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ABSTRACT
     Koalacademy is a language learning tool predicated on the subsequent memory effect 
(SME), which differentiates the brain activity between the successful or unsuccessful
encoding of a studied word to memory, relaying this information back to the user in real-
time. We take advantage of the SME in confirming or denying the encoding of words during
the process of studying them, allowing for selective repetition of poorly studied words, thus
improving the success-rate of learning. The present study is focussed on validating the
underlying framework of Koalacademy, a scalable Brain Computer Interface (BCI) platform
that is able to present stimuli and stream brain data in a timely fashion comparable to
other traditionally validated means of obtaining electroencephalography (EEG) data from
BCI headsets. The present study utilizes a comparison oddball task. We have two
conditions, including a control condition using a single board computer—which brain data
is streamed to and is triggered via a light sensor at the onset of stimulus on the
Koalacademy platform—, and an experimental condition consisting of brain data streaming
and triggered through Koalacademy. The present study is the first of two, while the latter
aims to validate whether a cloud trained machine learning model based on data collected
through Koalacademy is able to successfully predict subsequent recall in real-time. 

     The efficacy of learning is often disturbed by fluctuation in encoding information to
our memory. Although we are capable of storing nearly infinite amounts of visual
information, our ability to encode new information differs across individuals and
situations (Fukuda & Woodman, 2015). What if we could predict the likelihood of
remembering a studied item during the process of studying, and use that information to
improve the efficiency and success-rate of learning? 

     Our research attempts to explore this question through the use of Koalacademy, a
language learning platform intended to optimize the learning of a language.
  
 

 

INTRODUCTION



     To this end, the present study focuses on validating a scalable BCI platform through
participants completing two conditions where their brain data is obtained through an EEG
headset, and an oddball task.

     Before we can start testing a computer program's ability to predict learning with the use
of EEG brain data, we need to test the equipment's ability to acquisition brain data aligned
with discrete events. An oddball paradigm will be used to reliably elicit a clear event related
potential (ERP), or the voltages generated in the brain in response to the oddball stimuli.
The standard visual stimuli will be presented to participants in green flashes, whereas the
oddball stimuli will be the one presented intermittently in red flashes. ERPs will then be
compared across both conditions.

 
      The oddball paradigm is useful for validation of our study, because it gives a clear
indication of a change in brain activity. Thus, we can clearly analyze when and to what
extent a person's brain is reacting to a stimulus. (Kuziek et al., 2018). 

 
     Once this methodology is established, our group’s next steps are to integrate the
present study’s methods into the next study, replacing the use of light flashes as stimuli in
the oddball tasks used to analyze encoding with Mandarin words, aiming for cross-
language acquisition. The next study involves the Koalacademy framework using OpenBCI
EEG headsets and deep neural networks (DNN) to analyze brain data, predict the SME, and
provide feedback to users on the likelihood of subsequently remembering “items” of
Mandarin during the studying process, to help them learn the language more efficiently.
Predicting the SME via EEG is a valid approach, as supported by Arora et al. (2018)
receiving nearly 75% accuracy in using DNNs, and Hohne et al.(2016)’s 65% accuracy in
doing so with EEG recordings derived from the hippocampus. In simplest terms,
Koalacademy is a platform using low-cost EEG to deliver neuro-guided learning. 

 

Participants
     We will recruit 10 adult participants for the study. They must have corrected to normal
vision.  Each participant will go through 5 blocks of 50 trials for both conditions. The study
should take approximately one hour to complete, including setup. Prospective participants
must contact the laboratory’s email. After signing a consent form approved by the Alberta
Research Information Services, University of Alberta participants will be fitted with an EEG
cap by a lab assistant, and impedance will be checked and reduced to below the
conventional 5000 ohms.

METHODS



METHODS

Materials and Procedure
      The BCI application will be hosted on a serverless web platform and will use hardware
including 16-Channel Cyton-Daisy EEG headsets developed by OpenBCI in various sizes
(small, medium, and large), all with 16 integrated ThinkPulse™ Active Electrodes. A
Cyton+Daisy 16-Channel Biosensing Board [OpenBCI] will output signals from the
OpenBCI. In addition, we will use a 8GB RAM Raspberry Pi 4 (RPi4), a low-cost single board
linux computer that can work with EEG. Alongside hardware, a combination of React,
JavaScript, Firebase, and the OpenBCI node module will be used to create the Koalacademy
web application, so it can run independently on client systems. React is used to combine
front end development through HTML and CSS with dynamic, interactive JavaScript
elements.

    The control condition involves OpenBCI data streaming to an RPi4 triggered by an array
of light dependent photoresistors. The RPi4 connects to the monitor with a mini HDMI to
detect light stimuli presented through the Koalacademy browser. A green flash means
there are standard stimuli, and a red flash is indicative of oddball stimuli, as received by the
GPIO pins of the RPi4. The RPi4 marks a rising edge (where the trigger goes from 0 to 1)
depending on the intensity of the flash which marks the trigger of each sample. Encoding is
based on the intensity of the light. Kuziek et al. (2018) successfully used an oddball
paradigm to test the effectiveness of Raspberry Pi 2 hardware. The experiment did use an
earlier model of the computer, but we anticipate similar accuracy.

     The experimental condition involves OpenBCI data being triggered by the React
component and streaming to the PC. The Cyton-Daisy BCI connects to web browsers
through a port extension, and OpenBCI data is collected. Once users are on Koalacademy’s
Oddball page and select the OpenBCI headset option, a requestport() programming
function causes the user to select which USB device they choose. Once they select the
OpenBCI, there is then a SerialPort object which can be read and written from. We will
have to send a start signal before the Cyton 16-Channel Biosensing board can output
sample signals from the OpenBCI. The output is given in binary format. 

     The BCI’s data is collected through the following code in a custom React component:
When the first trial in the first block starts, an array with 16 empty subarrays is created to
store the samples for each of the 16 electrodes. The way the OpenBCI is currently set up
requires passing in the time it takes for a trial, but since we are recording from the first
block to the last block consecutively, we pass in a maximum value. We also pass in an
empty array to store triggers, the triggers are stored as [code, sample#]. 

 
 



EEG Analysis Techniques 
     No pre-processing will be done for the present study. All EEG data will be aligned with
the Raspberry Pi and PC. 1000 millisecond epoch times are locked to the onset of standard
and target stimuli with the average voltage in the first 200 milliseconds of the baseline
period. We will use a 100 millisecond baseline period prior to trigger onset to avoid ERP
activity influence on the root mean square (RMS). Additionally, we will plot and compare
P300 stats across both conditions, as well as standardize analysis across both conditions,
so they have the same epoch slicing,

 

     Whenever a sample is returned from the OpenBCI, each of the electrode values is
appended into the subarrays. When the last trial in the last block is finished the OpenBCI is
stopped and disconnected, the array is then stored in a comma separated values (CSV) file
where each row is a sample and each column is an electrode. If a sample is associated with
a trigger, then it will show up on the 17th column. We will add a timestamp at the end of
each sample in the CSV as well. In real time, the OpenBCI data is specifically streamed to
the PC through the COM3 port, which relays hardware data to the PC to the processor. 
 For each participant, Condition I’s event related potential (ERP) will be compared to that of
Condition II’s through participants completing a visual oddball task while they complete the
conditions. Data will be streamed to the Koalacademy webpage and triggers will be
embedded in the website. For the oddball task, the program will produce white triggers
that are detected by the light dependent resistors attached to the RPi4.
 

 

PROJECTED RESULTS

The figures above display the timing of the Raspberry Pi triggers versus the Koalacademy
triggers.

(fig.1) (fig..2)



     The projected results show that timing is consistent across both conditions. Thus, they
demonstrate that Koalacademy can embed time synchronized triggers that align with brain data
comparably to that of a traditional objective measure, such a light sensor being activated. Due to
conflicting time arrangements, the ERP results were not analyzed. Improvement could be made to
the present study by deriving the grand average ERPs from the oddballs and standards for both
conditions. Then, we could conduct a point-wise subtraction of the oddball ERP from the
standard ERP for each condition. Finally, the resultant difference waves could be compared
across the control and experimental conditions. The results, along with the ERPs and their
comparison across conditions, provide the basis of confirming that the platform has a valid way of
collecting data. Both for the data that will be used to generate the machine learning model as well
as implementing live neurofeedback in future research.

In future research after the validation of Koalacademy, we hope to involve the
framework using  OpenBCI headsets in conjunction with deep neural networks (DNN) which
perform live classifications of whether a word will be subsequently remembered, to provide the
user with feedback, in real time, on whether the word is to be encoded or not. Accordingly, words
are repeated based on the quality of study, as analyzed by the DNN. To attempt forecasting
successful encoding of a studied item, our research continues to utilize the subsequent memory
effect (SME). Brain activity in select region(s) is higher while individuals study items they will later
remember (indicative of successful encoding), and lower brain activity towards items they will
later forget. According to the spectral analysis research conducted by Kang et al. (2020),
successful encoding can be observed in higher alpha and theta band frequencies, and lower
gamma frequencies. Friese et al. (2013) supports Kang et al. (2020)'s spectral analysis with similar
results, and also relates remembered items to the right frontal cortex's increased theta-band
activity, the parietal-occipital regions' higher gamma-band activity, and the prefrontal and occipital
cortex's decreased alpha-band activity. Our research aims to make use of contemporary research
on the SME to create an efficient language learning platform.

     There is flexibility for the Koalacademy framework to connect to other OpenBCI 
hardware aside from the Cyton-Daisy, such as the Ganglion (4-channel). The cost-effectiveness
and portability of the headsets demonstrate the accessibility and power of commercial BCIs. It
would allow a company to scale up the distribution of these headsets for use with Koalacademy
on a commercial scale.

     Overall, Koalacademy’s interactive, web-based platform, its independence of computer
specifications, and its usage of commercial Brain Computer Interface (BCI) EEG headsets, renders
it an accessible, low-cost alternative to traditional modes of optimizing language learning. It can
be modified to provide endless options for both assessment and treatment of speech or learning
language disabilities, as well as to fit the needs of everyday language learners in increasing the
efficiency of learning. The platform transforms traditional laboratory late analyses to the instant
processing of live user brain data into actionable information, in real time.

DISCUSSION
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