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Abstract 

Over the last two decades, many important developments have been made in the 

field of communication networks, opening the door to new applications in various 

fields such as transportation, banking and financial services, e-health services, etc. 

Wavelength division multiplexing (WDM) is one technique used to transfer these 

vast amounts of data over networks of fibre optic cables. But because WDM 

permits such high bandwidth, any cut in a fibre optic cable can result in a major 

financial loss due to the volume of traffic at risk. Therefore, survivability is an 

important consideration in the design of modern large-scale telecommunication 

networks. Several survivability schemes have been developed for use in WDM 

networks. Our work will focus on three of these schemes, namely meta-mesh span 

restoration, p-cycles, and node-encircling p-cycles (NEPCs). 

Span restoration and path restoration are well known survivability schemes, 

widely addressed in the open literature. While path restoration is more capacity 

efficient, span restoration is simpler and faster. The meta-mesh scheme had 

previously been proposed to bridge the gap between the two approaches, because 

it enhances the capacity efficiency of the span restorable mesh networks while 

maintaining much of its simplicity. In the present work, we introduce a node-arc 

ILP model to investigate the effect of the meta-mesh scheme on the capacity 

efficiency of the span-restorable networks. Then we modify an existing integer 

linear programming (ILP) design model to allow for incremental network 

evolution. In this work, we formulate two models, one of which applies the 
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conventional span restoration technique and another that uses the meta-mesh span 

restoration scheme.  

p-Cycle restoration has attracted considerable interest in the network survivability 

literature in recent years. However, most of the existing work assumes a known 

network topology upon which to apply p-cycle restoration. In the present work, 

we develop an incremental topology optimization ILP model for p-cycle network 

design, where a known topology can be amended with new fibre links selected 

from a set of eligible spans. The ILP model proves to be relatively easy to solve 

for small test case instances, but becomes computationally intensive on larger 

networks. We then follow with a relaxation-based decomposition approach to 

overcome this challenge. In our test cases, the decomposition approach 

significantly reduces computational complexity of the problem, allowing the ILP 

model to be solved in reasonable time with a minimal impact on the solution 

optimality.  

NEPCs have been proposed as a technique for node and span protection. A key 

step in obtaining an optimal solution in most existing NEPC network design 

methods is the enumeration of candidate cycles. The present work introduces two 

novel algorithms for enumerating an efficient set of candidate cycles for an NEPC 

network design: the node-disjoint path partitioning (NDPP) method and the level 

partitioning method. Furthermore, we develop a capacitated iterative design 

algorithm (CIDA) approach for providing fully capacitated NEPC networks, as 

well as a genetic algorithm model to investigate the best values for the weighting 

factors in the key a priori efficiency equation used in the NEPC-CIDA algorithm. 
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Finally, we propose a node-encircling p-cycle ILP design with enhanced span-

failure protection to further minimize the total network design cost. 
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Chapter 1.  Introduction 

Over the last two decades, telecommunications systems have achieved 

unprecedented growth in nearly all aspects of our lives. This growth increases the 

need for fast and reliable communicationss networks. Thanks to fibre optic 

technologies, wavelength division multiplexing (WDM) networks have provided 

a tremendous bandwidth. WDM is the technique used in the fibre optic realm, 

where multiple wavelengths are transmitted simultaneously over a single fibre. 

This technology reaches up to 320 wavelengths per fiber; each one could carry 

10Gb/s [1].  

In addition to their numerous benefits, there are potential risks in the case of 

failure occurrence. On February 2013, a failure that persisted more than eight 

hours occurred while engineers of Ethio Telecom were upgrading the system of 

the main mobile telephone network controlling station. This failure wreaked 

havoc on many activities including business activities throughout the Ethiopian 

capital [2]. On July 2012, a ten-hour failure in the France Telecom network 

caused by a software bug prevented its subscribers from making calls [3]. On 

October 21, 2006, due to a small fire, more than 100,000 phone customers in St. 

John's and Internet clients all over Newfoundland lost service. There was no 911 

services or working automated bank machines. Services were restored after five 

hours [4]. On February 1, 2008, three of the primary fibre cables connecting Asia 

and the Mideast to Europe were cut by ship’s anchors. This outage led to 

degradation in the communication ability between the two regions to less than 

30% of its normal performance [5]. On April 9, 2009, vandals cut two sets of fibre 

optic cables in San Jose and San Carlos which led to disruption in 

telecommunication across Silicon Valley and 911 emergency services in Santa 

Clara County [6]. On January 27, 2010, vandals also cut fibre optic cables to 

Selah in Seattle which led to disruption of phone, TV and Internet services [7]. On 

average, the failure rate for long-haul telecommunication links is three failures per 

1000 km per year and for the metropolitan links is twelve failures per 1000 km 

per year. Restoration time on average is twelve hours per cut [8]. The failure cost 
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is very expensive, more than 50% of the Fortune 500 companies suffer at least IT 

system failure of 1.6 hours per week, which leads to a financial loss of on average 

$46 million dollar per each company [9], [10]. 

Network failure sources are various and can be classified into two different 

categories: node failures and cable failures. As illustrated in Figure ‎1-1, the most 

common causes of cable failure are digging, cuts during construction, 

maintenance in the surrounding area, and vandalism, while the main sources of 

node failures are software failure or fire [11].  

 

 

Figure ‎1-1. Network failure common sources [12] [13] [8] 

Typically, network equipment operating at the nodes is contained in a safe 

environment that is carefully monitored by the network administrator, avoiding 

any environmental factors that might affect the performance of the equipment and 

providing speedy recovery in the case of a node failure. However, network cables 

traverse through diverse environments, often outside the control of the network 
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administrator. This increases the susceptibility of disruptions and increases the 

restoration time [14]. Our work is relevant to the network disruptions that occur 

due to failure in nodes or cables.   

As the dependence on the telecommunication infrastructure increased, network 

survivability became a significant issue for all aspects of telecommunication 

networks.  Their failure can have a major impact, including enormous economic 

and social consequences. As the use of technology increases, dependence on the 

telecommunication infrastructure to provide highly reliable communication is 

growing. Two recent areas that will put considerable pressure on 

telecommunication networks are cloud computing [15] and e-health [16].  Cloud 

computing is providing computing and storage capacity as a service to a group of 

end users. All users’ services and calculations can be delivered through cloud 

computing over the internet. There are three types of cloud computing: 

infrastructure as a service (IaaS), platform as a service (PaaS), and software as a 

service (SaaS). In using SaaS, users also rent application software and databases. 

The cloud providers administer the infrastructure and platforms on which the 

applications run. End users access cloud-based applications through a web 

browser or mobile application while the business software and users’ data are kept 

on servers at a remote location in the cloud. Cloud computing permits 

incorporations to get their software programs up and run them faster, with 

enhanced manageability and less maintenance, and enables IT to adjust resources 

more rapidly to meet variable and unpredictable business request [17]. E-health is 

a tag for the suite of applications that are being developed for the healthcare 

industry to enhance patient care and lower costs. These multiple services include 

electronic health records, remote doctor patient consultations, digital imaging, and 

tele-surgery.  All these technologies are built on having a reliable 

telecommunication infrastructure, which is a must for the next generation of 

business, social and government applications.   

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Computer_data_storage
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wikipedia.org/wiki/Platform_as_a_Service
http://en.wikipedia.org/wiki/Software_as_a_Service
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Mobile_app
http://en.wikipedia.org/wiki/Business_software
http://en.wikipedia.org/wiki/Server_%28computing%29
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1.1  Motivation and Goals 

Our main goal in this thesis is to provide the telecommunications network 

operators with an efficient solution for a survivable network design. In our work, 

we mean by an efficient solution that it should be faster and lower cost. Reducing 

the run time for a design instance will help to run so many instances with different 

parameters to reach more informative decision. In this work, we also try to 

provide the designer with more insights and understanding of the different 

survivability schemes used throughout this thesis.  

1.2  Thesis Outline 

In this section, each chapter of the thesis will be outlined. 

Chapter 2: This chapter is the first part of the introductory chapters of the thesis. 

It covers a variety of topics related to telecommunication networks. Its aim is to 

provide the reader with the tools, concepts, and terminologies used throughout 

this thesis. The first section provides a telecommunication network overview 

examining the three layer model access network, metropolitan-area network, and 

backbone network. Then it provides many basic definitions and concepts from 

graph theory those are related to transport networks. The last section provides 

illustrations to many common network design algorithms. 

Chapter 3: This chapter illuminates many survivability schemes such as 

automatic protection switching (APS), unidirectional path switched rings (UPSR), 

bidirectional line-switched rings (BLSR), pre-configured protection cycles (p-

cycle), node-encircling p-cycles (NEPC), and meta-mesh span restoration. The 

survivability techniques in WDM networks can be classified into two main 

categories, the first type is ring protection where the network is protected by rings 

of spare capacity included in the network, such as UPSR, and BLSR.  The second 

type of survivability technique is mesh restoration, which tries to exploit some of 

the spare capacity in the spans of the network. Examples of mesh restoration are 

APS, span restoration, path restoration, p-cycles, and NEPC. 
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Chapter 4: This chapter describes the different methodologies used for solving 

the research optimization problems in this thesis. Typically, there are two main 

approaches to tackling any optimization problem, the first of which are exact 

methods to find optimal solutions. The time complexity and the memory required 

for these methods increase exponentially with the increase of the problem size. 

The second are approximate methods that provide a reasonably good solution 

within a shorter period of time, but these do not guarantee finding the optimal 

solution. 

Chapter 5: In this chapter, we study the meta-mesh span restoration technique. 

While path restoration is more efficient with respect to capacity, span restoration 

is simpler and faster to implement and design. The meta-mesh scheme was 

proposed a number of years ago to bridge that gap in sparse network topologies, 

providing more capacity-efficient designs with a simple span-restoration-like 

mechanism. We have developed a new node-arc meta-mesh ILP formulation and 

further extended that formulation to allow for incremental topology optimization. 

Chapter 6: In this second study, we have developed a new ILP model for 

incremental topology optimization in a p-cycle network that is capable of 

selecting an optimal subset of potential spans to add to an existing p-cycle 

network. While the ILP proves to be relatively simple to solve for small test case 

networks, it is computationally intricate to solve for larger networks. We then 

developed a relaxation-based decomposition heuristic that considerably decreases 

runtime of the ILP in our large test networks, while having no statistical influence 

on optimality. 

Chapter 7: The third study has been devoted to looking at the algorithmic 

approaches for solving NEPC network design problems. In the integer linear 

programming of p-cycles and node-encircling p-cycles network design, the first 

and most time-consuming step is to enumerate a number of eligible cycles that 

could be used in the final solution. Enumerating all cycles in the network is an 

impractical approach specifically in large networks because the number of 

generated cycles grows exponentially with the increase of the number of nodes 
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and spans. Many algorithms have been proposed for enumerating a respectively 

small set of candidate p-cycles without degrading the optimality of the final ILP 

solution significantly. However, few algorithms have been developed for NEPC 

design. We have developed two algorithms for this problem, the node-disjoint 

path partitioning algorithm (NDPP) and level partitioning algorithm. To release a 

complete network design, an algorithm should be used to select the least cost 

combination of cycles that will fully protect the network working capacities. A 

CIDA-like algorithmic approach, for providing fully capacitated NEPC networks, 

has been developed. We then proposed a genetic algorithm model to enhance the 

CIDA-like algorithm by determining the best values for its factors. 

Chapter 8: In this last study, we have developed a new enhanced ILP design 

model that optimally designs a node-encircling p-cycle network. The new ILP 

model takes advantage of the observation that NEPCs assigned solely for node-

failure protection will inherently protect all two-hop segments of every multi-hop 

working lightpath. As a result, only single-hop working lightpaths need explicit 

span-failure protection in the conventional manner. The new ILP model shows a 

significant reduction in capacity requirements. We have developed an enhanced 

version of the ILP design model for node-encircling p-cycle networks that 

provides only the explicit span-failure protection needed. 

Chapter 9: This chapter summarizes the four studies those have been introduced 

in this thesis. The contributions of the thesis are illustrated.  
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Chapter 2.  Background 

2.1  Introduction 

This chapter is the first part of the introductory chapters of the thesis and covers a 

variety of topics related to telecommunication networks. Its aim is to provide the 

reader with the concepts and terminologies used throughout this thesis. 

The first section provides telecommunication networks overview examining the 

three-layer model of the access network, metropolitan-area network, and 

backbone network. Many functions, examples, and implementations are discussed 

for each layer. Then, basic background on WDM concepts, terminologies, and 

switching elements is presented to support our subsequent studies. The third 

section provides many basic definitions and concepts from graph theory that are 

related to transport networks. The last section introduces some common network 

algorithms used in telecommunication network optimization problems, such as 

graph search algorithms, shortest path algorithms, and maximum flow algorithms. 

2.2  Overview of the Telecommunication Networks 

Telecommunication networks considered in this work consist of three parts, an 

access network, a metropolitan-area network, and a backbone network [18], [19]. 

Each one of these parts has its own role, coverage area, standards, and 

technologies. Figure ‎2-1 shows a schematic of a telecom network. In the 

following sections, each of the telecommunication network hierarchical layers 

will be described in detail. 
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Figure ‎2-1. Schematic of telecommunication network 

The main function of the access network layer is to connect the end users, 

whether residential or business users, to the metropolitan-area network. Typically, 

the access network spans a few kilometers between the central office (CO) and 
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the end users. Many technologies have been deployed in access networks such as 

digital subscriber loop (DSL), cable modems, passive optical networks (PON), 

and wireless connections. A PON cuts the amount of fibre and central office 

equipment needed compared to point-to-point architectures. At the service 

provider’s CO a PON utilizes an optical line terminal (OLT), and close to end 

users uses a number of optical network units (ONUs). A PON is a point-to-

multipoint fibre network architecture in which passive optical splitters are 

involved to allow a one optical fibre to serve many end users [20]. DSL is a group 

of technologies that offers digital data transmission over the local loop telephone 

network wires. An asymmetric digital subscriber line (ADSL) is widely known as 

digital subscriber line in the telecommunication market, and it is the most 

commonly deployed technical variety of DSL. DSL service is transported 

simultaneously with fixed terrestrial telephone service on the same line. This is 

possible because DSL uses a higher frequency. These frequency bands are then 

separated by a splitter at the end user site. Cable television service providers 

present another type of access network called Cable Modem. The Internet signal 

is passed on the same coaxial cable that transports cable television service. A 

special modem splits the Internet signal from the other signal transported on the 

line and delivers an Ethernet link to the end user. Satellite service providers 

deliver satellite services. The computer connects point of presence (POP) within 

the satellite network [21]. All of the access networks are linked together through 

the metropolitan-area network. 

The term metropolitan refers to a city consisting of a heavily populated urban 

centre and its less-populated adjacent territories, sharing industry, infrastructure, 

and housing. A metropolitan layer usually includes multiple jurisdictions, 

municipalities, and public services. Normally, the metropolitan-area network 

spans a metropolitan region, covering distances of a few tens to a few hundreds of 

kilometers [18]. Metropolitan-area network technologies encompass fibre optics, 

worldwide interoperability for microwave access (WiMAX), and Ethernet. 
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In hierarchical telecommunication networks the backbone layer consists of the 

midway connections between the core network elements; each connection could 

span a few thousand kilometers. For example, while landline phones 

communicate with a local exchange office, the link between this office and the 

rest of the world is considered a backbone connection to the core of the telephone 

company’s network. Backbone network technologies include fibre optics, point-

to-point microwave radio links, and Ethernet.  

There are two main designs of interconnections deployed in backbone networks. 

Most current telecommunication networks are interconnected as synchronous 

optical networking/synchronous digital hierarchy (SONET/SDH) rings. 

Nonetheless, their inefficient network resource utilization. Mesh networks, the 

likely choice of the future, are more efficient in utilizing network resources [18]. 

The design of the backbone network should consider many parameters such as 

capacity, cost, and the need for resources such as frequency spectrum, optical 

fibre, or rights of way. Backbone resources such as link capacity can be shared 

among different network operators. Our main focus in this research is the design 

of fibre optic backbone networks. 

2.2.1 Wavelength Division Multiplexing (WDM) 

Before we start talking about Wavelength Division Multiplexing (WDM), we need 

to know some important information about optical networking. First, what is an 

optical network, and second, why is an optical network an ideal technology for 

the backbone network? An optical network is a set of nodes connected by fibre 

optic cables, where the data travels in the form of the light signal on these cables. 

Optical fibre technology has many advantages, such as [22]: 

a) Optical fibre is immune to electromagnetic interference.  

b) Optical fibre can transport tremendous bandwidth (i.e. more than fifty 

terabits per second) which meets the massive information demands that 

our current life requires. 
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c) It has low signal attenuation (as low as 0.2 dB/km), so it does not need 

many repeaters over a long distance, as is the case of electrical networks. 

d) It has low power consumption. 

e) Crosstalk and interference are not an issue between adjacent fibre cables 

as is the case of electrical wires. 

f) It is light weight and non-flammable. 

g) It is very hard to eavesdrop on, because of its lack of electromagnetic 

radiation. 

Wavelength division multiplexing [23] is a multiplexing technique that can 

transmit a number of non-overlapping wavelengths over a single fibre cable, as 

illustrated in Figure ‎2-2. At the multiplexer end, several wavelengths are 

aggregated over one trunk, and at the demultiplexer end, the aggregated signals 

are distributed over several different links. To make sure that all WDM 

components produced by different vendors will operate with each other, the 

International Telecommunication Union (ITU) has presented a standard for WDM 

systems called the ITU Wavelength Grid [24]. WDM systems are classified into 

two wavelength patterns, namely conventional/coarse and dense. Coarse 

wavelength division multiplexing (CWDM) uses enlarged channel spacing to 

allow less complicated and thus inexpensive transceiver designs. The same 

transmission spacing but with denser channel window is used in dense wavelength 

division multiplexing (DWDM). 
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Figure ‎2-2. Example of WDM 

2.2.2 Switching Elements 

One of the main components of any telecommunication network is the switching 

elements. Conventionally, today’s optical networks are still widely using optical-

electronic-optical (o-e-o) conversion. This means that, electronic processing is 

still employed in the majority of the modern optical networks and uses the optical 

fibre only as a transmission medium. Data processing and switching are 

accomplished by transforming an optical form to its equivalent electronic signal. 

Such a network relies on electronic switches [18]. The other type of optical 

switches is called transparent, where the signal is switched in the form of light 

without the need to convert it to electrical signal. The rest of this section reviews 

various optical switching elements that are usually deployed in today’s optical 

networks. 

An optical add/drop multiplexer (OADM) is a switching element that can add and 

drop traffic in the network [11]. As illustrated in Figure ‎2-3, an OADM receives a 

fibre link with several wavelengths, then some wavelengths are dropped, and new 

wavelengths are added to the fibre, while other wavelengths pass through the 

OADM without any modification. The reduction of unnecessary optoelectronic 

conversions through the use of OADM provides major cost savings in the 

network. An OADM can work in both the fixed and reconfigurable modes, and it 

can be used in either mesh or ring networks. 
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Figure ‎2-3. Example of OADM 

In fixed OADM, the add/drop and pass through wavelengths are predefined and 

can be manually reordered following the installation. In reconfigurable OADM, 

the wavelengths that are added/dropped or pass all the way through the node can 

be dynamically reconfigured as needed by the network operator. This structure is 

more sophisticated but more flexible because it can offer an automatic on-demand 

provisioning; consequently, they can be set up in the production environment.  

The other optical switch that we are going to discuss is the optical cross-connect 

(OXC) switch [23]. It switches optical signals from input ports to output ports. 

This kind of the switching element is typically considered to be wavelength 

insensitive, i.e., incapable of multiplexing or demultiplexing various wavelength 

signals on a single fibre. A basic cross-connect element is the 2 x 2 crosspoint 

element which transfers optical signals from two input ports to two output ports 

and has two states: cross state and straight through state, as shown in Figure ‎2-4. 

In the cross state, the signal from the upper input port is transferred to the lower 

output port, and the signal from the lower input port is transferred to the upper 

output port. In the straight through state, the signal from the upper input port is 
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transferred to the upper output port, and the signal from the lower input port is 

transferred to the lower output port. 

Straight through StateCross State
  

Figure ‎2-4. 2 × 2 crosspoint element 

2.2.3 Routing and Wavelength Assignment 

In this section, we will discuss the routing and wavelength assignment (RWA) 

problem in WDM optical networks. Typically, any optical network consists of a 

set of nodes interconnected by point-to-point optical fiber links. Every optical link 

can accommodate a limited number of wavelengths. The nodes in the optical 

network can route a wavelength coming in an input interface to one output 

interface, independent of the other wavelengths. For example, Figure ‎2-5 

illustrates a simple optical WDM network. In this example, a light signal of wave-

length λ1, that connects node A and C, enters a node B at an interface and is 

routed to another output interface. A second optical signal flows from node B into 

node D on a second wavelength, λ2. A third optical signal flows from node C into 

the node E on a third wavelength, λ3. Such end-to-end connections are called 

lightpaths. It offers a high speed transparent channel to its end users: a virtual 

conduit is established between the source and the destination nodes. At the same 

time, another lightpath can reutilize the same wavelength in some other area of 

the network (this feature is called wavelength reuse), as long as both lightpaths do 

not pass the same link. Many lightpaths can share the same fiber as long as they 

do not use the same wavelengths in the shared fibers. A lightpath from any 
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incoming fiber with a particular wavelength can be routed to any outgoing fiber 

with the same wavelength. In this case, a lightpath uses a single wavelength from 

the source to the destination. This is referred to as the Routing and Wavelength 

Assignment (RWA) problem [25]. A feasible assignment for the problem must 

satisfy two conditions: 

• Wavelength continuity condition. The same wavelength must be assigned 

to all the links along the path traversed by a lightpath. In Figure ‎2-5, this 

condition is represented by using a single color for each lightpath. 

• Distinct wavelength condition. Two or more lightpaths share a common 

link; each must be assigned a unique wavelength. In Figure ‎2-5. Routing 

and wavelength assignment, this condition requires that the two lightpaths 

are sharing a link be represented by two different colors. 

 

Figure ‎2-5. Routing and wavelength assignment 

However, if a wavelength-converter is utilized in the nodes, a lightpath from any 

incoming fiber can be switched to any outgoing fiber with any wavelength as long 

as the wavelength is vacant. As illustrated in Figure ‎2-6, if we are able to use a 

wavelength converter to convert the data arriving on one wavelength on a link 

into another wavelength at an intermediary node before forwarding it on the next 

link, the wavelength continuity condition can be removed. This approach is 

possible and is known as wavelength conversion. Networks with this feature are 

known as wavelength convertible networks. In this type of networks, one 
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lightpath can utilize multiple wavelengths along its path on each span. In this 

case, wavelength assignment condition is not a concern, and only the routing 

problem is considered [26]. The other reason for relaxing the continuity 

constraints is that most of the current optical switches are o-e-o switches; this 

means that all the received light signals will be converted to electrical signals 

before transmitting them. So any wavelength can be converted to any other 

wavelength without any special processing. 

 

Figure ‎2-6. Wavelength conversion 

Typically, for any routing algorithm, using a wavelength conversion results in a 

lower solution, in terms of the number of wavelengths used. For example, in 

Figure ‎2-6 wavelength conversion was utilized to route the same demand in 

Figure ‎2-5, two wavelengths were used to satisfy the demand instead of three 

wavelengths [26]. In this thesis, we assume that, there is a wavelength converter 

in every node. 

2.3  Graph Theory 

Typically, telecommunication networks are represented as a set of nodes and 

spans between these nodes. Nodes could represent buildings or cities in the real 

world and spans could represent engineering cables or ducts. This section 

provides many basic definitions and concepts from graph theory those are related 

to transport networks. 
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2.3.1 Terminologies 

This section introduces some basic concepts and definitions from graph theory 

[27] and set theory [28] as a foundation for more advanced treatment of many 

network algorithms. A graph (network) G = (N, S) consists of a finite set of nodes 

(vertices) N = {N1, N2, …..} and a set of spans (edges) S = {S1, S2, …..}, such 

that each span in S connects a pair of nodes in N. Nodes {N1, N2} of a graph are 

adjacent (neighbours) if they are connected by span S1 = {N1, N2} ∈ S, and span 

S1 is said to be incident on nodes N1 and N2. In the same way, spans S1, S2 are 

adjacent if they are incident on a common node N1. Two spans are parallel if they 

have the same end nodes.  

A graph is said to be a directed graph if its spans are ordered in pairs of distinct 

nodes called directed spans. A directed span is represented by a line segment with 

an arrowhead indicating the direction from the source to the destination. 

Figure ‎2-7 illustrates an example of a directed graph. In this graph, N = { 1, 2, 3, 

4, 5, 6, 7} and S = {(1,  2), (3, 1), (4, 1), (4,  3), (3, 7), (3, 5), (4, 6), (5, 2), (5, 7), 

(7, 6)}. Similarly, a graph is said to be an undirected graph if its spans are 

unordered pairs of distinct nodes. An undirected span is represented by a line 

segment without an arrowhead. Figure ‎2-8 depicts an example of an undirected 

graph. In this graph, N = { 1, 2, 3, 4, 5, 6, 7} and S = {(1, 2), (1, 3), (1, 4), (2, 5), 

(3, 5), (3, 7), (4, 3), (4, 6), (5, 7), (6,7)}. In an undirected graph, any span that 

connects node pair N1 and N2 can be referred as either (N1, N2) or (N2, N1). In 

undirected spans, the flow is permitted in two ways while in directed spans it is 

permitted in one direction.  

Any given directed, span S1 = (N1, N2) has two end nodes N1 and N2. N1 is called 

an origin of span S1while N2 is referred to as a target node. The degree of a node 

represents the total number of spans connected to this node. This definition is 

complete in the case of an undirected graph, while in a directed graph the degree 

could be divided into two parts; the indegree of a node is the number of the 

incoming span of that node, and the outdegree is the number of outgoing spans. 
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For example, in Figure ‎2-7, node 3 has an indegree of 2, an outdegree of 2, and 

degree of 4. G′ is a subgraph of a graph G if all the nodes and spans that construct 

G′ belong to graph G. A weighted graph is a graph in which each span is 

associated with a number. This number often represents cost, distance, or 

capacities in telecommunication networks. A graph, where this number represents 

capacity, is said to be a capacitated graph. Figure ‎2-9 gives an example of a 

capacitated graph. 
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Figure ‎2-7. Directed graph 
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Figure ‎2-8. Undirected graph 
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Figure ‎2-9. Capacitated graph 

A walk is a subgraph of graph G consisting of a series of nodes and spans. 

Figure ‎2-10(a) and (b) show two walks in this graph: 1-2-5-7-3-5 and 1-2-3-7 

respectively. A walk without any repetition of nodes is called a route (path). So 

the walk in Figure ‎2-10(b) is also a route, but the walk illustrated in 

Figure ‎2-10(a) is not considered as a route because it repeats node 5 twice. A 

cycle is a route with same start and end node. Figure ‎2-11 illustrates two potential 

cycles from Figure ‎2-8: 1-2-5-3-7-6-4 and 2-1-5-3. If the graph G contains no 

cycles, it is an acyclic graph. For any graph, there could be two special cases of 

cycles. First, the Hamiltonian cycle traverses all nodes in the graph exactly once. 

Second, the Eulerian cycle passes all spans in the graph one time only.  

  

Figure ‎2-10. Examples of walks 
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Figure ‎2-11. Examples of cycles 

There are many types of relationships between routes that could connect two 

distinct nodes. First, the node-disjoint (fully disjoint) paths have no element in 

common between these paths. Figure ‎2-12(a) presents an example of two node-

disjoint routes between nodes 4 and 5, namely 5-2-1-4 and 5-7-6-4. Second, the 

span-disjoint paths have no span in common between these paths. Figure ‎2-12(b) 

illustrates an example of two span-disjoint routes linking nodes 4 and 5: 5-2-1-3-4 

and 5-3-7-6-4. So every two node-disjoint paths are considered span-disjoint 

paths, but not every two span-disjoint paths are considered node-disjoint paths. 

Third, any two routes are considered distinct routes if at least one but not all spans 

are common among them. Figure ‎2-12(c) depicts an example of two distinct 

routes connecting nodes 4 and 5: 5-3-4 and 5-3-7-6-4, respectively. 
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Figure ‎2-12. Routes have (a) node-disjoint routes, (b) span-disjoint routes 

and (c) distinct routes 

For any given graph, if there is at least one route connecting nodes N2 and N1, we 

can say that these two nodes are connected. If every two nodes in the graph are 

connected then this graph is connected. Or else the graph is disconnected. A graph 

is said to be bi-connected if there are at least two node-disjoint routes linking 

every pair of nodes. This definition is illustrated in Figure ‎2-13(a). A graph is 

called two-connected if there are at least two span-disjoint routes linking every 

pair of nodes. Figure ‎2-13(b) is an example of a two-connected graph. Every bi-

connected graph is a two-connected one. Graph connectivity properties are quite 

essential for telecommunication networks. In order to survive all single span 

failures, the graph must be at least two-connected, and in order to survive all 

single node failures, the graph must be bi-connected. 
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Figure ‎2-13. (a) bi-connected graph and (b) two-connected graph 

A cut is a division of a graph into two partitions. Each cut is defined by a set of 

spans through which the cut passes. Figure ‎2-14 illustrates a cut in a graph. The 

set of spans in this cut are (2, 5), (3, 5), (3, 7), and (4, 6). A graph is said to be a 

tree if it has no cycle. Trees have several distinct properties. First, if a tree has N 

nodes, it contains N-1 spans. Second, a tree has at least two nodes with degree 

one, which are called leaves. Finally, every two nodes on a tree are linked by a 

single distinct route. A spanning tree is a tree that crosses all nodes, and a typical 

graph can generate many spanning trees. Figure ‎2-15 provides one spanning tree 

for the graph in Figure ‎2-8. A tree is a fundamental concept that arises in the 

range of network algorithms introduced in this chapter. A group of trees is called 

a forest. Figure ‎2-16 gives an example of a forest.  
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Figure ‎2-14. An example of a cut 

 

Figure ‎2-15. An example of a spanning tree 

 

Figure ‎2-16. An example of a forest 

2.3.2 Network Representation 

The method used to represent a graph within a computer, or mathematical process 

is essential in determining the performance of a network algorithm. In this 

section, we study some techniques for representing a graph. To represent a graph, 
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two main types of information need to be stored: first, the network topology that 

determines which node connects to which span in the graph, and second, data 

such as demands, costs, and capacities associated with each span in the network.  

A node-span incidence matrix representation or simply incidence matrix, saves 

the graph as an N × S matrix that contains one column for each span of the graph 

and one row for each node. Each column contains two non-zero values (i.e., 1) 

because each span connects only two nodes. Figure ‎2-17 shows this representation 

for a network example. The matrix has a row n and a column s corresponding to 

every node and every span, respectively, and its ( , )thn s value equals 1 if node n is 

incident on span s and equals 0 otherwise.  

A node-node adjacency matrix representation, or simply adjacency matrix, stores 

the network as an N × N matrix that has one column and one row for each node 

of the graph. Figure ‎2-18 gives this representation for the network example in 

Figure ‎2-17. The matrix contains a column and a row for every node, and its 

( , )thx y  value equals 1 if ( , )x y S  and equals 0 otherwise. The incidence matrix 

representation of a graph is not computationally efficient because it contains so 

few nonzero coefficients. However, the adjacency matrix is space efficient only if 

the network is dense while in the case of a sparse graph it wastes significant 

space. Nonetheless, the straight forwardness of the adjacency matrix allows us to 

implement most graph algorithms simply. This kind of matrix has been utilized 

extensively in the programs developed through the course of this thesis. 
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Figure ‎2-17. Node-span incidence matrix of the graph example 

 

Figure ‎2-18. Node-node adjacency matrix of the graph example 

2.4  Network Algorithms 

4 6

1 3

2 5

7

S1

S4

S7

S8

S5

S2

S3

S6
S10

S9

S1 S2 S3 S4 S10S9S8S7S6

N1

N2

N3

N4

N5

N6

N7

1

1

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

1

0

1

0

0

0

1

0

0

0

1

0

0

0

0

1

0

1

0

0

1

1

0

0

0

0

0

1

0

1

0

0

S5

N5N1 N2 N3 N4 N7N6

N1

N2

N3

N4

N5

N6

N7

0

1

1

1

0

0

0

1

0

0

0

1

0

0

1

0

0

1

1

0

1

1

0

1

0

0

1

0

0

0

1

0

1

1

0

0

0

0

1

0

0

1

0

1

1

0

0

0

1



26 

 

The term algorithm refers to a sequence of steps for solving a computational 

problem; each one of these steps requires one or more computational operations. 

At the end of this sequence, a solution for this problem will be generated. To 

implement an algorithm a few conditions should be met: (1) a clear objective 

must be defined, (2) each step of the proposed sequence must be implemented in a 

finite amount of time, and (3) the overall number of these steps must be limited.  

Algorithms play a significant role in solving many network computational 

problems, for example: 

1) Shortest path problems: What is the best way to traverse a network to get 

from one node to another as economically as possible?  

2) Maximum flow problems: If you have a capacitated network, how can you 

send as much flow as possible between two nodes in the network while 

respecting the span flow capacities? 

3) Minimum cost flow problems: If a cost per unit flow on a network is 

placed on each span and units of a demand located at one or more nodes in 

the network need to be sent to one or more other nodes, how can we send 

this demand at lowest possible cost? 

 Many network algorithms have been proposed throughout the open literature to 

solve the preceding network problems. In the subsequent section, we will discuss 

several network algorithms. The network graph of every one of the following 

algorithms will be examined. 

2.4.1 Graph Search Algorithms 

Graph search algorithms are a fundamental type of network algorithm; they arise 

regularly as sub-problems when tackling many network optimization problems. 

The applications of graph search algorithms comprise: (1) determining the graph 

connectivity, and (2) finding all the reachable nodes in a network from a specific 

node n. In this thesis, the depth first search algorithm [29] will be discussed in 

more details.  
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2.4.1.1 Depth First Search Algorithm 

Depth-first search (DFS) is a technique for searching graphs. One begins at the 

root and explores as far as needed to open a new branch before going into reverse. 

A version of the depth-first search was explored in the nineteenth century by 

French mathematician Charles Pierre as a strategy for solving mazes [29]. 

Algorithms that use depth-first search as a building block include finding 

connected components and finding bi-connectivity in graphs. The DFS algorithm 

is essential for the work in this thesis because it is used as a step in developing a 

variety of cycle enumeration algorithms [30], [31], [32], [33].  

A simple version of a practical demonstration of depth first search algorithm to 

discover the DFS tree is depicted on graphs in Figure ‎2-19 to Figure ‎2-33. The 

sequence of the algorithm as follows: 

a) Unmark all nodes and spans in the network. 

b) Label node 1 and score it in the stack. 

c) Pick the last node in the stack, which is currently node 1. Mark any 

scanned span that connects it to any unvisited node and score this node 

(node 2) in the stack and mark it. 

d) Similarly, pick the last node in the stack, which is currently node 2. Mark 

any scanned span that connects it to any unvisited node and score this 

node (node 5) in the stack and mark it. 

e) Pick the last node in the stack, which is currently node 5. Mark any 

scanned span that connects it to any unvisited node and score this node 

(node 7) in the stack and mark it. 

f) Pick the last node in the stack, which is currently node 7. If there are no 

spans that are connected to an unvisited node, delete this node from the 

stack and pick the one before (node 5). 

g) Keep repeating this process as in Figure ‎2-25 until the stack is emptied, 

and the depth first search tree of the graph is generated in Figure ‎2-33. 
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Figure ‎2-19. Unmark all nodes and spans in the network. 

 

Figure ‎2-20. Label node 1 and score it in the stack. 

 

Figure ‎2-21. Pick the last node in the stack, which is currently node 1. Mark 

any scanned span that connects it to any unvisited node and score this node 

(node 2) in the stack and mark it. 
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Figure ‎2-22. Similarly, pick the last node in the stack, which is currently node 

2. Mark any scanned span that connects it to any unvisited node and score 

this node (node 5) in the stack and mark it. 

 

Figure ‎2-23. Pick the last node in the stack, which is currently node 5. Mark 

any scanned span that connects it to any unvisited node and score this node 

(node 7) in the stack and mark it. 

 

Figure ‎2-24. Pick the last node in the stack, which is currently node 7. If 

there are no spans that are connected to any unvisited node, delete this node 

from the stack. 
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Figure ‎2-25. Pick the last node in the stack, which is currently node 5. If 

there are no spans that are connected to any unvisited node, delete this node 

from the stack. 

 

Figure ‎2-26. Pick the last node in the stack, which is currently node 2. Mark 

any scanned span that connects it to any unvisited node and score this node 

(node 3) in the stack and mark it. 

 

Figure ‎2-27. Pick the last node in the stack, which is currently node 3. Mark 

any scanned span that connects it to any unvisited node and score this node 

(node 4) in the stack and mark it. 
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Figure ‎2-28. Pick the last node in the stack, which is currently node 4. Mark 

any scanned span that connects it to any unvisited node and score this node 

(node 6) in the stack and mark it. 

 

Figure ‎2-29. Pick the last node in the stack, which is currently node 6. If 

there are no spans that are connected to any unvisited node, delete this node 

from the stack. 

 

Figure ‎2-30. Pick the last node in the stack, which is currently node 4. If 

there are no spans that are connected to any unvisited node, delete this node 

from the stack. 
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Figure ‎2-31. Pick the last node in the stack, which is currently node 3. If 

there are no spans that are connected to any unvisited node, delete this node 

from the stack. 

 

 

Figure ‎2-32. Pick the last node in the stack, which is currently node 2. If 

there are no spans that are connected to any unvisited node, delete this node 

from the stack. 
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Figure ‎2-33. Pick the last node in the stack, which is currently node 1. If 

there are no spans that are connected to any unvisited node, delete this node 

from the stack. 

2.4.2 Shortest Path Algorithms 

Finding the shortest path from one node to another in a network is an important 

step in many network optimization problems, such as routing problems. Officially 

described, given a cost capacitated network G = (N, S), the shortest path from 

node x in N is the set S’ of edges in S that connect x to y at the least cost. Shortest 

path algorithms have many applications, such as finding driving directions on web 

mapping websites like Google Maps.  

2.4.2.1 Dijkstra’s Algorithms 

One of the main algorithms to solve the single-source multi-destination shortest-

path problem is Dijkstra’s algorithm published by Dutch computer scientist 

Edsger Dijkstra in 1959 [34], [35]. Dijkstra's shortest-paths tree is developed 

during the process of this algorithm. Its root is the start node, and its branches are 

the shortest paths from the root node to all other nodes in the network. Dijkstra’s 

algorithm is a greedy algorithm that generates an optimal solution. The algorithm 

is greedy because it adds spans to the shortest-paths tree depending on which is 

best at this point in time. It works for positive capacitated graphs, such that all the 

values (cost and distance) associated with all spans must be nonnegative numbers. 
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Figure ‎2-34 to Figure ‎2-43 provide a realistic example of implementing Dijkstra’s 

algorithm for a small network. This algorithm tries to find the shortest routes from 

node 1 to every other node in the network using the distances (costs) of the 

network spans. The algorithm proceeds as follows: 

a) Unmark all nodes and spans in the network and capacitate the network 

with the distance of the spans. Now the number written beside each span 

represents the cost of it. 

b) Mark node 1 and label it with 0 and label every other node in the network 

with ∞. These numbers (labels) beside each node represent the costs from 

these nodes to node 1. 

c) Find the node with the lowest label, which is currently node 1. Mark 

every scanned span that links node 1 to an adjacent node, if this adjacent 

node will have a new label with a value lower than the current one.  

Update the labels using spans’ costs.  

d) Similarly, find the unmarked node with the lowest label (node 3 because 

its label is 1) and mark it in the network. Mark every scanned span that 

links node 3 to an adjacent node if this adjacent node will have a new 

label with a value lower than the current one. Update the labels.  

e) Find the unmarked node with the lowest label (node 4 or node 2 because 

their labels are 2) and mark any one of them. (In our example we picked 

node 4.) Mark every scanned span that links node 4 to an adjacent node if 

this adjacent node will have a new label with a value lower than the 

current one. Update the labels.  

f) Similarly, find the unmarked node with the lowest label (node 2 because 

its label is 2) and mark it. Mark every scanned span that links node 2 to 

an adjacent node, if this adjacent node will have a new label with a value 

lower than the current one. Update the labels.  

g) Iterate the previous step until all nodes are marked, and the Dijkstra’s 

tree with root node 1 of the graph is generated. The label associated with 

each node represents the cost from this node to node 1. For example, to 

reach node 1 from node 7, it costs 7 units, and its route is {7 - 5 - 2 - 1}. 
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Figure ‎2-34. Unmark all nodes and spans in the network and capacitate the 

network with the distance of the spans. Now the number written beside each 

span represents the cost of it. 

 

Figure ‎2-35. Mark node 1 and label it with 0 and label every other node in 

the‎network‎with‎∞. These numbers (labels) beside each node represent the 

costs from these nodes to node 1. 

 

Figure ‎2-36. Find the node with the lowest label, which is currently node 1. 

Mark every scanned span that links node 1 to an adjacent node if this 

adjacent node will have a new label with a value lower than the current one.  

Update‎the‎labels‎using‎spans’‎costs. 
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Figure ‎2-37. Similarly, find the unmarked node with the lowest label (node 3 

because its label is 1) and mark it in the network. Mark every scanned span 

that links node 3 to an adjacent node if this adjacent node will have a new 

label with a value lower than the current one.  Update the labels. 
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Figure ‎2-38. Find the unmarked node with the lowest label (node 4 or node 2 

because their labels are 2) and mark any one of them. (In our example we 

picked node 4.) Mark every scanned span that links node 4 to an adjacent 

node if this adjacent node will have a new label with a value lower than the 

current one. Update the labels. 

 

Figure ‎2-39. Similarly, find the unmarked node with the lowest label (node 2 

because its label is 2) and mark it. Mark every scanned span that links node 

2 to an adjacent node if this adjacent node will have a new label with a value 

lower than the current one. Update the labels. 
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Figure ‎2-40. Find the unmarked node with the lowest label (node 5 because 

its label is 5) and mark it. Mark every scanned span that links node 5 to an 

adjacent node if this adjacent node will have a new label with a value lower 

than the current one. Update the labels. 

 

Figure ‎2-41. Find the unmarked node with the lowest label (node 6 because 

its label is 6) and mark it. Mark every scanned span that links node 6 to an 

adjacent node if this adjacent node will have a new label with a value lower 

than the current one. Update the labels. 
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Figure ‎2-42. Find the unmarked node with the lowest label (node 7 because 

its label is 7) and mark it. Mark every scanned span that links node 7 to an 

adjacent node if this adjacent node will have a new label with a value lower 

than the current one. Update the labels. 

 

 

Figure ‎2-43. All nodes are marked, and‎the‎Dijkstra’s‎tree with root node 1 

of the graph is generated. The label associated with each node represents the 

cost from this node to node 1. For example, to reach node 1 from node 7, it 

costs 7 units, and its route is {7 - 5 - 2 - 1}. 

2.4.3 Maximum Flow Algorithms 

Many problems arise in telecommunications, and transportation fields require 

maximizing the flows (i.e., data flows and cars flows) from a set of supply nodes 

to a set of demand nodes. These problems are called maximum flow problems. 

Formally stated, given a maximum flow capacitated network G = (N, S), find a 

flow of maximum value connecting nodes x to y.  
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2.4.3.1 K Shortest Path Routing Algorithm 

The k-shortest path routing algorithm (KSP) is an extension algorithm of the 

shortest path routing algorithm in a given graph. It is sometimes essential to have 

more than one path between two nodes in a given network. In the event, there are 

additional restrictions, other paths different from the shortest path can be 

computed. To find the shortest path one can use shortest path algorithms such as 

Dijkstra’s algorithm and extend them to find more than one path. The algorithm 

not only finds the shortest path, but also K other paths in order of increasing cost. 

K is the number of shortest paths to find. The K shortest path routing is a good 

alternative for geographic path planning and network routing, especially in optical 

mesh networks where there are additional restrictions that cannot be solved by 

using ordinary shortest path algorithms. 

A practical demonstration of the KSP algorithm is illustrated on graphs in 

Figure ‎2-44 to Figure ‎2-50. The main objective of this example is to find the 

maximum flow from node 1 to node 7 without violating the spans’ maximum 

flows in Figure ‎2-44. The sequence of the algorithm is as follows: 



41 

 

 

Figure ‎2-44. This‎is‎the‎original‎graph‎capacitated‎with‎the‎spans’‎maximum‎

flows. For instance, the maximum flow from node 2 to node 5 is 4 capacity 

units. 

 

Figure ‎2-45. Find the shortest path using Dijkistra’s algorithm from node 1 

to node 7 in the graph, which is path {1 – 3 – 7}.  

 

Figure ‎2-46. Determine the maximum flow of the path, which is 2 units, and 

then deduct the same number of units from the path.  
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Figure ‎2-47. Find the shortest path using Dijkstra’s algorithm from node 1 to 

node 7 in the residual graph, which is path {1 – 2 – 5 – 7}. 

 

 

Figure ‎2-48. Determine the maximum flow of the path, which is 1 unit, and 

then deduct the same number of units from the path. 

 

Figure ‎2-49. Find the shortest path using Dijkstra’s algorithm from node 1 to 

node 7 in the residual graph, which is path {1 –  4 –  6 –  7}. Determine the 

maximum flow. 
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Figure ‎2-50. Stop when there are no more paths to be found. The maximum 

flow is the summation of the 3 shortest paths flows found so far, which is 5 

units. 

2.4.3.2 Trap Topology 

In the following example, we will show how the KSP is trapped by its greedy 

nature. The original graph in Figure ‎2-51 illustrates the trap situation. For 

simplicity, each span has a maximum capacity of 1 unit. For instance, the 

maximum flow from node 2 to node 5 is 1 capacity unit. As shown in Figure ‎2-51 

KSP will take the shortest path {1 – 3 – 7 – 8}, making it impossible to discover 

any more paths, as depicted in Figure ‎2-52. To solve this problem, the Ford-

Fulkerson algorithm (FFA) was developed to compute the maximum flow in a 

flow network. It was published in 1956 [36], [29]. 
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Figure ‎2-51. Find the shortest path using Dijkstra’s algorithm from node 1 to 

node 8 in the graph, which is path {1 – 3 – 7 – 8}.  

 

Figure ‎2-52. Determine the maximum flow of the path, which is 1 unit, and 

then deduct the same number of units from the path. 
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Chapter 3.  Survivability Schemes in WDM Networks 

3.1  Introduction 

As we introduced in the previous chapter, any telecommunication network 

comprises a number of elements [37] A node is any device that can transmit or 

receive data. In the context of WDM networks, this could mean optical cross-

connects (OXCs) or add/drop multiplexers. A link is a channel that connects two 

nodes. A span is a group of links that connects two nodes and can be exposed to 

one physical failure. A path is a series of links that makes a connection between 

the source node and the destination node. A route is a series of cascaded spans 

from one node to another. A demand is the amount of data that would be 

transferred between any pair of nodes in the network. 

Our main focus in this research is survivability mechanisms for single-failure 

accident. Other mechanisms were proposed in the open literature for dual failure, 

such as in [38], [39]. As the global traffic was increased more than fivefold in the 

last five years, an accident failure could result in a huge loss of data, and as a 

consequence, significant financial loss [40]. To avoid such a disaster, 

survivability mechanisms must be deployed in such networks. The survivability 

techniques in WDM networks can be classified into two main categories. First is 

ring protection, where the network is protected by rings of spare capacities 

included in the network design so that in the case of a span failure, the affected 

signal will be rerouted through the spare capacities in these rings. Second, mesh 

restoration exploits some of the spare capacities in the spans of the network to 

construct new routes. Mesh restoration is more flexible than ring restoration, in 

that, it can be more easily adapted for different traffic loads. One type of mesh 

restoration technique called p-cycles incorporates aspects of ring networks [41].  

The two main types of ring restoration are: 
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a) Unidirectional path switched ring (UPSR) [42]. 

b) Bidirectional line-switched rings (BLSR) [11]. 

 The mesh restoration types include: 

a) Automatic protection switching (APS) [43]. 

b) Span restoration [11]. 

c) Path restoration [44]. 

d) Shared backup path protection (SBPP) [45], [46]. 

e) p-Cycles  [47], [48]. 

f) Node-encircling p-cycle (NEPC) [41]. 

3.2  Ring Restoration 

3.2.1  Unidirectional Path Switched Ring  

A unidirectional path switched ring (UPSR) is the most widely used scheme in 

SONET networks. Because of its low cost and simplicity, it can be used for access 

networks and metropolitan networks. As shown in Figure ‎3-1, in this scheme, the 

nodes are arranged in a closed ring containing two sets of fibre optic cables. The 

demand will use one of these cables to transmit its signal between its nodes. If a 

failure happens in a certain span on the working path, the demand will be rerouted 

to use the fibre on the other side of the ring between its nodes. The spare capacity 

in a UPSR equals the total of all demands between the nodes in this ring [32]. 

Protection switching times for a UPSR are normally within the 50 ms range [42]. 
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Figure ‎3-1. Basic operation of a UPSR (a) before failure, and (b) after failure 

[37], used with permission 

3.2.2 Bidirectional Line-Switched Rings  

In bidirectional line-switched rings (BLSR), as shown in Figure ‎3-2, the nodes are 

also organized in a ring topology, except that the ring usually contains four sets of 

fibre optic cables. Working traffic uses two sets of cables on one side of the ring 

to connect its nodes. When a failure occurs in a span, the nodes of this span 

change the signal from the working sets of cable to the spare sets on the other side 

of the ring. This method requires less capacity than in UPSRs. The spare capacity 

in BLSR equals the maximum load between any two nodes in that ring [32], [11], 

[42]. 
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Figure ‎3-2. Basic operation of a BLSR (a) before failure, and (b) after failure 

[37], used with permission 

3.3  Mesh Restoration 

3.3.1 Automatic Protection Switching (APS) 

In automatic protection switching (APS) systems, for each working route, there is 

a predetermined protection route. In the case of the failure of a working route; the 

protection route will enter in the service. The protection switching can be done 

whether the signal disappears entirely, or there is simply a degradation in the 

signal strength. It can also be done manually by a user. Depending on the specific 

implementation, traffic can revert back to the original working route after the 

failure is repaired or in the non-reverting case, the traffic remains on the spare 

route after repair (effectively becoming the new working route) [43].   

There are three main types of APS, 1+1 APS, 1:1 APS, and 1:N APS. In 1+1 APS 

systems, a copy of the signal is sent on both routes. One of these routes is called 

the working route and the other is called the protection route. The receiver 

monitors both routes and takes the signal from the route with the higher 

performance. Because of that, this scheme provides the minimum restoration time 

of schemes. 

 
(a) (b)

A

B

protection 

fibres

working 

fibres

A

B

protection 

fibres

working 

fibres



49 

 

 In 1:1 APS systems, during normal operations the working signal is carried by 

the working route while the protection route can carry another signal, which is not 

related to the signal on the original working route. When the working route fails, 

the signal of the working route will be transmitted on the protection route 

canceling the transmission of any other signal on this route. Thus, the signal in the 

working route should have higher priority than the signal on the protection route. 

It is clear that the restoration time of this system is greater than the restoration 

time of the previous one.  

1:N APS is a more capacity-efficient scheme where the goal is to protect only 

against individual channel failures rather than entire cable failures, as illustrated 

in Figure ‎3-3. In 1:N APS, a single backup channel is shared amongst N working 

channels. In the case of a failure of a working channel, the receiving end first 

confirms that the protection channel is available and then sends a signal to the 

other end to launch a head-end bridge of the failed working channel onto the 

backup channel before performing a tail-end handover. k:N APS is a more general 

system of 1:N APS where there are k backup channels available instead of only 

one [37]. 
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Figure ‎3-3. Automatic protection switching [37], used with permission. 

3.3.2 Path Restoration 

Path restoration is an end-to-end technique, in that, when a span fails, the 

affected working route is replaced by a new one from the origin node to the 

destination (see Figure ‎3-4). The surviving spans on an affected working route 

will be released as spare capacity to be used in the restoration process for any of 

the affected working paths. This operation is called stub release.  Stub release 

helps the path restoration to achieve better capacity efficiency, but it also 

complicates the reversion process after repairing the failure. The new path is not 

fixed; it can be changed from time to time depending on the spare capacity units 

on the spans of the networks. Path restoration can be considered a multi-

commodity max-flow problem, where we have multiple groups of paths and want 

to arrange them with the maximum flow [11]. A path restoration scheme is also 

called failure dependent path protection (FDPP), in that, the restoration paths for 

any given failed working route will depend on the failed span [44], [49], [11]. 
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Figure ‎3-4. Path restoration before failure (left panel) and after failure (right 

panel)  

3.3.3 Shared Backup Path Protection 

Shared backup path protection (SBPP) is another end-to-end protection scheme 

similar to 1:1 APS, except the spare capacity for a restoration path is also 

available to any other restoration path from any other demand, so long as the 

working paths are link-disjoint paths. As show in Figure ‎3-5, SBPP operates in a 

similar manner to path restoration, except that it does not utilize the stub release 

mechanism and the backup route for a working path is not dependent on the 

location of the failure [37]. In addition, the selection of restoration paths for each 

failed working path does not require knowledge of where the failure occurred, as 

in the case of path restoration. SBPP is less capacity efficient than path 

restoration, but it is also less complex than path restoration [45], [50]. 
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Figure ‎3-5. Shared backup path protection [37], used with permission 

3.3.4 Span Restoration 

Span restoration is the replacement of the failed span by paths between the nodes 

of failure through the rest of the network. These paths use spare capacity 

distributed throughout the spans of the network, as shown in Figure ‎3-6. Span 

restoration can be considered a single-commodity max-flow problem where we 

have a single group of paths and want to arrange them with the maximum flow 

[51], [52], [11].     

 

Figure ‎3-6. Span restoration 

While path restoration is more capacity efficient, span restoration is simpler and 

faster. The meta-mesh scheme, to be discussed later, has been proposed to bridge 

the gap between the two [53], because it enhances the capacity efficiency for the 

span restorable mesh networks while maintaining much of its simplicity.   
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3.3.5 p-Cycles 

p-Cycles are a network survivability approach that was developed as a 

compromise between the faster ring-survivability approaches and the much more 

capacity-efficient span restoration [47]. p-Cycles are cyclic structures of pre-

connected spare capacity, as illustrated in Figure ‎3-7. Each unit-sized copy of the 

p-cycle can protect one unit of capacity on each of the on-cycle spans. In 

straddling span protection, each unit-sized copy of a p-cycle can be used to 

protect two units of capacity on each and every straddling span. p-Cycle is a well-

known survivability scheme that was originally intended to protect against span 

failure. In the current literature, four p-cycles approaches have been developed for 

span and node protection, namely, node-encircling p-cycles (NEPC) [41], failure-

independent path-protecting (FIPP) p-cycles [54], path-segment protecting p-

cycles [55], and 2-hops node protection p-cycles [56]. Of these variants, we will 

discuss only NEPCs in details. 
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Figure ‎3-7. Illustration of p-cycle restoration 

3.3.6 Node-Encircling p-Cycles 

Since conventional p-cycles are fundamentally a form of span restoration, they are 

capable of protecting only span failures, not node failures. The idea of node-

encircling p-cycles was introduced in the context of Internet Protocol (IP) layer 

restoration to protect against router failures [57], but the concept is also applicable 

to optical layer restoration. An NEPC functions by providing protection for any 

lightpaths transiting the failed node. In NEPC survivability, when a node fails, an 
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NEPC is able to protect any flow passing through that node (i.e., transiting flow) 

that does not originate or terminate at it. By definition, transiting flow through an 

encircled node also passes at least two other nodes on the NEPC. This NEPC 

protects the node by routing the transiting flow around the p-cycle in either 

direction. Figure  3-8 illustrates this behavior. The cycle A-B-C-D-E is an NEPC 

for node G. If node H fails, transiting flow passing through the A-G-D route 

segment can be re-routed around the failed node, through A-B-C-D and/or A-E-D 

(one unit of transiting flow in each direction). 

 

Figure ‎3-8. NEPC intercepting on node transiting flow 
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Chapter 4.  Network Optimization Methods 

Typically, there are two main approaches for tackling any optimization problem, 

as illustrated in Figure ‎4-1. First, exact methods find the optimal solutions. The 

time complexity and the memory required for these methods increase 

exponentially with the increase of the problem size. Second, approximate methods 

provide a respectively good solution within a polynomial time, but they do not 

guarantee finding the optimal solution. 

 

Figure ‎4-1. Network optimization methods 

4.1  Integer Linear Programming 

Operations research (OR) is the science of how to formulate a mathematical 

model for any complex engineering or management problems. One of its 

analytical methods is the use of exact optimization tools. Optimization handles the 

maximization or minimization of an objective function subject to given 

constraints. Decision variables are the values assigned by the decision maker to 

optimize the mathematical model. The objective function and its constraints are 
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called a mathematical optimization model. A linear program (LP) is a 

mathematical optimization model in which the objective function and all 

constraints are linear. A typical LP model can be formulated as: 

Maximize:                     

 
  i i

i

c x

             

 
(4.1)

 

Subject to:   

  

 
   b            ij i j

i I

a x j J


  
  

(4.2)
 

 
0                          ix i I  

  
(4.3)

 
Where xi represents the decision variables and ci is the vector of coefficients used 

in the objective function. 
i

ij i j

I

a x b
 

  represents a set of constraints that should 

be satisfied. An LP is called an integer linear programming (ILP) problem if its 

decision variables are discrete. If some of its decision variables are discrete and 

the rest are linear, this model is called mixed integer linear programming (MIP) 

model. An LP model is called a binary integer programming (BIP) model if some 

of its variables are binary. 

An ILP technique is one of the main tools used in telecommunication networks 

design, owing to the fact that it provides the optimal solution within a reasonable 

amount of time for small instances of problems. Moreover, ILP models could 

work as accurate baselines when designing an approximate algorithm for the same 

problem. The following section provides some ILP models for major survivability 

schemes demonstrated in the previous chapter, such as span restoration, path 

restoration, p-cycle, and NEPCs.  

4.2  ILP Models for Major Survivability Schemes 

Network optimization can take one of two forms when considering survivability 

techniques. First is the spare capacity allocation (SCA) form, where the working 
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capacities have been calculated previously. Typically, the working capacities are 

determined from the shortest path routing of the demand matrix. The main target 

of this problem is to determine the spare capacity units on each span while 

maintaining 100% restorability for a single failure [58], [59], [60]. Second is the 

joint capacity allocation (JCA) form. Its aim is to calculate the optimal working 

and spare capacities simultaneously. Several studies [49], [61], [62] have shown 

that JCA can yield a considerable total capacity reduction compared to SCA.  

Two fundamentally different ILP models have been developed for most network 

survivability problems in the literature [49], [61], [62]. First is the arc-path model 

where restoration flow is assigned to a set of predefined eligible routes. Second is 

the node-arc model [63], which originates from transshipment problems. In such 

models, the flow variables are associated with spans rather than specific paths in 

the network. For any given demand, its origin and its destination nodes represent 

source and sink of a commodity, respectively, while the transshipment nodes act 

as transit nodes that pass the commodity to another node until the commodity 

reaches the destination node.  

In most of the current research, the physical topology has been given as an input 

to the network model. This means that it has only considered the variable cost that 

corresponds to the addition of a new unit of spare or working capacity. However, 

the fixed cost that represents the rights-of-way and lease acquisitions, excavation, 

duct installation, amplifiers, etc., has not been taken into the account. In these 

kinds of problems, the main target is to route the working and the spare capacity 

flows with the least cost on a legacy network.  

4.2.1 Span Restoration ILP Models 

In this section, we will introduce the ILP models used in span restoration. The 

first model is designed using the arc-path technique. The second model is 

designed using the node-arc technique.  
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4.2.1.1 Arc-Path SCA Model for Span Restoration Technique  

In this section, we will introduce the arc-path SCA model for span restoration. 

The following notations will be used in the SCA arc-path model: 

Sets:  

S   Set of all spans in the network typically indexed by two symbols 

i,j, where i refers to a failing span and j refers to a surviving span. 

i
P   Set of all unique potential routes available to carry the restoration 

flow for span i. It is indexed by p. 

Parameters:  

j
c  The parameter which represents the incremental cost of adding one 

unit of working or spare capacity on span j. 

i
w   The number of working capacity units assigned on span i and that 

need to be protected. 

 , ,p

i j  0 1  The parameter that  represents the relation between the failed span 

i, the restoration route p, and a surviving span j. 
, 1p

i j   if 

restoration route p used for restoration of span i passes through 

span j. 
, 0p

i j  if restoration route p used for restoration of span i 

does not pass through span j. 

Decision Variables: 

j
s   This decision variable represents the total number of spare 

capacity units deployed on span j.  

,
0

i p
    This decision variable denotes the number of spare capacity units 

assigned on route p to restore span i. 

 

The objective is to minimize the cost of the network subject to a set of constraints. 
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Minimize: 

 
j j

j S
c s

 
 

   
(4.4)

 

Subject to: 

 
,                              i p i

p P
w i S

 
    

  
(4.5)

 

 
, ,                         ,p

i j i p j
p P

s i j S i j
 
     

  
(4.6)

 

In the above SCA model, the objective function (4.4) minimizes the total cost 

results from the total spare capacities cost. To optimize this objective function, we 

need to define the feasible region over which the search will be performed. 

Equation (4.5) ensures that the total number of spare capacity units assigned on all 

routes satisfies the working capacities on each span. Equation (4.6) guarantees 

that enough spare capacity units are provided on each span to protect any single 

failed span against.  

4.2.1.2 Arc-Path JCA ILP Model for the Span Restoration 

Technique  

In this section, the arc-path model for span restoration will be introduced by 

modifying the previous SCA model. This means that the working capacity that 

was given as an input parameter in the previous model will be considered output 

variables in this model. In addition to the previous notation used in the SCA 

model, the following additional notation will be used in the JCA model: 

Additional Sets: 

D Set of all demands in the network. It is indexed by r. 

rQ   Set of all unique potential routes available to carry the working 

flow for demand r. It is indexed by q. 

Additional Parameters: 

r
d  The parameter that represents the number of demand units for 
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demand r. 

 , ,r q

j  0 1

 

The parameter that  represents the relation between the span j, the 

working route q, and the demand r. ,r q

j 1 if working route q 

used for restoration of demand r passes through span j. ,r q

j  0 if 

working route q used for routing of demand r does not pass 

through span j. 

Additional Decision Variables: 

j
w   This decision variable represents the total number of working 

capacity units deployed on span j.  

, 0r qg    This decision variable denote the number of spare capacity units 

assigned to route q to route demand r. 

Minimize: 

 
( )j j j

j S
c w s

 
  

        
(4.7) 

In addition to the constraints applied in the previous section, the following 

constraints will be used: 

 

,                              
r

r q

q Q
g d r D

 
   

  
(4.8) 

 

, ,                   r q r q

j j
r D q Q

g w j S
   
      

  
(4.9)

 

In the above arc-path JCA model, the new objective function (4.7) ensures 

minimizing the total cost results from the total working and spare capacity cost. 

To optimize this new objective function, we need to define additional of 

constraints for controlling the working capacities. Equation (4.8) ensures that the 

total number of working capacity units assigned to all routes satisfies the working 

capacities for each demand. Equation (4.9) guarantees that enough working 

capacity units are provided in each span to route all the demands.  
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4.2.1.3 Node-arc SCA ILP model for the Span Restoration 

Technique  

In this section, we will introduce the node-arc SCA model for the span 

restoration. The following notation will be used in the node-arc SCA model: 

Sets:  

N Set of all nodes in the network. It can be indexed by i, j, n, k, l, b, 

or q. 

S Set of all spans in the network typically indexed by two pair of 

nodes like i,j, which represents a directional span from node i to 

node j. 

Parameters:  

, ,i j j i
c c   

The parameter that represents the incremental cost of adding one 

unit of capacity on span i,j. 

,i j
w  

The number of working capacity units assigned to span i,j. 

Decision Variables: 

,

,

i k

i j
s  This decision variable denote the number of spare capacity units 

assigned to span i,k to restore span i,j. 

Minimize: 

 
 , ,

,
i j i j

i j S
c s

 


   
(4.10) 

In addition to the constraints applied in the previous section, the following 

constraints will be used: 

,

, ,
, |

            ,i k

i j i j
i k S j k

s w i j S
  

   
 

(4.11)
 

,

,
, |

0                 ,k i

i j
i k S j k

s i j S
  

   
 

(4.12)
 

,

, ,
, |

             ,k j

i j i j
j k S i k

s w i j S
  

   
 

(4.13)
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,
, |

0                  ,j k

i j
j k S i k

s i j S
  

   
 

(4.14)
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                     , , | { , }
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i j i j
n k S n k S

s s

i j S n N n i j

   
  

      
(4.15)

 

,

,,
                 ,k i

i jk i
s s i j S  

 
(4.16) 

The objective is to minimize the total cost of the network spare capacity units 

subject to technical constraints. The six constraints will be used to assign the 

number of spare units over the network spans to ensure that the network is fully 

restorable. Each span considered as a demand, where the working capacity on this 

span will be treated as a demand. One of the nodes incident on this span will be 

considered an origin and the other a virtual target. Constraints (4.11) and (4.12) 

denote that, the summation of the flows units out of i (i.e., the virtual origin) must 

equal the working capacity units on this span, and the flows in i must equal zero, 

respectively. Equations (4.13) and (4.14) say that the summation of the flow units 

in j (i.e., the virtual target) must equal the working capacity on this span, and the 

flows out of j must equal zero respectively. The constraint in (4.15) represents the 

conservation law, in that, for any demands at any node other than the virtual 

origin or the virtual target, the summation of flows out should equal the 

summation of flows in. The inequality in (4.16) guarantees that the number of 

spare units deployed on any span will be sufficient for restoring any failed span. 

4.2.1.4 Node-arc JCA ILP Model for the Span Restoration 

Technique  

In this section, the node-arc model for the span restoration will be introduced by 

modifying the node-arc SCA model. This means the working capacity that was 

given as an input parameter in the previous model will be considered output 

variables in this model. In addition to the previous notation used in the node-arc 

SCA model, the following additional notation will be used: 
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Additional Sets: 

D Set of all demands in the network. It is indexed by r. 

Additional Parameters: 

r
d  The parameter that represents the number of demand units for 

demand r. 

r
O ,

r
T  Two symbolic parameters used to determine the origin and the 

target, respectively, of a demand r. Their value must be belong to 

the set N. 

Additional Decision Variables: 

,i j
w  The number of working capacity units assigned to span i,j. 

,

r

i j
w  The decision variables that represent the number of working 

capacity units deployed on span i,j for demand r.  

,i j
s  The number of the spare capacity units deployed on i,j span that 

are used for restoration.  

 

Minimize: 

 
, , ,

,
( )i j i j i j

i j S
s wc

 


   
(4.17)

 

Subject to: 

,
, |

, |r

i j r r
i j S i n

w d r D n N n O
  

      
 

(4.18)
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, |

0 , |r

i j r
i j S j n

w r D n N n O
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i j r
i j S i n

w r D n N n T
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r r
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The objective is to minimize the cost of the network, including the working and 

spare capacity costs, subject to technical constraints. The constraint in equation 

(4.18) says that for any demand, the number of working capacities unities that 

flow out of the demand’s origin node must equal the number of demand units for 

this demand. The condition in (4.19) requires that all flows into a demand’s origin 

should be zero for this demand. The equation in (4.20) requires that for any 

demand, the summation of flows into the target node should equal the demand 

units for this demand. The condition in (4.21) denotes that all flows out of the 

demand’s target should be zero for this demand. The constraint in (4.22) 

represents the conservation law, where for any demand at any node other than its 

target or the destination, the summation of the flows out should equal the 

summation of the flows in. Equation (4.23) guarantees that the number of working 

units deployed on any span will be sufficient to accommodate all demands 

passing through this span.  

4.2.2 p-Cycle Protection ILP Models 

In this section, we present SCA and JCA ILP formulations for the p-cycle 

network design problems [11].  

4.2.2.1 SCA ILP Formulation for p-Cycle 

In this sub-section, we present the formulation of the network design for 

determining the spare capacity for the fixed amount of working capacity using p-

cycles. 

We use the following notation: 

Sets: 

S The set of all spans in the network, typically indexed by i or j. 

P The set of all eligible p-cycles in the network, typically indexed 

by p.  
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Parameters:  

,i j
c  The cost of each unit of capacity (working or spare) placed on 

span i,j. 

 , , 0,1,2i j px   An input parameter that encodes the number of protection 

relationships provided to span i,j by each unit-sized copy of 

eligible p-cycle p. , ,i j px = 2 if span i straddles cycle p, , ,i j px  = 1 

if span i,j is on cycle p, and , ,i j px = 0 in all other cases.  

,i j
w  The number of working units placed on span i,j. 

Decision Variables: 

,i j
s  The number of the spare units deployed on span i,j used for 

restoration.  

np An integer decision variable that represents the number of copies 

of p-cycle p that will be used in this design. 

The ILP formulation is as follows: 

Minimize: 

 
, ,

,
                                       ,i j i j

i j S
sc i j

 
  S

 
(4.24)

 

Subject to: 

 
, , ,                            ,i j i j p p

p
w x n i j

 
   

P
S

 
(4.25)

 

 , ,

,
1

                              ,
i j p

i j p
p x

s n i j
  

  
P

S
 

(4.26)
 

In the above SCA model, the objective function (4.24) minimizes the total spare 

capacity cost. To optimize this objective function, we need to define the feasible 

region over which the search will be performed. Equation (4.25) ensures that the 

number of p-cycles satisfy the working capacities on each span. Equation (4.26) 

guarantees that enough spare capacity units are provided in each span to be 

protected by p-cycles.  
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4.2.2.2 JCA ILP Formulation Using p-Cycles 

In this sub-section, we present the formulation of the network design for 

determining the working and spare capacities using p-cycles techniquees. 

Additional Sets: 

N The set of all nodes in the network, typically indexed by i or j. 

D Set of all demands in the network. It is indexed by r. 

Additional Parameters: 

r
d

 
The parameter that represents the number of demand units for 

demand r. 

r
O ,

r
T  Two symbolic parameters used to determine the origin and the 

target, respectively, of a demand r. Their value must be belong to 

the set N. 

Additional Decision Variables: 

,i j
w  The working units placed on span i,j. 

,i j
s  The number of the spare units deployed on i,j span, used for 

restoration.  

np The number of the spare units deployed on i,j span, used for 

restoration.  

 

The ILP formulation is as follows: 

Minimize: 

, , ,
,

( )                       ,i j i j i j
i j S

s wc i j
 

  S
 

(4.27)
 

In addition to the constraints applied in the previous section, the following 

constraints will be used: 
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The objective function in (4.27) seeks to minimize the cost of working and spare 

capacity. To optimize this new objective function, we need to define more 

constraints for controlling the working capacities. The constraints in equation 

(4.28) ensure that for any demand, the number of working capacity units flowing 

out of the demand’s origin node must equal the number of demand units for this 

demand. The constraints in (4.29) require that all flows into or out of a demand’s 

origin equal zero for this demand. Equations (4.30) and (4.31) are the equivalent 

constraints for the target node of a demand. The constraints in (4.32) represent the 

conservation of the flow requirement, where the working traffic flows into and 

out of the transshipment nodes for a demand are equal. Equation (4.33) guarantees 

that the number of working capacity units deployed on any span will be sufficient 

to accommodate all of the traffic passing through it.  

4.2.3 NEPC Restoration ILP Models 

In this section, we present SCA and JCA ILP formulations for the NEPC network 

design problems.  

4.2.3.1 SCA Formulation Using NEPC 

The notation used in the NEPC SCA model are described next. 

Sets: 

S The set of all spans in the network, typically indexed by i or j. 
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N The set of all nodes in the network, typically indexed by n. 

P The set of all eligible p-cycles in the network, typically indexed 

by p. Note that we make no distinction here between 

conventional span-protecting p-cycles and NEPCs. 

Parameters:  

jc   The cost of each unit of capacity (working or spare) placed on 

span j. 

 , 0,1,2i px   An input parameter that encodes the number of protection 

relationships provided to span i by each unit-sized copy of 

eligible p-cycle p. 𝑥𝑖,𝑝= 2 if span i straddles cycle p, 𝑥𝑖,𝑝 = 1 if 

span i is on cycle p, and 𝑥𝑖,𝑝= 0 in all other cases. For the special 

case of non-simple cycles, 𝑥𝑖,𝑝= 0 for on-cycle spans that are 

crossed twice by the cycle. 

 0,1n

px   An input parameter that encodes whether or not eligible p-cycle p 

can act as an NEPC for node n. 1n

px   if it can and 0n

px   if it 

cannot. 

wi The working units placed on span i. 

τn Transiting flow, in units, for node n. 

Decision Variables: 

sj The spare capacity allocation in unit-copies on span j. 

np An integer decision variable that represents the number of copies 

of p-cycle p that will be used in this design. 

The ILP formulation for the SCA model is: 

Minimize: 

 
j j

j

c s
 


S   

(4.34)
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Subject to: 

 
,                                    i i p p

p

w x n i
 

   
P

S
 

(4.35)
 

 1

2                                  
n
px

n p

p

n n
  

   
P

N
 

(4.36)
 

 1

                                     j p

p

s n j
  

  
i,pP x

S
 

(4.37)
 

    

The objective function in equation (4.34) minimizes the total spare capacity cost 

subject to the technical constraints (4.35), (4.36) and (4.37). Constraint (4.35) 

ensures a full span restoration in case of a single span failure. Constraint (4.36) 

guarantees a full node restoration, in that all transiting flows passing through this 

node will be restored over its NEPCs. Constraint (4.37) ensures sufficient spare 

capacity allocation on each span for every p-cycle selected in the design.  

4.2.3.1 JCA Formulation Using NEPC 

In this subsection, we will introduce the JCA approach for NEPC network design, 

which simultaneously determines optimal working and restoration routing (and 

working and spare capacity). The model is provided with a set of eligible working 

routes and eligible p-cycles, which are then optimally selected such that capacity 

costs are minimized. In addition to the notation provided in the previous SCA 

model, we use the following additional notation: 

Sets  

D The set of all demands in the network, typically indexed by r. 

Q
r
 The set of all distinct eligible working routes capable of 

routing lightpaths for demand r, typically indexed by q. 

Parameters:  

 ,
0,1

r q

i
   A binary parameter that defines the relationship between 

working routes and the network spans for each demand. It 

equals 1 if working route q used for demand r passes through a 
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span i. Otherwise it equals 0. 

 0,1n

r   A binary parameter that equals 1 if node n is the origin or the 

destination of demand r. Otherwise, it equals 0. 

 , 0,1r q

nz   A binary parameter that describes the relationship between 

working routes and the network nodes for each demand. 

, 1r q

nz  if working route q used for demand r crosses node n. 

Otherwise , 0r q

nz  . 

Decision Variables: 

, 0r qg   The integer number of working lightpaths assigned to working 

route q used for demand relation r. 

The ILP formulation is as follows: 

Minimize: 

 
 j j j

j

c s w
 

 
S   

(4.38)
 

In addition to the constraints applied in the previous section, the following 

constraints will be used: 
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The objective function in (4.38) seeks to minimize the total cost of placing 

working and spare capacity in the network. The constraints in (4.39) guarantee 

that all demands will be provided with a sufficient number of working lightpaths, 



72 

 

and the constraints in equation (4.40) assign a sufficient amount of working 

capacity on each span i to accommodate all working lightpaths routed over it. 

Equation (4.41) assigns sufficient copies of the various eligible p-cycles to 

provide restoration of all working capacity on each span. Equations (4.42) and 

(4.43), respectively, determine the number of working lightpaths transiting 

through each node, and ensure that there are sufficient copies of the various 

eligible p-cycles (acting as NEPCs) to protect all transiting lightpaths through 

each node in the event of failure of that node. Note that the 2× multiplier in 

equation (4.43) is due to the fact that each copy of an NEPC can protect two 

transiting lightpaths from failure of node n, one in each direction around the p-

cycle. Finally, the constraints in equation (4.44) place spare capacity on each span 

j to accommodate all copies of eligible p-cycles assigned to the network. 

4.3  Metaheuristics 

Approximate algorithms can be classified into two main categories. First is the 

custom case-specific algorithm, which is designed to solve a particular 

optimization problem. In our current research, the NDPP algorithm is an example 

of a custom algorithm to solve the NEPC enumeration problem in chapter 7. 

Second are metaheuristics, which are a general method which can be used for any 

optimization problem. Unlike the ILP, both of these approaches do not guarantee 

finding the optimal solution. 

The term metaheuristic was firstly presented by F. Glover [64]. The suffix “meta” 

is a Greek word meaning upper level methodologies, and “heuristic” has its Greek 

origin heuriskein, which means the art of finding new ways to solve problems. In 

the literature, various metaheuristics techniques have been proposed, such as 

genetic algorithms, particle swarm optimization, ant colony optimization, Tabu 

search, simulated annealing, and local search. They can be classified in several 

ways as follows [65], [66]. The first is population-based search versus a single-

solution based search. In single-solution based search, such as simulated 

annealing and Tabu search, a single point is tracked during the search. In a 

population-based search, such as genetic algorithms and particle swarm 
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optimization, a group of points (i.e., population) is tracked during the course of 

the search. The population-based solution is more diversity oriented while the 

single-solution based search is more intensity oriented. 

The second means of categorization are nature inspired versus non-nature 

inspired. Several metaheuristic techniques originated from natural processes that 

could be biological, social, or physical. The genetic algorithm metaheuristics, for 

example, are based on evolution theory, while simulated annealing is inspired by 

the annealing process in metallurgy. A final categorization is deterministic versus 

stochastic. In stochastic techniques, some random rules are used to move from 

one solution to another, such as in the case of genetic algorithms while in the 

deterministic techniques no random decisions are used at all. Tabu search is an 

example of this kind of techniques.  

4.3.1 Genetic Algorithm 

Genetic algorithms are one of the main naturel-inspired meta-heuristics utilized in 

network design problems [11], [67]. It is a kind of population-based technique 

based on the natural selection concept of Darwin’s theory. The genetic algorithm 

proceeds as follows. First, it begins its operation with an initial generation of sub-

optimal solutions. This generation constitutes an acceptable subset of potential 

solutions of the investigated problem. Next, the objective function is used to 

assign a fitness value for each member of that generation.  

The fitness value for each individual solution (i.e., member) represents the quality 

of that solution the fitness value is used in the process of electing the individual 

parents that generate the consecutive population. As the fitness level of a specific 

individual improves, the probability to be selected as a parent increases. Third, the 

next generation (i.e., offspring) is produced from the parents by using various 

operators such as crossover and mutation. According to this mating process the 

offspring inherit some of characteristics of each participating parent.  
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Finally, the next generation is produced by replacing the current one with the 

offspring or by replacing a subset of it. This whole operation is iterated repeatedly 

until a predefined condition is reached. This condition could represent a 

maximum number of generations, a certain time limit, or a degree of convergence. 

This process tips the scale in favor of the individuals with better fitness value to 

survive from generation to generation, which makes the genetic algorithm often 

converge to a near-optimal solution in a reasonable amount of time. 

4.3.2 Tabu Search 

Tabu search was introduced by Glover in 1986 [64]. In this approach, the search 

process is guided by imposing certain restrictions. These restrictions can have 

several methods, but they primarily function by “forbidding” certain search 

alternatives. This is why it is called Tabu “taboo” search. The most common tabu 

restrictions are put in place to prevent being trapped in a local optima. Even 

though a move may worsen a current solution, or make it infeasible, it can still be 

accepted in a tabu search algorithm. In this way, a tabu search algorithm can 

move away from a local optima and move towards the global optimum, if 

available. 

Adaptive memory is the essence of the tabu search approach. Memory works by 

storing information about the search process, such as the fitness of certain moves, 

as the search algorithm is running. This information is utilized to guide the search 

operation during the next moves, by intensifying the search around promising 

solution areas, or diversifying it away from not so promising ones. During the 

search process, it is quite possible that some solutions will be re-examined. To 

avoid this (and in the worst-case, transform into cycling), a tabu list is used. 

The Tabu list constitutes the short-term memory part of the algorithm, and it 

records recently examined moves. For a certain number of iterations, the moves in 

the Tabu list are forbidden. After each iteration, the counter of the moves in the 

Tabu list is decremented. When the counter of a move reaches 0, it is taken off the 

Tabu list. 
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A fitness function is a standard part of Tabu search algorithms. This function is 

utilized to evaluate the performance of each move. If a move provides the best 

solution for a certain area and if it is not on the Tabu list, it is executed. This way, 

the algorithm proceeds from one best solution to the next in each area while 

recording the best overall solution obtained during the whole search process. Note 

that, as discussed earlier, the best solution to an area may be worse than the 

preceding area’s best solution. It can also be an infeasible solution. In both cases, 

it is accepted as the present solution. This is a major dissimilarity between a Tabu 

search and a greedy algorithm. Sometimes, a move that is on the Tabu list can 

provide the best overall solution. In this case, an aspiration factor is used to accept 

the move even though it is on the tabu list. Once a predetermined factor is 

reached, such as the number of iterations or the speed of progress in obtaining 

better solutions, the search is ended. At the end of the search, not only the best 

overall solution is recorded, but also all the appropriate information about the 

search operation. 

4.3.3 Simulated Annealing 

Simulated annealing (SA) is a generic probabilistic metaheuristic approach for 

locating a good approximate solution to the global optimum solution of a specific 

function in a large search area. It is often used when the search space is discrete 

(i.e., the number of communication links used in the network topology design). In 

some situations, the main goal of the optimization problem is to get a good 

solution in a reasonable amount of time, instead of finding the optimal one. For 

these problems, simulated annealing may be more efficient than exhaustive 

enumeration 

This idea of slow cooling is utilized in the simulated annealing algorithm as a 

slow reduction in the probability of accepting worse solutions as it discovers the 

solution area. Accepting worse solutions is an essential property of metaheuristics 

because it allows for a more extensive search for the optimal solution.  
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4.3.4 Other Metaheuristics 

There are many other metaheuristics that have been utilized in solving 

optimization problems, such as ant colony optimization. The ant colony 

optimization algorithm is a probabilistic approach for solving large optimization 

problems that can be reduced to discover good paths through graphs. In 1992, ant 

colony optimization was introduced by Marco Dorigo in his PhD dissertation, 

based on the behaviour of ants looking for a path between their colony and a food 

source. The target of the first algorithm was to discover an optimal path in a 

graph. The same idea has been expanded to solve a broader class of optimization 

problems.  

Another kind of metaheuristics is local search algorithms, which move from one 

solution to another in the search space by applying local changes, until a solution 

is considered as optimal is found or a time limit is reached. 

Particle swarm optimization is another type of metaheuristics that optimizes a 

problem by having a population of potential solutions, which are called particles, 

and moving these particles in the search space according to simple mathematical 

calculations. Each particle's move is determined by its local best known position 

but, is also controlled by the best known positions in the search space, which are 

updated as better positions are discovered by other particles. This is expected to 

guide the swarm towards the optimal solutions. 

4.4  Efficient Approaches for Solving Larger Linear Programs 

4.4.1 Column Generation  

Column generation is an effective technique for solving complex linear programs. 

The main idea is that several linear programs are very complex to take into 

consideration all the decision variables at the same time. Assuming that most of 

the decision variables will have a value of zero in the optimal solution, only a 

subset of variables needs to be considered in theory when solving the problem. 
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Column generation utilizes this idea to generate only the variables with the 

potential to improve the objective function. 

The given optimization model is divided into two models: the master model and 

the sub-model. The master model is the original one with only few decision 

variables. The sub-model is a new one built to find a new variable. The process 

works as follows. The master model is solved from this solution; we are able to 

obtain dual prices for each of the constraints in the master model. This 

information is then utilized in the objective function of the sub-model. The sub-

model is solved. If the objective value of the sub-problem is negative, a variable 

with negative reduced cost has been found. This variable is then added to the 

master model, and the master model is resolved. Resolving the master problem 

will generate a new set of dual values, and the process is repeated until no 

negative reduced cost variables are identified. The sub-model returns a solution 

with a non-negative reduced cost, and we can conclude that the solution to the 

master model is optimal. 

In many cases, this allows large linear programs those have been previously 

considered intractable to be solved, such as the cutting stock problem. One 

particular technique in linear programming that uses this kind of approach is the 

Dantzig–Wolfe decomposition algorithm. Additionally, column generation has 

been applied to many problems such as crew scheduling, vehicle routing, and the 

capacitated p-median problem. 

4.4.2 Lagrangian Relaxation Techniques 

Lagrangian relaxation is a mathematical optimization relaxation approach that 

replaces a complex optimization problem of constrained optimization with a 

simpler problem. A solution to the relaxed problem is an approximate solution to 

the original problem. 

The method penalizes violations of inequality difficult constraints by using a 

Lagrange multiplier, which enforces a cost on violations. These added costs are 

http://en.wikipedia.org/wiki/Mathematical_optimization
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used instead of the strict inequality constraints in the optimization. In practice, 

this new problem can often be solved more easily than the original one. 

There were a number of trials before 1970 to utilize Lagrangian technique in 

discrete optimization, including the Lorie-Savage (1955) approach to capital 

budgeting, Everett's proposal for “generalizing” Lagrange multipliers (1963). 

However, the inception of the Lagrangian technique as it is used today was 

introduced in 1970 when Held and Karp (1970, 1971) used a Lagrangian problem 

based on minimum spanning trees to propose a vividly successful algorithm for 

the traveling salesman problem. Motivated by this success, other researchers later 

used the Lagrangian approach in scheduling problems and the general integer 

programming problem. In 1974, when Geoffrion devised the perfect name for this 

approach “Lagrangian relaxation”, it had taken on considerable currency. Since 

then the list of applications of Lagrangian relaxation has increased to contain over 

a dozen of the most well-known combinatorial optimization problems. For most 

of these problems, Lagrangian relaxation has delivered the best present solution 

for the problem [68]. 

In the following example we will demonstrate the general concept of the 

Lagrangian relaxation technique: 

   max z = cx 

   S.T. Ax ≤ b   easy constraints 

    Dx ≤ d   hard constraints 

This problem would be solved quickly, if the integer linear programming model 

contained only the easy constraints. But the existence of the hard constraints 

makes it much harder to solve. The hard constraints can be eliminated and 

replaced with a penalty function in the objective function: 

   max zLR = cx + λ (d – Dx) 

   S.T. Ax ≤ b   easy constraints 
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The new non-negative λ parameters (λ = {λ1, λ2, λ3,…}) are Lagrange 

multipliers, or weights by which we are penalized for not considering the hard 

constraints. 

4.4.3 Relaxation-Based Decomposition Technique 

It is sometimes observed that computational complexity arises from a set of 

constraints or integrality properties of specific sets of variables of the 

optimization problem. The decomposition technique works as follows. 

Decompose the original problem into two easy sub-problems by relaxing the 

integrality property of some variables rather than relaxing the set of constraints. 

With some insights into the problem at hand, insights that a general approach 

might not have, we can decompose the ILP problem into two sub-problems. First, 

we use a partially relaxed version of the original, which is more easily solved. We 

can then use the solution from that problem to set fixed values for a subset of 

integer variables and resolve the original with that subset of integer variables 

acting as parameters. While the solution is not guaranteed to be optimal, proper 

selection of the integer variables to relax in the first sub-problem and of the 

integer variables for which we can fix their values in the second sub-problem can 

permit near-optimal solutions. As with most near-optimal algorithms, the quality 

of the solution (in terms of both the objective function value and the runtime 

improvement) will depend on careful selection of those subsets of variables. 
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Chapter 5.  Incremental Network Topology 

Optimization Using Meta-Mesh Span Restoration 

This chapter represents the following paper: “Incremental Optical Network Topology 

Optimization Using Meta-Mesh Span Restoration,” Design of Reliable Communication 

Networks (DRCN 2011), Krakow, Poland, 10-12 October 2011.  

 

5.1  Introduction and Background 

Survivability is an important consideration when designing large-scale 

communication networks, enabling them to mitigate the negative effects of span 

or node failure [11], [43]. There are many survivability techniques in use, and 

most can be classified as either mesh restoration or ring restoration [61], [69]. 

Mesh restorable networks are particularly efficient in the case of dense networks 

with average nodal degrees ranging from 3 to 4.5. This is typical for many 

European networks. In contrast, ring restoration is often thought of to be 

economically preferable in sparse network topologies such as those more 

commonly seen in North America. Mesh and ring techniques can be further 

classified into path (or end-to-end) restoration [49], [50], and span (or link) 

restoration approaches [53]. Unlike path restoration, where a working path is 

generally replaced in its entirety (i.e., by a backup or restoration path end-to-end 

between its origin and destination nodes), span restoration approaches simply 

reroute between two nodes on either end of the failed span, leaving the surviving 

portions of the working lightpath intact [18]. Path restoration is usually more 

capacity efficient than span restoration, however, span restoration is simpler and 

often faster [11]. The meta-mesh scheme was proposed a number of years ago to 

bridge that gap in sparse network topologies, providing more capacity-efficient 

designs with a simple span-restoration-like mechanism. We develop a new node-

arc meta-mesh ILP formulation and further extend that formulation to allow for 

incremental topology optimization. In our network test cases, results show that 

even where topology is flexible, thereby allowing a span-restorable network to 
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use a higher-connectivity topology, meta-mesh restoration can outperform span 

restoration in terms of capacity and number of spans required. 

5.1.1 Meta-Mesh Restoration 

Meta-mesh survivability is a modification to conventional span restoration, 

introduced in [53], [37] to improve capacity efficiency of sparse network 

topologies. In sparse networks, one is likely to find a large number of degree-2 

nodes, including many chains, with portions of the network consisting of a 

number of degree-2 nodes in sequence. The chain’s anchor nodes are the two 

degree-3 or higher nodes at the ends of the chain. In Figure ‎5-1, a chain consisting 

of two degree-2 nodes is anchored by nodes 1 and 4. Here, with the working 

capacities (wi) indicated on each span, full restoration via conventional span 

restoration would require the spare capacities (si) shown on each span for 

loopback of all working capacity. 

 

Figure ‎5-1. Spare capacity requirements in a chain employing span 

restoration (and loopback) 

However, when we look closely at the makeup of those 50 units of working 

capacity on each span, we would typically see something like that shown in 

Figure ‎5-2. A portion of the working capacity, results from working lightpaths 

that fully transit the chain in its entirety, or express flow. The remaining, results 

from working capacity destined for one of the degree-2 nodes within the chain, 

so-called local flow. While the latter type of working capacity still requires full 

loopback spare capacity within the chain, express working capacity does not. The 

restoration routes for that working capacity have no need to re-enter the chain. In 

fact, doing so would generally force an excess of spare capacity within the chain. 

Consider a failure of the span between nodes 2 and 3. If its express working 

capacity is restored as in conventional span restoration via a restoration route 

Node 2 Node 3 Node 4Node 1
wi= 40

si= 50

wi= 50

si= 45

wi= 45

si= 50
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between nodes 2 and 3, then the fully restored lightpath would enter the chain at 

node 4, continue on to node 3, and then re-exit the chain again at node 4. The 

same would occur at the other end of the chain as well. Clearly, adding spare 

capacity on the span between nodes 3 and 4 simply to permit that restored 

lightpath to enter and exit the chain is unnecessary. 

 

Figure ‎5-2. Breakdown of working channels in a chain into those that arise 

from local flow and express flow 

In meta-mesh restoration, the idea is to treat the express working capacity as if it 

was routed on a single bypass span directly connecting the anchor nodes of the 

chain, as shown in Figure ‎5-3. We then provide restoration in the conventional 

span restoration approach, with the express working capacity restored directly 

between the anchor nodes of the chain as if the logical bypass span was real. The 

result is that only the local working capacity actually requires spare capacity 

within the chain itself. 

 

Figure ‎5-3. Spare capacity requirements in a chain employing meta-mesh 

restoration (no loopback for express lightpaths). 

The theoretical foundation of capacity efficiency improvement is related to the 

network’s so-called meta-mesh topology [70], [37]. The network in Figure ‎5-4(a) 

contains three chains, but if we redraw that topology as it would be seen only by 

Node 2 Node 3 Node 4Node 1

wi = 40

wLoc = 15

wi = 50

wLoc = 25
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wLoc = 20

wExp = 25 wExp = 25
wExp = 25

Node 2 Node 3 Node 4Node 1
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wLoc = 25
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working lightpaths that full transit chains, then the meta-mesh topology would be 

as shown in Figure ‎5-4(b). In that topology, each chain has been replaced by its 

logical bypass. Effectively, it is this topology that is seen by the transiting 

lightpaths, and so it is this topology’s theoretical redundancy that is achievable by 

those transiting lightpaths. Consider that the original network in Figure ‎5-4(a) has 

an average nodal degree of 2.5d  . Calculating the 1/ ( 1)d   lower bound on 

span restoration redundancy [71], [72], we observe that we can achieve 67% 

redundancy at best. However, the meta-mesh topology in Figure ‎5-4 (b) has 

3d  , giving a lower bound on redundancy of 50%. In practical, the bypass chain 

could be implemented by running separate fibres between the chain’s anchor 

nodes or it could be routed using glass-throughs at chain’s nodes [37]. This will 

lead to a reduction of the number of ports at every node in the chain. 

 

Figure ‎5-4. (a) A sparse network topology, and (b) its corresponding meta-

mesh topology 

5.1  Topology Optimization 

The prior work on meta-mesh network design has assumed a known network 

topology, however, there are many cases where the topology itself may not be 

known (and various techniques for dealing with those situations) [73], [74]. The 

goal of the present chapter will be to extend the meta-mesh concept to networks 

with indeterminate topology, either via incremental topology design or green-

fields design where no previous topology exists. As in the prior approaches in the 

(a) (b)
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literature, we will assume a large set of eligible spans, and select from amongst 

them for an optimal design. 

5.2  Meta-Mesh ILP Models 

The current meta-mesh network design models use an integer linear 

programming (ILP) model, [53], [37]. However, that ILP model follows an arc-

path approach like that in [75], where the ILP model chooses amongst a set of 

eligible working and restoration routes and places capacity appropriately to 

reduce costs. As we mentioned in chapter 2, we assume there is a wavelength 

converter in every node, and the wavelength continuity constraint can be relaxed 

in all ILP models used in this thesis. 

5.2.1 Meta-Mesh Arc-path ILP Model 

This model is similar to the model used for conventional span restoration design 

[37]. The main difference, in this model, that an extra bypass span is associated 

with every chain and a single failure of any span within a chain will lead to a 

failure of its associated logical span between the anchor nodes of that chain. In 

this ILP model, we will use the following notations: 

N is the set of all nodes in the network, indexed by n or m. 

S is the set of all spans in the network, typically indexed by i, b, 

or j. This includes eligible “optional” spans as well as existing 

spans. 

D is the set of all demands in the network,  indexed by r. 

dr is the number of demand units of demand r. 

Pi is the set of all distinct potential routes available to restore the 

flow for failure of span i, and is typically indexed by p. 

cj The incremental cost of adding one unit of capacity on span j. 

wj An integer decision variable for the total number of working 
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 capacity units assigned to span j. (typically shortest path 

routing). 

, 0r qg   is the amount of working flow assigned to working route q used 

for demand r. 

 , 0,1p

i j   is a parameter that encodes restoration routes. If , 1p

i j  , 

restoration route p used for restoration of span i crosses span j. 

If , 0p

i j   , restoration route p used for restoration of span i 

does not cross span j. 

0js   
is the amount of spare capacity that is placed on span j. 

0p

if   is the amount of restoration flow assigned to restoration route p, 

in the case of the failure of span i. 

r
Q   

is the set of all distinct eligible working routes capable of 

routing lightpaths for demand r, typically indexed by q. 

,r q

j   
is a binary parameter that defines the relationship between 

working routes and the network spans for each demand. It 

equals 1 if working route q used for demand r passes through a 

span j, otherwise it equals 0. 

dS S  
is the set of all remaining spans in the network (referred to as 

direct spans in [70]). 

bS S  
is the set of all logical bypass spans in the network. From the 

point of view of the ILP model, these are real spans, but from a 

practical perspective, this is simply a mean of permitting 

express working lightpaths to fully transit a chain. 

cS S  
is the set of all chain spans in the network (i.e., those spans 

with at least one degree-2 end node). 

i Bk S  is the relation between individual spans of the complete 

network and an associated logical bypass k. For example, if a 
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chain consists of spans S8, S9, and S15 and has a bypass span 

B4, then 8 9 15 4S S Sk k k B   . 

 

The formulation itself is expressed as follows: 

Minimize:  

 
 j j j

j S

c s w
 

 
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 

  
(5.6)

 

The objective function in equation (5.1) seeks to minimize the total working and 

spare capacity cost of the network subject to following technical constraints. 

Constraint (5.2) guarantees that the overall working units deployed on all eligible 

working routes for demand relation r is sufficient to completely route it. In the 

equation (5.3) it ensures that the total working flow assigned to all eligible 

working routes for demand relation r is sufficient to fully route it. The constraints 

in equation (5.4) ensure that the overall restoration flow assigned to all potential 

restoration routes for failure of span i is sufficient to completely recover all of the 

working capacity on the failed span. Equation (5.5) deploys enough spare 

capacity on each surviving span j to accommodate the total restoration flow 

assigned to all restoration flows crossing it for restoration of any failed span i.  
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Equation (5.6) ensures that there is sufficient spare capacity on any span j to 

support all the restoration flows routed over it for the simultaneous failure of any 

chain span i as well as its associated bypass span ki.  

This model is not suitable for a topology-optimization problem, because the 

enumeration of possible routes requires a definite topology on which they can be 

deployed. While this model can technically be formulated, any reasonably large 

set of eligible spans will make enumeration of potential routes and solution of the 

subsequent problem intractable. Therefore, we have to remodel the meta-mesh 

network design problem as a node-arc (i.e., transshipment) problem, same as the 

ILP in [74] for a conventional span restoration. 

5.2.2 New Meta-Mesh Node-Arc ILP Model 

This ILP model can also be used to produce a strictly optimal solution to the 

original meta-mesh network design problem; the existing arc-path model will 

generally provide a sub-optimal solution since, in practice, an arc-path ILP model 

is difficult to solve with a complete eligible route set [76]. 

In this new model, we use the following notations, in addition to the notations 

used in the previous ILP model: 

Or and Tr are the origin and target nodes of demand r. 

,
0r

j n
w 

 
A decision variable for the number of working capacity units 

assigned for demand r on span j and flow into node n. 

,
0r

n j
w 

 
A decision variable for the number of working capacity units 

assigned for demand r on span j and flow out of node n. 

,
0j

i n
s   is a decision variable representing the number of spare capacity 

units on span i and flow into node n. to restore span j. 

b

i  is a parameter that defines the relation between chain spans and 

bypass spans. 1b

i   if a chain span i is associated with a bypass 
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span b, 0b

i   if not. 

The ILP model will allow working lightpaths to be routed either through chains or 

over their associated logical bypass spans. For ordinary (i.e., direct) spans, which 

are neither bypass spans nor chain spans, restoration will be carried out between 

the end-nodes of the failed span as normal for span restoration. However, for 

failure of a chain span, restoration will be carried out by two mechanisms. First, 

any working capacity arising from working lightpaths routed on the chain span 

itself will be restored between the end-nodes of the failed chain span, as normal 

for span restoration. And in addition, any working capacity arising from working 

lightpaths routed on the chain’s associated logical bypass span will be restored 

between the end-nodes of the bypass span (i.e., between the anchor nodes of the 

chain). 

The ILP formulation is constructed as follows: 

Minimize: 

 j j j
j S

s wc
 
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The objective function in (5.7) seeks to minimize the total cost of the network 

subject to technical constraints. The constraints in equation (5.8) ensure that, for 

any demand, the number of working capacity units flowing out of the demand’s 

origin node must equal the number of demand units for this demand. The 

constraints in (5.9) require that all flows into a demand’s origin equal zero for this 

demand. Equations (5.10) and (5.11) are the equivalent constraints for the target 

node of a demand. The constraints in (5.12) represent the conservation of flow 

requirement, where the working traffic flows into and out of the transshipment 

nodes for a demand are equal, while constraints (5.13) and (5.14) ensure 

conservation of flow for all spans (i.e., any traffic flow into a span for a particular 

demand equals the flow out of that span for that demand). Constraints (5.15) 

guarantee that the number of working capacity units deployed on any span will be 

sufficient for accommodating all of the traffic demands passing it. 
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The next six constraint equations (5.16)-(5.23) are the equivalent constraints for 

span restoration and spare capacity allocation, except that, the working capacity 

on each span is treated in the same way as a demand treated in equations (5.8)-

(5.15). In addition, constraint (5.24) ensures that restoration flow over any bypass 

span for one of its associated chain spans is zero. In other words, any chain span 

will not be restored over its associated bypass span. Equation (5.25) ensures that 

any bypass span is not restored over its chain spans. Finally, constraints (5.26) 

ensure that the number of spare units on span i are sufficient to support the 

restoration flows of chain span j and its associated bypass span b simultaneously. 

5.3  Meta-Mesh Topology Optimization ILP Model 

Although the ILP formulation in the preceding section is simply a new 

formulation for meta-mesh survivable network design, it does represent an easier 

approach for obtaining a strictly optimal solution, while the prior ILP model from 

the literature generally doesn’t. But that is not the main reason for that new ILP. 

As described above, this new node-arc ILP model will permit us to add topology 

optimization to the problem, which was not easily done with the existing ILP 

model. We now introduce some new notation and add a number of new 

constraints so that we can perform topology optimization. More specifically, this 

new formulation will allow for incremental topology optimization, as we will 

designate existing and new (eligible) spans for the ILP model to select from. 

In this model, we use the following new notation: 

eS S  is the set of all new eligible spans that can be added to the 

network as needed. 

hb is the establishment cost for eligible span b. 

L is the set of all degree-2 nodes in the original network. 

 0,1n

i
   is a binary parameter defining the relationship between bypass 

spans and intermediate nodes within its associated chain. 1n

i   

if bypass span i bypasses a chain that includes node n, 0n

i   
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otherwise. 

 0,1i   is a binary decision variable, where 1i   if eligible span i is 

selected for use, 0i   otherwise. 

 0,1n   is a binary decision variable, where 1n   if no eligible spans 

connect to node n, 0n   otherwise. 

Note that Sc and Sd remain as defined before, without including any new eligible 

spans. Sb, on the other hand, now represents the set of all possible bypass spans 

that already exist or can exist in the network. Consider what happens to a chain if 

there are some eligible spans whose end nodes are on one of the intermediate 

nodes within the chain, as shown in Figure ‎5-5. That chain will no longer exist, 

and rather, would be partitioned into up to two new chains, with that intermediate 

node now acting as an anchor node to the new chain(s). In order to properly 

implement meta-mesh restoration in such a network with a flexible topology, we 

must enumerate all possible chains that can arise depending on what combination 

of eligible spans are selected for use in the final design. 

 

Figure ‎5-5. (a) Original chain and associated bypass span in existing 

network, (b) new shorter chain when an eligible span incident on N3 is 

Node 2 Node 3 Node 4Node 1

Node 2 Node 3 Node 4Node 1

Node 2 Node 3 Node 4Node 1

Associated 

bypass spans

Selected 

eligible spans

(a)

(b)

(c)
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selected, (c) elimination of chain altogether when eligible spans incident on 

N2 and N3, respectively, are selected 

The meta-mesh incremental topology optimization ILP model includes all 

equations from the ILP formulation introduced above, except for equation (5.23), 

which is removed. In addition, the new objective function in (5.27) replaces the 

one in (5.7), and we add the constraints in (5.28)-(5.32). 

Minimize:  
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The objective (5.27) has been modified from (5.7) to include the fixed span 

establishment costs for all those eligible spans those were selected for use in the 

final design. Constraints (5.28) and (5.29) ensure that, for any intermediate node, 

n, if any eligible span incident on n has been selected, all the bypass spans passing 

over this node will not be used. Note that M is simply some arbitrarily large 

number, at least larger than the left hand side of the equation could possibly get. 

Constraint (5.30) guarantees that, for any intermediate node n, the bypass spans 

connected to it (i.e., those for which n will act as an anchor node) could only be 

used if one of the eligible spans connected to n has been selected for use in the 

final solution, and furthermore, it limits the number of such bypasses to two (only 

up to two can exist in the case where a selected eligible span splits the original 

chain into two). Equation (5.31) guarantees that, for any direct span or eligible 

span, the number of the spare capacity installed on spans along its restoration 
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route will satisfy its working capacity. Equation (5.32) ensures that, for any 

eligible span or bypass span i, the corresponding binary variable i
  is set to 1 if 

this span is used in the design. As in (5.29), M is an arbitrarily large number that 

is at least larger than the left hand side of the equation could possibly get.  

5.4  Experimental Study 

We carried out our experiments on the 15-node and 35-node network families 

from [37], because these two families show clearly the effect of using meta-mesh. 

Each subsequent network within a family is identical to the previous one except 

that a single span has been added. This gives us a range of related networks with 

the same underlying nodal arrangements and allows us to better study the effects 

of network connectivity on the performance of our ILP models [77]. The 15-node 

networks used herein ranged from 16 spans to 30 spans, while the 35-node 

networks ranged in size from 37 to 70 spans. In both network families, each node 

pair exchanges random amount of demand from 1 to 10 (using a simple uniform 

random distribution), and all members of a network family use the same demand 

matrix. Benchmark network designs solved using the arc-path ILP formulation in 

[70] were provided with at least 5 working routes and 10 restoration routes using 

the same procedure in that prior work. In all cases, both of the fixed and 

incremental working and spare capacity costs for each span are proportional to the 

length of the span. The fixed cost comprises rights-of-way, excavation, duct 

installation, equipment housing for amplification, while incremental capacity 

costs includes all per-channel costs such as requirements for adding additional 

fibres. Furthermore, each hb value is equivalent to cost of placing 50 units of 

capacity on the span. 

The ILP models formulated have been modeled in the AMPL modeling language 

and solved using CPLEX 11.0 on a Quad core Xeon CPU running 64 bit 

Windows Server 2003. All solutions were run with the default mipgap of 0.0001, 

meaning they are guaranteed to be within 0.01% of optimal. 
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5.5  Results and Discussion 

The first set of results in Figure ‎5-6 and Figure ‎5-7 compares the capacity costs of 

the 15-node and 35-node network families, respectively, designed using the 

benchmark arc-path approach in [70] with those of the new node-arc approach 

developed above (without topology optimization). In each figure, a data point 

represents the total (working and spare) capacity cost of an optimally designed 

meta-mesh network of the indicated size and connectivity ( d ), designed using the 

indicated ILP formulation. Also note that the figures only show results for 

networks up to 3.2d   (i.e., 24 spans) in the 15-node family, and 3.4d   (i.e., 

59 spans) in the 35-node family. This is because all of the more highly connected 

members of those families had no chains in which meta-mesh can be effective. In 

such networks, the meta-mesh restoration mechanism defaults to conventional 

span restoration [70]. In both networks, capacity costs are normalized to that of 

the lowest-cost network solved. In the 15-node family, that corresponds to the 

3.1d   member, and in the 15-node family, it corresponds to the 3.4d   

member. 

As expected, solutions obtained from the node-arc ILP formulation are at worst 

equivalent to the arc-path solutions, but in most cases, significantly lower. This is 

because the arc-path approach is limited in its capability to find efficient solutions 

because of an incomplete set of eligible routes to select from. In general, the 

complexity (and therefore, the runtime) of a node-arc approach is higher than that 

for an arc-path approach [11], but the latter will increase significantly with larger 

eligible route sets [76]. 

In the 15-node networks, the greatest reduction in capacity is observed in the 

3.2d   network (6.5% lower than the arc-path approach), while in the 35-node 

networks, the greatest reduction (12%) at 3.1d  . In both network families, the 

benefits of the node-arc approach are less in sparser networks than in more richly 

connected networks. This is because when we enumerated eligible route sets for 
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the arc-path approach, those eligible route sets in sparser networks are more likely 

to be a near-complete set of all possible eligible routes. 
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Figure ‎5-6. Normalized capacity costs of node-arc and arc-path meta-mesh 

ILP formulations in the 15-node network family 

 

Figure ‎5-7. Normalized capacity costs of node-arc and arc-path meta-mesh 

ILP formulations in the 35-node network family 

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

2.27 2.40 2.53 2.67 2.80 2.93 3.07 3.20

N
o

rm
a

li
ze

d
 T

o
ta

l 
C

a
p

a
ci

ty
 C

o
st

Average Nodal Degree

Arc-Path Model Node-Arc Model

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.11 2.23 2.34 2.46 2.57 2.69 2.80 2.91 3.03 3.14 3.26 3.37

N
o

rm
a

li
ze

d
 T

o
ta

l 
C

a
p

a
ci

ty
 C

o
st

Average Nodal Degree

Node-Arc model Path-Arc model



97 

 

In Figure ‎5-8, we compare the costs of topology optimization in a meta-mesh 

network with topology optimization for span restoration. Each data point 

represents the total cost of the most sparse member of the 15-node network family 

solved for the indicated survivability mechanism (either meta-mesh or span 

restoration) when provided with the indicated number of extra eligible spans. In 

other words, the x-axis represents the size, eS , of the eligible span set, eS , 

provided to the solver. In all cases, the eligible span set corresponds to the set of 

spans that would have been added in sequence as we constructed the network 

family. 

We can see that for both survivability mechanisms, the total cost (which is made 

up of the working and spare capacity costs plus the span establishment costs, hb, 

of the eligible spans used in the resulting solution) decreases as the number of 

eligible spans increases. This is expected, since the more eligible spans available 

to select from, the more likely the solver will be able to configure an efficient 

network design. What is surprising, perhaps, is that the decreasing cost appears to 

follow a roughly linear relationship with eS . This will be explored further in 

future work as we continue to study the effects of topology optimization in meta-

mesh networks. Note that we only provide solutions for the 15-node network 

herein. 
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Figure ‎5-8. Meta-mesh and span restoration incremental topology 

optimization costs in the 15-node network family 
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a mitigating effect on the observation above (more eligible spans results in more 

selected spans), though we will endeavor to select a range of hb values that better 

represent a wide range of real networks. 

Another observation we can make from the data in Figure ‎5-9 is that the solver 

selects fewer additional spans when the network utilizes meta-mesh restoration 

than span restoration. This is also expected since the meta-mesh approach allows 

for better capacity efficiency in more sparse networks than would be achievable 

with span restoration in the same network.  From the same figure, another 

observation for span restoration curve. When the number of eligible spans is nine, 

the solver selects less number of spans than in the previous two cases. The reason 

is that the solver found adding this last span can replace two of the previously 

chosen eligible spans while reducing the cost of the network. 
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Figure ‎5-9. Network connectivity of meta-mesh and span restoration 

incremental topology optimization versus eligible span set in the 15-node 

network family 

Table ‎5-1 shows the runtime of a sample of five of our test cases. In this table, the 

second column identifies the network that the test cases correspond to, the third 

column indicates the number of eligible spans considered, and the fourth column 

shows how many of those eligible spans were actually selected in the optimally-

designed solutions. Finally, the runtime for each test is shown in the fifth column. 

As observed, that the runtime increases in an exponential fashion with increasing 

complexity of the problem, but even the runtime for the largest test case was still 

easily solved, taking just over two days to solve to optimality. 
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Table ‎5-1. Runtime data for our a sample of five test case problems 

Test Case 

Sample 

Existing 

Network 

# Eligible 

Spans 

# Eligible Spans 

Selected 

Runtime 

(hours) 

1 
15 nodes 

16 spans 
6 4 0.005 

2 
15 nodes 

16 spans 
14 7 1.4 

3 
35 nodes 

37 spans 
11 11 0.2 

4 
35 nodes 

37 spans 
15 15 4.2 

5 
35 nodes 

37 spans 
19 17 50.7 

 

Finally, for the interested reader, we take a closer look at the actual graph 

topologies of the two sample test cases in Figure ‎5-10 and Figure ‎5-11. Within 

each figure, the topology (a) represents the original existing network (i.e., it does 

not consider any of the eligible spans. Topology (b) illustrates the base topology 

plus the set of all eligible spans provided to the solver. The topology of the 

optimally designed network is shown in topology (c). More specifically, 

Figure ‎5-10 shows the noted topologies for the 15-node test case network and a 

maximal set of 14 eligible spans, while Figure ‎5-11 shows the noted topologies 

for the 35-node test case network and a maximal set of 19 eligible spans. 
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(a)

(b)
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Figure ‎5-10.  a) Existing 15-node 16-span network, b) the original network 

plus the maximal set of 14 eligible spans, and c) the optimal topology 

(c)



104 

 

 

 

(a)

(b)



105 

 

 

Figure ‎5-11. a) Existing 35-node 37-span network, b) the original network 

plus a maximal set of 19 eligible spans, and c) the optimal topology 

5.6  Conclusion  

We have developed a new node-arc ILP formulation for optimal meta-mesh 

network design and demonstrated that it can be used to provide very capacity-

efficient network designs in reasonable amount of time. We also developed an 

extension to that ILP formulation that allows for topology optimization. Results 

show that this design approach can be used to optimally select fewer spans than 

needed in span restoration, and can achieve lower overall network design costs. 

We can note here that, while the complexity of the model presented herein is such 

that we can solve reasonably-sized networks of the type seen in the optical core, 

the model is currently intractable for extremely large networks of hundreds or 

thousands of nodes. Future work will investigate heuristic approaches for solving 

larger instances of the problem.  

(c)
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Chapter 6.  Incremental Network Topology 

Optimization Using p-Cycle Technique 

This chapter represents the following paper: “ILP Model and Relaxation-Based 

Decomposition Approach for Incremental Topology Optimization in p-Cycle Networks,” 

published in Journal of Computer Networks and Communication, Vol. 2012, pp. 1-10, 2012. 

6.1  Introduction and Background 

High-availability networks have become integral to our everyday lives, used for 

banking, financial transactions, voice and data communications, entertainment, 

etc. While much effort has been made to make them as reliable as possible, 

failures, and more critically, service outages still occur with alarming frequency. 

The vast majority of such failures are a result of fibre cuts, with most of those 

failures due to cable dig-ups and similar construction accidents [11]. 

As the frequency of failures has increased, researchers have developed many 

approaches for ensuring survivability of the network even in the face of cable cuts 

or other equipment failures, including a number of mechanisms that allow the 

network to actively respond to a failure by rerouting affected traffic onto one or 

more backup routes. Survivability mechanisms are often thought of as being 

either restoration or protection [37]. Although the differences between the two 

are often blurred, and some mechanisms can be considered to be either type, the 

general idea is that restoration techniques are those in which a backup route is 

formed post-failure, while protection techniques are those in which a backup route 

is formed pre-failure. Each individual survivability mechanism has its own 

advantages and disadvantages, and requires differing amounts of spare capacity 

distributed throughout the network to accommodate backup routes. 

In most of the work in the literature, the underlying network topology is known in 

advance, but there have been several approaches developed that include at least 

some aspects of an unknown or variable topology in the network design process 

[78], [79], [74], [80]. In [78], and [81], the design methods for tree topologies 

optimization in communication and data networks did not consider restoration or 
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reliability. In [82], and [79], bi-connected network topologies were considered as 

a transition from tree topologies. In [74], and [80], survivability itself was 

included in the design approach. In these approaches, fixed costs are typically 

associated with establishment of a span as well as with placement of working and 

spare capacities on those spans. Fixed establishment costs represent rights-of-way 

and lease acquisitions, excavation, duct installation, amplifiers, etc., that are not 

generally dependent on the capacity or bandwidth of the spans.  

Relatively little effort has been made on the investigation of the incremental 

topology optimization problem. Therefore, the goal of the present work is to 

develop a JCA p-cycle network topology optimization ILP formulation that will 

minimize the overall design cost (capacity and fixed span establishment costs) of 

a p-cycle network along with its underlying topology such that all single span 

failures are restorable. Due to the significant computational complexity of this 

problem (as will be discussed later), we will consider only incremental topology 

design, where a pre-existing initial topology already exists but which is amended 

through span additions. Even this less complex problem becomes intractable for 

large networks, and so we further develop a problem-specific relaxation-based 

decomposition technique to solve this large scale ILP. 

6.2  p-Cycle ILP Model 

In this section, we present our ILP formulation for incremental topology 

optimization for p-cycle network design problem. Prior topology optimization ILP 

models generally make use of the node-arc approach, as enumeration of eligible 

restoration routes becomes a challenging combinatorial problem when the 

underlying topology is not known; a separate set of eligible routes is needed for 

every combination of selected eligible spans. In chapter 4, we introduced the p-

cycle ILP model, both of working routing and p-cycle selection placement done 

via arc-path approach (i.e., selection from an enumerated set of eligible p-cycles). 

While we will utilize a node-arc approach for our new ILP model with respect to 

working routing, our overall approach will be a hybrid, with the p-cycle selection 

placement still done via an arc-path approach. There has been a few notable 
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works in recent literature that develop methods for p-cycle network design 

without enumeration of eligible cycles [83], [84], but these approaches have 

proven challenging to incorporate into our topology-optimization ILP. In order to 

formulate our ILP model, we first define the following notation:  

N Set of all nodes in the network topology, indexed by n or m. 

S Set of all spans in the network topology, typically indexed by i or 

j. This includes eligible spans as well as existing spans. 

Sn  Set of all spans incident on node n, indexed by i or j. 

Q Set of all eligible spans that can be added to the network, indexed 

by i or j. 

D Set of all demands in the network, indexed by r. 

dr
 The parameter that represents the number of demand units for 

demand r. 

r
O N  The origin node of demand r. 

r
T N  The target node of demand r. 

j
c  The incremental cost of adding one unit of capacity on span j. 

i
f  The fixed establishment cost for eligible span i. 

 ,
0,1,2

j p
x   A parameter that enumerates eligible p-cycles by representing the 

relationship between span j and p-cycle p, where , 2j px  if it is a 

straddling span, , 1j px  if it is an on-cycle span, and 0 otherwise. 

,
0r

n j
w 

 
A decision variable for the number of working capacity units 

assigned for demand r on span j and flow out from node n. 

,
0r

j n
w 

 
A decision variable for the number of working capacity units 

assigned for demand r on span j and flow into node n. 

0
j

w   An integer decision variable for the total number of working 

capacity units assigned to span j. 

0
j

s   An integer decision variable for the number of spare units 

deployed on span j.  
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 0,1
i
   A binary decision variable that equals 1 if the eligible span i will 

be used in the design, and 0 otherwise. 

0
p

n   An integer decision variable that represents the number of copies 

of p-cycle p that will be used in this design. 

M  A large number (in our case, the summation of all demands plus 

one). 

Note that strictly speaking, the 
,

0r

n j
w   and 

,
0r

j n
w   decisions variables are 

integer variables. However, as was shown in [85], as long as the capacity 

variables themselves are integer, integrality can be relaxed on the underlying flow 

variables. We then define the problem as follows: 

Minimize: 

( )                                    j j j i i
j S i Q

s wc f 
  

  
 

(6.1)
 

Subject to: 

,                                , |
n

r

n j r r
j S

w d r D n N n O
 
      

 
(6.2)
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n

r

j n r
j S

w r D n N n O
 
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, ,                                       , , |r r
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   S
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w x n j
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                              i i i Qs w M i    
 

(6.12)
 

The objective function in equation (6.1) seeks to minimize the total cost of the 

network, including the variable costs incurred for placing working and spare 

capacities on all spans, and the fixed costs incurred by adding any additional 

spans to the existing topology (i.e., selecting one or more of the eligible spans). 

Equations (6.2) to (6.6) are the node-arc constraints that determine working 

routing and working capacity placement, similar to the approach in [74]. The 

constraints in equation (6.2) ensure that, for any demand, the total number of 

working capacity units flowing out from the origin node must equal to the number 

of demand units for this demand, while constraints (6.3) ensures that all network 

flows into the origin node for a particular demand equal zero. Equations (6.4) and 

(6.5) are the related target node constraints. The constraints in (6.6) ensure the 

conservation of flow requirement for all transshipment nodes (i.e., not the origin 

or target nodes) for each demand, while constraints (6.7) and (6.8) ensure 

conservation of flow for all spans (i.e., any traffic flow into a span for a particular 

demand equals the flow out of that span for that demand). Equation (6.9) 

guarantees that the total number of working capacity units deployed on any span 

will be sufficient to accommodate all of the working traffic routed through it. 

Equations (6.10) and (6.11) are the arc-path p-cycle placement constraints like 

those in the original p-cycle paper [41]. Constraints (6.10) ensure that for each 

failed span, the total number protection routes available from p-cycles deployed in 

the network will be sufficient for restoring the working capacity on each span; 

each copy of a p-cycle can restore one working capacity on each of its on-cycle 

spans and two units of working capacities on each of its straddling spans. 

Constraints in (6.11) place sufficient spare capacity to accommodate all deployed 

p-cycles. Finally, the constraints in (6.12) force all span selection variables to 

equal one if the associated span is assigned any working and/or spare capacity. 

6.3  Experimental Methodology 

We used a set of seven test case networks of 10 nodes, 15 nodes, 20 nodes, 25 

nodes, 30 nodes, 35 nodes, and 40 nodes. The base networks we used herein (i.e., 



111 

 

defining the existing topologies) are the most sparse members of the network 

families from [37], while their so-called master networks (i.e., those with average 

nodal degree 4.0d  ) represent the set of eligible spans for each of our 

respective networks. The set of demands for each of those networks were also 

used herein; each node pair in a network exchanges a number of lightpaths drawn 

from a uniform random distribution. While one might argue that demands in 

reality are not known in advance with any precision and are not static, this 

treatment of demands is common in the literature, as the demands used can 

represent upper limits on the expected demands. 

Eligible p-cycles were enumerated via a custom designed C++ algorithm that 

performed a depth-first search type of algorithm to enumerate at least the shortest 

10 thousand possible cycles that can be drawn in the graph to protect each single 

span failure, including eligible spans. 

We solved all instances of the problem on an 8 processor ACPI multiprocessor 

X64-based PC with Intel Xeon® CPU X5460 running at 3.16GHz with 32 GB 

memory. The ILP models were implemented in AMPL [86] and solved with the 

CPLEX 11.2 solver [87]. We used a CPLEX mipgap setting of 0.001, which 

means all test cases solved to full termination are provably within 0.1% of 

optimality. 

6.4  Preliminary Result Analysis 

Figure ‎6-1 through Figure ‎6-7 show the relationship between total network design 

cost and the number of eligible restoration routes with various establishment cost 

multipliers. Each square, diamond and triangular data point represents the 

normalized total cost (working and spare capacity plus fixed span establishment 

costs) of the network indicated with the specified number of eligible spans and 

with the specified span establishment cost multiplier. The cost multiplier is the 

ratio of the spans’ fixed establishment cost to its per-unit capacity cost (i.e., it 

equals 
i i

f c ); the same cost multiplier is applied uniformly on all spans in the 

network. In our case, we used cost multipliers of 10, 20, and 50, denoted in the 



112 

 

charts as low, medium, and high, respectively. We remind the reader that the 

fixed establishment costs represent rights-of-way costs associated with the span’s 

fibre facility route, installation of the conduit and fibre cables, and all other one-

time costs that might be incurred to establish a new span. The network design cost 

curves for the medium and high establishment cost factors are not shown for the 

three larger networks, as problem complexity becomes exceedingly problematic 

for these test cases (see further discussion below). 

As we expect, the ILP model is better able to perform working and restoration 

routing and allocate the associated working capacity and p-cycles as we introduce 

more eligible spans, so that overall capacity costs are reduced as the eligible span 

set gets larger. The rate of the cost reductions varies from network to network, but 

the trend spears to be that cost reductions slow as the number of eligible spans 

becomes large. The interpretation here is that as we provide the network with a 

greater and greater number of eligible spans to select from, it becomes more 

difficult for the network to make use of these eligible spans. 

We can also note that the establishment cost factor doesn’t appear to have a 

significant bearing on the behaviour of the relationship between network costs 

and the number of eligible spans. For each network, the differences between the 

three curves themselves (corresponding to the low, medium, and high 

establishment cost factors) is primarily due to the fact that the sum of the selected 

spans’ fixed costs will be larger with a higher establishment cost factor (i.e., the 

second summation in the objective function), irrespective of the actual number of 

selected spans. In addition, as will be discussed later, the differences between the 

three curves is partially a function of the differences in the spans selected the by 

the solver for the various cost factors. However, since the higher establishment 

cost factors generally result in selection of fewer eligible spans (see the discussion 

below), this will have a negative effect on the design costs at higher establishment 

costs. The total network design costs tend to become closer (i.e., the differences 

between them become less, relatively speaking) as the networks become larger, 

though this is primarily due to the fact that the capacity costs represent a 
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proportionally greater share of the overall network cost as the networks become 

larger. In hindsight, this suggests that perhaps our establishment cost multipliers 

is likely too small to adequately demonstrate the effect that is seen in smaller 

networks. This should not be interpreted as suggesting that the objective function 

itself is flawed, rather, there will be a degree of uncertainty in establishment cost 

factors that will need to be selected based on observed (i.e., actual) costs and 

perhaps also artificially through a desire to drive rich or sparse topologies 

(through low cost multipliers and high cost multipliers, respectively). 

In any case, the ILP model effectively permits a network designer to select an 

optimal set of span additions (i.e., incremental topology optimization) on which to 

design a p-cycle network. Strictly speaking, this problem is NP-hard [88], [89], 

but like many NP-hard problems, specific instances are solvable in reasonable 

times. That is the case for small instances of this problem. However, we can also 

observe in Figure ‎6-1 through Figure ‎6-7 that the solution runtimes become 

prohibitively high for large test case network instances, and generally also 

increase with the number of eligible spans provided to a network. In those figures, 

the curves with cross (×) data points (read against the right hand side y axes) 

show the runtime required by the solver when running the corresponding low 

establishment cost factor results to optimality. Each data point represents the 

actual processor time used in total amongst all 8 processors (as recorded by 

CPLEX) to solve the ILP model for the indicated test network with the indicated 

number of eligible spans using the low establishment cost factor (though in most 

cases, only a single processor was utlilized). 
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Figure ‎6-1. Total network costs and CPU time versus number of eligible 

spans for the 10-node network 
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Figure ‎6-2. Total network costs and CPU time versus number of eligible 

spans for the 15-node network 

 

 

Figure ‎6-3. Total network costs and CPU time versus number of eligible 

spans for the 20-node network 
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Figure ‎6-4. Total network costs and CPU time versus number of eligible 

spans for the 25-node network 

 

 

Figure ‎6-5. Total network costs and CPU time versus number of eligible 

spans for the 30-node network 
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Figure ‎6-6. Total network costs and CPU time versus number of eligible 

spans for the 35-node network 

 

 

Figure ‎6-7. Total network costs and CPU time versus number of eligible 

spans for the 40-node network 

As one can observe, runtimes are quite short (from fractions of a second to a few 

minutes) for the smaller test case networks, but become exceedingly high for 

larger test case networks, reaching nearly 200 thousand seconds (more than two 

0

50

100

150

200

1

1.3

1.6

1.9

2.2

2.5

2.8

1 5 9 13 17 21 25 29 33

C
P

U
 T

im
e
 
(0

0
0

'S
e
c
o

n
d

s)

N
o
rm

a
liz

e
d
 
to

ta
l 

c
o
st

Total number of eligible span

Low Establishment Cost CPU Time (Low Establishment Cost)

0

20

40

60

80

100

120

140

160

180

200

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 4 7 10 13 16 19 22 25 28 31 34 37

C
P

U
 T

im
e
 
(0

0
0

'S
e
c
o
n
d
s)

N
o
rm

a
li
z
e
d
 

to
ta

l 
c
o
st

Total number of eligible span

Low Establishment Cost CPU Time (Low Establishment Cost)



118 

 

days) for the 40-node network with 78 eligible spans. While there is a general 

increasing trend in runtimes as we provide a greater number of eligible spans, we 

can notice that they often exhibit an irregular nature. Although it would be 

interesting if some useful insight could be gained from this observation, the cause 

is simply due to peculiarities in the network topologies and the nature of the 

solution approach. For instance, when the 15-node test case network is solved 

with 5 eligible spans (Figure  6-2), inclusion of that 5th eligible span results in 

enumeration of a specific set of eligible p-cycles that happens to be more 

computationally complex to solve than the test case with only 4 eligible spans or 

with 6 eligible spans. It might also be interesting to note that the number of 

branch-and-bound nodes produced by CPLEX’s internal algorithm rises quite 

substantially in test cases corresponding to those instances with irregularly high 

runtimes, suggesting that simple peculiarities in the branch-and-bound tree 

contribute to these high runtimes. We suspect that the highly irregular nature of 

CPU times for those test-case networks were due to a complex interaction of the 

large number of spans in the network and topological effects (addition of a single 

span can often provide an obviously beneficial routing option that the solver takes 

advantage of). Such instances of the problem can create much tighter LP 

relaxations than other instances, and/or algorithms used by CPLEX’s internal 

branch-and-bound procedures might be better suited to some of those specific 

cases. As a result, these instances see fewer branch-and-bound nodes when 

solving the ILP problem. It is these artifacts (i.e., the irregular nature of the 

runtime increases) in smaller to mid-size test case networks and more importantly, 

the extremely high runtimes in the large test case networks that motivates us to 

develop an alternative solution method for the p-cycle network topology 

optimization problem, as discussed later. 
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Figure ‎6-8. Variation of the total number of selected spans for 10node20span 

network 

 

Figure ‎6-9. Variation of the total number of selected spans for 15node30span 

network 
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Figure ‎6-10. Variation of the total number of selected spans for 

20node40span network 

 

Figure ‎6-11. Variation of the total number of selected spans for 

25node50span network 
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we provide only a few eligible spans), regardless of span establishment factor, but 

a small degree of variation arises when we provide a greater number of eligible 

spans. While this may initially seem indicative of some underlying phenomenon, 

the truth of the matter is that we happened to have selected span establishment 

factors that produce a lopsided objective function that is dominated by the span 

capacity costs in the larger networks. In hind sight, a smarter approach would 

have been to set higher stand establishment factors for these larger networks, so 

that the objective function is more balanced, with respect to the span capacity 

costs and the fixed establishment costs. With the span establishment factors we’ve 

used, the solver sees little disincentive to select quite a large number of the 

eligible spans (i.e., there is only a small cost to add extra spans, relative to the 

reductions in capacity that result). 

6.5  Relaxation-Based Decomposition Technique 

In order to be better able to solve the p-cycle network topology optimization 

problem in large test case networks, we now propose and develop a problem-

specific relaxation-based decomposition technique for the ILP developed above. 

From the investigation of a hard ILP instance, it is sometimes observed that the 

computational complexity arises from a set of constraints or integrality properties 

of specific sets of variables. For the first scenario, we can dualize these hard 

constraints and create an easy sub-problem [90], [85], and the solution of this sub-

problem can be used to solve the main problem. Our proposed technique is 

different from this approach in a sense that we decompose the original problem 

into two easy sub-problems by relaxing the integrality property of some variables 

rather than relaxing the set of constraints. While most advanced solvers, including 

CPLEX, utilize some form of relaxation-based approaches to speed up solution of 

ILP problems, such general approaches often have difficulty in properly selecting 

the best specific relaxations and sub-problem decompositions. With some insights 

into the problem at hand, insights that a general approach might not have, we can 

decompose the ILP problem into two sub-problems. First, we use a partially 

relaxed version of the original, which is more easily solved. We can then use the 
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solution from that problem to set fixed values for a subset of integer variables and 

resolve the original with that subset of integer variables acting as parameters. 

While the solution is not guaranteed to be optimal, proper selection of the integer 

variables to relax in the first sub-problem and of the integer variables for which 

we can fix their values in the second sub-problem can permit near-optimal 

solutions. As with most near-optimal algorithms, quality of the solution (in terms 

of both the objective function value and the runtime improvement) will depend on 

careful selection of those subsets of variables. 

With the particular ILP problem that we developed above, we felt that if we could 

use a partially relaxed version of the problem to first identify which specific span 

additions to select, then we could fix that topology and solve the original 

unrelaxed problem with a known topology. We therefore decompose our problem 

as follows: 

Step 1 – Relax working capacity jw , spare capacity js , and p-

cycle placement variables pn  and solve the original ILP problem. In 

other words, all of the integrality requirements on those decision 

variables are removed and the ILP model solved. 

Step 2 – Fix all span establishment variables  i  to the values 

obtained in Step 1. In other words, take the resulting values for all span 

establishment variables as solved in Step 1, and convert those variables 

to parameters with the same values. 

Step 3 – Solve the original ILP, resetting integrality requirements in 

all relevant variables (but where all  i  variables are fixed to the values 

in Step 2). 

The main rationale for the above decomposition approach is that the span 

establishment variables are binary, and so fractional values would have very little 

meaning; if 0
i
   then the span is not selected, and if 1

i
   then the span is 

selected, but 0.5
i
  , for instance, is difficult to interpret in a manner that has 

any real physical meaning. The three sets of variables noted in step 1, however, 

can be permitted to take on fractional values and the solution can still impart some 

physical meaning. For instance, 7.8
j

w   would mean that 7.8 units of working 
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capacity are placed on span j, which might not strictly be feasible (one can’t place 

a fractional unit of capacity) but is still conceptually understandable. In addition, 

the span establishment variables will still be driven to  or 1
i
   whether 

the wj, sj, and np variables are integer or not. Then when we resolve the ILP model 

in step 3, with the span establishment variables fixed in step 2, the resultant ILP 

model is equivalent to the basic p-cycle network design problem. 

6.6  Results for Decomposition Method 

To test the performance of this above technique, we selected the most 

computationally complex instance of the problem for each network (though we 

skip the 10-node and 15-node networks, as their solutions are already trivial). 

More specifically, we tested the decomposition technique on the 20-node network 

with 18 eligible spans, the 25-node network with 20 eligible spans, the 30-node 

network with 26 eligible spans, the 35-node network with 24 eligible spans, and 

the 40-node network with 37 eligible spans. And as stated earlier, our ILP models 

were implemented in AMPL and solved with the CPLEX 11.2 solver. We used a 

CPLEX mipgap setting of 0.001, which means all test cases solved to full 

termination are provably within 0.1% of optimality. 

Figure ‎6-12 compares the CPU runtimes of the decomposition approach with the 

original ILP solution. The general trend is that runtime improvements are greater 

in larger test cases. As we can observe, we see only moderate runtime 

improvements for the mid-size networks (a 21% reduction in the 20-node test 

case) but significantly greater runtime improvements in the largest networks (a 

99.99% reduction in the 40-node test case). 

Of course, the tradeoff when implementing a heuristic approach is often a 

reduction in optimality of the resulting solution, so we also need to compare the 

solutions we obtain with the decomposition approach with the solutions from the 

full ILP model. As we can see from Table  6-1, the solutions obtained with the 

decomposition technique are at worst only 0.016% more costly than the full ILP, 

and in three of the five cases the decomposition approach provides a less costly 

0
i
 
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solution than the full ILP. This is counterintuitive, as the cost of the full ILP 

solution should serve as the lower bound on the cost of solutions obtained via our 

heuristic approach. The explanation is that the differences are smaller than the 

mipgap setting of 0.1%. In fact, we can note than in all cases, the difference 

between the solutions obtained from the decomposition approach and the full ILP 

are within the optimality gap setting of 0.1%, which means the two approaches 

effectively provide equivalent solutions. 

 

Figure ‎6-12. Comparison of CPU time between decomposition method and 

exact method 
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Table ‎6-1. Comparison of normalized total cost between decomposition 

method and exact method 

Networks 

Normalized total cost 

Percentage 

difference 
Exact (full ILP) 

Method 

Decomposition 

Method 

20n40-39s 1 1.000137 0.013776 

25n50-46s 1.76266 1.762942 0.01603 

30n60-57s 2.834284 2.833077 -0.0426 

35n75-70s 3.634334 3.633292 -0.02866 

40n80-78s 4.468206 4.466802 -0.03142 

 

6.7  Conclusion 

We have developed a new ILP model for incremental topology optimization in a 

p-cycle network that is capable of selecting an optimal subset of eligible spans to 

add to an existing p-cycle network. While the ILP model proves to be relatively 

easy to solve for small test case network instances, it is computationally complex 

to solve for larger networks. We then developed a relaxation-based decomposition 

heuristic that significantly reduces runtime of the ILP models in our large test 

networks, while having no statistical impact on optimality. In the most 

computationally complex instance, the ILP runtime of over 184 thousand seconds 

(more than two days) was reduced to less than 2300 seconds (less than an hour), 

while the objective function value remained within the optimality gap. In fact, the 

heuristic solution was slightly better than the full ILP model (though again, we 

note that it was not provably better since the difference was smaller than the 

optimality gap). In the future work, we will investigate using Column Generation 

technique to solve this problem instead of using relaxation-based decomposition 
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heuristic. CG could be a suitable technique for this problem because the number 

of zero-decision variables is much more than the basic variables in all of the 

experiments that we have conducted. 
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Chapter 7.  Efficient Algorithms for Node-Encircling 

p-Cycle Network Design 

Part of this chapter represents the following paper: “Algorithmic Approaches for Efficient 

Enumeration of Candidate Node-Encircling p-Cycles”, (10th INFORMS Telecommunications) 

Conference, Concordia University, Montreal, Quebec, Canada 5 – 7 May 2010. 

7.1  Introduction and Background 

Path restoration can be described as an end-to-end mesh restoration technique; 

when a span fails, the affected working route is replaced by a new restoration route 

routed fully back from the origin node to the destination node [11], [49]. In its 

most efficient variant, surviving spans of the affected working routes are released 

as spare capacity, ready to be used during the restoration process of any of the 

working paths affected by the failure. This latter operation is called stub release. 

Stub release helps path restoration achieve a greater efficiency by effectively 

reducing the spare capacity required (since surviving capacity on failed working 

paths is cannibalized as spare), but it also complicates the reversion process after 

repairing the failure. In general, the new path is not fixed or even necessarily 

known in advance. Rather, depending on the spare capacity available in the 

network, restoration routes will be formed wherever possible (though if properly 

designed, there will be sufficient spare capacities to fully restore all failed paths).  

Span restoration is a form of mesh restoration where a failed span is replaced with 

restoration paths formed between the end-nodes of the failed span. Span 

restoration can be considered a single-commodity maximum flow problem, as 

there is only one single group of paths that are to be routed [52], [11]. 

7.1  Node-Encircling p-Cycles 

Since conventional p-cycles are fundamentally a form of span restoration, they are 

capable of protecting only span failures, not node failures. The idea of node-

encircling p-cycles was introduced in the context of IP layer restoration to protect 

against router failures [57], but the concept is also applicable to optical layer 

restoration. It was also shown in [91] that simply designing a conventional p-
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cycle network for protection against span failures is often sufficient to protect a 

significant amount of node failure protection. That prior work demonstrated 15%-

25% inherent node-failure restoration arising from optimally-designed 

conventional span-protecting p-cycle networks. 

An NEPC functions by providing protection for any lightpaths transiting the 

failed node. To do so, the p-cycle must cross all nodes immediately adjacent to 

the failed node but not the node itself, as illustrated in Figure ‎7-1. In the upper 

panel, the five-node p-cycle in blue crosses all three nodes adjacent to the 

protected node in red (the adjacent nodes are shaded in gray). Any lightpaths 

transiting the protected node (i.e., passing through but not terminating at or 

originating from the node) must therefore pass through the p-cycle at two separate 

points. More specifically, this will pass the p-cycle at two surviving nodes 

immediately adjacent to the failed encircled node, so the failure will be visible to 

both of those surviving nodes.  Upon failure of the encircled node, the transiting 

lightpath can be rerouted in either direction around the p-cycle; as with straddling 

spans in a conventional p-cycle, a unit-sized copy of an NEPC can protect two 

transiting lightpaths. In the lower panel, on the other hand, the six-node p-cycle 

does not pass through all nodes adjacent to the protected node, and so some 

lightpaths transiting the encircled node will not necessarily cross the p-cycle at 

two points. 
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Figure ‎7-1. The node-encircling p-cycle concept 

While many NEPCs are simple and visibly encircle the protected node, this is not 

always the case, as illustrated in Figure ‎7-2. In the upper panel, the p-cycle is 

simple (i.e., it does not cross the same node and/or span more than once), but it 

does not visibly encircle the node in question. Nonetheless, it logically encircles 

the protected node, as all adjacent nodes are crossed. Likewise, the two NEPCs in 

the center and lower panels also logically encircle the protected node, despite the 

fact that both are non-simple cycles and one of them (the lower one) does not 

visibly encircle the node. 
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Figure ‎7-2. Three more node-encircling p-cycles 

This chapter is devoted to look at the algorithmic approaches for solving the 

NEPC network design problem. In the Integer Linear programming of p-Cycles 

and Node-encircling p-cycles network design, the first and the most time 

consuming step is to enumerate a number of eligible cycles which could be used 

in the final solution. Enumerating all cycles in the network is an impractical 

approach specifically in the large size networks because the number of generated 

cycles grows exponentially with the increase of the number of nodes and spans. 

Many algorithms have been proposed for enumerating respectively small set of 

candidate p-cycles without degrading the optimality of the final ILP solution 

significantly. However, few algorithms have been developed for NEPC design 

namely Node-encircling p-cycle Mining Algorithm (NCMA) [92] and Local-map 
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Cycles Mining Algorithm (LCMA) [93]. We will develop in this chapter another 

two algorithms for this problem which are Node-Disjoint Path Partitioning 

Algorithm (NDPP) and Level Partitioning Algorithm (LPA). However, preparing 

the cycles with high efficiency is just a first step towards finding the least cost 

combination of cycles that will protect the network under investigation. Because a 

priori efficiency is merely an expected efficiency, it may be released as an actual 

efficiency if and only if the working capacities are merely existed [94]. To release 

a complete network design, an algorithm should be used to select the least cost 

combination of cycles that will fully protect the network working capacities. A 

CIDA-like algorithmic approach, for providing fully capacitated NEPC networks, 

is developed. Then, a GA model is proposed to enhance the CIDA-Like algorithm 

by determining the best values for its factors.  

7.2  Cycle Enumeration Methods 

7.2.1 Cycle Enumeration Algorithms 

The benchmark approach, for designing an NEPC network, is via integer linear 

programming (ILP) formulation. When using an ILP model, the first (and the most 

time consuming) step is to enumerate a number of eligible cycles those are 

considered and ultimately selected by the ILP model. Enumerating all possible 

cycles in the network is not terribly complicated, as a standard depth first search 

(DFS) algorithm will suffice. For small networks, it can even be practical for the 

full enumeration, as it may only involve several thousand cycles. However, for any 

moderately sized networks and larger, it becomes intractable, as the number of 

generated cycles grows exponentially with the increase in the number of nodes and 

spans in a network. Many algorithms have been proposed for enumerating small 

subset(s) of candidate p-cycles, ideally without significantly degrading the 

optimality of the final ILP solution. Perhaps the simplest is to specify some desired 

number (say, n) of eligible cycles, and use DFS while incrementally paring down 

the maximal extent (i.e., depth) of the algorithm to match the decreasing length of 
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the n
th

 shortest enumerated cycle in each iteration. Additional more problem 

specific approaches are also discussed in the literature. 

The Straddling Link Algorithm (SLA) was proposed for enumerating a trivially 

small set of cycles equal to the number of spans in the network (i.e., one eligible p-

cycle per span) [95]. The main idea is to find a cycle for each given span such that 

the cycle passes through the nodes of the span in question without traversing it. 

Subsequently in [94], that initial primary set of p-cycles generated from SLA were 

extended by use of the SP-Add, Grow, and Expand algorithms, which were been 

developed to generate a more useful set of candidate cycles, with the intent to 

improve the ILP solution quality without significantly increasing it’s time 

complexity. In [94], the weighted DFS-based cycle search algorithm (WDFS) was 

proposed to provide an efficient solution for both sparsely and densely distributed 

working capacities by generating two groups of cycles. The first group is short 

cycles while the second group consists of larger more efficient cycles. However, 

there is other research work that focuses on p-cycle design without candidate cycle 

enumeration [96]. 

Unfortunately, such algorithms are not appropriate for use in node-encircling p-

cycles, as they do not consider the specific nature of NEPCs and the manner in 

which they protect transiting flows over failed nodes (in general, a set of cycles 

enumerated via the above methods is not guaranteed to have any NEPCs at all). 

Even the modified DFS approach mentioned above is not suitable, since DFS (at 

least in its present form) cannot consider any particular cycle characteristics (e.g., 

protection of some specified node’s transiting flow, etc.) other than length. As 

such, we cannot incrementally pare down the extend (depth) of the algorithm; in 

the general case, it will still need to exhaustively enumerate eligible cycles to 

ensure enumeration of the shortest subset of eligible NEPCs. 

There is a little work in the literature dealing with the efficient enumeration of 

good candidate node-encircling p-cycles. To our knowledge, only Node-encircling 

p-Cycle Mining Algorithm (NCMA), [92], Local-map Cycles Mining Algorithm 

(LCMA), [93], has been proposed. In the NCMA and LCMA algorithm, the 
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simplest node-encircling p-cycle is found first, based on a contraction algorithm 

and the local-map, respectively. Then several expanding algorithms (SP-Add, 

Grow, and Expand from [94]) are applied to generate more efficient candidate 

NEPCs. In these works, a modified a priori efficiency is used to evaluate the 

efficiency of each NEPC. However, preparing the cycles with high efficiency is 

just a first step towards finding the least cost combination of cycles that will 

protect the network. Because a priori efficiency is merely an expected efficiency, 

and it will be realized as an actual efficiency if and only if the working capacities 

exist as used in the calculation [94]. To properly realize a complete network 

design, an algorithm is required to select the least cost combination of cycles that 

will fully protect all the network working capacities. To do so, we propose two 

new algorithms, the Node-Disjoint Path Partitioning (NDPP) algorithm and Level 

Partitioning Algorithm (LPA). 

7.2.2 Node-Disjoint Path Partitioning Algorithm 

NDPP proceeds as follows (and as shown in Exhibit 1). First, we find the 

neighbours for a given node (we can call it the “central node”) and record them as 

“neighbours”. Second, find at least two node-disjoint paths between any two nodes 

in neighbours. Third, identify all additional nodes found in paths from the second 

step, and record them as “nodes-in-paths”. Fourth, prune off all nodes in the 

network (and their incident spans), except for the central node, the neighbours, and 

the nodes-in-paths. Fifth, enumerate all the p-cycles found in this network partition 

using a standard depth first search algorithm. Finally, repeat until all nodes of the 

network have been considered as a central node. 

Exhibit 1 – Node-Disjoint Path Partitioning pseudo-code. 

NDPP() { 

initialize set Cycles 

for each node n { 

initialize set Nodes1 

identify the level 1 neighbours of node n and add 

them to Nodes1 
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for each nodes n1 and n2 in Nodes1 { 

initialize set Nodes2 

add n, n1, and n2 to Nodes2 

prune off n and the links adjacent to it 

find two disjoint paths p1 and p2 between nodes n1 

and n2 

add all nodes in p1 and p2 to Nodes2 

use a standard depth-first search algorithm to 

enumerate all cycles in the sub-network composed 

of nodes in Nodes2 and all spans connecting them 

add the above cycles to set Cycles 

} 

} 

} 

7.2.3 Level Partitioning Algorithm 

In Level Partitioning, as shown in Exhibit 2, we first need to define level m 

neighbours of a node; all nodes that are m hops from another node are its level m 

neighbours. Level Partitioning then proceeds as follow. First, find the level m 

neighbours (starting with m = 1 at the beginning) for a given central node and 

record them as “neighbours”. Second, prune off all the nodes in the network (and 

their incident spans), except the central node and its neighbours. Third, enumerate 

all the p-cycles found in this network partition using a standard depth first search 

algorithm. Fourth, if an NEPC for the central node is not found, increase the level 

by one and repeat. Finally, repeat all previous steps until all nodes in the network 

have been considered as a central node. 

Exhibit 2 – Level Partitioning pseudo-code. 

LevelPartitioning() { 

initialize set Cycles 

for each node n { 

m = 0 

initialize set Nodes 

add n to Nodes 

until Cycles contains an NEPC of n { 

m = m + 1 
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identify the level m neighbours of node n and add 

them to Nodes 

use a standard depth-first search algorithm to 

enumerate all cycles in the sub-network composed 

of nodes in Nodes and all spans connecting them 

add the above cycles to set Cycles 

} 

} 

} 

7.3  Analysis of NDPP and Level Partitioning 

In order to determine the effectiveness of the NDPP and Level Partitioning 

algorithms, we implemented both in C++ and ran them on eight test networks of 

various sizes, ranging from 10 nodes and 20 spans (“10n20s”) to 45 nodes and 90 

spans (“45n90s”). In each network, every node-pair exchanged a uniform random 

number of lightpaths between 1 and 10 (inclusive). In addition, we implemented an 

adapted DFS algorithm in C++. The DFS algorithm, which we call the benchmark 

solution, was adapted as described above so that it first provided the shortest n 

eligible cycles, where n is the larger than the number of cycles enumerated by 

NDPP and the number of cycles enumerated by Level Partitioning for the network 

in question. However, the DFS had to continue its search until additional cycles 

were added as needed so that each node could be protected by at least one NEPC. 

While the DFS was required to go much of the way through an entire full 

enumeration, we felt that the modifications we made (i.e., first step finds only a 

small subset of cycles, paring down the depth of the algorithm as we go, and then 

only continuing through the standard DFS-like approach) provided the best 

possible runtime while still guaranteeing a suitable eligible set of cycles for NEPC 

protection. In other words, we feel that it is a fair benchmark to which we can 

compare our new proposed algorithms. All tests were run on an Intel Core 2 Duo 

PC running at 2.13 GHz with 4 GB memory. 

Table  7-1 compares the runtimes of the NDPP and Level Partitioning algorithms 

with the runtime for the benchmark solution. As expected, runtimes grow in an 

exponential fashion with the size of the network, even for the NDPP and Level 
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Partitioning algorithms. For small networks, the two new algorithms do not 

necessarily outperform the benchmark approach, but as the network size grows, 

the runtime of the benchmark approach increases much more quickly. 

Table ‎7-1. Runtime comparison of Level Partitioning and NDPP with the 

benchmark 

Networks Benchmark Level Patitioning NDPP 

10n20s 46 ms 31 ms 15 ms 

15n30s 62 ms 281 ms 62 ms 

20n40s 1.125 sec 2 sec, and 984 ms 93 ms 

25n50s 5.390 sec 1.156 sec 218 ms 

30n60s 30.875 sec 1 min, 27.406 sec 625 ms 

35n70s 2 min, 10.718 sec 8 min, 11.781 sec 1.156 sec 

40n80s 1 hr, 46 min, 19.281 sec 1 hr, 5.328 sec 2.781 sec 

45n90s I day, 1 hr, 52 min, 56.140 sec 3 min, 3.921 sec 4.906 sec 

 

We can also note that the runtime for the level partitioning approach did not 

increase as consistently as the others. For instance, the runtime for the 45-node 

network (approximately 3 minutes) was significantly less than that for the 35-node 

and 40-node networks (8 minutes and 1 hour, respectively). We suspect that this is 

due to the effectively pseudo-random nature in which the level m neighbour nodes 

are identified and the interaction of specific topological aspects of the networks in 

question. 
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7.4  NEPC-CIDA Algorithm 

Once we have enumerated a suitable set of eligible cycles, we then need to select 

amongst them to produce a capacity efficient network design where all working 

capacity and transiting node traffic is protected by p-cycles (NEPC or otherwise). 

As mentioned above, the conventional approach is to use an ILP model. However, 

the Capacitated Iterative Design Algorithm (CIDA) was proposed in [94] to select 

from a subset from candidate cycles in order to design a p-cycle network that is 

fully protected against all single-span failures at near optimal spare capacity. The 

main idea behind this algorithm is to calculate the (weighted) efficiency of each 

candidate cycle using equation (7.1), where S is the set of spans in the network, wi 

is the amount of unprotected working capacity on span i at the present time, ci is 

the cost of span i, and Xp,i is the number of protection relationships available to 

span i from cycle p (Xp,i = 1 if i is an on-cycle span, and Xp,i = 2 if i is a straddling 

span) [94]. Note that wi values are initially set to the network’s overall span 

working capacities as routed via shortest paths (or some other routing solution, as 

desired)  

 
,

,

| 1

( )

p i

i p i
i S

i
i S X

w pE
w X

c

 

  









  
(7.1)

 

A copy of the most efficient eligible cycle is selected and a unit-capacity copy of 

the cycle is placed in the design. The working capacities on all spans are updated 

by subtracting one working unit from each on-cycle span for the chosen cycle and 

two from each straddling span, thereby allowing the wi quantities to represent 

working capacity that has not yet been protected. The eligible cycles’ efficiencies 

are recalculated and the process is repeated iteratively until all working capacities 

has been protected (i.e., all wi = 0). 

While the CIDA algorithm described above was suitable for basic p-cycle network 

design, the approach will not work for NEPC networks since there is no 

consideration for protection of transiting flows (and not even any consideration for 

transiting flows in the eligible cycles’ efficiency calculations). If we wish to adapt 
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CIDA for the application to NEPC network design, we first need to alter the actual 

efficiency equation to consider for transiting flows. The new actual efficiency 

equation will be as follows, where fn is the sum of the unprotected transiting flows 

through node n and Xp,n is the protection relationship available to node n from 

cycle p (i.e., Xp,n = 2 if n is an encircled node, and otherwise Xp,n = 0):  
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We can then adapt the CIDA algorithm from [94], which we now call NEPC-

CIDA, as follows (and as shown in Exhibit 3). First, calculate the (weighted) 

efficiency of each candidate cycle using equation (7.2), where wi and fn are initially 

set to the network’s overall working capacities and transiting flows as routed via 

shortest paths (or some other routing solution, as desired). A copy of the most 

efficient eligible cycle (either a basic p-cycle or an NEPC, as the case may be) is 

selected and a unit-capacity copy of the cycle is placed in the design. The working 

capacities on all spans are updated by subtracting one working unit from each on-

cycle span for the chosen cycle and two from each straddling span, thereby 

allowing the wi quantities to represent working capacities those have not yet been 

protected. The transiting flows are also updated by subtracting two from the fn 

values of any nodes encircled by the cycle (of course, this is only in cases where 

the cycle is an NEPC), thereby allowing the fn quantities to represent transiting 

flows those have not yet been protected. The eligible cycles’ efficiencies are 

recalculated and the process is repeated iteratively until all working capacities and 

all transiting flows have been protected (i.e., all wi = 0 and all fn = 0). 

Exhibit 3 – NEPC-CIDA pseudo-code. 

NEPC-CIDA() { 

Initialize CycleSet, work[], TransitFlow[] and 

CycleUse[] 

CycleSet = EnumerateCycles() 

While work[i] or TransitFlow[]  > 0 { 

BestCycle = 0 
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For each cycle p in CycleSet { 

Calculate Ew(p) 

If Ew(p) > Ew(BestCycle) { 

BestCycle = p 

} 

} 

CycleUse[BestCycle] =  CycleUse[BestCycle] + 1 

For each on-cycle span i in BestCycle { 

work[i] = work[i] - 1 

} 

For each straddling span i in BestCycle  

work[i] = work[i] - 2 

} 

For each encircled node n in BestCycle  

TransitFlow [i] = TransitFlow [i] - 2 

} 

} 

Return CycleSet and CycleUse 

} 

7.5  Analysis of NDPP and Level Partition in NEPC-CIDA 

Network Designs 

Although we have already demonstrated improvements in runtime using NDPP 

and Level Partitioning, we now need to determine their cost effectiveness in 

generating overall network solutions, for which we use NEPC-CIDA. As above, 

we implemented NEPC-CIDA in C++ and used the benchmark DFS, NDPP, and 

Level Partitioning, respectively, to initialize CycleSet. We ran all three variants 

of NEPC-CIDA on the same eight test networks as above and using the same 

computer described above. Figure  7-3 shows the spare capacity requirements of 

the resultant capacitated networks. While capacity is calculated as wavelength-km 

units (with span lengths equivalent to the Euclidian distances between the end-

nodes of each span as drawn in the network graphs), the results normalized to the 

most capacity efficient solution for each test-case network (level partitioning for 

the 30-node and 45-node networks, and NDPP for all others). 
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As can be seen in the figure, NDPP achieves the lowest capacity requirements for 

most networks. The greatest improvement relative to the benchmark method is 

approximately 9% in the 20-node test-case network. Overall, the NDPP approach 

outperforms the benchmark method by 3.5% on average in our test-case networks. 

A more in-depth analysis of the network designs suggests that the efficiency 

improvements observed in the NDPP designs arise from a more efficient set of 

eligible cycles that more effectively act as NEPCs. 

 

Figure ‎7-3. Normalized spare capacity costs of NEPC-CIDA designed 

networks using the benchmark, Level Partitioning, and NDPP enumeration 

approaches 

In Figure  7-4, we compare the spare capacity requirements of NEPC networks 

designed by the CIDA-like algorithm using the eligible cycles enumerated with 

our NDPP approach to those using eligible cycles enumerated with prior 

enumeration approach from the literature, LCMA and NCMA (reproduced to the 

best of our abilities, given the description provided by the authors in [93] and 

[92]). As shown in Figure  7-4, the NDPP approach outperforms LCMA and 

NCMA for all test-case networks, in some cases by a large margin. The 
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improvement differs from network to network and reaches a maximum in the 40-

node network with an improvement of 17%. Overall, the NDPP approach 

outperforms LCMA and NCMA by approximately 6%. 

 

Figure ‎7-4. Normalized NEPC-CIDA spare capacity with NDPP and LCMA 

& NCMA 

We now focus on equation (8-2) where we use two “factors” with specific values 

to evaluate the efficiency of each cycle. The first factor is Xp,i, where Xp,i = 1 if i is 

an on-cycle span for p-cycle p, Xp,i = 2 if i is a straddling span for p-cycle p, and 

Xp,i = 0 if span i is neither an on-cycle span nor a straddling span for p-cycle p. Xp,n 

is the second factor, where Xp,n = 2 if n is an encircled node for p-cycle p and Xp,n = 

0 if n is not an encircled node for p-cycle p. While the above values follow 

logically from knowledge of how p-cycles (NEPC or otherwise) protect working 

capacity (two units of capacities on straddling spans, one unit on on-cycle spans, 

and two units for transiting flows on encircled nodes), it is obvious that if we 

would use different values for any of those parameters, the efficiencies of the 

various candidate cycles would change, as would their rank order. In other words, 

if we would use different values for Xp,i and Xp,n in NEPC-CIDA, selection of 

BestCycle may be affected at any (or potentially all) iterations of the algorithm. 
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Furthermore, this may result in a slightly different design solution (i.e., a different 

set of p-cycles might be placed in the overall network design), which may in turn 

affect overall capacity requirements (even potentially resulting in reduced capacity 

requirements). As such, we now propose a genetic algorithm to determine an 

optimal set of values for Xp,i and Xp,n.  

7.6  Genetic Algorithm 

In the following subsections, we will try to shed the light on some of the essential 

components in order to create an efficient genetic algorithm system. 

7.6.1 First Population     

The first population is a set of eligible solutions for the given problem. Two main 

factors should be considered in the first population: the representation scheme and 

the population size. 

7.6.2 Representation Scheme 

The representation scheme is the first step that has to be considered when utilizing 

a genetic algorithm for tackling any optimization problem. It represents the 

process of assigning an abstract code for any eligible solution (chromosome). 

Binary representation scheme and the real representation scheme are the two main 

schemes used in the realm of genetic algorithms. Deciding which type of 

representations will be used relies on the structure of the investigated problems. 

In the real representation scheme, each chromosome consists of a number of 

decision variables called genes. As illustrated in Figure ‎7-5, each one could take 

any value between 0 and positive infinity. For example, in genetic algorithm 

model for NEPC-CIDA, the chromosome consists of three genes, each of which 

represents the value assigned to the on-cycle factor, the straddling factor, and the 

transit flow factor. 
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Figure ‎7-5. Real Number representation scheme 

However, in the binary representation scheme each gene is assigned a binary 

value (i.e. 0 or 1). For instance, in incremental topology network optimization 

design, the binary code could be used to indicate if the corresponding eligible 

spans will be deployed in the network or not. For example, Figure ‎7-6 depict a 0-1 

binary code, where 0 means that the corresponding eligible span will not be 

deployed in the network design, and 1 means that the corresponding eligible span 

will be deployed in the network design, and n represents the number of the 

eligible spans that are proposed to be added to the network. 

 

Figure ‎7-6. The binary representation scheme 

After deciding which representation scheme should be used, the next step is to 

generate the initial population. Owing to the fact that the genetic algorithm is 

stochastic in nature [97], the uniformly distributed function could be used to 

produce the value assigned for each gene. Therefore, there are two approaches to 

feed the genetic algorithm with the initial population: first, feed it with acceptably 

random generated solutions as mentioned before. Second, seed it with previously 

known good solutions, which could be generated by another heuristic technique. 

On one hand, the second solution would speed up the search. On the other hand, it 

could trap it in the local optimal region, which could lead to a poor solution [98], 

[99]. 

 SnS1
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7.6.3 Population size 

The next step, after choosing the appropriate representation scheme and the way 

of populating the initial generation, is to determine the population size. As 

mentioned, the population is a subset of eligible solutions for the optimization 

problem. On the one hand, if the population size is extremely small, the premature 

convergences may be reached because the solution space would not be explored 

sufficiently. On the other hand, if it is too large, the best solution would not be 

reached in a reasonable amount of time [100]. Many works show that the 

population size should be related to the length of the chromosome (i.e. the number 

of genes). For instance, in [101] it suggested that the population size should be 

exponentially increased with the chromosome length. However, in [102]. It was 

proposed that it should be related linearly to the chromosome length. 

Equation (7.3) has been introduced for determining the minimum acceptable 

population size N for binary chromosome with length l, where *

2P represents the 

probability that N will provide a meaningful search. 

*

2|1 log( / ln ) / log 2 |N l P  
 

(7.3)
 

The next step, after populating the first generation, is to evaluate each 

chromosome by using a particular objective function. For each chromosome, a 

fitness value is assigned depending on its objective value. The chromosome with 

the higher fitness value would more likely be chosen as a parent to generate the 

next generation of chromosomes. 

7.6.4 Selection 

After generating the first generation and evaluating the fitness for each 

chromosome individually, the selection process will start to elect the best 

chromosomes in terms of their fitness function and mating them to produce the 

offspring. This process is iterated until a predefined condition is reached and 

during the iterations, the fitness of the offspring will improve generation after 
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generation. Therefore, selection plays a pivotal role in directing the search 

reproduction process. 

One of the main factors that affect the convergence rate is selection pressure, 

which is the probability of choosing the chromosomes with the higher fitness 

values. For instance, if the selection pressure is increased, the chance of reaching 

a suboptimal solution is higher, which stems from premature convergence. In 

contrast, low selection pressure will increase the time required to find the near 

optimal solution [103]. Several selection approaches have been proposed in the 

open literature. In the sections that follow, we will shed light on some of them.  

7.6.4.1 Proportional Selection 

Proportional selection is also called as roulette wheel selection. In this scheme, 

the circumference of the wheel is divided into parts. Their number equals the 

number of the chromosomes in one generation. The length of each one is 

proportional to the fitness value with its corresponding chromosome. Then the 

wheel is rotated, and a chromosome is selected randomly. The last step is iterated 

until the number of required parents for reproduction is reached. It is very obvious 

that the chromosome with the higher fitness will have a higher chance to be 

chosen as a parent. Furthermore, the chromosome with a very high fitness level 

will have a higher chance to be generated as a member of the next generation.  

Equation (7.4) [104] presents the probability of choosing a chromosome xi at 

generation t. N denotes the number of chromosomes per generation and ( )( )t

if x  is 

the fitness value for the given chromosome. 

 
 

( )
( )

( )
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( )
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7.6.4.2 Tournament Selection 

The tournament selection process starts by choosing a set of chromosomes from 

the current generation randomly, which is called the tour set. The chromosome 

with the highest fitness value in this tour set will be elected for reproduction. This 

process is iterated until the number of required parents is reached. The number of 

the chromosomes in the tour set affects the selection pressure factor for this 

genetic algorithm model. In that, as the size of this set increases, the probability of 

selecting the high fitness chromosome increases [103].  

Equation (7.5) presents the probability of selecting a chromosome xi at a 

generation t with a tour size q 

 
 ( ) 1

( ) ( 1) ( )t q q
i q

p x N i N i
N

    
 

(7.5)
 

7.6.4.3 Linear Ranking Selection 

In linear ranking selection, chromosomes are ranked according to their fitness 

value. For instance, the chromosome with the best fitness value will be assigned a 

rank N while the chromosome with the worst fitness value will be assigned the 

lowest rank [105], [104]. 

The next step, after deciding which parents will be selected for the reproduction, 

is the generating of the offspring using different kinds of operators such as the 

crossover and the mutation. 

7.6.5 Crossover 

In the realm of the genetic algorithms, there are several types of crossover 

methods. The usage of the crossover relies on the representation scheme. In our 

work, the linear crossover will be utilized. 

There are three prime linear crossover approaches [106], [107]. First, the one-

point crossover, where the two parents are divided into two portions at the same 
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point, and then the first part of the first parents is recombined with the second part 

of the second parent and vice-versa. Figure ‎7-7 illustrates this process. 

 

Figure ‎7-7. One-point Crossover (a) represents the parents, (b) the offspring 

Second, the m-point crossover, more than the one crossover point, is used and a 

mask is required. This mask consists of a pattern of 1’s and 0’s which represents 

the parts taken from each parent. For example, Figure ‎7-8 depicts a 2-point 

crossover with a mask (1 1 1 0 0 0 1 1). The first child is generated by 

recombining the genes corresponding to 1’s in the first parent with the genes 

corresponding to 0’s in the second.  The second child is generated vice-versa. 

Third, the uniform crossover, in this kind of crossover the mask is not predefined 

as in 2-point crossover. Every time a crossover is used, the Bernoulli function is 

used to generate a random pattern, which will represent the mask for the current 

crossover. 

X1 X2 X3 X4 X5 X6 X7 X8

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

(a)

X1 X2 X3 X4 Y5 Y6 Y7 Y8

Y1 Y2 Y3 Y4 X5 X6 X7 X8

(b)

The Crossover Point
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Figure ‎7-8. 2-point crossover, (a) the parents, (b) the offspring 

7.6.6 Mutation 

In addition to the crossover, mutations play a vital role in generating the offspring 

from the parents. The main parameter for this is the mutation rate which 

represents the probability of mutation for the genes. As the genetic algorithm 

search progresses, it will be converted to a specific search space and the crossover 

will become more inefficient. In contrast the mutation will be the only tool for 

discovering the other area to avoid the local optimal solution [107].   

Once the selection, crossover, and mutation methods have been determined, the 

offspring is ready to be generated. The next step is to populate the next 

generation, which could be done by first replacing the current population by the 

offspring which could lead to the loss of some of good parents. Second, the next 

generation could be produced as a combination of the current population and its 

offspring. The second method outweighs the first one because it keeps the best 

parents from one generation to another and this is why the genetic algorithms are 

X1 X2 X3 X4 X5 X6 X7 X8

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

(a)

X1 X2 X3 Y4 Y5 Y6 X7 X8

Y1 Y2 Y3 X4 X5 X6 Y7 Y8

(b)

The Crossover Points
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called a memory usage methods. The number of offspring replacing the parents is 

an important factor in this iterated process [107]. Therefore, if a number of 

offspring is injected in the next generation, the same number of the worst parents 

should be deleted. The whole process is iterated until a predefined condition is 

reached. 

7.7  Genetic Algorithm For Selection OF NEPC Weighted 

Efficiency Factors  

The main parts of the proposed GA model in this chapter are as follows: first, the 

fitness function is the total spare capacity cost of the network design generated by 

the CIDA-Like algorithm. Second, a series of real numbers are generated to 

represent an individual as a chromosome. Each chromosome contains three 

numbers (genes): the first nmuber represents the On-cycles span factor, the 

second number represents the straddling factor, and the third represents the 

transiting flow factor. A classical crossover has been adopted as the main genetic 

operator. A tournament selection is applied in the selection process. Two 

individuals are randomly chosen from the population. Individuals having higher 

fitness value are chosen and inserted into the next generation. The process is 

iterated until the new population is obtained. The main problem is to find the 

factors which produce the minimum network design. 

As show in Figure  7-9, the procedures of the genetic algorithm are as follows. It 

starts with providing GA parameters:  number of individuals in each generation 

(PopSize), number of generation (GenSize), and crossover and mutation 

probabilities. PopSize is set to 10 in this work. The Initialization phase generates 

a random initial population. It also evaluates the fitness of each individual. On 

each generation, crossover and mutation mechanisms are applied to individuals, 

which are probabilistically selected from the population. Then, the fitness value of 

each new individual is calculated. The best fitness so far is also kept until the last 

generation. The procedure stops when the improvement in the fitness value from 

generation to another reaches zero. 
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Figure ‎7-9. Genetic Algorithm flow chart 
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Table ‎7-2. The best factors values for CIDA-Like algorithm using the genetic 

algorithm model 

Networks 
Xp,i 

(on-cycle) 

Xp,i 

(on-cycle) 

Xp,n 

(encircled) 

% 

Improvement 

10n20s 1.0 6.0 21.0 3.0% 

15n30s 1.0 2.3 5.4 4.0% 

20n40s 1.0 1.8 16.6 6.0% 

25n50s 1.0 3.0 8.0 5.4% 

 

The results generated from the GA model have been displayed in Table  7-2. Tests 

were conducted for four different networks of various sizes, ranging from 10 

nodes and 20 spans (“10n20s”) to 25 nodes and 50 spans (“25n50s”). The table 

shows that using different factors values, instead of 1, 2, and 2 for the on-Cycles, 

straddling, and transiting flows factors respectively, will result in a significant 

improvement in the spare capacity network design cost. The improvement 

changes from network to another and reaches a peak in the 20-node network with 

an improvement of 6.01%.  

7.8  Conclusion  

The goal of this chapter was to propose a simple algorithmic approach for the 

enumeration of a good set of candidate node-encircling p-cycles for use in NEPC 

network design without requiring a (nearly) exhaustive DFS enumeration of the 

cycle set. We proposed the NDPP and Level Partitioning algorithms, and showed 

that runtime is significantly shorter for both relative to the benchmark DFS 

approach for all of our test cases. We next adapted a prior p-cycle network design 

algorithm (CIDA) for use in NEPC network design, and showed that NDPP 

outperformed Level Partitioning and the benchmark DFS approach when resultant 

candidate cycles enumerated by each method were passed to NEPC-CIDA for 

overall network design. Finally, we implemented a genetic algorithm to determine 
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near-optimal values for parameters used within NEPC-CIDA and showed that 

further improvements of as much as 6% could be realized in NEPC network 

designs arising from NEPC-CIDA with NDPP cycle enumeration. 
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Chapter 8.  An Enhanced ILP Design Model for 

Node-Encircling p-Cycle Networks 

This chapter represents the following paper: “An Enhanced ILP Design Model for Node-

Encircling p-Cycle Networks,” Design of Reliable Communication Networks (DRCN 2014), 

Gent, Belgium, 1-3 April 2014.  

8.1  Introduction and Background 

A number of techniques have been developed to provide network survivability. 

Among the simplest are survivable rings [69], [42] and 1+1 automatic protection 

switching (and also 1:1, 1:N) [43]. More complex approaches include span 

restoration [75], path restoration [61], and shared backup path protection (SBPP) 

[45]. The present chapter will focus on p-cycles [47], which have received a lot of 

attention in recent years, and more specifically, node-encircling p-cycles (NEPCs) 

[57], [91]. In this chapter, we develop a new enhanced ILP design model that 

optimally designs a node-encircling p-cycle network. The new model takes 

advantage of the observation that NEPCs assigned solely for node-failure 

protection will inherently protect all two-hop segments of every multi-hop 

working lightpath. As a result, only single-hop working lightpaths need explicit 

span-failure protection in the conventional manner. The new ILP model shows a 

significant reduction in capacity requirements. 

An ILP network design model was formulated in [91]; the ILP selects an optimal 

combination of conventional span-protecting p-cycles and NEPCs so that all span 

failures and all node failures are fully protected. In addition to protecting node 

failures, NEPCs are also permitted to protect span failures in the same manner as 

conventional p-cycles (see the previous chapters for more details). In fact, the 

model makes no differentiation between ordinary span-protecting p-cycles and 

NEPCs. Both types are treated as p-cycles in general and are enumerated in a 

single set of eligible p-cycles. Just as conventional p-cycle protection 

relationships with their various on-cycle and straddling spans are encoded in a set 
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of 𝑥𝑖,𝑝 parameters, their capabilities to protect various nodes as NEPCs are 

encoded in a related set of 
n

px  parameters (see below for more details). 

If we look closely at the makeup of the working capacity that needs protection on 

any individual span, we will observe that the bulk of it has arisen as a result of 

multi-hop working lightpaths (i.e., lightpaths whose working routes take them 

over at least two spans) but a small amount will be due to single-hop working 

lightpaths, lightpaths whose working routes cross only a single span connecting 

the origin to the destination. While the working capacity from single-hop working 

lightpaths will explicitly require protection in the conventional manner (i.e., via a 

p-cycle for which that span is an on-cycle or straddling span), working capacity 

from multi-hop working lightpaths will not necessarily need this explicit 

protection. 

Consider the manner in which an NEPC protects the network from a node failure. 

It does so by capturing all working lightpaths transiting the protected node. This 

means that each two-hop segment of a multi-hop working lightpath will be 

protected from failure of their intermediate node by an NEPC (or perhaps 

several). However, failure of a node will be indistinguishable from the 

simultaneous failure of all spans incident on that node. From the point of view of 

a multi-hop working lightpath, the NEPC that protects any of its individual two-

hop segments from failure of the segment’s intermediate node can also protect it 

from failure of one or the other (or both) of the two spans of that segment. The 

two-hop segment will simply be routed around the NEPC whether it was the 

protected intermediate node that failed, or it was one (or both) of the spans of the 

segment. Assuming the network topology in such that all nodes have at least one 

NEPC capable of protecting it, then all individual two-hop segments of multi-hop 

working lightpaths are also inherently protected against failure of either of its 

spans. This leaves only working capacities arising from single-hop working 

lightpaths that explicitly need to be protected via conventional span-protecting p-

cycles, rather than all working capacities. 
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One difficulty with this approach, however, is with regards to signaling and 

failure detection. In the event that two-hop segment of a working lightpath is 

protected against span failure by a node-encircling p-cycle, the failure will be 

visible to only one of the end nodes of that two-hop segment. Perhaps one means 

of overcoming that is to assume centralized control, but that may run counter to 

the key benefit of p-cycle restoration, in that p-cycles can act locally without an 

explicit need for a centralized control. 

8.2  NEPC ILP Design Models 

8.2.1 Benchmark ILP Design Model 

Several ILP design models for NEPC network design were developed in [91]. We 

will use that work’s Model #2 as our benchmark in the present chapter. That 

model utilizes a joint capacity allocation (JCA) approach, which simultaneously 

determines optimal working and restoration routing (and working and spare 

capacities). However, we will also consider a spare capacity allocation (SCA) 

approach as well, which assumes working routing is via shortest paths (or some 

other simple routing) and we only need to optimize restoration routing and the 

associated spare capacity. Rather than produce the SCA variant with a separate 

ILP model, we simply provide each demand with a single eligible working route, 

the single shortest path between the demand’s end nodes. This allows both JCA 

and SCA designs using the JCA ILP model. 

The ILP model functions as an arc-path model like that first developed in [75], 

where the solver is provided with a set of eligible working routes and eligible p-

cycles, which are then optimally selected such that capacities costs are minimized. 

In addition, that model assumes that node-failure protection routing is evenly split 

in both directions around the NEPC, resulting in a slight over-provisioning of 

NEPCs and the resultant spare capacities (by an average of 5.8% in the test case 

networks in [91]). As noted therein, this benchmark model is very similar to the 

basic joint working routing and p-cycle selection network design model described 
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in [37], but with the addition of constraints to accommodate node-failure 

protection via NEPCs. 

Since our enhanced model herein is based on this benchmark ILP model, we now 

reproduce that model here. In doing so, we use the following notations: 

Sets: 

S is the set of all spans in the network, typically indexed by i or j. 

N is the set of all nodes in the network, typically indexed by n. 

P is the set of all eligible p-cycles in the network, typically indexed 

by p. Note that we make no distinction here between conventional 

span-protecting p-cycles and NEPCs. 

D is the set of all demands in the network, typically indexed by r. 

r
Q  

is the set of all distinct eligible working routes capable of routing 

lightpaths for demand r, typically indexed by q. 

Parameters: 

dr The parameter that represents the number of demand units for 

demand r. 

jc   is the cost of each unit of capacity (working or spare) placed on 

span j. In our test cases, all jc values were equivalent to the 

Euclidean distances of the spans as drawn in the network 

topologies. 

 , 0,1,2i px   is an input parameter that encodes the number of protection 

relationships provided to span i by each unit-sized copy of eligible 

p-cycle p. 𝑥𝑖,𝑝= 2 if span i straddles cycle p, 𝑥𝑖,𝑝 = 1 if span i is on 

cycle p, and 𝑥𝑖,𝑝= 0 in all other cases. For the special case of non-

simple cycles, 𝑥𝑖,𝑝= 0 for on-cycle spans that are crossed twice by 

the cycle. 

 0,1n

px   is an input parameter that encodes whether or not eligible p-cycle 

p can act as an NEPC for node n. 1n

px   if it can and 0n

px   if it 
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cannot. 

 , 0,1r q

i   is a binary parameter that defines the relationship between 

working routes and the network spans for each demand. It equals 

1 if working route q used for demand r passes through a span i, 

otherwise it equals 0. 

 0,1n

r   is a binary parameter which equals 1 if node n is the origin or the 

destination of demand r, otherwise it equals 0. 

 , 0,1r q

nz   is a binary parameter that describes the relationship between 

working routes and the network nodes for each demand. , 1r q

nz   if 

working route q used for demand r crosses node n, otherwise 

, 0r q

nz   

Decision Variables: 

, 0r qg   is the integer number of working lightpaths assigned to working 

route q used for demand relation r. 

0iw   is the integer number of working capacity that is assigned to span i 

in total. 

0n   is the integer number of transiting working flows passing through 

node n. 

0pn   is the integer number of unit-capacity copies of eligible p-cycle p 

placed in the network. 

0js   is the integer number of spare capacity that is assigned to span j. 

 

The benchmark NEPC ILP formulation as follows: 

Minimize: 

 j j j
j

c s w
 

 
S   

(8.1)
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Subject to: 
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The objective function in (8.1) seeks to minimize the total cost of placing working 

and spare capacities in the network. Constraints (8.2) guarantee that all demands 

will be provided sufficient number of working lightpaths, and the constraints in 

equation (8.3) assign a sufficient amount of working capacities on each span i to 

accommodate all working lightpaths routed over it. Equation (8.4) assigns 

sufficient copies of the various eligible p-cycles to provide restoration of all 

working capacities on each span. Equations (8.5) and (8.6), respectively, 

determine the number of working lightpaths transiting through each node, and 

ensure that there are sufficient copies of the various eligible p-cycles (acting as 

NEPCs) to protect all transiting lightpaths through each node in the event of 

failure of that node. Note that the 2  multiplier in equation (8.6) is due to the fact 

that each copy of an NEPC can protect two transiting lightpaths from failure of 

node n, one in each direction around the p-cycle. Finally, the constraints in 

equation (8.7) places spare capacities on each span j to accommodate all copies of 

eligible p-cycles assigned to the network. 
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8.2.2 Enhanced JCA ILP Design Model 

As discussed above in a previous section, the benchmark model explicitly 

provides span-failure protection for all working capacity on each span, although 

we need do so only for working capacity arising from single-hop working 

lightpaths. This means that equation (8.4) is no longer required, at least in its 

present form, and needs to be replaced by a new equation that asserts span-failure 

protection only for single-hop working capacity. We also need to designate some 

new decision variables to represent that specific working capacity: 

0iw   is the integer number of working capacity that is assigned to span i arising 

only from single-hop working lightpaths. 

We then replace equation (8.4) with a new set of constraints in equation (8.8), 

which is identical to the original except that we provide sufficient span-failure 

protection for iw  rather than for wi. 

,                               i i p p
p

w x n i S
 

    
P  

(8.8)
 

And of course we need to introduce a new set of constraints, equation (8.9) to 

calculate the various iw  values. Note that this equation is nearly identical to 

equation (8.3), except that we consider only those working lightpaths that follow 

single-hop routes. This is done by qualifying the q indices in the second 

summation such that the sum of their individual ,r q

i  values is equal to one (i.e., 

they only cross a single span). To reiterate, this is a new set of constraints. 

Equation (8.9) does not replace equation (8.3), rather it is in addition to equation 

(8.3), which is still needed in order to calculate the total working capacity on each 

span. 
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An alternative (and perhaps simpler) expression for this constraint is to calculate 

the iw   values by simply identifying the demand r with the same end nodes as 

span i and letting iw   equal the number of lightpaths for that demand (or the sum 

of the lightpaths if there are multiple demands with the same end nodes). This will 

simply require enumeration of spans and demands by their end nodes, which is 

readily available data (in fact, we use that very data to enumerate eligible working 

routes, etc.). However, we would also need to introduce that additional data into 

the ILP model, so we elected to go with the somewhat more complex calculation 

of iw   values as shown in equation (8.9) (and besides, it makes this constraint 

nearly identical to equation (8.3), as noted above). Furthermore, that simplified 

representation of this constraint makes the assumption that each demand whose 

end nodes are only a single hop apart will actually be routed on that single hop. In 

practice, that may be the case in most scenarios, however, it is possible that some 

such demand may elect to route its working lightpath around a longer route if it is 

able to take advantage of protection relationships with other cycles. 

8.3  Experimental Study 

We carried out our experiments on three networks, with 10 nodes and 20 spans, 

15 nodes and 30 spans, and 20 nodes and 40 spans, respectively, from [37], and 

shown in Figure ‎8-1. In all three networks, each node pair exchanged lightpath 

demands, where the number of such lightpaths for each node pair was drawn from 

a uniform random number between 1 and 10, inclusive.  

Our ILP models (the benchmark and our enhanced version) were modeled in the 

AMPL modeling language and solved with the CPLEX solver on an ACPI 

multiprocessor X64-based PC with an 8-processor Intel Xeon CPU X5460 3.16 

GHz server with 32 GB on RAM. All the models were run with the default 

mipgap setting of 0.0001, which means all results are guaranteed to be within 

0.01% of optimal. Pre-processing to enumerate eligible p-cycles and eligible 

working routes, and their associated 
,i px , 

n

px , ,r q

i , n

r , and ,r q

nz  parameters was 

completed with custom software written in C. The five shortest eligible working 
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routes (by span length) were enumerated for each demand, and the shortest cycles 

that can be drawn in the network were used as eligible p-cycles (1000 for the 10-

node network, 5000 for the 15-node network, and 10000 for the 20-node 

network), which was supplemented with the shortest cycles possible, such that 

each node has 10 eligible p-cycles that can act as NEPCs. Solution runtimes 

completed in several minutes. (The longest runtime was 343 seconds for the 20-

node network’s benchmark NEPC solution). Interestingly, solution runtimes were 

almost an order of magnitude shorter for the ENEPC despite having a greater 

number of integer variables. 

 

 

10-node network

15-node network
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Figure ‎8-1. 10-node, 15-node, and 25-node test networks used herein 

8.4  Results and Discussion 

Results of our experiments are shown in Figure  8-2 and Figure ‎8-4. Each bar 

represents the optimal capacity cost of the indicated network using the indicated 

ILP model. Capacity costs were normalized to the benchmark solutions for all test 

cases. The reason for the normalization was to present the data in a manner that 

was independent of the scale of the network. For instance, the 10-node network 

we used happened to have an average span length of approximately 111 (units 

defined), while the 15-node network had an average span length of approximately 

185 and the 20-node network had an average span length of approximately 131. 

These differences in the average span length effectively result in arbitrary 

differences in scale between the various networks. What is of importance here is 

the relative differences between the solutions arising from the benchmark NEPC 

model and the new ENEPC model, not that the NEPC solution had an objective 

function value of 75633 and the ENEPC solution had an objective function value 

of 71313 for the JCA models in the 10-node network, for instance. The data in  

20-node network
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Figure ‎8-2 represents the spare capacity allocation (SCA) variant of both models, 

where we provided the ILPs with only a single eligible working route (the shortest 

one). For this variant of the models, the new enhanced ILP model (ENEPC) 

provides an average of 7.8% reduction in total capacity costs. The 10-node 

network experienced a 9.3% reduction in capacity, the 15-node network 

experienced a 9.7% reduction, and the 20-node network experienced a 4.4% 

reduction. Spare capacity reductions for the SCA variant (shown in Figure ‎8-3) 

were actually an average of 12.8% lower in the ENEPC solutions versus the 

benchmark NEPC solutions (17.3%, 14.2%, and 6.8% lower for the three 

networks), respectively. 

 

 

Figure ‎8-2. Normalized total capacity requirements of the benchmark NEPC 

and new ENEPC SCA design models 
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Figure ‎8-3. Normalized spare capacity requirements of the benchmark 

NEPC and new ENEPC SCA design models 

Using the JCA variants (i.e., as formulated in Section ‎8.2  and using five eligible 

working routes as described in a previous section), we saw smaller capacity 

reductions, but we feel they are still significant enough to report. We can observe 

in Figure ‎8-4 that the new ENEPC model provides an average of 2.3% reduction 

in total capacity relative to the benchmark NEPC model. The 10-node network 

experienced a 5.7% reduction in total capacity, the 15-node network experienced 

a 0.44% reduction, and the 20-node network experienced a 0.63% reduction. 

While the results for the 15-node and 20-node network are particularly 

uninspiring, a deeper examination of how the working routing is performed in the 

JCA variants suggests that the working lightpaths are efficient at finding 

circuitous routes that alleviate much of the need for additional span-protecting p-
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cycles. In other words, although there is still a substantial difference between the 

iw  values (the full working capacity needing span failure protection in the NEPC 

designs) and the much lower iw   values (the single-hop working capacity 

needing span failure protection in the ENEPC designs) in these solutions, the JCA 

mechanism is able to overcome this by routing working lightpaths in such a way 

that the iw values in the NEPC solutions are more easily protected by the node-

encircling p-cycles needed for node failure protection. 

 

Figure ‎8-4. Normalized total capacity requirements of the benchmark NEPC 

and new ENEPC JCA design models 

8.4.1 ENEPC Cycle Details 

A closer look at the detailed solution provides additional insights. Figure  8-5 
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either the NEPC model or the ENEPC model (or both), while Table  8-1 indicates 

the number of copies of each of them, as selected by the two models. Each of The 

benchmark NEPC and ENEPC solutions consists of 690 total copies of 19 unique 

p-cycles. It is interesting to note that the unique p-cycles selected by both of the 

solutions where all of them NEPCs, which supports our thoughts on how the both 

of the models will function; selection of lengthy node-encircling p-cycles will 

predominate, as they will capture a greater number of single-hop routed working 

capacity. This will occur only when you provide the two models with enough 

NEPCs, on 10-node network we will shed the light on how our enhanced model 

outperforms the benchmark model when you do not have a complete set of 

NEPCs that can inherently protect span working capacities. 

 

P01 P02
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Figure ‎8-5. All unique cycles used by the benchmark NEPC and new ENPEC 

models for the 20-node network 

  

P19
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Table ‎8-1. Usage of each p-cycle in the NEPC and ENPEC solutions for the 

20-node network 

p-Cycle p-Cycle Size Copies in NEPC 
Copies in 

ENEPC 

P01 8 107 103 

P02 6 32 32 

P03 11 33 28 

P04 6 1 1 

P05 7 74 75 

P06 10 13 12 

P07 12 33 28 

P08 8 152 158 

P09 9 31 30 

P10 11 23 23 

P11 9 26 31 

P12 9 33 38 

P13 10 18 24 

P14 5 14 14 

P15 9 33 27 

P16 10 25 24 

P17 10 23 23 

P18 9 9 9 

P19 9 10 10 
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Figure ‎8-6 shows the 14 unique p-cycles that were selected for the 10-node 

network via either the NEPC model or the ENEPC model (or both), while 

Table ‎8-2 indicates the number of copies of each of them, as selected by the two 

models. The benchmark NEPC solution consists of 65 total copies of 11 unique p-

cycles, while the ENEPC solution consists of 57 total copies of eight unique p-

cycles. It is interesting to note that the unique p-cycles selected by the ENEPC 

model were predominantly the larger cycles (sizes are simply denoted by the 

number of hops). Half of the smaller cycles were not selected at all in the ENEPC 

solution, which supports our thoughts on how the ENEPC model will function; 

selection of lengthy node-encircling p-cycles will predominate, as they will 

capture a greater number of single-hop routed working capacity. Not surprisingly, 

the only non-node-encircling p-cycle selected by the NEPC model was not 

selected by the ENEPC model. 
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Figure ‎8-6. All unique cycles used by the benchmark NEPC and new ENPEC 

models for the 10-node network 

We can also take a closer look at the iw  values relative to the total working 

capacities iw  on each span. On average in the 10-node network, each span has 

18.2 units of working capacity (the iw  values) but only 6.15 units of working 

capacity that needs protection against span failures (the iw  values). The balance 

(just over 12 units per span on average) will need protection in the NEPC model 

but not in the ENEPC model. 

  

P13 P14 
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Table ‎8-2. Usage of each p-cycle in the NEPC and ENPEC solutions for the 

10-node network 

p-Cycle p-Cycle Size Copies in NEPC 
Copies in 

ENEPC 

P01 6 3 0 

P02 5 4 0 

P03 4 4 9 

P04 6 4 0 

P05 5 1 0 

P06 6 19 21 

P07 6 0 3 

P08 7 2 0 

P09 8 6 3 

P10 8 5 4 

P11 8 4 4 

P12 8 0 2 

P13 8 13 0 

P14 6 0 11 
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8.5  Conclusions  

The benchmark ILP design model for node-encircling p-cycle networks explicitly 

provide span-failure protection for all working capacity that arises in the network. 

However, as we have shown, providing node-failure protection of all working 

lightpaths transiting through each node inherently also protects all working 

capacity arising from multi-hop working lightpaths. As such, only working 

capacity arising from single-hop working lightpaths need to be explicitly provided 

with span-failure protection. 

We have developed an enhanced version of the ILP design model for node-

encircling p-cycle networks that does not place excess spare capacity unless 

explicitly needed for span-failure protection. The resulting optimally designed 

networks are more capacity efficient than those resulting from the benchmark ILP 

model, while remaining 100% restorable in the event of any single node or span 

failure. Capacity requirements were reduced an average of 7.8% in our three test-

case networks using the SCA variants of the new ENEPC and benchmark NEPC 

models, and an average of 2.3% using the JCA variants. 

The poorer performance in the JCA models is certainly a weakness in the new 

ENEPC model. However, in scenarios where working lightpaths are already 

routed or they need to be routed via specific paths without regard for subsequent 

p-cycle requirements, the significant reductions in capacity requirements in the 

SCA models would still be realized. For instance, in the event that a carrier 

wishes to implement span-protecting p-cycle and node-encircling p-cycle 

restoration in an existing network, then the SCA variant of the ENEPC would 

apply, not the JCA variant. 
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Chapter 9.  Conclusions and Recommendations for 

Future Work  

9.1  Conclusions 

The influence of backbone telecommunication networks failure is rising 

significantly as more and more aspects of modern life rely on them, even for 

elementary services. Companies looking to consolidate their data centers using 

cloud computing technologies, healthcare providers trying to increase their 

efficiency by moving to electronic health records, and even retail stores with 

electronic payment methods. All of these services entail a communication system 

with high reliability, where even a few minutes of failure can result in a major 

monetary and social impact. As shown in Figure ‎9-1, this thesis has provided four 

main research studies on telecommunication network survivability schemes. The 

first two studies are related to the incremental topology optimization problem, the 

first project used the meta-mesh span restoration scheme and the second one 

utilized the p-cycle scheme. The last two studies are related to the NEPC network 

design, the first is concerned with algorithms for enumerating NEPC’s and 

efficiently solving this kind of design and the second is interested in improving 

the NEPC conventional ILP model.  
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Figure ‎9-1. Thesis projects summary 

 

The main outcomes of the Incremental Network Topology Optimization Using 

Meta-Mesh Span Restoration are: 

 The conventional meta-mesh model uses an arc-path approach. We 

developed node-arc (i.e., transshipment) ILP model for meta-mesh 

restoration, so we can more easily extend it to accommodate changes in 

the network topology. 

 We implement incremental topology optimization ILP model (i.e., optimal 

span additions) by adding constraints to control the structure of meta-mesh 

chain bypass spans when adding new physical spans. 

 Results show that even where topology is flexible, thereby allowing a 

span-restorable network to use a higher-connectivity topology, meta-mesh 

restoration can outperform span restoration in terms of capacity and 

number of spans required. 
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The main results of Incremental Network Topology Optimization Using p-Cycle 

Technique are: 

 Develop a new ILP model for incremental topology optimization using a 

p-cycle network design. 

 Develop a relaxation-based decomposition heuristic that significantly 

reduces runtime of the ILP in large networks. 

 While the ILP model proves to be relatively easy to solve for small test 

case network instances, it is computationally complex to solve for larger 

networks. 

 A relaxation-based decomposition heuristic can significantly reduce 

runtime of the ILP model in our large test networks, while having minimal 

impact on optimality. In the most computationally complex instance, the 

ILP runtime of over 184,000 seconds (more than two days) was reduced to 

less than 2,300 seconds (less than an hour), while the objective function 

value remained within the optimality gap. In fact, the heuristic solution 

was slightly better than the full ILP (though again, we note that it was not 

provably better since the difference was smaller than the optimality gap). 

The main results of Efficient Algorithms for Node-Encircling p-Cycle Network 

Design Project are: 

 Typical NEPC network design could be done on two steps, (1), enumerate 

a potential set of cycles, (2) select the least cost combination of cycles that 

will fully protect the network working capacities. The number of cycles in 

a network grows exponentially with the size of the network while using a 

depth-first search algorithm. To solve this complexity problem, we 

developed a new algorithm to enumerate NEPC p-cycles called Node-

Disjoint Path Partitioning algorithm (NDPP) 

 We developed a new NEPC network design algorithm, called NEPC 

Capacitated Iterative Design Algorithm (NEPC-CIDA). 
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 The NDPP outperforms the full-network and level partitioning method in 

terms of the time complexity and the spare capacity cost in all of our 

network test cases.  

 NDPP surpasses the LCMA and NCMA methods regarding the spare 

capacities cost in our experiments.  

 GA shows that to get better results in our test cases, the “transiting flow 

factor” should be around double the “straddling factor”. 

The main findings of An Enhanced ILP Design Model for Node-Encircling p-

Cycle Networks is: 

 We have developed a new enhanced ILP design model that optimally 

designs a node-encircling p-cycle network. The new model takes 

advantage of the observation that NEPCs assigned solely for node-failure 

protection will inherently protect all two-hop segments of every multi-hop 

working lightpath. As a result, only single-hop working lightpaths need 

explicit span-failure protection in the conventional manner. 

 The new ILP model shows a significant reduction in capacity 

requirements. The resulting optimally designed networks are more 

capacity efficient than those resulting from the benchmark ILP. Capacity 

costs were reduced an average of 14% in our three test-case networks. 

9.2  Recommendations for Future Work  

In this section, we will propose some future directions for the current work. 

In all of our ILP models in this thesis, we have calculated the cost function as a 

function of single span failure. All of the spans in this work were treated equally, 

but in the real networks, each span can have its own risk value that defines the 

importance of this span. One possibility for future work is to classify the spans 

into different categories from the risk point of view, (e.g., high, intermediate, and 

low risk level). Each one of these groups can be weighted in the cost function 

differently, in that, the high risk group gets the highest weight, and the 
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intermediate risk group gets lower weight and the low risk group gets the lowest 

weight. 

In Incremental Network Topology Optimization Using p-Cycle Technique, we can 

investigate the use of Column Generation technique (CG) to solve this problem 

instead of a relaxation-based decomposition heuristic. CG could be a suitable 

technique for this problem because the number of zero-decision variables is much 

more than the basic variables in all of the experiments that we have conducted. 

9.3  Contribution of Thesis Research 

These four studies are presented in several publications as follows: 

Refereed Journal Publications (Available in Archived Literature): 

 Md. Noor-E-Allam, A. Kasem, J. Doucette “ILP Model and 

Relaxation-Based Decomposition Approach for Incremental 

Topology Optimization in p-Cycle Networks,” Journal of Computer 

Networks and Communications, Vol. 2012, pp. 1-10, 2012. 

 

Refereed  Peer Reviewed Conference Publications (Available in Archived 

Literature): 

 A. Kasem, J. Doucette, “Algorithmic Approaches for Efficient 

Enumeration of Candidate Node-Encircling p-Cycles”, 

(INFORMS Telecommunication) Conference, Montreal, Quebec, 5 

– 7 May 2010. 

 A. Kasem, J. Doucette, “Incremental Optical Network Topology 

Optimization Using Meta-Mesh Span Restoration”, Design of 

Reliable Communication Networks (DRCN 2011), Krakow, 

Poland, 10-12 October 2011.  

 A. Kasem, R. Gallardo, J. Doucette, “An Enhanced ILP Design 

Model for Node-Encircling p-Cycle Networks”, Design of Reliable 

Communication Networks (DRCN 2014), Ghent, Belgium, 1-3 

April 2014. 

Other Publications and Presentations: 

 A. Kasem, J. Doucette, “Node-Encircling p-Cycle Enumeration 

and Algorithmic Network Design”, MITACS/CORS Annual 

Conference, Edmonton, AB, 25-28 May 2010. 

 R. Gallardo, A. Kasem, J. Doucette, “Node-Encircling p-Cycle 

Design with Enhanced Span-Failure Protection”, MITACS/CORS 

Annual Conference Edmonton, AB, 25-28 May 2010. 
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Appendix 1 Network Families 

1.1 10 Node Network Family 
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1.2 15 Node Network Family 
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Appendix 2 AMPL ILP Models 

2.1 MetaMesh Span Restoration 

# Joint capacity placement - Joint Fixed Charge plus Work Routing and Sparing 

# using flow variables 

# 13-May-2010 - John Doucette and Ahmed Kasem 

 

# TOPOLOGY DEFINITION 

set Node; 

 # Set of all logical nodes. 

 

set Demand; 

 # Set of all demands. 

 

set DirectSpan default {}; 

 # Set of all direct spans. 

 

set ChainSpan; 

 # Set of all chain spans. 

 

set OptionalSpan; 

 # Set of all optional spans. 

 

set BypassSpan; 

 # Set of all possible bypass spans. 

 

set ChainOfBypass{BypassSpan}; 

      # Chain spans for each bypass span. 

 

set DirectOptional:={DirectSpan union OptionalSpan}; 

      # Set of all possible optional spans and direct spans. 

 

set Span:={DirectSpan union ChainSpan union OptionalSpan union BypassSpan}; 

 # Set of all logical spans. 

 

set ExistSpan:={DirectSpan union ChainSpan}; 

 # Set of all existing spans. 

 

set NewSpan:={OptionalSpan union BypassSpan}; 

 # Set of all possible new spans. 

 

set BypassOfChain{ChainSpan}; 

      # Bypass spans for each chain span. 

 

set Ncnb; 

      # set of all nodes that belong to a chain excluding the anchor nodes. 

 

set BypassOfNode{Ncnb}; 

      # Bypass spans for each node that belongs to a chain excluding the 



200 

 

# anchor nodes. 

         

param Incidence{j in Span, n in Node} default 0; 

 # Equal to 1 if span j is incident on node n, 0 otherwise. 

 

param IncidenceA{j in Span, n in Node} default 0; 

 # Equal to 1 if span j starts at node n, 0 otherwise (abitrary whether 

# starts or ends on node). 

 

param IncidenceB{j in Span, n in Node} default 0; 

 # Equal to 1 if span j ends at node n, 0 otherwise. 

 

# WORKING DEMANDS 

 

param Origin{r in Demand} symbolic in Node; 

 # Origin node of span demand r. 

 

param Destination{r in Demand} symbolic in Node; 

 # Destination node of demand r. 

 

param DemandUnits{r in Demand} default 0; 

 # Size of demand r. 

 

# COST DATA 

 

param UnitCost{j in Span}; 

 # The cost of placing a unit of capacity on span j. 

 

param FixedCost{j in OptionalSpan}; 

 # The fixed cost of optiona span j. 

 

 

# VARIABLES 

 

var work_flow_from{n in Node, j in Span, r in Demand: Incidence[j,n]=1} >=0, 

<=DemandUnits[r]; 

 

var work_flow_into{n in Node, j in Span, r in Demand: Incidence[j,n]=1} >=0, 

<=DemandUnits[r]; 

# Total directed working traffic flows from and into node n on span j  

# for demand r. 

 

var work{j in Span} >=0, <=10000 integer; 

 # Total amount of working capacity (i.e. number of wavelengths) placed  

 # on span j. 

 

var spare_flow_from{n in Node, j in Span, i in Span: Incidence[j,n]=1 and 

i<>j} >=0, <=10000; 

 

var spare_flow_into{n in Node, j in Span, i in Span: Incidence[j,n]=1 and 

i<>j} >=0, <=10000; 

 # Total directed restoration flows from and into node n on span j for  

 # span failure i. 

 

var spare{j in Span} >=0, <=10000 integer; 

 # Total amount of spare capacity (i.e. number of wavelengths) placed on 

# span j. 
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var Delta{j in NewSpan} >=0, <=1 integer; 

 # Equal to 1 if span j is used, equal to 0 otherwise. 

 

var y{n in Ncnb} >=0, <=1 integer; 

 # Equal to 1 if no optional span is chosen for any node in the Ncnb 

# set, equal to 0 otherwise. 

  

# OBJECTIVE FUNCTION 

minimize total_cost: 

sum{j in Span} (spare[j] + work[j]) * UnitCost[j] + sum{k in OptionalSpan} 

FixedCost[k]* Delta[k]; 

 

# WORK-RELATED CONSTRAINTS 

 

subject to source_work_flows{r in Demand, n in Node: n =  Origin[r]}: 

sum {j in Span: Incidence[j,n]=1} work_flow_from[n,j,r] = DemandUnits[r]; 

# Working flows for demand r flowing FROM the origin node is equal to  

# the total demand on that demand pair. 

 

subject to no_work_flow_into_origin{r in Demand, n in Node, j in Span: n =  

Origin[r] and Incidence[j,n]=1}: 

work_flow_into[n,j,r] = 0; 

 # Working flows into the origin of a demand are zero.  

 

subject to sink_work_flows{r in Demand, n in Node: n = Destination[r]}: 

sum {j in Span: Incidence[j,n]=1} work_flow_into[n,j,r] = DemandUnits[r]; 

# Working flows for demand r flowing INTO the destination node is equal 

# to the total demand on that demand pair.  

 

subject to no_work_flow_from_destination{r in Demand, n in Node, j in Span: n 

=  Destination[r] and Incidence[j,n]=1}: 

work_flow_from[n,j,r] = 0; 

 # Working flows from the destination of a demand are zero.  

 

subject to work_flow_conservation{r in Demand, n in Node: n <> Origin[r] and 

n<>Destination[r]}: 

sum {j in Span: Incidence[j,n]=1} work_flow_from[n,j,r] = sum {j in Span: 

Incidence[j,n]=1} work_flow_into[n,j,r]; 

 # Flow coming out of a node equals flow going into the node. 

 

subject to anti_symettry_w1{j in Span, r in Demand}: 

sum {n in Node: IncidenceA[j,n]=1} work_flow_from[n,j,r] = sum {n in Node: 

IncidenceB[j,n]=1} work_flow_into[n,j,r]; 

 # Flow from one node on a span must be going into the other node on 

# that same span. 

 

subject to anti_symettry_w2{j in Span, r in Demand}: 

sum {n in Node: IncidenceB[j,n]=1} work_flow_from[n,j,r] = sum {n in Node: 

IncidenceA[j,n]=1} work_flow_into[n,j,r]; 

 # Flow from one node on a span must be going into the other node on  

 # that same span. 

 

 

subject to working_capacity_placement{j in Span}: 

work[j] >= sum{n in Node, r in Demand: Incidence[j,n]=1} 

work_flow_from[n,j,r]; 
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 # Sufficient working capacity must be placed on span j to accommodate 

# all flows routed over it. 

  

subject to NoOptionalSpan_NoBypassSpan{n in Ncnb}: 

2 * sum{j in OptionalSpan : Incidence[j,n]=1} Delta[j] >= sum{k in BypassSpan 

: Incidence[k,n]=1} Delta[k]; 

 # Make sure that there is no bypass span for any nodes which does not 

# connected to any chosen optional span. 

  

subject to bypassSpans_nodeonchain_1{n in Ncnb}: 

1 >= sum{j in BypassOfNode[n]} Delta[j]; 

 # Make sure that only one bypass span or less is chosen for any node on  

 # a chain. 

 

subject to optionalspan_nodeonchain_2_1{n in Ncnb}: 

sum{j in OptionalSpan : Incidence[j,n]=1} Delta[j]<= 

(card(OptionalSpan)+1)*(1-y[n]); 

 

subject to optionalspan_nodeonchain_2_2{n in Ncnb, r in Demand, b in 

BypassOfNode[n],g in Node: Incidence[b,g]=1}: 

work_flow_from[g,b,r] <= 25000*y[n]; 

 # Make sure that no bypass spans over a chosen  optional span. 

  

  

# SPARE-RELATED CONSTRAINTS 

 

subject to bypass_spare_flows{i in Span,j in BypassSpan, n in Node: 

Incidence[j,n]=1 and i<>j}: 

spare_flow_from[n,j,i] = 0; 

 # Restoration flows over the bypass spans are zero. 

  

subject to source_spare_flows{i in Span, n in Node: IncidenceA[i,n]=1}: 

sum {j in Span: Incidence[j,n]=1 and i<>j} spare_flow_from[n,j,i] = work[i]; 

 # Restoration flows for failure of span i flowing FROM its origin node 

# is equal to the total working capacity on that failed span. 

 

subject to no_spare_flow_into_origin{i in Span, n in Node, j in Span: 

IncidenceA[i,n]=1 and Incidence[j,n]=1 and i<>j}: 

spare_flow_into[n,j,i] = 0; 

 # Restoration flows into the origin of a failed span are zero. 

 

subject to sink_spare_flows{i in Span, n in Node: IncidenceB[i,n]=1}: 

sum {j in Span: Incidence[j,n]=1 and i<>j} spare_flow_into[n,j,i] = work[i]; 

 # Restoration flows for failure of span i flowing INTO the destination  

 # node is equal to the total working capacity on that failed span. 

 

subject to no_spare_flow_from_destination{i in Span, n in Node, j in Span: 

IncidenceB[i,n]=1 and Incidence[j,n]=1 and i<>j}: 

spare_flow_from[n,j,i] = 0; 

 # Restoration flows from the destination of a failed span are zero. 

 

subject to spare_flow_conservation{i in Span, n in Node: Incidence[i,n]<>1}: 

sum {j in Span: Incidence[j,n]=1 and i<>j} spare_flow_from[n,j,i] = sum {j in 

Span: Incidence[j,n]=1 and i<>j} spare_flow_into[n,j,i]; 

 # Flow coming out of a node equals flow going into the node. 

 

subject to anti_symettry_s1{j in Span, i in Span: i<>j}: 



203 

 

sum {n in Node: IncidenceA[j,n]=1} spare_flow_from[n,j,i] = sum {n in Node: 

IncidenceB[j,n]=1} spare_flow_into[n,j,i]; 

 # Flow from one node on a span must be going into the other node on 

# that same span. 

 

subject to anti_symettry_s2{j in Span, i in Span: i<>j}: 

sum {n in Node: IncidenceB[j,n]=1} spare_flow_from[n,j,i] = sum {n in Node: 

IncidenceA[j,n]=1} spare_flow_into[n,j,i]; 

 # Flow from one node on a span must be going into the other node on 

# that same span. 

  

subject to no_spare_flow_forBypass_OverItsChain{i in BypassSpan, n in Node, j 

in ChainOfBypass[i]: Incidence[i,n]=1 and Incidence[j,n]=1 and i<>j}: 

spare_flow_from[n,j,i] = 0; 

 # Restoration flows for bypass span over its chain spans are zero. 

 

subject to spare_capacity_placement_1{j in Span, i in DirectOptional, n in 

Node: IncidenceA[j,n]=1 and i<>j}: 

spare[j] >= spare_flow_from[n,j,i] + spare_flow_into[n,j,i]; 

 # Sufficient spare capacity must be placed on span j to accomodate all  

 # flows routed over it for each span failure i belong to direct spans  

 # or optional spans. 

 

subject to spare_capacity_placement_2{j in Span, i in ChainSpan, b in 

BypassOfChain[i], n in Node: IncidenceA[j,n]=1 and i<>j and j<>b}: 

spare[j] >= spare_flow_from[n,j,i] + spare_flow_into[n,j,i] + 

spare_flow_from[n,j,b] + spare_flow_into[n,j,b]; 

 # Sufficient spare capacity must be placed on span j to accomodate all  

 # flows routed over it for each span failure i belong to chain spans  

 # with its corresponding bypass spans. 

  

# SPAN-USE CONSTRAINT 

 

subject to span_use_1{j in NewSpan}: 

work[j] + spare[j] <= Delta[j]*25000; 

 # If there is any capacity placed on span j, then psi[j] must be forced  

 # to equal one (i.e. span j is used). 

 

subject to span_use_2{j in NewSpan}: 

work[j] + spare[j] >= Delta[j]; 

 # This condition to keep the delta at zero in case that the bypass span 

  # did not be used. 
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2.2 Incremental Topology Optimization using p-Cycle method 

#Written by Ahmed Zaky, Md Noor E Noor, and John Doucette  

 

#**************************** 

# SETS 

#**************************** 

 

set Node; 

# Set of all logical nodes. 

 

set Demand; 

# Set of all demands. 

 

set Existing_SPANS; 

# Set of all existing spans. 

 

set Future_SPANS; 

# Set of all future spans. 

 

set Span:=Existing_SPANS union Future_SPANS; 

# Set of all spans.It is a union of existing span and future span we may add. 

 

set PCYCLES; 

# Set of all p-cycles. 

 

param Incidence{j in Span, n in Node} default 0; 

 # Equal to 1 if span j is incident on node n, 0 otherwise. 

 

param IncidenceA{j in Span, n in Node} default 0; 

 # Equal to 1 if span j starts at node n, 0 otherwise (abitrary whether 

# starts or ends on node). 

 

param IncidenceB{j in Span, n in Node} default 0; 

 # Equal to 1 if span j ends at node n, 0 otherwise. 

 

#param factor; 

 

# WORKING DEMANDS 

 

param Origin{r in Demand} symbolic in Node; 

# Origin node of span demand r. 

 

param Destination{r in Demand} symbolic in Node; 

# Destination node of demand r. 

 

param DemandUnits{r in Demand} default 0; 

# Size of demand r. 

 

param Existing_Cost{j in Existing_SPANS}; 

# Cost of each unit of capacity on existing span j. 

 

param Future_Cost{i in Future_SPANS}; 

# Cost of each unit of capacity on future span i. 

 

param Xpi{p in PCYCLES, i in Span} default 0; 

# Number of paths a single copy of p-cycle p provides for restoration of  
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 # failure of span i (2 if straddling span, 1 if on-cycle span, 0  

 # otherwise). 

 

param pCrossesj{p in PCYCLES, j in Span} := sum{i in Span: i = j and Xpi[p,j] 

= 1} 1; 

# Equal to 1 if p-cycle p passes over span j, 0 otherwise. i.e. if  

# Xpi[p,j] = 1, then p-cycle p crosses span j. 

 

param M :=10000; 

 

param factor:=10; 

 

#**************************** 

# VARIABLES 

#**************************** 

 

var p_cycle_usage{p in PCYCLES} >=0 integer, <= 10000; 

# Number of copies of p-cycle p used. 

 

var Selection_variable{i in Future_SPANS} integer >=0,<=1 ; 

# if we select any future span , this will have a value 1, otherwise 0 

 

var d1{i in Future_SPANS} integer >=0,<=1 ; 

 

var d2{i in Future_SPANS} integer >=0,<=1 ; 

 

var spare{i in Span}>=0 integer, <= 10000; 

 

var work_flow_from{n in Node, j in Span, r in Demand: Incidence[j,n]=1} >=0, 

<=DemandUnits[r]; 

 

var work_flow_into{n in Node, j in Span, r in Demand: Incidence[j,n]=1} >=0, 

<=DemandUnits[r]; 

 # Total directed working traffic flows from and into node n on span j  

 # for demand r. 

 

var Work{j in Span} >=0, <=10000 integer; 

 # Total amount of working capacity (i.e. number of wavelengths) placed  

 # on span j. 

 

#**************************** 

# OBJECTIVE FUNCTION 

#**************************** 

minimize totalcost: sum{j in Existing_SPANS} (Existing_Cost[j] * spare[j])+ 

sum{j in Existing_SPANS} (Existing_Cost[j] * Work[j]) 

+sum{i in Future_SPANS}(factor* 

Future_Cost[i]*Selection_variable[i]+Future_Cost[i] * spare[i]+Future_Cost[i] 

* Work[i]); 

 

#**************************** 

# CONSTRAINTS 

#**************************** 

 

# WORK-RELATED CONSTRAINTS 

 

subject to source_work_flows{r in Demand, n in Node: n =  Origin[r]}: 

sum {j in Span: Incidence[j,n]=1} work_flow_from[n,j,r] = DemandUnits[r]; 
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 # Working flows for demand r flowing FROM the origin node is equal to  

 # the total demand on that demand pair. 

 

subject to no_work_flow_into_origin{r in Demand, n in Node, j in Span: n =  

Origin[r] and Incidence[j,n]=1}: 

work_flow_into[n,j,r] = 0; 

 # Working flows into the origin of a demand are zero.  

 

subject to sink_work_flows{r in Demand, n in Node: n = Destination[r]}: 

sum {j in Span: Incidence[j,n]=1} work_flow_into[n,j,r] = DemandUnits[r]; 

 # Working flows for demand r flowing INTO the destination node is equal  

 # to the total demand on that demand pair.  

 

subject to no_work_flow_from_destination{r in Demand, n in Node, j in Span: n 

=  Destination[r] and Incidence[j,n]=1}: 

work_flow_from[n,j,r] = 0; 

 # Working flows from the destination of a demand are zero.  

 

subject to work_flow_conservation{r in Demand, n in Node: n <> Origin[r] and 

n<>Destination[r]}: 

sum {j in Span: Incidence[j,n]=1} work_flow_from[n,j,r] = sum {j in Span: 

Incidence[j,n]=1} work_flow_into[n,j,r]; 

 # Flow coming out of a node equals flow going into the node. 

 

subject to anti_symettry_w1{j in Span, r in Demand}: 

sum {n in Node: IncidenceA[j,n]=1} work_flow_from[n,j,r] = sum {n in Node: 

IncidenceB[j,n]=1} work_flow_into[n,j,r]; 

 # Flow from one node on a span must be going into the other node on  

 # that same span. 

 

subject to anti_symettry_w2{j in Span, r in Demand}: 

sum {n in Node: IncidenceB[j,n]=1} work_flow_from[n,j,r] = sum {n in Node: 

IncidenceA[j,n]=1} work_flow_into[n,j,r]; 

 # Flow from one node on a span must be going into the other node on  

 # that same span. 

 

 

subject to working_capacity_placement{j in Span}: 

Work[j] >= sum{n in Node, r in Demand: Incidence[j,n]=1} 

work_flow_from[n,j,r]; 

 # Sufficient working capacity must be placed on span j to accomodate  

 # all flows routed over it. 

 

subject to full_span_restoration{i in Span}:  

Work[i] <= sum{p in PCYCLES} Xpi[p,i] * p_cycle_usage[p]; 

# All span failures must be restorable. 

 

subject to spare_capacity_placement{j in Span}: 

spare[j] >= sum{p in PCYCLES} pCrossesj[p,j] * p_cycle_usage[p]; 

# Sufficient spare capacity must be placed on each span to  

# simultaneously accommodate all p-cycles used. 

 

subject to decision1  {i in Future_SPANS}: -Selection_variable[i]+1<=M*d1[i]; 

subject to decision2 {i in Future_SPANS} :  Work[i]+spare[i]<=M*(1-d1[i]); 

subject to decision3  {i in Future_SPANS}: Selection_variable[i]-1<=M*d2[i]; 

subject to decision4 {i in Future_SPANS} :   Work[i]+spare[i]<=M*(1-d2[i]); 
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2.3 Enhanced NEPC ILP Model 

# Enhanced Node-Encircling p-Cycle JCP IP Model for AMPL - Version 1.0 

# March 2010 by Ahmed Kasem and John Doucette 

# Copyright (C) 2010 TRLabs, Inc. All Rights Reserved. 

 

# ******************************************************** 

 

# TRLabs 

# 7th Floor  

# 9107 116 Street NW 

# Edmonton, Alberta, Canada 

# T6G 2V4 

 

# +1 780 441-3800 

# www.trlabs.ca 

 

# ******************************************************** 

 

# This model, including any data and algorithms contained herein, is the 

# exclusive property of TRLabs, held on behalf of its sponsors. Except 

# as specifically authorized in writing by TRLabs, the recipient of this 

# model shall keep it confidential and shall protect it in whole or 

# in part from disclosure and dissemenation to all third parties, and the 

# associated readme file must accompany any such disclosure or dissemenation. 

 

# If any part of this model, including any data and algorithms contained 

# herein, is used in any derivative works or publications, TRLabs shall be 

# duly cited as a reference.Recommended citation is as follows:  

 

# J. Doucette, "ENEPC.mod: Node-Encircling p-Cycle JCP IP Model for  

# AMPL - Version 1.0," TRLabs proprietary AMPL ILP model, Edmonton, AB,  

# March 2005. 

 

# TRLabs makes no representation or warranties about the suitability of 

# this model, either express or implied, including but not limited to 

# implied warranties of merchantability, fitness for a particular purpose, 

# or non-infringement. TRLabs shall not be liable for any damages suffered 

# as a result of using, modifying or distributing this model or its 

# derivatives. 

 

#**************************** 

 

# This is an AMPL model for determining the minimum-cost NEPC network design.  

# This model optimizes NEPC and span-protecting p-cycles so as to fully 

protect 

# the network from all possible single-link and single-node failures.  

# Working capacities are simultaneously optimized. 

 

#**************************** 

 

#**************************** 

# SETS 

#**************************** 

 

set NODES; 

# Set of all nodes. 
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set SPANS; 

# Set of all spans. 

 

set PCYCLES; 

# Set of all p-cycles. 

 

set DEMANDS; 

# Set of all O-D demand pairs. 

 

set WORK_ROUTES{r in DEMANDS}; 

# Set of all working routes for each demand pair r. 

 

 

#**************************** 

# PARAMETERS 

#**************************** 

 

param Cost{j in SPANS}; 

# Cost of each unit of capacity on span j. 

 

param DemandUnits{r in DEMANDS} default 0; 

# Number of demand units between node pair r. 

 

param DemEndNodes{r in DEMANDS, n in NODES} default 0; 

# Equal to 1 if node n is an end node of demand r, 0 otherwise. 

 

param ZetaWorkRoute{j in SPANS, r in DEMANDS, q in WORK_ROUTES[r]} default 0; 

# Equal to 1 if qth working route for demand between node pair r uses span j 

# and 0 otherwise. 

 

param WorkRouteByNode{n in NODES, r in DEMANDS, q in WORK_ROUTES[r]} default 

0; 

# Equal to 1 if qth working route for demand between node pair r crosses node 

# n and 0 otherwise. 

 

param Xpi{p in PCYCLES, i in SPANS} default 0; 

# Number of paths a single copy of p-cycle p provides for restoration of  

# failure of span i (2 if straddling span, 1 if on-cycle span, 0 otherwise). 

 

param pCrossesj{p in PCYCLES, j in SPANS} := sum{i in SPANS: i = j and 

Xpi[p,j] = 1} 1; 

# Equal to 1 if p-cycle p passes over span j, 0 otherwise. 

# i.e. if Xpi[p,j] = 1, then p-cycle p crosses span j. 

 

param Xpn{p in PCYCLES, n in NODES} default 0; 

# Equal to 1 if p-cycle p can act as an NEPC for node n, 0 otherwise. 

 

param MaxCapacity := sum {r in DEMANDS} DemandUnits[r]; 

# Used for upper bounds on variables. 

 

 

#**************************** 

# VARIABLES 

#**************************** 

 

var workflow{r in DEMANDS, q in WORK_ROUTES[r]} >=0, <= MaxCapacity; 
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# Working capacity required by qth working route for demand between node pair 

r. 

 

var work{j in SPANS} >=0 integer, <= MaxCapacity; 

# Number of working wavelengths placed on span j. 

 

var workToProtect{j in SPANS} >=0 integer, <= MaxCapacity; 

# Number of working wavelengths to be protect by p-cycles on span j. 

 

var transitingflow{n in NODES} >=0 integer, <= MaxCapacity; 

# Amount of transiting flow through each node. 

 

var p_cycle_usage{p in PCYCLES} >=0 integer, <= MaxCapacity; 

# Number of copies of p-cycle p used. 

 

var spare{j in SPANS} >=0 integer, <= MaxCapacity; 

# Number of spare links placed on span j. 

 

var total_cost_spare >=0, <=1000000000000; 

# Total cost of spare capacity. 

 

var total_cost_work >=0, <=1000000000000; 

# Total cost of working capacity. 

 

#**************************** 

# OBJECTIVE FUNCTION 

#**************************** 

 

minimize TotalCost: total_cost_spare + total_cost_work; 

# Minimize the total cost of capacity. 

# Total costs of working and spare are calculated individually below as  

# variables. 

# We do it this way so that we can simply look at the values of those two  

# variables to determine the separate costs of working and spare (instead of 

# needing to set up a spreadsheet with individual span capacities to  

# calculate them). 

 

 

#**************************** 

# CONSTRAINTS 

#**************************** 

 

subject to demands_met{r in DEMANDS}: 

sum{q in WORK_ROUTES[r]} workflow[r,q] = DemandUnits[r]; 

# All demands must be fully routed. 

 

subject to working_capacity_assignment{j in SPANS}: 

work[j] = sum{r in DEMANDS, q in WORK_ROUTES[r]: ZetaWorkRoute[j,r,q]=1} 

workflow[r,q]; 

# There must be enough working capacity on span j to accomodate all working  

# flows simultaneously routed over it by all demand pairs. 

 

subject to working_Capacities_protected{j in SPANS}: 

workToProtect[j] = sum{r in DEMANDS, q in WORK_ROUTES[r]: 

ZetaWorkRoute[j,r,q]=1 and  sum{n in NODES} WorkRouteByNode[n,r,q]==2} 

workflow[r,q]; 

# Working capacities that will be protected by the p-cycles. 
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subject to transiting_flow_calculation{n in NODES}: 

transitingflow[n] =  

sum{r in DEMANDS, q in WORK_ROUTES[r]: WorkRouteByNode[n,r,q]=1 and 

DemEndNodes[r,n] = 0} 

workflow[r,q]; 

 

subject to full_span_restoration{i in SPANS}:  

workToProtect[i] <= sum{p in PCYCLES} Xpi[p,i] * p_cycle_usage[p]; 

# All span failures must be restorable. 

 

subject to full_node_restoration{n in NODES}: 

transitingflow[n] <= sum{p in PCYCLES} Xpn[p,n] * 2 * p_cycle_usage[p]; 

# All node failures must also be restorable. 

# The 2x multiplier is because Xpn is a 1/0 parameter and if 

# Xpn[p,n] = 1, then it actually provides two restoration routes. 

 

subject to spare_capacity_placement{j in SPANS}: 

spare[j] >= sum{p in PCYCLES} pCrossesj[p,j] * p_cycle_usage[p]; 

# Sufficient spare capacity must be placed on each span to  

# simultaneously accommodate all p-cycles used. 

 

 

 

subject to calulate_spare_cost: 

total_cost_spare = sum{j in SPANS} Cost[j] * spare[j]; 

# The total cost of spare capacity is the sum of the costs of spare on each  

# span. 

 

subject to calulate_work_cost: 

total_cost_work = sum{j in SPANS} Cost[j] * work[j]; 

# The total cost of working capacity is the sum of the costs of working on  

# each span. 
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Appendix 3 Data Files Samples 

# Enhanced NEPC AMPL Data File. 

 

# Mon Apr 19 21:25:18 2012 

# for use with NEPC-INC-TOP.mod AMPL model. 

# Generated by ENEPC.exe, written by Ahmed Kasem, and John Doucette, April 

2012. 

 

#************************************************** 

 

# Contact john.doucette@trlabs.ca or Ahmed Kasem for more information. 

# Copyright (C) 2012 TRLabs, Inc. All Rights Reserved. 

 

#    TRLabs 

#    Edmonton, AB, Canada 

#    +1 780 441-3800 

#    www.trlabs.ca 

 

#************************************************** 

# This software, including any data and algorithms contained within, 

# is the exclusive property of TRLabs, held on behalf of its sponsors. 

# Except as specifically authorized in writing by TRLabs, the recipient 

# of this software shall keep it confidential and shall protect it in 

# whole or in part from disclosure and dissemenation to all third 

# parties, and the associated readme file must accompany any such 

# approved disclosure or dissemenation. 

# If any part of this software, including any data and algorithms 

# contained herein, is used in any derivative works or publications, 

# TRLabs shall be duly cited as a reference. The recommended citation 

# is as follows: 

# A.Kasem J. Doucette, 'ENEPC-DatPrepV2.exe:  

# AMPL Data File Preparation Software Version 1.0,' TRLabs proprietary 

# software, Edmonton, AB, Canada, April 2012. 

 

# TRLabs makes no representation or warranties about the suitability 

# of this software, either express or implied, including but not 

# limited to implied warranties of merchantability, fitness for a 

# particular purpose, or non-infringement. TRLabs shall not be liable 

# for any damages suffered as a result of using, modifying or 

# distributing this software or its derivatives. 

 

#************************************************** 

 

# Command Line Used: 

# c:\src\ENEPC\Release\Enhanced NEPC.exe 

# c:\temp\10n20s1.top c:\temp\10n20s1.dem c:\temp\10n20s1.dat  

 

set NODES := 

N01 

N02 

N03 

N04 

N05 

N06 

N07 
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N08 

N09 

N10 

; 

 

set SPANS := 

S01 

S02 

S03 

S04 

S05 

S06 

S07 

S08 

S09 

S10 

S11 

S12 

S13 

S14 

S15 

S16 

S17 

S18 

S19 

S20 

; 

 

param UnitCost := 

S01 107.703 

S02 97.062 

S03 154.175 

S04 119.000 

S05 86.145 

S06 122.483 

S07 125.399 

S08 117.478 

S09 93.086 

S10 111.826 

S11 150.629 

S12 84.172 

S13 74.000 

S14 107.224 

S15 137.295 

S16 160.240 

S17 95.079 

S18 90.670 

S19 111.018 

S20 76.000 

; 

 

param TransitingFlow := 

N01 0 

N02 0 

N03 6 

N04 34 

N05 5 
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N06 4 

N07 49 

N08 7 

N09 29 

N10 8 

; 

 

param Work := 

S01 7 

S02 25 

S03 15 

S04 12 

S05 18 

S06 17 

S07 12 

S08 24 

S09 16 

S10 15 

S11 15 

S12 14 

S13 28 

S14 20 

S15 19 

S16 12 

S17 33 

S18 19 

S19 22 

S20 23 

; 

 

set PCYCLES := P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 

P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 

P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50 P51 P52 P53 P54 P55 

P56 P57 P58 P59 P60 P61 P62 P63 P64 P65 P66 P67 P68 P69 P70 P71 P72 P73 P74 

P75 P76 P77 P78 P79 P80 P81 P82 P83 P84 P85 P86 P87 P88 P89 P90 P91 P92 P93 

P94 P95 P96 P97 P98 P99 P100 P101 P102 P103 P104 P105 P106 P107 P108 P109 

P110 P111 P112 P113 P114 P115 P116 P117 P118 P119 P120 P121 P122 P123 P124 

P125 P126 P127 P128 P129 P130 P131 P132 P133 P134 P135 P136 P137 P138 P139 

P140 P141 P142 P143 P144 P145 P146 P147 P148 P149 P150 P151 P152 P153 P154 

P155 P156 P157 P158 P159 P160 P161 P162 P163 P164 P165 P166 P167 P168 P169 

P170 P171 P172 P173 P174 P175 P176 P177 P178 P179 P180 P181 P182 P183 P184 

P185 P186 P187 P188 P189 P190 P191 P192 P193 P194 P195 P196 P197 P198 P199 

P200 P201 P202 P203 P204 P205 P206 P207 P208 P209 P210 P211 P212 P213 P214 

P215 P216 P217 P218 P219 P220 P221 P222 P223 P224 P225 P226 P227 P228 P229 

P230 P231 P232 P233 P234 P235 P236 P237 P238 P239 P240 P241 P242 P243 P244 

P245 P246 P247 P248 P249 P250 P251 P252 P253 P254 P255 P256 P257 P258 P259 

P260 P261 P262 P263 P264 P265 P266 P267 P268 P269 P270 P271 P272 P273 P274 

P275 P276 P277 P278 P279 P280 P281 P282 P283 P284 P285 P286 P287 P288 P289 

P290 P291 P292 P293 P294 P295 P296 P297 P298 P299 P300 P301 P302 P303 P304 

P305 P306 P307 P308 P309 P310 P311 P312 P313 P314 P315 P316 P317 P318 P319 

P320 P321 P322 P323 P324 P325 P326 P327 P328 P329 P330 P331 P332 

; 

 

param Xpi := 

[P0, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 0 S11 0 S12 

1 S13 1 S14 1 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 
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[P1, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 0 S11 0 S12 

0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 1 S19 1 S20 1 

[P2, *] S01 1 S02 1 S03 0 S04 0 S05 1 S06 0 S07 0 S08 0 S09 0 S10 0 S11 0 S12 

0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P3, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 1 S11 0 S12 

0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 0 

[P4, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 1 S08 1 S09 0 S10 0 S11 0 S12 

0 S13 1 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P5, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 1 S07 0 S08 0 S09 0 S10 0 S11 0 S12 

0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P6, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 1 S10 0 S11 0 S12 

0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P7, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 1 S11 1 S12 

0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 1 

[P8, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 0 S11 0 S12 

0 S13 0 S14 0 S15 0 S16 1 S17 1 S18 1 S19 0 S20 0 

[P9, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 0 S11 1 S12 

0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P10, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 0 S11 0 

S12 0 S13 0 S14 1 S15 1 S16 1 S17 0 S18 0 S19 0 S20 0 

[P11, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P12, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 1 S10 0 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P13, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 1 S10 0 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P14, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 0 S11 0 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 1 S18 1 S19 0 S20 0 

[P15, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 1 S08 1 S09 0 S10 0 S11 0 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P16, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 1 

[P17, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 0 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 1 S18 2 S19 1 S20 1 

[P18, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 1 S07 0 S08 0 S09 0 S10 0 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P19, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 1 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 0 

[P20, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 0 S11 0 

S12 1 S13 1 S14 2 S15 1 S16 1 S17 0 S18 0 S19 0 S20 0 

[P21, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 1 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 0 S20 0 

[P22, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 1 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 1 S19 1 S20 2 

[P23, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 0 S11 0 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 1 S18 1 S19 0 S20 0 

[P24, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 1 S10 0 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P25, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 0 S10 0 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P26, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 0 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P27, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P28, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 0 S11 0 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 1 S18 2 S19 1 S20 1 
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[P29, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 0 

[P30, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 1 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 0 

[P31, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 1 S10 0 S11 0 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P32, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 0 S08 1 S09 1 S10 0 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P33, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 0 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 1 

[P34, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 1 S11 0 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P35, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P36, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 2 S19 1 S20 1 

[P37, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P38, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 1 S19 1 S20 2 

[P39, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P40, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 0 S10 0 S11 0 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 1 

[P41, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 1 S11 0 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P42, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 0 S11 1 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P43, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 1 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 0 S20 0 

[P44, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 0 

[P45, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P46, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 1 S10 0 S11 0 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P47, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 0 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P48, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 0 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P49, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 1 S08 1 S09 0 S10 0 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 0 S18 0 S19 0 S20 0 

[P50, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 2 S10 1 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 1 S18 2 S19 1 S20 2 

[P51, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 1 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P52, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P53, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P54, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P55, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 1 S18 0 S19 0 S20 0 

[P56, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 1 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 0 
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[P57, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 1 S08 1 S09 0 S10 0 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 1 S19 0 S20 0 

[P58, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 0 S11 1 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P59, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 0 S08 0 S09 0 S10 0 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P60, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 2 S11 1 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P61, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 0 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 1 S19 1 S20 2 

[P62, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 0 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P63, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P64, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 0 S08 1 S09 0 S10 0 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P65, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P66, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 0 S09 0 S10 1 S11 0 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 1 S19 0 S20 0 

[P67, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 1 S19 0 S20 0 

[P68, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 1 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 0 S20 0 

[P69, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 1 S11 0 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P70, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P71, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 1 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P72, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 0 S08 0 S09 0 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 1 

[P73, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 2 S19 1 S20 1 

[P74, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 0 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P75, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 2 S11 1 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P76, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 1 S10 0 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P77, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 2 S10 1 S11 1 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 1 S18 2 S19 1 S20 2 

[P78, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P79, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 1 S10 0 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 0 S18 0 S19 0 S20 0 

[P80, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P81, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 1 S18 0 S19 0 S20 0 

[P82, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 1 S18 2 S19 1 S20 2 

[P83, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 0 

[P84, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 0 S09 0 S10 0 S11 1 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 0 S19 1 S20 0 
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[P85, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 0 S11 0 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P86, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P87, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 2 S08 1 S09 2 S10 1 S11 0 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P88, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 0 S08 1 S09 1 S10 0 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P89, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 0 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P90, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P91, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 0 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P92, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P93, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 0 S11 1 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P94, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 1 S08 1 S09 0 S10 0 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 1 

[P95, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 1 S10 2 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 1 S19 0 S20 0 

[P96, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 0 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P97, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 2 S09 0 S10 0 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P98, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 0 S09 0 S10 1 S11 0 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 1 S19 0 S20 0 

[P99, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P100, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P101, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 2 S07 1 S08 1 S09 1 S10 1 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P102, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P103, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 0 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P104, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P105, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 0 S07 0 S08 0 S09 2 S10 1 S11 1 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 2 

[P106, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 1 S19 0 S20 0 

[P107, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 0 S08 2 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P108, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P109, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 0 S09 0 S10 1 S11 2 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 2 S19 1 S20 1 

[P110, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P111, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P112, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 0 S08 1 S09 0 S10 0 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 
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[P113, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 1 S11 0 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P114, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P115, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 0 S08 1 S09 1 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 2 S18 0 S19 0 S20 1 

[P116, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 1 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 2 S19 1 S20 1 

[P117, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 2 S19 1 S20 1 

[P118, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P119, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 0 S09 0 S10 2 S11 1 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 1 S19 2 S20 1 

[P120, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P121, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 0 S08 1 S09 0 S10 0 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P122, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 1 S10 0 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P123, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 2 S08 1 S09 2 S10 0 S11 1 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P124, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P125, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P126, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P127, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 1 S19 0 S20 0 

[P128, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 1 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 0 S20 0 

[P129, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 1 S10 0 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 0 S18 0 S19 0 S20 0 

[P130, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 1 S10 2 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P131, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 0 S09 0 S10 0 S11 1 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 0 S19 1 S20 0 

[P132, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 1 S18 2 S19 1 S20 2 

[P133, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 0 S08 0 S09 0 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 0 S18 1 S19 1 S20 2 

[P134, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P135, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 2 S07 1 S08 1 S09 1 S10 0 S11 1 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P136, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 2 S08 1 S09 2 S10 1 S11 0 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P137, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 0 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P138, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 0 S08 1 S09 0 S10 0 S11 0 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P139, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 1 S18 2 S19 1 S20 2 

[P140, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 0 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 
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[P141, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P142, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 0 S11 1 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P143, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 0 S11 1 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P144, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 1 S10 2 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 1 S19 0 S20 0 

[P145, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 0 S09 0 S10 0 S11 2 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 0 S19 1 S20 0 

[P146, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 2 S08 1 S09 2 S10 1 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P147, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 1 S18 2 S19 0 S20 0 

[P148, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 0 S09 0 S10 0 S11 0 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 0 S19 1 S20 0 

[P149, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P150, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P151, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 0 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P152, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 1 S10 2 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 1 

[P153, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P154, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 0 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P155, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 0 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P156, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 1 S18 0 S19 0 S20 0 

[P157, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 1 S10 0 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P158, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 0 S09 0 S10 1 S11 2 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 2 S19 1 S20 1 

[P159, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 2 S09 0 S10 0 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P160, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P161, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P162, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P163, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 2 S08 1 S09 2 S10 2 S11 1 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P164, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 0 S08 1 S09 0 S10 0 S11 0 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P165, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 1 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 2 

[P166, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 2 S07 1 S08 1 S09 1 S10 1 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P167, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 0 S08 1 S09 2 S10 0 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P168, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 0 S11 1 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 0 S18 0 S19 1 S20 0 
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[P169, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 1 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 2 S18 0 S19 0 S20 1 

[P170, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P171, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 0 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P172, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 1 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 2 S19 1 S20 1 

[P173, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 0 S07 0 S08 0 S09 2 S10 1 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 2 

[P174, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 1 S11 2 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P175, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P176, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 0 S08 2 S09 1 S10 0 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P177, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 2 S09 0 S10 0 S11 0 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P178, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 0 S09 0 S10 2 S11 1 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 1 S19 2 S20 1 

[P179, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P180, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P181, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 1 S08 0 S09 0 S10 1 S11 0 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 1 S19 0 S20 0 

[P182, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 2 S07 1 S08 1 S09 1 S10 2 S11 1 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P183, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 2 S09 0 S10 0 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P184, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 2 S08 1 S09 2 S10 0 S11 1 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P185, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P186, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P187, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P188, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 1 S19 0 S20 0 

[P189, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P190, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 1 S19 0 S20 0 

[P191, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 1 S15 2 S16 2 S17 1 S18 1 S19 1 S20 2 

[P192, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 0 S09 0 S10 2 S11 2 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 1 S19 2 S20 1 

[P193, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 1 S11 0 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P194, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P195, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 0 S08 2 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P196, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 0 S09 0 S10 0 S11 0 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 1 S19 2 S20 1 
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[P197, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 2 S08 1 S09 2 S10 0 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P198, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 1 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 2 S19 1 S20 1 

[P199, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P200, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 2 S19 1 S20 1 

[P201, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P202, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P203, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 1 S10 2 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P204, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 2 S08 1 S09 0 S10 0 S11 0 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P205, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 0 S08 1 S09 1 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 2 S17 2 S18 1 S19 1 S20 2 

[P206, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 2 S09 0 S10 0 S11 0 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P207, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 0 S08 1 S09 0 S10 0 S11 0 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P208, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 1 S18 2 S19 1 S20 2 

[P209, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 0 S11 1 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P210, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 0 S09 0 S10 0 S11 2 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 0 S19 1 S20 0 

[P211, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P212, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 1 S19 2 S20 1 

[P213, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 2 S08 1 S09 2 S10 1 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P214, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P215, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 1 S18 2 S19 0 S20 0 

[P216, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 2 S07 1 S08 1 S09 1 S10 0 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P217, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 0 S08 2 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P218, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 0 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 0 S18 0 S19 0 S20 0 

[P219, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 0 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P220, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 1 S10 2 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 1 

[P221, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 0 S09 0 S10 0 S11 2 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 0 S19 1 S20 0 

[P222, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 0 S11 2 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P223, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 0 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P224, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 0 S09 0 S10 0 S11 1 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 0 S19 1 S20 0 
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[P225, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 2 S07 1 S08 1 S09 2 S10 1 S11 1 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 2 

[P226, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 2 S08 1 S09 2 S10 2 S11 1 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P227, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 2 S09 0 S10 0 S11 0 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P228, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 0 S17 1 S18 0 S19 0 S20 2 

[P229, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 2 S08 1 S09 2 S10 1 S11 0 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P230, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 2 S09 2 S10 0 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P231, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 0 S11 1 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 0 S18 0 S19 0 S20 0 

[P232, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 0 S08 1 S09 2 S10 0 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P233, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 0 S11 1 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 0 S18 0 S19 1 S20 0 

[P234, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P235, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 0 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 0 S18 0 S19 1 S20 0 

[P236, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 0 S11 1 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P237, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 1 S11 2 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P238, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 2 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 1 S19 0 S20 0 

[P239, *] S01 0 S02 0 S03 0 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 1 S18 2 S19 2 S20 1 

[P240, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 0 S08 2 S09 1 S10 0 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P241, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P242, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 2 S08 1 S09 2 S10 2 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P243, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P244, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 2 S08 1 S09 0 S10 0 S11 0 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P245, *] S01 1 S02 2 S03 1 S04 0 S05 1 S06 0 S07 0 S08 0 S09 2 S10 1 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 2 

[P246, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 0 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 0 S18 0 S19 1 S20 0 

[P247, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 1 S18 0 S19 0 S20 1 

[P248, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P249, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P250, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 2 S09 0 S10 0 S11 0 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 0 S18 0 S19 1 S20 0 

[P251, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 1 S15 2 S16 2 S17 1 S18 1 S19 1 S20 2 

[P252, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 0 S09 0 S10 1 S11 2 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 2 S19 1 S20 1 
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[P253, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 0 S09 0 S10 2 S11 2 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 1 S19 2 S20 1 

[P254, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 1 S19 0 S20 0 

[P255, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 2 S17 1 S18 1 S19 1 S20 2 

[P256, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 2 S07 1 S08 1 S09 1 S10 2 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P257, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 1 S11 2 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 2 S18 0 S19 0 S20 1 

[P258, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 2 S08 1 S09 2 S10 0 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P259, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 1 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 2 S19 1 S20 1 

[P260, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 0 S08 2 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 1 S18 2 S19 1 S20 2 

[P261, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 2 S19 1 S20 1 

[P262, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P263, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 0 S09 0 S10 2 S11 2 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 1 S19 2 S20 1 

[P264, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P265, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P266, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P267, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 1 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 2 S17 2 S18 1 S19 1 S20 2 

[P268, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 2 S17 1 S18 1 S19 1 S20 2 

[P269, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 0 S09 0 S10 2 S11 1 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 1 S19 2 S20 1 

[P270, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 2 S09 0 S10 0 S11 0 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P271, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 2 S09 0 S10 0 S11 0 

S12 1 S13 2 S14 1 S15 2 S16 2 S17 1 S18 1 S19 1 S20 2 

[P272, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 2 S08 1 S09 2 S10 0 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P273, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P274, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 2 S08 1 S09 2 S10 0 S11 1 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P275, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 0 S08 1 S09 2 S10 2 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P276, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 1 S19 2 S20 1 

[P277, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 1 

[P278, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 2 S08 2 S09 1 S10 0 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P279, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 2 S11 1 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P280, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 1 S19 0 S20 0 
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[P281, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 0 S08 2 S09 1 S10 2 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P282, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 0 S11 2 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P283, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 1 S11 1 

S12 0 S13 0 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 2 

[P284, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 2 S07 1 S08 1 S09 1 S10 0 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P285, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 1 S19 2 S20 1 

[P286, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 2 S09 0 S10 0 S11 0 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 1 S19 2 S20 1 

[P287, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 2 S09 2 S10 0 S11 2 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P288, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 0 S11 1 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 0 S18 0 S19 1 S20 0 

[P289, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 2 S07 1 S08 1 S09 2 S10 1 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 2 

[P290, *] S01 0 S02 0 S03 0 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 1 S18 2 S19 2 S20 1 

[P291, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 2 S08 1 S09 2 S10 1 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P292, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 2 S08 1 S09 2 S10 2 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P293, *] S01 1 S02 1 S03 0 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 1 S18 2 S19 0 S20 0 

[P294, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 0 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 0 S18 0 S19 1 S20 0 

[P295, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 2 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 1 

[P296, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 2 S08 1 S09 2 S10 2 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P297, *] S01 0 S02 1 S03 1 S04 0 S05 0 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 1 S18 2 S19 2 S20 1 

[P298, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 2 S08 1 S09 2 S10 2 S11 1 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P299, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 1 

S12 1 S13 2 S14 1 S15 0 S16 0 S17 1 S18 0 S19 0 S20 2 

[P300, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 2 S09 2 S10 0 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 0 S18 0 S19 1 S20 0 

[P301, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 2 S08 2 S09 1 S10 2 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P302, *] S01 1 S02 0 S03 1 S04 1 S05 0 S06 0 S07 1 S08 2 S09 0 S10 0 S11 0 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 1 S18 2 S19 2 S20 1 

[P303, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 0 S11 1 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 0 S18 0 S19 1 S20 0 

[P304, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 0 S08 2 S09 2 S10 1 S11 2 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 1 S18 2 S19 1 S20 2 

[P305, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 2 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 2 S19 1 S20 1 

[P306, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P307, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 2 S17 1 S18 1 S19 1 S20 2 

[P308, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 2 S07 1 S08 1 S09 1 S10 2 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 
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[P309, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 0 S09 0 S10 1 S11 1 

S12 1 S13 0 S14 0 S15 1 S16 0 S17 0 S18 1 S19 2 S20 2 

[P310, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P311, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 2 S17 1 S18 1 S19 1 S20 2 

[P312, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 1 

[P313, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 1 S15 2 S16 2 S17 1 S18 1 S19 1 S20 2 

[P314, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 1 

S12 0 S13 1 S14 0 S15 0 S16 1 S17 2 S18 1 S19 2 S20 2 

[P315, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 0 S08 1 S09 2 S10 1 S11 1 

S12 0 S13 0 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 2 

[P316, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 2 S19 1 S20 1 

[P317, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 1 S19 2 S20 1 

[P318, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 1 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 2 S17 2 S18 1 S19 1 S20 2 

[P319, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 1 S19 2 S20 1 

[P320, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 1 S07 2 S08 2 S09 2 S10 1 S11 2 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 2 

[P321, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 1 S19 2 S20 1 

[P322, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 2 S07 1 S08 1 S09 2 S10 1 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 2 S19 1 S20 2 

[P323, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 0 S11 1 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 0 S18 0 S19 2 S20 0 

[P324, *] S01 2 S02 1 S03 1 S04 1 S05 1 S06 2 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 1 S18 2 S19 2 S20 1 

[P325, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 2 S08 1 S09 2 S10 1 S11 1 

S12 1 S13 1 S14 2 S15 1 S16 2 S17 2 S18 1 S19 2 S20 2 

[P326, *] S01 1 S02 2 S03 1 S04 2 S05 1 S06 1 S07 1 S08 2 S09 2 S10 2 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 1 S18 2 S19 2 S20 1 

[P327, *] S01 1 S02 1 S03 2 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 2 S11 1 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 1 S18 2 S19 2 S20 1 

[P328, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 2 S11 1 

S12 1 S13 2 S14 2 S15 1 S16 2 S17 1 S18 1 S19 2 S20 2 

[P329, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 1 S10 1 S11 2 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 2 S18 2 S19 2 S20 1 

[P330, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 1 

S12 2 S13 1 S14 1 S15 1 S16 2 S17 2 S18 1 S19 2 S20 2 

[P331, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 1 

S12 1 S13 2 S14 1 S15 2 S16 1 S17 2 S18 1 S19 2 S20 2 

[P332, *] S01 1 S02 2 S03 1 S04 1 S05 2 S06 2 S07 1 S08 2 S09 2 S10 1 S11 1 

S12 1 S13 2 S14 2 S15 1 S16 1 S17 1 S18 2 S19 2 S20 2 

; 

 

param Xpn := 

[P0, *] N05 1 N06 1 N07 1 

[P1, *] N08 1 N09 1 N10 1 

[P2, *] N01 1 N02 1 N04 1 

[P3, *] N04 1 N07 1 N09 1 

[P4, *] N03 1 N05 1 N07 1 

[P5, *] N02 1 N03 1 N04 1 
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[P6, *] N03 1 N04 1 N07 1 

[P7, *] N04 1 N09 1 N10 1 

[P8, *] N07 1 N08 1 N09 1 

[P9, *] N01 1 N04 1 N10 1 

[P10, *] N06 1 N07 1 N08 1 

[P11, *] N04 1 N07 1 N09 1 N10 1 

[P12, *] N03 1 N04 1 N05 1 N07 1 

[P13, *] N02 1 N03 1 N04 1 N07 1 

[P14, *] N06 1 N07 1 N08 1 N09 1 

[P15, *] N03 1 N05 1 N06 1 N07 1 

[P16, *] N01 1 N04 1 N09 1 N10 1 

[P17, *] N07 1 N08 1 N09 1 N10 1 

[P18, *] N01 1 N02 1 N03 1 N04 1 

[P19, *] N03 1 N04 1 N07 1 N09 1 

[P20, *] N05 1 N06 1 N07 1 N08 1 

[P21, *] N04 1 N07 1 N08 1 N09 1 

[P22, *] N04 1 N08 1 N09 1 N10 1 

[P23, *] N05 1 N06 1 N07 1 N08 1 N09 1 

[P24, *] N02 1 N03 1 N04 1 N05 1 N07 1 

[P25, *] N01 1 N02 1 N04 1 N10 1 

[P26, *] N04 1 N07 1 N08 1 N09 2 N10 1 

[P27, *] N01 1 N04 1 N07 1 N09 1 N10 1 

[P28, *] N06 1 N07 1 N08 1 N09 1 N10 1 

[P29, *] N03 1 N04 1 N05 1 N07 1 N09 1 

[P30, *] N02 1 N03 1 N04 1 N07 1 N09 1 

[P31, *] N03 1 N04 1 N05 1 N06 1 N07 1 

[P32, *] N01 1 N02 1 N03 1 N04 1 N07 1 

[P33, *] N01 1 N02 1 N04 1 N09 1 N10 1 

[P34, *] N04 1 N06 1 N07 1 N08 1 N09 1 

[P35, *] N04 1 N07 1 N08 1 N09 1 N10 1 

[P36, *] N04 1 N07 1 N08 1 N09 1 N10 1 

[P37, *] N03 1 N04 1 N07 1 N09 1 N10 1 

[P38, *] N01 1 N04 1 N08 1 N09 1 N10 1 

[P39, *] N04 1 N07 1 N08 1 N09 1 N10 1 

[P40, *] N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P41, *] N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P42, *] N04 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P43, *] N03 1 N04 1 N07 1 N08 1 N09 1 

[P44, *] N02 1 N03 1 N04 1 N05 1 N07 1 N09 1 

[P45, *] N01 1 N02 1 N04 1 N07 1 N09 1 N10 1 

[P46, *] N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 

[P47, *] N01 1 N04 1 N07 1 N08 1 N09 2 N10 1 

[P48, *] N01 1 N02 1 N03 1 N04 1 N05 1 N07 1 

[P49, *] N03 1 N05 1 N06 1 N07 1 N08 1 

[P50, *] N04 1 N07 1 N08 1 N09 1 N10 1 

[P51, *] N04 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P52, *] N01 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P53, *] N03 1 N04 1 N05 1 N07 1 N09 1 N10 1 

[P54, *] N01 2 N02 1 N03 1 N04 1 N07 1 N09 1 N10 1 

[P55, *] N03 1 N04 1 N05 1 N06 1 N07 1 N09 1 

[P56, *] N01 1 N02 1 N03 1 N04 1 N07 1 N09 1 

[P57, *] N03 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P58, *] N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P59, *] N01 1 N02 1 N03 1 N04 1 N10 1 

[P60, *] N04 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P61, *] N01 1 N02 1 N04 1 N08 1 N09 1 N10 1 

[P62, *] N03 1 N04 1 N07 1 N08 1 N09 2 N10 1 
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[P63, *] N01 1 N02 2 N03 1 N04 1 N07 1 N09 1 N10 1 

[P64, *] N01 1 N02 1 N03 1 N04 2 N07 1 N09 1 N10 1 

[P65, *] N01 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P66, *] N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 

[P67, *] N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 

[P68, *] N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 

[P69, *] N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 

[P70, *] N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P71, *] N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P72, *] N01 1 N02 1 N03 1 N04 1 N09 1 N10 1 

[P73, *] N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P74, *] N01 1 N04 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P75, *] N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P76, *] N01 1 N02 1 N04 1 N07 1 N08 1 N09 2 N10 1 

[P77, *] N04 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P78, *] N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P79, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 

[P80, *] N01 2 N02 1 N03 1 N04 1 N05 1 N07 1 N09 1 N10 1 

[P81, *] N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N09 1 

[P82, *] N01 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P83, *] N01 1 N02 1 N03 1 N04 1 N05 1 N07 1 N09 1 

[P84, *] N03 1 N04 1 N05 1 N06 1 N08 1 N10 1 

[P85, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 

[P86, *] N01 1 N02 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P87, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P88, *] N01 1 N02 1 N03 1 N04 1 N07 1 N10 1 

[P89, *] N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 2 N10 1 

[P90, *] N01 1 N02 2 N03 1 N04 1 N05 1 N07 1 N09 1 N10 1 

[P91, *] N01 2 N02 1 N03 1 N04 1 N07 1 N08 1 N09 2 N10 1 

[P92, *] N01 1 N02 1 N03 1 N04 1 N07 1 N09 1 N10 1 

[P93, *] N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 2 N10 1 

[P94, *] N03 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P95, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P96, *] N01 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P97, *] N01 1 N02 1 N03 1 N04 2 N05 1 N07 1 N09 1 N10 1 

[P98, *] N02 1 N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 

[P99, *] N01 1 N04 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P100, *] N01 1 N02 1 N03 1 N04 1 N07 1 N09 1 N10 1 

[P101, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P102, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 2 N09 1 N10 1 

[P103, *] N01 1 N02 2 N03 1 N04 1 N07 1 N08 1 N09 2 N10 1 

[P104, *] N01 1 N02 1 N03 1 N04 1 N07 1 N09 1 N10 1 

[P105, *] N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P106, *] N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 

[P107, *] N01 1 N02 1 N03 1 N04 1 N07 1 N09 1 N10 1 

[P108, *] N01 1 N02 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P109, *] N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 N10 1 

[P110, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P111, *] N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P112, *] N01 1 N02 1 N03 1 N07 1 N08 1 N10 1 

[P113, *] N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 

[P114, *] N01 2 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P115, *] N01 1 N02 1 N03 1 N04 1 N07 1 N09 1 N10 1 

[P116, *] N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P117, *] N01 2 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P118, *] N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P119, *] N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 N10 1 
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[P120, *] N01 1 N02 2 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P121, *] N01 1 N02 1 N03 1 N04 2 N07 1 N08 1 N09 1 N10 1 

[P122, *] N01 1 N02 1 N04 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P123, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P124, *] N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P125, *] N01 2 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P126, *] N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P127, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P128, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 2 

[P129, *] N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 

[P130, *] N01 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P131, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N08 1 N10 1 

[P132, *] N01 1 N04 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P133, *] N01 1 N02 1 N03 1 N04 1 N08 1 N09 1 N10 1 

[P134, *] N01 1 N02 2 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P135, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P136, *] N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P137, *] N01 1 N02 1 N03 1 N04 1 N05 1 N07 1 N10 1 

[P138, *] N01 1 N02 1 N03 1 N04 2 N07 1 N08 1 N09 1 N10 1 

[P139, *] N01 1 N02 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P140, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 2 N10 1 

[P141, *] N01 1 N02 1 N03 1 N04 1 N05 1 N07 1 N09 1 N10 1 

[P142, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P143, *] N01 2 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 2 N10 1 

[P144, *] N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P145, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N08 1 N10 1 

[P146, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P147, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P148, *] N01 1 N02 1 N03 1 N05 1 N06 1 N08 1 N10 1 

[P149, *] N01 1 N02 1 N03 1 N04 1 N05 1 N07 1 N09 1 N10 1 

[P150, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 2 N09 1 N10 1 

[P151, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 2 N10 1 

[P152, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P153, *] N01 1 N02 1 N03 1 N04 1 N05 1 N07 1 N09 1 N10 1 

[P154, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 2 N10 1 

[P155, *] N01 1 N02 2 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 2 N10 1 

[P156, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N09 1 

[P157, *] N01 1 N02 1 N03 2 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P158, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 N10 1 

[P159, *] N01 1 N02 1 N03 1 N05 1 N06 2 N07 1 N08 1 N10 1 

[P160, *] N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P161, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P162, *] N01 1 N02 1 N04 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P163, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P164, *] N01 1 N02 1 N03 1 N05 2 N06 1 N07 1 N08 1 N10 1 

[P165, *] N01 1 N02 1 N03 1 N04 1 N07 1 N09 1 N10 1 

[P166, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P167, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 2 N10 1 

[P168, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P169, *] N01 1 N02 1 N03 1 N04 1 N05 1 N07 1 N09 1 N10 1 

[P170, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 2 N09 1 N10 1 

[P171, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 2 N10 1 

[P172, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P173, *] N01 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P174, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P175, *] N01 2 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P176, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 2 N10 1 
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[P177, *] N01 1 N02 1 N03 1 N04 2 N05 1 N06 1 N07 1 N08 2 N09 1 N10 1 

[P178, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 N10 1 

[P179, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P180, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P181, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 N10 2 

[P182, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P183, *] N01 1 N02 1 N03 1 N04 2 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P184, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P185, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P186, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P187, *] N01 2 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P188, *] N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P189, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P190, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 2 

[P191, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P192, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 N10 1 

[P193, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 2 

[P194, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P195, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P196, *] N01 1 N02 1 N03 1 N05 1 N06 1 N08 1 N09 1 N10 1 

[P197, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P198, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P199, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P200, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P201, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P202, *] N01 1 N02 2 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P203, *] N01 1 N02 1 N03 2 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P204, *] N01 1 N02 1 N03 1 N05 1 N06 1 N07 1 N08 1 N10 1 

[P205, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P206, *] N01 1 N02 1 N03 1 N04 2 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P207, *] N01 1 N02 1 N03 1 N04 2 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P208, *] N01 1 N02 1 N04 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P209, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P210, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N08 1 N10 1 

[P211, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P212, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P213, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P214, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P215, *] N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 

[P216, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P217, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P218, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 

[P219, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 2 N10 1 

[P220, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P221, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N08 1 N10 1 

[P222, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P223, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 2 N10 1 

[P224, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N08 1 N10 1 

[P225, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P226, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P227, *] N01 1 N02 1 N03 1 N05 1 N06 1 N07 1 N08 1 N10 1 

[P228, *] N01 1 N02 1 N03 1 N04 1 N05 1 N07 1 N09 1 N10 1 

[P229, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 2 

[P230, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 2 N10 1 

[P231, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N10 1 

[P232, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 2 N10 1 

[P233, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 
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[P234, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 2 N09 1 N10 1 

[P235, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 2 N10 1 

[P236, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 2 N10 1 

[P237, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P238, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 2 

[P239, *] N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P240, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 2 N10 1 

[P241, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P242, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P243, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 2 N09 1 N10 1 

[P244, *] N01 1 N02 1 N03 1 N04 2 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P245, *] N01 1 N02 1 N03 2 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P246, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P247, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 2 N09 1 N10 1 

[P248, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P249, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P250, *] N01 1 N02 1 N03 1 N05 1 N06 1 N07 1 N08 1 N10 1 

[P251, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P252, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 N10 1 

[P253, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 N10 1 

[P254, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 2 

[P255, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P256, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P257, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 2 N09 1 N10 1 

[P258, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P259, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P260, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P261, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P262, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P263, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 N10 1 

[P264, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P265, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P266, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P267, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P268, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P269, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 N10 1 

[P270, *] N01 1 N02 1 N03 1 N04 2 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P271, *] N01 1 N02 1 N03 1 N04 2 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P272, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P273, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P274, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P275, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P276, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P277, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P278, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P279, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P280, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 2 

[P281, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P282, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P283, *] N01 1 N02 1 N03 1 N04 1 N07 1 N08 1 N09 1 N10 1 

[P284, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P285, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P286, *] N01 1 N02 1 N03 1 N04 2 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P287, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P288, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P289, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P290, *] N01 2 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 
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[P291, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P292, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P293, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 2 

[P294, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P295, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P296, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P297, *] N01 1 N02 2 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P298, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P299, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 2 N09 1 N10 1 

[P300, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P301, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P302, *] N01 1 N02 1 N03 1 N04 2 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P303, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P304, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P305, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P306, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P307, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P308, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P309, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 2 N08 1 N09 1 N10 1 

[P310, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P311, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P312, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P313, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P314, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 2 N07 1 N08 1 N09 1 N10 1 

[P315, *] N01 1 N02 1 N03 1 N04 1 N05 2 N06 1 N07 1 N08 1 N09 1 N10 1 

[P316, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P317, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P318, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P319, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P320, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P321, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P322, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P323, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 2 N10 1 

[P324, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P325, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P326, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P327, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P328, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P329, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P330, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P331, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

[P332, *] N01 1 N02 1 N03 1 N04 1 N05 1 N06 1 N07 1 N08 1 N09 1 N10 1 

 ; 


