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ABSTRACT

The hypersonic laminar two-dimensional flow over a stepwise-
accelerated semi-infinite flat plate at zero angle of attack is analysed.
The boundary layer governing momentum and energy equations are trans-
formed in terms of the dimensionless stream function and the dimension-
less total enthalpy (S). These coupled equations have been solved
numerically for Prandtl number unity, pressure gradient parameter
8=0.286 and 0.4, 0 <S, <1, and 0 < £ < 0.3 with £= (1 + {/V.1)7.
The obtained solutions are utilized to compute the time-dependent dis-
placement thickness which is subsequently used to obtain the strong
interaction induced pressure (according to the Lighthill's Piston Theory)
for 5 < Mg £ 10. For the same range of Mach numbers, the transient
contributions to the boundary-layer velocity, the boundary-layer temper-

ature and to the shear stress at the wall are also given.
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CHAPTER I
INTRODUCTION AND DISCUSSION OF THE LITERATURE

1.1 Statement of the Unsteady Hypersonic Flow Problem

There are many situations where a quantitative description of
the transient development of a boundary layer would be desirable and
valuable; a few of these are aircraft and missiles in unsteady flight,
oscillating wings, unsteady nozzle flow, blades rotating in non-uniform
air streams, etc. In evaluating the forces acting on the components
of aircraft and missiles during their maneuverabiiity and control,
viscous interactions have to be analysed. The viscous aspects of shock
wave interaction phenomenon for such a case require the study of time-
dependent boundary layers. The sharp-leading-edge bodies shall be
considered for purposes of our investigation.

The problem to be discussed here, considers the interaction
between the viscous and inviscid effects, when the high Mach number
flow over a flat plate at zero angle of attack is stepwise-accelerated
by a small amount in the direction of the initial flow. The induced
pressure due to the viscous interactions will be obtained from the
analysis of the temporal velocity and enthalpy boundary layers. Ex-
pressions will also be obtained for the transient shear-stress and heat

transfer at the wall.



1.2 Review of the Associated Literature

The first treatment of the transient boundary layer was pre-
sented by Blasfus [1] in 1908, who considered the "impulsive" start of
bluff bodies such as cylinders. More recently, the review articles by
Stewartson [2] and Rott [3] have covered the field in greater detail.
Some of this literature, which has direct bearing to our work, will be
discussed here.

Moore [4] considered the case of compressible laminar flow
over a semi-infinite flat plate. In his analysis he found a group of
parameters, whose magnitude determines the nature of flow unsteadiness
for an arbitrary velocity U(t). Ostrach [5] extended Moore's work of
zero wall heat transfer to the case of an isothermal surface. These
are the asymptotic solutions for large times. In a recent paper Yang
and Huang [6] supplemented the above with the solutions for small times.
The boundary layer solutions of references [4], [5] and [6] have been
utilized by Zien and Reshotko [7] to obtain the transient weak viscous
interaction pressures. As a first approximation to the induced surface
pressure, they have taken it equal to the acoustic pressure on a one-
dimensional piston moving at a variable, but low, speed.

Stewartson [2,8], while considering the impulsive motion of a
flat plate, gave an interesting explanation of how the initial Rayleigh
solution, having no x-dependence, could possibly change over to the
x-dependent but time-independent Blasius solution. He obtained two

solutions, one for t(= U_t/x) > 1 and the other for T < 1 with a singu-
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larity at 7 = 1. He employed two different methods, namely, the Oseen's
approximation and the momentum integral method to obtain these solutions.
Stewartson argued that for T << 1, since a disturbance from the leading
edge has not arrived yet, Rayleigh-type flow prevails; whereas, at

T = 1 the Jeading edge effect is felt suddenly and the flow acquires

its x-dependence through an essential singularity at this point. The
existence of singularity was further supported by Smith [9] who gener-
alized Stewartson's work for a wedge.

Lam and Crocco [10] investigated the boundary layer induced
by a shock travelling down a semi-infinite flat plate. At time t=0
the shock is at the leading edge of the plate, x = 0. For the special
case of a very weak shock the problem becomes identical to Stewartson's
impulsive plate problem. Using the Prandtl boundary Tayer equations
under the Crocco transformation they give sufficient conditions for
unique solution to the governing equations for the case pu = constant
and demonstrate the feasibility of enforcing two streamwise boundary
conditions for such a problem. The boundary layer is divided in two
parts:

(1) a region where the solution of Mirels [11] is valid (1 < 1);
(2) the region, t > 1,
where both the leading edge effects and the effect of the shock solu-
tion downstream must be considered. The results are directly analogous
to Stewartson's. In the region Tt > 1 the governing equations, although

parabolic in nature, admit boundary conditions which are usually as-



sociated with elliptic equations. This type of behavior has been termed
"singular parabolic" by Gevrey [12] and also Lam and Crocco [10]. It
is in this second region that the "elliptic" boundary conditions must .
be enforced; i.e., boundary conditions must be given on T = 1, « for
0 <n(= ﬁié <landonn = 0, 1 for 1 < T < o, Though the complete
solution :o the problem was not given by Lam and Crocco, the detailed
discussion of the properties of the solution was provided.

Stewartson's singularity was also encountered by Cheng [13]
who investigated the problem of a sharp-edged flat plate starting from

rest and following a power law motion. Cheng expands the stream function

in powers of quantity

£ = ﬁg—‘ﬂl with U (t) = At" .

He obtains a solution which is valid for large times (i.e. & << 1).
For large £ the solution is of the Rayleigh type. Later Cheng and
Elliott [14] extended this to arbitrary plate velocity if the plate was
started initially from rest.

Using the approximate momentum integral method Schuh [15]
calculated unsteady boundary layers on bodies of arbitrary shape and
for arbitrary variation with time, of the speed outside the boundary

layer. He observed discontinuity in the slope of the skin friction
1

distribution between %-= 0 and el 1.0 for the case of a flat plate.

He attributed this to the failure of the boundary layer theory assumptions



near the leading edge. This will have to be resolved by using the
Navier-Stokes equations in place of the boundary layer equations. With
the complete Navier-Stokes equations the discontinuity would vanish at
the leading edge and with it also the discontinuity in the slope of the
skin friction distribution.

Schetz and Oh [16] also used the momentum integral technique
to obtain the velocity field with a new type of profile. They have
analysed the transient development of the boundary layer on a flat
plate due to the impulsive start of motion of the surrounding fluid.

They admit that their approximate solution, valid at every "x" station
and for all times i.e. 0 < t < o, tends to mask the detailed mathematical
behavior of an exact solution. It cannot be expected to resolve the
problem of "joining" at t = 1.

Tokuda [17] presented a solution to the Stewartson's probiem
[2,8] without having an essential singularity by "stretching" the co-
ordinates. His erroneous conclusion that a power series solution exists
about the Rayleigh solution for small times was corrected by Brown,
Stewartson and Lam [18].

Recently Ban [19] has shown analytically the presence of an
essential singularity at T = 1. He investigated the velocity and temper-
ature boundary layers developed on a plane wall by the ideal shock-tube
flow for the case of weak shock and expansion waves. Following Friedrichs
theory [20] of symmetric positive linear differential equations Ban has

provided the proof for the uniqueness and existence of his solutions to



the singular parabolic equations. As the basic character of the dif-
ferential equations is different for T > 1 than for T < 1, he points
out the necessity of an essential singularity for the problem to be
properly posed.Murdock [21] developed an integral technique to solve a
general class of shock-induced boundary layer problems including Ban's
problem,

The difficulty at T = 1 was also experienced by Rodkiewicz
and Reshotko [22] while dealing with the transient weak interactions.
Their results for temporal shear stress, heat transfer and induced

pressures cover the range 0 < T < 1.

1.3 Choice of Variables
The literature survey pertinent to the present work suggests
that in formulation of the transient boundary layer problem one of the

independent variables should be of the type:

ut

_ =
T X

The other independent variable has been chosen to be of the form:

The present problem has been formulated primarily to obtain
the transient pressure distribution for the case of strong interaction

(with non-zero pressure gradients). The weak interaction problem (with



initial zero pressure gradient) has been dealt with in references [22]
and [23]. In the present analysis the equations have been developed
with suitable distortion of the coordinates, which are especially

suited for the study of flow with pressure gradients. The following

hypersonic assumption has been made in the theory [22]

ou ah oH 2,.2 2

e._e_"€e_n.u-= u-+ve u
5 C 3t -3 O; H=nh=+ 7 = h + > (1.1)

j.e. the free stream adjusts itself instantaneously to the new conditions.

In a transient supersonic flow, there are three stages in
the transient pressure distribution before the establishment of an
Ackeret pressure distribution on the surface of an airfoil corresponding
to the new free stream conditions. These three stages are:
(i) the time interval prior to arrival of the fastest signal
from the leading edge;
(ii) the time interval between arrival of the fastest signal
and the slowest signal from the leading edge;
(iii) and the final steady Ackeret pressure distribution after

the arrival of the slowest signal from the leading edge.

With the increase in Mach number the time interval between
arrival of the fastest signal and the slowest signal at a point on
the body decreases approximately as 1/M2° Therefore, one may say that
at very high Mach numbers the equivalent of the Ackeret pressure dis-
tribution is established (from a potential flow point of view) almost

instantaneously.



1.4 Approach to the Strong Interaction Problem

The time-dependent two-dimensional boundary layer equations
for a compressible fluid have been taken as the governing equations
for the problem under consideration. These equations have been reduced
to a coupled set of third order partial differential equations in two
independent variables n and t mentioned earlier. Next chapter gives a
detailed account of the transformations employed for such a reduction.
These coupled equations have been solved for the hypersonic pressure

gradient

B Y

which corresponds to the strong interaction case. The'numerical method,
described in Chapter III, is an implicit finiteIQifference technique
which is inherently §tab]g. This numerical method has been extensively
used and produces results of high accuracy.

The solutions to the momentum and the energy equations give
at once the shearing stress and heat transfer at the wall for a specified
wall temperature. The relevant expressions have been obtained in
section 4.3 of Chapter IV. 1In order to obtain the viscous interaction
induced pressure, the boundary layer solutions of Chapter III have been
utilized to obtain the displacement thickness. Employing Lighthill's
concept [24] of a one-dimensional piston pushing into air the computed
displacement thickness has been used to obtain the "piston velocity"

and subsequently the strong interaction induced pressure over the plate



surface. The results for different values of Mach Number, wall heat
transfer and the transient parameter &(= t/1+1) have been displayed

graphically for vy = 1.4 and y = 1.67. The discussion of the results
is included in the last chapter.

It should be mentioned that Lighthill's piston theory is
accurate only for Mec < 1, where o is the local inclination of the shock
to the free stream. The changes in the entropy increase wich Meo, and
it becomes necessary to account for them in an adequate formulation for
large Meo. We neglect the shock curvature and assume the flow to be
isentropic except across the shock in order to avoid variations of
entropy across the stream lines. Following Miles [25] we have used the
extension of Lighthill's piston theory for large Meo. Miles has sug-
gested that such an extension can be made simply by replacing the Light-
hill's simple wave relations by the corresponding relations for an oblique
shock. Expression (4.6) of Chapter IV represents the results of Mile's
extension as applied to present work.

Generally the boundary layer in hypersonic flow is thick and
doubts may arise regarding validity of the Prandtl's theory. Shen's
[26] criterion of 8*/x << 1 has been met in order to justify the use of

Prandt1's boundary-layer theory.



CHAPTER II

FLOW GOVERNING EQUATIONS

2.1 Boundary-Layer Equations

10

The unsteady, two-dimensional flow of a compressible viscous

fluid along a semi-infinite flat plate will be considered. With the

coordinate system fixed with reference to the plate and origin at the

leading edge, the usual boundary layer approximation gives the following

equations [29]:

Conservation of Momentum

( + vV —

Conservation of Energy

2
oG+ udhe vy =By B, 0ty

Conservation of Mass

30+ 2 (ou) + 2 (pv> =0

(2.1)

(2.2)

(2.3)

(2.4)



1

Outside the boundary layer where the effects of viscosity and
heat conduction are neglected, velocity, pressure, temperature and density
are functions of x and t only. The following relations are satisfied in

the free-stream:

oU ou ou op

e &) = —&._£

pe(S?-'+ Ve 3x ) * Pe 3T ~ W (2.1a)
oh oh ap op

e € - £ £
Pelst * Ve 3% =58t Ve X (2.3a)
i?iq._a_( Uu)=0 (2.4a)

ot ax ‘Pe e
The boundary conditions are:

y=0: u=v=0,h= hw(x,t) (2.5)
y =Yy u= U x,t) 5 h=hy(xt) (2.6)

2.2 Transformed Boundary-Layer Equations

The equations of Section 2.1 suffer from several disadvantages:
for example, they may be singular at x = 0, and the boundary layer
thickness varies greatly with x near the leading edge (in the strong
interaction regime). In this section they are transformed to a more
convenient coordinate system by making a change of variables in the

original boundary layer equations. Some of these new equations exhibit
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much more clearly the role of certain parameters and of the viscosity
law, as well as the relation to the incompressible case. They are also

more suitable for numerical computations.
N

2.2a Dorodnitsyn-Howarth Transformation (in the restricted form)

In the case of zero pressure gradient, Dorodnitsyn-Howarth's
restricted transformation is equivalent to the Howarth-Stewartson trans-
formation to be introduced for non-zero pressure gradients. The purpose
of this transformation is to remove the density p from the formal equations,

and introduces the following new independent variables

?Et,?ix,y=f-&dy. (2.7)

The equations (2.8 are now applied to (2.1) and (2.3) to give,

respectively,
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oy Wy Wy W2y By
ot X Po 3y

__P.+ _& 9 (P.E 3_) (2.9)
sx  Po 3y Po ay

p((2 2 2 M, My, 0, B

3t oy 5x oy X Po oy
T ue dH wen 1y, 2 (2.10)
Po 3y PlrT’o Po Pr oy

(2.10) being derived from (2.1) and (2.3) for the new dependent variable

H with the hypersonic assumption (1.1).

It is now convenient to introduce the stream function ¥ such that

w= (2.11)
oy
. _Po oy, Y, By
V"T{'a% yax+3t} (2.12)

The continuity equation (2.4) is automatically satisfied by this defi-
nition of the stream function.

The momentum and the energy equations now become

2 2 2 2
ll_+§£.3_ﬂ,’__§£3__:22=_l.§a+.l_l(£a3_%) (2.13)
3yot 9y 9ydx  ox dy Pax Poay Po sy
2
M, o M. 12 e Moy WY (2
ot dy 9x 9y ox Po oy Po oy Po oy ay
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2.2b Howarth-Stewartson Transformation
For the sake of convenience this transformation will be intro-

duced in two steps.

First Step

The independent variables in this transformation are

e (2.15)

& (2.16)
3

Applying (2.16) to (2.13) and (2.14) we obtain

% 2%y + (f&)-’- ay 2% . e (32 Pe W (ie_)z °
35 atdy 2o dy ayox ai 5y Oox ax %o 3y
=-l§2+_1_(.a_§)3i_(ue.§2_lk) (2.17)
P> P = ‘p =P )
ox "o % a3y "o ay
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a a
ot % 3y ox 2o 3y X
a a 2 2
- L2 e M, (g Ly By WAy (2.
Po % 3y "™oay Po 0 3y dy

Second Step

The independent variables for the second step are:

(2.19)

=1
i
o+

-
>
"

O —
o
—

QJI 1]
1))
S
P}
| o
(1))
N”
o
x
-
=
1
<l

where C is a proportionality factor in the linear viscosity law given by

- uT
C=c(x) = u—% (2.20)
0
Expression (2.20) is of the form taken by Chapman and Rubesin
[30], except that the reference conditions (uo, To) are free stream
stagnation values. The proportionality factor C serves to match the vis-
cosity with the more exact Sutherland value at a desired station. If
this station is taken to be the plate surface, assumed to be kept at
constant temperature, the result is
L

where 51 is a constant which for air has the value
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5, ¢ 110°K .

In view of (2.19) the following transformation equations may

be used for the derivatives:

8 -3
5t oT
a, p
2 - (A £ (2.22)
X o Po X
9 .39
oy oY

e R R U Lo ey ()

where we have used the viscosity law of equations (2.20) and (2.21) along-
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with the equation of state for a perfect gas

p = pRT (2.25)

2.2c Final Transformation
Distorting the time-variable, the independent variables for

the final transformation are

?
— p - — - —— —3
T=fc(°)2(-—e-)dT;XEX,YzY (2.26)
o Po
0
Therefore,
9 e\2 Pe, 3
== (=) =
oT 3 Po oT
2.8,230 (2.27)
oX 9X 9T 3X
Q.9
¥ oY

Use of the above transformation equations for the derivatives in (2.23)

and (2.24) yields:

B ndy gt %

3YoT oY aYaXx  oX of e dX



= 2 2 3
P IL BEG .,
oX 9Y 3YaT  oT aY 3

oY oX 3Y oX Y aT Y
Vv a 2
-2 @y pro) (BFRLY,

oY of o aY oy
where we have used
a2 = (y=1) h,
1 9% ap2 _ %02 1 e P
3——:—(_) = (P =7
e aX of e e 9X
1 20,2 3p _ 20,2 h e
_(—) _'('a—) 'ﬁ—'":"
P 8" X e e oX
2
U
e 2
——— = -]
e (y-1) Mg
2
s he X He @ X

and the hypersonic assumption (1.1).
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(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

Equations (2.28) and (2.29) represent the governing equations

in terms of the new independent variables T, X and Y which are related

to the physical variables t, x and y by the following expression
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X y

a P _ d p _ a
T= oD% ¢ ¥= [ 6D o T= 2
o) 0 0 0 0 00

L dy (2.35)
Po

2.2d Reduction to Similarity Form

The solution of equations (2.28) and (2.29) could be attempted
by a number of different approaches. The approach chosen in this analysis
is to use a similarity transformation. This type of transformation
changes the two equations into a coupled set of partial differential
equations in two independent variables n and 1. The velocity and the
total enthalpy profiles at different plate surface locations and different
times are the same as at any other location and time except for a scale
factor.

We assume the following relations for this problem

R =J
[}

AX? Vepf(n,r)

~i
1l

jo ]

><

(2.36)

=
n
o
)
<
-
-

wm
"
(72 ]
o~
o |
"
~
~—
L

where A, B, C, a, b, ¢, p, q and r are undetermined constants.

When equations (2.36) are used in the form
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2v Yve]1/2

V= [/ fin)

0 (2.37)

n
<
><

with
= Y = _0_ =
Ve = V(M = 52U, = aghy (M (2.38)

we obtain from (2.28) and (2.29), respectively,

vZe, aV S2 L1y
 foayp op 2 LARLRZyy 2o, 1) g2y 20 ey
X aX 0 0 X
v F{-L+ —lfv—e}] - [hv i’ Y-%V%f-lY']TV ey e
e X Ve aX 2" (m+T) e 2 e 2 X
1 ] 1 1]
5 7. oV 2v -5 dV
0 2\ 2 T, 1T e, .1 0 v2,2;°"e
+/'(-mTT')-Y Ve f{-—+T—}+‘é'l/'(—'1Tm+ X Vef-—
X ‘e aX 3
13 2 3 3
- BV, a dM_ V LoV
Al 2y Zeoy oy o7 (2l ey 2 pif £ gp)
2v, e - X e dX X X
A
=y (M & e
= Volz5) = f (2.39)
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v v,V Hy 1 N, Y,
H—S+erS(—-—)+VfS—-§HefS( + =)
X ax X X 3% X
2 2
3V, dM v, v,
-erS( -—9— T(—Y-T-) e(HfS—-HfS'——)
'x He e X X
HooV v 3
- Th oy 2+ G ‘)('3)2 2 (rFare) (@0

where the following relations have been employed:

Moy g (2.41a)
‘vz e
)
2
2 Ve .
8. (2.41b)
E) X
7 5
339..: £ EXE l.¢'(mtl)fﬁa.-?.u E!E.- 1 (Eill.ﬂi_'ﬂn'
3XaY X 2 D g X 2 oo _3
X X
. aV
+ V f (- L+ Vi—-_-e- } (2.41c)
X e oX
§E=1Vf'a—v-?--lVf'v—e+/2v° Y%v%f{—fwra—g-}
5X 2 5% ° X (mtT) e X Ve
g
] Vo Ve 1, @ X2 Vg
X2 G



3
2 Ve
QY _y (mt1) ‘e_ ¢
a'Y-Z 2\) ]
° 3
X
3 v 2
Sy () e o,
573 vy X
3
2
2v. V..
W _ 1__27._2_
-3
X
2
_3___. = _ T(ZY-]) e M dMe
X y-1 7 Hg "egx
.V
Bons 2
oT X
2v e 2 v —
0 Y (X Ve) aX
. ] oH
+HS(- S+ )+ s =
€ X Yeox X
B _ (m+1) v, y e
7 < e
oY 2v0 X
§.2_H_ = _(___M] H .!?_ s"
572 2v, ex
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(2.41e)

(2.41F)

(2.41g)

(2.41h)

(2.411)

(2.413)

(2.41k)

(2.412)
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Let
V, = exm (2.42)
_2m
and R = T (2.43)

5 5
f'+m e f'2 l/ﬁ.’“ﬂl va'f".pm/_(ﬂi_v.rlfll
X 2 2v 3 2 2v 3
o -7 0 5
X X
5
v.2 v?
R YR TR T TP A ST VR L T
e e v 2 ¥ 2 2v 3
X X X o _5
X
5
v 2 v 2
fDy Al e Tpp sy 2 fel- TeamIye B pr]
2 2v 3 e < — p J—
o _3 X X X
X
2 2, 2
v usv .
- H e 2y-1 e e ' e
n—-nZy) T S (f'f - £f')
He -1 He X
y 2
- Aml) e g (2.44)
X
v, . A
Hy =S + (m-1) HSF' = = 4V, fS L—-)-H fS'-:_e-
X X ax X

vy HY., . .
- (m-1) TH fst =2 - m(2Y ])'c €& (£1S - £5')
X X
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3
H V a v
_ (m+l € € ¢ (m+1) (Pr-l) e\2 e 112 FIRK
S T2 PY‘-)-(-S YT Py (ao) Y(f ML

(2.45)
Noting that He does not vary with X and using
ue2 (v-1) M2
H 2 (2.46)
e 1+ (5 ) o
in (2.44) and (2.45) we obtain after some algebraic manipulations
( ) fl + ( ) flz 2 T(fl%l - %fll) - ffll
_T (m+1)
2
_ (y-1) M
- (30 o % b (2Y 1) { S} (F1F - FF'') = £''° (2.47)

S,
S[1 - (1-m) ©f'] - s~[$m§ll £ - (1-m) ©f]

(y=1) M

1+(151)M

}(F'S - £5')

- m(%—’ﬁl) T

2
(m1) 1 (m1) pr-1 1) Mg 2
= S % { } (fll + flflll)
Pr 2 Pr "y & 5151[ Mez

(2.48)
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We may finally write (2.47) and (2.48) in the following form

(2-8) £ + B(£'2-8) + 2(B-1)T(F'f' - FF'1) - FF ' - £

-] . .
(Y ) Me } (F'F' - ff'') =0 (2.49)

B2 Prr SRILY } (£ - F5')
- r‘r -
vy : 51512 my
e
2
(Y-l) Me |2 ettt

For steady state the above equations may be simplified to:

frov e fF 4 g(s-f'7) = 0 (2.51)
1 ' (Y-]) Mez v 12 IR
S'' + PrS'f = (1-Pr) {] T 512 Mez} (F1'C+ F' ') (2.52)

Equations (2.51) and (2.52) have been obtained by Cohen and
Reshotko [31] in a slightly different form.

Since Me may, in general, depend on 7’ the terms in equations
(2.49) and (2.50) containing the factor in curly brackets are not yet
functionally consistent with the rest of the terms in these two equations

for arbitrary Mg and Pr. The functional consistency among the different
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terms may be achieved by one of the following ways:
(1) The external Mach number may be a constant greater than zero.
(2) The external Mach number may be zero (the viscous dissipation
and compressive-work terms are omitted in equation (2.3) for
this case).
(3) The ratio of specific heats y may equal 1 (for most gases,
this assumption is physically unreasonable).

(4) The factor

(y-1) M2
{ = }
1+ Lxéll-Mez

may be approximately 2 corresponding to hypersonic flow.

It is the last assumption which would be reasonable for the
present analysis. The treatment of hypersonic flow also requires the
introduction of the effects of displacement thickness upon pressure
gradient. For the flat plate, Lees [32] has shown that the induced
hypersonic pressure gradient for the strong interaction case corres-

ponds to
g=1=l | (2.53)
Y
As a first order approximation we shall use (2.53) in our subsequent

analysis.

Using the Timiting value 2 of the quantity in curly brackets



27

of equations (2.49) and (2.50) alongwith the relation (2.53) we obtain:
() §4 () (£12o5) - arlppfer) - ARUF = 0 (2.54)

Pr é[(l$l) - 4tf'] - 8" - S'Prf-41f] = 2(Pr-1)(f"2+f'f"')
(2.55)

Letting Pr=1 further simplifies the energy equation (2.55)
to

é[(Iglo - 41f'] - ' - S'[f-41f] = 0 (2.56)

2.3 Correlation with Reshotko-Rodkiewicz Equations [22] for Zero
Pressure Gradient

Equations (2.49) and (2.50), when specialized for zero pressure
gradient, yield, respectively,
2F' + 2u(FF'I-F'F') - FFI-FN = 0 (2.57)

2
- M (Y-] ) Me 2
2SPr[1-tf'] - S'' =S'Pr[f-27f] = (Pr-1) { T} (F11C+ FIE)
1+ LxE_L M

(2.58)

For zero pressure gradient "e" condition may be taken as

reference*, since the local "external" values are constant along the

¥*For non-zero pressure gradients, we have used free stream stagnation
values as the reference conditions, since in the presence of pressure
gradient the "e" values are not constant.
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outer edge of the boundary layer. For this case

consequently Me ef ” Ue

Yy (2.59)

>
v
x|

-
¥
ot

and M, > 2 constant .
If we now use the relation

ginyt) = (1 + 5w ?) snyr) - L5l 2e2(n,0)  (2.60)
in (2.58) we find:

2Pr g[1-tf'] - ¢'* - Pr g'[f-2cf] - Pr(y-1) M2f" 12

+ Pr(y-1) Mezf'{z%' + 20(FF ' -F ') - FFV-F111} = 0
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In view of (2.57) the last equation may be further simplified
to

2pr g[1-tf'] - g''-Pr g'[f-2f] - Pr(y-1) Mezf"z =0 (2.61)

Equations (2.57) and (2.61) have been obtained in reference
[22].
From (2.60) we may also write down the following relations
of interest:
(a) Static temperature T referred to the free stream stagnation

temperature T0

. (L1 M
= = S(n,t) - { =11, } £ (n 1) (2.62)
To ’ 1+ ] 2 ’
and
(b) flux density
pu_ _ 2f'(rm) (2.63)
Pele  (1+ 5 w2 sty - D w 2,0 |
2.4 Boundary and Initial Conditions
When y =y, Y= 7;, N =mngs U= U, and
1 % u
f'(n,,1) = u = =1 (2.64)
€ Ve2 32 Ue2
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Wheny =0,Y=0,n=0, u=0, and
f'(0,1) = 0 (2.65)
Wheny=0,Y=0,n=0,y=20 and
f(0,7) = 0 (2.66)
When t =0, T =0, u=u_+ (Ue2 - er)* and
U U
' 0 el
£ o= (na) 2 (1 - 22 (2.67)
00 Ue2 Ue2
When y = y_, Y= 7;, n=ngs H=Hg,, and
S(ngt) = 1 (2.68)
When y = 0, Y=0,n=0,H= hw, and
hy
$(0,1) = (2.69)
el

or for the case of no wall heat transfer

S$'(0,t) = 0 (2.70)

*u0 = u(n,1<0); Uy = u(n,t=0); U, = u(n,t=e)



Whent=0,'r=0,H=H],and

(n,0) = o]
S n’o S ——
HeZ

3

(2.71)
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CHAPTER III
SOLUTION TO THE GOVERNING EQUATIONS

3.1 General Approach

The problem formulated in Chapter II requires the solution
of a third order partial differential equation(2.54) which is coupled
to a second order partial differential equation (2.56). Equations (2.54)
and (2.56) are the pertinent equations for the strong interaction case.
As a closed form solution of these two coupled differential equations

could not be found, a suitable numerical method had to be adopted.

3.2 Introduction to the Numerical Method

The method of solution adopted here, has been developed by
Clutter and Smith [33] for the solution of compressible laminar boundary
layer equations with transverse curvature effect. In this method of
solution the partial derivatives with respect to the modified similarity
variable £, associated with time and space,are replaced by finite differ-
ences. The derivatives with respect to the similarity variable n, associ-
ated with space, are retained. In this way the partial differential
equations become approximated by ordinary differential equations at any
particular value of &.

The particular choice of this method is based on the following

reasons: the requirement that the method should solve both accurately
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and rapidly any problem for which the boundary layer equations are valid,
seems to call for an implicit finite difference technique which is in-
herently stable and is also exact in the limit. The method chosen here
comes in this category and has the additional advantage of reducing the
equation to an ordinary differential equation. Questions regarding the
existence of the solution, the nature of the solution, and the error
propagation are much better understood for ordinary differential equations
than they are for the conventional finite difference methods used for
the partial differential equations. A final reason for the choice of
the Clutter-Smith technique is that it is known to produce accurate
results, has been well explored and does not involve any kind of line-
arization* used in reference [22].

The round-off errors in the computer program can be reduced
by substitution of f' = f'~1 in the momentum equation (2.54). The
reason for this is that in equation (2.54) all terms approach zero as
n approaches Ne’ both S and f'z approach unity and the round-off error

is primarily introduced when taking their difference. The substitution

of
F = f-n
Fo=f -
(3.1)
?.'-Il = f!
?lll =f'“

*See appendix A for linearized solutions.
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in (2.54) gives

&L F o+ (EheFn? - s) - a(Pa) FFF

- (Fm)f =F''' =0 (3.2)
In terms of the Euler's transformation [30]
E= w7 (3.3)
we may rewrite equation (3.2) as
(X (1-¢)2 ﬁ+ (ﬂ){(£+ 12 - s} - 4g(1-£)
Y ondg Y n
= 2= = 2% 2= 3=
of 3°f of 3°f = o°f d°f
(&) - 225 (Fin) & - =0 (3.4)
n ana ) g;]-f an ;;7

Introduction of the Euler's transformation improves the convergence
rate of the numerical method.
A function S may now be introduced in the energy equation

(2.56) for similar reasons that T was introduced in the momentum equation.

S is defined as
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Its substitution, alongwith the Euler's transformation, in the energy

equation (2.56) gives
3’
(1-£) & [(1 e)(l—) - 4&( +1)] - =3

n

- B ((Fan) - a500-0) 1= 0 (3.6)

Also, S in the momentum equation (3.4) may be replaced by S+1, giving

(- g2 LT L@+ 17 - 5+ 13 - 4500-)
@) EE ﬁi—’i} - (F+n) o % . 0 (3.7)
on anag oF, an2 ;Z ;n? :

3.3 Finite-Difference Representation of £-derivatives

This fundamental idea of replacing the g-derivatives by finite
differences to approximate the partial differential equation was first
advanced by Hartree and Womersley [34] and subsequently used by Clutter
and Smith [33]. It may be noted that all of the g-derivatives appearing
in the momentum and the energy equations are of the first order only.

In replacing the E-derivatives at a point by their finite
difference equivalents, one may use two-point or more accurate three-
point finite differences. Whereas usually three-point finite differ-
ences have been used,at the start of a solution only two points are

available and the two-point form must be used there.
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Since the momentum equation and the energy equation are para-
bolic in £, the problem must be solved by marching in the direction of
£. When the solution has been obtained at all brevious stations up'to
and including Em-1° the problem is to find the solution at the new
station Em' The notation system for the finite-difference approxi-

mation of £-derivatives is shown in the figures la and 1b.

n /'y
n — A —* t—ézg-. %i e AL, et
Em_z gm_] Em m=1 2 3 4 £
Figure la Figure 1b

Notation System for Finite-Difference Representation of £-derivatives

Using a two-point finite difference approximation in the &-
direction, the momentum equation (3.7) and the energy equation (3.6)

may be written, respectively, as

oF o,
an
XAy (g )2gmpn T m-lon Y——{a )25 )}
(571 (1-) —The—ily + (DG (S,
& _oF
m an Foo-f 2
- g, (15 (& oyl (mn_neny 2

m,n S Bm-1 e om-1 "~ m,n
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— 3=
2°F 5°F
m)= -=3 =0 (3.8)
N on? mn anS mn

- (fm,n

(1-g, ){—"‘41—'“—'-} [(-g ) (D) - 4z & +1)] s
m' >y m an 2

E on- m,n
S L(F, ) - 4 (1-£ ){F—"b"—f'"—"-ﬁ}] =0.  (3.9)
anyn o MmN M E € .

When the three-point finite difference approximation is used,

the equations (3.7) and (3.6) become, réspective]y.

1
() {[(E?m = A 2)] |

ol Em-z) 8 | o ) 7

e [ ARy L L

+ (l;—]){(%%m,n + 1)2 - (§m,n+])} - 4gm(]-€m)

. .f. +'|{ 1 1
<i(anlm,n ) [(gm'gm-l) (Y ] I m,n

(E gm_z) (Em-gm_]) BT':

- G -Em ])(Em_ "E,m_z) a'ﬂl _] o + [(Em-gm_z)(gm-]-gm-z)] 'a'n'lm-z’n}
°F (€ - o)
a°f ] 1 i S m-2 -

) ;;zlm,n{[(zm'gm-1) i (Em’gm-z)] T _[(5 Em_])(Em_1-£m_2)]fm-1,n
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(€~Em-1) _ _ 227 237
ey e e fm-2m> - Fpntma) 2l sl O

(& -Eq-2)
1 1 m-2 -
(1'gm){[(im-£m_]) ¥ [ 2)] men [(E & ])(Em_1-€m_2)]sm-1,n
(8B T +1
- Yy,
[(E g 2)(gm- 'E 2)] Sm_z’n}[(] Em)( Y ) 4Em(an| +])]

2§| g (7 +n)-4¢ (1-6 ) I * ==,
Bn m,n an m,n m,n N m (Em'gm-1) (gh'gm-Z) msN

(&~ p) (g~ 1) - )
-[(Em-‘émqmm_]'im z)lfm‘ sN * [(E gm 2)(£m_]'gm_2)]fm'29n} =0
(3.11)

Equations (3.8) through (3.11) are ordinary differential equations in n
with the variable quantities ¥, ¥', and S at the m-1 and m-2 stations.
It may be noted that step size AE, which need not be constant, is not
a primary parameter; instead, £/Af is. The errors*in the two-point and

three-point formulation, respectively, are

by 2F . i) GnEng) o

(mmely 3F m_m-2 (3.12)
2 agz 6 353
which, for the equal stepsize in E-direction, reduce to
2 .3
aE 3°F g (08)° O°F (3.13)
2 52 3 aE3 )

*The absolute magn1tude of the maximum error in the two-point and three-
point formulation is given in Appendix E.



39

This means that to have the same accuracy in the solution at
all stations the stepsize at the second station, i.e. m = 2, must be
suitably reduced. In the present numerical computations the stepsize
at the second and third stations was taken half the value used at sub-

sequent stations.

3.4 Boundary Conditions Associated with the Equations of Section 3.3

When n = n, f'(ne,E) = 1, and

%%‘ =0 (3.14)
Ngs&
When n = 0, f'(0,&) = 0, and
of
CAN = -1 (3.15)
on n=0,&
When n = 0, f(0,£) = 0, and

f(0,6) = 0 (3.16)
U u
0 el
When t = 0, £E=0, f' = f.'(n,) == + (1 - ==2), and
0 0% Uy, Ue2
U_. of

el

. e "0

of
an|n2>0,g=o Uy, (3.17)



When n = nes S(Tle,E) =1, and
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S(ngsE) = 0 (3.18)
hw
When n = 0, S(0,8) = e and
el
S(0,€) = g— - 1 (3.19)
e2
or for the case of no wall heat transfer
%% =0 (3.20)
n=0,&
Hy
When T = 0, £ = 0, S(n,0) = T and
el
— H]
S(n,0) = g— -1 (3.21)
el
We now specify [35] H1 such that %Z_I = 0 ; thus the S-distribution
n,&=0
at £=0 may be obtained from
225 . 5%

which upon integration gives
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n
n -£ (Fgagtm)dn
e dn

0o
3(n,0) = (-5 3 (3.21a)
00 = (St a
(o]

[+ -]

[ e dn
o

This expression has been evaluated using the numerical values
of ?E=0 obtained from (3.17). See appendix B for details of the nu-
merical integration.

3.5 Simplifications for an Adiabatic Wall

The momentum equation is, in general, coupled with the energy
equation. For the case of an adiabatic wall, however, this coupling
can be removed.

The solution to the energy equation (2.55) for the case of
zero heat transfer at the wall and Pr=1 may be written as

H=nh+ EE-= constant = h_, + EQZ__= H (3.22)
2 el 2 e2 ‘

For the problem under consideration the external flow has in-
stantaneously acquired the new free steam conditions whereas the boundary

layer itself is non-stationary.

We may rewrite (3.22) in terms of the dimensionless enthalpy as
S=1 (3.23)

which is the desired solution for the case of an insulated wall. Using
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(3.23) in (2.54) we notice that the momentum equation is uncoupled from
the energy equation (2.56) for this particular case. A solution to the
uncoupled equation (2.54) is now easily obtained from the Clutter-Smith
numerical technique.

The static temperature T] at any point in the boundary layer
after the jump in the free stream velocity may be obtained from

M
S(T],O) = =]

He2

Rewriting the last expression as

we find, after some simplifications,

g1 = %= 1+ ﬁ%llmezz{l - £%(n,0)} (3.24)
3.6 Procedure for Solving the Momentum and the Energy Equations
Simultaneously
After the g-derivatives in the momentum and energy equations
are replaced by finite differences, so that the partial differential
equations are approximated by ordinary differential equations, the problem

of solution is essentially to find the unknown boundary conditions at

the wall that satisfy the known outer boundary conditions. The procedure
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for doing this is given in the following sections. The two equations
(3.6) and (3.7) are coupled and must be solved simultaneously.

In order to get a first solution of the momentum equation
we assume S = 0 at all points in the boundary layer. (As pointed out
earlier S =0 or S = 1 is the solution of the energy equation for zero
heat transfer at the wall). This gives us F-distribution as a function
of n and £. Solution to the momentum equation is now used to solve
the energy equation with the appropriate boundary conditions for finite
wall heat transfer. With the new solution to the energy equation we go
back to solve the momentum equation again and obtain new F-distribution.
This F-distribution may now be used to obtain improved solution to the
energy equation. This procedure is continued until convergence of the
solution to the momentum equation is obtained to a specified accuracy.
The details of the method are given in the following paragraphs.

First the momentum equation is solved for 2 <m §_m*+with
known values of f from station m-1 and § = 0. The values of T and their
qerivatives from this solution are used to solve the energy equation
%or the same range of m. Thus the S-distribution is obtained, which
may now be used to replace the earlier S-distribution (5=0). The itera-
tive procedure is continued until convergence of the solution to the
momentum equation is obtained.

In the iterative procedure let Q = i, mlg* denote the solution

of the momentum equation with accompanying solution of the energy equation

*No conve;gence was obtained beyond m*=8(for y=1.4) and beyond m*=7 (for
y = 1.67).
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for stations m=2 to m=m*. With i representing the i-th iteration of the

momentum equation, the procedure is as given below:

(a)

(b)

(a)

- m*
Q = 09 mlz

The momentum equation is solved for m=2 to m=m* with S=0
and the values of T and its derivatives from station m-1.
At each station m, it is solved by the cut-and-try and
interpolating procedure to be described in next section.
The solution may be denoted by ?b.

The solutions Fj, the values of S and their derivatives

from station m-1 are used to solve the energy equation
for m=2 to m=m*. The solution is denoted by So .

The method now proceeds to the Q=1 solution.

*
Q=1, mlg

The momentum equation is solved a second time by using So
and the solution is denoted by ?}.

Step (b) inQ = 0, mlg* is repeated to obtain §H.
m*
Q>1,m,

Y.
The procedure in Q = 1, mlg is repeated, always with the

latest values of T and S until

Q= Qpax
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When this condition is met, the T and S distributions are the

required solutions of the momentum and the energy equations. Q was

max

chosen to be 6 to give the values of ' from two consecutive iterations

within 1077,

At the start of the solution assume S = 0

Solve Momentum

Equation for m=2 to m=m*

Solve Energy
Equation for m=2
to m=m* (SO)

- e e e e e e wm en o G = —

_— e e v e e e e e @ e

Solve Momentum

Equation for m=2 to m=m*

Solve Energy
Equation for m=2
to m=m* (S])

Repeat Q-Steps until Q = Q

Figure 2 Flow Diagram for Solving Boundary-Layer Equations

3.7 Method of Solution of Momentum Equation at a Particular g-Station

As explained in section 3.3, the replacement of the £-derivatives

by finite differences results in an ordinary differential equation at

each E-station.

Each of these third order non-linear ordinary differ-

ential equations are to be solved step by step as the solution proceeds

in the £-direction.

In this method of solution equation (3.7) is solved
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as an initial value problem with trial values of ?&' as a third boundary
condition. A search is then made through the possible values of ?&'to

find the one that satisfies the outer boundary condition that ¥' approaches
zero asymptotically as n approaches Ng- Before describing the procedure
for making the search of ?u', the solution of the equation as an initial

value problem is considered. It may first be written that
Foe [ 2 (F) dn+ T (3.25)
on W '
0

where g%-(?“') is obtained from equation (3.7) and ?&'15 found by the
searching method. The details of the method of integration to be used
in (3.25) will be given in section 3.9. The following expressions

- n_ N L
o= f f''dn -1 ; F= f f'dn (3.263)
0

) (3.26b)

give other quantities required in the solution of (3.7).
The steps for searching the correct value of ?&' are given
below:

(1) A trial value of ?&' (it was the value at the previous
station for this particular problem) is used to integrate
outward from the wall and a check is made to find whether
or not ?1r1a1 exceeds f' = 0.

(i1) If

%ria
second solution is sought with reduced ?&'. This procedure

| exceeds 0, the trial value of ?&' is high and a
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is repeated to yield a high and a Tow value of ?&'.

(iii) With these high and low values of _a', the bounds on the
correct value of f&' are further narrowed by splitting the
difference between the upper and lower bounds and seeking
the solution again.

(iv) This splitting-the-difference procedure is used until three
solutions are obtained such that ?; at ng is between the
bounds of - k ;?' (ne) < k . At least one of the three solu-

tions must be high and one must be low.

A three-point interpolation procedure, described below, is
then used to determine the correct solution that satisfies the outer
boundary condition ?“(ne) = 0.

If the three trial solutions are

st = F I F o1 F 1
1°" Solution f1 f] f1 f]“
nd — - - -
2" Solution f2 fz' f2 f2 !
rd - =, - 1, - 11
3" Solution f3 f3 f3 f3 !

the desired solution is obtained from
F(n) = AT (n) + AT, (n) + A3Fy(n) (3.27)

where Lagrangian three-point interpolation is used to determine the

solution that satisfies the outer boundary condition ?“(ne) = 0. Similar
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relations can be written for F', F'' and T''' with the coefficients A,,
A2 and A3 given by

) fé(ne) fé(ne)

] z ] by F

A, = — ﬁ(ni) f3(nel _ (3,28)
{F5(ng) = F1n)HF5(n,) - F3(n,)}

Fi(ng) Folng)
{f3(ng) - Fj(n ) HT3(n,) - Fo(ng)}

A3 =

Accuracy of the solution can be improved by restricting the
values of the bounds k.

It may be mentioned in passing that the Lagrangian technique
is oscillatory in nature and must be used with care: for the problem
treated here the smooth nature of the function permits its discriminatory

use.

3.8 Method of Solution of Energy Equation at a Particular E-Station
The following procedure is adopted for the inetgration of
the energy equation. S'' is obtained from (3.6). Then S' can be

determined from

S o= f 2 (§') dn + Su (3.29)
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§; is found by a search technique similar to the one used for solving
the momentum equation. (§Q is supposed to be specified here).

Now S' can be integrated to find S
§=f Sdn + S (3.30)

With §Q specified, the procedure for searching the correct
value of §; is as outlined below:
(i) Equation (3.6) is first solved by using a trial value of §a
(which may be taken to be the value at the previous station).
This solution is stored as §}(n)-
(ii) Depending on whether §H(ne) is greater than zero or less than
zero, a lower or higher value, respectively, of §a is tried.

The second solution is stored as §é(n).

The two solutions can now be added to give the most general
solution since the energy equation (3.6) is linear in S. The general

solution, which can be made to satisfy the outer boundary condition, is
S(n) = AS;(n) + B Sy(n) (3.31)

When the outer boundary condition
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is used along with the condition
S(0) = S ° A S](O) + B 52(0)
atn =0 and
5(0) = 5,(0) = 5,(0)

equation (3.31) gives

-5
p e —o2e) (3.32a)
51(718) - sz(ne)
with
B=1-A (3.32b)

In order to obtain more accurate results a bound k] on §Kne),

similar to k on ?“(ne), has been used.

3.9 Details of the Method of Integration

The overall procedure for the solution of the two coupled
equations (3.6) and (3.7) has been described in the previous sections.
This section is intended to give the details of integration of these
equations. With the replacement of the g-derivatives by finite differ-

ences, the problem of solution is essetnially one of integration of a
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set of ordinary differential equations. The method of integration is a
predictor-corrector multistep method that uses the Falkner multiple-
integration extrapolation formulae and the Adams-type multiple-integration
interpolation formulae, which are described on pages 116-131 of reference
[36]. The four point form of these formulae is used. The multistep
method used here requires considerably less computation compared with
the one-step Runge-Kutta method to produce results of comparable accuracy.

A special procedure is required to start the integration near
the wall, the details are given in appendix C. We consider the general
situation (away from the wall) where the equations have been integrated
up to n, and we are interested to obtain the values of T and S and their
derivatives at nn+1(= ny ¥ An). The extrapolation and interpolation
formulae are used to approximate the integration indicated in (3.25)
and (3.26) for the momentum equation. The two-step procedure used in
the integration is:

(i) The extrapolation formulae are used first, with the values
of F''* and F'' at the stations n, n-1, n-2 and n-3, to obtain
the values of ¥, ', ¥'', and T''' at station n+l. The formulae

employed are

n+1)E

T An Fr FH Fo Fro
Fi' o+ op [85 Tt - 59 F 1y + 37 filo - 9F 3] (3.33)

ﬁ+1)E

F AT] Fe Fr1 Fl
T+ GRIss Tyt - 89Tyl + 37

o - 9 Fplsl (3.34)
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2
"”)E = ¥ + anf, + ~5do- [323F, ' -264T) ! +159T 1,-36T) ! ;] (3.35)

where the subscript E denotes "extrapolated". The errors
in these equations are proportional to (An)5 or (An)s. (For
their exact form, see reference [33])f The value of F''' at
station n+1 may now be obtained from the momentum equation

(3.7) using the extrapolated values of ¥'', ' and . This
is denoted by

+1)E ?rIH-])E : ?nﬂ)E)

iy = F(F,
n+1)E
(1) The interpolation formulae may now be used to obtain more

accurate values of '', ¥', T and ¥''' at the n+] station.

These formulae are:

w1 = T B DT 1R ST (0.9)

e = T [9f'+1)E + 197 - 5 4 T (3.37)

-h

EEE AR + 100 (36T 1+ I L 36T 4 7R (3.36)

These interpolated values are finally used in the momentum

equation (3.7) to obtain the value of ¥' .,

fard = FFir s Frag o o)

M brief 1isting of these errors is provided in Appendix E.
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The errors in the interpolation formulae are much smaller in
their magnitude as compared to those in the extrapolation formulae.

Also, they are opposite in sign. Therefore the exact value of the vari-
able in question, say T', must 1ie within the bounds of the extrapolated
and interpolated values. This provides a check on the procedure and
the solution can be made more exact by choosing a small enough stepsize
in n.

It may be indicated here that the predictor-corrector technique
was used only once to obtain the values of ¥ and § at a point in question.
A more efficient method will be to use predictor once and vary the step-
size in n such that the corrector is used once or if necessary twice to
obtain the required accuracy. For the problem under consideration,
however, it was found that for a five-place accuracy in the values of
T and 5, the use of corrector was necessary once only. A standard step-
size of An=0.1 was maintained.

The formulae for performing the integrations required in the

energy equation are similar to those for the momentum equation integration

(refer appendix D for details).
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CHAPTER IV

APPLICATION OF THE SOLUTIONS

4.1 Time-Dependent Displacement Thickness

The displacement thickness for the time-dependent boundary

layer may be obtained from the following equation [37]

v« [pglgh - f (pgUg-pu) dy]

0
0

+ & logh - | (oge) 10 - (4.1)
(0]

For a two-dimensional boundary layer their result may be written as

P [(Ue 3X ) (Ue BX —fp-)]

3
F (050 & (p et 2= O (4.2)
where e
= - u
§* i (1 353? dy (4.3a)
and e
] . L
s, j (-2 e (4.3b)
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Expressions (4.3) can be written in terms of the transformed variables

of Chapter II, namely,

3y-1 v 1 e
a -1T— 2v_X 5
(Y [y
e

[ (s-'2- (1 + LM 27N (f-02)Jn (4.4a)

m e

0

e
- 2y [ (L.
% © (Pe ( e) l (Te o

3y-1 v 1 e

a 2v_ X
; (.5%)75- v | tsr2 0+ A0 H e (4.)

0

g
Under our hypersonic assumption of —— at = 0, the continuity

equation (2.4a) gives

3 —
X (peUe) =0

and consequently, expression (4.2) is simplified to

36
3A 3 | 8*  _p_
Veax ¥ 3t~ Ye ox ~ 3% (4.5)
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4.2 Strong Pressure Interactions
If we denote the shock angle by o, then for the condition
that Me >> 1 and o << 1 such that Mec >> 1, the pressure on the surface

of the plate may be expressed [25,38] as

(4.6)

ot
Ez

where wp is the piston velocity.

The normal velocity of the displacement surface (piston
velocity) is given [24,25] by

wp =3t T Ve X

and using (4.5) we obtain

Bl 1%,
3, 8, g ot e 9x
1 %,y 2
“a ot T Tewx (4.8)

where ae/a°° has been approximated as unity.

Introducing (4.8) in (4.6) we get

P-P 96
o _y(ytl) (1 "o .y 35%2
Po 2 (ae 5t * Me 3x ) (4.9)

Now differentiating (4.4a) we find



e

2 (<2 IV
T % m+1)Vg
o]
or 1 3y-1 1
B*_ cleyT 2 {(i"-)%_ [T—TW-Z% "2 160
X ao QY ae mt+ e

‘!'Ta o ¥ g T
c‘” f°Y 1(g)} &L
+ C(==) (=) ['(—T'W:] (£) 5
where e
|2 "] 2-] ] |2
1=[ [S-f -(1+¥2—Me) (f'-£'“)]dn

(o]

Simplification of (4.10) gives

3y-1 3y-1 1
er eyt (7T 97 gLy X
X a, ag m1 XV
[ 2v0 X

., 251

% a e G A T Bl ¢ oG
0
(o]
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3y-1 5 1
—xT- 2v_X Nd
7T P [ 15020 A e By gy £
)

(4.10)

(4.11)
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3 . o)-YT}J . ol e)VYT' » o)%T' z 21 3T

(4.12)
i I”e T X

where e
I* =f (s-£'2)dn (4.13)

0

and e
I**:f (f'-f'z)dn (4.14)

0

Expressions (4.11), (4.13) and (4.14) are functions of £ only, and

= o eﬁy’— [( °)7Y"—

/X 3I* 9 3t
( °) ady —) /g
3X Ve 8 & oy
1
X 3 ¥ 3E 31 2v, X .3
-V () 2+ e
A Yg—Mez) T ax @DV
3y-1 3y-1 3y-1 - 1
-i{(a—°)Y' ] + C(a—eﬂ' [( °) ﬁT—ZV° ’ 12
9% e 4 m1)Ve
3l 3¢ 3t , 8T ]
% 3T 57 X
=Cy/ __329___.[Ll:ml I - £(1-€) ol*  __£(1-¢) ) el
(M1 X 2 et %
2 2 ‘
m(y-1) Me m(3y-1) M I 9_4
+ %% + Ss 5+ g(1-¢) 2 ] (4.15)
T o 2.2 1. 22 O WF
(1+ Mg ) (1 + xg- Mg )
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To be consistent with the steady state results let us define

an interaction parameter x by

cCy/ — (4.16)

Then from (4.15) we obtain

as* _ 2 (1-m) al* E(1-E) ol **
Me 3 =Y D) #2'[ 5 1-6(1-8) 5=+ 7) "o

y-1
(1 + 2 Me
m(y-1) M m(3Y']) Mez I 2-4y Y
' (1+ I--LM )2 (1 + x%l Mez) 2" (Y+ Je1-¢) SEJ 17

Similarly differentiating (4.4b) we have

3y-1 - | e
1Y) a 2v,_ X
1 %% _ 1 So\y-T 0 Z 3 Y =1 u 2y=T(q 412
ag 3% 3 ( e) [15;17723 self [S-f -(1 5= My )" (1-F'%) Jdn}
0
or .
3y-1 - |
181 oy T (el 2 (4.18)
a, at ae ag lm+|5Ve 3
where e
) = f s-£2-(1 + By 271 (1-£2) Tan (4.19)

o

Expression (4.19) is a function of £ only, and

3y-1 + 1 by=-2
1% 1 Gy T DXz GeyT e n
g ot a, ‘24 Zm+1$Ve a, 3 9T ST
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2v
=C/————M(1&L% (4.20)
(m+1)v

Using (4.16) in (4.20) we obtain

I
1 2 2 3J
i w8 5 (4.21)

Substitution of the pertinent quantities from (4.17) and
(4.21) in (4.9) finally gives

2
P-Pe 1) ¥ 2 m(3r-1) Mo 1
. [(-6)° 5 + {(1-m) + }
— = % ’izr 1+ 5tu? ¢
m(y-1) M
Ce(1-) RALF ] pI** _ (2-4y L, Txx ]2
g( E) 3E (.I +L£_'|_Mez) :] (‘Y+1 ) a&: (‘|+12_M22 ]
= 7 [SX_ZLX] [(1- £) + {('Y-H) (’Y+1) l‘i 2 } -2-
(1+ 2 Me )
2 u 2
(-l E){BI - ] aI** - (2 4Y) (Y-]) Me I**]z
(1 +GhwS ® Y % e S
e
(4.22)

From (4.22) we may also write, for the final steady state,

PpPo 1 ¢
+
T = §'[ ] [{( (1-10

e

)M I,
=}
+ 121 ) z
Mg
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2 2
(v=-1)" Mg
7 I3 2 (4.23)
(Y"'])““‘LM )2
where
© 1
- |2 '] 2 = | |2
1y = | Lsptf - (1 + AT AR e (4.24)
(o]
and
e
13 = f (F3-F52)dn (4.25)
0

From (4.22) and (4.23) we may obtain the expression for

the strong interaction induced pressure referenced to the final steady

state
2
PPy _ 1 plrtllxq? 2 30, (e (-1 Mg 1
= = 1- + =
- g b ( T-e PO T 2
- g1-g) B - —— e EM &
& (e hwt
2,2 2
. (y-1)" Mg . (3y=1) M, } I,

2 2 Y
1#%1° -[{(Z)+(57) -
Y-1 4 2)\2 v ] Y=-1 w2y 2
(Y+])(] + 2 Me) (.l + 2 Me)

£ Ik* (4.26)
(1) (1 + Sl w B2 2

+



4.3 Shear Stress at the Wall

The shear stress at the wall may be obtained from

y=0

Using the transformations of Chapter II we find

T = Eﬂfﬂ.(i&)z &y
w P ao 372
3
- Mlw e [L—h V.2 £1(0,8)

Py o 2v X

Now the local skin friction coefficient may be defined as

2 Pw’e
Substituting for T, From (4.28) we get

o = (%[J—J—Jvszoa
Po U 3 2v Xy

1
- 2y, 1 £ (0,0

29, e’

Using the viscosity law (2.20), we may rewrite (4.

following form

62

(4.27)

(4.28)

(4.29)

(4.30)

30) in the
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.
I 11 (0,8) (4.31)

2X Ve

Cr,=2C Sw v

f

We now introduce a Reynolds number based on fluid properties

evaluated at the wall temperature
Re, = —— (4.32)

and expression (4.31) becomes

Vv X a
Cp=2S g mtl) [0 " e giig )

w  2Re
W vw'Y a,

or

C.v/ Re -
f w_ (1) dinXqeis
2 = */[ 2 d1nx]f (O:E) (4-33)

The advantage of evaluating fluid properties at the wall
temperature can now be seen from the fact that for the case of B = 0
the right hand side of equation (4.33) becomes independent of x and

Y and is a function of £ alone.

4.4 Heat Transfer at the Wall
The heat transfer at the wall can be found from
ol

q, = - k, = (4.34)
W W3yl g



64

or (1)
mtl) V
q,= - K [————_—e-] ( )(w a
W W 2v0 X Po Bn
1
(m1) V, > a ]
-k, e (B eu+lim>s%ma (4.35)
2v_ X 3 Py
0
Defining Nusselt number as
x(ayw_ X 9y
Nu'T - Ty "(TO-TW) K,y (4.36)

we obtain, after substituting for a,, from (4.35),

[imgll-Rew] 8Vg X V. By hq

Nu = vy 220 (%() ® (1+551 m.2) 5'(0,8)
(To - Tw) aovw'Y Po Cp 2
U 9 ey 4 5LR 00
_ m+1) d1nX. S'
- VR, + Y p{m1) dlnky & (4.37)

From (4.33) and (4.37) a simple modified Reynold's analogy

parameter is obtained

Ce Re
f "w_ 2f''(0
N -(_:_’Ztﬁ)l (4.38)

1-Sw

The numerical results for the transient contributions to
the shear stress and heat transfer at the wall and to the interaction

pressure are displayed in appendix F.
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CHAPTER V
RESULTS AND CONCLUSIONS

5.1 Discussion of the Results

Using the Prandtl boundary-layer equations for a time-
dependent two-dimensional compressible fluid flow, the strong inter-
action problem has been analysed. The earlier work of reference [22]
investigated the weak interaction probiem. The numerical method adopted
there, requires the linearization of the governing equations. For this
linearization to be valid, the free stream velocity change was restricted
to about 1%. The numerical method adopted here eliminates this restriction.
The governing equations, under the suggested transformations of Chapter
II, are more suitable for analysing the strong interaction case. One
of the contributions of the present work lies in obtaining equations
(2.49) and (2.50) which are a coupled set of partial differential
equations in two independent variables for large Mach numbers. As a
1imit for weak interactions, the present equations reduce to those ob-
tained in reference [22]. These coupled equations have been solved for
B =(y-1)/y, with vy = 1.4 and 1.67. The induced pressure results are,
therefore, obtained according to the strong interaction theory. Another
important contribution of the present work is in obtaining the transient
strong-interaction induced pressure along with the time-dependent wall

shear and wall heat transfer for an insulated and non-insulated wall.
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The distribution of the transient contribution to the velocity
function fé is given in Figures 3 through 10 for different values of
wall heat transfer and for B = 0.286 and 0.4. These distributions have
been obtained corresponding to 1% change in the free stream velocity.

It may be noticed from these figures that the numerical results have
been obtained for 0 < & < 0.3 only, since the method of solution becomes
unstable for £ > 0.3. This instability may be explained qualitatively
if we examine equation (3.7). The leading derivative terms in this

equation are

2,7
2 (2 (1-5)% - 415 (F41)} & (7)) + ...
an

or

3(F) _ , (T
) -k ané—)-+ (5.1)

The above expression has the character of the conduction heat
equation with the equivalent coefficient of conductivity given by

K = 1 (5.2)

0-0%EY - iy F))

" In expression (5.1) K will have different signs for 0 < & < (y+1)/
(4yF'+5v+1) and (v+1)/(4yF'+5y+1) <€ < 1. At £ = (y+1)/(4yF'+5v+1), K
becomes infinite. It seems that the discontinuity in the F'-distribution

occurs upon approaching the neighbourhood of £ = (y+1)/(4yT'+5vy+1).
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At the outer edge of the boundary layer, where ' = 0 and the discon-
tinuity first appears, & has the value of 0.3 for y = 1.4.

In the discussion of literature in section 1.2 Stewartson's
singularity at 1=1(or £=0.5) has been described in detail. If the high-
est order derivative terms in equation (2.49) are considered with =0,
the relationship between the singularities at £=0.3 (for 8=0.286) and
at £=0.5(forB=0) becomes clearer. The highest order and the mixed

derivative terms are

2 1 !
E_g;_l = 2{1-1f'} 9%;—1 + . (5.3)
an

The coefficient of the mixed derivative (5.3) will have different signs

for 0 <1 < %L—and %L-< T < o, Once again this coefficient will be 0

or the equivalent coefficient of conduction will be » at t =-%. . This
seems to imply that the discontinuity in the solutions will set in for
T = 1 at the outer edge of the boundary layer where f' = 1. Thus
t=1(or £=0.5) is the singularity for B=0, which corresponds to £=0.3
for B=0.286.

The curves of Figure 3 through 10 indicate the beginning of
a monotonic approach to the final steady state. For B8 = 0.286, Figures
3 through 6 also show that the approach towards the steady state is
faster when the wall is kept at a higher temperature as compared to the
case when the wall is at a lower temperature. (In all these cases the

flow of heat is always from the fluid to the wall). One possible inter-

pretation for this trend is related to the effect of wall temperature on
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the mean density of the fluid within the boundary layer. For the hot
wall, the boundary-layer density is less than that for the cold wall,
rendering the hot-wall boundary layer more susceptible to thermodynamic
changes than the cold-wall boundary layer. This implies that a hot-
wall boundary layer would approach the steady state faster than the
cold-wall boundary layer.

Figures 7 through 10 indicate a similar behavior of (f'-fé)
for 8 = 0.4. A comparison of these figures with those for g8 = 0.286
indicates that the approach towards the final steady state is faster
for B = 0.4 for a given value of the wall temperature.

The transient distribution of the shear function f&' is given
in Figure 11. This figure shows that the approach of the shear function
towards its steady state value is rapid and monotonic. It may also be
noted that heating the surface and larger pressure gradients increase
the wall shear.

The distribution of the transient contribution to the boundary-
layer temperature is shown in Figures 12 through 19. The negative values
in (gw-g) distribution for small n's may be explained if we consider
an approximate solution to the energy equation (2.56). Such a solu-

tion for Sw = 0 may be written down as
$(n,t) =S, + (1-5,) f'(n,1) (5.4a)

This may be used for Sw ~-0-and small values of B, since the contri-
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bution of B(f'z-S) to the momentum equation is negligible as cbmpared

to the other terms. For Sw = 0 we obtain from (5.4a)
S=f' (5.4b)

For large Mach numbers expression (2.60) also gives

=1

(92'9) = le—l Mez (

12 12

Using (5.4b) in (5.5a) we obtain, for Sw =0,
(g-0) = L1 w2 (progp)i(agy) - 13 (5.5b)

For the problem under consideration (f'-fé) is always positive. How-
ever, the expression in the curly bracket is negative for small n's and
positive for large n's. This gives the qualitative explanation for

the "peculiar" behavior of (gz-g) at small n's. In order to explain

this physically we consider the viscous dissipation close to the plate.
The slope of the velocity profile which is a measure of the shear stress,
changes very fast for small values of n's and &'s. This means that there
is substantial viscous dissipation for this range of n and £. This raises
the temperature of the fluid next to the plate higher than the final
steady state temperature. For large values of n's however, the velocity
profile is less steep and accordingly the viscous dissipation is not

very significant. Therefore, the temperature of that part of the boundary-
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layer fluid is smaller than the final steady state temperature. As time
increases (i.e for large values of &'s) the heat transfer in the
boundary layer helps to bring the temperature of the fluid towards
the final steady state temperature for all values of n's. Figure 12
through 19 also indicate that for a given Mach number and wall temper-
ature, the transient contribution to the temperature in the boundary
layer is larger for B = 0.4 as compared with B = 0.286.

The linearized solutions for the transient contribution to
the wall shear, boundary-layer temperature and the velocity function
for the case of an adiabatic wall and vy = 1.4 have been presented in
appendix A. It has been found that the wall shear predicted by the
linearized solutions is about 1% lower than the one obtained without
linearization using the Clutter-Smith technique. The values for the
transient boundary-layer temperature are smaller by about 1/2% using
the linearized solutions. The agreement between the linearized and
the non-linearized solutions appears to be very good for the 1% change
in the plate velocity. For larger changes in the plate velocity the
linearized solutions are expected to be in more error as compared to
the non-linearized solutions.

The transient distribution of Reynolds analogy parameter
is given in Figure 20. These curves resemble the f''(0,E) curves
(Fig. 11) because of the relatively small variation in magnitude of
S'(O,E)/(]-Sw) compared with that of f''(0,8). Utilizing expression
(4.38) and Figure 11 we may easily obtain the heat transfer at the

wall from Figure 20 for any particular case in question.
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The strong-interaction transient contribution to the pressure
distribution for the different values of wall temperature and Mach
numbers is given in Figures 21 through 26. We notice from these figures
that for a given Mach number and the pressure gradient parameter g,
the transient contribution is larger for a hot wall as compared to that
for a cold wall. We may thus conclude that cooling the surface tends
to induce a smaller pressure rise in the interaction zone.

With the increase in Mach number the transient contribution
goes down for fixed values of Sw and B. For a given Sw and Mach number,
the transient contribution is smaller for B = 0.286 as compared with
B = 0.4.

Some of the induced pressure results have been further
analysed in Figure 27 for Me =5 and x = 6. This figure indicates
that the transient contribution decreases faster for large values of
B and wall temperature.

The numerical results pertinent to expression (4.22) reveal
that for most of the cases under consideration, the following approxi-

mate expression may be used:

2
PP 1 (y#1) Xa2rs 2 o oy-1y 3Y-1) My I
— =5 [ L=+ () } 5
P, 2 2 v/ Yyt =1 w2y 2
Mg (1+ 5= M%)
2 2
(y-1)" M
+ e Ak (5.6)

(1) (1 + G m %)
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5.2 Concluding Remarks

The present results may be utilized to obtain the history of
the temperature distribution at the wall, the transient drag force (ob-
tained through the integration of the shear stresses at various times),
and the transient induced pressure over the wall.

In order to extend the present solutions beyond £ = (y+1)/
(4yF'+5vy+1), a different approach should be adopted. Ban's [19] method
of solution appears to be more plausible for this region. Equation
(2.54) although parabolic in nature, may be subjected to the "elliptic"
boundary conditions in the region (y+1)/(4yf'+5y+1) < £ < 1. The
present solutions evaluated at £ = 0.3 (for y = 1.4) may be used to
provide one set of boundary conditions.

Once the solutions for the above range of £ have been com-
pleted it would be desirable to extent the analysis to cases of Prandtl
number other than unity. Similar investigations for other airfoil
profiles like an inclined flat plate, circular cone etc. should also

be of interest.
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APPENDIX A
LINEARIZED SOLUTIONS FOR AN INSULATED SURFACE

A.1 Linearized Form of the Problem

Let
f(n,1) = fy(n) + &f(n,7) (A.1)
where f2 satisfies the steady state momentum equation, namely,
Fytt o+ f,fy' - B(f42-S,) = 0 (A.2)

The momentum equation (2.54), after omitting small terms of the second

order, becomes
(%l) Af* z(y;_L) fouf! -4r(F50F" -aFF,")
- e _ o1 - $ y-_] ,2 _ T L] i}
fZAf f2 Af - Af! + ( Y )f2 f2f2l f2" ( = )S = 0 (A.3)

However, if we prescribe H, so that S(n,0) = 1 then [60]

S=1 (A.4)
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satisfies the energy equation (2.56) with its space conditions, and

consequently the linearized momentum equation becomes
Y A5 X;l ' |.|_||' - 1
( Y ) Af' + 2( Y ) féAf 4T(f2Af fz Af) fZAf
- fé'Af - Af'' =0 (A.5)
with its steady state counterpart

fo!! + £yfp! - (%)(féz-l) =0 (A.6)

In terms of the Euler's transformation (3.3) we may rewrite

expression (A.5) as:

m 3 Afl l:_]_ [] ] - - ] 3 Af' - (] Af
(£ ‘(_)'ag + 2(55) faf - 4(1-E){f, J—lag f5 J—Lag }
- szf" - fé'Af - Af''"' =0 (A.7)
The boundary conditions associated with equation (A.7) are

(8F) " (ng.£) = 0 (A.8)

(af)' (0,¢) =0 (A.9)
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(af) (0,E) =0 (A.10)
(Af) ' (n>0,0) = f! Ee-‘lar (1 - E-?Q) - f! (A.11)
’ 0 Ueo Ugp” 2

A.2 Numerical Solution to the Linearized Equation

The solution to equation (A.7) with the boundary conditions
(A.8) through (A.11) has been obtained using the numerical method de-
scribed by Rodkiewicz and Reshotko [22] with certain modifications in
the computational molecule. In the numerical computations of reference
[22] the 7-point computational molecule, indicated in Figure A.1, was
used for all values of E(ort). In order to obtain more accurate results
in the present work the 7-point computational molecule was used only
for the first step in £-direction. For the subsequent values the 10-
point computational molecule indicated in Figure A.2 was used with

variable stepsize in g-direction.

mTl
\
m=2 m=3
—t) T] T n+.l L
X
{ n
n
¢ n-1 T
n-2
mll m
R . m-2
3 g

Figure A.1 The 7-point Computational Figure A.2 The 10-point Computational

Molecule; H = 0.05, T.I = 0.025 Molecule; H = 0.05, T = 0.05,
T] = 0.025
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The momenium equation (A.7) may be written in the finite

difference approximation as:

%m0 Afm,n+1 ¥ bm,n Afm,n * Cn,n Afm,n-] ¥ dm,n M myn=2 - (A 12)
where for the case of 7-point computational molecule we have:
_ (Y] 2,2 2
n" "Y—)(."Em) HE - 4g (1-£ JHF5(n) - 2HT,f,(n)
- a1y + Z(Y;—])HZT]fé(n) (A.13)
b = 8E(1-EH3F3 " (n) + GHT,F,(n) + 6T, - 243T,F5'(n)  (A.14)
= - ﬂ - 2,2 - 2 |
Cnn = - (B (1-5)%H° + 45 (16 )HPFy(n)
- 2HT,f,(n) - 6T, - 2(7—'1)H T,f5(n) (A.15)
dpn = 2T (A.16)

- (xtl 2,2
n = BSVQ-E)HEAF, g q-af

m-1,n+ m-],n-l)

240
- 4gm(]'gm)H fZ(n)(AfmJ,n+1'Afm-1,n-1)

+ sg (1- & )H f"(n)Af (A.17)

oN
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While for the case of the 10-point computational molecule we get
a = (BLy(1-g )27, (2T+T,) - 4E (1-£ JHAT, (2T+T,)£5(n)
m,n Y m 1 1 m m 1 1°2
- ZHTT (T+T,)F,(n) - 2TT,(T+T,) + 2(ZL)HETT, (T+T,)£5(n)  (A.18)
1 17°2 1 1 Y 1 1772 :
- 3 h 3 [ ]
bm,n = Bé;m(l-am)H T.|(2T+T1)f2 (n)- 2H TT-l(T+T])f2 (n)

+ AHTT,(T+T,)Fo(n) + 6TT, (T+T;) (A.19)
¢ == (Xy(1-g )2HPT (214T,) + 4E (1-E )
m,n Y m 1 1 m' " em
+ HET,(2T+T)) f3(n) | (A.20)
dm’n = 2TT](T+T]) (A.21)
_ ¢yt 2r,2 2
€n,n = (x?—O(]'Em) [HE(T+T,) {Afm-1,n+1'Afm-1,n-1}
- HeTé(AF -Af }] - 4 (1-€.) £.(n)
m=2,n+1 = 'm-2,n=1 m m "2

2 2 2.2,
S LA DRREL S SR LY L I DL LRV NP TR M B

+ 45 (1-5)F5" (M) [2WO(T4T )08 2T, (] (A.22)
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In the foregoing the following finite difference approximations have

been used.

For 7-Point Computational Molecule:

3(Af) _ 1

Yo« Lty g ] (A.23)

3aﬁf - éh-[Afm’n+]-Afm’n_]] (A.24)
32(A 1

f) . _
onog  ZHT M:m,n-ﬂ-A m,n-]'Afm-],n+]+Af -],n_]] (A.25)

a~(Aaf) _ 1
an z H: [Afm :n+]-2Afm:n+Afm sn-1 ] (A. 26)
S(af) | 2 [Af . .-3AF  43AF _ -AF. _ ] (A.27)
8n3 H§ m,n+1 m,n m,n-1 ~ 'm,n-2 *

For 10-Point Computational Molecule:

5(Af (2T+T]) (T+T]) T
o TTT:TTT'Afm.n T T Mo T+T,0T, Mg, (A-28)

2(af) (21T

3oE - ZT(T¥T;] {afy ne178F 001!

(T+T])
" T, af 1 ne178% 01 013

.
T T Afne2,ne17 02 00} (A.29)
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2 3
Expressions for Qéﬁfl ’ é—iéfl and o_(af are similar to those for the
9

on
7-point computational molecule.

Equation (A.12) may also be written in the form

Af_ = R _Af (A.30)

+
m,n m,n- m,n+l Cm

’n
which was obtained by considering the boundary conditions (A.9) and
(A.10) with Rm,n and Cm,n defined respectively as:

- a

R = — N (A.31)
msN (bm,n + Cm,an,n-l * dm,an,n-lRm,n-Z)

¢ = m,n " (cm,ncm,n-1+dm,an,n-Zcm,n-1+dm,ncm,n-2) (A.32)
m,n (bm,n+cm,an,n-1+dm,an,n-1Rm,n-2)

where

Rm,l - cm.] N Cm,2 =0, Rm,2 =0.25.

Letting n = N in the free stream (where the 'e' condition

prevails), we may write, from the boundary condition (A.8), the following

3(af) = (. _ -
l 5 ( 3Afm’N+4Afm’N_] Afm’N_z) 0 (A.33)

an
n=n,

s { ” o
Further using expression {(A.30) for Af N-1 @nd AF o N

relation (A.33), we obtain
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m,N-2
Cm,N'] - Z‘R N 2
Af  F —— m,R- (A.34)
m,N 3
Z-R - Rm’N-1

m,N-Z

Expression (A.34) may be utilized at the boundary-layer edge (i.e. at
n=N) as the starting point in the use of recurrence relation (A.30).

In actual computations the following procedure is used. First
we calculate the coefficients Rm,n and Cm,n' It may be noted that ex-
pressions (A.31) and (A.32), when specialized to station m, reduire
the knowledge of the values of function Af at station m-1. The Af-
distribution for zero-time(m=1) is known from expression (A.11) and
consequently we may calculate the coefficients Rm,n and Cm,n for the
station m=2. Once these are found for all values of n we may obtain
Afz,n from expression (A.30) by incorporating expression (A.34) at the
outer edge. This procedure was repeated at other values of m covering
the range 0 < £ < 0.3 (for y = 1.4). For £ > 0.3, the method became
unstable. |

The Af-solutions were used to obtain the transient contribu-
tion to the velocity function (Af'). The distribution of (Af') is
shown in Figure A.3. It may be noted that each curve has an inflection
point which penetrates into the region of higher values of n as § in-
creases.

The time-dependent shearing stress at the wall is presented

in Figure A.4. Figure A.5 gives the transient contribution to the

boundary-layer temperature for various values of & and for Me =5,8
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Figure A.4 Distribution of the transient contribution to
the shear-stress for B = 0.286 an¢ no wall heat transfer
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Figure A.5 Distribution of the transient contribution to the

temperature distribution for B = 0.286 and no wall heat transfer
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and 10.

The linearization used to solve the momentum equation re-
quires that the change in the free stream velocity should not be too
large (say, about 1 to 1.5%). A comparison between the 1inearized

and non-linearized solutions is indicated in the last chapter.
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APPENDIX B
NUMERICAL INTEGRATION TO SPECIFY INITIAL
CONDITION ON TOTAL ENTHALPY

B.1 Details of the Numerical Integration

In order to evaluate the expression

§(n,0) = (-§5,) =——=— + 5 (8.1)
e -f (f€=0+n)dn

J e © dn
0

with the numerical values of ?g=0 obtained from (3.17), we write

N _
-,r ( fg=0+n ) dn

$'(n,0) = 5'(0,0) e °
= §'(0,0) Fegln) (8.2)
where ‘fn(?é=o+N)dn
Feooln) = e ° (B.3)

From (B.2) we may also write
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S

$'(0,0) = - — L (8.4)

f Fgg(n)dn
0

Now, e

f F€=0(n) dn
(o]

may be evaluated numerically by the trapezoidal integration formula.

Therefore, we write

e

I F(n)dn = ELQI;_F&D_M + ﬂj_tgﬂ_%)_m L F—('\"—]-%"'—F('—QAn (B.5)
0
with -fo(?'+n)dn
F(0)=e?® =1
A -
-/ (Fen)dn (I, n0)n()y,,
F(1) = e ® = F(0) e
2An o
-2'; (F+n)dn _{fm;fgzz . nmgngzz}m (B.6)
F(2) = e = F(1) e
_{'F(N-1%+'1"(M + n(N-1%+n(N)}An
F(N) = F(N-1) e



Here An denotes the stepsize (=n(n) - n(n-1)) in the n-direction.
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Subscript

£=0 has been dropped from the function F(n) for the sake of convenience.

Furthermore, we may write

n

S(n,0) = [ $'(n.0) ¢n +,
o]
or N*An
S(%,0) = SpoW¥) = [ Spg ansS,
0

Using the trapezoidal rule for integration we obtain

. S (OS_(1) S (1)5_(2)
S g(v) = (S0 gy B0 ED

St (N*-1)+S'_ . (N*) _
+ £=0 5 £=0 M} + Sw

where, we have from (B.2) and (B.4),

- - FelO)
St_o(0) = (- §) =2
f Fg=0(n)dn
0
Feap( V)
- _ — =0
St = (-5) =°

(B.7)

(B.8a)

(B.8b)

(B.9)
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Expressions (B.9) may be used to evaluate expression (B.8b) which gives
$(n,0) distribution represented by expression (B.1). This is the initial

condition used on S in the numerical solution.
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APPENDIX C

STARTING PROCEDURE FOR THE INTEGRATION
OF THE GOVERNING DIFFERENTIAL EQUATIONS

C.1 Starting the Solution near the Wall

The extrapolation-interpolation formulae in section 3.9 of
Chapter III require values of the variables at four previous n-stations.
To start the integration at the wall Taylor's series has been employed.

For T'' we may write
2 .
Tan = T e T e T (.1

In the present computations, only two terms of this expansion
have been used. In order to have the same accuracy as in the extrapo-
lation and interpolation formulae, however, much shorter steps in n are
to be used in the Taylor's series. The study made in reference [33]
shows that a five-place accuracy in the values of ¥ and S can be main-
tained by using the Taylor's series to obtain these values at only
n = %%- from the wall. Here An denotes the stepsize used in the extra-
polation-interpolation formulae. The numerical value of An used in
the computations is 0.1. The two-point and three-point extrapolation
formulae are used to build the values up to the full Tength step size

An. Again the accuracy requirements call for step sizes of %P—and %?
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to be used for the two-point and three-point forms respectively. The
expressions to be used with different step sizes are summarized below.
(i) Immediately next to the wall (i.e. at n = An/16) Taylor's

series is used with the step size An/16:

FL - F11 A [N
T - A 1
/16 = " 1t T%?w (c.3)

2
- = A )¢ =,
Fan/16 = Tw - T}} + Llll%-s ! (c.4)

= _w o, e
Shn/16 = Sw * T8 Sw (C.5)
— . T An =
San/16 = Sw ¥ T6 Sw (C.6)

(ii) At n = An/8, 2-point extrapolation formulae are used with

the step size 4An/16:

Tanss = Tansts + 38 13 Tanng = T3 (c.7)
Tine = Tanste * 38 [Tans6 = '] (c.8)
3 =T 4 (!
Fanss = Tannie * + 98 Tans16 * [4 An/16 " Tw'd (C.9)
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§An /8~ An/16 ¥ ?n [35, An/'|6 S (C.10)
gkn/B ) §.An/'|6 2 [3SAn/16 w] (C.11)

(iii) At n = An/4, 2-point extrapolation formulae are employed

with the step size An/8:

Tansa = Thoys * & Tanjg T’ '] (c.12)
Tansa = Fanse ¥ 6 |:31:[\n/8'fy'4':| (C.13)
Tansa = Tana * A T T a8 * “3‘3‘3{" [4 An/g-?‘;,' (C.i4)
San/a = Stnss * T [8,/6°5y'] (c.15)
Sansa = Sanse * 6 1 [84n/875] (C.16)

(iv) At n = An/2, n %An and n = An, 2-point extrapolation

formulae are used with the step size An/4:

n+l

Fi ML Tri _Fiat
T+ g[8, - (C.17)

n+l

|
-4
=

8 [3f" f ]] (C.18)
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2
F = F Ar] ) gAI!) "'| -Ft!
o1 = Tn * T Tp * 255 (4T -l (€.19)
<! = Q! A 11 1
el = Sn ¥ 7§'[3§h “Spo1d ‘ (C.20)
- A IR
§h+1 - §h * 'él [3sn'sn-1:| (c.21)

(v) At n = g-An, n =2, n= g-An and n = 34n, 3-point

extrapolation formulae are used with the step size An/2:

iy = T+ 0 [23F 16T 14sT 0] (c.22)
Frop = T # 1} [23F) '-16T ! 1+5F, !,] (C.23)
T =T +87 L%IL [18F: - 10F! | 437 1] (c.24)
§,q = 5n + 53 [235) 14165, 1 4551 1] (C.25)
S, =5, + 93 [235:-165) 455! ] (C.26)

For n > 4An, the 4-point extrapolation-interpolation formulae of
section (3.9) are used with the regular step size of An.

Use of Taylor's series to start the integration near the wall
has the advantage that it can be checked in a simple and effective

manner for accuracy. If Runge-Kutta integration technique were used



as a starting method, the error estimation and checking for accuracy

would be difficult.
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APPENDIX D
INTEGRATION FORMULAE FOR THE ENERGY EQUATION

D.1 Extrapolation-Interpolation Formulae

The 4-point extrapolation-interpolation formulae for carrying
out the integrations required in solution of the energy equation are
similar to those required for momentum equation, described in section

3.9 of Chapter III. These formulae are:

ne1), " St + 5 [55 5! '-505! 14375 ,=95) 1] (D.1)
< = < éﬂ_ <! _5EQT) o<t
S1). = Sn * 22 [555;-595; 1+375! ,-95; .] (D.2)

and from the energy equation (3.6)

= F(S" )

ﬁil)E ) Sre),

where the subscript E denotes "extrapolated".

The interpolated values are obtained from

= An IR ' 1 "
n+l - Sn + Ez-[g n+1 )E+]95 -55 +S 2] (D.3)
= _T A = \
Spe1 = Sp * 124 [95n+1”9$n ss +S 2] (D.4)



so that 'S'"‘,'f] may now, finally, be obtained from (3.6)

i1 = FGher > Spe)

99
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APPENDIX E

ERROR INVOLVED IN NUMERICAL INTEGRATION

E.1 Error in Finite-Difference Representation of £-derivatives

The errors in the two-point and three-point finite difference
approximation of g-derivatives have been given in Section 3.3. These
are indicated by expressions (3.12) and (3.13). The maximum error

involved from this source is given below:

2
Two Point Formulation: %? L—%a = 0.00085 (E.1)
of~ max
(ag)? | 3F
Three Point Formulation: | =] = 0.00075 (E.2)
3 ag max

E.2 Error in Integration Expressions
E.2.1 Extrapolation Formulae
The errors involved in expressions for ¥'', ', and ¥, re-

spectively, are:

£y <+ 22T (an)°[F 1 ()1 (E.3)
£, <+ 2% (an)® F(n) (E.4)
E; <+ o (an)® FV(n) (E.5)



E.2.2 Interpolation Formulae
The errors involved are

In expression for '':

£y < - 135 (m)°[F ()1 (E.6)

In expression for f':
B < - vo5 (n)° T (n) (E.7)

In expression for ¥:
£ < - Ty (&m)® T (n) (E.8)

E.3 Accuracy of the Numerical Results

The quantities that affect the accuracy of the numerical
results are An, Ngs k, A and Qmax‘ Since Cohen and Reshotko's [31]
results for the steady state similar flows are the only highly accu-
rate solutions known, these were first used to check the programming
of the equations. The four-place accuracy of Cohen and Reshotko's
solutions was obtained by choosing the following values for the above

mentioned parameters:

An = 0.1; Ne = 5, k = 1.0; (g/08) < 25;

and

101
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APPENDIX F
CURVES FOR CHAPTERS III AND IV
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982°0 = § puR 2°0 = 'S 404 uOL39UN4 K390\
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Figure 12 Distribution of the Transient Contribution to the
Boundary-Layer Temperature for Sw =0 and B = 0.286



9.0

8.0

o N
o o

O
o

(92'9)/(Aue/ue)
S 5

g
(@

1.0

113

Figure 13 Distribution of the Transient Contribution to the
Boundary-Layer Temperature for SW = 0.2 and B = 0.286



(92'9)/(Aue/ue)

11

10F-

~N

o

O

I8

114

—_c M. ]O

Me= 8
—_——— ——— Mez 5

\

\,
N\
R

| | 1 ]
2 3 4

Figure 14 Distribution of the Transient Contribution to the
Boundary-Layer Temperature for SW = 0.6 and B = 0.286



(92'9)/(AU9/ Ue)

12

Nnr

10

(o ]

~
1

o

O
)

Figure 15 Distribution of the ‘?ransient Contribution to the

Boundary-Layer Temperature for an Insulated Plate and B = 0.286

115




116

Nor
10.0
_—esm s M‘ = ]O
M= 8
°.0 ————Mg: 5

(92'9)/(AU9/U9)

w
o

1 i 1 1
0] 1 2 3 4
Figure 16 Distribution of the nl'ransient Contribution to the
Boundary-Layer Temperature for Sw =0and B = 0.4



14.0

13.0

12.0

1.0

100

e ¢ e = e MQ:']O

oS -0. Me< 8
71N\ o Me=5

Figure 17 Distribution of the Transient Contribution to the

Boundary-Layer Temperature for SW = 0.2 and B = 0.4



118

20.0

18.0 e N e
of e 01 M= 8
/] </ 02 T TMerd

16.0

14.0
12.0
10.0

8.0

60t/

(9,-9)/(AUe/ Ue)

4.0

20

| | | |

0 1 2 3 4
n

Figure 18 Distribution of the Transient Contribution to the
Boundary-Layer Temperature for Sw = 0.6 and B = 0.4




(g,-9)/(AUe/ Ue)

—— Me=10 119

Me= 8
———— M= 5
N\,
\,\
\l\ :
3 4

Figure 19 Distribution of the Transient Contribution to the
Boundary-Layer Temperature for an Insulated Plate and 8 = 0.4



120

3.5 i
——— Sw= 0-6
Sw=0.2
----- Sw= 0
32 ‘
29+
o
<z
O
26
23
20 A 1 1 L 1 ]
0 0.1 0.2 - 03

Figure 20 Transient Distribution of Reynolds Analogy Parameter



0.40

0.36

0.32

0.28

0.12

0.08

0.04

121

£=0.05

522

30 35 40 45 50 55 60 65 70 75

Transient Contribution to the Induced Pressure
Distribution for Sw = 0 and Me =5

Figure 21



0.03

0.025

o
(o)
N

) /(AU /U,)
o
o

P2™P
po®

0.01

(

0.005

Figure 22 Transient Contribution to the Induced Pressure
Distribution for Sw = 0 and Me =10

122



) /(AU /Ug)

P2~ P
p®

(

175 -

1.5

1.25

o

0.75

0.5

0.25

25 30 35 40 45 50 55 60 65 70 75

Figure 23 Transient Contribution to the Induced Pressure
Distribution for Sw = 0.6 and Me =5

123



0.150
0135 -
0120 |-

0.105

o
o
o
o

0.075

)7 (AU, 7U,)

20.060

p2-Pp

(

0.045

0.030

0.015

0 ] ] ] l | ] ] | | J
25 30 35 40 45 50 55 60 65 70 75
X

Figure 24 Transient Contribution to the Induced Pressure
Distribution for SW = 0.6 and Me =10

124



250

225 -

2.00

1.75

0.75

0.50

0.25

0 ] 1 ] | I ] | ] | J
25 30 35 40 45 50 55 60 65 70 75
X

Figure 25 Transient Contribution to the Induced Pressure
Distribution for an Insulated Plate and Me =5

125



)7(au, 7u,)

P2" P
p o

(

126

0.20 —

0.8 |-

016 |- £:0.05
£=0.10

014 |- ()

L7

0.12

0.10

o
o
™

0.06

0.04

0.02

0 l | l l | I I 1 ! J
25 30 35 40 45 50 55 60 65 70 75

X

Figure 26 Transient Contribution to the Induced Pressure
Distribution for an Insulated Plate and Me =10




P2~ P

)/7(aUg/U,)

po

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

127

______ S=1
—— —— c— Swgo.é
Sw=0.2
=0.4
B
S, ~—-—- 5,0
~
\\\ .
~
\\\
\\\
\\\
\\\
~
\\\
\\\\
\\\
\\\
B=0.286
~~~~~
~—  Tme—_
\\\ \\\\\\
~  Tm=—al_
B =0'4 \\\ ~~~~~~
\\ ~~~~~
S~
S—
S~
—
B=0.286
\\\\ \\
\\
\\\
B=0.4 —_—

- —— . —

- e - C——

0.1 0.2 0.3

Figure 27 Transient Contribution to the Induced

Pressure Distribution for x = 6 and Me =5



