern is beginning to decrease. Training was stopped alter
this point was attained: training more would be inelficient for the coniputation tie

and can cause overtraining of the neural network !

5.2 Simulation Results

This section presents only the results obtained when using ANNIE for noise e
moval and edge sharpening. The Appendices present the results obtained for otfee
cases and some results on digitized real pictures. In discussing the results of the
simulations. an important role is held by visnalizing weiehts and by visnalizing
where the error is highest in the training and the 1est patterus. The weights deter
mined through training are different when different tyvpes of image degradations are

used. For cach case. weights are visnalized as white squares if positive and as black

TOvertraining a neural network mieans that the performanee is improved for the trading ~ct o
patterns, but generality is Jost and performance on other patterns is decrensing,



-

Pattern

l Initial Error I Final Error ]

Training pattern | 114 0381
Training pattern 2 0942 0313
Training pattern 3 115 0358
Training pattern 4 09411 0295
Training pattern 5 114 0337
Training pattern 6 0047 .0301
Training pattern 7 14 .0323
Training pattern & .099 0371
Training pattern 9 123 0624

Test pattern 12 0511

Table 5.2: The mean square ervor for noise removal and edge sharpening.

squares if negative. The sizes of the squares are proportional to the absolute values
of the weights. Considering that the weights vary in a range [—w.w]. a maximum
size white square represents a weight equal to w and a maximum size black square
represents a weight equal to —w. Where two weight arravs are the transpose of
cach other (see Scction 1.4) only one of them is represented. Firor pictures show
the differences between the actual outpnts and the desired ones as lighter pixels
where the error is positive and as darker pixels where the error is negative. The
pixel intensities are determined by the absolute values of the error. Assuming that
the error varies in a range [—i.¢]. a white pixel represents an error / aud a black
pixel represents an error —v.

Table 5.2 presents the results from training to remove noise generated randomly
in the range [-0.15. 0.15]. and to sharpen edges at the same tiime. Figure 18 shows
the output picture in response to the test pattern and compares it to the pattern
used as input and to the pattern used as reference. Figure 19 illustrates the weights

for different link arrays.



Figure 18: The output in response to the test pattern., compared to the inpnt and
to the reference. after training for noise removal and edee sharpening. (aj the
mput picture (clipped to the size of the reference and the ontput pictures). (b) the
reference picture, (¢) the output picture. {d) the difference hetween the ontput and
the reference.
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FIGURE REMOVED BECAUSE OF
POOR REPRODUCTION QUALI'TY

Figure 19: Weights obtained by training for noise removal and edge sharpening: the
weights of the link arravs (FOA and EOB in Figure 7) between the output layer
and the vertical edge identification layers of (a) Channel A (IFOA). (b) Channel
B (EOB). The maxinmumn size squares represent weights that are equal to .0359 in

absolute valne.

FIGURE REMOVED BECAUSE OF
POOR REPRODUCTION QUALITY

Figure 19{Cont.]: Weights O ained by training for noise removal and edge sharpen-
ing: the weights of the link arravs (1ICA and CCOBA i Figure 7) between Channel
A's vertical edge identification lavers and (¢) Channel A's vertical zero-crossing lay-
ers (ICA), (d) Channel \'s horizontal zero-crossing lavers (1CA). (e) Channel B’s
vertical zero-crossing layers (CCBA). (1) Channel B's horizontal zero-crossing lay-
ers (CCBA). The maximum size squares represent weights that are equal to 278 in
absolute value.

Ut
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FIGURE REMOVED BECAUSE OFF
POOR REPRODUCTION QUALITY

Figure 19[Cont.]: Weights obtained by training for noise removal and edge sharpen-
ing: the weights of the link arrays (ICB in Figure 7) between Channel 1375 vertical
edge identification layers and (g) Chaunel B's vertical zevo-crossing lavers (the two
weights symbolized Ly N have the value (814, (h) Channel B's horizoutal zero-
crossing layervs: the weights of the link arrays (CCAB i Figure 7) between Channel
B’s vertical zero-crossing lavers and (i) Chanocl A's vertical mero-crossing layers. (§)
Chanrel A’s horizontal zero-crossing lavers  Fhe maxinnun size squares represent
weights that are equal 1o 447 in absolute value.

H0



FIGURE REMOVED BECATUSE OF
POOR REPRODUCTION QUALITY

Fignre 19[Cont.]: Weights obtained by training for noise removal and edge sharg,-
cing: the weights of the input output links (10O in Figure 7). The maximum size

squares represent weights that are equal to (0105 in absolute value.

[ Simulation i Initial o | Final Error j‘

Fdee sharpening in the presence of noise | 0705 10137 |

Noise removal (0150 0.15]) .H-\'li-')_wuﬁdw .(|2§.32——j

Noise removal (0.3, 0.3]) : a3 1 oo M

Noise removil ;uulﬂ:wigv sharpening U T T T osnr
Edege sharpenng 0705 ﬁ« 0355

Table 5.3 The simmary of the results for the test pattern.

5.3 Comparison of Results

Table 5.3 suminarizes the results for the test pattern e all sinadation casess These
results sugeest that ANNIE performs best for noise removal. However, it should
be pointed out that the test pattern has some sharp edees that are very close to
cach other and 10as avound those edees that crror s highest. D saeli casess bl
chiminates o laree amonnt of information that cannot be recuperated. Pictures with
fewer small detatls wonld show hetter performmance in removing blhar,

How ANNIE adapts itsclf 1o different tvpes of picture degradations becomes
cvident fronn comparing the weiehts of the link arravs for ditferent simmlations. For
cdge sharpening withont any noise. the network relies ahimost completely on Channel
AL This is proved by the fact that the weights of the Jinks connecting the ontpnt

lave: to the edee identification lavers ave much laveer in Channel A than in Channel



B. In the simulations with noize in the range FO50 00050 Lot chanels ave alrinost

equally reliable. When noise isin the larger range (0030 03] the network relies more
on Channel B and therefore the correspondine weieht< o Channel B arve lareer. Phis
variation is due to the fact that Channel A is ore acenrate i detecting, details
but is more sensitive to noise. Fdee detectors from ditferent chiannels Taving the
same position and ortentation inhibit cach other and the nk hetween them has a
negative weight. This explai < why when both channels are alinost equally reliable
edges are detected by only one channel, This effect is evident in Fienre 1 When no
noise removal 1= performeds the input output links learn 1o comvey only the valae
of the input pixel to the corresponding output pixel and averaging of surronnding
pixels is ahmost neeligibles This averanine is used ondy for noise removal s and 1t
ini(‘l'x'slin}_{ 10 note tiat the \!1.‘1;;1' of the averaoine tilter s Hlarter with |x‘1'_',il~'l' N,

This means that the operation of averacine is optimiced for different fevels of naise

N



Chapter 8
Conciusions

ANNIE represents a nenral network method 1o remove noise and to sharpen edges
in digital pictures. 1 is ditlicult to compare it 1o other methods becanse there
is no numerical measnre for performance in the two operations of image enhance-
ment. However, an advantage is that, when the degradation can be reprodused on
a set of training patterns. a neural network is capable of adapting to optimize the
enhancement. On the other hand. the long duration of the training process is a dis.
advantaee. Fven used normallv, after trainineg. ANNIE i< mnuch slower than most
ot her noise removal and edec enhancement operations. hecanse it involves complex
operations like edge detection and edge relaxation.

Because noise removal based on averaging and edge sharpening based on edge
detection are very general image enhancement methods. ANNIE can be nsed with
simmitar results for any tvpe of noise and bine o some cases. other methods may
perform better. Appendin D presents a visnal comparison with median filtering,.
a noise remeval method that preserves well edges 1370 For the specific type of
noise used. ANNIE performs better. For some digitized real pictures. good results
were obtained in removing ~sampling noise. For a thorongh performance assessment.
further experiments using more tyvpes of noise and blur are necessary to compare
ANNIE with other noise removal. edge enhancement. and edge detection methods.

ANNIE represents also a neural network method for edge detection and is a
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natiral physical implementaiion for the study of Mave's theary of edee devection
Features adopted from this theory are the multiple channels and zero crossine, de
tection. However. the channel interaction is based on lateral inhabition. and not on
the detection of features ke lines, hlobs. and terminations. as proposed by Maor,
Experiments can show the advantages of usine mubltiple channelso chiannel interae
tion and cdge relaxation. ANNIE can simulate the action of o single channel by
training only the links of that channel and keeping the weights in the other chan
el equal to 0. Inter- and intra-channel interaction can be disabied by keeping the
weights of all the corresponding hinks eqal 1o 0,

The implementation presented in this thesis s meant maindy to llustrate the
trnage enhancement and odee detection methiods that v aseso and 1o exemphiy
how a nenral netvork is capable of lTearnine features hle filter ~hapes and edee
relaxation. It performance s not ideal and 1t s open 1o many tiprovements,
The present implementation shows cood results in removine noise. However: the
averaging operation introduces an additional Dlur. Lone ~strasehts and isolated
edges are reconstructed almost completelv. hat fine detanlss cnrved edees and narrow
bars (lines) are enhanced pooriyv. There are several wavs 1o nplement o hicher

performance neural network for both imaee enhancenicnt and edae detection:

. Pwo edege detectors could bhe implemented for cach ortentation. detecting sep
arately edges of opposite directions of contrast. Neddime this infonnanion thi
i~ not nsed in ANNIE. can make edee relaxation more aconrate. Indeed. two
edge detectors with the <ame onentation and hned apoon thenr orentation
should reinforce cacli other if ey hiave also the samne contrast shireation, hat

.\'ll()lll(l illll”)i‘l (';1('|| ulln'l' lf 1!1(2\' hia\'t' u[)lu;.\ilc- contrae-t 1“]':-« liu1|~-~..

I~

More stages can be used i implemienting the recurrent interaction hetween
cdge detectors. As false edges are ellininated iy saccessive stages  the remain

ing cdges contain more pertaining informnation and the interaction bhetween

edge detectors 1= more accurate.

3. Edge detectors with more than two orientations can he used. Two more
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diagonal ortentations are casy to implen o5t This allows more accuracy in

the edge detection and in edge sharpening,.

1. More than two edge detection channels can be nsed. This would enable the
neural network to deteet edges even in pictures with miich stronger noise
and/or blur. A chanuel with a very small space constant would be especially
nseful. because it will improve edge detection in regions with small details.

where the performance of ANNIE is poorest.

<

A more extensive set of training patterns is necessary. More training is nec-
essary for curved edges and inclined edges. botle isolated and close to each

other. Real pictures shonld be added to the artiticial ones.

6. The training process can be extended 1o all the links (see Figure 7000 Ad-
justing the weights of the MZA and MZB links would allow & weighted av-
eraging of the Mexican-hat filter ontputs instead of sveraging according to
Equations 3.7-3.10: the eflect would be a better acenracy in measuring the
intensity of zero-crossings and a better separation hetween noise edges aned
real edges. Adjusting the weights of thie INLA and IMB hinks wonld allow the

neural network to choose the optimal space constants for the two channels.

These changes have the disadvantage that they wounld make the nenral network
more complex and sjower to train.

The most important problems that emerged in developing ANNIE are related
to training speed aud testability. Training the nearal network needs thousands of
CPU hours on a SUN SPARCstation. This heavy running, time is caused by the
complexity of the network (3774 links. of which 5217 have learned weights)and to
the size of the training patterns which have to include a high nuber of featnres.
Modular training proved itsell to he very efficient in reducing the training time.
especially in terms of CPU time (as opposed to number of training cycles). Testing
and debugging were diflicalt stages in developing the neural network becanse we

cannot anticipate results against which the actnal results can be compared. The
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experience accunmmlated while developing ANNIE snepests thiat o <et of tosting
procedures should he created ina very carly stage. This set should inelnde tests wirh
increasing degrees of complexity: results of complex tests arve ditticult to interpret
and therefore. more simple tests should be performed first to climinate most of the
errovs in inplementation. :

Pictures transmitted by satellites are an example of & possible application. Such
pictures are usually alfected by noise. A set of known training patterns can be
transmitted periodically from the satellite and they can bhe used to retrain the nearal
network. The knowledge acquired this way can he used to enhance the pictares that

are transmitted between two consecutive transmissions of the training patterns,

A similar system can be nnplemented to performm onlyv edge detection.

Kt

i this

case the input  ontput link arvay has to he formed of only ane Tink and the hink
arravs between the edec identification lavers and the owpin Taver can he sialler,
probably 1 =< 1. The nenral vetwork would he tranned to blor pictnres instead of
deblurring them. This can be done by using the original parterns as inputs and the
bhirred patterns as reference at the ontput, Without thie possibility of averaging a
neighborhood of pixels. the nenral network should learn 1o detecr edees and 1o add

a blurring correction around them.
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Appendix A

Edge Sharpening in the Presence

of Noise

Two simulations were used to determine the optimad sizes for the ink arvavs hetween
hidden layers. In the first siiulation. the Iinks going into the zero-crossing and edpe
identification lavers of the Chaunel A form arravs of 13 > 13 Hnks. and the links
going into the zero-crossing and edge identification lavers of the Channel B form
arravs of 15 x 15 links. These arravs cover all possible interferences from other
edges. After training. only some weights in the center of the arravs are siguificant
and only the corresponding links were used in the final version of ANNIE.D as
represented in Table 3.1, Because this simulation was used only tor edge sharpening,.
the input-output link arrav is limited to only one link having the weight equal to 1.
Also. because added blur is placed only adjacent to edeges. the edge identification
output link arrayvs are | x 1. The advantage in using lmited link arravs is redaeed
computation time for the simulations. Noise is generated randomly in the range
[-0.15. 0.15].

Table A1 presents the mean square error helore and after training the Larger
structure, measured for the training patterns and for the test pattern. By reducing
the intra-channel and inter-channel link arravs to the sizes from Table 3010 the

loss in accuracy is very small. Table A5 presents the results from this shmulation.



l Pattern [ Initial Error ] IYinal EFrror ]

Training pattern | 0632 0277
Training pattern 2 0342 0191
Training pattern 3 .069 L0237
Training pattern 4 .0343 0162
Training pattern 5 L0686 .0219
Training pattern 6 .0346 0171
Training pattern 7 0692 0199
T'raining pattern 8 0155 0207
Training pattern 9 0819 047

Test pattern .0705 L0162

Table A.l: The mean square error for edge sharpening in the presence of nois
(stmulation with an experimental, larger network structure).

The simulation time for one training cycle with this structure is about four time
faster than with the experimental. larger structure mentioned above. More tha
that, the simulation with the larger structnre takes more training cycles becaus
backpropagation scales poorly.

Finally. Table A.6 presents the results from training the normal stracture «
ANNIE, having all the link array sizes as in Table 3.1, Figure 20 shows the outpu
picture in response to the test pattern and compares it 1o the pattern used a
input and to the pattern used as reference. Figure 21 visualizes the weights fc
different link arrays. The weights for the input- output link array are not presentec
the weight in the center is equal to (955 and the other weights are comparativel

neghgible.
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I Pattern ] Final l‘lrng};l

Training pattern | 0273
Teaining paticrn 2 OrR3 ]
Clrainng pastoen 3| L0201
Training pattern 1 | 0171
" Training pattern 5 0231
Training pattern 6 016
Training pattern 7 0202 1
Training patiern 8 0215
Trainivg pattern 9 L0505
Test pattern RIRR

Table A.5: The mean square error for edge sharpening in the presence of noise
(simulation with a reduced network structure).

[ Pattern rl;‘illell Forror ]
Training pattern | 0305
Training pattern 2 0191
Training pattern 3 0235 *MJ
Training pattern - 0169 ‘:
Training pattern 5 0218 |
Training pattern 6 | .0IR6
Training pattern 7 0200
Training pattern & | 0216 |
Training pattern 9 010

Test pattern YR

Table A.6: The mean square error for edge sharpening in the presence of noise,
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Fioure 200 The outpit in response to the test pattern. compared to the inpnt and

to the reference. atter iraining for edee sharpening in the presence of noise. fa) the

inpit pictnre (clipped to the <ize of the reference and the ontpnt pietires o by the

reference picture. (o the o put picture. {dy the difference henween the ot put and

the reference.,



FIGURE REMOVED BECAUSE
POOR REPRODUCTION 7 \!

Figure 21: Wetghts obtained by training for edee sharpening in the presence of noises
the weights of the link arrays (FEOA and FOB in Figure 7) hetween the ontpat laver
and the vertical edge identitication lavers of (a) Channel A (FOA)Y. (L Channed
B (FEOB). The maximum size squares represent weights that are equal to 0106 in

absolute valne.

FICGU RE RENMOVED BECAUSE O
POOR REPRODUCTION QUALTLY

Figure 21[Cont.: Weights obtained by trainine for edec Slaapenise snbe proecnoe
of noiser the weiehts of the Hok aorans FCN and COBAY G Fieare 7 between
Chacuel A's vertical edee identilivarion lavers and co Channel A= vertical sero
crossing lavers (IO D cdy Channel s hotizontad 2o cio-sime davers MO N e
Channel B's vertical zovo-crossing lavers i CORB Ny Channel B Borisonal zero
crossing layvers (COBN G The yaximuim size square s tepresent sweight= vhat are cqguad

1o 301 1 absolute value.
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FIGERE RENMOVED BECAUSE OF
POOR REPRODUCTION GUALITY

Figure ZiCont.]: Weights obtained by training tor edge shavrpening i the presence
of noise:r the weights of the link arravs (1CB 0 Figure 7) between Channel Bis
vertical edge identification lavers and (e Channel B's vertical zoro-crossing lavers
(the two weights svimbolized by Xohave the valne 87200 (h) Chany oo Bs horizontal
zero-crossing, lavers: the weichts of the link arravs (CCAB i Figure 7)) hetween
Channel B's vertical zero-crossing lavers and (1) Channel A7s vertical zero-crossing
lavers. (1) Channel A's horizontal zero-crossing lavers. The maxinmm size squares

represent weights that are equal to 291 in absolute vatue.



Appendix B
Noise Removal

Table B.7 presents the results from trainine 1o romove nose venerated randonndy
the range OIS 6000500 Plenre 22 <hows the ourpnn pietare i respotee 1o the test
pattern and compares it to the pattern esed as input aned to the pattern nsed s
reference. Freare 23 illustrates the weiehte for ditferent hink arravs,

Table Bx presenis the resnlt< from trainine to remove notse ecencrated vandomiy
in the range 0030 03] Fienre 21 Shows the ontput pieture i response to the test

pattern and compare< it 1o the pattern used as inpat and 1o the pattern ased s

reference. Fignre 25 iHustrates the weiehts for ditferent hink arraes,



[ Pattern fhmial Error ! Final Fooo

Training pattern | U866 286G
Training paviern 2 0863 0226
Training pattern 3 | .0RGN 0267
Training pattern | U8T 022
Traming pattern 5 LORT 0253
Traiming pattern 6 0866 0232
Training pattern 7 .USGS 0239
Training pattern & 086 0311
Training pattern 9 RTINS 0151
Tost pattern LONGS ‘ RIRE

—— —d

Table B.7: The mean square error for noise removal with notse generated randomty

in the range [-0.15. 0.15],

T T Ty — S N T T
[ Pariern Ulnitial Frvor | Final Freor |
Traming pattern | 1 T3 | oy
Traiming pattern 2 A2 L O3
framming pattern 3 AT A |
Traming pattern 4 A3 0372
fraining pattern 5 ATH 0402
Training pattern € A7 0366
Training pattern 7 AT3 383
Training pattern N A73 i AL ;
Araining patteric 9 A3 ‘ 0609 ‘
Tost pattern 473 054 ]

Fable 3.3 The mican square error for noise removal with noise ecenerated randomly
in the range (0.3, 030



(a)

Figure 22: The ontput in response to the test pattern, commpared to the input and
to the reference. after training for noise rermgoval vith noise cencraned rondonds i
the range [-0.15. 0.15]. (a) the nput picture (clipped to the size of the reference
and the cntpat pictaresy. (hy the reference picture. fer the ot ot pietnre, tdy e

difference between the outpat and o velerence.
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FIGURE REMOVED BECAUSE OF
POCR REPRODUCTION QUALITY

Figure 23: Weights obtained by training for removing noise generated randomly in
the range |-0.15. 0.15]: the weights of the lnk arvays (EOA and EOB in Figure ©)
between the output 1 ver and the vertical edec identification layvers of (a) Channel
A (FOA). (h) Channel B (FEOB). The maximum size squares represent weights that
are cqual to 0208 in absolute value.

FIGURE REMOVED BECAUSH OF
POOR REPRODUCTION QUATITY

Figure 23[Cont.}: Weights obtained by training for removing noise generated ran-
domly in the range [F0.15. 0.15): the weqats of the link arrays (1CA and COBA
in Figure 7) between Channel A's vertical edge identification Jayers and (¢) Chan-
nel A's vertical zero-crossing avers (1CAG (d) Channel ATs horizontal zero-crossing
lavers (1CA). (¢) Channel B's certical zero-crossing layvers (CCBA) (F) Channel
B's horizontal zevo-crossing lavers (CCRBAG The maximung size sqnares represent
weights that are equal to 121 in absolute valne.



FIGURE RENMOVED BECA s OF
POOR REPRODUCTION QUALITY

Figure 23[Cont.ls Weighits obtained Ly tridnine for seroning noise goncrated pag
domly in the ranee OO0 00050 the welehts of the Gk arrac~ (TCOB i Faevie 7y
between Chaninel 1375 vertical edee identification Tavers and e el 137 e
cal zero-crossing favers. (hj Channel B's horizontal zevo crossing Javers: the weeln -
of the link arravs {CCARB in Figure 75 hetween Channel B vertical zeto crossine
Javers oo (1 Channel A< vertical vora o st i v Channel AT honzantal
zero-cros-ng lavers. The maximuni size squunes represent swerehts tha' ave copial 1o

27 in absolute value.



FIGURE REMOVED BECAUSE Gl
POOR REPRODUCTION QUALITY

Figure 23[Cont.]: Weights obtained by training for removing noise generated ran-
domly in the range 00050 0005]: the weights of the input outpat links 110 i Fig-
ure 7). The maxinmum size squares represent weights that ave equal to (0289 in

absoiute value.
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(C) tdy

Figure 24: The output in response to the test paitern. cotmpared to the inpat and 1o
the reference. after training for noise retoval with noise gencrated randomldy i the
range [-0.3.0.310 (a) the input pictare telipped o the size of the reference and the
output pictures). (b) the reference picture. (e the outpnt pietaresidothe ditferene

between the ontpnt and the reference.



FIGURE REMOVED BECAUSE OF
POOR REPRODUCTION QUALITY

Fignre 25: Weights obtained by training for removing noise generated randomly in
the range [-0.3. 0.3): the weights of the link arrays (EOA and EOB i Figure 1)
between the output laver and the vertical edge identitication layers of (a) Chaunel
A (FOA). (b) Channel B (KOB). The maximum size squares represent weights that
are cqual 1o L0182 1 absolnte value.

FIGURE REMOVED BECAUSE OF
POOR REPRODUCTION Q' ALTTY

Fignre 25[Cont.]: Weights obtained b training for removing noise generated ran-
domlyv in the range 0.3, 03] the weights of the Tink arravs (1CA and CCOBA in
Figure 7) between Channel A's vertical edge identification layvers aud (¢) Chan-
nel A's vertical zero-crossing, lavers (1CN) (d) Channel A's horizontal zero-crossing
favers (1CA). (¢) Channel B's vertical zero-crossing lavers (CCOBA)C () Channel
B's Lorizontal zero-crossing layvers (CCOBA)Y. The maxinmm size squares represent
weights that are equal to 282 10 absolate value.
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FIGURE REMOVED BECAUSE OF
POOR REPRODUCTION QUATLITY

Figure 25[Cont.]: Weights obtamed Ly training for removing noise generated ran
domly in the range 0.3 03] the weights of the Tink arravs (1CB 0 Figure 7)
between Channel B's vertical edge identitication favers arod oy Channel B's vt
cal zero-crossing lavers. (h) Channel B's horizontal zero crossine Lavers: the weishits
of the link arrays (CCAB i Figure 79 hetween Cliannel B vertical zero crossing,
layers and (1) Channel A's vertical zevo-crossing lavers. (1) Channel NS hornzontal
zero-crossing layvers. The maximuim size squares represent aweiehts that e equad 1o

615 in absolute value.



FIGURE REMOVED BECAUSE OF
POOR REPRODUCTION QUALITY

Figure 25[Cont.]: Weights obtained by training for removing noise generated ran-
domly in the range [-0.3. 0.3]: the weights of the input output links (10 in Figure 7
The maximum size squares represent weights that are equal to L0317 in absolute

value.
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Appendix C
Edge Sharpening

Table C.9 presents thy from training to sharpen edeess Fignre 26 shows the
outputl picture in res puusc o the test pattern and compares it to the pattern used as
input and to the pati . ased as reference. Fignre 27 illustrates the weights for dif
ferent link arravs. v cceights for the input ontput Tink arvay are not represented:
the weight in the o ter is equal to 953 and the other weights are comparatively

negligible,

[ Pattern l Initial Error [J—JX_ITIT—IIHH!
Training pattern | 682 02
Training pattern 2 0312 o
Training pattern 3 069 0T
Training pattern 0313 otos

Training pattern 5 LU6NG RURY
Training pattern 6 0316 [ L00s3T
Training pattern 7 0692 1 olop
Training pattern 8 55 ol
Training pattern 9 0819 O

Test pattern 0705 IR

Table (.9 The mean square crror for edee sharpening.
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Figure 26: The output in response to the test pattern. cotnpared to the inpat and
to the reference. after training for cdge sharpening. () the input picture {clipped
to the size of the reference and the output pictures). (h) the reference picture, (o)
the output picture. (d) the difference between {he ontput and the reference,



FIGURE REMOVED BECAUSE OF
POOR REPRODUCTION QUALITY

Figure 27: Weights obtained by training for edge sharpening: the weights of the link
arrays (EOA and EOB in Figure 7) between the output laver and the vertical edge
identification layers of (a) Channel A (EOA), (b) Channel B (EOB). The maximum
size squares represent weights that are equal to (117 in absolute value.

FIGURE REMOVED BECAUSE OF
POOR REPRODUCTION QUALITY

Figure 27[Cont.]: Weights obtained by training for edge sharpening: the weights
of the link arrays (ICA and CCBA in Figure 7) between Channel A’s vertical edge
identification lavers and (¢) Channel A's vertical zero-crossing lavers (ICA). (d)
Chaunel A’ horizontal zevo-crossing layers (ICA), (e) Channel B's vertical zero-
crossing layers (CCBA). () Channel Bs horizontal zero-crossing layers (CCBA).
The maximam size squares represent weights that are equal to 228 in absolute
value,
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FIGURE REMOVED BECAUSE OF
POOR REPRODUCTION QUALITY

Figure 27[Cont.]: Weights obtained by training for edge sharpening: the weights of
the link arravs (ICB in Figure 7) between Channel B's vertical edge identification
layers and (g) Channel B’s vertical zero-crossing lavers (the two weights svmbolized
by X have the value 873). (h) Channel B's Lorizontal zero crossing lavers: the
weights of the link arrays (CCARB in Figure 7) between Channel s vertical zero.
crossing layers and (i) Channel A's vertical zero-crossing lavers, (1) Channel A's
horizontal zero-crossing layers. The maximum size squares represent weights that
are equal to .664 in absolute valuec.
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Appendix D

Using ANNIE on Real Pictures

Training was made only with artificially generated pictures. Digitized real pictures
have more fine details. more curved edges. and less sharp edges. features that are
weakly represented in the training set. Tests show that the knowledge acquired
through learning can be applied only with lower performance to digitized real pic-
tures. For better performance. a more extensive set of t raining patterns is necessary.
including real pictures with the features mentioned above.

Figure 28 shows the results achieved on two digitized real pictures. Enhancement
is poorer in the regions with fine details. It is im portant to stress however. that noise
and blur can make these details hard 1o recover by any other methord, Some curved
edges tend to be enhanced as straight vertical or horizontal edges because these
are the two orientations detected by ANNIE and because training did not include
a sufficient number of curved edges. As in the artificial pictures, noise is almost
completely removed. and long, straight. a:d isolated edges are well sharpenad.

Figure 29 compares ANNIE to median filtering, a method widely used for noise
removal [37]). The picture used as input in all cases has random noise in the range
[-0.15, 0.15]. as described in Section 5.1. At least for this type of noise. ANNIE
gives a better result. However. in other cases (for example. impulse noise - where
only a certain percentage of the pixels are degraded). median filtering may perform

better.
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Figure 28: Results obtained on real pictures. (a) the input picture (clipped to the
size of the reference and the output pictures). (bj the referenee picture. (¢) the

output picture. (d) the difference between tlie output and the reference,
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Figure 28[Cont.]: Results obtained on real pictures. (e) the input picture (clipped
to the size of the reference and the output pictures). (f) the reference picture. (g)

the output picture. (h) the difference between the output and the reference.
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Figure 29: Comparison between ANNIE and median filtering,
ture; the outputs of (L) ANNIE. (¢} 3 x 3 median filter, (d) 5

(a) the input pic-
<O median filter,
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