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Abstract

Estimating the state of health (SOH) and state of charge (SOC) of Lithium-ion (Li-

ion) batteries is crucial for lifetime and performance optimizations. Many existing

online estimation methods are not practical in many applications as they may need

offline training, take too much time for estimations, or need a full discharge or charge

cycle for accurate results. In this thesis, a fast online SOH/SOC estimation method

for batteries with partial charge/discharge condition is introduced that can provide

accurate results in various operating and temperature conditions.

First, a method for online estimation of SOH/SOC is introduced. Based on

only two consecutive partial discharge intervals, the battery equivalent circuit model

(ECM) parameters and the open circuit voltage (OCV) relation with the battery

charge are estimated using Adam optimization algorithm. By comparing the esti-

mated OCV curve at each interval with the reference OCV curve of the brand new

battery, the battery capacity and therefore its SOH along with SOC are estimated.

In many applications the temperature changes in a wide range that may create

relatively large errors in state estimations. The proposed method is further refined

to guarantee accurate results and estimations in various temperature conditions. In

this modification, the SOC-OCV curve is extracted from the battery datasheet and

is predicted for different temperatures, which are then used to estimate SOH/SOC at

any given temperature.

In this thesis, the proposed methods are validated using NASA dataset. The

proposed method results in root mean square error (RMSE) below 1% for SOH and

1.07% for SOC on average. Moreover, it is shown that using the refined method, the
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SOH estimation RMSE is improved by 2.55% when the datasheet’s SOC-OCV curves

are adjusted according to their test temperatures.
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Preface

Some of the research conducted in this thesis is intended to be published. A journal

article based on chapters 3 is in the process of submission.
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Chapter 1

Introduction

1.1 Motivation

The 21st century is the era of modern technologies. Mobile and portable electronic

devices such as electric vehicles (EV), cellular phones, laptops, tablets, digital cam-

eras, power tools, audio devices, and gaming consoles are very commonly used in

people’s daily lives. These devices are rapidly growing and becoming more popular

every day, both in personal and industrial use.

All these portable devices need energy sources in order to operate. Rechargeable

batteries are commonly used as the energy source for these devices. Lead-acid, nickel-

cadmium (Ni-Cd), nickel-metal hydride (Ni-MH), and lithium-ion (Li-ion) batteries

are some examples of portable and rechargeable batteries that are used as the power

source for electronic devices. Table 1.1 compares different characteristics of these

batteries [1]. As can be seen in the table, Li-ion battery has high energy density, high

voltage, long lifetime, low self discharge rate, fast charging time, low toxicity, and

a wide operating temperature range. These features make Li-ion battery the best

choice among the rechargeable batteries for the energy source of portable electronic

devices.

Li-ion batteries have been introduced in the early 1980s and commercialized in

1991 [2]. Although the cost of Li-ion battery is rather high, they are still growing

in the market and are expected to continue growing over the next years [3]. Electric
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Table 1.1: Comparison between characteristics of four different batteries [1]

Characteristics Lead-acid Ni-Cd Ni-MH Li-ion

Energy density (Wh/kg) 30-50 40-60 60-120 170-250

Energy density (Wh/L) 60-110 150-190 140-300 350-700

Voltage 2.0 1.2 1.2 3.7

Expected life cycle 300 1500 1000 500-2000

Self-discharge per month (%) 5 20 30 <10

Fast charging time (h) 8-16 1 1-4 1 or less

In use since Late 1800 1950 1990 1991

Toxicity High High Low Low

Overcharge tolerance High Moderate Low Low

Operating temperature range (◦C) -20 to 60 -40 to 60 -20 to 60 -20 to 60

vehicles have the highest demand of Li-ion batteries among others. Fig. 1.1 shows

the increasing demand of Li-ion batteries for electric vehicles in the past few years

and provides a forecasting of the demands over the next ten years [4]. Also, Fig. 1.2

illustrates the cost prediction of Li-ion battery pack over the next ten years. Although

the price of the battery pack is decreasing, its growing demand makes the overall

yearly dollar expense in EV industry increasing. Based on Fig. 1.1, 1.2, the overall

dollar expense in EV industry will be around $100 billion per year by the year 2030.

This means extending the battery life by 5% will save approximately $5 billion per

year. Moreover, the unexpected events (such as overcharging and overdischarging)

that can endanger the life of the batteries can cause billions of dollars’ worth of

damage. All these reasons urge the need for a monitoring system that prevents

unexpected incidents to the battery and prolongs its lifetime. In the next section,

battery management systems (BMS) will be introduced to address this problem.
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Figure 1.1: Li-ion battery worldwide demand in electric vehicles and prediction for
the next ten years [4]

1.2 Battery Management Systems (BMS)

As mentioned in the previous section, the high price of Li-ion battery has created

the need for monitoring the battery to avoid catastrophic events that will lead to

costly expenses. A battery management system (BMS) is employed to monitor the

battery and prevent the battery voltage and temperature from exceeding or dropping

below certain limits and prevent the overcharging and overdischarging of the battery

to ensure its safe and stable operation [7]. Fig. 1.3 depicts the key features of a BMS

[8].

In Fig. 1.3, SOC and SOH denote the state of charge and the state of health of the

battery, which are indicators of battery charging level and health level respectively.

Accurate estimation of SOC and SOH are critical tasks of a BMS, and require special

attention. In this thesis, the main objective is to accurately estimate the battery SOC

and SOH with low complexity and without interrupting the operation of the battery
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Figure 1.2: Li-ion battery pack cost prediction over the next ten years, based on
Bloomberg New Energy Finance (BNEF) forecast [5], [6]

while in use.

1.3 Thesis Overview

In this thesis, we propose a novel method with low computational complexity that can

accurately estimate the battery SOC and SOH using only partial charge or discharge

data and without needing offline tests on the battery. That is, the battery’s SOC and

SOH are estimated while the battery is in use and its operation is not interrupted.

In Chapter 2, a background of Li-ion battery modeling will be provided and some of

the well known models for Li-ion batteries will be introduced. Also, all the technical

terms such as SOC, SOH, DOD, etc. will be defined. Furthermore, Adam optimiza-

tion algorithm will be briefly introduced and discussed, since it will be used later in

the proposed method in chapter 3. Finally, a background on neural networks will be

provided. Neural networks are used in Chapter 4.
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Figure 1.3: BMS key features [8]

In Chapter 3, our novel SOC/SOH estimation method will be explained. In this

method, the battery is modeled with a first order equivalent circuit model (ECM)

and the parameters of the model are estimated using the measured variables from the

last two partial discharge intervals. The estimation of ECM parameters is performed

using Adam optimization algorithm, which is a fast gradient based algorithm used

to find the optimized parameters for stochastic objective functions [9]. Using the

estimated parameters of ECM, the SOH and SOC of the battery will consequently be

5



estimated. It will be shown that SOH and SOC estimations are obtained extremely

fast and the results are highly accurate.

In Chapter 4, the effect of temperature on SOH estimations will be assessed. First,

the effect of temperature on the battery internal resistance will be modeled by train-

ing a neural network. Then, by removing the effect of internal resistance from the

discharge profiles provided in the battery datasheet, the reference curves for different

temperatures will be obtained. Finally, the SOH estimation for each discharge inter-

val will be performed using a reference curve for its specific operating temperature.

It will be observed that SOH estimations is improved if the effect of temperature is

considered in the estimations.

Finally, Chapter 5 will give a summary of the contributions of this thesis and give

some insights towards possible future works.
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Chapter 2

Background

As mentioned in Chapter 1, batteries need to be monitored throughout their opera-

tion in order to avoid damages and prolong their usable lifetime. In recent years, there

has been significant research progress in this regard. To be able to follow this rich lit-

erature, a comprehensive background regarding Li-ion battery state characterization

and modeling is required. This chapter provides all the required backgrounds regard-

ing Li-ion battery that the reader will need for Chapters 3, 4. An interested reader

who plans to read beyond this thesis is referred to [10]-[13] for a more comprehensive

background on Li-ion battery.

The rest of this chapter is as follows. First, battery performance indicators such as

SOH, SOC, etc. will be reviewed. Next, different modelings of Li-ion battery will be

introduced and discussed. Afterwards, Adam optimization algorithm, which will be

used later in Chapter 3, will be briefly explained. Finally, a quick review on neural

networks will be provided. Neural networks are used in Chapter 4.

2.1 State Characterization for Li-ion Batteries

There are several different ways to characterize the state and performance of batteries.

These characterizations will be briefly discussed and explained in this section.
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2.1.1 State of Charge

SOC is the ratio of the available charge capacity (also called capacity) of the battery

(Qcurrent) to the capacity of a fully charged battery (QFC) expressed in percentage

[14]. That is

SOC =
Qcurrent

QFC

. (2.1)

SOC is an indication of the available charge in the battery at each moment. In this

thesis for simplicity, QFC is represented by Q. If the initial SOC is known, SOC can

be estimated from the load current drawn from the battery as [15]:

SOC(t) = SOC(t0)−
∫︁ t

t0
ηIL(τ)dτ

Q
(2.2)

where IL is the load current and η is the coulombic efficiency that is defined as the

ratio of the charge delivered during discharge and the charge stored during previous

recharge [15]. If there are no significant unwanted parasitic reactions in a Li-ion cell

and if the electrodes show no significant mechanical degradation, then the coulombic

efficiency can be assumed as unity. In this work, we assume η = 1. This assumption

is numerically justified in Chapter 3, using available charge-discharge data of Li-ion

batteries.

2.1.2 State of Health

Electrochemical mechanisms lead to gradual health deterioration of the battery. The

capacity fade and internal resistance growth are two consequences of battery aging.

SOH is an indicator of the battery health expressed in percentage. There are generally

two definitions for the battery SOH, either based on the capacity or the internal

resistance. The more common definition of SOH is based on the capacity of the

battery [16]:

SOH =
Q

Qrated

, (2.3)

where Q is the capacity of the fully charged battery at current state and Qrated is the

rated capacity of the unaged battery. The other less common definition of SOH is

8



based on the internal resistance of the battery [16]:

SOH =
Rcurrent −Rrated

Rrated

. (2.4)

where Rcurrent is the current internal resistance of the battery and Rrated is the rated

internal resistance of the unaged battery. The first definition (2.3) is used in this

study.

A used battery eventually reaches its so-called End-of-Life (EOL), after which

its performance will degrade very quickly. According to [16], [17], either a 20%-30%

decrease in the battery maximum capacity or a 100% increase in its internal resistance

can be considered as the battery EOL.

2.1.3 Depth of Discharge

Depth of discharge (DOD) is the ratio of the discharged capacity of the battery

(Qreleased) to the capacity of a fully charged battery (Q). In fact, DOD is the com-

plementary of SOC.

DOD =
Qreleased

Q
= 1− Qcurrent

Q
. (2.5)

2.1.4 Remaining Useful Life

Battery remaining useful life (RUL) is an indicator of the number of remaining fully

charge and discharge cycles that battery is expected to operate. Based on [18], battery

RUL is defined as follows:

NRUL = NEOL −NECL (2.6)

where NRUL is the expected cycle numbers until the battery RUL, NEOL is the battery

end of life cycle’s number, and NECL is the equivalent circle life of the battery.

2.2 Li-ion Battery Modeling

There are various equivalent circuit models (ECM) introduced for Li-ion batteries.

These models can describe the behaviour of the batteries in terms of physical elements

9



and therefore can be useful to estimate the battery states, defined in Section 2.1. [19]

has categorized the circuit models into five categories, which will be discussed in the

following subsections.

2.2.1 The Rint Model

The Rint model is the simplest circuit model for a Li-ion battery, which connects the

battery open circuit voltage (OCV) to its terminal voltage VT via a series internal

resistance Rs and is shown in Fig. 2.1. Note that Voc (OCV) and Rs are both functions

of SOC, SOH, and temperature. IL is the load current and is positive at discharge

and negative at charge. (2.7) shows the equation of the Rint model.

−
+

Rs IL

+

−

VTVoc

Figure 2.1: Diagram of the Rint model

VT = Voc −RsIL. (2.7)

2.2.2 The RC Model

The RC model is another circuit model, which was first introduced by the SAFT

Battery Company and is illustrated in Fig. 2.2. It can be seen that the model is

composed of five elements as follows. The surface capacitor Cc, the bulk capacitor

Cb, the terminal resistor Rt, the end resistor Re, and the capacitor resistor Rc. The

surface capacitor Cc has a small capacitance and models the dynamical behaviours of

10



the battery [20]. The bulk capacitor Cb has a rather large capacitance and models the

charge storing of the battery and can be used to estimate the battery SOC. Equations

(2.8) and (2.9) describe the dynamic of the RC model.

Cb

+

−
Vb

Re Rt IL

+

−

Rc

Cc

+

−
Vc

VT

Figure 2.2: Diagram of the RC model

⎡⎣ Vb
̇

Vc
̇

⎤⎦ =

⎡⎣ −1
Cb(Re+Rc)

1
Cb(Re+Rc)

1
Cc(Re+Rc)

−1
Cc(Re+Rc)

⎤⎦⎡⎣ Vb

Vc

⎤⎦+

⎡⎣ −Rc

Cb(Re+Rc)

−Re

Cc(Re+Rc)

⎤⎦ [IL], (2.8)

[VT ] =
[︂

Rc

Re+Rc

Re

Re+Rc

]︂⎡⎣ Vb

Vc

⎤⎦+
[︂
−Rt − ReRc

(Re+Rc)

]︂
[IL]. (2.9)

2.2.3 The Thevenin Model

The Thevenin model can be considered as an upgraded version of the Rint model

and can be obtained by adding a parallel RC network in series with the internal

resistance in the Rint model, as shown in Fig. 2.3. The parallel RC network contains

the polarization resistance Rp and the polarization capacitance Cp. The polarization

capacitance Cp describes the transient response of the battery during its operation.

The dynamic behaviour of the Thevenin model is expressed in (2.10).

{︄
Vp
̇ = − Vp

RpCp
− IL

Cp

VT = Voc + Vp −RsIL
(2.10)
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−
+

Rp Rs IL

+

−

Cp

Vp+− VTVoc

Figure 2.3: Diagram of the Thevenin model

2.2.4 The PNGV Model

The PNGV (Partnership for a New Generation of Vehicles) model is an upgrade

to the Thevenin model and can be built by adding a capacitor 1
V ′
oc

in series with the

internal resistance in the Thevenin model. The capacitor 1
V ′
oc
models the effect of OCV

variation with respect to the integral of load current on the terminal voltage [21]. The

diagram of the PNGV model is depicted in Fig. 2.4 and the related equations are

described in (2.11).

−
+Voc

1
V ′
oc

Vd+−
Rp

Cp

Vp +−

Rs IL

+

−

VT

Figure 2.4: Diagram of the PNGV model
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⎧⎪⎨⎪⎩
Vd
̇ = −Voċ IL

Vp
̇ = − Vp

RpCp
− IL

Cp

VT = Voc + Vd + Vp −RsIL

(2.11)

2.2.5 The DP Model

The dual polarization (DP) model is another upgrade to the Thevinin model and is

obtained by adding another parallel RC circuit to the Thevinin model. Based on the

provided description of the Thevinin model in Section 2.2.3, the RC network in Fig.

2.3 models the polarization characteristics of Li-ion battery. However, one RC circuit

cannot simulate all the polarization characteristics. Therefore, the DP model is used

to more accurately simulate the polarization characteristics of the battery. Fig. 2.5

shows the diagram of the DP model and the dynamics of the model are expressed in

(2.12).

−
+

Rp1 Rp2

Cp2

Vp2+−

Rs IL

+

−

VT

Cp1

Vp2+−
Voc = f(SOC)

Figure 2.5: Diagram of the DP model

⎧⎪⎪⎨⎪⎪⎩
Vp1
̇ = − Vp1

Rp1Cp1
− IL

Cp1

Vp2
̇ = − Vp2

Rp2Cp2
− IL

Cp2

VT = Voc + Vp1 + Vp2 −RsIL

(2.12)
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2.2.6 Higher Order ECMs

In the previous section, five different models for Li-ion battery was introduced. Among

them, the Thevinin model and the DP model are used more frequently as Li-ion

battery ECM in different studies. The Thevinin model and the DP model are are

also called the first and second order ECMs. By adding more RC circuits to these

models, higher order ECMs are created. Fig. 2.6 shows the diagram of the nth order

ECM.

−
+

Rp1 Rpn

Cpn

Rs IL

+

−

VT

Cp1

Voc = f(SOC)

Figure 2.6: Equivalent circuit model of order n for Li-ion batteries

2.2.7 The Selected Model

In this study, the first order ECM (the Thevenin model) is used to model Li-ion

battery behaviour. The Rint model is too simple and cannot describe the behaviour

of the battery well. Also, the RC model and PNGV model are not not regarded as

the best available models in the literature. Therefore, either a first order or a higher

order ECM should be used as the battery model. Although higher order ECMs can

potentially model the battery with higher accuracy, they lack generality and may

overfit the parameters for a specific battery. As a result, the first order ECM seems

to be a good choice.

Fig. 2.7 shows the complete diagram of a first order ECM that shows how the
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battery OCV is related to its SOC [22], [23]. In this model, VT and IL are the

terminal voltage and the load current of the battery, where IL is considered positive

for a discharge and negative for a charge cycle. These two variables can be measured

during the battery operation. Using NASA dataset [24], Fig. 2.8 shows VT and IL

for a full discharge interval of an operational battery. Other parameters of the model

include the internal resistance Rs, polarization resistance and polarization capacitance

Rp and Cp, the polarization voltage Vp and the open circuit voltage Voc (OCV) that is

a strictly increasing monotonic function of the battery SOC. The SOC-OCV curve for

a 18650 Li-ion battery is depicted in Fig. 2.9 [25]. After solving (2.10), the equations

of the model at sample k can be written as follows [26]:

VT [k] = Voc[k]−Rs[k]IL[k] + Vp[k], (2.13)

Vp[k] = −RpIL[k] + (Vp[k − 1] +RpIL[k])e
− t[k]−t[k−1]

RpCp . (2.14)

−
+

Rp Rs IL

+

−

VT

Cp
+

−

VTmVp+−IL

+

−
Voc = f(SOC)

VQ =

SOC
Q

Figure 2.7: First order equivalent circuit model of Li-ion batteries

The relationship between the measurable variables VT and IL with the rest of the

model is given by (2.13) and the dynamic response of the RC circuit is determined by

(2.14), where k represents the sample number. Also VTm (modified terminal voltage)

is the terminal voltage minus the voltage of internal resistance Rs that will be further

discussed in Section 3.4.2. The left segment of ECM in Fig. 2.7 shows the relationship
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Figure 2.8: A full discharge interval (a) Measured terminal voltage VT and (b) Mea-
sured load current IL profile.

between battery SOC with the cumulative current,
∫︁ t

t0
IL(τ)dτ , which is the physical

expression of (2.2).

2.3 Adam Optimization Algorithm

Adaptive moment estimation, known as Adam optimization algorithm is a fast gra-

dient based algorithm used to find the optimized parameters for stochastic objective

functions. Adam only uses the first order gradients, which requires low memory stor-

age. Table 2.1 shows Adam optimization algorithm step by step. In this algorithm,

an stochastic scalar objective function f(θ) gets optimized with respect to its pa-

rameters θ. As can be seen in Table 2.1, the algorihm starts with an initial set of

parameters θ0 and the parameters update until convergence. The updating process
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Figure 2.9: SOC-OCV curve for a 18650 Li-ion battery [25]

requires four hyper parameters: α, β1, β2, and ϵ. These hyper parameters need to be

tuned beforehand. The parameters α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8 are

tuned on some known datasets and seem to work well as the default settings for most

problems [9].

Adam will be used as the optimization algorithm in this study, because of its

many advantages and superiority in terms of convergence time, memory usage, and

complexity compared to other optimization algorithms.

2.4 Neural Networks

An artificial neural network (NN) is a series of connected units called neurons, sorted

layer by layer, each passing information along to their next layer, as illustrated in Fig.

2.10. Each neuron performs a mathematical function on the information it receives

from its previous layer and passes the result to the next layer. This function is called

the activation function. The first layer of a neural network is called the input layer

and the last layer is called the output layer. All the layers between the input and the
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Table 2.1: Adam optimization algorithm: g2t indicates the element-wise square gt⊙gt.
Good default settings for the tested machine learning problems are α = 0.001, β1 =
0.9, β2 = 0.999 and ϵ = 10−8. All operations on vectors are element-wise [9].

Require: α: Stepsize

Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates

Require: f(θ): Stochastic objective function with parameters θ

Require: θ0: Initial parameter vector

m0 ← 0 (Initialize first moment vector)

v0 ← 0 (Initialize second moment vector)

t ← 0 (Initialize timestep)

while θt not converged do

t← t+ 1

gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)

mt ← β1.mt−1 + (1− β1).gt (Update biased first moment estimate)

vt ← β2.vt−1 + (1− β2).g
2
t (Update biased second raw moment estimate)

mtˆ ← mt/(1− βt
1) (Compute bias-corrected first moment estimate)

vt̂ ← vt/(1− βt
2) (Compute bias-corrected second raw moment estimate)

θt ← θt−1 − α.mtˆ /(
√
vt̂ + ϵ) (Update parameters)

end while

return: θt: (Resulting parameters)
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output layer are called the hidden layers. In the example of Fig. 2.10, the input layer

has three neurons or nodes and the output layer has one neuron. There are also two

hidden layers with ten and three neurons respectively [27], [28].

Input Layer � �³ Hidden Layer � �¹� Hidden Layer � �³ Output Layer � �¹

Figure 2.10: A fully connected neural network with three inputs, one output and two
hidden layers with ten and three neurons respectively

As can be seen in Fig. 2.10, the neurons of each layer are connected to the neurons

of their next layer. Each connection has a weight w. If n inputs x1, x2, ..., xn with the

respective weights w1, w2, ..., wn get passed into a neuron with the activation function

f , the output of that neuron is given by:

O = f(net) = f(
n∑︂

j=1

wjxj), (2.15)

in which net is the weighted input of the neuron and is obtained by the dot product

of the input vector and the weight vector:

net = wTx = w1x1 + ...+ wnxn, (2.16)
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where T denotes the matrix transpose operation. The activation function f can be

any mathematical function. The simplest activation function using in neural networks

is:

O = f(net) =

{︄
1 if wTx > 0

0 otherwise
(2.17)

where θ is the threshold level of that neuron. A neuron with this type of activation

function is called a linear threshold unit.

There are other commonly used activation functions, including sigmoid, tanh, relu,

etc. The formula of these activation functions are expressed in equations (2.18)-(2.20).

Sigmoid:

O = f(net) =
1

1 + e−net
, (2.18)

Tanh:

O = f(net) =
2

1 + e−net − 1
, (2.19)

Relu:

O = f(net) = max(0, net). (2.20)

There are lots of other activation functions used in neural networks as well, but

the above three activation functions are the most common used.

2.4.1 Neural Networks Training

A neural network is one of the most powerful tools used to find the complex relation-

ships between some inputs and their related outputs. A large set of training data is

needed to train the network weights properly, so that the predicted outputs would

match their true values with minimum error. An optimization algorithm is used to

train the weights. After training the network, by giving some inputs to the network,

it can predict their output based on the trained weights. When the relationship be-

tween the inputs and the outputs is unknown, a neural network is a very useful tool.

In Chapter 4, neural networks will be used to find the relationship between the inputs

temperature, SOC, and SOH and the output internal resistance of the battery.

20



Chapter 3

The Proposed Method

3.1 Introduction

Various battery state estimation methods are reported in the literature that can be

classified into offline, online with offline training, and fully online methods. Offline

methods such as enhanced coulomb counting [29], open circuit voltage method [30],

and impedance spectroscopy [31, 32] need the battery voltage, current or temperature

data acquired under certain test conditions offline, interrupting the battery’s normal

operation. Hence, offline methods are not practical in many applications. Offline

methods, however, provide an accurate estimation of the battery’s capacity and SOH,

which can be used as reference values for validating other types of estimations.

A number of other methods are also proposed that use offline training while per-

forming battery state estimations based on online measurements. These works use

techniques such as artificial neural networks (ANN) [33], support vector machines

(SVM) [34], long short term memory neural networks (LSTM) [35], [36], extreme

learning machines (ELM) [37], [38], and the incremental voltage difference based

technique [39]. These methods consider the battery as a black box and use a large

set of training data to train a SOH estimation algorithm. These trained algorithms

normally provide accurate results on the test data and provide highly accurate es-

timations of SOH. The main limitation of such hybrid methods is that they need

sufficient valid data for training and this data may not be readily available for all
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types of Li-ion batteries and applications.

The third category is fully online methods that do not need any kind of offline

measurement or training. Examples are incremental capacity analysis (ICA) [40],

[41], [42], and differential voltage analysis (DVA) [43], [44] that use geometric features

of battery data such as peaks in the first derivative of charging curves, to estimate

SOH. These methods are very easy to implement and have low complexity. However,

they require the battery to pass through some specific SOC ranges, which might

not always happen in practice. Adaptive methods that use equivalent circuit model

(ECM) to emulate battery behaviour have also been widely used. Recursive least

square (RLS) [45]-[47] and extended Kalman filter [48], [49] are some of the methods

used to estimate the parameters of ECM. These adaptive methods are completely

online and do not need the battery to pass through specific points. Some of the

drawbacks include a relatively long convergence time and strong dependency on the

initial points in the estimations.

3.2 Problem Definition

The main goal in this study is to estimate the battery SOH based on partial dis-

charge data and without circuit interruption. As Qrated is provided by datasheets,

the estimation of SOH is equivalent to the estimation of Q, according to (2.3).

Based on (2.2), if a battery gets discharged with a low current from 100% SOC

(fully charged state) to 0% SOC (fully discharged state), Q can be computed by:

Q =

∫︂
TFD

IL(τ)dτ (3.1)

where TFD represents a complete discharge period. As mentioned in Chapter 2, it is

assumed η = 1, verified as follows. For different aging levels, the integral of the current

when the battery was being discharged from the fully charge state was calculated.

After the discharge was ended, the integral of the current was again calculated during

charging until it was fully discharged. The values of these two integrals were then
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divided by each other and the ratio η was observed to be very close to 1 for all aging

levels.

This method of calculating Q is called coulomb counting. When a battery is con-

nected to a load, the measurement of the battery capacity Q via coulomb counting

is impractical, as it requires a full discharge cycle which rarely happens in practice.

Therefore, estimating Q using only partial discharge or charge data is a major chal-

lenge that must be resolved for online SOH/SOC estimations.

A partial discharge interval is defined as the time interval between two consecu-

tive charging of the battery. The parameters of each partial discharge interval are

demonstrated in terms of the cumulative current,
∫︁ t

t0
IL(τ)dτ , which is called ”ISUM”

in this thesis. When the battery is in operation, the terminal voltage VT and load

current IL can be accessed without interrupting the battery’s operation. Therefore,

ISUM is accessible and all parameters can be expressed in terms of ISUM.

To estimate Q using IL and VT measurements, circuit model parameters Rp, Cp,

and Rs as well as the relationship between SOC and OCV (f(SOC)), as illustrated in

Fig. 2.9 should be determined. Initially, Rs is estimated based on the voltage jumps.

Then, based on the assumption that ISUM-OCV is constant for consecutive cycles,

Rp and Cp are estimated. Based on the estimated parameters, ISUM-OCV will be

known and subsequently, Q can be estimated. The estimation of Q is based on the

assumption that SOC-OCV curve does not change over the life time of a battery.

Therefore, by replacing ISUM with SOC= ISUM
Q

in ISUM-OCV curve, the correct Q

can be found that results in a close SOC-OCV curve compared to the rated curve.

The rated SOC-OCV curve can be extracted from the battery datasheet or the first

two discharge cycles of the battery, if available. The assumptions and the details of

the proposed method is provided in the next sections.
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3.3 Basic Ideas and Assumptions

Based on the previous section, the primary goal in this thesis is estimating battery

SOC and SOH or interchangeably, battery capacity, Q. To achieve this goal, battery

OCV needs to be estimated using the available measured variables from the partial

discharge data. Before discussing the details of the proposed method, two main

assumptions are reviewed.

3.3.1 Q Variation is negligible in two consecutive intervals

The full charging capacity of a battery, Q, varies in a very slow pace during the

battery lifespan as the battery aging takes several months. Therefore, it is reasonable

to assume that for two consecutive discharge intervals, taking place during a few

hours time window, Q is constant. Therefore, for two consecutive discharge intervals

starting with equal SOCs, the OCV curves with respect to ISUM are the same.

3.3.2 Normalized SOC-OCV does not change over the life-
time

Based on [50]-[52], the variation of the relationship between OCV and SOC is neg-

ligible at different aging levels in similar temperatures. Suppose at two aging levels

L1 and L2 with the same temperature, the capacity of the battery is Q1 and Q2 re-

spectively. The ISUM-OCV curves for these two aging stages are different, but after

normalizing ISUM by Q1 at level L1 and by Q2 at level L2 using (2.2), the resulting

SOC-OCV curves would be the same.

An overview of the proposed solutions is given in here. A more detailed version is

given in the next section. To estimate SOH, battery Q needs to be estimated and to

estimate Q, ISUM-OCV curve is needed. For that, battery ECM is used to model the

battery and estimate its parameters, which include OCV as well. The block diagram

of the proposed method is shown in Fig. 3.1-3.3 and will be discussed in the next

section.
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Figure 3.1: Flowchart of the proposed algorithm part 1
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26



Redraw OCV curve versus SOC= ISUM
Q

Repeat for different values of Q in [Qmin, Qmax]

Find Qcorrect that minimizes the RMSE between
curves (SOCQcorrectvs OCV) and (SOCQrated

vs OCV)

0.3 0.35 0.4 0.45 0.5 0.55
3.78

3.8

3.82

3.84

3.86

3.88

3.9

3.92

V
o

c
 [
V

]

Reference

Q
incorrect1

Q
correct

Q
incorrect2

Figure 3.3: Flowchart of the proposed algorithm part 3

3.4 Details of the Proposed Method

The proposed method is performed in four consecutive main steps. These steps are

discussed one-by-one in the following.

3.4.1 Partial Discharge Data Extraction

Here, first the details of the discharge intervals in the NASA dataset [24] will be

explained and it will be shown that most of the intervals are partial and therefore

are suitable for this study. Then it will be explained how the discharge intervals

get extracted from the continuous signals containing repetitive charge and discharge
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intervals.

NASA degradation dataset consists of repetitive charge and discharge intervals.

The batteries were repeatedly charged to 4.2V and discharged to 3.2V with ran-

dom currents between 0.5-5 Ampere, that is called random walk (RW) discharging.

Although the range 3.2V to 4.2V seems like a full charge/discharge operation, one

should note that these voltages refer to the terminal voltage VT and not the open

circuit voltage Voc. Fig. 3.4 shows the 156th discharge cycle of B13 in NASA dataset.

As can be seen, although the terminal voltage has reached its lower limit (3.2V), the

open circuit voltage is about 3.85V which is equivalent to 60% SOC based on Fig.

2.9. More importantly, it should be noted that the proposed method does not use

VT directly and it operates on the internal voltage VTm that is obtained by Rs from

the terminal voltage, as illustrated in Fig. 3.4. This modified terminal voltage only

changes in a limited range during each cycle, emulating a partial charge and discharge

data. As the proposed method accurately predicts SOH and SOC for such partial

data, it can be concluded that it does not require full range data and can achieve

similar results for other charge or discharge patterns.

The proposed approach, requires to separate two similar charge or discharge SOC

starting points in two consecutive cycles which can be done as shown in Fig. 3.5.

Therefore, the signals in the two intervals can be extracted from the original signal

and will be called V
(p)
T ,V

(c)
T , I

(p)
L , and I

(c)
L , where superscripts (p) and (c) represent

the previous and current discharge intervals. Note that the way V
(p)
T ,V

(c)
T were

constructed ensured same ISUM and therefore SOCs.

3.4.2 Rs Estimation

Based on (2.13), a step change or discontinuity in IL results in a step change or

discontinuity in the voltage across the internal resistance Rs. OCV and Vp are con-

tinuous functions and change smoothly over time. Therefore, any discontinuity in

the terminal voltage is caused by RsIL, which is caused by a discontinuity in IL. By
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Figure 3.4: terminal voltage versus open circuit voltage in a discharge cycle.

capturing the values of ∆VT and ∆IL at the moments of discontinuity, the internal

resistance Rs can be estimated as:

Rs[k] = −
∆VT [k]

∆IL[k]
, (3.2)

where k is the sample where discontinuity happens.

There might be some oscillations at the instant of step change caused by parasitic

components in the power circuit and such oscillations might be sampled by the mea-

surement sensors causing errors. To avoid this, sample k+δ is used as the sample after

discontinuity to calculate ∆VT [k] = VT [k+ δ]− VT [k] and ∆IL[k] = IL[k+ δ]− IL[k],

where δ is a delay for proper measurements.

The Rs estimation according to 2.14 is based on the assumption that the samples

at time k and k+ δ are close enough so that voltage Vp has not changed significantly.

In other words, the time constant should satisfy the following:

RpCp ≥ n(t[k + δ]− t[k]), (3.3)

|IL[k + δ]− IL[k]| ≥ ξ, (3.4)
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Figure 3.5: Interval separation process: converting the raw signal into the desirable
inputs.

where n = 10 and ξ = 0.3 are used in this thesis. In other words, the rate of change

of Vp is 9 times slower than RsIL, thus it is safe to assume that ∆VT [k] is almost

completely affected by Rs∆IL[k] and not Vp. To consider a current change as a

step change, ∆IL should jump higher than ξ as stated in (3.4), which is considered

0.3 in this study. If a discontinuity does not satisfy conditions (3.3) and (3.4), the

estimated Rs will not be accurate. It is worth mentioning that at least one jump

happens in every cycle when the battery switches from discharge to charge and vise

versa. Therefore, whenever there is a jump in current, Rs can be estimated using
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(3.2). Based on estimated Rs, continuous internal voltage, VTm , can be estimated as:

VTm [k] = VT [k] +Rs[k]IL[k] = Voc[k] + Vp[k]. (3.5)

It can be seen in Fig. 2.7 that VTm is the voltage seen from the terminal, assuming

there is no internal resistance Rs.

3.4.3 Rp, Cp and OCV Estimation

Using the calculated VTm , the remaining unknown parameters in the ECM can be

estimated. Based on (3.5), VTm signal comprised of two signals Voc and Vp. As current

IL is known, assuming an initial value for Rp, Cp, and Vp0 , Vp can be estimated for the

rest of the interval using ECM and (2.14). As Voc is not known, more information is

needed to confirm that the initial values of Vp0 , Rp, and Cp were accurate. To overcome

this problem, this thesis assumes ISUM-OCV curves are equal for two consecutive

discharge cycles. The detailed procedure is as follows. Starting with an initial Θ =

[V̂ p0 , R̂p, Ĉp], based on (2.14), Vp for the previous and current intervals, V̂
(p)
p and

V̂
(c)
p can be calculated. Using the estimated V

(p)
Tm

and V
(c)
Tm

, V̂
(p)
oc and V̂

(c)
oc can be

calculated. Based on assumption 1, if the estimated Θ is the correct set, g(Θ), which

is defined in (3.6) should be very small:

g(Θ) = RMSE(V̂ (p)
oc − V̂ (c)

oc ). (3.6)

If the error is not within the specified range, the state of the art optimization algo-

rithm, Adam [9] that is a fast gradient-based optimization method is used to find

another set of parameters, and this cycle repeats until for Θfinal, V̂
(p)
oc and V̂

(c)
oc are

close enough. The final set of estimated parameters give the minimum value for the

objective function as shown in (3.7):

Θ∗ = argminΘg(Θ). (3.7)
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3.4.4 SOC-OCV curve and SOH Estimation

Based on the estimated OCV in Section 3.4.3 and constructing ISUM-OCV curve,

the capacity Q and consequently SOH will be estimated in this section. Based on

(2.2), ISUM can be normalized to SOC and therefore, the correct value of Q can

normalize ISUM-OCV curve to SOC-OCV curve. According to assumption 2, SOC-

OCV curve doesn’t change over the battery lifetime. For a brand new battery, it

is assumed that SOH=100% and an SOC(ref)-OCV curve should be estimated and

then as the battery ages, this reference curve will be used to estimate Q and SOH.

Assuming that at the beginning, the maximum electric charge capacity, Q = Qrated, by

normalizing the obtained first cycle’s ISUM-OCV curve from Section 3.4.3 by Qrated,

the SOC(ref)−OCV curve will be achieved. Based on SOC(ref)−OCV, the unknown

parameter Q will be swept and for each value, ISUM-OCV will be normalized to

obtain corresponding SOCQ − OCV curve. The value that provides minimum mean

square error between the current SOCQ − OCV and the reference SOC(ref) − OCV

is the final estimated value for Q in that interval. In Fig. 3.6, ISUM-OCV curves

and their normalized SOC-OCV curves for three different aging levels are drawn

and compared to the reference curve. Using this estimated maximum electric charge

capacity Q, SOH can be obtained using (2.3).

3.5 Performance Evaluation

3.5.1 Dateset and Verification Method

NASA degradation datasets for Li-ion batteries [24] is used in this work to validate

the proposed method. The details regarding the charging and discharging of the

batteries in NASA dataset are explained in Section 3.4.1. Fig. 2.8 shows an example

of the random walk current in the dataset. This dataset includes seven sets of four

18650 Li-ion batteries, each group being discharge by different distribution of random

currents. In this thesis, we applied the proposed method to eight of these batteries
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Figure 3.6: (a) ISUM-OCV curves at three different aging levels. (b) SOC-OCV
curves derived with normalizing ISUM-OCV curves by proper Q at each aging level
and reference SOC-OCV curve (black curve).

(B3, B13, B14, B15, B16, B21, B22, and B23).

After every 50 cycles of charge and discharge, a series of offline reference tests have

been applied to measure battery’s real capacity. In this study, these measurements

are used for the proposed method validation. For these reference tests, the batteries
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are first charged using a constant current - constant voltage (CC-CV) charging mode,

so that their SOCs reach 100%. Then, they are discharged using a constant 1A

current until the terminal voltage reaches 3.2V. The terminal voltage curve over this

period is called reference discharge profile. By integrating the currents over this

discharge period, the capacity of the battery (Q) can be calculated. Fig. 3.7a shows

the reference discharge profiles for battery B3 at different aging levels. The curves

fade from black to red as the battery ages. Fig. 3.7b shows the capacity fade curve

for this battery. It can be seen that the capacity gradually decreases over time.
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Figure 3.7: (a) Reference discharge profile for battery B3 (The curves fade from black
to red as the battery ages. (b) Capacity fade curve for the battery B3.

3.5.2 Results and Discussion

SOH Estimation Results

By applying the proposed method to NASA degradation battery dataset for batteries

B3, B13, B15, B16, B21, B22, and B23, the capacity Q of the batteries are estimated.

SOH is estimated by normalizing estimated values of Q by Qrated that is the capacity

of a new unaged battery. The estimated degradation SOH curves over the batteries

lifetimes are shown in Fig. 3.8. The red graphs are the estimated SOH curves based

on the proposed method and the blue curves are SOH curves based on reference tests.

In this figure, the x axis shows the discharge interval number.
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Figure 3.8: SOH estimation curves (blue plots) vs real SOH curves (orange plots).
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Figure 3.9: SOH estimation error curves.
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The SOH estimation error curves are shown in Fig. 3.9. For batteries B3 and B15

the maximum error is 2% , for the batteries B13, B14, B16, and B22 the maximum

error is 3%, and for the batteries B21 and B23 the maximum error is 1%, for 98.3%

of intervals. In this work, root mean square error (RMSE) is used to evaluate the

SOH estimations, which is defined as:

RMSE =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

(SOHi − SOHˆ i)2, (3.8)

where N is the number of partial discharge intervals, SOHi is the reference SOH value

at interval i, and SOHˆ i is the estimated SOH value at interval i. For all batteries, the

root mean square error (RMSE) of the estimation is calculated and reported in Table

3.1. RMSE value for the majority of batteries, B3, ,B13, B14, B15, B21, B22, and B23

is less than 1% and for only one battery, B16 slightly higher than 1%, demonstrating

the accuracy and robustness of the assumptions as well as the proposed method.

Also, it should be mentioned that the estimated curves have been smoothed using

Savitzky-Golay filter [53] that is a filter used for smoothing digital data.

Table 3.1: RMSE of the proposed method estimations

B# B3 B13 B14 B15 B16 B21 B22 B23

RMSE 0.96% 0.88% 0.89% 0.8% 1.07% 0.37% 0.92% 0.67%

Table 3.3 compares the proposed method with other existing methods in literature.

Generally, the methods that use offline training provide accurate results, and methods

that do not use offline training have less accuracy and it is worth noting that although

the proposed method does not use offline training, its results are comparable to the

ones with offline training. The state of the art SOH estimation algorithms with offline

training that have been studied in [17] including hybrid ensemble learning (HEL),

extreme learning machine (ELM), random vector functional link (RVFL), support

vector machine (SVM), echo state network (ESN), random forest (RF), and stacked

denoising autoencoders (SDA) are also compared and listed in Table 3.3.
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Table 3.2: Information regarding the dataset of the methods in literature [45]

Algorithm No Offline Training Dataset

Proposed method YES NASA RW

Proposed method YES NASA RW

Proposed method YES NASA RW

RLS-AHIF [45] YES Experimental DST

DEKF [54] YES Experimental DST

Multiscale DEKF [54] YES Experimental DST

Multiscale DEKF [55] YES Experimental DST

Multiscale DEKF [56] YES Experimental DST

FOC [48] YES Experimental HP

HEL, ELM, RVFL, SVM,

ESN, RF, SDA [17]
NO NASA RW

Table 3.3: Comparison between our proposed method and other methods in liter-
ature in terms of estimation RMSE, convergence time and initial capacity error(if
applicable) for different types of datasets [45]

Algorithm Q Initial Error Convergence Time RMSE

Proposed method 10% <10 sec <1%

Proposed method 20% <10 sec <2%

Proposed method 30% <10 sec <5%

RLS-AHIF [45] 24% <2 min <6.5%

DEKF [54] 33% <100 min <3.2%

Multiscale DEKF [54] 33% <100 min <1.5%

Multiscale DEKF [55] 20% <30 min <7%

Multiscale DEKF [56] 37% <10 min <5%

FOC [48] 10% <100 min <1%

HEL, ELM, RVFL, SVM,

ESN, RF, SDA [17]
- - <1%

On the other hand, some methods are completely online and are performed with-

out any offline training. For example, fractional order calculus (FOC) [48] and multi-
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timescale estimator (MTSE) [55] have achieved accurate estimations of SOH (within

1%). Compare to these algorithms, the proposed method in this thesis has the ad-

vantage of lacking the dependency to initial estimation errors based on the sensitivity

analysis that will be explained in Section 3.5.4. For instance, in [48] if starting with

large initial error, the capacity approaches the reference value within 6000 seconds.

Also, [55] needs at least 1 hour for the capacity to approach the reference value.

Another online method that has been introduced recently is based on RLS and adap-

tive HIF (RLS-HIF) joint estimation filters [45]. The SOH estimation dependency

of different online methods on the initial capacity error has also been compared in

Table 3.3. As can be seen in the table, there is a trade-off between the initial capac-

ity error and the convergence time and the estimation error. The higher the initial

capacity error, the more convergence time and the larger estimation error would be.

RLS-AHIF was able to reach a short enough convergence time, but with 24% error

in the initial capacity, the estimation error becomes 6.5% within 2 minutes. In addi-

tion to RLS-HIF algorithm, the estimation results for other algorithms such as dual

extended Kalman filter (DEKF) and multi-scale DEKF are reported in Table 3.3.

By three different initial values and different tuning of the parameters, three results

for multi-scale DEKF are reported, indicating at least 10 minutes to converge. This

means that if the circuit is disconnected or if due to some fault or overcurrent, the

capacity changes, the re-estimation of the parameters needs another 10 minutes to

converge, which might not be ideal.

SOC Estimation Results

Based on the reference SOC-OCV curve and the estimated OCV, SOC can be es-

timated. Fig. 3.10 shows the estimated and reference SOC curves for a discharge

interval in NASA dataset and its corresponding error curve. Also, RMSE of SOC

estimations for all 8 batteries are reported in Table 3.4. The average SOC estimation

error for all 8 batteries is 1.07%, which is acceptable for SOC estimation.
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Figure 3.10: SOC estimation curve for a sample discharge interval in NASA data.

Table 3.4: RMSE of SOC estimations

B# B3 B13 B14 B15 B16 B21 B22 B23

RMSE 1.46% 0.99% 1.24% 1% 1.3% 0.64% 1.1% 0.9%

3.5.3 Estimation Error Evaluation for Partial Discharge In-
tervals

As mentioned earlier in Section 3.4.1, the discharge intervals in NASA dataset are a

combination of fully discharged and partially discharged intervals with partial inter-

vals being the majority of them. In this section, the relationship between capacity

estimation accuracy and the length of partial discharge intervals is evaluated. For

each battery, the graph of SOH estimation errors with respect to the length of their

respective partial discharge intervals is shown in Fig. 3.11.

As can be seen in Fig. 3.11, when the length of partial discharge intervals decreases,

the accuracy of estimations decreases as well. Except for batteries B15, B16, the
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Figure 3.11: SOH estimation error curves based on the length of the partial discharge
intervals.

maximum estimation error for other batteries is always below 2.5%, even for the lowest

length intervals, which is an indication of the capability of the proposed method in

online SOH estimation using partial discharge intervals.

3.5.4 Sensitivity Analysis

As mentioned in Section 3.2, the reference SOC-OCV curve used in this study is the

estimated ISUM-OCV curve from the first two discharge cycles, normalized by a new

battery rated capacity, Qrated. If the data for the first two discharge cycles of the

brand new battery is not available, then this reference curve cannot be obtained. In

that case, the reference curve has to be estimated from the battery datasheet. Since

batteries have manufacturing mismatches, the SOC-OCV curve from the datasheet

will not be very accurate for all batteries. Therefore, the sensitivity of the SOH

estimation results to the reference SOC-OCV curve need to be assessed.

An incorrect SOC-OCV curve is equivalent to a correct ISUM-OCV curve with an
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Figure 3.12: Sensitivity of SOH estimations to initial capacity (Qrated) error.

incorrect Qrated, as SOC-OCV curve is in fact ISUM-OCV curve normalized by Qrated.

Therefore, for simplicity, instead of evaluating the sensitivity of SOH estimation to

the reference SOC-OCV curve, its sensitivity to Qrated will be evaluated. Fig. 3.12

shows the sensitivity of SOH estimation curves to Qrated for all batteries. As can be

seen, even ±10% error in Qrated still results in good estimations, mostly below 1%.

For larger errors in initial capacity, such as ±20% and ±30%, the SOH estimation

errors are below 2% and 5% respectively. These results are also represented in Table

3.3. Note that the SOH estimation errors for initial capacity errors until ±50% are

plotted in Fig. 3.12, showing the robustness of the proposed algorithm to the initial

capacity error.

3.6 Conclusion

In this chapter, a new method for online estimation of Li Ion battery capacity, SOC,

and SOH using partial discharge dataset was proposed. The parameters of battery
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electrical circuit model (ECM) are estimated using two consecutive partial discharge

intervals. NASA data sets are used to validate the proposed method. It is shown

that the estimation error is around 1% based on 500 second partial discharge data.

The parameter search was done by applying Adam optimization algorithm using

Tensorflow package in Python. For each interval, the search was done within 10

seconds. Compared to other methods, the proposed online method exhibits faster

convergence, much less sensitivity to initial capacity errors and high accuracy for

partial discharge without offline trainings.
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Chapter 4

Battery Status Estimation
Considering Temperature

4.1 Introduction

The SOC-OCV relationship for a battery varies with temperature change. In Chapter

3, the SOC-OCV relationship for each battery was extracted based on the first two

discharge cycles of that battery. Since the ambient temperature of each battery in

NASA dataset was forced to be in a limited range at all cycles, therefore, SOC-OCV

curve at all cycles is approximately the same for the same battery. As a result, the

final reported SOH estimations based on the extracted reference SOC-OCV curve

from the first two discharge cycles had relatively small errors. In reality, the first two

discharge cycles of the batteries might not be available or accurate and that means the

provided SOC-OCV curve from the datasheet needs to be used as reference. For such

cases, since the operating temperature for the batteries in datasheet is 25 degrees,

the provided curve needs to be adjusted for different temperatures.

In this chapter, we propose a method that improves the SOH estimations by con-

sidering the effect of temperature on SOC-OCV curves. In this method, first the

reference curve at 25◦C is extracted from the datasheet. Afterwards, a neural net-

work is trained to estimate battery internal resistance based on temperature, SOC,

and SOH. Finally, based on the estimated internal resistance from the trained neural

network, SOC-OCV curve from the datasheet is modified for different temperatures
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and new estimations of SOH based on these modified curves will be obtained. Note

that if the reference SOC-OCV curves at temperatures other than 25◦C were available

in the datasheet, the neural network’s training would be unnecessary and one could

use the provided reference curves at different temperatures for estimating SOH and

skip this chapter.

The rest of this chapter is organized as follows. Section 4.2 explains how tempera-

ture can affect SOH. In Section 4.3, the proposed method will be explained. Section

4.4 provides the estimation results and Finally, Section 4.5 concludes this chapter.

4.2 Temperature Effect on Battery Parameters Es-

timation

Based on [57], SOC-OCV curves are different at various temperatures. As explained

in the previous chapter, the capacity Q is estimated based on a reference SOC-OCV

curve. Therefore, if the battery’s operating temperature is not close to the temper-

ature in which the reference SOC-OCV curve was obtained, the estimated Q and

therefore SOH would be erroneous. In Chapter 3, the reference SOC-OCV curve for

each battery was obtained from the first two discharge cycles of that battery. Since

the operating temperature for each battery in NASA dataset was held close to a

constant temperature, therefore, the SOC-OCV curves for all of the discharge inter-

vals of the same battery are approximately the same. Thus, there are little errors in

the estimations based on the reference SOC-OCV curve, extracted from the first two

cycles.

In practice, the data of the first two discharge cycles of the battery might not be

available or the temperature of the first two cycle may change or it might not be

desired to rely all the calculations based on two cycles measurements which may have

noise or errors.

In such cases, one needs to use the reference curve from the battery datasheet.

Since the reference SOC-OCV curve in the datasheet is obtained at 25◦C, the SOH
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estimations based on this curve are expected to be inaccurate, specially for those

intervals that their temperature has larger distance from 25◦C. Fig. 4.1 shows the

estimated SOH curves for the batteries in NASA dataset, based on the datasheet’s

reference SOC-OCV curve at 25◦C. Also, Fig. 4.2 shows the error curves for these

estimations and also the average temperature for each cycle is depicted as well. As

can be seen, the results for battery B3 are not reported. The reason is that in NASA

dataset, the temperature measurements for battery B3 were incorrect and therefore,

battery B3 will not be used in this chapter.

In Fig. 4.2, the red horizontal lines in the temperature plots indicate 25◦C. The

farther the temperature from this line, the more error in SOH estimations is expected,

as the reference SOC-OCV curve is obtained at 25◦C. As can be seen in Fig. 4.1, 4.2,

the SOH estimations for batteries B13, B14, B15, and B16 are rather good. This is

because the operating temperature for all these batteries is around 25◦C, which is the

same temperature as the reference SOC-OCV curve. However, the results are still not

as good as the results of the previous chapter, as those results used specific SOC-OCV

curves for each battery, extracted from their own discharge intervals, based on their

first two cycles. Based on Fig. 4.2, as expected, the SOH estimation for batteries

B21, B22, and B23 are highly inaccurate, considering the operating temperatures

of these batteries have a large distance from 25◦C. The numerical SOH estimation

results based on the datasheet’s reference curve at 25◦C, are reported in Table 4.1.

Table 4.1: RMSE of SOH estimations using reference SOC-OCV curve from the
datasheet

B# B13 B14 B15 B16 B21 B22 B23

RMSE without temperature 4.33% 2.61% 2.01% 3.73% 7.94% 5.33% 6.73%

Based on the above results, the SOC-OCV curves need to be adjusted for different

temperatures, so that the SOH can be estimated accurately. Since the SOC-OCV

curve is not available at all temperatures, a method is required to produce SOC-OCV
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Figure 4.1: SOH estimation curves (blue plots) using datasheet’s data at 25◦C as the
reference SOC-OCV curve vs reference SOH curves (orange plots).
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Figure 4.2: SOH estimation error curves and temperatures using datasheet’s data at
25◦C as the reference SOC-OCV curve.
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curve for every temperature. In the next section, a proposed method will be provided

to achieve this goal.

4.3 The Proposed Method

As explained in Section 4.2, ignoring the effect of temperature in SOH estimation will

lead to inaccurate results. Therefore, in this section, a method will be proposed to

estimate SOH by considering the ambient temperature effect. First, an overview of

the proposed method will be provided and afterwards, the proposed method will be

explained in details.

4.3.1 Problem Definition

The main goal is to identify the reference SOC-OCV curves at all temperatures based

on the information in the battery datasheet. Fig. 4.3, 4.4 depict all the discharge

profiles provided in the Li-ion battery datasheet [25]. Since these discharge profiles

show the battery terminal voltage VT and not OCV, the effect of other parameters

should be removed from the terminal voltage to extract OCV. The overview of the

proposed method for estimating SOC-OCV curve based on the discharge profiles in

the datasheet is as follows:

(i) Estimating battery steady state internal resistance at the nominal temperature

of 25◦C: based on the datasheet provided curves as shown in Fig. 4.3. The steady state

internal resistance R0 is the summation of the internal resistance and the polarization

resistance: R0 = Rs +Rp.

(ii) Estimating SOC-OCV curve at the nominal temperature of 25◦C: by removing

the effect of the steady state internal resistance from the discharge profiles provided

in Fig. 4.3.

(iii) Deriving a model to estimate battery steady state internal resistance as a

function of temperature
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(iv) Estimating SOC-OCV curves for extreme temperatures: by removing the effect

of the steady state internal resistance from the discharge profiles in Fig. 4.4.

(v) Incremental modeling of SOC-OCV curves for any temperature between ex-

treme temperatures of 55◦C and -20◦C.

These steps will be further explained in details in the next section.
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Figure 4.3: Datasheet discharge curves with different discharge currents at 25◦C.
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Figure 4.4: Datasheet discharge curves at different temperatures.
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4.3.2 Details of the Proposed Method

(i) Estimating Battery steady state internal resistance at the nominal tem-
perature of 25◦C

Fig. 4.3 shows the provided curves at 25◦C from the 18650 Li-ion battery datasheet

[25]. It shows the terminal voltage of the battery when discharging with 5 different

currents, where C is the standard discharge current in the datasheet, which is 0.52A.

The charging temperature is 25◦C. Based on (2.13), the terminal voltage consists of

three separate additive components, OCV, −RsIL, and Vp. According to 2.14, Vp is

equal to −RpIL at steady state. Therefore, at steady state, the terminal voltage is:

VT = Voc −RsIL −RpIL = Voc −R0IL, (4.1)

where R0 is the summation of the battery internal resistance Rs and the polarization

resistance Rp, and is called the ”steady state internal resistance” in this thesis.

Based on (4.1), at a constant temperature, the difference between any two terminal

voltage curves in Fig. 4.3 is equal to R0∆IL, where ∆IL is the difference between

the discharge currents of those curves. Therefore, by subtracting any of those dis-

charge profiles from each other and dividing the result by ∆IL, R0 can be estimated.

Eventually, by adding the estimated R0IL to the discharge profiles, OCV curve will

be estimated.

(ii) Estimating SOC-OCV curve at the nominal temperature of 25◦C

There are 5 discharge curves in Fig. 4.3 and that will provide
(︁
5
2

)︁
= 10 different

estimations for OCV curve, which are depicted in Fig. 4.5. The more current flows

through the battery, the higher its temperature will get. Therefore, Rs and Rp, which

are both functions of temperature, will vary for different discharge currents. This fact

explains why the estimated OCV curves in Fig. 4.5 are slightly different, while based

on assumption 2 (Section 3.3.2) the OCV-SOC curves should be constant for the

similar temperatures throughout the life time of a battery.
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Figure 4.5: OCV curves estimations from the provided discharge curves in the
datasheet as illustrated in Fig. 4.3.

The first SOC-OCV curve in Fig. 4.5 is used as the reference SOC-OCV curve at

25◦C, because the discharge currents 0.2C, 0.5C are lower than other currents and

have lower difference from each other, therefore the temperature does not increase as

much and remains closest to 25◦C.

(iii) Deriving a model to estimate battery steady state internal resistance
as a function of temperature

The provided datasheet discharge profiles at temperatures other than 25◦C are illus-

trated in Fig. 4.4. As can be observed, there are only two discharge profiles, at tem-

peratures 55◦C and -20◦C, with discharge currents 0.5C and 0.2C respectively. Since

only one discharge curve is provided for each temperature, 55◦C, -20◦C, R0 cannot

be estimated based on these curves and therefore SOC-OCV curves at temperatures

other than 25◦C cannot be directly extracted from the datasheet. If multiple dis-

charge curves at these temperatures were provided in the datasheet, the steady state

internal resistance could be estimated similar to the estimating at 25◦C, as explained

in part (ii). In that case, one can skip this part and directly jump to the next part.

52



In the case of 18650 Li-ion battery, as mentioned above, only one discharge curve is

available in datasheet at 55◦C and -20◦C and therefore, the rest of this part should

be followed.

For extracting OCV out of the terminal voltage of these discharge profiles, for

various temperatures, the effect of R0 needs to be removed from the terminal voltage,

according to (4.1). Since Rs, Rp are variant with temperature, R0 value is unknown

and needs to be estimated. In Part (i), R0 at 25◦C was estimated. In this section, a

model will be developed to estimate R0 at different temperatures based on its known

value at an arbitrary temperature, which in this case is 25◦C.

In order to find a model that relates the steady state internal resistance with the

temperature, either a physical experiment or a large set of data is needed to train

the model. In this thesis, the latter approach will be used. Since in Chapter 3, the

steady state internal resistance R0 was estimated during the discharge intervals and

the temperature was measured, these information can be used for training the model.

Note that since the estimation of Rp and Rs in Chapter 3 were done based on two

consecutive discharge cycles in which the temperature had little variations, they are

reliable to be used here. The steady state internal resistance is also a function of SOC

and SOH besides temperature:

R0 = h(SOC, SOH, T ). (4.2)

Therefore, the model’s inputs are the battery SOC, SOH, and temperature, and the

model’s output is its steady state internal resistance R0. A neural network is trained

to find the relationship between these inputs and the output. The discharge data

of battery B14, B15 in NASA dataset are used to train a neural network for finding

function h in (4.2). The details regarding the training of the neural network are

provided in Appendix A.

After finding the function h, by setting the SOH=100%, R0 can be obtained as a

function of temperature at any constant SOC. Fig. 4.6 shows the estimated steady
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state internal resistance R0 graph with respect to the temperature at 5 different SOCs

for battery B14, B15:
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Figure 4.6: The steady state internal resistance variation with temperature at 5
different SOCs for battery (a) B14, (b) B15.

Based on Fig. 4.6, the relationship between R0 and temperature is linear at all

SOCs. The average slope of battery B14 curves is -0.9mΩ/◦C and the average slope

of the curves of the battery B15 is -0.88 mΩ/◦C. Since the slope of the curves are

approximately the same, it is safe to assume that the slope of R0 variation with

respect to temperature for all Li-ion batteries is about the same as the respective

slope for batteries B14, B15. Therefore, in this study, m = −0.9 mΩ/◦C will be used

as the slope of the internal resistance variation with respect to the temperature.

(iv) Estimating SOC-OCV curves for extreme temperatures

Based on the slope m, by knowing the value of R0 at a given temperature T0, R0 can

be estimated at any other temperature (T ) as:

R0(T ) = R0(T0) +m(T − T0). (4.3)

Therefore, using the estimated slope m = −0.9 mΩ/◦C and the estimated R0 at 25
◦C

in Part (i), the internal resistance can be estimated for two extreme temperatures of

55◦C and -20◦C. By removing the effect of R0 from the discharge profiles of Fig. 4.4,

54



SOC-OCV curve will be estimated at temperatures 55◦C and -20◦C. Fig. 4.7 shows

these two curves.
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Figure 4.7: The estimated SOC-OCV curves at 55◦C and -20◦C

(v) Incremental modeling of SOC-OCV curves for any temperature be-
tween extreme temperatures of 55◦C and -20◦C

Based on the estimating SOC-OCV curves at 55◦C and -20◦C, shown in Fig. 4.7, it

can be seen that the SOC-OCV curves at the higher temperatures lie above the curves

at the lower temperatures. Therefore, it is predictable that using SOC-OCV curve

at one temperature as a reference curve for all temperatures would lead to incorrect

capacity Q and therefore SOH estimations, as it was seen in Section 4.2. Thus, the

reference SOC-OCV curve should be adjusted for every temperature.

To improve the SOH estimation results, an approximate adjustment of the reference

SOC-OCV for each temperature will suffice. Therefore, it is proposed to assume a

linear relationship between OCV change at any given SOC with temperature. As a

result, by calculating the difference between SOC-OCV curves at 55◦C and -20◦C,

shown in Fig. 4.7, the OCV change with respect to temperature at all SOCs will be

estimated. The resulting curve is depicted in Fig. 4.8.
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4.3.3 Summary of the Proposed Method

As explained in the previous section, the proposed method uses the battery datasheet

to estimate SOC-OCV curve and the internal resistance of the battery at 25◦C. Also,

it trains a neural network to find the relationship between the battery internal re-

sistance and temperature. Next, it uses the trained network to estimate its internal

resistance at extreme temperatures of 55◦C and -20◦C. Using these estimations, the

effect of internal resistance will then be removed from the battery terminal voltages

at the extreme temperatures and therefore, SOC-OCV curves at these extreme tem-

peratures will be estimated. By calculating the difference between SOC-OCV curves

at the extreme temperature and dividing the result by the difference between extreme

temperatures, OCV change as a function of SOC for 1◦C temperature variation will

be derived. Using the derived curve, SOC-OCV curve at any temperature can be esti-

mated and the new SOH estimations can be done with the temperature-compensated

SOC-OCV curves. The flowchart of the proposed algorithm is presented in Fig. 4.9.
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Figure 4.9: Flowchart of the proposed algorithm
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4.4 Estimation Results

Using the estimated curve shown in Fig. 4.8 and adjusting the SOC-OCV curve for

every temperature, Q and SOH can be estimated more accurately. Fig. 4.10 shows the

SOH estimation results using the adjusted SOC-OCV curves for batteries B13, B14,

B15, B16, B21, B22, an B23. The error curves are also depicted in Fig. 4.11. Based

on these results, it is evident that the estimations have been improved significantly

compared to the case when only one reference SOC-OCV curve was used for every

temperature.

The numerical results are reported in Table 4.2. As can be seen, the SOH estima-

tion RMSE has been improved by 2.55% on average. It can be seen that batteries

B21, B22, and B23 have significant improvements in their estimations. This is be-

cause their ambient temperature were around 45◦C and therefore, it is only reasonable

that using a reference SOC-OCV curve obtained at 25◦C would lead to large errors

in the estimations.

4.5 Conclusion

In this chapter, a new method is proposed to adjust the reference SOC-OCV curve

for any temperature to improve the battery SOH estimation in Chapter 3. The

discharge profiles provided in Li-ion battery datasheet are used to find a reference

SOC-OCV curve at 25◦C. For estimating SOC-OCV curve at other temperatures,

first, a neural network was trained to find the relationship between the battery internal

resistance and the temperature, using NASA dataset. Then, the estimated internal

resistances at different temperatures were used to predict SOC-OCV curves for any

given temperatures out of the provided curves in datasheet. It was shown that even

for NASA dataset with almost constant temperature, the adjusted SOC-OCV curves

improved the SOH estimations by 2.55% on average. For harsher circumstances, the

proposed method is expected to significantly improve the estimations.
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Figure 4.10: SOH estimation curves (blue plots) using temperature compensated
SOC-OCV curves vs reference SOH curves (orange plots).
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Figure 4.11: SOH estimation error curves and temperatures. Error curves for both
cases are drawn: (i)using the temperature compensated SOC-OCV curves (blue
plots), (ii)using only one SOC-OCV curve for all temperatures (red plots)
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Table 4.2: RMSE of SOH estimations using reference SOC-OCV curve from the
datasheet for two cases: (i) without considering the effect of the temperature, (ii)with
considering the effect of the temperature. Also, the SOH estimation RMSE improve-
ment is reported in the last row. The first and the second rows indicate the battery
number and the RMSE of temperature difference with 25◦C for each battery respec-
tively

RMSE

B#
B13 B14 B15 B16 B21 B22 B23

Temperature

deviation from 25◦C
3.55 3.2 3.4 3.49 19.24 19.16 16.64

SOH estimation without

temperature compensation
4.33% 2.61% 2.01% 3.73% 7.94% 5.33% 6.73%

SOH estimation with

temperature compensation
2.96% 2.24% 1.4% 2.94% 1.51% 1.44% 0.93%

SOH estimation

improvement
1.37% 0.37% 0.61% 0.79% 6.43% 3.89% 5.8%
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Chapter 5

Conclusions and Future Work

5.1 Summary of Works

In this work, Li-ion batteries were studied. The high price and growing demand of Li-

ion batteries creates the necessity for battery management systems (BMS) to monitor

batteries throughout their operation in order to prevent undesirable outcomes that

might lead to significant financial damage.

The estimation of state of health (SOH) and state of charge (SOC) of batteries are

two critical tasks of a BMS. The accurate estimations of SOH and SOC can ensure

safe and stable operation of the battery and prevent the undesirable outcomes and

therefore, prolong its lifetime. The main objective of this thesis was to efficiently and

accurately estimate the SOH and SOC of the Li-ion battery, online and in various

environmental conditions.

In Chapter 2, backgrounds regarding technical definitions of SOC and SOH of the

batteries were explained. Also, equivalent circuit models (ECM) of Li-ion batteries

were introduced and the first order ECM was selected to be the ECM using in this

thesis. Adam optimization algorithm and neural networks were also introduced in

Chapter 2 to be used later in Chapters 3, 4.

In Chapter 3, a new proposed method for online estimation of Li-ion battery SOC

and SOH using partial discharge/charge data was introduced. In this method, Li-ion

battery first order ECM is used to model the battery behaviour. The parameters of
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ECM were estimated continuously, based on the data of the last two discharge/charge

cycles of the battery, using Adam optimization algorithm. After estimating the pa-

rameters of ECM, SOH of the battery was estimated by comparing the estimated

open circuit voltage (OCV) with the reference OCV curve, extracted either from the

battery datasheet or the first two fully discharged cycles of the battery. SOC was

also estimated based on the estimated OCV. NASA degradation dataset was used to

validate the proposed method. The average SOH and SOC estimations RMSE on the

batteries in NASA dataset for the proposed method were 0.82% and 1.07% respec-

tively. The minimum required length for partial discharge intervals was considered

500 seconds and all the estimations have been done in less than 10 seconds for each

interval.

In Chapter 4, the effect of temperature on the accuracy of SOH estimation was

evaluated. In that chapter, instead of using the reference SOC-OCV curve extracted

from the first two discharge cycles of each battery, the information was extracted from

the battery datasheet. The reason behind this was to generalize the method for the

cases when the data of the first two cycles of the battery are not available or contain

noises. Also, since the operating temperature of each battery in NASA dataset was

almost remained constant, the temperature of the first two discharge cycles of each

battery are similar to their other cycles. Therefore, the effect of temperature variation

on the estimations could not be shown properly with the extracted reference curves

from the first two discharge cycles of each battery. Since the reference SOC-OCV

curve in the datsheet was derived at 25◦C, the estimation results for higher and lower

temperatures than 25◦C had errors. By training a neural network, a model for the

internal resistance variation with respect to the temperature was derived for Li-ion

batteries. That model was used to extract the SOC-OCV for different temperatures

from the battery datasheet. With those new reference curves at various temperatures,

new estimations for NASA dataset SOH were obtained and the estimation error was

improved from 4.67% to 1.92%.
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5.2 Future Work

In this thesis, the SOH and SOC of Li-ion batteries were estimated online using partial

discharge and charge data and at various temperatures. NASA dataset was used to

find a model that relates the battery internal resistance with the temperature. Since

the batteries in NASA dataset have a limited range of operating temperature, the

extracted models from this dataset might not be completely accurate. A possible

future work is to perform comprehensive experiments at a wide range of operating

temperatures and to find a more accurate “temperature-internal resistance” model

and therefore, improve the SOH estimation results achieved in Chapter 4.

Another possible future work is using metaheuristic methods such as genetic al-

gorithm [58], differential evolution [59], particle swarm optimization [60], ant colony

optimization [61], simulated annealing [62], etc. instead of Adam optimization algo-

rithm in Chapter 3 for estimating the parameters of the battery ECM. The advantage

of using these metaheuristic methods is that the number of parameters in the opti-

mization process can be increased and therefore, the accuracy of estimations may also

increase.

Furthermore, using more than two consecutive discharge cycles for estimating the

parameters of ECM certainly increases the accuracy of estimations. Using more than

two cycles would minimize the effect of noises on the estimation and leads to more

reliable results. However, this approach requires more data, which might not be ideal.

Another possible future work is estimating other performance indicators of the

battery such as state of energy [63], state of power [64], state of function [65], etc.

using the proposed method in this thesis. Using the estimated SOH and SOC of our

proposed method for balancing the load distribution on multi-cell batteries is another

potential future work. Cell balancing is of extreme importance in energy storage

systems, as it enables the battery packs to exploit their maximum capacity and also

prevents the capacity degradation, which prolongs the lifetime of the batteries [66],

64



[67].
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[38] H. Pan, Z. Lü, H. Wang, H. Wei, and L. Chen, “Novel battery state-of-health on-
line estimation method using multiple health indicators and an extreme learning
machine,” Energy, vol. 160, pp. 466–477, 2018.

[39] A. Naha, S. Han, S. Agarwal, A. Guha, A. Khandelwal, P. Tagade, K. S. Har-
iharan, S. M. Kolake, J. Yoon, and B. Oh, “An incremental voltage difference
based technique for online state of health estimation of li-ion batteries,” Scien-
tific Reports, vol. 10, no. 1, pp. 1–11, 2020.

68



[40] X. Tang, C. Zou, K. Yao, G. Chen, B. Liu, Z. He, and F. Gao, “A fast estimation
algorithm for lithium-ion battery state of health,” Journal of Power Sources,
vol. 396, pp. 453–458, 2018.

[41] J. Tian, R. Xiong, and Q. Yu, “Fractional-order model-based incremental ca-
pacity analysis for degradation state recognition of lithium-ion batteries,” IEEE
Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1576–1584, 2018.

[42] Y. Li, M. Abdel-Monem, R. Gopalakrishnan, M. Berecibar, E. Nanini-Maury,
N. Omar, P. van den Bossche, and J. Van Mierlo, “A quick on-line state of
health estimation method for li-ion battery with incremental capacity curves
processed by gaussian filter,” Journal of Power Sources, vol. 373, pp. 40–53,
2018.

[43] L. Wang, C. Pan, L. Liu, Y. Cheng, and X. Zhao, “On-board state of health
estimation of lifepo4 battery pack through differential voltage analysis,” Applied
energy, vol. 168, pp. 465–472, 2016.

[44] L. Wang, X. Zhao, L. Liu, and C. Pan, “State of health estimation of battery
modules via differential voltage analysis with local data symmetry method,”
Electrochimica Acta, vol. 256, pp. 81–89, 2017.

[45] Q. Yu, R. Xiong, R. Yang, and M. G. Pecht, “Online capacity estimation
for lithium-ion batteries through joint estimation method,” Applied Energy,
vol. 255, 2019.

[46] X. Li, Z. Wang, and L. Zhang, “Co-estimation of capacity and state-of-charge
for lithium-ion batteries in electric vehicles,” Energy, vol. 174, pp. 33–44, 2019.

[47] Z. Cui, N. Cui, C. Wang, C. Li, and C. Zhang, “A robust online parameter iden-
tification method for lithium-ion battery model under asynchronous sampling
and noise interference,” IEEE Transactions on Industrial Electronics, 2020.

[48] X. Hu, H. Yuan, C. Zou, Z. Li, and L. Zhang, “Co-estimation of state of charge
and state of health for lithium-ion batteries based on fractional-order calculus,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10 319–10 329,
2018.

[49] W. Yan, B. Zhang, G. Zhao, S. Tang, G. Niu, and X. Wang, “A battery man-
agement system with a lebesgue-sampling-based extended kalman filter,” IEEE
transactions on industrial electronics, vol. 66, no. 4, pp. 3227–3236, 2018.

[50] B. Pattipati, B. Balasingam, G. Avvari, K. Pattipati, and Y. Bar-Shalom,
“Open circuit voltage characterization of lithium-ion batteries,” Journal of
Power Sources, vol. 269, pp. 317–333, 2014.

[51] A. Farmann and D. U. Sauer, “A study on the dependency of the open-circuit
voltage on temperature and actual aging state of lithium-ion batteries,” Journal
of Power Sources, vol. 347, pp. 1–13, 2017.

[52] L. Wang, D. Lu, Q. Liu, L. Liu, and X. Zhao, “State of charge estimation for
lifepo4 battery via dual extended kalman filter and charging voltage curve,”
Electrochimica Acta, vol. 296, pp. 1009–1017, 2019.

69



[53] W. H. Press and S. A. Teukolsky, “Savitzky-golay smoothing filters,” Computers
in Physics, vol. 4, no. 6, pp. 669–672, 1990.

[54] C. Hu, B. D. Youn, and J. Chung, “A multiscale framework with extended
kalman filter for lithium-ion battery soc and capacity estimation,” Applied En-
ergy, vol. 92, pp. 694–704, 2012.

[55] Z. Wei, J. Zhao, D. Ji, and K. J. Tseng, “A multi-timescale estimator for bat-
tery state of charge and capacity dual estimation based on an online identified
model,” Applied energy, vol. 204, pp. 1264–1274, 2017.

[56] R. Xiong, F. Sun, Z. Chen, and H. He, “A data-driven multi-scale extended
kalman filtering based parameter and state estimation approach of lithium-ion
polymer battery in electric vehicles,” Applied Energy, vol. 113, pp. 463–476,
2014.

[57] Y. Xing, W. He, M. Pecht, and K. L. Tsui, “State of charge estimation of
lithium-ion batteries using the open-circuit voltage at various ambient temper-
atures,” Applied Energy, vol. 113, pp. 106–115, 2014.

[58] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4,
no. 2, pp. 65–85, 1994.

[59] K. V. Price, “Differential evolution,” in Handbook of optimization, Springer,
2013, pp. 187–214.

[60] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings
of ICNN’95-international conference on neural networks, IEEE, vol. 4, 1995,
pp. 1942–1948.

[61] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE com-
putational intelligence magazine, vol. 1, no. 4, pp. 28–39, 2006.

[62] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated
annealing: Theory and applications, Springer, 1987, pp. 7–15.

[63] W. Zhang, W. Shi, and Z. Ma, “Adaptive unscented kalman filter based state
of energy and power capability estimation approach for lithium-ion battery,”
Journal of Power Sources, vol. 289, pp. 50–62, 2015.

[64] T. Feng, L. Yang, X. Zhao, H. Zhang, and J. Qiang, “Online identification of
lithium-ion battery parameters based on an improved equivalent-circuit model
and its implementation on battery state-of-power prediction,” Journal of Power
Sources, vol. 281, pp. 192–203, 2015.

[65] P. Shen, M. Ouyang, L. Lu, J. Li, and X. Feng, “The co-estimation of state of
charge, state of health, and state of function for lithium-ion batteries in electric
vehicles,” IEEE Transactions on vehicular technology, vol. 67, no. 1, pp. 92–103,
2017.

[66] M. A. Hannan, M. M. Hoque, S. E. Peng, and M. N. Uddin, “Lithium-ion
battery charge equalization algorithm for electric vehicle applications,” IEEE
Transactions on Industry Applications, vol. 53, no. 3, pp. 2541–2549, 2017.

70



[67] S. W. Moore and P. J. Schneider, “A review of cell equalization methods for
lithium ion and lithium polymer battery systems,” 2001.

71



Appendix A: Details of the Neural
Network in Chapter 4

In this section, the details regarding the neural network used in Chapter 4 will be

provided. As mentioned in Chapter 4, the inputs of the neural network are battery

SOC, SOH, and temperature, and the target is the steady state internal resistance

R0 = Rp + Rs. In other words, the neural network is supposed to find the function

R0 = h(SOC, SOH, T ). Therefore, the size of the input layer is 3 and the size of

the output layer is 1. The value of SOC and SOH are obtained from the reference

measurements and the value of R0 is obtained from the estimation results achieved

in Chapter 3. The structure of the neural network is depicted in Fig. A.1.

.

.

.

.

.

.

SOH
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T
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(N1 neurons)
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(N2 neurons)

Figure A.1: Neural network’s structure.

As can be seen in Fig. A.1, the network contains two hidden layers. The number of
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neurons in each hidden layer are considered as the hyper-parameters and are obtained

after performing cross validation on the training data, which will be explained later.

Sigmoid is used as the activation function of the first hidden layer and relu is used as

the activation function of the second hidden layer and the output layer.

Batteries B14 and B15 in NASA dataset are used here. Separate networks are

trained for each of these batteries and after training, it is checked if these networks

result in the same function. For each sample in the dataset, SOC, SOH, temperature,

and R0 are extracted and used for training and validation of the neural network.

Before training, a preprocessing on the inputs and the targets have been performed,

in order to normalize their value between 0 and 1 to ensure fast convergence. The

performance of the network is evaluated by the RMSE between the predicted values

and the true values.

To find the optimum values of the hyper-parameters of each network, k-fold cross

validation with k=5 is used. In other words, the training data are divided into 5

segments with equal lengths. For each set of hyper-parameters, a network is trained

five times, each time with one of the segments used as the validation set and the rest

as the training set. The resulting RMSEs are then calculated and their average is

used as the RMSE of that set of hyper-parameters. The set of hyper-parameters that

result in the smallest RMSE will be used as the selected network’s hyper-parameters.

Table A.1 shows the trained parameters and results of the networks trained with

batteries B14 and B15.

Table A.1: Summary of the parameters and results of the trained neural networks on
batteries B14 and B15

Training Samples N1 N2 RMSE m [mΩ/◦C]

B14 1208698 9 3 0.023 -0.9

B15 1269639 10 3 0.025 -0.88

In Table A.1, N1 and N2 are the number of neurons in hidden layers, achieved by
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k-fold cross validation and the reported RMSE values are the average RMSE on the

validation sets for the selected hyper-parameters N1 and N2. Also, m is the average

slope of the internal resistance change with temperature. Since R0 was normalized to

values between 0 and 1, a RMSE of 0.02 indicates about 2% amplitude error, which

is good enough for the purpose of this study.
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