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Abstract

With the large presence of organizations from different sectors of economy on the

web, the problem of detecting which sector a given website belongs to is both im-

portant and challenging. We study the problem of classifying websites into four

non-topical categories: public, private, non-profit and commercial franchise. We

study textual features based on word unigrams and bigrams, syntactic features based

on part-of-speech tags and named entity distribution, and structural features based

on depth of websites, link structures and URL patterns. Our experiments with dif-

ferent sets of features in classifying websites reveal that syntactic and structural

features help to improve the performance when combined with word unigrams and

bigrams. The improvement is more significant when words are insufficient. Ex-

perimenting on websites related to obesity control, we compare classifiers built on

words extracted from various depths of a website. Our experiments under a multi-

label classification setting show that crawling words from deeper depths may not

be helpful.

When the number of unlabeled websites is significantly larger than the labeled

ones, which is usually the case, it is beneficial if the classifiers can utilize both

the labeled and unlabeled data. Based on this observation, we combine multiple

sets of features using the co-training algorithm in a semi-supervised setting. Our

experiments show that co-training does indeed improve the classification accuracy

when multiple feature sets and few labeled samples are available for training.
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Chapter 1

Introduction

The tremendous growth of the World Wide Web over the past few years has made it

extremely easy for end-users to reach the general public by having a web presence.

As more people, organizations and governments publish on the web, it is important

and increasingly difficult to find and filter desirable information from the web. For

example, one may want to know from the website of a health clinic if it is publicly

funded so that the treatment expenses are paid by the public health insurance. In

such a scenario, associating websites with desirable labels can be helpful in improv-

ing the search results by linking labels with the search query and allowing the users

to filter the websites more easily. Automatic classification of websites can also be

helpful in automating the process of creating web directories which takes consider-

able effort if humans were to label the websites manually. Since a human takes a

considerable amount of time to label a website and plenty of unlabeled websites are

available on the web, semi-supervised learning also becomes extremely important

as it would allow the learning algorithm to take advantage of both the labeled and

unlabeled data.

Website classification can be treated under text classification assuming that a

website is a set of web pages or documents. A problem with applying a textual

classifier to non-topical classes is that these classes may not be well-described in

text, and a richer set of features needs to be maintained. The problem is similar

to classifying documents based upon the sentiment (sentiment analysis) [42, 29],

identifying text genre [17], etc. For example, features such as part-of-speech tags,

named entities in addition to words from text have turned out to be useful, as re-
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ported in our experiments and also in some past work [4, 11]. In addition to text

and part-of-speech patterns, features such as the link structure of a website, URL

patterns [24, 23, 2] and HTML tags [31] may also provide additional useful infor-

mation that can help to correctly classify the website.

In this research, we classify websites into 4 non-topical categories: public, pri-

vate, non-profit, and commercial franchise. The non-topical categories that we

are concerned with are related to websites that fall under the domain of weight

loss/obesity control. Since many service providers for obesity control have a web

presence, classifying the entire website would reveal important facts about these

organizations. These facts may inform the users, for example, about the cost and

reliability of a service provided by these organizations. Our automated non-topical

website classifier was commissioned by an obesity research center to assist obesity

patients efficiently navigate and filter resources from the web.

We experiment with a real dataset crawled from the web where each website

can have more than one label. We explore how the individual feature sets based on

the structural property of a website (e.g. the link structure and the URL patterns),

syntactic patterns in content, and the language model of text perform in a multi-

label classification setting. We also analyze ways to combine the feature sets in a

supervised setting such that a maximum performance gain can be achieved.

Generally, obtaining labeled data for the hard labels that we are concerned with

is very costly. Labeling each website would mean a human has to visit many pages

of a website looking at visual and word-based clues to determine the class of the

website. On the other hand, without a large labeled set, it is not easy to account

for many important features that may not be present in a small labeled set. Under

such a scenario, it would be beneficial for the classifier to take advantage of the

abundant unlabeled data present in the web. We study a scheme (often referred to

as co-training [5]) where two views (feature sets) of a classification task are trained

together to take advantage of the unlabeled data which is added to the training set

as classification progresses in a iterative setting. This helps to expand the initial

feature set along with the labeled data as the two classifiers complement each other

during the classification iteration. Our classification task deals with multiple sets of
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features which provide different views to classify the website, hence we study the

effectiveness of these feature sets by combining them with our co-training algorithm

under a semi-supervised multi-label classification setting where very few labels are

available for training.

1.1 Thesis Statement

In this research, we mainly deal with non-topical classification of websites and

explore multiple sets of features that can correctly predict the labels of a website.

Our study involves analyzing the language model and the structural features of a

website and discovering ways to combine the features for website classification,

where multiple pages can be considered as a single document. We set the following

hypotheses for our analyses and experiments:

• Syntactic and structural features can be useful when words are not enough to

classify websites into non-topical categories.

• Useful word-based features are available at a shallow depth of a website and

crawling words from deeper depths may not be necessary.

• Combining multiple sets of features through the co-training algorithm can

perform better than supervised classification in a multi-label classification

setting when very few labeled data is available.

1.2 Research Contributions

Our contributions include:

• A study of non-topical classification of websites with classes that relate to the

business type of the entity a website represents.

• Applying multi-label classification to the real world domain of weight loss

and obesity control in Canada.

• An experimental evaluation showing the performance of the classifiers and

the effectiveness of the features studied.
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• An experimental evaluation showing ways to combine multiple sets of fea-

tures in a supervised as well as semi-supervised setting.

• Building a location-based navigator application that will allow end-users to

effectively filter obesity resources based on the topical and non-topical cate-

gories.

In this research, we deal with word-based features comprising of unigrams and

bigrams, syntactic features consisting of part-of-speech bigrams and named entity

occurrence, and structural features derived from the link structure and the URL

patterns of the websites. Our research involves identifying whether syntactic and

structural features are useful when words are not enough to describe the non-topical

labels. We also study the problem of website classification where a website can

contain more than a single page and conduct experiments to discover an optimal

depth at which useful word-based features can be captured. When multiple features

are involved, there are various options to combine the features. We analyze various

ways of combining the feature sets in supervised and semi-supervised settings such

that maximum performance can be achieved.

A part of this thesis has been accepted for publication [38].

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents the related work on

text, non-topical and website classification and co-training. Chapter 3 gives more

details on the design and implementation of an application called Weight Control

Navigator that uses our website classification and allows users to effectively filter

obesity resources. Chapter 4 deals with the preparation of labeled dataset and how

we acquired words and structure-based features from the websites. Chapter 5 ex-

plains our experimental setup in a multi-label classification setting which includes

a discussion of the classification methods and the evaluation measures used. Chap-

ter 6 reports the performance of bag-of-words, syntactic and structural features for

non-topical website classification and shows ways to combine them in a supervised

setting. Chapter 7 presents the performance of combining multiple feature sets in a
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semi-supervised setting through the co-training algorithm. Finally, in Chapter 8 we

summarize the results and draw conclusions.
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Chapter 2

Related Work

Supervised topical text classification has been a well-known field of study for a

number of years and a lot of research has been done in the field. Several early work

on text categorization involve comparing the performance of various learning al-

gorithms on benchmark Reuters dataset [20]. Lewis and Ringuette [21] compared

Bayesian classifier and the decision tree algorithm concluding that feature selec-

tion plays an important role in text classification where the number of features is

generally very large. Yang and Pederson [44] made a comparative study on feature

selection and suggested that document frequency and information gain are reliable

measures for feature selection. The large number of features in text classification,

which increases the number of dimensions of the input space, was quite a hurdle for

a long time. Joachims [15] showed that, with Support Vector Machines, it is possi-

ble to build a robust classifier with a large number of features and such a classifier

outperforms other classifiers including Naı̈ve Bayes and k-NN. Sahani et al. [34]

showed a real world application of text classification by building a Naı̈ve Bayes

classifier to identify junk e-mail. Since then, there has been numerous work on

topical classification i.e. classifying news stories [8], blog posts [37] and others.

Recently, there has been much interest in the field of non-topical classifica-

tion which poses more challenging problems compared to the topical classification.

Mishne [26] illustrated a supervised classification of blog posts based on the mood

of the writers. Turney [42] presented an unsupervised classification of reviews and

Pang et al. [29] applied supervised algorithms such as SVM, Naı̈ve Bayes and

the maximum entropy to movie reviews. These work on non-topical classification
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focus on finding the right features that work best for the dataset. Some of the fea-

tures that have been used for sentiment analysis are unigrams, unigrams combined

with bigrams and part-of-speech (POS) tags. Bekkerman [4] showed that combin-

ing POS-bigrams along with bag-of-words improves the classification accuracy in

a genre classification task.

Dai et al. [10] classified web pages into two (commercial and non-commercial)

classes in an attempt to detect the online commercial intent of a page based on

search queries and keywords from web pages. This work is close to ours as some of

the categories overlap, however, the authors only used word-based features whereas

we augmented word-based features with structural and syntactic features. We also

treated a collection of pages from a website as a single entity and classified them

in a multi-label setting. Ester et al. [12] performed a topical classification of web-

sites using a k-order markov model and also treating pages from the same site as

a single page. Pierre [31] showed that words from HTML metatags (including

description and keywords field) are useful in a classification of websites into indus-

trial categories. It was shown that words from metatags alone can be more effective

than words from metatags and HTML body combined together; however, the anal-

ysis also showed that metatags were not widely used by many websites. In our

research, the bag-of-words feature comprises of words from metatags (keywords,

description), title and the HTML body. A more recent work by Eickhoff et al. [11]

classified web pages based on whether it is targeted towards children or not. They

combined both topical and non-topical aspects of a document by using features

such as part of speech, shallow features (for example, average word length, aver-

age words per sentence), HTML features, and language complexity. They showed

that combining topical and non-topical features can work well for a non-topical

classification.

Significant amount of research has been done on analyzing the structural prop-

erties of websites. Amitay et al. [2] used the structure of websites to classify them

into eight functional categories (e.g. academic, blog, community, shop, nonprofit

etc) and showed that websites with similar functions share similar link structures.

Lindemann and Littig [23] did a thorough study on the relationship between the
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structure and functionality of the websites. Their work analyzed 1461 websites dis-

tributed among five functional categories and reported a strong accuracy using the

structural properties. Later, Lindemann and Littig [24] also showed that utilizing

both the content and structural properties for website classification performs better

than using structural or word based features alone. In our work, we analyze some of

the structural features in Lindemann and Littig [24] and add new structural features

based on the number of internal and external links present at each depth and the

maximum depth of the website. Our method also relies on analyzing the content

based on a bag-of-words model that does not require manual effort to build a the-

saurus. Furthermore, our analyses include combining the structural features with

the content-based features, consisting of words, part-of-speech taqs, and named en-

tity occurrences, extracted at various depth of a website.

As obtaining the labeled data for training becomes costly, much work has been

done on semi-supervised learning to take advantage of the unlabeled data. Our re-

search can be seen as an application of co-training [5] on a real world dataset with

multiple views. Blum and Mitchell [5] first showed the co-training algorithm on a

web page classification problem where they classified web pages into a faculty/non-

faculty category. They trained two classifiers, one based on the words on the web

page and another based on the anchor text of hyperlinks that point to the page.

The algorithm starts with a small set of training (labeled) examples and a large set

of unlabeled examples. Each classifier learns from the labeled examples and pre-

dicts the unlabeled examples. A few positive and negative predictions with high

confidence scores from each classifier are then removed from the unlabeled dataset

and added to the training set. The two classifiers are then re-trained and the algo-

rithm continues until all the examples are labeled. Co-training has been found to

be successful in areas like web page classification [5], email classification [18] and

identifying noun phrases in language processing [30]. Co-training is useful when

two views of the classification task is available, however Nigam and Ghani [28]

showed that co-training performed well even when a single view is randomly split

into two views. In this research, we analyzed several combinations of feature sets

for co-training and studied the effectiveness of co-training algorithm for more than
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two sets of features in a multi-label classification scenario.

From the past work on non-topical classification of documents and websites, it is

evident that words are a powerful set of features even for non-topical classification.

Results have also shown that combining part-of-speech along with words improves

the performance for non-topical classification of documents. Non-topical website

classification also benefits from a combined feature set where words are augmented

by structural properties. Our work combines and analyses all three aspects (i.e. the

syntactic pattern of text in the form of part-of-speech tags and named entities, struc-

tural pattern of the website, and bag-of-words) in a real world non-topical website

classification task.
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Chapter 3

Application of Website Classification

In this chapter, we look into the prototype of an application that applies website

classification to solve a real-world problem.

3.1 Weight Control Navigator (WCN): An Overview

With the increasing number of obesity resources on the web, it is often difficult

for end-users to find the most relevant resources. Current search engines often

overwhelm the end-users with a large number of resources and lack important facts

about obesity related services. End-users are often concerned with the cost and

reliability of the service that they are looking for. As this information is missing

in the search result, users have to follow a more arduous way of going into each

website and finding out what kind of resource it is and the various services that are

being offered. Often it becomes a daunting task, as users have to click through many

pages of the website. This process can be more frustrating for end-users trying to

find cost-effective public, non-profit resources as these types of organizations may

not be ranked higher in the search results for common keywords. This means end-

users have to search for various keywords. For example, a user may search for the

keyword “exercise” but may not find the public, non-profit resource on the first page

of the search result. Sometimes even the entire search result may not contain the

most suitable resource. This leads to the user trying another keyword “fitness club”

which can finally lead to the right kind of resource the user is looking for.

Weight Control Navigator (WCN) is a tool that would allow the end-users to
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effectively filter obesity resources by providing important information related to

the service-providers and various types of services a given resource provides. WCN

labels each website with 4 non-topical categories (Public, Private, Non-profit, and

Commercial Franchise). These labels provide extra information about cost and

reliability of the services that are being offered. WCN also labels each resource with

8 topical categories (Alternative Medicine, Diet, Exercise, Medical, Psychology,

Rehabilitation, Spa Services, and Surgery) describing the service provided by the

resource. Moreover, WCN aggregates the search results based on multiple keyword

search such that the list of website displayed under a category is more exhaustive.

Moreover, WCN automatically extracts the physical address of the resource from

its website and places it in Google Maps. This would allow the end-users to search

the resources in various cities and provinces across Canada. To sum it up, WCN

fulfills the following goals:

• Provide more information about obesity-related services and the service-providers

in order to allow effective filtering of obesity resources.

• Aggregate search results for multiple queries to provide an exhaustive list of

resources.

• Place the resources on a map as per their physical addresses and provide a

location-based filter so that end-users can easily search the obesity-related

services in various cities across Canada.

Figure 3.1 provides a screen shot of the Weight Control Navigator application.
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3.1.1 System Design

Figure 3.2 shows the high-level system design of Weight Control Navigator. The

system has been divided into two parts: backend and frontend. The backend of the

system is responsible for most of the major tasks and prepares a relational database

with label and location information that can be accessed by the frontend. Since

collecting the list of websites, extracting various features, and classifying the web-

sites into topical and non-topical categories takes computation time and cannot be

done in real-time, all of these tasks have to be performed offline in the backend.

The frontend of the system simply queries the relational database to fetch the list

of websites based on the location of the user and label preference. The backend of

WCN is also responsible for extracting the information about the location of a re-

source so that it can be plotted on the map. For this, we use a rule-based extractor1

to extract the physical addresses from the website of the resource. We then use the

Google Maps API to retrieve the latitude and longitude information of the address

in order to pin-point the address on the map.

The input for the system is a collection of domain specific search queries that

were picked by obesity experts. WCN uses these queries to extract an exhaustive

list of websites from the search engine. Using a wide list of queries covering various

services, WCN is able to capture an exhaustive list of weight management resources

from the web. City names are appended to the queries in order to cover the obesity

resources all over Canada. Examples of some of the queries are “weight loss Ed-

monton”, “obesity clinic Edmonton”, “weight management Edmonton”, “exercise

Edmonton”, “fitness club Edmonton”, “diet program Edmonton”, “lifestyle change

Edmonton” etc.

In order to classify websites, we initially need a labeled dataset that can be used

to train the classifier. Preparation of labeled dataset will be discussed in detail in

Chapter 4. Using the labeled training data, WCN trains a SVM classifier for multi-

label classification so that more than one label can be assigned to a website. Once

the classifier is trained, it can be used to assign labels to a larger number of unla-

beled websites. Throughout this thesis, we will look into features/properties that
1http://www.folkarts.ca/geo/
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help to correctly predict the non-topical labels of a website and ways to effectively

combine multiple sets of these features.
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Chapter 4

Dataset Preparation

We used a set of keywords related to weight loss in a search engine to come up

with a list of websites. As we were only concerned with organizations providing

services related to obesity control/weight loss and having a presence of physical

location in various parts of the world, we built a collection of search queries by ap-

pending different city names to useful keywords, which were suggested by obesity

experts. Some of the keywords used were “obesity clinic”, “weight management”,

“fitness and exercise”, “diet program” etc. Using these search queries on Google

and Google Maps, we came up with a list of websites. We then did an extensive

online survey where 77 users participated in labeling the websites. The definition

of the categories that were used to label the websites are as follows:

• Public: A website providing service that is offered or subsidized by the gov-

ernment.

• Non-profit: A service that has been provided on a non-profit basis.

• Private: The service provider has a private firm and is a licensed health care

professional or has certification.

• Commercial Franchise: An organization that provides or sells services or

products for profit. In many cases, the organization has many branches (> 2)

in different parts of the country and is considered a chain.
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In the real world, there is a potential overlap between the categories. Many orga-

nizations that belong to private category are also commercial and similarly some of

the non-profit organizations are run by government and can be public. Keeping this

multi-label scenario in mind, the online survey allowed the users to assign multiple

labels to a website. Figure 4.1 shows a screen shot of the survey used to collect the

labels. We picked only those labels for a website where two or more users agreed

upon the category and the website was related to obesity control. This was checked

through an online survey where the users tagged the categories for the website and

identified whether the website provided any services related to obesity control. This

helped us filter out many blog sites and web directories. However, obtaining the la-

bels this way did not give us enough labels to populate each category as most of the

websites in the search results were either private or franchise. Hence, we also asked

one patient and one student to extensively search the web for non-profit and public

categories. All the website labels were later verified by an expert and the expert’s

decision on the label was considered final. The final distribution of labels for each

category was: public (43), private (49), franchise (45) and non-profit (32).

Table 4.1 shows the number of websites present in any possible label combina-

tion in the multi-label dataset. Based on the definition and the real-world scenario,

many websites belonged to both private and franchise. Some of the websites were

categorized as public,private indicating that the service was offered by a private

practitioner while the cost of service was covered by public health insurance. Few

websites were also categorized as public,non-profit and public,private,non-profit.

As for the language model of a website, we considered the web pages within a

website as a single document representing the website and crawled the websites at

various click-depths. The landing page or the homepage of a website is considered

at a click-depth of zero. All the links present in the homepage are then considered

at click-depth of one and so on. Following this notion and to limit the scope of

the work, we crawled the websites at depths of zero, one and two. Depth zero

only consists of a single page and would contain few bag-of-words-based features.

Depth one can consist of many pages (all the links present in the homepage or

landing page of the websites) and thus contains many features based on bag-of-
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Table 4.1: Number of Websites per Category
Label Combination Number of Websites

Public 25
Non-profit 24
Franchise 21

Private 13
Public,Private 10

Public,Private,Non-profit 2
Private,Franchise 24
Public,Non-profit 6

Total 125

Table 4.2: Number of pages crawled at each click-depth
Depth Number of Pages Avg. Page Size (In KB)

Click-depth 0 125 24.9
Click-depth 1 5322 99.05
Click-depth 2 34981 127.91

words. While crawling, we avoided duplicate pages and saved only those for which

the server response was valid and the header had text/html as the content-type.

The maximum number of files we crawled for each website was limited to 1000

pages. Table 4.2 shows the number of pages crawled at each click-depth. A website

crawled at each depth d would contain all the pages from depth 1 to d. For example,

click depth of 2 contains all the pages at depth zero, one and two inclusively. We

use this convention throughout the manuscript.

The structural properties of the websites were captured by crawling the internal

links of each website with valid HTML server response up to a depth of ten. The

HTML pages themselves were not saved but the URLs pertaining to external and

internal links at each depth were recorded to extract the structural properties(for

example, max. internal links at any depth, maximum crawl depth of the website

etc.). Only the internal links encountered up to the depth threshold were crawled,

and the external links that appeared were just marked as ‘new’ or ‘previously seen’.

Each internal link was only crawled once.
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Figure 4.1: Screen shot of the survey used to collect the website labels
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Chapter 5

Experimental Setup for Multi-label
Classification

In this chapter, we describe the setup of the experiments carried out throughout our

research. To deal with a real-world problem where multiple labels may be assigned

to a single website, we consider a multi-label classification setting. The most com-

monly used method for multi-label classification is to break down the problem into

a set of binary classifications with one classifier per class. This method has been

previously used with some success and is often considered the baseline for multi-

label classification [39, 33]. Other methods have been proposed which use a larger

number of classifiers. Labeled Powerset (LP) [41] is one such method which uses

as many classifiers as the number of label combinations. More recent methods like

random-k labeled set picks up k random label combinations and performs ensemble

voting based on k classifiers in a iterative setting [41]. Due to the value of k which

is randomly picked up in each iteration, the number of classifiers is larger than that

of binary relevance method. We used the binary relevance method because we deal

with multiple sets of features and having a larger number of classifiers would in-

crease the complexity and computation cost. For instance, using the LP method

would mean we have to build 8 classifiers for each feature set due to the number of

label combinations shown in Table 4.1. Since we experiment on three sets of fea-

tures, the number of classifiers would be 24, which is large. In the future, if more

labels are to be added this number could be too large. When we add more labels,

this number will grow and building a large number of classifiers with tuned pa-
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rameters will require more computation cost. Moreover, testing the performance of

various multi-label classification methods is not our main goal, hence the one-vs-all

binary relevance method is suitable for the various experiments that we perform.

5.1 Binary Relevance Method using SVM

We built 4 classifiers, one for each class labels public, private, non-profit and fran-

chise and performed binary classification using a Support Vector Machine (SVM)

[9]. If the classifier gave a positive prediction for a test sample, we assigned the

label to the sample. Since we have a relatively small dataset, we performed all

experiments in a 10-fold cross validation setting. The prediction from each fold

is combined and performance is measured on the labels predicted for the entire

dataset. We randomly shuffled the samples and repeated the 10-fold cross valida-

tion 10 times. The average measure along with standard deviation is then reported

for each classifier. Before building the classifier, we also scaled the values of the

feature vector between 0 and 1. We noticed that without scaling the performance

was poor. While scaling we used both the training and testing fold.

Grid Search

For all supervised experiments, we used the RBF (Radial Basis Function) as the

kernel for SVM and performed a grid search to select the best values for the param-

eters γ and C. Values were selected in the range of 2begin, 2(begin+step), ..., 2end. For γ,

we tried the exponents in the range of 3 to −15 at a step of −2. Similarly for C, we

tried the exponents the range of −5 to 15 at a step of 2. We searched for the best

values of γ and C by maximizing the F-measure in a 5-fold cross validation setting

on the training data. LibSVM [6] was used for grid search.

For semi-supervised experiments, we used the linear kernel because it contains

only one hyperparameter that needs to be tuned. We used the co-training algorithm

for semi-supervised learning that works in an iterative fashion. Tuning two hy-

perparameters in multiple iterations would be costly, hence for saving computation

time we used the linear kernel so that we only have to tune the cost parameter C

through grid search.
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Classifier Confidence

SVM is a binary classifier which outputs a decision indicating whether a sample

belongs to a class or not. It does not provide any probabilistic output. In order to

combine multiple sets of features we need a confidence measure for the prediction.

We measured the probabilistic output from SVM using Platt’s method [32, 22].

Platt’s equation is shown in Equation 5.1, where f(x) denotes the decision function

of SVM. Parameters A and B can be computed using an efficient method described

in [22]. We used a similar method that has been implemented in LibSVM [6].

Pr(y=1|x) =
1

1 + exp(Af(x) +B)
(5.1)

5.2 Feature Selection

We perform two steps of feature selection, based on document frequency and Infor-

mation Gain (IG). First, we discard any features having document frequency less

than 3. We then select the best features based on the Information Gain, which has

been shown to work for document classification [44]. Our experiments showed that

careful feature selection for each feature set helps to select the most informative

feature for classification and as a result attained better performance. We measured

the information gain using a 5-fold cross-validation on the training data only. We

tried ten different subsets of features where we picked the top x% (x denoting the

threshold) of the features with x varied from 10 to 100, and performed a 5-fold

cross validation. We then picked an IG threshold based on the highest score of F-

measure. Information Gain was computed based on the implementation of Weka

[14].

Information Gain = Hbefore −Hafter (5.2)

Equation 5.2 gives the computation of information gain of a variable as the

difference of entropy, which is used to measure of uncertainty. In case of document

classification, Hbefore denotes the entropy of the classes and Hafter denotes the

entropy of the classes when the value of a feature is known. By measuring the
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presence or absence of a feature value in the distribution of classes, Information

Gain is used to calculate the decrease in uncertainty i.e. gain in information [36,

35, 27]. Given a random sample X that can have M values (V1, V2...VM), entropy

of X is given by the Equation 5.3.

H(X) = −
M∑
i=1

P (X = Vi)log2P (X = Vi) (5.3)

In terms of features and class distribution, the Information Gain of a feature(F)

in a set of classes C can be given by Equation 5.4. H(C) denotes the initial entropy

of C, and H(C|F ) denotes the average conditional entropy of C when the value of

a feature F is known.

IG(C,F) = H(C)−H(C|F ) (5.4)

If Feature(F) can have N values (v1, v2..vN), H(C|F ) can be given by Equation

5.5.

H(C|F ) =
N∑
i=1

P (F = vi)H(C|F = vi) (5.5)

where,

H(C|F = vi) = Entropy of C when feature F has a value vi (5.6)

Weka [14] uses a similar method to compute Information Gain. A detailed

discussion on entropy and Information Gain, and tutorials on how to compute it is

also presented in [35, 27].

5.3 Evaluation Metrics

We measured the performance of each binary classifier in terms of F-measure,

which is the harmonic mean of precision and recall. The contingency table shown

in Table 5.1 is used to compute the precision and recall of the classifier. If the label

predicted by the classifier is the same as the true label of the sample, the prediction
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Table 5.1: Contingency Table
True Labels

Positive Negative

Classifier Prediction
Positive True Positive(TP) False Positive(FP)
Negative False Negative (FN) True Negative(TN)

can be marked as true positive(tp). Similarly, we can get false positives, false nega-

tives and true negatives from the prediction. Equations 5.7, 5.8 and 5.9 can then be

used to compute the precision, recall and F-measure of the classifier.

Precision(P) =
TP

TP + FP
(5.7)

Recall(R) =
TP

TP + FN
(5.8)

F-measure(F) =
2× P× R

P + R
(5.9)

Micro and Macro Average scores

Since we are dealing with multi-label classification, micro and macro average scores

give a better picture about the performance. Macro average precision/recall is ba-

sically the average over all the categories (C) involved in the classification. Macro

F-measure weights each category equally and gives an idea of the accuracy of the

classifier across the various categories. Micro average precision/recall is computed

by building an overall contingency table for the entire categories involved in the

classification task. The micro average score weights each document equally and

gives an idea of of how good the classification task is across the entire test sample.

In Equation 5.13, we are computing true positives and false positives for the entire

classification task i.e. for 4 classifiers, we compute the measures after combining

the 4 sets of result in a single contingency table [45].

Pmacro =
1

|C|

|C|∑
i=1

TPi

TPi + FPi

(5.10)
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Rmacro =
1

|C|

|C|∑
i=1

TPi

TPi + FNi

(5.11)

Fmacro =
2× Pmacro × Rmacro

Pmacro + Rmacro

(5.12)

Pmicro =

|C|∑
i=1

TPi

|C|∑
i=1

TPi + FPi

(5.13)

Rmicro =

|C|∑
i=1

TPi

|C|∑
i=1

TPi + FNi

(5.14)

Fmicro =
2× Pmicro × Rmicro

Pmicro + Rmicro

(5.15)

It should be noted that accuracy in terms of the correctness percentage is not a

good measure for multi-label classification. When the positive and negative sample

in the dataset is highly imbalanced, there could be a scenario where the percentage

would give a high accuracy even if there is no positive prediction and all the samples

are negatively classified. Measuring the accuracy in terms of F-measure for each

binary classifier and micro, macro average F-measure for the entire class-labels, we

do not face any such problem.
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Chapter 6

Non-topical Website Classification

In this chapter, we study the task of classifying websites into non-topical categories,

where the class labels are public, private, non-profit, and commercial franchise. We

refer to this as non-topical classification because the topic discovered from the con-

tent of the document may not be sufficient to classify the document into one of the

class labels. Some organizations list themselves as “non-profit” in their website,

however many lack this information despite being non-profit. When such informa-

tion is lacking in the content, we would still want to correctly classify the website.

In order to achieve this goal, we will look into various features other than words that

will be helpful when information is lacking in the content. Furthermore, we deal

with website classification i.e. classifying an entire website where a website can be

a collection of many web pages. In such a scenario, fetching every page from the

website is very time consuming and it is essential to figure out an optimal click-

depth at which pages could be crawled without losing the classification accuracy.

We will carry out experiments at various click-depths and analyze the occurrence of

informative textual features and performance of the classifier at each click-depth.

6.1 Features used for Classification

6.1.1 Bag of Words (BOW)

Words provide useful cues as to which category a particular website belongs. For

example, analyzing the websites manually reveals that websites in franchise cate-

gories often contain words such as order, pay, success, and testimonials. Private
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websites usually contain terms like doctor, clinic, physician and other common

medical terms. Public websites may contain the keywords government, ministry

and non-profit ones often have words like donate, voluntary. We followed the bag-

of-words approach and extracted word unigrams from HTML documents. We used

a HTML parser1 to extract the text from the body and title of the document. Words

from meta-keywords and meta-description tags were then added to the list of un-

igrams. We then extracted the word-stem for each unigram and represented the

word-stem in a feature vector using the TF-IDF metric. Since we were dealing with

a collection of web pages within a website, we followed a slightly different defini-

tion of TF-IDF as shown in Equation 6.1 to normalize the term frequency within a

website.

tfidf(t,W) =
tf
P
× log

(
N

DF

)
(6.1)

In Equation 6.1, tfidf(t,W) gives the TF-IDF measure of a term t for the website

W. tf is the term frequency of the word t i.e. the number of times t occurs in W.

P is the total number of web pages in W where term t occurs. DF is the document

frequency of t with respect to all the websites i.e. the number of websites in the

dataset in which the term t occurred. N represents the total number of websites in

the dataset. We discarded any term having a document frequency (DF) of less than

three.

Some of the non-profit organization often list themselves as being a not-for-

profit organization in their About page. There are many variations of the keyword

non-profit expressed as “not for profit”, “non profit” or even “not-for-profit”. In or-

der to capture this notion, we combined these variations as a single entity: nonprofit,

using a regular expression.

6.1.2 Syntactic Features

Part-of-speech(POS) provides useful information about the structure of a sentence

and the style of writing, hence it can be helpful in capturing our notion of categories.

1http://lxml.de/
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For example, commercial websites tend to use adjectives more often than the non-

profit ones in order to describe numerous products and services that they offer. This

suggests that the style of writing a sentence can provide useful information about

the category. POS tags have been shown to be useful for text classification where

sentences are well formed. However, capturing POS tags from HTML documents

can be a bit tricky as HTML documents can mostly contain words inside HTML

tags as opposed to full sentences. In order to extract the POS tags from HTML doc-

uments, we processed the documents to extract groups of text containing a sentence

boundary, (i.e. the symbols . , ? and !). We only extracted those sentences which

contained more than two words and removed the anchor tags <a> along with any

formatting tags <b>, <i> from the sentences. We used NLTK’s default tagger to

tag the sentences with the simplified tag set 2 and extracted POS-bigrams from each

sentence. We used the frequency of each POS-bigram as as a feature.

In addition to POS tags, several text patterns can help us identify the category

of a website. Franchises often indicate the price of an item that is being sold in

their website. We used a regular expression to extract the patterns of price that is

indicated in dollar amount. The frequency of a price pattern was then used in the

list of features.

Franchises often have more than two branches spread across many cities and

states. In order to capture this notion, we extracted postal addresses from a selected

set of HTML pages. We crawled links in the home page where the anchor text

contains word-stem “about”, “contact”, “locat” and “map”. We then used a geo

extractor3 that uses a regular expression based method [46] to extract the postal

addresses from the crawled pages. We used the total number of unique physical

addresses and the number of different states as our address-based features.

Some organizations often repeat their name many times in their website which

can provide a useful hint about the category of the website. We extracted organi-

zation names from sentences using NLTK’s named entity tagger and counted the

occurrence of each organization name. We then picked the organization name with

2http://www.nltk.org/
3http://www.folkarts.ca/geo/
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Table 6.1: List of Syntactic Features
Feature Type

POS Bigram Part-of-speech tags
Number of Unique Postal Addresses Named entity

Number of different provinces Named entity
Count of Price Pattern Named entity

Number of Unique Organization Name Named entity
Frequency of max. occurring Organization Name Named entity

Number of Organization Per page Named entity

the highest frequency and used its frequency and occurrence per page as a feature.

We also added the total number of unique organization names and the number of

organization names per page to the feature set.

Table 6.1 gives the list of syntactic features used.

6.1.3 Structural Features

The connectivity structure of pages in a website and the occurrence of links at var-

ious depths are also expected to be different for different classes. For example,

public websites are expected to have highly-linked pages at various depths and also

links to other resources on the Web. We included as our features the count of in-

ternal/external links appearing at a certain depth of the website. We counted the

external links, internal links, and outdegree at each depth and calculated the maxi-

mum number of internal links, external links and outdegree occurring at any depth.

We also computed the average external links per depth, average internal links per

depth and the average outdegree per depth. Furthermore, we created four bins for

each depth d indicating the counts of external, internal, repeated internal, and re-

peated external links at that depth. During the crawling phase, we noticed that some

of the private websites have very few internal links at a shallow depth. On the other

hand, some of the public websites contained many internal links at a shallow depth

and the size of the website rapidly grew along with the depth. By assigning count

bins at each depth we intended to capture this property. Furthermore, the maximum

depth of a website is also a good indicator whether a website falls under public (gov-

ernment websites at large depth) or private (small private clinics at small depth). In
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order to capture this notion, we also created three bins for the maximum depth of

the website indicating the maximum depth value between 0-5, 6-10 and > 10. We

assigned a boolean value to each bin depending upon whether or not the maximum

depth of the websites falls under the range of the bin.

We also used 8 URL features and 8 link structure-based features from [2, 23,

24]; it should be noted that the aforementioned work used the structural features to

classify websites into functional categories such as blog, personal, shop, academic

etc. URL features were extracted from the set of URLs obtained while crawling the

structural dataset of the website (upto a depth of ten). The URL features included

average number of digits in the path, number of sub-domains encountered, average

path length, average number of slashes in the path, fraction of PDF/PS, fraction of

HTML and script files, and the number of unique file types obtained by analyzing

the file extension from the URL.

Link structures are mainly based on the external (a link pointing to a page out-

side the website) and internal links (a link pointing to any other page within the

website) and the depth at which these links were found. The structural features

included from [2, 23, 24] were average external depth, average internal depth, max-

imum depth of the website, average depth, total number of unique URLs, fraction

of links at the densest depth, average size of the crawled pages in kilobyte, and

fraction of the files having javascript in it.

In Canada, many government websites have one of the domain names .gov and

.gc.ca. In order to capture the essence of top-level domain (TLD) names, we created

binary features based on the various patterns of top-level domain names present in

the dataset. Our dataset consisted of 7 different patterns of domain names includ-

ing .org, .com, .ca, .net, .gov, .province.ca (where .province can be any Canadian

province in its short form such as ab.ca, bc.ca, on.ca etc) and .gc.ca. We combined

.gc.ca and .gov into a single pattern representing government and used a total of six

binary features based on the occurrence of the various TLD patterns.

Table 6.2 gives the list of structural features used.
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Table 6.2: List of Structural Features
Feature Type

Average Digit in URL Path URL
Number of Sub-domains URL

Number of File types URL
Average forward slashes in the path URL

Average Path Length URL
Fraction of files with script extension

(.php,.pl,.asp,.js,.cgi,.py) URL

Fraction of files with .pdf/.ps extension URL
Fraction of HTML files URL

Presence/absence of TLD pattern
(.gov, .prov.ca,.org, .net, .ca, .com) URL

Average external links per depth Link Structure
Average internal links per depth Link Structure

Average outdegree (internal + external) per depth Link Structure
Average size per file Link Structure

Number of unique known pages Link Structure
Fraction of files containing javascript Link Structure
Fraction of links at the densest depth Link Structure

Max. external links at a depth Link Structure
Max. internal links at a depth Link Structure

Max. outdegree at a depth Link Structure
Max. depth crawled Link Structure

Count of links at each depth
(internal, external, visited external, visited internal) Link Structure

Max. depth bin (0-5, 6-10, > 10) Link Structure

31



Train Data

ALA Based 

Document 

Transformation

Feature 

Selection

Binary 

Transformation 

Class1 Vs. 

Other

Class2 Vs. 

Other

Class3 Vs. 

Other

Class4 Vs. 

Other

Figure 6.1: Selecting Features before binary transformation

6.2 Experiments

As explained in Chapter 5, we used a SVM based one-vs-all Binary Relevance (BR)

method [40] to perform multi-label classification. We built 4 binary classifiers, one

for each class label, and assigned a class label to a website if the prediction of the

classifier is positive. We performed 10-fold cross-validation 10 times and analyzed

the average of Micro and Macro F-measures as Micro and Macro measures give

performance of the entire multi-label classification task.

In a multi-label classification setting, applying some transformations to the

training documents can affect the performance of the classifier. We transformed

the documents based on ALA (All Labeled Assignment) [7] approach. For samples

having more than one label, the ALA approach requires having multiple rows of

the sample each indicating one of the labels in the set of feature vectors used for

classification. The ALA approach has been shown to work well in a multi-label

classification setting [7]. Since we have a one vs. all multi-label classification set-

ting, we also have to transform the training data into a binary form after following

the ALA transformation. It is important to consider the order of document transfor-

mation and feature selection as it involves a trade-off between computation time and

performance. We follow two different orders: 1) selecting features before binary

transformation and 2) selecting features after the binary transformation.

6.2.1 Selecting Features Before Binary Transformation

Figure 6.1 shows the sequence of document transformation that we followed when

applying feature selection before binary transformation. In this section, we perform
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Table 6.3: Number of features extracted at each click-depth
Feature click-depth 0 click-depth 1 click-depth 2
BOW 1221 7876 31923

POS-Bigram 248 307 320
Structure 90 90 90

experiments by first transforming the training data using the ALA-based approach

which was followed by feature selection based on Information Gain and finally we

perform binary transformation based on the selected features. This method saves

computation time as we only compute Information Gain once before transforming

the training data into binary form. In section 6.2.2, we will look into feature se-

lection on a per label basis which takes more computation time. Selecting features

before a binary transformation would mean that all four classes are involved in the

computation of Information Gain and we only have to find a single threshold for

each feature set when selecting the features by IG ranking. The best threshold for

feature selection is obtained by trying ten different values of x ∈ 10, 20, , 100 to

extract the top x% of the features ranked by Information Gain and picking the value

of x based on the score of highest micro F-measure. The classification for feature

selection is performed in a 5-fold cross-validation setting on the training data. After

selecting the features, we perform binary transformation for each class labels only

using the features that have been selected.

Analysis of Bag-of-Words at various click-depth

We analyzed how the number of features at each click-depth of a website affects the

classification performance. Table 6.3 shows the number of features per click-depth.

We can see that the number of features based on bag-of-words (BOW) greatly in-

creases with the click-depth. On the other hand, numbers of POS-bigrams are not

much affected. As we deal with structural features separately, the number of fea-

tures based on structure remains the same.

Figure 6.2 shows the performance of bag-of-words at each depth and at various

thresholds of information gain. We can see that bag-of-words has the least perfor-

mance at depth 0. Upon analyzing the websites, we found that the index/home page
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Figure 6.2: Micro F-measure for bag-of-words at each click-depth. X-axis denotes
top x% of features when ranked by Information Gain where x is between 10 and
100.

of the website seldom contains important words for the task of classifying the web-

sites into the non-topical categories. For example, words like “non-profit” mostly

occur in the “About” page at a click depth of one, but are missing at depth 0. The

performance of bag-of-words-based classifiers at depth 1 and 2 are similar. It is

interesting to note that at depth 2 utilizes 31,923 features while there are only 7876

features at depth of 1. Due to the presence of a large number of words, the training

time of the classifier at depth 2 is also more than that of depth 1.

We deal with three types of features: bag-of-words, structural features (POS-

bigram and named entity distribution), and structural properties (link structure and

URL patterns); these features provide three different views of the website. Bag-of-

words represent the explicit information provided by the website, POS-bigram and

named entity distribution capture the patterns in text and link structure and URL

properties give important information about the structure of the website. For each

of these views, we created a separate feature vector to classify the websites. Table

6.4 shows the performance of these features at a depth of zero, one and two. As
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Table 6.4: F-measure(%) at each click-depth. Standard deviation shown inside
brackets.

D Features Public Private Non-Profit Franchise Micro F Macro F

zero BOW
44.10
(3.45)

62.88
(2.57)

37.71
(4.47)

69.58
(3.36)

53.57
(1.92)

55.57
(1.92)

Syntactic
36.49
(3.82)

42.59
(3.82)

24.36
(4.5)

48.20
(3.62)

37.91
(1.78)

39.23
(1.65)

one
BOW

58.93
(1.93)

59.98
(1.97)

49.90
(5.43)

80.73
(2.57)

62.39
(1.11)

63.85
(0.87)

Syntactic
55.49
(3.41)

50.49
(4.0)

38.18
(5.31)

50.69
(4.75)

48.71
(2.19)

49.5
(2.08)

two
BOW

65.20
(1.07)

64.99
(1.18)

61.81
(4.35)

79.09
(1.32)

67.77
(0.86)

68.57
(0.55)

Syntactic
55.56
(4.82)

58.56
(1.73)

38.70
(4.05)

51.55
(2.39)

51.09
(1.69)

52.71
(1.52)

- Structure
46.61
(4.13)

56.30
(6.60)

43.21
(8.98)

56.81
(3.7)

50.73
(2.37)

51.94
(2.11)

structural properties were crawled separately, they are not related to the number

of pages crawled at each depth and its performance has been reported separately

without the depth information. Bag-of-words with a threshold on IG performed

better than structural and syntactic features; however, we should note that it also

has the largest number of features compared to our non-bag-of-word features.

Table 6.5 shows some of the top features along with their information gain. We

could not provide the full list of features due to the space constraints; nonetheless

the list gives the informative strength of each set of features. The list shows exam-

ples of features that are helpful to identify the categories of a websites. Words like

“voluntary”, “donate”, “nonprofit” are good indicators of a website belonging to

the non-profit category, whereas “testimonials”, “llc”, “inc” are good indicators for

private and franchise. Keywords “ministry”, “government” help to identify web-

sites from the public category. Table 6.5 shows that the features related to POS

bigram are ranked higher than patterns captured from named entities and might be

more useful. It also shows that structural features comprising of internal and exter-

nal links and related statistics at a depth level are good measures for classification.

Public websites generally have many pages at a shallow depth, while most private

websites have only a few pages at shallow depths. Also, the maximum depth of a

website is a good indicator of a government website (at large depth) and a small
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Table 6.5: Features ranked by Information Gain
Bag-of-words Syntactic Structure
volunt 0.318 [ADV PRO] 0.048 Fraction of PDF/PS files 0.155

committe 0.224 [DET ADV] 0.046 Max. external links per level 0.068
collabora 0.222 [TO P] 0.043 Repeated internal links at depth 5 0.061

... ... ...
ministri 0.203 [VG ADJ] 0.032 Tot. internal links at depth 5 0.059

fund 0.193 [VG PRO] 0.027 Repeated internal links at depth 6 0.056
donor 0.186 [EX ADJ] 0.023 Max.depth between 0 to 5 0.056
donat 0.150 Price Count 0.023 Tot. external links at depth 6 0.055

govern 0.147 [N NP] 0.022 Avg. digit in domain path 0.049
... ... ...

nonprofit 0.137 [VG WH] 0.018 Number of file types 0.043
social 0.124 Province Count 0.015 Tot. external links at depth 4 0.039

llc 0.046 [ADJ NP] 0.014 Tot. internal links at depth 3 0.032
testimoni 0.036 Address count 0.010 Avg. outdegree per level 0.031

inc 0.023 Org. name count 0.010 Domain with .gov extension 0.011
... ... ...

private clinic (at small depth).

Using Sum Rule to Combine Classifiers

As our three sets of features provide different perspectives about a website, we

try to capture the notion of all three views by combining the individual classifiers

built on each view. Kittler et al. [19] showed several ways to combine classifiers.

We measured the probabilistic output from SVM using Platt’s method [32, 22] and

used the sum rule to combine the classifiers based on the three feature types. There

are 3 classifier predictions (one from each view) for each website sample. For

every sample, we summed up the confidence measure of the classifier based on

each feature type for every positive prediction. We then only picked the positive

predictions where the sum of confidence measure was more than a threshold T. The

threshold was obtained by trying different values in the range of 0.1 to 1.0 at a

step of 0.1. These thresholds were selected from training data in the normal cross-

validation setting. The idea behind using the sum-rule is to remove predictions

having a lower confidence and also to pick the prediction based on the confidence

vote of more than one classifiers. For instance, if sample x1 is assigned a lower

positive confidence of 0.4 and 0.3 by two classifiers, we would still want to pick

this prediction as a confident prediction because two classifiers are predicting this
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sample as positive and their sum of confidence is high. Similarly if only a single

classifier would predict the label of a sample x2 with a high confidence, say 0.9,

then we also want to consider this prediction as a positive prediction. However, if

only a single classifier positively predicts a sample with a lower confidence then we

do not want to predict the sample as positively classified by the combined classifier.

Although the sum of the three classifier confidence will be 3, we can only search

the value of threshold up to 1.0 because any confidence greater than 1.0 means the

sample has been predicted by more than one classifier and thus it will satisfy the

condition of being greater than the threshold (T). As a result, the sample will be

classified as positive by the sum-rule based classifier.

Alg. 1 Algorithm used to combine the classifiers in a multi-label setting.

1 for each label, l do
2 for each website,w, in test do
3 sum[w] := 0
4 for each feature set,f do
5 build a classifier,C, using f,l
6 for each website,w, in test do
7 [prediction,confidence] = Classify(w,C)
8 if prediction == 1.0
9 add confidence to sum[w]
10 for each website,w, in test do
11 if sum[w] > T
12 assign label l to w

Table 6.6 shows the performance of the classifier formed by combining bag-of-

words, syntactic, and structural features using the sum-rule. The combined classi-

fiers performed better than bag-of-words alone at depths of zero, one and two. We

used paired t-test to further compare the performance between bag-of-words and

combined classifier at each depth. For both Micro and Macro F-measures, we get

p < 0.05 for all depths as shown in Table 6.7. This shows that the difference in

performance observed over 10 runs of 10-fold cross-validation is statistically sig-

nificant. Table 6.6 also shows that the performance of the combined classifier at

depth 0, although better than bag-of-words alone at depth 0, is the least of all three

37



Table 6.6: Result of combining the classifiers using sum-rule. Standard deviation
inside bracket.

Depth Features Micro F Macro F

zero
BOW

53.57
(1.92)

55.57
(1.92)

Combined
64.98
(1.86)

63.18
(2.14)

one
BOW

62.39
(1.11)

63.85
(0.87)

Combined
72.30
(1.71)

71.66
(1.39)

two
BOW

67.77
(0.86)

68.57
(0.55)

Combined
72.02
(2.07)

72.10
(2.47)

Table 6.7: P-value from paired t-test between BOW-based classifier and sum-rule-
based combined classifier

Depth Micro F Macro F
Zero p = 0.000 p = 0.000
One p = 0.008 p = 0.000
Two p = 0.001 p = 0.000

Note: Value of p restricted to 3 decimal places.

depths. This indicates that important words available at some shallow depth greater

than zero play an important role in the classification. This shows that words are im-

portant features for non-topical classification and augmenting it with structural and

syntactic features helps to improve the classification performance. The improve-

ment is more significant when word-based features are insufficient.

6.2.2 Selecting Features After Binary Transformation

In section 6.2.1, we saw the ordering of document transformation which required

less computation time. In this section, we will look into a another ordering of doc-

ument transformation which can help to improve the performance of the classifiers.

Figure 6.2.2 shows the ordering of document transformation that can be used to

find a more refined information gain threshold on a per class basis. This method

takes more computation time than the method shown in section 6.2.1, however,
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if the performance gain is significant it is worth spending the extra computation

time, specially when these operations are not performed online in a real-world ap-

plication. In this section, we perform our experiments by selecting features after

performing both ALA and binary transformation. This means we have to apply ten

thresholds (top 10% to 100% of the features ranked by IG) on each class label, and

only two classes (positive, negative) will be involved in the computation of Infor-

mation Gain, as we are selecting the features after transforming the document into

binary form. We repeated this step for each set of features and obtained individual

thresholds based on the maximum value of F-measure on a per class and per feature

set basis.

Train Data
ALA Based Document 

Transformation

Binary  

Transformation 

Class1 Vs. 

Other

Class2 Vs. 

Other

Class3 Vs. 

Other

Class4 Vs. 

Other

Feature 

Selection 

Feature 

Selection 

Feature 

Selection 

Feature 

Selection 

Figure 6.3: Selecting features after binary transformation to obtain thresholds on a
per-class basis

6.2.3 Experiments

In a setting similar to that of section 6.2.1, we performed experiments at click-

depth of zero, one and two by selecting features such that each class has a unique

threshold for each set of feature.

Table 6.8 shows that the performance of classifiers where feature selection is

done after binary transformation is better than that of classfiers shown in Table 6.4,

where features are selected before binary transformation. The performance of se-

lecting features on a per class basis has the highest performance at every click-depth

for every feature set. The performance gain is significant for bag-of-words classifier

at each depth as the difference in average Micro and Macro F-measure over 10 runs

39



Table 6.8: F-measure (%) at each click-depth when features are selected on a per
class basis

Depth Features Public Private Non-Profit Franchise Micro Macro

zero

BOW
69.54
(1.32)

79.34
(3.07)

77.49
(3.78)

83.98
(1.72)

77.94
(1.58)

77.59
(1.55)

BOW∗ 44.10
(3.45)

62.88
(2.57)

37.71
(4.47)

69.58
(3.36)

53.57
(1.92)

55.57
(1.92)

Syntactic
51.67
(3.09)

58.8
(2.41)

41.82
(6.43)

59.65
(2.77)

52.98
(2.47)

54.12
(2.4)

Syntactic∗
36.49
(3.82)

42.59
(3.82)

24.36
(4.5)

48.20
(3.62)

37.91
(1.78)

39.23
(1.65)

one

BOW
70.53
(1.4)

85.21
(2.4)

79.42
(1.88)

91.8
(2.57)

82.32
(1.04)

81.76
(1.03)

BOW∗ 58.93
(1.93)

59.98
(1.97)

49.90
(5.43)

80.73
(2.57)

62.39
(1.11)

63.85
(0.87)

Syntactic
61.69
(2.47)

61.43
(4.39)

54.02
(3.67)

62.26
(2.12)

60.41
(1.87)

59.85
(1.73)

Syntactic∗
55.49
(3.41)

50.49
(4.0)

38.18
(5.31)

50.69
(4.75)

48.71
(2.19)

49.5
(2.08)

two

BOW
79.64
(1.79)

79.58
(1.63)

82.24
(2.6)

90.33
(1.7)

81.65
(0.89)

81.45
(0.91)

BOW∗ 65.20
(1.07)

64.99
(1.18)

61.81
(4.35)

79.09
(1.32)

67.77
(0.86)

68.57
(0.55)

Syntactic
56.16
(2.66)

65.96
(1.65)

60.33
(3.09)

64.15
(3.64)

62.28
(1.19)

61.65
(1.34)

Syntactic∗
55.56
(4.82)

58.56
(1.73)

38.70
(4.05)

51.55
(2.39)

51.09
(1.69)

52.71
(1.52)

- Structure
54.04
(3.1)

65.99
(2.3)

44.73
(4.97)

64.75
(2.24)

59.19
(1.75)

57.38
(1.83)

Structure∗
46.61
(4.13)

56.30
(6.60)

43.21
(8.98)

56.81
(3.7)

50.73
(2.37)

51.94
(2.11)

Note: ∗ denotes the classifier with best performing threshold from Table 6.4 i.e.
classifier built by selecting features before binary transformation.

of experiment is more than 15% with a very small value of standard deviation. Syn-

tactic and structural features also perform better than previous method of feature

selection. With the improved feature selection, some of the categories score very

high in terms of F-measure. For instance, the bag-of-words classifier for category

franchise had an F-measure of 90% for depth of one and two.

Analyzing the performance of bag-of-words classifier in Table 6.8 when feature

selection is done on per class basis, we can confirm the fact that capturing word

unigrams at deeper click-depth does not help much in improving the performance.

As the micro and macro F-measure of bag-of-words classifier at depth one and two

are similar, it shows that capturing words at deeper click-depth may not be helpful
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Table 6.9: F-measure(%) - Combining bag-of-words, structural and syntactic fea-
ture at each click-depth using sum-rule when feature selection is done after binary
transformation.

Depth Features Public Private Non-Profit Franchise Micro Macro

zero BOW
69.54
(1.32)

79.34
(3.07)

77.49
(3.78)

83.98
(1.72)

77.94
(1.58)

77.59
(1.55)

Combined
70.78
(2.54)

79.57
(1.54)

74.52
(5.01)

83.73
(1.99)

77.62
(1.53)

77.15
(1.53)

one BOW
70.53
(1.4)

85.21
(2.4)

79.42
(1.88)

91.8
(2.577)

82.32
(1.04)

81.76
(1.03)

Combined
71.5

(3.12)
82.34
(2.16)

80.11
(3.7)

88.87
(2.12)

80.98
(1.06)

80.71
(1.12)

two BOW
79.64
(1.79)

79.58
(1.63)

82.24
(2.6)

90.33
(1.7)

81.65
(0.89)

81.45
(0.91)

Combined
72.71
(2.08)

77.48
(1.03)

81.21
(3.0)

86.42
(2.99)

79.49
(1.04)

79.45
(1.77)

as the most informative words are already present in depth zero and one. Also the

performance at depth of one being better than that of depth zero suggests that words

at depth zero might be missing informative unigrams and thus depth one seems to

be a suitable depth to capture word unigrams for a non-topical classification.

In Table 6.8, bag-of-words is already performing well at Micro and Macro F-

measure of over 80%, and it is interesting to see whether adding structural and

syntactic features can further boost the performance of the classifier. This is more

important in a real world scenario where there are thousands of websites and some

of these websites may not have enough informative words to classify them accu-

rately. Table 6.9 compares the bag-of-words classifier with the classifier formed

by combining bag-of-words, syntactic and structural features using the sum rule as

described in Algorithm 1.

Table 6.9 shows that the combined classifier formed by sum-rule did not per-

form better than the bag-of-words. Using the sum rule, we are unable to determine

whether adding structural and syntactic feature was really helpful in the current

dataset. In order to further verify this fact, we looked into two other ways of com-

bining multiple feature sets.
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6.3 Combining Multiple Feature Sets

Several ways of combining classifiers have been discussed in [19, 16]. In this sec-

tion, we will look into two such ways that are applicable for multi-label classifica-

tion. We performed the experiments on depth of one as it seems to be the optimal

depth to extract features from the language model. Furthermore, we used the im-

proved feature selection where each class labels has a unique threshold for each

feature set as explained in Section 6.2.2.

6.3.1 Method 1 - Single Feature Vector (SFV)

In this method, multiple feature sets are put into one feature vector which acts as

an input to the classifier. This is one of the most common but simplest ways of

combining the features. Nonetheless, with a careful feature and parameter selection

its performance can be comparable to other methods.

6.3.2 Method 2 - Weighted Sum (WS)

When there are M sets of features and L labels, there can be M different binary

classifiers for each label in a one vs. all setting. For each sample, the confidence

of positive predictions made by the binary classifiers can then be added by using

a weighted sum method to give a combined classification prediction based on M

classifiers. Equation 6.2 gives the general form of the weighted sum.

Fl(x) =
M∑
k=1

wkl × fkl(x) (6.2)

In Equation 6.2, Fl(x) gives the combined confidence score from M different

feature sets for a test sample x. fkl(x) is the prediction confidence of a binary clas-

sifier built using the class label l and feature set k such that label l is assigned to x.

wkl is the weight assigned to each binary classifier. In case of a multi-class classi-

fication, this method can be applied to combine multiple feature sets by computing

the weighted sum for each sample and picking the label having the maximum value

of weighted sum. However, since we are dealing with a multi-label classification,

it is not feasible to pick a single label with the maximum value, as a test sample
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can have more than one label. In order to apply the weighted sum method to our

multi-label classification, we introduce a way to measure the weight of each binary

classifier based upon its precision and apply a cut-off threshold on the weighted

sum so that multiple labels can be assigned to each sample. Equation 6.3 shows the

precision-based weighted sum method that can be applied in a multi-label classifi-

cation setting.

Fl(x) =
1

M∑
i=1

fil(x)

×
M∑
k=1

Preckl × fkl(x)

assign label l to x , if Fl(x) > T

(6.3)

In Equation 6.3, Preckl is the precision of the classifier using feature k and

label l. Using the precision value as weight, we computed the weighted sum score

similar to Equation 6.2. We then normalized the weighted sum value by the sum

of confidence scores given by M binary classifiers such that each binary classifier

predicts l as a label of x. The precision for the classifier was obtained through a

5-fold cross-validation on the training data. For the SVM classifier, we obtained

the confidence of each prediction using Platt’s method [32, 22]. T is the cut-off

threshold which must be met to assign a particular label to the website. Using the

threshold T, we ensure that a test sample can have more than one label. The values

of T that we tried ranged from 0.1 to 1.0 at a step of 0.1 and we picked the threshold

that performed the best on the training data.

6.3.3 Results

Table 6.10 shows that combining structural and syntactic features with bag-of-

words in a single feature vector did not perform better than bag-of-words alone.

However, the precision-based weighted sum (WS) performs better than bag-of-

words and single feature vector. The paired t-test between weighted sum and BOW

resulted in p-values of less than 0.05 for both Micro and Macro F-measures as

shown in Table 6.11. This shows that the improvement is statistically significant.

Table 6.10 shows that adding structural and syntactic features to bag-of-words
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Table 6.10: % F-measure after combining the three sets of features at depth of 1.
Bag-of-Words Single Feature Vector Weighted Sum

Public
70.53
(1.4)

69.9
(2.19)

71.48
(2.89)

Private
85.21
(2.4)

83.79
(2.33)

85.96
(2.26)

Non-Profit
79.42
(1.88)

78.87
(2.21)

81.06
(3.02)

Franchise
91.88
(2.57)

93.17
(2.32)

93.59
(1.81)

Macro
81.76
(1.03)

81.43
(1.09)

83.02
(1.22)

Micro
82.32
(1.04)

81.99
(1.05)

83.47
(1.13)

Table 6.11: P-value from paired t-test between BOW-based classifier and weighted-
sum based combined classifier at depth of 1.

Micro F Macro F
p-value 0.008 0.004

helps to increase the performance and the gain is statistically significant. However,

the difference in micro and macro F-measure between bag-of-words and WS is

small. At depth of 1, we have a case when bag-of-words is already performing very

well and there might be very little room for improvement due to the noise in the

dataset. Another reason could be most of the positive predictions made by structural

and syntactic features are already predicted by bag-of-words, which has a high F-

measure at depth of one. In a real world scenario with thousands of websites, this

may not be the case and words alone may be insufficient. Following this notion,

we performed similar experiments at depth of zero (where a website would only

contain one page) having a total of 1221 words, 248 syntactic features, and 90

structural features before feature selection.

Table 6.12 shows the F-measure for three individual feature sets and their com-

bination through SFV and WS at a depth of zero. Weighted sum has the highest

F-measure for all the categories. The p-value of less than 0.05 for both Micro and

Macro F-measures indicate that the improvement is statistically significant. This

shows that augmenting bag-of-words with structural and syntactic features with a
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Table 6.12: F-measure (%) at depth of zero.
BOW Struct Syntac. SFV WS

Public
69.54
(1.32)

53.29
(2.6)

51.67
(3.09)

66.81
(1.39)

71.99
(1.54)

Private
79.34
(3.07)

65.11
(1.39)

58.8
(2.41)

78.49
(2.64)

82.2
(2.65)

Non-Profit
77.49
(3.78)

45.57
(3.66)

41.82
(6.4)

71.82
(3.43)

77.78
(3.68)

Franchise
83.98
(1.72)

64.72
(2.23)

59.65
(2.77)

86.31
(1.85)

88.36
(1.93)

Macro
77.59
(1.55)

57.17
(1.24)

52.98
(2.47)

75.86
(1.08)

80.10
(1.14)

Micro
77.94
(1.58)

58.9
(1.16)

54.12
(2.4)

76.62
(0.97)

80.62
(1.1)

Table 6.13: P-value from paired t-test between BOW-based classifier and weighted-
sum based combined classifier at depth of 0.

Micro F Macro F
p-value 0.000 0.000

precision-based weighted sum method is indeed helpful when words alone are in-

sufficient.

6.4 Experimenting with word-bigrams

In order to take the full advantage of the word-based features, we performed experi-

ments with word-bigrams as the features. Word bigrams were extracted in a method

similar to unigrams (as explained previously) and the features were weighted us-

ing the TF-IDF metric. We captured the word-bigrams at a depth of one and

performed the feature selection on a per class basis. There were 203,123 unique

word-bigrams. Table 6.14 shows that word-bigram performed very well at a micro

and macro average F-measure of 82%. It is also interesting to note that the bi-

nary classifiers built for the class labels only use some of the features from 203,123

unique word-bigrams. Combining structural, syntactic features, and word-bigrams

using precision-based weighted sum there was further improvement in performance

which was statistically significant (p-value < 0.05). Further adding word-unigrams
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Table 6.14: F-measure(%): Combining Word-Bigram with Stuctural and Syntactic
features at depth of 1.

Word-Bigram
Combined-1

(Weighted Sum)
Combined-2

(Weighted Sum)

Public
88.15
(1.2)

88.87
(1.12)

86.9
(2.5)

Private
78.86
(2.48)

81.93
(3.44)

88.3
(2.49)

Non-Profit
85.19
(3.32)

81.6
(2.69)

86.82
(3.52)

Franchise
79.33
(2.22)

82.9
(1.7)

91.4
(2.2)

Macro
82.88
(0.81)

84.83
(1.23)

88.35
(1.61)

Micro
82.86
(0.7)

84.74
(1.23)

88.45
(1.54)

Combined-1 = Word-Bigram + Structural + Syntactic
Combined-2 = Word-Bigram + Structural + Syntactic + Word-unigram

to the combination, we were able to obtain 88% micro and macro average scores of

F-measure.

Overfitting

Overfitting occurs when the model is closely fitted to the training data. During

overfitting classifier makes its decision based on noise which may be correct for

the training data but cannot be generalized. For instance, many obesity resources

that are Private also provide service related to exercise. In such a scenario, overfit-

ting can occur when the classifier uses the words related to exercise and classifies

the sample as Private. This may be correct in the training data, but when many

unlabeled samples are presented the classification error will be high.

The improve in performance as we keep adding word-based features indicates

that the performance of word-based classifiers might be optimistic and that over-

fitting has occurred. Classifiers built on word-based features are likely to overfit

because they contain large number of features. Even though we are only using a

subset of word-based features through feature selection, the number of features can

still be large compared to the size of the small dataset. The number of syntactic and

structural features are relatively small and we are using a subset of the features so

less overfitting might take place in syntactic and structural classifiers. Also, we use
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domain knowledge to craft specific features for structural and syntactic classifiers

which help to reduce overfitting in them.

Experiments with word-bigrams are affected by overfitting and hence the word-

bigram-based classifiers cannot be trusted. It is an interesting observation that even

with the higher performance of word-based classifiers caused by overfitting, struc-

tural and syntactic features still help to improve the performance. It is difficult to

completely avoid overfitting when the training dataset is small and the number of

features are large (as is the case with word-based classifiers in current dataset). We

believe the results with less overfitting are the ones which uses less features. Thus

the experiments performed with unigrams at depth of zero and one are more reliable

and might be more close to the generalized model. Table 6.12 and 6.10 shows that

at depth of zero and one, structural and syntactic features are still helpful.

6.5 Observation

We analyzed the performance of bag-of-words, structural and syntactic features at

various click-depths of the website. We showed that structural and syntactic fea-

tures help to improve the classification performance when combined with the bag-

of-words approach at all three depths of the website. We found that the increase in

performance is more at depth of zero where less word-based features are available.

As the number of words increased with the depth of the website, we did not find

much difference in the performance of the classifier between depth one and depth

two. Hence, we can conclude that it is not necessary to crawl words from deeper

depth of the website and informative words are present at a shallower depth of zero

and one.
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Chapter 7

Non-topical Website Classification
with few Labeled Data

In this chapter, we consider the scenario where labeled data is significantly less

than unlabeled data, and supervised classification may not be possible. The sce-

nario is more common in a real-world problem and for our navigator application

described in Chapter 3. We deal with the problem of website classification where

unlabeled websites are abundantly present and labeled samples are scarce as it takes

time to label the website by hand. Since only few labeled examples are available

for training, they might lack informative features that can correctly classify all the

websites in the huge set of unlabeled data. Under this setting, it is helpful to apply

semi-supervised learning so that the learning algorithm can leverage from both the

labeled and unlabeled data.

We apply the co-training algorithm [5] which utilizes both the labeled and unla-

beled data in an iterative setting using two classifiers built on feature sets providing

different views of classification. As the task of non-topical website classification

consists of multiple feature sets, co-training algorithm would be suitable to the

task. Applying various combination of classifiers built on different feature sets, we

perform experiments to identify the best classifier combination using co-training

algorithm for the task of non-topical website classification.
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7.1 Co-training Algorithm

Co-training algorithm [5] uses classifiers built on two views (feature sets) extracted

from the dataset. Each classifier learns from a few labeled examples and predicts

the label for the unlabeled data. Few highly confident positive and negative pre-

dictions are then removed from the unlabeled data and added to the labeled data.

The classifiers are re-trained and the process continues until a maximum number of

iteration is reached or there are no more unlabeled data.

Stage 1: Two Classifiers train from L.

|L| << |U| 

l1, l2, l3 .. lML

C1 C2

Stage 2: Classifiers classify test data U. 

High confidence predictions u1, u2, u3, u4

C1 C2

u1, u2, u3 .. uN

u1, u2

Stage 3: High confidence predictions 

added to L. Classifiers Train from L′, 

|L′| > |L|

l1, l2, l3 .. lM, u1, u2, u3, u4L′

C′1 C′2

Stage 4: Classifiers classify U′,

 |U′| < |U|

C′1 C′2

u′1, u′2, u′3 .. u′N-4

u′1, u′2 u′3, u′4

U′

U

u3, u4

Figure 7.1: Illustration of a single co-training iteration in four stages

Figure 7.1 shows a single iteration of the co-training algorithm in four stages.

Initially, there is a small labeled dataset L for training and a large unlabeled dataset

U for testing. In stage 1, labeled dataset L is used to train two classifiers C1 and C2

by using the feature sets forming two different views of the classification task. In
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stage 2, both C1 and C2 predict the labels of samples from U and also provide the

confidence of each prediction. Few high confidence predictions from C1 and C2 are

then removed from U and added to L such that the size of L increases and the size

of U decreases. In stage 3, the new labeled dataset with increased size is then used

to train two new classifiers. In stage 4, the new classifiers are used to predict the

labels of the samples that remain in U. The process continues until all the samples

from unlabeled dataset are transfered to the labeled dataset.

Blum and Mitchell [5] state that when the assumptions of sufficiency and condi-

tional independence between two views are met, the co-training algorithm is guar-

anteed to work. Sufficiency means that each view is capable of correctly classifying

the samples of a class label and that each view should have a reasonable accuracy.

When two views are considered, each instance x is considered to have two views x1

and x2 where x1 ∈ X1, x2 ∈ X2 and X1 ×X2 forms the entire feature space. The

conditional independence between two views given a class label y ∈ {+1,−1} is

defined as

Pr(x1|x2, y) = Pr(x1|y)

Pr(x2|x1, y) = Pr(x2|y)
(7.1)

As the co-training algorithm works with two classifiers complementing each

other, the conditional independence criteria makes it possible that even when the

performance of the two classifiers are the same the labels and confidence produced

by them are different. Co-training benefits from such a scenario. When two views

are not present, conditional independence can also be achieved by using two dif-

ferent classification algorithms for the two classifiers [13]. In a real-world dataset,

it is often difficult to encounter views which hold the property of conditional inde-

pendence. Moreover, in order to empirically show that two views are conditionally

independent, a larger dataset is needed which is not the case in many real-world

problems with very few labeled examples available initially [25]. Earlier work on

co-training considered the conditional independence in a strong sense, however,

there has been much research on why co-training works and it has been shown

theoretically and empirically that co-training still works when the conditional inde-
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pendence assumption is relaxed [1, 43, 3].

We experimented on various combinations of views considering two scenarios:

1) when conditional independence assumption is strong and 2) when conditional

independence assumption is relaxed. We also adapted the co-training algorithm

so that it is applicable when multiple feature sets are available for a multi-label

classification task. We follow the binary relevance one vs. all approach and built

binary classifiers for each class label. Since there were multiple feature sets, we

built multiple binary classifiers for each class label. Each binary classifier was based

upon an individual set of feature. We then applied the co-training algorithm for

multiple binary classifiers of a class label. We picked one positive and one negative

most confident labels from each binary classifier and added them to the labeled data.

We continued this process until all the samples were labeled. This process was also

repeated for every class label. Algorithm 2 shows the steps followed.

Alg. 2 Co-training algorithm used to combine multiple feature sets.

L is the labeled data available for training
U is the unlabeled data, such that |L| << |U |
C is the number of class labels
M is the number of feature sets

For each c ∈ C do the following:
U ′← U
L′← L
Transform L′ as per binary relevance based on c
while U ′ is not empty do

for each feature set m ∈M do
Build binary classifier hmc using m,c and L′

Using hmc, classify the unlabeled data U ′

Mark 1 most confident positive prediction
Mark 1 most confident negative prediction

Remove all the marked data from U ′ and add to L′
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Table 7.1: Combining Classifiers based on Multiple Feature Sets
C1 BOW + Structure
C2 BOW + Syntactic
C3 BOW + Structure + Syntactic
C4 BOW + Structure + Syntactic

+ BOW Structure Syntactic

7.2 Experiments

With the assumption that the size of labeled data is significantly less than the un-

labeled data, we only used 10% of the labeled data for training and used the rest

of the data for testing. We randomly selected 10% of the samples from each class

label and repeated the process for five times so that we had five different datasets

each comprising of 10% training and 90% of testing data. We kept these 5 datasets

unchanged throughout all the experiments in order to maintain consistency. All the

metrics presented in this section are average scores obtained by running the exper-

iments on these five datasets prepared by crawling websites at depth one. As our

classifier, we used SVM with the linear kernel (instead of the RBF kernel) for all

experiments in this section in order to save time1 during several co-training itera-

tions.

We applied the co-training algorithm on four different combination of classi-

fiers. Table 7.1 lists the four ways in which we combined bag-of-words, structural

features and syntactic features in the co-training setting.

Combination 1 (C1): C1 combines two classifiers, one based on bag-of-words

and the other based on structural features. The notion behind this combination is

to follow the standard two view co-training algorithm and analyze the performance

of co-training when the conditional independence between two views is strong.

Structural features and word-based features are conditionally independent as the

structure of the website is not derived from the words present in the website and

both views provide different perspective of the task.

Combination 2 (C2): C2 also combines two classifiers, i.e. the bag-of-words-

1RBF kernel requires tuning two kernel parameters(C and γ) while linear kernel only requires
tuning one parameter(C)
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Table 7.2: Classification Results in terms of F-measure (%). Standard Deviation
shown in bracket.

Features Public Private Non-
Profit

Franchise Macro Micro

Supervised
10% Labeled

BOW
28.46

(14.09)
31.65

(14.02)
5.04

(4.69)
21.85

(10.57)
21.75
(5.18)

25.35
(7.47)

Syntactic
13.12
(7.84)

23.74
(17.36)

1.9
(3.80)

12.12
(8.83)

12.72
(4.78)

16.04
(8.14)

Structure
23.23
(14.6)

30.67
(16.14)

18.8
(12.84)

32.62
(19.1)

26.33
(8.92)

29.94
(8.95)

SFV
28.46

(14.09)
31.65

(14.22)
5.09
(4.8)

21.09
(11.56)

21.57
(4.96)

25.25
(7.26)

Co-Training
10% Labeled

C1
55.93
(5.77)

61.78
(10.82)

43.85
(6.35)

55.39
(4.54)

54.24
(4.76)

54.68
(4.84)

C2
57.62
(8.95)

49.93
(8.94)

23.92
(11.09)

50.76
(5.79)

45.56
(3.45)

47.49
(3.31)

C3
54.74
(4.55)

47.84
(12.21)

37.27
(7.64)

54.81
(6.82)

48.66
(3.8)

49.14
(4.0)

C4
60.45
(6.14)

51.73
(10.28)

40.38
(5.69)

53.62
(7.13)

51.54
(3.04)

51.94
(3.11)

Co-Training
+ Sum Rule

C1 + Sum
58.21
(4.27)

62.06
(11.61)

42.15
(6.47)

56.98
(3.19)

54.85
(2.97)

55.39
(3.17)

C2 + Sum
54.66
(5.46)

46.91
(6.08)

33.26
(1.32)

54.3
(7.16)

47.28
(2.32)

47.69
(2.45)

C3 + Sum
54.78
(5.39)

52.58
(8.42)

39.77
(4.53)

54.0
(6.95)

50.28
(3.5)

50.78
(3.5)

C4 + Sum
58.38
(5.63)

56.84
(10.34)

36.46
(5.22)

54.55
(8.06)

51.56
(2.39)

52.29
(2.56)

based classifier and a classifier built on the syntactic features. In this case, we

want to analyze the performance of co-training when the conditional independence

assumption is more relaxed. Since bag-of-words and syntactic features (consisting

of part-of-speech tags) both are extracted from the same content of the website, we

cannot guarantee that conditional independence exists between these two feature

sets.

Combination 3 (C3): C3 combines three classifiers: a bag-of-words classifier,

a classifier built on structural features and a classifier built on syntactic features. The

idea behind this combination was to study how co-training would perform when

more than two classifiers are introduced in the algorithm.

Combination 4 (C4): C4 consists of all three classifiers from C3 i.e. classifiers

built on bag-of-words, syntactic and structural features. In addition, it contains a

fourth classifier built by combining bag-of-words, syntactic and structural features
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in a single feature vector. It would be interesting to note the performance of co-

training when such a classifier is included in the algorithm. The conditional inde-

pendence assumption here is more relaxed as the fourth view is just a combination

of all three individual views.

Table 7.2 shows the results of the experiment in terms of F-measure. With

only 10% of the labeled data available for training, the supervised classification

performed poorly compared to co-training. The combination of classifiers which

performed best during co-training (a combination of bag-of-words and structural

feature-based classifiers) showed a gain of 25% in micro and macro F-measure

when compared with the classifier performing best in the supervised classification

(performance of structural feature-based classifier). This difference in performance

shows that co-training can be helpful than supervised classification when the size of

labeled data used for training is small and enough informative features are lacking

in the training sample. In order to check the statistical significance, we performed

paired t-test between each co-training combination and supervised classification.

We obtained p < 0.05 for each pair indicating that every co-training combination is

better than all the other supervised experiments.

Table 7.3: P-values from paired t-test between co-training combinations.
Macro F Micro F

C1-C3 0.088 0.083
C1-C4 0.147 0.126
C3-C4 0.123 0.127

In case of co-training, the pair of classifiers built on top of bag-of-words and

structural features had the highest average Micro and Macro F-measures compared

to all the other combinations. This shows that when conditional independence as-

sumption is strong co-training algorithm performs at its peak. Table 7.2 shows that

C2 performs worst out of all the combinations. One of the reasons syntactic fea-

tures did not pair well with the bag-of-words may be due to the fact that conditional

independence is more relaxed. However, C2 still does much better than supervised

classification. We also notice that the initial seed set affected the performance of the

classifiers. When informative features are lacking in both the views, the two clas-
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sifiers could not complement each other well and the classification performance

decreased. The classification performance of C2 for non-profit category is one such

case. With more than three feature sets, the performance of C3 and C4 was similar

to that of C1 as measured by the paired t-test with 95% confidence level shown in

Table 7.3. This shows that co-training can work well even when more than two sets

of features are present. It is interesting to note that C4 performs as well as C3 when

in fact the difference between C3 and C4 is just an additional feature set combined

from features already present in C3. This shows that co-training can gain in per-

formance when new sets of features formed by combining existing feature sets are

added to the algorithm. This technique can be useful when two views meeting the

conditional independence criteria are not available.

Adding a classifier based on sum rule to the combinations: Table 7.2 also

shows the performance of each classifier combination when a classifier based on

the sum rule was added to co-training. Sum rule, as explained in Algorithm 1, adds

up the prediction confidence of a sample given by multiple classifiers. At each iter-

ation of co-training, the sum rule-based classifier adds up the positive and negative

confidence of the samples predicted by each of the binary classifiers built on multi-

ple feature sets. As positive prediction is an indicator of a class label, the sum rule

discards the negative confidence of the sample if it has also been assigned a posi-

tive label by any one of the classifiers. After aggregating the confidence of positive

and negative sample lists, the classifier based on sum rule ranks the samples by the

total confidence score and adds the top-most positive and negative sample to the

labeled data. Table 7.2 shows that adding this classifier to co-training slightly im-

proves the micro and macro F-measures of every classifier combination. The sum

rule basically computes the confidence vote. It adds those samples to the training

data where more than one classifiers agree on the label but somehow the confidence

score of each classifier is not large enough to push the sample to the training set.

With classifier combinations augmented by the sum rule, the pair of structural fea-

tures and bag-of-words still performed best among other combinations. Although

the improvement using sum-rule was not statistically significant, the number of it-
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erations required by co-training decreased when sum-rule is applied. Hence this

method can be useful to save computation time without losing the performance of

co-training.

7.3 Observation

In this chapter, we used the co-training algorithm to combine multiple sets of fea-

tures in a semi-supervised setting. Training with only 10% of the labeled data, a

maximum micro F-measure of 55% was achieved by combining two classifiers built

on structural features and bag-of-words through the co-training algorithm. We an-

alyzed the co-training algorithm for multi-label classification problem and showed

that it can also work well when more than two feature sets are available. We also

showed that using the existing sets of features, new feature sets can be introduced

to take advantage of the co-training algorithm. We experimentally showed that

co-training works at its best when two views satisfy the conditional independence

assumption, however, even when this assumption is relaxed co-training can still

perform better than supervised classification.
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Chapter 8

Conclusion

In this research, we analyzed multiple sets of features for non-topical classification

of websites into labels describing the obesity service providers as public, private,

non-profit, and commercial franchise. We showed that when words in the con-

tent are not enough to classify the websites, syntactic and structural features can

help to increase the performance. We showed ways to combine the multiple sets

of features and achieved the best results with the weighted-sum method where the

weights of individual classifiers are computed based on the precision of each clas-

sifier for a particular feature set. We gained performance when word unigrams

were augmented with structural and syntactic features. The performance was more

significant when less word-based features were available.

We showed that treating single or multiple pages from a website as a document

and carefully selecting the features can provide good results. When multiple pages

are to be crawled from the website, the optimal depth of the website is crucial in

terms of computation time and the classifier performance. We showed that words

at shallow depth carry informative features and crawling at deeper depth may not

be helpful to increase the performance. We also showed that the order of feature

selection can be vital in a binary relevance multi-label classification setting and that

the best performance is achieved when feature selection is done after transforming

the labeled data through both ALA and binary transformations.

When very few labeled data is available, we showed that co-training algorithm

can be beneficial than supervised learning in a multi-label classification setting. We

experimented on multiple combinations of features and found that the combination
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of word unigrams and structural features had the best performance. We showed that

co-training can also work well when more than two feature sets are available.

Finally, we integrated the non-topical classifiers to build a navigator application

that would improve the method of searching for obesity patients and allow them to

efficiently filter obesity-related resources.

8.1 Future Work

Non-topical classification of websites is both interesting and challenging. As we

introduce more categories to this task and move towards classifying a large number

of websites, it is imperative to identify features beyond what we have discovered in

this manuscript. Some of the future work on identifying useful features could be to

look into the visual content presented on the websites. Analyzing the images and

colors presented on the website to discover the “luring factor” could be helpful to

identify some of the commercial websites from the non-profit ones.

Co-training style algorithms can often suffer from noise that is added to the

labeled dataset when samples are wrongly classified. Further work on this aspect

is also required in order to detect the noise added to the training dataset. Further

work can also be done on combining various types of feature sets based on the

metrics used for the features such as analyzing the performance of co-training when

features with binary and real values are treated as separate views. The case of very

few labeled examples and large number of features is interesting from the aspect of

overfitting and feature selection, hence more work on these fields could be done to

identify features relevant to a class label for better performance.
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