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Application of airborne, laboratory and field hyperspectral methods to
mineral exploration in the Canadian Arctic: recognition and
characterization of volcanogenic massive sulfide-associated hydrothermal
alteration in the Izok Lake deposit area, Nunavut, Canada
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Abstract: We have investigated the application of ground, laboratory and airborne
optical remote sensing methods for the detection of hydrothermal alteration zones
associated with volcanogenic massive sulfide (VMS) deposits. We use the 1zok Lake
deposit in Nunavut, Canada as a test case. This bimodal-felsic Zn-Cu-Pb-Ag deposit is
located above the tree line in a subarctic environment where lichens are the dominant
cryptogamic species coating the rocks. The immediate host rhyolitic rocks have been
hydrothermally altered and contain biotite, chlorite and white micas as dominant
alteration minerals. These minerals have spectral AI-OH and Fe-OH absorption features
in the short-wave infrared wavelength region that display wavelength shifts, which are
documented to be due to chemical compositional changes. Our ground hyperspectral
results indicate that there is a systematic trend in the Fe-OH absorption feature
wavelength position of biotite/chlorite with increasing distance from the VMS deposit:
the average Fe-OH absorption feature wavelength position of the proximal areas (398-
3146 m from mineralization) is observed at 2254 nm, and that of the distal areas (5782-
6812 m) at 2251 nm. Moreover, the proximal areas have an average AI-OH absorption
feature wavelength position at 2203 nm, in contrast with the average wavelength
position at 2201 nm in the distal areas, implying a spectral shift of 2 nm. These findings
indicate that hydrothermal alteration zones can be detected by hyperspectral remote
sensing, despite the presence of abundant lichen cover. However, the airborne results
discussed in this study required the screening out of more than 99% of the pixels in the
area.
1. Introduction

Volcanogenic massive sulfide (VMS) deposits are economically important
sources of Zn, Cu, Pb, Ag, and Au (Galley et al., 2007). These deposits form from
hydrothermal fluids (downdrawn and modified seawater) that circulate and are heated by

magmas in the subsurface, dissolve metals and other solutes in the rocks along the flow

1 Laakso et al. Application of...
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path, and vent at the seafloor. The varying temperature and chemical gradients of the
fluids along their circulation path result in a range of chemical, mineralogical and
textural compositional changes in the host rocks. The extent and magnitude of these
changes are determined by physico-chemical factors such as the temperature, pH,
water/rock ratios, fo,, fS,, as well as the composition of the hydrothermal fluids and the
host rocks.

The mineralogical assemblages that develop through hydrothermal alteration in
different VMS deposits vary, but phyllosilicate minerals such as chlorite and sericite
(fine-grained micaceous minerals, Eberl et al., 1987) are typically present. The
phyllosilicates that form through hydrothermal alteration can have variable chemical
compositions (e.g., muscovite, paragonite, phengite, celadonite, Fe-chlorite and Mg-
chlorite) within a VMS system due to different physico-chemical conditions in different
parts of the system. High temperatures are favorable for the formation of Al-rich
muscovite and Fe-rich chlorite and biotite (Miyashiro and Shido, 1985; Cathelineau,
1988; Duke, 1994). Factors such as the chemical composition of the hydrothermal fluids
and the host rocks may simultaneously influence the composition of the developing
mineral assemblages (Kranidiotis and MacLean, 1987; Cathelineau, 1988; Van
Ruitenbeek et al., 2005). The chemical composition of the phyllosilicate minerals may
change through several substitutions such as simple Mg-Fe substitution or Tschermak
substitution, in which octahedral Mg and Fe substitute for Al concurrently with
tetrahedral Si for Al (Miyashiro and Shido, 1985; Guidotti and Sassi, 1998).

The short-wave infrared (SWIR, 1300-2500 nm) spectrometric response of the
phyllosilicate minerals is sensitive to the cation substitutions discussed above. These
substitutions can be observed as spectral shifts within the AI-OH and Fe-OH absorption
features near 2200 nm and 2250 nm, respectively (Clark et al., 2007). The wavelength

position of the Al-OH absorption feature, present in dioctahedral muscovite, shifts

2 Laakso et al. Application of...
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systematically toward shorter wavelengths as the Al content of the octahedral sites
increases, and the opposite effect, or a systematic shift toward longer wavelengths, takes
place when the relative proportion of octahedral Mg and Fe increase (Post and Noble,
1993; Duke, 1994). These dioctahedral minerals form a solid solution series between
paragonite, muscovite and phengite (Velde 1965, Li et al., 1994) and are commonly
termed white micas. Similar to white micas, the Fe-OH absorption feature that is present
in biotite and chlorite (Scott and Yang, 1997), shifts toward shorter wavelengths with
increasing Mg content, and toward longer wavelengths with increasing Fe content
(Bassett, 1960; McLeod et al., 1987).

Previously, the wavelength positions of the Al-OH and Fe-OH absorption
features extracted from laboratory hyperspectral data were used to delineate the
alteration zones of the Myra Falls VMS deposit in British Columbia (Jones et al., 2005)
and the Boco VMS Prospect in Tasmania, Australia (Herrmann et al., 2009). Van
Ruitenbeek et al. (2006) mapped the Al-OH absorption feature wavelength positions of
the Panorama VMS district, Soansville greenstone belt, Pilbara region, Australia, by
using spectral ratios extracted from hyperspectral airborne data. These studies show that
the spectral shifts of the AI-OH and Fe-OH absorption feature wavelength positions can
be detected by hyperspectral remote sensing in VMS deposit environments and that
these shifts are associated with chemical compositional variations of the phyllosilicate
minerals. However, the application of hyperspectral airborne data for mapping the Al-
OH and Fe-OH absorption feature wavelength positions of phyllosilicate minerals has
not previously been demonstrated in high latitude environments that typically have
abundant lichen cover on rock outcrops. Lichens are the dominant autotrophs of many
subpolar ecosystems due to their ability to withstand extreme environmental conditions
(Longton, 1988; Purvis, 2000). Lichens are also optically thick, and hence can hinder the

detection of spectral features of rock substrates (e.g., Ager and Milton, 1987; Rivard and
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Arvidson, 1992; Bechtel et al. 2002).

The present study was conducted in the Point Lake greenstone belt, in the area
that hosts the Izok Lake (65° 38°N, 112 48’W in Nunavut, Canada) Zn-Cu-Pb-Ag VMS
deposit. The salient objective was to determine if the distribution of hydrothermally
altered rocks associated with the deposit could be mapped using hyperspectral remote
sensing data and processing methods, in the presence of abundant lichens on the rock
outcrops. This objective was addressed by examining the AI-OH and Fe-OH absorption
feature wavelengths positions of white micas and biotite/chlorite. These absorption
feature wavelength positions were examined using various levels of spectroscopic data
that were related to the mineralogy of the study area and distance from mineralization.

2. Study Area

The study area is in the Kitikmeot region of Nunavut, northern Canada (Fig. 1).
The area comprises 15.5 km?” of gently rolling bedrock hills that are interrupted by more
prominent ridges. It also hosts numerous ponds and lakes. The nearest weather station to
provide long-term climatological data is located in Lupin (weather station "Lupin A",
65°45' N, 111°15' W), 72 km NE of Izok Lake. According to this weather station, the
daily average temperature is -10.9 °C between 1982 and 2006 (Government of Canada,
2014). The Kitikmeot region is characterized by Arctic tundra vegetation that is
dominated by shrubs, sedges, grasses and flowering herbs (Laidler et al., 2008). Lichens
are abundant on many outcrops in the Izok Lake area, and typically cover 75-100% of
the rock surfaces.

The study area is underlain by the Point Lake Formation of the Yellowknife
Supergroup, which is part of the Slave structural province (Bostock, 1980). The massive
sulfide lenses of the Izok Lake deposit are predominantly hosted by Archean (2.6 Ga;
Mortensen et al., 1988) rhyolitic rocks and, to a lesser extent, by intermediate to mafic

metavolcanic and metasedimentary rocks. These rhyolitic rocks contain white mica,
4 Laakso et al. Application of...
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biotite and chlorite some of which formed as the result of hydrothermal alteration that
occurred during massive sulfide emplacement (Morrison, 2004). The original alteration
minerals have been metamorphosed to pyroxene hornfels facies conditions that have
induced both textural and mineralogical changes. Porphyroblastic textures predominate
and minerals such as anthophyllite and cordierite occur in places (Morrison, 2004).
Despite metamorphism, the primary alteration assemblages are largely preserved in the
stratigraphic hanging wall and footwall of the deposit, and this serves as the rationale for
evaluating the application of hyperspectral methods for detecting this hydrothermal

alteration in the exploration for VMS mineralization.

3. Spectral datasets

3.1 Ground site selection and spectral measurements

Several sub-areas were selected strategically within the study area for the
acquisition of ground spectrometry with the aim of recognizing and delineating any
hydrothermal alteration zones associated with the Izok Lake deposit. These sites
encompass the intensely altered areas proximal to mineralization, and less altered areas
distal from the massive sulfides. An estimate of the intensity of alteration throughout the
study area was obtained by using the bulk rock Na,O isopleth map of Morrison (2004;
Fig. 1). Sodium depletion results from the breakdown of sodic plagioclase during
hydrothermal alteration, and is a reliable indicator of hydrothermal alteration intensity.
Areas of both intense and weak alteration were targeted to reveal possible trends in the
chemical compositions of the phyllosilicate minerals by collection and analysis of 285
spectra from the areas of intense alteration and 170 spectra from less intensely altered
areas. In total, 455 spectral measurements were collected from 108 rhyolitic rock
outcrops over two field seasons (2010 and 2013). At each measurement site, one to eight
spectral measurements, each with a 1 cm diameter circular footprint, were collected

5 Laakso et al. Application of...
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from the lichen-free and weathered surfaces of each rock outcrop. These measurements
were collected randomly from an area of approximately 0.25 m? per rock outcrop. All
the measurements were collected from the horizontal surfaces of the rock outcrops to
ensure optimal comparability of the ground and airborne spectra. In the field, visual
inspection of the rock outcrops, combined with knowledge of the geology of the study
area (see Fig. 1), were used to ensure that spectral measurements were obtained only
from rhyolitic rock outcrops. Some of the rhyolitic outcrops were stripped of lichens and
surficial material by Minerals and Metals Group (MMG; the owner of the deposit)
personnel with the use of a pressure washer, and these rock outcrops were preferred for
spectral measurements over non-pressure washed outcrops because they are devoid of
lichens. The solution used for pressure washing was water from the lakes of the study
area. Undisturbed, natural (i.e. non-pressure washed), rhyolitic outcrops have variable
lichen cover that ranges from sparse (covering 0-25% of the surface area) to abundant
(covering 75-100% of the surface area). Examples of pressure-washed and lichen-
covered rock outcrops are shown in Figures 2A,B.

All spectral measurements were made with a PANalytical Boulder Inc. (formerly
ASD Inc.) FieldSpec® 3 (hereafter referred to as ASD) spectrometer that records spectra
in the 350-2500 nm wavelength range with a spectral resolution of 10 nm and a
sampling interval of 1 nm in the SWIR wavelength region. All measurements were
obtained using a contact probe that has an internal illumination source that ensures
consistent illumination conditions during data acquisition. Radiance values were
converted to reflectance values by means of a Spectralon’™ reflectance panel (i.e. the
"white reference", SRT-99-100, Labsphere, Inc., North Sutton, NH, USA), a
commercially available plate made of polytetrafluoroethylene (Bruegge et al., 1993).
These relative reflectance values were converted to absolute reflectance values by

multiplying the relative reflectance value of each wavelength with the reflectance factor

6 Laakso et al. Application of...
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obtained from the calibration certificate of the Spectralon’™ panel. This correction was
conducted in accordance with the procedure suggested by Clark et al. (2002). The
correction is necessary because the Spectralon™™ panel has an absorption feature near
2130 nm (Clark et al., 2002). Dark current and white reference measurements were
repeated every ten minutes during data acquisition in order to ensure consistency in the
spectral measurements. The geographic coordinates of the rock outcrops were recorded
using a handheld GPS, and all spectral measurements were acquired within a five meter
radius from the X,Y co-ordinates recorded using the GPS. Each spectrum acquired in the
field consists of 60 individual measurements taken consecutively and averaged by the

ASD instrument.

3.2 Sample suite and laboratory spectral measurements

A hand specimen sample was collected from each of 60 rock outcrops that
represent 65% of the 108 rhyolitic rock outcrops visited during the field works in 2010
and 2013. The aim was to collect samples both from the intensely altered and less
altered parts of the study area. The bulk rock Na,O content isopleth map of Morrison
(2004, Fig. 1) was used to guide the selection of the ground spectrometry sample
locations; 39 samples were collected from the intensely altered areas, and 21 samples
were collected from the less/least intensely altered parts of the study area. All samples
collected have at least one weathered surface and sparsely lichen covered outcrops were
preferentially sampled.

One to six spectral measurements were obtained in the laboratory from the
weathered, lichen-free surfaces of each sample using an ASD FieldSpec® 3. If there
were no weathered surfaces available, measurements were made on fresh surfaces.

Reflectance spectra were acquired following the method described for ground

7 Laakso et al. Application of...
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spectrometry, except that each spectrum acquired in the laboratory is the average of 25

individual consecutive measurements.

3.3 Airborne spectral imaging

Airborne hyperspectral data were collected over a 94 km’ area comprising 58
flightlines within the Point Lake greenstone belt and centered on the Izok Lake deposit
area during the period August 2-21, 2010. The data were acquired by SpecTIR LLC of
Reno, Nevada using the ProSpecTIR® (AISA dual) sensor at a one meter spatial
resolution. This sensor collects data in a nominal spectral resolution of 5 nm between
390 to 2500 nm. These data were resampled to a 6.3 nm interval, resulting in 360
channels.

The airborne dataset was pre-processed by SpecTIR by first converting the
radiance data to reflectance data using the ATCOR-4" software package and
MODTRAN® 4 atmospheric lookup tables (Richter and Schlépfer, 2002). Next, the
dataset was geocorrected using the data extracted from a three-axis gyroscope attitude
INS (Inertial Navigation System) that was positioned with a 12-channel GPS system and
boresight calibration data. The data quality was confirmed by the Canada Centre for
Remote Sensing using the Imaging Spectrometer Data Analysis System (ISDAS)

package as outlined in Hitchcock and White (2007).

4. Petrography and Mineral Chemistry
Polished thin sections (PTS) were prepared from thirteen hand samples collected
from outcrops during ground spectrometry collection (27, 29, 31, 34, 35, 37, 47, 51, 53,
54, 55, 56 and 59). These samples were chosen because their spectra have either an Al-
OH or an Fe-OH absorption feature, which indicates the presence of white mica, biotite

and chlorite. The PTS of samples 51, 53, 54, 55, 56 and 59 (geographic locations shown

8 Laakso et al. Application of...
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in Fig. 1) were examined under a Nikon Labophot2® polarizing light microscope and the
presence or absence of biotite, chlorite and muscovite was recorded at over 500 random
spots within each PTS.

Next, seven samples (27, 29, 31, 34, 35, 37, 47) were selected for electron
microprobe analysis (EMPA) based on the short, intermediate and long wavelength
positions of their AI-OH and Fe-OH absorption features. Between 4 and 7 areas were
selected within each PTS for analysis of white mica, biotite and chlorite. The PTS were
carbon-coated and analyzed using a JEOL 8230 SuperProbe® electron microprobe
operating at 20kV and using a beam current of 20 nA. Mineral formulae were calculated
on the basis of 22 oxygens for micas (white micas and biotite) and 28 oxygens for
chlorite. The results were compared to the spectral characteristics of these minerals by
calculating the Pearson correlation coefficient between the AI-OH and Fe-OH
wavelength positions and the Al, Fe, Mg and Si contents of white micas, biotite and
chlorite, as determined by EMPA. These cations were chosen because their relative
proportions in the octahedral sites of the phyllosilicate minerals determine the
wavelength positions of the AI-OH and Fe-OH absorption features (Bassett, 1960;
McLeod et al., 1987; Duke, 1994). In practice, we used the average compositions of
these cations within each mineral (white mica and biotite/chlorite) for each sample
(PTS). These average mineral cation compositions were then compared to the average
Al-OH and Fe-OH absorption feature wavelength positions of the same samples from
which the PTS were prepared. Sample 29 does not display clear AI-OH absorption
features, and hence the average AI-OH absorption feature wavelength position of this

sample is not compared to its chemical composition.

5. Spectral Analysis Methodologies

5.1 Ground and hand sample spectral processing

9 Laakso et al. Application of...
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Of the 455 spectral measurements acquired in the field, forty were discarded
because of low signal-to-noise ratios or failed readings. The AI-OH and Fe-OH
absorption feature wavelength positions of the remaining hull quotient-corrected spectra
were manually extracted to discern the spectral shifts associated with the areas of
hydrothermal altered rock. Hull quotient correction 1s conducted to reduce the effects of
the background spectral slope when the absorption feature wavelength is to be
accurately recorded (Clark and Roush, 1984). In practice, the hull quotient correction
(continuum removal) is conducted by fitting straight-line segments (convex hull points)
over the shoulders (maxima) of an absorption feature, and dividing the reflectance
values of the absorption feature by these convex hull points. The resulting hull quotient
values are normalized to a 0-1 scale hence removing the effects of albedo variance in the
spectrum. An average wavelength position was then computed from the spectral
measurements. In practice, this was achieved by conducting continuum removal and
recording the minimum (the smallest hull quotient value) of each spectrum. These
values were next averaged per rock outcrop. This averaging resulted in 98 Al-OH and 85
Fe-OH absorption feature wavelength position observations. In the case of the hand
specimen samples, from one to six measurements per sample of the Al-OH and Fe-OH
absorption feature wavelength positions were averaged.

A continuous, gradational surface was created for the Al-OH and Fe-OH
wavelength positions in order to visualize the spatial trends of the ground spectra. This
was accomplished by using the nearest ten wavelength positions within a 200 m radius
to calculate the contents of each pixel in the surface via the IDW (Inverse Distance
Weighting) interpolation tools of the ArcGIS software package (Cressman, 1959;
Shepard, 1968; Philip and Watson, 1982; ESRI, 2011). The diameter of the interpolated
surface around each ground spectral observations (200 m) was chosen based on the

spatial distribution of the AI-OH and Fe-OH wavelength position observations. More

10 Laakso et al. Application of...
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specifically, this diameter was estimated using the average and maximum distances of
each AI-OH (average: 87 m, maximum: 383 m) and Fe-OH (average: 105 m, maximum:
1333 m) absorption feature field measurement to the nearest field measurement. The 200
m radius was estimated based on these average and maximum distances to minimize
extrapolation and to create a realistic representation of the spatial trends of the
absorption feature wavelength positions in the study area. The resulting surface was
normalized and divided into four quartiles to highlight the spatial distribution of the
shortest and longest quartile (25%) of the Al-OH and Fe-OH wavelength positions.

In a separate analysis, the AI-OH and Fe-OH wavelength positions were
examined in the context of the location of the rhyolitic rock outcrops relative to the
nearest massive sulfide lens. This was carried out to reveal the possible spatial trends of
the wavelength positions within the study area with respect to the ore zones. Only the
intensely altered areas (as defined by the Na,O isopleth maps of Morrison (2004); see
Fig. 1) were included in this analysis and hence areas distal to the massive sulfide lenses

(within 5800-6800 m) were omitted.

5.2 Airborne spectrometric data processing

Airborne data collected over the study area were used to map the spatial
distribution of the Al-OH wavelength positions of the rhyolitic rocks in the study area.
The spatial distribution of the Fe-OH absorption feature wavelengths was investigated,
but these absorption features were left out of the analysis because this specific
absorption feature was not readily identified in the airborne spectrometry. More
specifically, the Fe-OH absorption features were estimated to be too weak to be reliably
detectable by remote sensing means. As a first pre-processing step, the full airborne
dataset was clipped to correspond to the estimated dimensions (1.9 km?) of the rhyolitic

rock outcrops in the study area map provided by MMG. Next, the image was processed

11 Laakso et al. Application of...
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in three steps: 1) pixels attributed to vegetation were removed, ii) spectral unmixing was
performed to remove pixels most impacted by the effects of lichens, and iii) the
wavelength position of the AI-OH absorption absorption feature in all remaining pixels
was determined.

The chlorophyll index developed by Gitelson and Merzlyak (1994, Normalized
Difference Vegetation Index NDVI;ps) was used to identify pixels attributed to
photosynthetic vegetation. This index uses wavelengths 705 nm and 750 nm in the
visible and near-infrared wavelength regions, along the "red edge" spectral feature of
vegetation to detect attributes such as the chlorophyll content (Sims and Gamon, 2002).
Next, a threshold value of 0.2 was applied to the NDVI;s results to mask out pixels
associated with vegetation. This threshold was chosen based on the results of Gitelson
and Merzlyak (1994), who attributed NDVI;¢s values greater than 0.2 with increasing
chlorophyll content of vegetation. The masked pixels comprise 80% of the total number
of pixels covering rhyolitic rock outcrops (n=75499).

Spectral endmembers were extracted from the remaining airborne pixels by
means of the spatial-spectral endmember extraction (SSEE) tool of Rogge et al. (2007).
SSEE comprises three steps where the image is first divided into equal sized non-
overlapping subset regions where a set of eigenvectors that explain most of the spectral
variance is calculated for each subset. Then the image data are projected onto the local
eigenvectors compiled from all subset regions and the pixels occupying either extreme
of the vectors are retained as candidate endmembers. Lastly, within a given spatial
window, the candidate pixels are averaged with all other pixels that are spectrally
similar. One hundred and thirty seven endmembers were obtained through this
endmember extraction process, of which 22 were chosen to represent rocks, vegetation
and lichens, or any mixtures thereof. This endmember spectral database of 22

endmembers served as input for the linear spectral unmixing computer calculations
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(Adams et al., 1993; Boardman, 1993; Settle and Drake, 1993). The resulting 22
abundance fraction images were analyzed and attributed to lichen, vegetation, or lichen-
rock or vegetation-rock mixtures, based on their spectral characteristics. A single lichen-
coated endmember image was chosen to represent pixels of rhyolitic rock outcrops that
have a minimal lichen cover, and a threshold of 0.6 (fractional abundances of 60 % or
higher) was applied to this endmember image to retain rhyolitic rock outcrop pixels with
sparse vegetation and lowest degree of lichen cover. After this procedure, 1% of the
original number of pixels associated with the rhyolitic rock outcrops remained in the
dataset.

Next, the wavelength position of the Al-OH absorption feature was calculated
after hull removal from the 2188-2212 nm wavelength range. This absorption feature
wavelength position range was chosen because it encompasses the wavelength range of
absorption features present in the ground spectra (see below). Upon analysis of the
airborne spectra, the 2212 nm wavelength position was masked out because it was
deemed to be associated with lichens and other vegetation rather than rock outcrops.
Similarly, the 2194 nm AI-OH wavelength in the airborne spectrometry was left out of
further analysis because the spectral shape of the absorption features in this wavelength
range are strongly influenced by lichens and do not represent rhyolitic rock outcrops.
The basis for masking out these absorption features is the near absence of an absorption
feature at 2194 nm and 2212 nm in ground spectra, whereas these absorption features
are ubiquitously present in the airborne spectrometry, suggesting association with other
elements than rhyolitic rocks. It is also notable that the necessity to further mask out
pixels suggests that the abundant lichen cover on the rock outcrops of the study area
prevented a complete separation of lichens and rock surfaces through spectral unmixing.
One factor that may have contributed to this result is the spectral variation of vegetation

with varying nitrogen, cellulose and lignin contents. The spectral shape of plants varies
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as a function of these chemical elements and compounds (Kokaly et al., 2009), which
can increase the spectral diversity and make endmember extraction more challenging.

At this stage, 261 pixels remained, representing 0.3% of the original amount of
pixels associated with the rhyolitic rock outcrops. The inverse distance weighting (IDW)
interpolation tools (Cressman, 1959; Shepard, 1968; Philip and Watson, 1982) were then
used to create a continuous surface of the Al-OH absorption feature wavelength
positions of these pixels by employing the nearest 15 AI-OH absorption feature
wavelengths to calculate the contents of each pixel in the interpolated surface. The
interpolated surface was cropped to a 200 m buffer around each observation in order to
minimize the effects of extrapolation to areas of no observations.

The results were then validated against ground spectrometry. The averaged
spectra of each rock outcrop measured in the field was then re-sampled to the sampling
interval of the ground spectrometry (1 nm in the SWIR wavelength region) to the
sampling interval of the airborne spectrometry (6.3 nm). Each Al-OH absorption feature
wavelength position (#=261) in the airborne spectrometric dataset was then linked with
its geographically nearest Al-OH absorption feature wavelength position (n=98),
extracted from the ground spectrometry. These observations were then compared, and
the accuracy of the airborne Al-OH absorption feature wavelength position was assessed
based on how well each observation corresponded to the spatially nearest ground
spectral observation. More specifically, the accuracy was assessed based on the
difference (in nm) between the AI-OH absorption feature wavelength positions of the

airborne and ground spectral datasets.

6. Results
6.1 Mineralogy

All samples examined under the microscope (51, 53, 54, 55, 56 and 59) are fine-
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grained (average 0.2 mm), and some display mineralogical banding. White micas are
present in four samples, biotite in five samples and chlorite in one sample (Figs. 3A-F,
Table 1). White micas are responsible for the AI-OH absorption features, and biotite or
chlorite are associated with the Fe-OH absorption features of the samples. However, this
match is not perfect, as sample 53 does not reveal white micas in the thin section
investigated despite the presence of an Al-OH absorption feature. In all likelihood the

spatial distribution of white micas is inhomogeneous in sample 53.

6.2 Mineral chemistry

Table 2 summarizes the mineral compositions for white micas, chlorite, and
biotite, as determined by EMPA for the seven samples (PTS) and the average Al-OH
and Fe-OH wavelength positions obtained from the corresponding hand specimen.
Analysis of the EMPA data revealed a strong correlation between the Fe-OH
wavelength position and the Mg/(Mg+Fe) ratio of biotite/chlorite (Pearson's r=-0.893,
n=7, p=0.007, 99% confidence level, two-tailed) (Fig. 4A). Similarly, correlation
analysis shows a strong, statistically significant correlation between the AI-OH
wavelength positions and the Si/Al ratio of white micas (Pearson's r=0.861, n=6,
p=0.028, 95% confidence level, two-tailed, Fig. 4B). Furthermore, a strong correlation
(Pearson's =0.849, n=6, p=0.032, 95% confidence level, two-tailed) exists between the
Al-OH wavelength position and the Mg+Fe content of white micas (Fig. 4C). Ratios that
measure the amount of Na (sodic content) in the mineral lattice of white micas are not
applied in this analysis, because the shortest wavelength position of the white micas is at
relatively long wavelengths (2198 nm), indicating that none of the samples are truly
sodic (i.e. paragonitic).

These relationships between the average Al-OH and Fe-OH wavelength

positions, and the chemical composition of the samples indicate that the absorption
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feature wavelength positions vary systematically with the chemical composition of
muscovite and biotite/chlorite. More specifically, the AI-OH wavelength position of the
white micas decreases with increasing Al content (measured by the Si/Al ratio) and
increases with increasing Mg+Fe content. Similarly, the Fe-OH wavelength position of

biotite/chlorite decreases with increasing Mg/(Mg+Fe) ratio (increasing Mg content).

6.3 Ground spectrometry

6.3.1 Frequency and spatial distribution of the Fe-OH absorption feature
wavelength positions

The Fe-OH absorption is present in spectra from 85 of the rhyolitic rock outcrops,
(79%, n=108). The frequency distribution of these wavelength positions is shown in
Figure 5A, and ranges from 2249 nm to 2259 nm (mean=2254 nm, mode=2255 nm, std.
dev.=2.078). This broad wavelength range and the presence of values on the extremes of
the wavelength positions are illustrated in Figures 5B,C. The Shapiro-Wilk normality
test shows that the wavelength positions are normally distributed (p=0.703) and there
are no outliers in the dataset.

The broad wavelength range of the Fe-OH absorption feature wavelengths is also
evident in their spatial distribution, shown in Figure 6A. Furthermore, the Fe-OH
absorption feature wavelengths form two distinct spatial groups that are apparent upon
comparison of the average Fe-OH wavelength position of the proximal (398-3146 m
from the massive sulfides) and distal (5782-6812 m from the massive sulfides) areas.
The proximal area (“area 1” in Fig. 6A) of 73 measured rock outcrops has an average
Fe-OH absorption feature wavelength position at 2254 nm (std. dev.=1.831), whereas
the distal area (“area 2” in Fig. 6A) comprised of 12 rhyolitic rock outcrops, has an
average Fe-OH wavelength position at 2251 nm (std. dev.=1.215). This trend toward

shorter Fe-OH absorption feature wavelength positions is also apparent in the bivariate
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plot of the Fe-OH absorption feature wavelength positions versus distance from 3146 m
to the nearest massive sulfide lens (Fig. 6B). Furthermore, there is a statistically
significant inverse correlation between the Fe-OH wavelength position and the distance
to the massive sulfide lenses (Pearson's =-0.324, p=0.0, n=73), at the 99% confidence

level.

6.3.2 Frequency and spatial distribution of the Al-OH absorption feature
wavelength positions

An Al-OH absorption feature is present in 98 (91%) spectra from rhyolitic rock
outcrops, indicating that the minerals responsible for this spectral feature are abundant
throughout the study area. The average wavelengths of the absorption features in these
outcrops varies between 2194 nm and 2211 nm (mean=2203 nm, mode=2202 nm, std.
dev.=3.084; Fig. 7A). The wide range of the absorption feature wavelengths results from
spectral shifts, illustrated in Figures 7B,C. According to the Shapiro-Wilk normality test,
the frequency distribution of the absorption feature wavelength positions is normally
distributed (p=0.063, n=98); furthermore, according to an outlier test, the wavelength
positions less than or equal to 2195 nm and greater than or equal to 2210.5 nm are
outliers. However, after careful analysis of the associated spectra, these wavelength
positions were deemed not to be outliers, and for this reason were not removed from the
dataset. The extreme Al-OH wavelength positions likely indicate the presence of sodic
and phengitic muscovite that have characteristic spectral shifts toward shorter and longer
wavelengths, respectively (Duke, 1994).

There is no statistically significant Pearson correlation between the averaged Al-
OH absorption feature wavelengths of the rhyolitic rock outcrops and the distance to the
nearest massive sulfide. However, there is a slight shift toward longer wavelengths in

the proximal areas (327-2679 m from the massive sulfides) as opposed to the distal areas
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(5782-6812 m from the massive sulfides). In the proximal areas (“area 1” in Fig. 8A) the
average Al-OH absorption feature wavelength of the rhyolitic rock outcrops is 2203 nm
(n=85, std. dev.=2.983), whereas in the distal areas (“area 2” in Fig. 8A) the
corresponding average wavelength position is 2201 nm (rn=13, std. dev.=3.165), but this
1s a displacement essentially of only one band. Visual inspection of the results (Fig. 8A),
shows that the massive sulfide lenses are surrounded by relatively high Al-OH
absorption feature wavelengths, so that the highest values are located northwest of the
massive sulfide lenses. This is also evidenced by a cluster of the upper quartile (highest
25%) AI-OH absorption feature wavelength positions in the vicinity of Izok Lake (Fig.
8B). Despite this apparent trend in the AI-OH absorption feature wavelength positions in
the study area, relatively long wavelength positions occur both in the proximal and distal
areas, indicating that the Al-OH absorption feature wavelength positions do not vary

systematically with distance from the massive sulfide lenses.

6.4 Airborne spectrometry

6.4.1 Frequency and spatial distribution of the AI-OH absorption feature
wavelength positions

The frequency distribution of the Al-OH absorption feature wavelength positions
of the airborne data (n=261) define two groups: one at 2200 nm and the other at 2206
nm (Fig. 9A). The mode and median of the airborne data are both at 2200 nm, and these
coincide with the mode and median of the ground spectrometry, that has been re-
sampled to the sampling interval of the airborne spectrometry (Fig. 9B). Although the
values for both the airborne spectrometry and the re-sampled ground spectrometry are
identical, the AI-OH wavelength range of the former is relatively narrow compared to
that of the latter (2194-2212 nm, Figs. 9A,B), indicating that the entire wavelength

position range of the AI-OH absorption feature is not detected in the airborne
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spectrometric dataset. This conclusion is also suggested by the relatively low accuracy
of the airborne spectrometry as measured by the difference between the ground and
airborne spectra. Sixty five percent of the AI-OH absorption feature wavelength
positions in the airborne data (n=169) are within three nanometers of their spatially
nearest airborne spectrometric value. Within this 65% of observations, there is a strong,
statistically significant positive Pearson correlation (=0.917, p=0.0, n=169, 99%
confidence level, one-tailed), between the ground and airborne spectra.

The average airborne Al-OH absorption feature wavelength positions in the
proximal (Parea 1” in Fig. 10A, n=182) and distal (“area 2 in Fig. 10A, n=9) areas, are
both 2201 nm, indicating that there is no systematic trend in the airborne Al-OH
wavelength positions with distance to the massive sulfide lenses. Despite this, there is a
zone of relatively long Al-OH absorption feature wavelength positions in the airborne
spectrometry in the vicinity of the massive sulfide lenses. This area, located 800-1900 m
west of the sulfide lenses, and shown as an "area of enhanced alteration" in Figures
10A,B, coincides spatially with several 4 quartile (the highest 25% of the ground
observations at wavelengths between 2207-2211 nm) areas in the ground spectrometry,
shown in Figure 10B. There are also indications of a spatial continuity of long Al-OH
absorption feature wavelengths 1500 m north and 1000 m south of the massive sulfide
lenses. Based on the AI-OH absorption features extracted from the airborne

spectrometry alone, the areal extent of this alteration zone is ~8.67 km®.

7. Discussion

7.1 Validation of the ground spectroscopic datasets
The mineralogical composition of the samples was determined by optical
microscopic study of PTS. The presence or absence of the AI-OH and Fe-OH absorption

features was compared to the petrographic data for the corresponding PTS. The results
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indicate that the A1-OH absorption feature is associated with white micas and the Fe-OH
absorption feature is associated with biotite and chlorite. However, there is incomplete
correspondence between the presence of AI-OH absorption features and the presence of
white micas, as an Al-OH absorption feature was detected in sample 53, despite the
absence of muscovite in the PTS for this sample (Table 1). This is likely due to the
inhomogeneous distribution of white mica in sample 53. The discrepancy between the
sizes of the thin sections (26 X 46 mm) and the areas used for making spectral
measurements from the samples (on average 100 cm?) entails that there will only be a
perfect correlation between the two in samples with homogenously distributed minerals.
The spectral results were further validated by comparing the spectral shifts of the
Al-OH and Fe-OH absorption features to the chemical compositions of biotite, chlorite
and white micas in the corresponding samples. The results, shown in Figure 4 and listed
in Table 2, indicate that there is a strong positive correlation between the Si/Al content
of white micas and the average Al-OH absorption feature wavelength position.
Furthermore, there is a correlation of similar magnitude and direction between the
average Al-OH wavelength position of a sample and the Mg+Fe content of its white
micas. In contrast, a strong inverse correlation exists between the average Fe-OH
wavelength position and the Mg/(Mg+Fe) content of biotite/chlorite within the same
sample. These results indicate that the increasing Al content of white micas and the
increasing Mg content of biotite/chlorite are associated with the shifts toward shorter
wavelengths of the AlI-OH and Fe-OH absorption features, respectively. The inverse is
true for the increasing Mg,Fe content of the white micas, and Fe content of biotite and
chlorite, which is associated with the shifting toward longer wavelengths of the AI-OH
and Fe-OH absorption feature wavelength positions. Our findings are consistent with the
results of previous studies of Bassett (1960), McLeod et al. (1987), Post and Noble

(1993) and Duke (1994) who have documented similar spectral shifts in association with
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the chemical compositional variation of biotite, chlorite and muscovite.

7.2 Absorption feature wavelength positions of white micas and chlorite group minerals

There is considerable variation in the Al-OH and Fe-OH absorption feature
wavelength positions of white mica and biotite/chlorite in the Izok Lake area. These
variations likely result from hydrothermal alteration processes active at the time of the
massive sulfide formation. The Al-OH wavelength range demonstrated by the ground
spectrometry (2194-2211 nm) indicates that the chemical composition of white micas
ranges from paragonitic (short wavelength positions near 2195 nm) to muscovitic
(wavelength positions near 2200 nm) to slightly phengitic (wavelength position near
2210 nm). Similarly, the chemical compositions of chlorite group minerals range from
Mg-rich to Mg-Fe-rich, based on the Fe-OH wavelength positions extracted from the
ground dataset. This Mg-rich and Mg-Fe rich chlorite classification is in accordance
with the results by Yang and Huntington (1996), who documented Mg-rich chlorite
associated with the Fe-OH absorption features between 2252 and 2254 nm, and Mg-Fe
chlorite associated with the Fe-OH absorption feature wavelengths between 2256 and
2262 nm. The observed Al-OH and Fe-OH absorption feature wavelength distributions
also suggest that the chemical compositional changes within biotite, chlorite and
muscovite result in broad and continuous wavelength position data distributions that
should be analyzed by means of high spectral resolution datasets with narrow bandpass

sampling intervals.

7.3 Absorption feature wavelength trends in the ground spectra
The spectral shifts of the Fe-OH absorption features in the ground data were
studied by plotting the absorption feature wavelength positions against their distances to

the known massive sulfide lenses (Fig. 6B). This bivariate plot, and an interpolated
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surface (Fig. 6A), created from the Fe-OH absorption feature wavelength positions,
reveal systematic trends in the Fe-OH absorption feature wavelength positions with
distance to the known massive sulfide lenses. This trend is manifested as a shift toward
longer Fe-OH absorption feature wavelengths in the area proximal to the massive sulfide
lenses (within 300-3100 m), and a shift toward shorter wavelengths in the areas distal
from the massive sulfide lenses (within 5800-6800 m). The implication is that altered
rocks proximal to the Izok Lake massive sulfide lenses contain Mg-Fe biotite/chlorite,
and the distal areas contain Mg-rich biotite/chlorite. Contrary to the observed spatial
variability of the Fe-OH absorption feature wavelength, no spatial variability of the Al-
OH absorption feature wavelength with respect to distance from massive sulfide lenses
was discerned. However, an area of relatively long AI-OH wavelength positions,
revealed by an interpolated surface, occurs in the vicinity of the massive sulfide lenses,
coinciding with the area of Mg-Fe biotite/chlorite. The long Al-OH wavelength
positions of this area (up to 2211 nm) indicate the presence of slightly phengitic

muscovite.

7.4 Absorption feature wavelength trends in the airborne spectrometry

In order to place the spectral shifts of the AI-OH wavelength positions in the
ground spectrometry into a regional context, these data were scaled up to the airborne
spectrometry. A comparison between the airborne and ground spectra reveals a detection
accuracy of 65%, when each accurately detected airborne Al-OH absorption feature
wavelength position was determined to lie within three nanometers from the AI-OH
absorption feature wavelength position of the spatially nearest ground spectrum.
Problems in the detection of the spectral properties of rock outcrops in the study area,
indicated by this relatively low accuracy of the airborne spectrometry, may result from

multiple factors, including the abundant vegetation and lichen cover that necessitated the
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masking out of 99% of the pixels associated with the rhyolitic rock outcrops in the
airborne dataset.

One factor that affects the ability to detect the spectral features of rocks is the
sampling interval of the dataset. This is demonstrated in Figure 11 that shows the Al-OH
absorption feature wavelength positions of the ground spectra (sampling interval: 1 nm;
Figs. 11A,B) and ground spectra resampled to the sampling interval of the airborne
spectra (sampling interval: 6.3 nm; Figs. 11C,D). As the sampling interval is decreased
from 1 nm to 6.3 nm, the Al-OH absorption feature wavelength positions shift from
2202 nm to 2200 nm (spectrum 2, Figs. 11B,D) and from 2208 nm to 2206 nm
(spectrum 1, Figs. 11B,D). Moreover, as expected the signal-to-noise ratio of the
airborne spectral dataset is lower than that of the ground spectral dataset. This is evident
in Figures 11E,F that show four representative single pixel spectra extracted from the
rhyolitic rock outcrops of the airborne spectral dataset. Spectra 2 and 4 have an
absorption near 2206 nm and 2200 nm, respectively, whereas spectra 1 and 3 have an
absorption near 2194 nm and 2212 nm, respectively. Spectra with an absorption feature
near 2200 nm and 2206 nm, extracted from the rhyolitic rock outcrops of the study area,
were interpreted to be associated with white micas. When comparing spectra 2 and 4
with spectra 1 and 3 it becomes evident that the absorption of spectra 2 and 4 is slightly
broader. However, the overall spectral shape of all the spectra in Figure 11E is similar
and all have an absorption feature near 2100 nm, indicating spectral mixing between
rocks and lichens. Thus the main reason for masking out the absorption features shorter
than 2200 nm and longer than 2206 nm was the discrepancy between the data
distributions of the AI-OH absorption feature wavelength positions of the ground spectra
and that in the airborne data when the full spectral range of the Al-OH absorption
features of the ground spectra (2194-2211 nm, Fig. 7A) were taken into account.

The problems in detecting the spectral properties of the rock outcrops may be
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exacerbated by the relatively small proportion of sodic and phengitic micas in the study
area, as determined by the distribution of the AI-OH absorption feature wavelengths in
the ground spectrometry (Fig. 7A). Lesser abundances of minerals result in shallower
absorption feature depths (Clark, 1999), and for this reason detecting minerals present in
lower abundances (e.g. phengitic muscovite in the Izok Lake area) is more challenging
than detection of more abundant minerals that have clearly expressed absorption features.

The abundance of biotite and chlorite may also play a role in the detection of
their absorption features in the airborne spectrometry. An Fe-OH absorption feature
associated with these minerals is present in only 79% of the ground spectra, whereas an
AI-OH absorption feature attributed to white micas occurs in 91% of the ground spectra.
The higher detection percentage of the Al-OH absorption feature suggests that white
micas are more uniformly distributed in the study area than biotite/chlorite. Moreover,
the average Fe-OH absorption feature band depth of the ground spectra is 3.3%, whereas
the average Al-OH absorption feature band depth of the ground spectra is 20% (scale: 0-
100%). The depth of an absorption is related to the abundance of the absorber (Clark,
1999) and hence the discrepancy between the Al-OH and Fe-OH absorption band depths
indicates that the minerals inducing the former absorption feature are more abundant
than the minerals inducing the latter absorption feature. This more uneven distribution
and lesser abundance of biotite/chlorite (as opposed to white micas) is the likely
determining factor for the lack of detection of biotite/chlorite in the airborne spectra.
Other factors, such as the quality of preprocessing (e.g. atmospheric correction), S/N
(signal-to-noise) ratio, sampling interval and band pass of the spectral data can also
influence the ability to detect spectral features (Swayze et al., 2003).

Although the detection accuracy of the airborne spectrometry is relatively low,
the ability to detect an area of phengitic muscovite using both the ground and airborne

datasets independently demonstrates the efficacy of airborne spectrometry for the
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recognition and delineation of zones of hydrothermally altered rocks in outcrops in the

Izok Lake area.

7.5 Implications for the interpretation of the deposit fluid flow paths

An area of altered rocks with relatively long AI-OH absorption feature
wavelengths of the ground and airborne spectra (Figs. 10A,B) was identified in the
vicinity of the massive sulfide lenses of the Izok Lake deposit. This area contains
phengitic muscovite and intermediate to Fe-rich chlorite, both of which formed at high
temperature (200-350°C; Hulen and Nielson, 1986; Cathelineau, 1988). In addition to
temperature, another influence on the chemical composition of white micas and chlorite
group minerals is the chemical composition of the hydrothermal fluids (Cathelineau,
1988). Elevated Mg”" and Fe*" (relative to AI’") contents of the hydrothermal fluid favor
the formation of phengite (Yang et al., 2011). Thus, the area of altered rocks with long
Al-OH absorption feature wavelengths may reflect interaction with high-temperature,
metal-rich, and moderately acidic hydrothermal fluids (Lentz and Goodfellow, 1993),
possibly within or at the margin of a fluid discharge zone.

The chemical composition of chlorite is controlled largely by bulk rock
compositions (Inui and Toriumi, 2004), and a shift toward more Fe-rich biotite/chlorite
in this area corroborates this interpretation, as a characteristic feature of focused fluid
discharge sites is their Fe-rich bulk compositions (e.g., Barrett and MacLean, 1994).
The area of long AI-OH absorption feature wavelengths partly coincides with an area of
the intense hanging wall alteration discussed by Morrison (2004) that he interpreted to

be an area of sub-seafloor replacement.

8. Summary and Conclusions

Our ground hyperspectral results indicate that there is a systematic trend in the
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Fe-OH absorption feature wavelength position of biotite/chlorite with distance from the
VMS deposit. No such trend was identified in the Al-OH feature of white micas, but a
spatial pattern of relatively long Al-OH absorption feature wavelength positions was
observed in the vicinity of Izok Lake using ground and airborne hyperspectral sensors.
This area coincides with relatively long Fe-OH absorption feature positions, detected by
means of a ground hyperspectral sensor. These findings indicate that hydrothermal
alteration zones can be detected by hyperspectral remote sensing, despite the presence of
abundant lichen cover in the study area.

The large ranges in the Al-OH and Fe-OH absorption feature wavelengths of
muscovite and biotite/chlorite in the Izok Lake area reflect large chemical compositional
variations in these minerals. Unlike the white micas that display more spatial variation
in their AI-OH wavelength positions, the Fe-OH wavelength positions of biotite/chlorite
display consistent and systematic spatial shifts toward longer wavelengths in areas
proximal to the massive sulfide mineralization and a shift toward shorter wavelengths in
areas distal to the massive sulfides. These shifts indicate that biotite/chlorite becomes
more Fe-rich in the vicinity of the ore deposit and more Mg-rich in the distal areas.

Unfortunately, the Fe-OH absorption feature associated with biotite/chlorite
could not be detected in the airborne spectrometry, and hence the large-scale trends of
the chemical composition of these phyllosilicate minerals remain unconstrained.
However, an alteration halo comprising phengitic white micas was detected and
delineated using both the ground and airborne spectral datasets. Based on ground
spectrometry, this phengitic alteration halo coincides with a zone of Mg-Fe
biotite/chlorite proximal to the massive sulfide lenses. This fluid upflow alteration zone
extends ~1000 m south, 1500 m north and 1900 m west of the Izok Lake deposit.
Despite the low detection accuracy of the airborne data, the ability to identify this

hydrothermal alteration zone using airborne hyperspectral remote sensing data shows

26 Laakso et al. Application of...



O J o) U Ww N

AT T TR U U U O BB DSDEDNDEDEDNWWWOWWWWWWWWNNNNNONNNONNONNONNNE R PR PR
g WNhPRPRPOOWVWOUJOUd WNDRPRPOWOJOoOhUdWNRPOWOWOJOYUDd WNEPEOWOOWOWJToU D WNE OWOomJo)yUld WNEHE O 0

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

that this method has great promise in identifying and delineating zones of chlorite and
white mica hydrothermally altered rock that may be associated with VMS and other
hydrothermal mineral deposits (e.g., orogenic gold) in regions that have considerable
lichen cover. This lends support for the development of future airborne and spaceborne
hyperspectral sensors of higher signal-to-noise ratios and spectral resolutions that would
allow for better spectral unmixing and separation of cellulose and non-photosynthetic
vegetation materials from white mica minerals indicative of VMS environments.

Our study also highlights the importance of careful selection of wavelengths for
image analysis in environments where the spectral signatures are strongly influenced by
spectral mixing. Two absorption feature wavelength positions (2194 nm and 2212 nm)
were discarded from the airborne dataset due to the effects of spectral mixing of rocks
and vegetation that could not be completely eliminated through spectral unmixing and
band ratio analysis of vegetation (NDVI). This step proved essential for obtaining
relatively accurate results from the airborne data, regardless of the loss of significant

portions of the data.
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Fig. 1. Geological map of the study area showing the locations of the ground
spectrometry and sample collection sites. Also shown are the geographical locations of
samples 51, 53, 54, 55, 56 and 59. The airborne survey covers the whole study area.
Lithology and sulfide lenses GIS data from Minerals and Metals Group Ltd (unpubl.).
The < 1% NaO (in rock surface samples) isoline is modified from Morrison (2004).
sp.=spectrometry.

Fig. 2. A) Typical undisturbed rhyolitic rock outcrop with lichen cover. B) Left half:
undisturbed rhyolitic rock outcrop with lichen cover, and right half: spectral
measurement being taken with contact probe from pressure-washed, rhyolitic rock
outcrop.

Fig. 3. Photomicrographs of samples: A) 51; B) 53; C) 54; D) 55; E) 56; F) 59. All
photomicrographs in plain polarized light.

Fig. 4. A) bivariate plot of the Fe-OH wavelength position (in nm) versus the
Mg/(Mg+Fe) ratio of biotite/chlorite. B) bivariate plot of the Al-OH wavelength position
(in nm) versus the Si/Al ratio of white micas. C) bivariate plot of the Al-OH wavelength
position (in nm) versus the Mg+Fe content of white mica. All graphs are shown with a
linear fit line.

Fig. 5. Ground spectrometry; A) histogram of the wavelength range of the hull quotient
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corrected Fe-OH absorption features; B) 1: spectral measurement 50 (2259 nm),
spectrum 2: spectral measurement 282 (2250 nm); C) hull quotient-corrected spectra 1
and 2. Spectra 1 and 2 represent the long (2259 nm) and the short (2250 nm)
endmembers of the Fe-OH absorption feature wavelength positions of the ground
spectrometry, respectively.

Fig. 6. Ground spectrometry; A) spatial distribution map of the Fe-OH wavelength
position; B) bivariate plot of the Fe-OH absorption feature wavelength position versus
distance to the nearest massive sulfide lens.

Fig. 7. Ground spectrometry; A) histogram of the wavelength range of the hull quotient-
corrected Al-OH absorption features; B) 1: averaged spectral measurements 321-326
(2211 nm), spectrum 2: averaged spectral measurements 193-195 (2195 nm); C) hull
quotient-corrected spectra 1 and 2. Spectra 1 and 2 represent the long (2211 nm) and the
short (2195 nm) endmembers of the AI-OH absorption feature wavelength positions of
the ground spectrometry, respectively.

Fig. 8. A) spatial distribution map of the AlI-OH absorption feature wavelength positions
extracted from the ground spectrometry; B) spatial distribution map of the 1% and 4
quartile ranges for the Al-OH absorption feature wavelengths extracted from the ground
spectrometry.

Fig. 9. A) frequency distribution histogram of the AI-OH absorption features of the
airborne spectrometry; B) frequency distribution histogram of the Al-OH absorption
feature wavelengths extracted from ground spectrometry, re-sampled to the sampling
interval of the airborne data.

Fig. 10: A) Spatial distribution map of the interpolated AI-OH absorption feature
wavelengths extracted from the airborne data; B) spatial distribution map of the 4
quartile of the Al-OH absorption features extracted from the ground spectrometry (2207-

2211 nm) and airborne spectrometry (2205-2206 nm). Also shown in figures A and B is
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an area of altered rock that is characterized by relatively long Al-OH wavelength
positions both in the ground and airborne spectra ("area of enhanced alteration").
Rhyolitic rock outcrops, sulfide lenses, and the outline of Izok Lake GIS data are from
Minerals and Metals Group Ltd. (unpubl.).

Fig. 11. Ground and airborne spectra; A) 1: spectral measurement 267 (2208 nm), 2:
spectral measurement 37 (2202 nm); B) hull quotient-corrected spectra 1 and 2 of Figure
A; C) spectral measurements 267 (2206 nm, spectrum 1) and 37 (2200 nm, spectrum 2)
shown in Figure A, resampled to the sampling interval of the airborne spectra; D) hull
quotient-corrected spectra 1 and 2 of Figure C; E) Airborne spectra 1-4, representing the
absorption features near 2194 nm (spectrum 1), 2200 nm (spectrum 4), 2206 nm
(spectrum 2) and 2212 nm (spectrum 3); F) hull quotient-corrected spectra 1-4 of Figure

E. The sampling interval of the spectra is denoted by "x" in Figures B, D and F.

Table 1. Thin section samples, their mineralogy and the presence of the AI-OH and Fe-
OH absorption features.

Table 2. Average compositions of the samples per mineral and the average Al-OH and
Fe-OH absorption feature wavelength positions; n=number of analyses per sample;

biot.=biotite, chl.=chlorite.
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Figure 1
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Table 1

Sample | biotite chlorite muscovite AIFOH Fe-OH

no.

51 X X X X
53 X X X
54 X X X X
55 X X X X
56 X X
59 X X X X
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