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Abstract

Animal group formation has often been studied by mathematical biologists through PDE models, producing

classical results like traveling and stationary waves. Recently, Eftimie et al. introduced a 1-D PDE model

that considers three social interactions between individuals in the relevant neighborhoods, specifically re-

pulsion, alignment, and attraction. It takes into account the orientation of the neighbors when consider-

ing if they can communicate. This has resulted in exciting new movement behaviors like zig-zag pulses,

breathers, and feathers. In this work, we translate the Eftimie model into a Lagrangian implementation.

Currently, the results from the Lagrangian formulations show many of the results displayed by Eftimie’s

original PDE model, producing patterns like the zig-zag, breather traveling, and stationary pulses. In addi-

tion, we model animal movement with an ODE approach to complete the investigation regarding the role of

direction-dependent communication mechanism in discrete-space. This implementation generates patterns

like traveling breathers, traveling trains, and stationary pulses. Finally, we explore what types of patterns

the Lagrangian model would generate if repulsion was prioritized. We discover that the sizes of the inter-

action ranges are significant in determining whether stationary, semi-zig-zag, zig-zag, or traveling pulses

are formed. For all three model implementations, we find thatthe incorporation of direction-dependent

communication enriches the model behavior.
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Chapter 1

Introduction

1.1 Overview

Social organization is a topic of interest for mathematicalbiologists because group formation is an im-

portant survival skill for certain animals. For example, for simpler animals like fish, where there are no

group leaders, schooling provides benefits like protectionfrom predators and efficiency in catching prey

( [9], [10], [11]).

When considering how animals interact, it is important as a modeler to determine the crucial interaction

forces. A large class of movement models focuses on three interaction forces, namely attraction, alignment,

and repulsion, as shown in Figure 1.1 ( [4], [14], [17], [22],[25], [26]). Typically, repulsion is assumed to act

over a short distance from the reference individual. In the repulsion zone, the individuals would turn away

from adjacent neighbors to avoid collision. Attraction occurs primarily between neighbors from a farther

neighborhood to ensure that animals can still form groups. It is usually assumed that alignment acts in an

intermediate area located between the repulsion and attraction zones. While many models include repulsion,

alignment, and attraction forces between neighbors, some choose to ignore alignment.

Figure 1.1: Illustration of the interaction zones. A reference individual is repulsed by the neighbors who are
in the region immediately adjacent to it. It tends to align with those who are in an intermediate range and is
attracted by those who are in a farther range. The parameterssr,al,a are the limits of the interaction zones.
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For self-organizing animals like fish, there are two generalmodeling approaches: Lagrangian and Eu-

lerian. The main difference is that the Lagrangian approachis at an individual level, while the Eulerian

approach is at a population level. The Lagrangian formulation tracks individuals and follows their paths,

and the Eulerian formulation examines a fixed location and the amount of traffic passing through ( [24]).

Because the Lagrangian approach focuses on the individual and the decision-making process, it is useful

for simulating animal behavior and making predictions. Forexample, biological experiments can motivate

hypotheses that attempt to explain how animals congregate,and these predictions can easily be tested by the

mathematical model. Also, Lagrangian formulations provide a fast, convenient way to explore the parameter

space ( [12]). Since the numerical simulations are modeled from a reference individual’s view, the signifi-

cance of each parameter is intuitive ( [28]). The main disadvantage is that there are no analytical solutions.

Thus, there is usually no gain of theoretical insight as to why the interactions result in the observed behavior.

In addition, the simulations can be computationally expensive.

One of the benefits of using a Lagrangian formulation is to simulate the model and provide visualizations.

Some researchers may use a property like the average distance from the closest neighbor for statistical

analysis purposes ( [18]). Essentially, Lagrangian modelscan only provide an answer as to what a particular

parameter set and initial condition would generate, but onecannot show decisively with any mathematical

theory how the behavior may change according to each parameter. While the Lagrangian framework is

useful for determining which properties are crucial for building a suitable mathematical model, it must be

translated into an Eulerian model for rigorous mathematical analysis.

In contrast, the Eulerian approach allows for the application of established mathematical ideas, like

bifurcation theory. It is easier to compare results from different Eulerian models, as they are often more

mathematically rigorous and can therefore be described quantitatively rather than qualitatively. Because

there are many mathematicians interested in this area, there are many references available and a number of

formulas for certain well known partial differential equation systems. In addition, even if the system is too

complicated to have an explicit solution, one can often find the steady-state or equilibrium state.

In this thesis, we model animal movement using assumptions from the Eftimie model ( [9], [10], [11]).

The reason why we work with this model is because it introduced an exciting new idea: direction-dependent

communication. The incorporation of this element in the Eftimie PDE model led to many new aggregation

patterns. Interestingly, these communication rules have never been used in a Lagrangian implementation

before. Therefore, we would like to investigate a Lagrangian movement model using these assumptions

from the Eftime model and see if any new patterns can be found.

In Section 1.2, we will review Lagrangian movement models and examine the different aspects of animal
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motion that can be incorporated into a Lagrangian formulation. In Section 1.3, Eulerian movement models

are reviewed briefly to explain why they are useful in studying pattern formation. In Section 1.4, we formu-

late the questions we would like to investigate in this project. Finally, in Section 1.5, we outline the chapters

in the thesis and discuss the objectives of this project.

1.2 The Development of Lagrangian Movement Models

The mechanism of animal group formation has been studied extensively. There are a few common traits that

can be found amongst most of these models. The underlying assumption in the Lagrangian models discussed

below is that one or more local interaction forces between the reference individual and its neighbors produce

a global pattern throughout the population. In general, theclosest neighbors produce a repulsion force and

the farthest neighbors result in an attractive force. Alignment is also considered in some models. Depending

on how these forces are calculated, different Lagrangian models can produce a range of aggregation patterns

formed by simple animals, like birds and fish. It is importantto establish a thorough understanding of the

development in modeling animal movement from the Lagrangian perspective. Therefore, in this section, we

will be discussing several important movement models that have introduced new ideas in the field.

1.2.1 The Huth and Wissel Model

In 1992, Huth and Wissel ( [16]) formulated a Lagrangian model in two-dimensional space describing how

fish schools aggregate with the consideration of three interaction zones. Fish are an ideal choice for modeling

group formation because they have been shown to swim in groups without external influences from any prey

or predator. The set-up of the interaction zones is similar to that described in Figure 1.1 except the zones

are now in the shape of concentric circles because of the additional spatial dimension. There is a “blind”

area behind each individual where no neighbor is detected. In addition, only a fixed number of neighbors

is considered when determining the turning probability. With these assumptions, the model establishes that

fish can aggregate in two different types of structures: a tightly knit group with very high polarization and a

loosely gathered group with low polarization.

1.2.2 The Couzin Model

While the Huth and Wissel model can be thought of as a simplified, two-dimensional version of an animal

movement model without directional dependence, the Lagrangian model of Couzinet al. ( [4]) is much

more complicated by incorporating inhomogeneities in the individuals traveling in three-dimensional space.
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Again, the three interactions considered are repulsion, alignment, and attraction, but in this model, repulsion

is the most important consideration to avoid collisions. When animals are present in the repulsion zone,

alignment and attraction are ignored when considering the turning probability. The behavior of the group is

described by two vectors,~c and~v, which store respectively the location and velocity of every individual. All

the neighbor’s influences on the reference individual are first calculated, and then the subsequent velocity of

the reference individual is determined according to these influences. The surroundings of an individual is

divided into interaction zones as in Figure 1.1 except the zones are now in the shape of spheres.

The two model variables areci andvi, which respectively keep track of the location and velocityof

theith individual. τ is an independent variable designating the constant time step. To calculate the turning

probability of each animal, Couzinet al. introduce three new terms,dr,al,a, whered is the influence from

surrounding neighbors and the subscript refers to the type of communication mechanism involved. Repulsion

is denoted by the subscriptr, alignment byal, and attraction bya. The valuesnr,al,a define the limits of the

repulsion, alignment, and attraction zones. The model usesthe following equations, which are of a common

form that is found in many Lagrangian animal movement models:

~dr(t + τ) = −

nr
∑

j 6=i

~rij(t)

|~rij(t)|
, (1.1)

~dal(t + τ) =

no
∑

j=1

~vj(t)

|~vj(t)|
, (1.2)

~da(t + τ) =

na
∑

j=1

~rij(t)

|~rij(t)|
, (1.3)

(1.4)

where

~rij =
(~cj − ~ci)

|(~cj − ~ci)|
. (1.5)

Equation (1.1) essentially sums the relative positions of the neighbors in the repulsion zone and directs the

reference individual away from this direction, while equation (1.3) does the exact opposite by directing

the reference individual towards the sum of the relative positions of the neighbors in the attraction zone.

Equation (1.2) determines the net orientation of the neighbors in the alignment zone and turns the individual

in that particular direction.

If there are any individuals in the repulsion zone, then equations (1.2) and (1.3) are not used and the new

direction is given by:

~vi(t + τ) = ~dr(t + τ). (1.6)
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Given the case where there is no repulsion and only attraction and alignment, the new direction after a time

step is given by:

~vi(t + τ) =
1

2
(~do + ~da). (1.7)

The model also has the feature of restricting the animal to a maximum turning angle. If the angle between

~d(t + τ) and~d(t) is greater than this limit, then the animal only turns the maximum angle towards~d(t + τ)

instead of simply using the vector as its new direction.

With this formulation, Couzinet al. observed four types of patterns: swarm, torus, dynamic parallel

group, and highly parallel group. A swarm is where the individuals aggregate in a condensed region with

low polarization. A torus is where the individuals continually rotate around an empty domain. Both dynamic

and highly parallel groups are structures where the individuals move in one direction collectively. However,

in the dynamic parallel group, the individuals are much morelikely to exchange positions within the internal

structure than in the highly parallel group.

In comparison to the model of Huth and Wissel, an additional feature that the Couzin model explores is

the dependence of group formation on the present pattern. Inother words, the initial conditions can affect

how the group transitions into different behaviors as the individual interactions change. This discovery

shows that animal movement and group formation does, in fact, take into account previous patterns and

collective memory plays an important role.

1.2.3 The Gueron Model

Although most of the Lagrangian models assume constant speeds, this may not always be the case. Gueron

et al. ( [14]) studied the transition from separately traveling individuals to aggregated groups with the as-

sumption that speed can vary. This is achieved by the incorporation of speeders, a subgroup that travels

faster than the rest, leaders, animals at the front who tend to slow down and wait for those behind them, and

trailers, animals in the rear zone who can speed up to catch up. In this particular two-dimensional model,

repulsion and attraction act on a short and long range respectively. The repulsion and attraction zones are

separated by a neutral territory, where no social interaction is considered. The authors conclude that the

probability of fragmentation increases with the level of inhomogeneity. Most importantly, the authors find

that with this movement model, there is an optimal size for the neutral zone where animals can simply travel

at a constant speed and maintain a coherent group structure without acceleration or deceleration, allowing

them to conserve energy.
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1.2.4 The Kolpas Model

Kolpas’ model describes animals moving on a 1-D lattice ( [18]). It is important to discuss the Kolpas model

in detail as an example because its framework is similar to many Lagrangian 1-D movement models. Its

pseudocode is also useful because the general set-up can be applied to variations of animal networks that

communicate with different mechanisms. A variation of thispseudocode is used in this project, and this

discussion will be further continued in Chapter 3 after other components of the project are introduced.

In the Kolpas model, the velocity is±1. There are three distinct zones where neighbors exert a repulsion,

alignment, or attraction force. There is no interaction kernel, since all neighbors in the relevant neighbor-

hoods are assumed to have the same effect on the reference individual. In the repulsion zone, the average of

all the neighbors’ relative position is calculated.

V = −
∑

cj(t)∈Zrj
(t)

cj(t) − ci(t)

|cj(t) − ci(t)|
, (1.8)

whereci(t) is the position of theith individual at time t,vi(t) is the velocity of theith individual at time t,

andZrj
(t) is the repulsion zone for thejth individual. It is a priority for the reference individual toorient

itself away from its adjacent neighbors according to the above equation to avoid any collisions. Therefore,

it is of emphasis that equation (1.8) is the only equation used for calculating the new velocity if there are

individuals present in the repulsion zone. In other words, the model no longer considers alignment and

attraction as an effective interaction force for an individual who senses neighbors in its repulsion zone. The

non-zero value given by equation (1.8) is then normalized according to equation (1.10), which is given

below.

If there are no neighbors in the repulsion zone, the individual would tend to follow the average direction

of the neighbors in the alignment zone and move towards the neighbors in the attraction zone. In other words,

the following equation for calculating velocity will only be relevant if equation (1.8) is not applicable. Both

these influences affect the reference individual’s turningprobability equally, as shown by the following

equation where the two are averaged to determine the net effect.

V =
vi(t) +

∑

cj(t)∈Zoj
(t) vj(t)

|vi(t) +
∑

cj(t)∈Zoj
(t) vj(t)|

+
∑

cj(t)∈Zaj
(t)

cj(t) − ci(t)

|cj(t) − ci(t)|
, (1.9)

whereZoj
(t) andZaj

(t) are the alignment and attraction zones of thejth individual respectively. IfV is

determined to be zero, this means that the attraction and alignment effects cancel out each other and the

individual continues in the previous direction. Otherwise, V is normalized and used as the velocity for the
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following time step:

ṽ =

{

vi(t), V = 0,
V
|V | , otherwise, (1.10)

wherevi(t) is the current velocity.

Finally, stochasticity is incorporated with the parameterp, 0 < p < 1. p is the probability that an

individual changes its direction randomly.

vi(t + 1) =

{

−ṽ, X < p,

ṽ, otherwise,
(1.11)

wherevi(t +1) is the velocity at the following time step andX is a uniform random variable between 0 and

1.

The initial position and velocity vectors are chosen randomly, and the simulations are run until a steady

state emerges. At each step, the interactions from the neighbors are calculated according to the given equa-

tions.

The pseudocode of the Kolpas model is given by the following scheme:

1. Create a finite 1-D lattice with the spacing defined by the animal’s step size.

2. Distribute the total number of individuals over the lattice and assign directions to them randomly.

3. For each individual, scan its repulsion zone. If it is empty, skip to step 4. Otherwise, determine

whether or not the animal would turn according to equation (1.8). If yes, negate the direction and skip

to step 5.

4. If the repulsion zone is empty, scan the alignment and attraction zones and use equation (1.9) to

determine whether the animal should turn. If yes, negate thedirection.

5. Use equation (1.11) to determine whether or not the animalwill turn simply due to stochasticity.

6. Repeat steps 3-5 for all the individuals.

7. Let the animals move one step along the lattice according to their directions.

8. Repeat step 3-7 until the animals have completed the designated number of steps.

With the above mechanism, the Kolpas model has been able to produce stationary and traveling pulses.

In fact, the animals transition between the two behaviors are simply due to stochastic effects, which is a

result not seen in any previous discussed models. The steps used by Kolpaset al. will be discussed again in

Chapters 3 and 5, for the purposes of simulating another animal movement model.
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1.2.5 Models from a Physics Point of View

The Lagrangian formulation is not only limited to discrete velocities and locations. For example, many

models use Newton’s second law of motion to describe a particle’s trajectory under the imposed forces. For

example, Levinet al. [20] use the following system of equations to describe a system ofN self-propelled,

interacting particles:

mi∂t~vi = αf̂i − β~vi − ∂~xU, (1.12)

∂t~xi = ~vi, (1.13)

where each particle is defined by massmi, position~xi, and velocity~vi. Furthermore, each particle is

driven by a self-propelling force with fixed magnitudeα and hindered by a friction force with coefficient

β. The interaction functionU characterizes a communication mechanism where each particle is under the

influence of its neighbors via two forces, a long-range attraction force limited by the interaction rangela and

a short-range repulsion force limited by the interaction rangelr. Like the discrete velocity models above,

the interaction terms are incorporated intoU in the following form:

U =
∑

j 6=i

Ca exp

(

|~vi − ~vj |

la

)

−
∑

j 6=i

Cr exp

(

|~vi − ~vj |

lr

)

. (1.14)

For the movement models with Newton’s second law as a basis, the general form of the equations de-

scribing the displacement and velocity do not change. However, by varying the forces the particles are

subject to, different results can be obtained. In fact, someanalytical results may be obtained if the interac-

tions functions are of a simple form. In particular, existence conditions have been derived for perfect schools

and mills ( [21], [30]). The perfect school refers to an aggregation where all the inter-particle distances and

speeds are identical. For example, fish display this type of formation. The perfect mill is a group pattern

where particles travel behind one another in a closed circleequally spaced from one another. This implies

that the group has a constant angular velocity, circle radius, and inter-particle spacing. For example, Liet al.

[30] discuss a model that deals with perfect schools. In thismodel, only repulsion and attraction between the

reference individual and its closest neighbor are considered. This simplification is necessary to find the ex-

istence condition analytically and prove that only local interactions depending on inter-distance are required

to form a perfect school.

The mechanism by which birds form perfect groups has also been explored by Cuckeret al., but without

the incorporation of Newton’s second law ( [6]). Instead, the modelers track how the energy of the flock
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Figure 1.2: Scaling factor for the alignment force (η(y)). This is a sample plot to show that the alignment
force decreases asy, the distance between reference individual and the neighbor, increases. Parameters:
K = 1, σ = 1, β = 2.

varies according to the configuration. The equations governing motion are given by the following:

vi(t + 1) − vi(t) =

k
∑

j=1

aij(vj(t) − vi(t)), (1.15)

aij = η(‖ xi − xj ‖2), (1.16)

η(y) =
K

(σ2 + y)β
. (1.17)

The above system of equation considers a total ofk birds, each possessing a velocity described byvi and

i = 1, ..., k. Equation (1.16) specifies the scaling factor for the alignment force given by equation (1.15)

depending on the relative distance between the reference individual and the neighbor. There are several

important properties ofη, the function specified in equation (1.17) used for calculating this scaling factor. It

is positive and non-increasing. The parametersK andσ define the location and value of the maximum ofη,

andβ is the decay rate of the alignment signal.

The only interaction force considered is the alignment force, and the bird’s velocity changes according to

the difference between its own velocity and those of its neighbors. Interestingly, with the distance-dependent

functionη (see Figure 1.2), Cuckeret al. found that the emergence of a perfect flock with uniform velocity

depends on the parameterβ. Whenβ is sufficiently small, a perfect flock is guaranteed under anyinitial

conditions. Whenβ becomes too large, a perfect flock will only emerge under certain initial conditions.

Again using a physics perspective, the Lukemanet al. model ( [21]) studies milling formations with only

short-range repulsion and long-range attraction. The mostinteresting aspect of this paper is that it derives
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analytically the form of the schooling force, which dependson the inter-particle distance:

~fi = g(|~xj − ~xi|)
(~xj − ~xi)

|~xj − ~xi|
, (1.18)

wherej indicates the closest neighbor to the reference individual. The existence condition for the perfect

mill is that the interaction functiong must satisfy the following:

g(d) = sd, (1.19)

s =
γ2

2
cos2(

π

n
). (1.20)

wheres is a function ofγ andn, which represent the drag coefficient and the population size respectively.

While some previous models have also been able to generate milling formations, the Lukeman model con-

siders a more general form of the interactions.

Given very simple interaction functions, some Lagrangian models have been able to produce some ana-

lytical results. However, for a more complex system, to decisively determine the effects of each parameter

on the system and look for steady-state solutions, a Lagrangian system must still be translated into an Eule-

rian model for analysis purposes. In the Eulerian model, instead of tracking the velocity and location of the

individual, the system examines the averaged behavior of the entire system. Depending on the purpose of

the model, either a Lagrangian or an Eulerian model may be used.

1.3 Some Eulerian Movement Models and their Results

Because no rigorous proofs can be deduced from a Lagrangian model, a Lagrangian model is often trans-

lated into an Eulerian model for the application of mathematical analytical techniques by using approxima-

tions. Often, a set of PDE equations are derived from master equations which describe how the individuals

interact and travel collectively. Many movement models, like the Mogilneret al. model ( [23]), use a

one-dimensional advection-diffusion equation to describe the geometries a swarm can exhibit ( [5]). The

population density,f , is described by the following equation:

∂f

∂t
=

∂

∂x
(D

∂f

∂x
− V f), (1.21)

wherex is the spatial coordinate,t is the time,D is the diffusion coefficient, andV is a drift term accounting

for velocity changes from social interactions, namely short-range repulsion and long-range attraction. The

results only show swarming behavior with constant interiordensity and sharp profiles. More factors can be

incorporated to this basic form. For example,D may be a function of the population density instead of a

constant parameter.
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If factors like birth, death, emigration, and immigration are ignored, then the following population con-

versation equation must also be obeyed:

ft + ▽ · (~vf) = 0, (1.22)

where~v is the velocity vector. Similar to the Lagrangian formulation, this vector has two components:

aggregation,~va and dispersal~vd:

~v = ~va + ~vd. (1.23)

Depending on how~va and~vd are calculated, different group patterns can be obtained.

The general form of equation (1.21) is not only limited to thedescription of animal movement but also

microscopic organisms like bacteria as well. However, in most of these systems, there is a growth term

instead of a drift term because bacteria reproduce much morequickly than animals. A well-known example

is the Fisher-Kolmogorov equation, which satisfies the following form:

∂u

∂t
= D ▽2 u + f(u), (1.24)

wheref(u) is a reaction function andu is the population fraction. In the case of the Fisher-Kolmogorov

equation,f(u) is a growth term written as:

f(u) = u(1 − u). (1.25)

Similar to the animal movement models, there can be communication incorporated into a system describing

a bacterial colony too. For example, the bacteria may release attraction or repulsion signals to each other by

secreting chemicals ( [2]).

One trait that these PDE models share is that they do not display a wide variety of behaviors. They usually

only show one type of behavior. For example, most PDE models,including the previous one mentioned, only

support swarms, either traveling or stationary. Often, forthese PDE models, it is difficult to decide on a set

of realistic interaction rules that would generate biologically relevant results. The difficulty arises from the

fact that traveling groups of animals show sharp profiles at the front and the back ( [7], [23]). In contrast,

for the Eftimie model, which will be discussed in more detail, there is a wide range of results due to the

flexibility from choosing the communication mechanisms ( [9], [10], [11]). The stationary pulses can also

exhibit uniform interior density and sharp edges or containinterior subgroups where the population density

is higher.

In [9], [10], and [11], Eftimieet al. developed a 1-D Eulerian model for animal grouping. This model

is applicable for simple animals without a hierarchy or influences from any predator or prey, like fish and
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insects. The Eftimie model only considers neighbors with a particular direction for each social interaction,

and this additional feature has allowed many new movement models. This is particularly interesting because

previous models were only able to show congregation behavior. No complex patterns could be found, even

when more factors are considered like movement in higher dimensions, hierarchal structures in the animal

groups, and an ability to change velocity ( [1], [4], [18], [29]). In fact, they have only produced stationary

and traveling pulses, meaning that the animals are congregated in one or more groups either being stationary

or traveling in a single direction. In contrast, the Eftimiemodel is able to produce two types of stationary

pulses, one with uniform interior density and sharp edges orone with interior subgroups where the popu-

lation density is higher ( [9], [10], and [11]). The fact thata larger range of results is available is due to

the flexibility in choosing the communication mechanisms. It should be emphasized that the primary distin-

guishing factor between the Eftimie model and the previous models mentioned is that direction dependent

animal communication is now considered.

1.4 Statement of Problem

The Eftimie model, by introducing direction-dependent animal communication, has expanded the range of

patterns observed with Eulerian models, which have only been able to show behavior like traveling and

stationary pulses and, in some cases, vortices. The new behaviors include patterns like breathers and zig-zag

patterns. A zig-zag pulse is formed when animals travel and spontaneously switch directions together. A

breather pulse is similar to a stationary pulse, but the animals continually move away from the centre of the

pulse and then return. These new patterns demonstrate that the formulation of this model is more general and

hence more appropriate to model the movement of a larger set of simple animals. Therefore, it is important

to confirm the results of the model and further explore other variations of this general framework to seek

new patterns.

Having established the benefits of the general framework of the Eftimie model, the logical question to

ask is: will the results produced by the Eulerian model at thepopulation level be reflected by a model on an

individual level? Will the new behaviors still be present when the direction-wise communication rules are

applied to each individual animal in the system? A translation into a Lagrangian formulation would help

answer these questions. By doing this, we are verifying thatthe individual behavior does, in fact, reflect the

conclusion reached by the mean field approximation.

The current goal is to use the assumptions of the Eftimie model in a Lagrangian formulation in a discrete-

space and discrete-time system to see if the analytical results obtained for the Eftimie model can be repli-
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cated. The motivation for building an individual-based model with the same assumptions is to provide a

more convenient framework for incorporating both deterministic and stochastic factors and an easier, faster

way to simulate animal motion. Also, any additional approximations when the master equations are trans-

formed into partial differential equations would be avoided. These are common benefits of the Lagrangian

approach, as it is more focused on the individual level rather than the population level ( [28]). The main

problem is to determine the parameter space for which the Lagrangian model would generate similar results

to the Eulerian model and if all the patterns from the analytical results are obtainable from the computer

simulations. If there are significant differences between the results of the Eulerian and Lagrangian model,

then what is the reason?

As a further exploration of direction-dependent communication in Lagrangian models, we apply the

same communication rules from the Eftimie model into the Kolpas model. The Kolpas model mainly differs

from the Eftimie model by assuming that animals prioritize repulsion over alignment and attraction over

repulsion in order to prevent collisions. A question we investigate is how this emphasis on repulsion will

affect the range of behaviors produced. Also, how will the sizes of the interaction zones influence the

animal movement? By extending our research in Lagrangian models, we can compare the two different

formulations, the Lagrangian Eftimie model and the Eftimie-Kolpas hybrid, and have a better insight of

what factors are critical for animals to move collectively as a group.

In addition to a discrete-space and discrete-time system, it is also possible to keep track of the number of

animals at each grid-point in continuous time by using a discrete-space, continuous-time formulation. This

results in an ODE system with each equation keeping track of the population at a grid-point. Again, here the

question is if results from the Eulerian model are availablewith this formulation. If so, given that a certain

pattern is observed for both the Lagrangian systems, how would the parameters for the discrete-space and

time system vary with respect to those of the ODE system? Whatcauses this change? These are questions

that will be addressed in this project in order to gain a better understanding the role of communication

mechanisms in animal movement.

1.5 Thesis Outline

In Chapter 2, we give a review of the Eftimie model, for understanding the Eulerian model better allows us

to build a more accurate individual-based version. Due to the benefit of being able to use established math-

ematical theory and determine bifurcation values and the dispersion relation, Eftimieet al. chose to use the

Eulerian approach for modeling animal movement under the influence from neighbors in the relevant neigh-
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borhoods. This is the suitable choice for finding mathematically rigorous conditions for pattern formation.

We briefly discuss the useful analytical results that have been established.

However, an unanswered question is whether the approximations taken when deriving the PDE’s from

the master equations would alter the behavior of the model. Specifically, the objective of this project is to

compare the results from the Eftimie model to those producedby a Lagrangian formulation. To achieve

this, we use a Lagrangian approach to simulate pattern formation, which will be presented in the following

chapters.

In Chapter 3, the Lagrangian model will be discussed in detail. We formulate an individual-based com-

putational scheme that reflects the behavior and communication mechanism of animals that are described in

the Eftimie model. Here, we find that this scheme can generatea large range of behaviors, some of which

have never been found by previous Lagrangian models.

In Chapter 4, we focus on the question of how a system in discrete space and continuous time would

be different from one with both time and space continuous or discrete. First, we use the method of lines to

derive an ODE system from the Eftimie PDE model. It is very important to ensure that the spatial derivative

discretization is numerically stable. The ODE system can beconsidered to be an intermediate between the

Lagrangian and Eulerian formulations, since it has one continuous and one discrete continuous variable.

The ODE model generates another set of aggregation patterns, but this set does not completely overlap with

those of the Lagrangian or PDE formulation. This work would help identify how three different models that

describe animals following the same set of interaction rules can generate different results, simply based on

which independent variables, time and space, are continuous.

In Chapter 5, we incorporate Eftimie’s direction-dependent communication mechanisms in the Kolpas

model and implement two separate versions, one with interaction kernels and one without. A relationship

is established between the sizes of the interaction zones and the aggregation behavior, and more patterns

are generated with the hybrid model when compared to the original Kolpas model. Also, we find that some

submodels do not display any aggregation behavior when bothinteraction kernels and direction-dependent

communication are incorporated into the Kolpas model.

Finally, in Chapter 6, we compare and contrast the results and pattern range generated with the differ-

ent formulations. The three different formulations effectively complete the set of possible continuous and

discrete time and space systems that can be implemented, allowing us to thoroughly explore the movement

mechanism proposed by Eftimieet al. in various settings. Because of the differences in the discretization of

the variables, it is expected that not all patterns will be available in the Lagrangian and ODE models. In addi-

tion to discussing the implementations of the Eftimie model, we also discuss the behaviors and trends found

14



with the Eftimie-Kolpas model. Most importantly, we give examples of where these patterns are observed

in nature and how these mathematical models have helped us further understand the role of communication

signals in animal movement.
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Chapter 2

Review of the Eftimie Model

2.1 Introduction

In this chapter, we discuss the formulation and results of the Eftimie model thoroughly, as it will serve as

a foundation for our project. In Section 2.2, we review the derivation of the model from first principles to

describe how the animals move in 1-D space as they change directions according to the influences of their

neighbors. Then, in Section 2.3, we review the behavioral patterns generated by this PDE system.

2.2 Formulation of the Model

In the 1-D Eulerian model by Eftimieet al. ( [9], [10], [11]), three social interactions, specifically repulsion,

alignment, and attraction, are considered, and the animalsare assumed to be moving at constant speed.

Eftimie et al. included a direction dependence when considering which neighbors contribute to each social

interaction ( [9], [10], [11]). This dependence gives rise to many submodels (see Figure 2.1). Submodels

differ from each other in which set of neighbors is involved in determining whether the reference individual

turns or not. For example, the most general submodel, submodel M2, would consider all neighbors for

every social interaction, while a modification, submodel M3, would be where the individuals only sense the

neighbors ahead of them.

According to the Eulerian model by Eftimieet al. , the following system of partial differential equations

can be used to describe an animal group split into two different subgroups defined by their directions of

movement, whereu±(x, t) is the number of right-moving (+) and left-moving (-) individuals at locationx
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Figure 2.1: Description of submodels. The above figures summarize the interaction rules by right-moving
individuals for all five submodels considered in the Eftimiemodel. For example, in submodel M1, attraction
and repulsion consider all neighbors in the relevant zones,while alignment only takes into account those that
are moving towards the individuals.
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at timet, andλ± is the probability of a right (left)-moving individual to switch direction:

u+
t (x, t) + γu+

x (x, t) = −λ+u+(x, t) + λ−u−(x, t), (2.1)

u−
t (x, t) − γu−

x (x, t) = λ+u+(x, t) − λ−u−(x, t), (2.2)

whereγ is the constant speed of the individual.

In the Eulerian model, the total turning probabilities are given by the following functions ( [9], [10], [11]):

λ±(y±
r − y±

a + y±
al) =

λ1

2
+

λ2f(y±
r − y±

a + y±
al)

2
, (2.3)

f(y±
r − y±

a + y±
al) = 0.5 + 0.5 tanh(y±

r − y±
a + y±

al − y0), (2.4)

whereλ1 is a random turning probability andλ2f is a turning probability as a function of interactions with

neighbors. The functionalsy±
i [u+, u−] represent repulsion, attraction, and alignment signals from neighbors

that determine the turning rate, andr, a, al denote repulsion, attraction, and alignment respectively. y0 is a

constant chosen such thatf is small when the input is small. Equation (2.4) has two important properties.

First, it is positive and non-decreasing. Second,f is close to zero when the signals are very low and close

to one when they are strong. We would like to emphasize thatf is not restricted to the form shown in

equation (2.4). In fact, any function satisfying the two properties is a possible candidate for calculating the

turning probability.

Signals from neighbors to the left and to the right are received and processed by the individual to decide

whether to turn or not (see Figure 2.1). Depending on the particular submodel and the criterion for the

neighbor to be detected, there are many variations for the equations describing signal strength considered by

Eftimie et al. , five of which are shown in Figure 2.1. The equations can be inferred from the accompanying

figures describing how the individuals interact in each submodel.

The following is the set of equations for right-moving individuals that are of interest, expanded from the

description of submodel M1 in Figure 2.1:

y+
al = qal

∫ ∞

0

Kal(s)(u
−(x + s) − u+(x − s))ds, (2.5)

y+
r = qr

∫ ∞

0

Kr(s)(u(x + s) − u(x − s))ds, (2.6)

y+
a = qa

∫ ∞

0

Ka(s)(u(x + s) − u(x − s))ds, (2.7)

whereu = u+ + u−. TheKi(s) are interaction kernels (discussed below), andqi indicates the strength of

the social interaction’s influence.
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Figure 2.2: Gaussian interaction kernels from the Eftimie Eulerian model.

In the continuous-space Eulerian model, the strength of theinteraction signal from a neighbor is deter-

mined by the interaction kernel, defined by a translated Gaussian function (see Figure 2.2):

Ki(s) =
1

√

2πm2
i

exp(
−(|s| − si)

2

2m2
i

), s ∈ [−∞,∞), (2.8)

wheres is the distance between an individual and its neighbor,mi is width of interaction zone, andsi is dis-

tance between the peak of the interaction kernel and the individual. Because of the underlying assumptions

of the repulsion, alignment, and attraction zones (see Figure 1.1),sr is the smallest, andsa is the largest.

Using the above formulation, the Eulerian model can producea wide variety of different behaviors. It is

reasonable to expect similar behaviors in the discrete-space, discrete-time system.

A closer look at the formulation ofyal andyr,a for each submodel would show that the equations them-
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selves are a reflection of how these animals impact each other’s directions of motion. For every set of

equations described in Figure 2.1, the following factors are involved:qr,a,al andKr,a,al, whereqr,al,a are

the strengths of the interaction signals andKr,al,a are the interaction kernels. The reason why these two

factors must be present is because the first scales how large the neighbors’ social influence is and the latter

adjusts the strength of the signal from a particular location according to the distance away from the reference

individual. To give a more detailed description of how each of these equations are formed, the equations

from submodel M1 are carefully analyzed below as an example.

The first point of interest is that the integration is only taken over the positive spectrum. This is because

the interaction kernel is assumed to be even over the entire space and the same equation can be applied to

neighbors on either side (see Figure 2.2). Therefore, an individual would feel the same magnitude of impact

from a neighbor on the right and another on the left if they areequidistant from the reference individual.

Because the reference individual in submodel M1 only detects those moving towards it for alignment pur-

poses, equation (2.5) only involves the neighbors on the left that are moving right,u+(x − s), and those on

the right that are moving left,u−(x+s). For a right-moving reference individual,u−(x+s) would increase

the probability of a turn, whileu+(x − s) would decrease the probability because the reference individual

would like to align with them.

Because repulsion and attraction involve all neighbors regardless of their directions, equations (2.6)

and (2.7) consideru(x ± s) for both left- and right-moving neighbors. Equation (2.6) quantifies how a

right-moving individual is repulsed by its neighbors. Naturally, a higher number of individuals to the right

would increase the turning probability. Similarly, a higher number of individuals to the left would decrease

the turning probability, since the reference individual would like to stay on the same track to avoid the

others. The equations describing repulsion and attractionare identical because these two social interactions

act like exact opposites of each other. When considering theattraction influences, one simply needs to

take the calculations for the repulsion signals and negate the results. The same logic can be applied to find

the turning probabilities of a left-moving individual under the influence of the repulsion, alignment, and

attraction interactions. As well, the equations related tothe other submodels can be derived using the same

method as above using the interaction rules given in Figure 2.1.

This is only one of the submodels considered by Eftimieet al., and there are four other submodels as

shown in Figure 2.1. The following section offers an overview of the results and how they can be applied.
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2.3 Discussion of the Eftimie Model

With the Eulerian model, Eftimieet al. have been able to establish the criteria for pattern formation ana-

lytically. Although these results will not be discussed in relation to the numerical implementation of the

Lagrangian version, they are an important part of the Eftimie model. Using equations (2.1) and (2.2), the

steady states of the system can be found. Furthermore,qal, the strength of the alignment signal, is deter-

mined to be a bifurcation parameter determining whether one, three, or five steady states are possible. The

dispersion relation can also be calculated. This is useful for the purposes of examining how the param-

eters affect the stability of each steady state. For example, by increasing the attraction zone, it is found

that fractionation in the population decreases and larger subgroups are formed. This is a biological realistic

behavior, as an increase in the attraction zone would allow animals to sense each other at larger distances.

Therefore, animals would be less likely to separate from each other. Analytical results show that spatially

inhomogeneous patterns can be stable steady states, and thenumerical results reflect this conclusion.

The numerical investigations of the Eftimie model have produced a wide range of movement behaviors,

including traveling and stationary pulses as well as traveling trains (see panels 1, 2, 5, and 6 of Figure 2.3),

which have been previously produced by models without the direction dependence. The abundance of aggre-

gation patterns occurs in spite of the model’s simplicity and choice to ignore factors like the social structure

within an animal group and higher dimensions. With the addedconsideration of direction dependence, new

patterns like breathers, feathers, and zig-zag pulses ( [9], [10], [11]) as shown in panels 8, 4, and 7 respec-

tively of Figure 2.3. Feathers are pulses where individualsnear the boundaries are moving in and out, and

breathers are where individuals near the boundary can escape while the the rest of the group travels in a

zig-zag pulse. After a while, because the boundary conditions are periodic, those that have escaped must

re-join the group. Figure 2.3 illustrates the full range of results displayed by the various submodels.

By transitioning between different parameter spaces, we can examine how an animal may change its

behavior according to its changes in the external environment. For example, prey animals often move in

a zig-zag pattern in an attempt to be unpredictable and confusing to a predator. In fact, the group may

fragment into smaller fractions so that the danger of one entire population being eaten is reduced. However,

they are usually able to re-group into one single traveling pulse again after the threat of predation is removed.

Animals that display such defense mechanism include the European hare, nandu, ptarmigan, jack snipes, and

snipes ( [15]). An alternating series of traveling and stationary pulses is another example that demonstrates

animals transitioning between different behaviors. In this case, the patterns represent a group of animals

migrating in one direction and taking breaks in between. Thus far, only the general framework of the Eftimie
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Figure 2.3: Results of the Eftimie Eulerian model. See submodels M1-M5 in Figure 2.1. The above figure
is taken from [9].
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PDE model can incorporate both of these behaviors by changing the parameter space.

One additional feature of the Eftimie Eulerian model is the asymmetry of interaction influence from

neighbors on the left and the right. Precisely, Eftimieet al. incorporates two additional parameters,pr and

pl, into the signal functions,y±, to assign the strength of the interaction signals from the left and from the

right. As an example, equation (2.5) is shown in this modifiedform with the introduction ofpr,l:

y+
al = qal

∫ ∞

0

Kal(s)(pru
−(x + s) − plu

+(x − s))ds, (2.9)

pr 6= pl. (2.10)

All of the other signal functions are modified in a similar fashion. The consequence of this modification is

most evident in the zig-zag pattern, where the group transitions from an unbiased random movement to a

biased movement.

With the wealth of behavioral patterns that the Eftimie model produces, it is logical to continue explor-

ing the general framework of the movement model with the direction-wise communication mechanism. A

question is whether or not an individual-based model can also generate the same patterns or even produce

new patterns. This is the focus of the Lagrangian model, which will be discussed in the following chapter.
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Chapter 3

The Lagrangian Model

3.1 Introduction

In this chapter, we explain how the Lagrangian formulation is derived from the Eftimie Eulerian model. The

key question is how we can preserve the properties of the original formulation as much as possible while

discretizing the system in both space and time. This problemwould recur in numerous stages while building

the Lagrangian model. How should the pseudocode be written to replicate the animals described by the

Eftimie model? How should we translate the infinite Gaussiankernels into discrete-space functions? What

is the best way to calculate the integral of the neighbor’s signals as a finite sum? More importantly, after

incorporating all the modifications needed for the discretemodel, would the results be similar to those of the

Eulerian model, except with a change in the parameter space?Each of these questions are investigated in

this chapter.

In Section 3.2, we will demonstrate that the PDE Eulerian model is actually based on a group of ani-

mals moving in 1-D space with constant speed. Understandingthe fundamental behavior of the individual

modeled with the equations would allow us to portray the system more accurately with the pseudocode. In

Section 3.3, we further explore the aspect of writing a suitable computational scheme by reviewing previous

models that are similar in the set-up of the interaction zones and communication mechanisms. After set-

ting up the numerical implementation, we must ask ourselvesseveral questions. What boundary conditions

should be used? How should we discretize space and time, and how would our choice affect the outcome of

the model? We will tackle these two issues in Sections 3.4 and3.5 respectively. In Sections 3.6, 3.7, and 3.8,

we explain the interaction kernel choices and discuss the patterns generated. The first kernel is a uniform

kernel, the second is a piece-wise linear function in the shape of a triangle, and the third is a normalized

Gaussian function with a cut-off value. We expect that the normalized Gaussian function would produce
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more similar results to the Eftimie model, given that it has agreater similarity to the original continuous

Gaussian interaction kernel. After the investigation withthe three kernels, we modify the Lagrangian model

by incorporating asymmetry in signal reception and presentour results in Section 3.9. Finally, we discuss

our findings in Section 3.10.

3.2 Model Derivation

Because the PDE system from the Eftimie model is derived froma set of interaction rules that describes how

an animal determines whether or not to turn, it makes the model very suitable for simulations with a discrete

time and space system. With a Lagrangian formulation, the approximations that arise from generating a PDE

system are avoided, and this is a general advantage of using an individual-based model.

To fully understand this system, it is important to derive the equations from first principles in the discrete

time and space version. The first step is to set up a 1-D spatialsystem with grid-size∆x. Also, in this model,

all the animals move simultaneously after a time-step of∆t. Therefore, the master equations can be given

by the following, with the variablesu± andλ± as defined previously:

u+(x, t + ∆t) = u+(x − ∆x, t)(1 − λ+∆t) + u−(x + ∆x, t)λ−∆t, (3.1)

u−(x, t + ∆t) = u−(x + ∆x, t)(1 − λ−∆t) + u+(x − ∆x, t)λ+∆t, (3.2)

where∆t is the time-step and∆x is the grid-size. Equations (3.1) and (3.2) respectively calculate the

population of right- and left-moving individuals. For example, in equation (3.1), the total sum of right-

moving individuals includes the adjacent left-moving neighbors to the right who decided to change direction

and the adjacent right-moving neighbors to the left who kepttheir orientation after the previous time step.

This assumption implies that the animals first move according to their designated orientation and then decide

whether to turn or not at each time step. Equation (3.2) is formulated similarly.

Here, we explain the procedures taken to translate the discrete system into the continuous form given

by equations (2.1) and (2.2). As an example, we will derive equation (2.1) from equation (3.1). One can

perform similar steps to find equation (2.2) starting from (3.2). First-order Taylor series expansions are taken

for the termsu+(x, t + ∆t) andu±(x ± ∆x, t) aroundu(x, t) in equation (3.1):

u+(x, t)+∆t
∂u+

∂t
(x, t) = (u+(x, t)−∆x

∂u+

∂x
(x, t))(1−λ+∆t)+(u−(x, t)+∆x

∂u−

∂x
(x, t))λ−∆t+O(∆x2, ∆t2).

(3.3)

Because space and time increments are taken to be infinitesimally small to derive a continuous system, it

is justifiable to neglect the higher order terms in the following steps. Then, we expand equation (3.3) and
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divide by∆t to arrive at the following:

∂u+

∂t
+

∆x

∆t

∂u+

∂x
= −λ+u+ + λ+∆x

∂u+

∂x
+ u−λ− + λ−∆x

∂u−

∂x
. (3.4)

To transform the discrete system into the continuous system, we must take the limit where both∆x and∆t

approach zero. In addition, we define the following quantity:

γ = lim
∆x,∆t→0

∆x

∆t
. (3.5)

Finally, after taking the limits, equation (3.4) arrives atthe final form seen in equation (2.1). These calcula-

tions show that the Eftimie model is derived from the master equations (3.1) and (3.2). Note that the master

equations do not involve theγ speed parameter seen in the PDE system yet. In fact, speed is implicitly

present in equations (3.1) and (3.2) via the choice of∆x and∆t.

In the Lagrangian model, we try to preserve the Eftimie modelas much as possible while translating it

into a discrete time and space system. Since time is discrete, the turning probability is determined at each

time step for every individual according to the same functions,f±(y±(r, al, a)) andλ±(y±), used in the

Eulerian version. The basic computational scheme is similar to that of Kolpaset al. ( [18]) and Couzinet

al. ( [4]), in which the individuals’ locations are stored in a vector and updated every time step according

to their directions. We introduce the pseudocode and calculations used to discretize the Eulerian model and

transform it into a Lagrangian model in Section 3.3.

3.3 Numerical Implementation

In this section, we give a detailed account of how the discrete formulation of the Eftimie model is modified

from the Kolpas model, previously discussed in Section 1.2.4. The numerical implementation of the Kolpas

model can be easily adapted for use with the Eftimie model. The reason is that both models share the same

underlying assumptions. Namely, they model animals in 1-D space with turning rates that are influenced by

the interaction signals from their neighbors in three zones, the repulsion, alignment, and attraction zones.

However, we must also recognize that the Eftimie model is more complicated in its calculation of the turning

probability with additional considerations like the direction-wise communication mechanisms. Therefore,

we will discuss the key components in the Kolpas scheme that requires modification for application in the

Eftimie model.

The Kolpas formulation assumes that alignment and attraction is considered only if repulsion is absent.

In contrast, the Eftimie model considers all three social interactions simultaneously. In fact, it assigns
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three variables,qa, qal, andqr, to describe the strengths of the social interactions, attraction, alignment,

and repulsion, respectively. The Eftimie model also assumes that certain neighbors are weighted more in

the interactions, as seen by the Gaussian interaction kernel in the continuous formulation. The repulsion,

alignment, and attraction zones in the Eftimie model can overlap, while the Kolpas model does not allow

for this feature. In this section, we will explain how we calculate the turning probabilities for the Eftimie

model. Except for the calculation of the turning probabilities, the numerical implementation of the Eftimie

model will follow that of the Kolpas model.

Since the Lagrangian formulation of the Eftimie model tracks the movement of an animal individually,

we will explain the numerical implementation from the same point of view. Each animal is described by

two quantities, its positionxi and velocityvi, where the indexi indicates the individual being referred to.

According to the model derivation described in Section 3.2,the animals first update their positions and then

decide whether or not to turn. They move according to the following equation:

xi = xi + svi, (3.6)

wheres adjusts how far forward the individual moves every time step. Then, the individuals continue with

the process of examining their surroundings to determine the desired orientation.

The interactions between neighbors and individuals are similar to that in the Eulerian version, but the

width of the interaction zones can now be defined by the numberof grid-points, as seen in Figure 3.3. The

set up of the interaction zones identical to the continuous-space version, where the repulsion zone is located

closest to the individual and the attraction zone is the farthest. Each social interaction, repulsion, alignment,

and attraction, contribute to the turning probability. Each animal scans through all the interaction zones for

any neighbors and decide whether or not to change direction accordingly. We use a right-moving individual

in submodel M1 to explain the steps in the numerical simulation.

First, the repulsion signal is calculated via the followingequation:

yi
r =

∑

xj∈Zri

Kr(|xj − xi|), (3.7)

whereZri
denotes the repulsion zone of theith individual, andKr is the interaction kernel for repulsion,

which will be further explained in Sections 3.7 and 3.8. The attraction signal is calculated in a similar

fashion:

yi
a =

∑

xj∈Zai

Ka(|xj − xi|), (3.8)

whereZa denotes the attraction zone of theith individual. The calculation of both the attraction and re-

pulsion signals is very similar to that of the Kolpas model, except for the incorporation of the interaction
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Figure 3.1: How animals measure their interaction zones in the Lagrangian formulation. Animals now
measure distance in terms of number of grid-points.

kernels to consider spatial effects on signal strengths. This is because the rules of submodel M1 dictate that

all neighbors in the attraction and alignment zones are to beconsidered.

The calculation of the alignment signal will be different due to two reasons. First, for the purposes of

alignment, we consider the neighbors’ velocities instead of their locations. Second, we will only consider

neighbors who are moving towards the reference individual.In other words, the right moving individual

considers two distinct groups for alignment: the right-moving neighbors in the left alignment zone,Zleft,ali ,

and the left-moving neighbors in the right alignment zone,Zright,ali .

yi
al =

∑

vj<0,xj∈Zright,ali

Kal(|xj − xi|) −
∑

vj>0,xj∈Zleft,ali

Kal(|xj − xi|), (3.9)

When all the interaction signals are known, we use equations(2.4) and (2.3) to evaluate the turning

probability, namelyλi,+(yi
r,al,a). The individual-based approach allows us to use a uniform random variable,

X , to determine whether or not the animal turns. Specifically,

vi(t + τ) =

{

vi(t), X > λi,+,

−vi(t), otherwise.
(3.10)

With the uniformly generated random variableX , we incorporate stochastic effects, which is one of the

advantages of the Lagrangian formulation. Like the original Eftimie model,yr,al,a are varied depending

on the submodel and its communication mechanisms. The process of updating position and direction is

repeated for each individual until a pattern is established.

One of the issues regarding the numerical implementation yet to be discussed is the choice of boundary

conditions, which will be explored in the following section.
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3.4 Boundary Conditions

Like the Eftimie Eulerian model, the Lagrangian model uses periodic boundary conditions. An interpretation

of the periodic boundary condition is that the animals are ona circular domain. In this case, the model may

be describing animals living on a mountain at a particular altitude, insects that travel around a plant or tree

stalk, or aquatic animals traveling around an island. From another point of view, using periodic boundary

conditions allows us to simulate a system infinitely large inarea. This is an effective method for reducing

the computational time when modeling very large populations.

The reason is that, by using periodic boundary conditions, we are essentially repeating the data on the

domain and connecting them consecutively so that an animal at one end of the domain would feel the

influence of an animal at another end. The implications of this assumption is that the habitat being examined

does not contain any spatial inhomogeneities or edge effects that may affect the animal movement. Only

the data on the function domain[0, L] is available, but for the simulations to run with the periodic boundary

conditions, we need to consider the influences of neighbors outside the domain for the animals living close

to the boundaries,x = 0, L. To extend the domain when incorporating these external influences into the

signal functionsy±(u±), we setu(x + L, t) = u(x, t).

In addition, we must consider where to stop considering the neighbors outside the function domain. In

other words, with the assumption thatu(x + nL, t) = u(x, t), wheren = 0, 1, ...,∞, the calculation of

the signal functions from the neighbors would be extremely computational expensive. This is due to the

fact that the Gaussian kernel with no compact support in the Eulerian model implies that every neighbor,

no matter how far away, contributes to the turning probability. Therefore, we must choose some reasonable

limit where the interaction kernel becomes negligible to reduce the computational cost of using periodic

boundary conditions. To reproduce the results in the Eftimie model, only the periodic boundary conditions

are used because they were the only ones explored extensively in the original work.

3.5 Space and Time Discretization

An interesting aspect that has arisen from the discretization of the original Eftimie model is the missing

parameterγ. According to equation (3.5),γ is the ratio of the spatial step to the grid-size in the limit where

both values approach zero. In other words,γ can be regarded as a measure of the speed all the animals

are traveling at. With the Lagrangian formulation, becausewe are no longer using an infinitesimally small

grid-size and time step to make the system variables continuous, there is no explicit parameter for speed that

plays a role in the numerical simulations. However, the Lagrangian formulation has two additional numerical
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parameters that are of concern:∆t and∆x, which are the time and spatial increments respectively.

The first numerical parameter,∆t, does not change the patterns generated. That is because∆t is not

explicitly involved in the numerical simulation in Section3.3. Further, it is implicitly implemented because

each iteration, involving the decision to change directionand update in position, represents one time step. If

∆t does not play a role, then how do we adjust the speed of the individuals? To answer this question, we

look at equation (3.6).

To vary the speed, we need to adjust step size and not the time increment, as previously discussed.

However, the definition of the Lagrangian formulation does not require for discrete space; it simply implies

that the model tracks the animals’ movement from an individual point of view. In fact, there is no limitation

on what speed the animal travels at. We are thus motivated to uses in equation (3.6) to designate the distance

that an animal travels per time step, which is effectively, the speed.

Interestingly, we find that an optimal speed must be used for the animals to be able to aggregate. When

the speed is too fast, the animals have a tendency to move awayfrom each other very quickly, and no

consistent pattern can be found. When the speed is too slow, the same patterns form, but a longer time

period is needed to observe the formation of these patterns.Therefore, to optimize the results range and

computational time, the default speed is set to be 0.1, whichcorresponds to the speeds used by Eftimieet al.

To emphasize the need to use an appropriate speed, we vary theparameters while keeping all other model

parameters constant. The impact of speed on the patterns generated is clear in Figure 3.2, which displays

three different results depending on the value ofs. In the case where the speed is too slow, the algorithm

must run for twice as long compared to the optimal speed to achieve the same equilibrium zig-zag state (see

Figure 3.2a,c). In the case where the speed is too high, it is difficult to observe any aggregation between the

individuals (see Figure 3.2b).

The default value ofγ is set at 0.1 because this is in the range of values used forγ in the original PDE

model. We also do not put an emphasis on the speed because the focus of this project is to investigate

how different communication mechanisms lead to different aggregation behaviors. Therefore, only the three

parameters related to the strength of these interactions,qr,al,a, are varied in the simulations, whereas the

other parameters are simply kept at constant values that allow for pattern formation.
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(a) (b) (c)

Figure 3.2: The effect of speed on the aggregation patterns.(a) Low speed (s=0.01); (b) high speed (s=1);
(c) optimal speed (s=0.1). Each trace represents an individual’s trajectory. For smalls (a), we observe a
zig-zag pulse after a long transient period. For larges (c), aggregation behavior is lost. When the speed is at
an intermediate value (b), the individuals form zig-zag pulses after a short transient period.

3.6 The Uniform Kernel

As a starting point for exploring the Lagrangian model, the simplest option is a uniform kernel. The uniform

kernel is given by:

K̂i(s) =

{

1
2mi

, s ∈ [si − mi, si + mi],

0, otherwise.
(3.11)

si is the centre of each interaction zone, andmi defines the width (see Figure 3.3). The uniform kernel

does not vary the impact of neighbors at different locationswithin the interaction zones. Only traveling and

stationary pulses are found as shown in Figure 3.4.

3.7 The Triangular Kernel

Motivated by the results of the previous section, a triangleis a suitable candidate for the shape of the inter-

action kernel. The equation for this interaction kernel as apiecewise linear function of space is given by the

equation below (see Figure 3.5.)

K̂i(s) =

{

1 − | s−si

mi
|, s ∈ [si − mi, si + mi],

0, otherwise.
(3.12)

Thus far, only the zig-zag, traveling, and stationary pulses have been observed from the Lagrangian

implementation of all the submodels. Not a single submodel can produce all four patterns. Submodels M1,

M2, and M4 are the ones with the greatest pattern range, generating three aggregation patterns. The details
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Figure 3.3: The uniform kernel. Each curve is a uniform kernel used in the Lagrangian model described by
equation (3.11).sr = 0.25, sal = 0.5, sa = 1, mr,al,a =

sr,al,a

8 .

32



(a) (b)

Figure 3.4: Patterns produced by the uniform kernel using submodel M1. (a) Stationary pulses wtihqal = 0.
(b) Traveling pulse withqal = 1. All other parameters areλ1 = 0.2, λ2 = 0.9, qr = 1, qa = 1, sr =
0.25, sal = 0.5, sa = 1, andmr,al,a =

sr,al,a

8 .

and implications of the results will be further discussed, but first, we must have a clear description of each

of these patterns.

To better compare the results between the Eulerian and Lagrangian models, we explain the definitions

of different behavioral patterns. We will only be discussing those that exist for both formulations, which are

the stationary, traveling, and zig-zag pulses so far. When there is one group that travels in one consistent

direction, it is a traveling pulse. In the definition of the stationary pulses, it is irrelevant how many groups

the animals have aggregated in. As long as the individuals remain in the same general area, we define them

as stationary pulses.

The zig-zag pattern is a pattern that has not been observed byother mathematical models. The zig-

zag pulse is simply where the main group, like the stationarypulse, remains in the same general vicinity.

However, this is now caused by the entire group changing its direction periodically (see grid 7 in Figure 2.3).

The semi-zig-zag pattern is not included in Figure 2.3, but it is one of the results found by the Eftimie model

( [9], [10], [11]). Here, the animals transition in and out ofbeing stationary pulses and traveling pulses.

Specifically, they repeat the cycle of traveling in one direction consistently before remaining still for a short

period of time. This seems to mimic immigration in a grand scale with breaks incorporated.

With the behavioral patterns formally defined, we discuss the results produced by two different interac-

tion kernels in the following sections. The first is a triangular interaction kernel, and the second is a cut-off

Gaussian kernel. Also, we offer some explanations why only some patterns are produced.
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Figure 3.5: Triangular interaction kernels. These curves are the kernels used in the Lagrangian model
described by equation (3.12). Parameters:sa = 1, sal = 0.5, sr = 0.25, mj =

sj

8 in the Gaussian kernel
andmj = sj in the discrete formulation,j = r, al, a.

Submodel
Stationary pulse Stationary pulse Traveling Zig-zag
(large groups) (small groups) pulse pulse

M1 Y Y Y N
M2 Y Y Y N
M3 Y N Y N
M4 Y Y N Y
M5 N N Y N

Table 3.1: Results produced with the triangular kernel.
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(a) (b)

(c) (d)

Figure 3.6: Patterns obtained with the Lagrangian model with triangular kernels. (a) Stationary pulse (large
groups); (b) stationary pulse (small groups); (c) traveling pulse; (d) zig-zag pulse. In (a) and (c), animals
form stationary pulses. In (b), we observe a traveling pulsewith a small population of strayers. In (d),
the animals travel in a zig-zag pulse. Parameters used in (a). M1: λ1 = 0.4, λ2 = 1.8, qr = 0.5, qal =
0.9, qa = 0.7. (b) M2: λ1 = 1.33, λ2 = 6, qr = 0, qal = 1, qa = 1. (c) M3: λ1 = 1.33, λ2 = 6, qr =
10, qal = 0.1, qa = 10. (d) M4: λ1 = 0.2, λ2 = 0.9, qr = 20, qal = 0, qa = 19. In all of the above cases,
sr = 0.25, sal = 0.5, sa = 1, andmr,al,a = sr,al,a.

Figure 3.6 shows four different behaviors found with the triangular kernels, and every trace shows an

individual trajectory. In panel (a), large stationary pulses are shown. Here, the animals are not stationary,

although the group as a whole remains in the same neighborhood. In fact, the individuals vary their locations

within the group, and sometimes they may even deviate from the main group. However, the animal is always

able to return to the main group because of its neighbors’ attraction signals. In panel (b), small stationary

pulses are shown. Here, the animals are in small groups of only two or three. The groups are in close

proximity to each other, but there is no merging behavior.
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In panel (c), a traveling pulse is shown. Interestingly, there is a group that has strayed away and remained

uninfluenced by the main group. A few individuals have deviated enough from the population so that it is

outside the attraction zone of the members in the traveling group. The emergence of this separate subgroup

is a rare phenomenon in this model because usually wanderinganimals cannot escape the sink formed by the

attraction zones of the group, which forces escapees to headtowards the centre of the crowd. Therefore, the

initial departure is a result of the inherent stochasticityin how the animals choose to turn using a uniformly

distributed random number. A question to ask is whether the strayers would be able to re-join the main

group due the periodic boundary conditions. To answer this,we run the simulation for a longer period of

time so that the main group arrives at the left domain boundary, re-enters at the right domain boundary,

and continues traveling in a pulse towards the strayers. In submodel M3, the animals can only receive

communication signals from the neighbors in front of them. Therefore, the strayers should be able to sense

the main group after it has passed in front of them. Whether ornot they decide to change their direction to

re-join the larger group depends on the relative sizes of thestrayers and the main group. It is observed that

the main group must be sufficiently large to form an attraction force strong enough to pull the strayers back

in.

In panel (d), the animals aggregate in a zig-zag pattern. This is another behavior where the stochasticity

in the Lagrangian model is highlighted. In the zig-zag patterns found by the Eulerian formulations, animals

change directions periodically, and the group moves back and forth about the same center. In panel (d), the

individuals do not turn in a predictable manner, and the general direction that the zig-zag travels in appears

to be random.

A general trend is that a largerλ1 andλ2 reduces the size of aggregations. This is because individuals

change direction at a higher frequency and this makes traveling consistently in one direction unlikely, dis-

couraging merging behavior. There must also be a balance betweenλ1 andλ2, for an increase inλ1 means

that the animal is more likely to turn, even without any signals from neighbors. Therefore, ifλ2 > λ1, the

effects of the communication mechanism can be overwhelmed by this constant turning probability.

Some of the behaviors can be formed with only two social interactions. For example, submodel M4 can

produce zigzag pulses and stationary pulses without alignment. This echoes the results of some of the previ-

ous Lagrangian models discussed where not all of the three social interactions are used ( [6], [20], [21], [30]).

Submodel M3 shows some interesting behavior where individuals are more easily lost because only those

who are heading towards the reference individual are considered in the social interactions.

Submodel M5 produces the smallest range of behaviors (it canonly generate zig-zag pulses) because it

considers the smallest number of neighbors, specifically only those are who are ahead and moving towards
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Submodel
Traveling Stationary Biased zig-zag Unbiased zig-zag Breather

pulse pulse pulse pulse
M1 Y Y N N N
M2 Y Y N N N
M3 Y Y N N Y
M4 Y Y Y Y N
M5 N N Y N N

Table 3.2: Results produced with the Gaussian cut-off kernel.

the reference individual. With this restriction, it is not surprising that other submodels can produce more

patterns. The original Eftimie model and the Lagrangian implementation both share the result that submodel

M5 only produces one aggregation behavior.

3.8 The Cut-off Gaussian Kernel

Another option for the interaction kernel is to simply choose a cut-off value for which the Gaussian interac-

tion kernels are assumed to be zero. This would give an interaction kernel with a shape that is closer to that

used in the Eftimie model. The essential difference is that in the continuous model, because the Gaussian

kernel does not have compact support, the individuals are assumed to have no limit in their ability to detect

neighbors far away. In the discrete version, with the introduction of the cut-off value, the individuals can

only sense neighbors in a defined neighborhood. Since the discrete version aims to reproduce the results of

the Eulerian formulation, the cut-off value is chosen to be half of the total domain size. This implies that

the individual can see all of its neighbors because it is assumed to look in both directions to determine the

turning probability. Through this action, the individual scans the entire domain without counting the same

neighbor twice with the periodic boundary conditions. The following equation, therefore, is another sensible

choice for an interaction kernel that is to be tested:

K̂i(s) =

{

1
2πm2

i

exp(−(s−si)
2

2m2

i

), s ∈ [si −
dom

2 , si + dom
2 ],

0, otherwise,
(3.13)

wheredom is the total domain size.
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(a) (b)

(c) (d)

Figure 3.7: Results of Lagrangian model with cut-off Gaussian kernel. (a) Stationary pulse; (b) breather;
(c) unbiased zig-zag pulse; (d) biased zig-zag pulses. In (a), we observe a stationary pulse. Panel (b)
shows a breather, where animals temporarily deviate from the main group before being drawn in by the
attraction force. In (c), there is an unbiased zig-zag pulse, where the animals remain in the same general
vicinity. This is different from the biased zig-zag pulse in(d), where the group’s position is shifting to the
right. Parameters used in (a). M3:λ1 = 0.2, λ2 = 0.9, qr = 4, qal = 30, qa = 30. (b) λ1 = 0, λ2 =
0.8, qr = 30, qal = 0, qa = 10. (c) M5: λ1 = 0, λ2 = 0.8, qr = 50, qal = 30, qa = 50. (d) M4:
λ1 = 0, λ2 = 0.8, qr = 50, qal = 30, qa = 50.

Results are shown in Figure 3.7. In panel (a), the stationarypulse shows non-constant interior density.

There are more animals at the boundary compared to the center. Also, we see how two groups merge because

their attraction zones overlap, causing the two pulses to gravitate towards, and eventually, join each other.
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In panel (b), breathers, which have not been found with the triangular kernels, are shown. Here, animals can

actually deviate quite far away from the main group before returning. This is the main difference separating

it from the stationary pulse, where animals can only travel asmall distance away before being pulled back to

the main group by attraction. In panel (c), we see the zig-zagpulse again, with no directional bias. In panel

(d), the biased zig-zag pulse shows animals traveling in onedirection between short, temporary switches to

traveling in the opposite direction.

Comparing the parameters used for the Gaussian kernel and the Lagrangian kernel, we see that the

Gaussian kernel formulation requires thatλ2 is zero for aggregation to occur. Using a non-zeroλ2 with the

parameter sets eliminates any patterns. This indicates that with the Gaussian kernel, we must emphasize

the effects of the communication mechanism by ignoring any constant turning probability. Even whenλ1 is

zero, panels (b) and (c) show that stochastic effects alone can cause loss of individuals from the main group.

With this kernel, there is a larger range of movement patternobserved, similar to that of the Eftimie

model. In general, submodels M1 and M2 produce the usual patterns seen in most movement models, like

traveling and stationary pulses. Submodels M3, M4, and M5 generate some of the new pattens from the

Eulerian model, like breathers, and zig-zag pulses.

3.9 Asymmetry in Communication Mechanisms

One of the aspects that the Eftimie model explored is asymmetry in communication mechanisms, as men-

tioned in Section 2.3. Essentially, the individuals sense neighbors on one side stronger than on the other,

which is described in equation (2.9). The following equation expresses the same scenario in discrete space:

yal = pr

∑

vj<0,xj∈Zright,ali

Kal(|xj − xi|) − pl

∑

vj>0,xj∈Zleft,ali

Kal(|xj − xi|), (3.14)

pr 6= pl. (3.15)

Like the Eulerian formulation, the repulsion and attraction signals are modified in a similar fashion to incor-

porate asymmetry.

However, in patterns like the traveling and stationary pulses, the asymmetry does not produce a notice-

able change. To observe the effects of varying the influence from neighbors on the right and the left, we use

the zig-zag pulse. Figures 3.8(b) and 3.8(c) show the group behavior when the signal strength is stronger on

one side than the other. As a result, the zig-zag pulse is biased towards the side where the interaction signals

are stronger. When the interaction signals are the same strength on either side, the group forms a zig-zag

pulse that moves about in the same area (Figure 3.8(a)).
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(a) (b) (c)

Figure 3.8: The effect of asymmetry on the zig-zag pattern. (a)pl = pr; (b) pl > pr; (c) pl < pr. If pl = pr

(a), the animals sense neighbors on each side equally and therefore form a symmetric pattern where the main
group has no biased tendency to move left or right. Therefore, the zig-zag pulse remains in the same general
vicinity. If pl > pr (b), the animals travel to the left. Ifpl < pr (c), the animals travel to the right.

3.10 Discussion

In this chapter, we investigated how we transform the original continuous-time and space movement

model into a discrete-time and space formulation using the same master equations that govern the turning

probabilities based on interactions with neighbors. The Lagrangian model has succeeded in generating some

of the patterns found in the Eulerian model, with the zig-zagand breather pulses never before produced by

any other individual-based model. In addition to these new patterns, we have also found the traveling and

stationary pulses. Feathers, ripples, and and traveling trains are not found.

The reason that not all patterns from the Eulerian model are generated may be simply due to the effects

of the discretization or the changes made to the interactionkernels. On the other hand, this may also be

because the parameter space was not explored sufficiently. This is where the advantages of the Eulerian

formulation become evident. With the application of bifurcation theory, Eftimieet al. are able to determine

the relevant parameter ranges for the existence of various steady states. In a Lagrangian model, we can only

run multiple simulations with various parameter sets to finddifferent aggregation patterns.

Comparing Figures 3.7 and 3.8 to Figure 2.3, we see that stochastic effects play a much more significant

role in the Lagrangian formulation. This is demonstrated bythe fact that none of the patterns from the

original model displays any random loss of individuals fromthe main group. Also, an interesting feature in

Figure 2.3 is that we can observe the gradients in the population, where the group can smoothly transition

between a dense to a sparse area. With the Lagrangian formulation, we do not observe this phenomenon.
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The simulations with the triangular and Gaussian interaction kernels have generated encouraging results,

which bring us to the following question. If the system now describes animals moving in continuous time

using the same movement and communication principles, whatpatterns would we observe? Would the

parameters have the same impact as in the Lagrangian formulation? What is the most accurate way to

translate Eftimie’s PDE model into an ODE model? With these questions in mind, we investigate pattern

formation in a discrete-space, continuous time system in the following chapter.
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Chapter 4

Pattern Formation in a Discrete-Space,
Continuous-Time System

4.1 Introduction

In [9], [10], and [11], the individuals were modeled interacting and traveling in a continuous-time, con-

tinuous space system. In the previous chapter, the same set of interaction rules were taken to produce a

Lagrangian system with discrete-time and discrete-space.The further question to investigate is how the

behavior compares if the individuals were described by a continuous-time and discrete-space system. The

derivation of this model would require taking the PDE systemdeveloped in [9], [10], and [11] and translat-

ing the equations into a set of ODEs for each spatial point considered. In the following sections, we will

describe how the ODE set is formed and the results of the simulations.

In Section 4.2, we derive an ODE system from the PDE system in the Eftimie model. Then, in Sec-

tion 4.3, we present the aggregation patterns generated by this ODE model.

4.2 Numerical Implementation

Similar to the original Eftimie model, we have two populations to track: the left-moving and right-moving

individuals. Therefore, the solution is described by two vectors with lengths determined by the grid-size;

one vector,~u+, contains the number of right-moving individuals at each grid-point, while the other one,~u−,

records the number of left-moving individuals at each grid-point.

The system that is to be discretized over space is given by equations (2.1) and (2.2), and the model is to be

considered over a finite 1-D domain divided into a total ofn grid-points with periodic boundary conditions.
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Time then becomes the only continuous variable, allowing the application of a Matlab ODE solver. This

technique is referred to as the method of lines. To express the spatial derivatives with finite differences, the

upwind-downwind schemes must be considered so that the discretization is consistent. Since equation (2.1)

and (2.2) describe right and left-moving individuals respectively, it is clear that the backward difference

must be used for equation (2.1) and the forward difference must be used with equation (2.2). The reason

is clear when we consider the available information on a particular individual’s previous traveling history.

For example, given one entry in~u+, it is known that these individuals in the relevant grid-point would be

in the left adjacent grid-point at the previous time-step. As a consequence, only the backward discretization

scheme can be used because no information is given for the number of individuals in the right adjacent

grid-point at the previous time-step. The discretization can be described by the following equation:

∂u+

∂x
=

u+
i − u+

i−1

∆x
+ O(∆x), (4.1)

i = 1, ..., n, (4.2)

where the indexi indicates the grid-point along the domain being described.(Note that this definition is

different from that used in Chapter 3, wherei refers to the individual.) Similarly, one entry in~u− would

only contain information about the number of individuals inthe right adjacent grid-point at the previous

time-step. Here, the forward discretization scheme must beused:

∂u−

∂x
=

u−
i+1 − u−

i

∆x
+ O(∆x), (4.3)

i = 1, ..., n. (4.4)

The discretization scheme used has a first-order approximation error. Using a higher-order scheme like the

central difference approximation is not possible because such schemes require past information from both

sides of the relevant grid-point, which is not possible whenthe directionality of an animal determines that

information is only given on one side.

Using equations (4.2) and (4.4), equations (2.1) and (2.2) can be transformed into the following system

of ODEs:

du+
i

dt
+ γ

u+
i − u+

i−1

∆x
= −λ+u+

i + λ−u−
i , (4.5)

du−
i

dt
− γ

u−
i+1 − u−

i

∆x
= λ+u+

i − λ−u−
i . (4.6)
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After rearranging the terms, the following ODE system is found:

du+
i (x)

dt
= −γ(

u−
i − u−

i−1

∆x
) − λ+

i u+
i (x, t) + λ−

i u−
i (x, t), (4.7)

du−
i (x)

dt
= γ(

ui+1 − ui

∆x
) + λ+

i u+
i (x, t) − λ−

i u−
i (x, t), (4.8)

i = 1, ..., n. (4.9)

The turning probabilities,λ±, must be calculated for each spatial point and traveling direction. To

calculate this turning probability, we use the same equations given in the Eftimie model (see equations (2.3)

and (2.4)). The numerical integration method used to approximate the integral of the interaction kernels is

the composite Simpson’s rule, restrictingn to be an even number. To achieve this, we define a vector~K

representing the kernel strength, whose entires are given by:

K̂i(xj) =







4Ki(xj), if j even andj ∈ (1, n
2 ),

2Ki(xj), if j odd andj ∈ (1, n
2 ),

Ki(xj), if j = 1, n
2 ,

(4.10)

wherei = r, al, a andj = 1, ..., n
2 . Herexj are the grid-points along the function domain. Assuming that

the total domain size isL, xj can be defined asLj
n

. ~K only goes through half of the total domain because

an individual only scans through half the domain when looking to the left or to the right. Depending on the

particular submodel, the neighbors who determine the turning probability vary. To illustrate exactly how the

turning probability is calculated for a reference individual, an example is given.

Assuming that the individual follows the interaction rulesgiven by submodel M1, there are two dif-

ferent interaction modes. Essentially, attraction and repulsion follow the same interaction mode, where all

neighbors are considered regardless of their orientations, while alignment is in a different category; only the

neighbors who are moving towards the reference individual are considered. To be clear which neighbors

are relevant, four vectors are defined:~u±
right and~u±

left. The subscripts, left and right, indicate where the

neighbor is located with respect to the reference individual. In other words,~u±
right would be simply the

vector formed by taking all the entries that follow the reference location in the vectors~u±. For example,

if the reference location isxj , then~u±
right would be~u± from the indexj + 1 to n, and~u±

left would be~u±

from the index1 to j − 1. Since the boundary conditions are periodic, to ensure that~u±
right and~u±

left have

the same number of entries, we can shift a section of the longer vector to the shorter one (see Figure 4.1).

For instance, if~v±right are longer than~u±
left, then we would shift right-most entry in~u±

right to ~u±
right as the

right-most entry until the vectors are of the same length. Similarly, if ~u±
right are shorter than~u±

left, then we

would shift left-most entry in~u±
left to ~u±

left as the left-most entry. We can perform these operations because

the model is applied with periodic boundary conditions.
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Figure 4.1: In case (a), the individual is situated in the left side. Therefore,~u±
left wraps around the left end

and extends into the right end of the domain to have the same length as~u±
right. Similarly, case (b) shows that

~u±
right wraps around the right end and extends into the left end of thedomain when the reference individual

is situated in the right side.
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Here, we take submodel M1 as an example for calculation ofy+
r,al,a, and the reference location isxj .

y+
i,al = qal( ~Kal (̇~u

−
right − ~u+

left)), (4.11)

y+
i,r,a = qr,a( ~Kr,a(̇~uright − ~uleft)). (4.12)

The signals for the various submodels can be formulated similarly. The turning probability is then calculated

using the same functions as the Eftimie model with equations(2.3) and (2.4).

After having calculated the turning probabilities, the ODEsystem can simply be solved numerically by

Matlab using the function ode45, which is based on an explicit Runge-Kutta (4,5) formula and the Dormand-

Prince method. The Runge-Kutta (4,5) formula, used for solving ODE with initial conditions given, is an

explicit adaptive-size formula that minimizes the error bycalculating and then comparing the results found

with a Runge-Kutta-4 and Runge-Kutta-5 method, both requiring six function evaluations at each time step.

As a result of using the Dormand-Prince method, a fifth-ordersolution is produced. It is important to

recognize the numerical errors in our methods used for solving the ODEs because this helps us realize

where the differences in patterns formed with the PDE and ODEmodels arise.

4.3 Results using Discrete Space, Continuous Time Formulation

Since the ODE formulation is an intermediate version, we anticipate that the results would include patterns

that have been found in both of the Lagrangian and PDE models.Specifically, the traveling, stationary, and

zig-zag pulses are expected. However, with the ODE simulations, an unexpected result previously unseen

in the Eulerian PDE formulation is that a homogeneous solution is generated with most parameter sets used

in the PDE simulations for inhomogeneous patterns like breathers and traveling pulses. This may be a

consequence of the additional numerical errors incorporated due to the space discretization. In fact, ifλ1 is

large, meaning that there is a significant random component incorporated into the turning probability, it is

difficult to find an inhomogeneous distribution. This implies that with a space discretization, random effects

may be already incorporated into the system and an increase in the random turning probability overwhelms

the effects of the turning signals from neighbors.

When the random turning probability,λ1, is reduced, more spatial patterns are formed. The patterns

found include traveling and stationary pulses, traveling trains, breathers, and traveling breathers. Traveling

breathers have not been produced by the previous discrete-space-and-time formulations. These patterns are

shown in Figure 4.2, and the color scale is a representation of the population density. For example, in panel

(a) with stationary pulses, all the colored lines remain at the same location for each time step, which means

that the animals have aggregated in stationary groups.
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Submodel
Traveling Stationary Traveling Breather Traveling breather

pulse pulse train
M1 Y Y Y N N
M2 Y Y N N N
M3 Y N N N Y
M4 Y N N N Y
M5 Y Y N Y Y

Table 4.1: Results produced by ODE formulation.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Results of Lagrangian ODE model. (a) Stationarypulse; (b) traveling pulse; (c) traveling train;
(d) traveling breathers; (e) traveling breather; (f) breathers.∆ = γ = 0.1 in all figures. Other parameters
used in (a) M1:λ1 = 0.2, λ2 = 0.9, qr = 10, qal = 5, qa = 10. (b) M2: λ1 = 0.4; λ2 = 1.8, qr =
0.2, qal = 2, qa = 2. (c) M3: λ1 = 0, λ2 = 6, qr = 5, qal = 2, qa = 5. (d) M3: λ1 = 0, λ2 = .9, qr =
2, qal = 2, qa = 6. (e) M5: λ1 = 0, λ2 = .9, qr = 10, qal = 5, qa = 10. (f) M5: λ1 = 0, λ2 = .9, qr =
0, qal = 30, qa = 30.
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Interestingly, zig-zag pulses could not be found at all, while traveling breathers are a prevalent pattern

for submodels M3-5 in spite of its absence in the previous Lagrangian formulations. In panels (a) and (b)

of Figure 4.2, the population density is displayed, where the animals are in a stationary and traveling pulse.

In the traveling trains in panel (c), the animals are separated into two different groups while moving in the

same direction. This pattern was very rare because in most cases, traveling groups joined into one traveling

pulse. There are two ways that animals move in traveling breathers, one from submodels M3-4 and another

from submodel 5. In panel (d), the traveling breathers consist of animals who periodically move towards and

away from the center of the group. In panel (e), the groups of animals mostly travel in a straight line, but

some at the edge periodically move outwards before re-joining their group to form a single file again. Not

all of the groups exhibit this behavior, and those who do may not display the same degree of expansion and

contraction. For example, the groups in the centre of the domain exhibit more fluctuations in the size than

those closer to the boundary of the domain.

Having explored the discrete-space-and-time, ODE, and PDEformulations, we can now take a look at

incorporating direction-dependent communication in other Lagrangian models that have a different approach

to modeling animal movement. In the following chapter, we use the Kolpas model as the modeling frame-

work while adding components from the Eftimie model. Would the model produce the same patterns as

the Eftimie model or the Kolpas model? What trends would thishybrid model share with its predecessors?

These are key questions that we explore.
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Chapter 5

A Eftimie-Kolpas Hybrid Model:
Prioritizing Repulsion

5.1 Introduction

The Kolpas model, as previously discussed in subsection 1.2.4, shares many features as the Eftimie model.

Both consider repulsion, alignment, and attraction between individuals, but the Kolpas model does not have a

direction-dependent component in the interactions. Another significant difference in the assumptions for the

Kolpas model is that individuals prioritize repulsion overalignment and attraction. Individuals in the Kolpas

model consider alignment and attraction only if there are noneighbors in the repulsion zone, as illustrated

in Figure 5.1. We assume that animals move at a constant speedof ±1. Kolpas found that the size of the

alignment zone determines whether the group is stationary or traveling. When the size of the alignment zone

is small, animals are in the stationary phase. As the size of the alignment zone increases, the animals are

more likely to be traveling. The Kolpas model shows that for an intermediate size in the alignment zone,

animals spontaneously switch from the stationary and traveling phases (see Figure 5.2). Kolpas termed this

behavior stick-slip.

To understand animal aggregation behavior, we incorporatedirection-dependent communication mech-

anisms from the Eftimie model into the modeling framework ofKolpaset al. and investigate whether or

not animals can spontaneously transition between different behaviors using only one parameter set, similar

to the stick-slip behavior in the Kolpas model. A question that is answered at the same time is whether

or not more patterns can be produced from the Kolpas framework if the direction-dependent mechanism is

incorporated.

In Section 5.2, we combine the Kolpas and Eftimie models. In particular, we discuss the modifications
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Figure 5.1: The decision-making process of the Eftimie-Kolpas hybrid model. The individuals scan the
alignment and attraction zones only if the repulsion zone isempty.
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(a) (b) (c)

Figure 5.2: The behaviors of the Kolpas model. (a) Small alignment zone with size of 0.1 unit; (b) inter-
mediate alignment zone with size of 0.6 unit; (c) large alignment zone with size of 1.1 unit. Each blue line
represents an animal’s trajectory. The animals travel whenthe alignment zone is large (c) and remain station-
ary when the alignment zone is small (a). For an alignment zone of intermediate size, they spontaneously
switch between the two phases (b). This behavior is called stick-slip.

introduced into the Kolpas framework and explain why these changes are significant. Then, we present

results from two different implementations in Section 5.3.Finally, we discuss the implications of our results

in Section 5.4.

5.2 Building the Eftimie-Kolpas Hybrid

An important consideration in building the Eftimie-Kolpashybrid is to determine what assumptions from

the Eftimie model should be incorporated into the Kolpas model. Since the distinguishing feature of the

Eftimie model is the direction-dependent communication mechanism, we choose to incorporate it in our

hybrid model. Therefore, the first step is to find what behaviors the Kolpas model can generate if we apply

the communication mechanisms described by Figure 2.1. Here, we use the Kolpas modeling scheme from

subsection 1.2.4 as our starting point.

Equations (1.8) and (1.9) must be modified depending on the submodel implemented. These are equa-

tions from the Kolpas model that calculate the interaction signals, the former considering repulsion and the

latter attraction and alignment. Equation (1.9) is applicable only if the repulsion zone is completely empty.

To demonstrate how they must be changed to include a direction-dependent component, we show the equa-

tions for communication signals of submodel M1. Because animals take into account all neighbors in the

repulsion zone, equation (1.8) remains the same. However, to send alignment signals, the neighbor must

be moving towards the reference individual in the relevant interaction zone. According to this requirement,
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equation (1.9) is modified into:

V =
vi(t) +

∑

cj(t)∈Zalj
(t),vi(t)(cj(t)−ci(t))<0 vj(t)

|vi(t) +
∑

cj(t)∈Zalj
(t),vi(t)(cj(t)−ci(t))<0 vj(t)|

+
∑

cj(t)∈Zaj
(t)

cj(t) − ci(t)

|cj(t) − ci(t)|
. (5.1)

The additional condition in the alignment term,vi(t)(cj(t) − ci(t)) < 0, means that neighbors in the

alignment zone must be moving towards the reference individual in order to be detected.

For notational convenience, we define the notation∗i, wherei = r, al, a, to represent the conditions that

the neighbors must satisfy to be considered in the social interactions. With this notation, equation (5.1) can

be rewritten as:

V =
vi(t) +

∑

∗al
vj(t)

|vi(t) +
∑

∗al
vj(t)|

+
∑

∗a

cj(t) − ci(t)

|cj(t) − ci(t)|
, (5.2)

where∗al = cj(t) ∈ Zalj (t), vi(t)(cj(t) − ci(t)) < 0 and∗a = cj(t) ∈ Zaj
(t). The conditions vary

according to the submodel, but they all share the common feature that the neighbor must be within the

relevant interaction zone.

Another question is whether or not we should further developour hybrid by adding interaction kernels

and parameters to assign the weights of the interactions. The results from the Lagrangian implementation

of the Eftimie model imply that interaction kernels play an important role in finding a larger pattern range.

To determine whether this also applies to the Eftimie-Kolpas hybrid, we simulate animal motion with and

without interaction kernels. In the Eftimie model, the group exhibits various grouping behaviors according

to the different weights assigned to each interaction. In contrast, the Kolpas framework always prioritizes

repulsion over alignment and attraction, meaning that we can only adjust the significance of alignment and

attraction but not repulsion. We introduce the parameterq̃a, which is the relative strength of attraction

compared to alignment.

In summary, if the repulsion zone is not empty, we use the following equation to determine the individ-

ual’s velocity:

V = −
∑

∗r

Kr(|cj(t) − ci(t)|)
cj(t) − ci(t)

|cj(t) − ci(t)|
. (5.3)

Otherwise, the individual proceeds to scan the alignment and attraction zones to calculate its direction:

V =
vi(t) +

∑

∗al
Kal(|cj(t) − ci(t)|)vj(t)

|vi(t) +
∑

∗al
Kal(|cj(t) − ci(t)|)vj(t)|

+ q̃a

∑

∗a

Ka(|cj(t) − ci(t)|)
cj(t) − ci(t)

|cj(t) − ci(t)|
. (5.4)

The definitions ofKr,al,a remain unchanged from equation (3.13), and the final velocity is calculated ac-

cording to equation (1.10), which normalizes the velocity to a value of±1. Periodic boundary conditions

are used in all of the simulations to ensure that the animals remain within a confined region, increasing the
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probability that they are close enough to interact with eachother. In contrast, the Kolpas model does not

use any boundary conditions because it simulates animal movement on an infinite domain. Its results do not

show many strayers, therefore eliminating the possibilityof losing group members.

5.3 Aggregation Patterns of the Eftimie-Kolpas Hybrid

In this section, we discuss two different implementations of the Eftimie-Kolpas hybrid. Their difference lies

in that the one involves interaction kernels while the otherdoes not. In Sections 5.3.1 and 5.3.2, we present

the patterns generated. In all of the simulations below, we keep speed constant at 0.075 space increment

per time step for easier comparison. Then, in Section 5.4, wediscuss the common trends between the two

implementations.

5.3.1 The Eftimie-Kolpas Model with No Interaction Kernels

In this subsection, we explore what types of behavior the Kolpas model generates if only direction-dependent

communication is included. We investigate all the submodels shown in Figure 2.1. The trends discussed in

this subsection can be generalized to all submodels even though we may only display results from a subset

of the submodels. Like the Kolpas model, we observe three patterns for the different submodels: traveling,

semi-zig-zag, and stationary pulses. It is important to recognize that the stick-slip behavior mentioned in the

Kolpas model is analogous to the semi-zig-zag pulses from the Eftimie model. Both are used to describe the

movement that spontaneously switches between traveling and resting. The pattern generated depends on the

parameters used.

In particular, we look at the effect of varying the attraction force by adjusting the parameterq̃a. As

shown in Figure 5.3, we find that the attraction force acts as aglue and maintains the integrity of the group.

In the case of small̃qa, we observe a traveling pulse with more strayers. Asq̃a is increased, strayers are

pulled back into the group, and the traveling pulse gives wayto semi-zig-zag solutions.

In the original Kolpas model, the behavior is controlled by the size of the alignment zone,mal. Accord-

ing to the results from Kolpaset al., we would expect that a larger alignment zone increases the tendency of

the group to be in the mobile phase. To verify if this holds forthe hybrid model, we vary the alignment zone

for behavior generated with a large and smallq̃a. Results are shown in Figure 5.4. We observe that in con-

trast to the Kolpas model, the size of the alignment zone doesnot affect the general qualitative behavior of

the group. For a largẽqa, the group remains stationary, as shown in Figures 5.4(a)-(c). Instead, we see fewer

stationary pulses spaced farther apart asmal is increased. The distance between each pulse is determinedby
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(a) (b) (c)

Figure 5.3: Different behaviors of the Eftimie-Kolpas hybrid with no interaction kernels for varying values
of the relative attraction strength. (a)q̃a = 0.3; (b) q̃a=3; (c) q̃a = 30. For a smallqa (a), a traveling pulse
is formed. For an intermediate value ofqa (b), semi-zig-zag pulses are formed. For a largeqa (c), the group
also forms semi-zig-zag pulses, but these are spaced further apart compared to those formed in (b). The
figure shows how the aggregation behavior changes for submodel M1 asq̃a is increased. Panels (a)-(c) show
different spatial scales because only the region that is explored by the animals is presented. Parameters used:
n = 100, p = 0.001, mr = 3, mal = 1, ma = 3.

where the attraction zone starts, as Figures 5.4(a)-(c) alldisplay a spacing of approximatelymr + mal. For

a smallq̃a, as shown in Figures 5.4(d)-(f), traveling pulses are always formed. For this behavior, it is more

difficult to define the edges of the pulses because there are many strayers. However, Figures 5.4(d)-(f) show

that asmal increases, the traveling pulse becomes less dense and more dispersed. Whenmal is sufficiently

large, the animals in the traveling pulse no longer appear tobe moving in a single cohesive group. Rather,

there are two files traveling in the same direction adjacent to each other, similar to the behavior shown in

traveling trains (see Figure 5.4(f)).

Given that the parameter̃qa has such a profound effect on the behavior of the animals, onewould expect

that the size of the attraction zone also plays an important role in determining the aggregation behavior.

However, this does not seem to be the case as no qualitative changes are observed as the parameterma is

increased.

Finally, we investigate how the population would react to a larger repulsion zone. Figure 5.5 shows that

as the repulsion zone becomes larger, the traveling pulses becomes less compact and there are more strayers.

If mr is sufficiently large, we predict that no aggregation would occur at all. Yet, it is most likely that this

threshold value ofmr is so large that it is no longer biologically relevant. To illustrate why settingmr > 8

is not realistic, we consider the scenario illustrated in Figure 5.5(c). Using a repulsion zone of eight units,

animals can still form a coherent traveling pulse, despite the high number of strayers. This suggests that

we should further increasemr to test whether or not the aggregation behavior is lost afterpassing a certain
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Different behaviors of the Eftimie-Kolpas hybrid with no interaction kernels for varying sizes of
alignment zone. (a)mal = 1; (b) mal = 3; (c) mal = 6; (d) mal = 1; (e) mal = 5; (f) mal = 7. The
figure shows how the aggregation behavior changes for submodel M1 asmal is varied. In panels (a)-(c),
stationary pulses are formed. In panels (d)-(f), travelingpulses are formed. In general, asmal increases, the
spacing between the pulses increases as well. Parameters used: n = 100, p = 0.001, mr = 1, ma = 3 for
two values of̃qa (q̃a=3 in (a)-(c);q̃a=0.3 in (d)-(f)).
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(a) (b) (c)

Figure 5.5: Different behaviors of the Eftimie-Kolpas hybrid with no interaction kernels for varying sizes of
the repulsion zone. (a)mr = 0.1; (b) mr = 2; (c) mr = 8. The figure shows how the aggregation behavior
changes for submodel M3 asmr is varied. For all three values ofmr used in this figure, a traveling pulse is
formed. Asmr is increased, the pulse becomes less dense. Parameters used: n = 100, p = 0.001, mal =
1, ma = 1, q̃a = 0.3.

threshold value. However, given that the animals move at a constant speed of 0.075 space increment at

each time step, an animal would have to walk approximately 107 steps to cover a repulsion zone of eight

grid-points. Therefore, it is doubtful that an animal wouldbe repelled by a neighbor that is so far away.

Another interesting aspect to explore is whether or not all three interactions are needed for aggregation

behavior. In particular, are both alignment and attractionrequired to keep the group together? From Fig-

ure 5.6, we can deduce that repulsion pulls the group apart, while alignment and attraction help maintain

the integrity of the group. Interestingly, even though repulsion is prioritized, as long as either alignment

or attraction is present, the animals can form one cohesive group. Figure 5.6(a) shows a pulse in random

movement, emphasizing the importance of alignment in the formation of a traveling pulse. Figure 5.6(b)

shows the traveling pulse loses individuals consistently,highlighting how attraction can act as a glue be-

tween individuals.

5.3.2 The Eftimie-Kolpas Hybrid with Cut-off Gaussian Kernels

In this subsection, we discuss the aggregation patterns generated if both interaction kernels and direction-

dependent communication mechanisms are included in the Kolpas model. The first noticeable difference

between the hybrid version with and without interaction kernels is the significant increase in the number of

strayers when cut-off Gaussian kernels are added. This feature is especially evident in submodels M3 and

M5, where aggregation behavior is lost. Animals in submodelM5 scatter especially quickly, likely due to

the fact that the social interactions involve fewer neighbors when compared to submodel M3. According to
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(a) (b)

Figure 5.6: Aggregation patterns for the Eftimie-Kolpas hybrid with no interaction kernels using two social
interactions only. (a)mal = 0; (b) ma = 0. This figure shows that aggregation occurs as long as attraction
or alignment is present. For no alignment (a), even though aggregation occurs, the individuals cannot form
a traveling pulse. For no attraction (b), traveling pulses are formed. Parameters used for both figures:
q̃a = 3, n = 100, p = 0.001. Interaction zone sizes in Figure 5.6(a):mr = 2, ma = 2. Interaction zone
sizes in Figure 5.6(b):mr = 2, mal = 3.

Figure 2.1, submodels M3 and M5 are the two submodels that only take into account neighbors which are

in front of the reference individual. This implies that for the Eftimie-Kolpas model with cut-off Gaussian

kernels, it is important to receive communication signals from both directions. Therefore, in the discussion

below, we focus on submodels M1 and M4.

The first parameter that we explore for submodel M1 isq̃a (see Figure 5.7). The value ofq̃a affects how

cohesive the group is. Wheñqa is sufficiently small, the animals cannot form groups (see Figure 5.7(a)).

For larger values of̃qa, the animals aggregate in stationary pulses (see Figure 5.7(b) and 5.7(c)). This is

expected because attraction is the force keeping the individuals together.

For submodel M1, regarding the size of the attraction zone, we notice a different trend from the Eftimie-

Kolpas hybrid without any interaction kernels. When there is no attraction force present, the group travels

uniformly (Figure 5.8(a)). When there is a small attractionzone, the group exhibits stick-slip or semi-zig-zag

behavior (Figure 5.8(b)). Finally, when the attraction zone is sufficiently large, the animals form stationary

pulses (Figure 5.8(c)). The impact of the attraction zone onthe patterns formed is reminiscent of the trend

with regards to the size of the alignment zone in the Kolpas model, where animals travel for a large alignment

zone and remain stationary for a small alignment zone.
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(a) Weak relative attraction signal strength.
q̃a = 1.

(b) Intermediate attraction signal strength.
q̃a = 7.

(c) Strong relative attraction signal
strength.q̃a = 10.

Figure 5.7: Aggregation patterns for varying values ofq̃a in the Eftimie-Kolpas hybrid submodel M1 with
interaction kernels. (a)̃qa = 1; (b) q̃a = 7; (c) q̃a = 10. Whenq̃a is sufficiently small, aggregation behavior
is lost (a). In (b) and (c), where intermediate and strong relative attraction signal strengths are applied
respectively, stationary pulses are formed. The number of pulses increases as̃qa decreases. Parameters used
for all three figures:n = 100, p = 0.001, mr = 0.1, mal = 1, ma = 1.

(a) (b) (c)

Figure 5.8: Aggregation patterns for varying values ofma in the Eftimie-Kolpas hybrid submodel M1 with
interaction kernels. (a)ma = 0.; (b) ma = 1; (c) ma = 4. In (a), where there is no attraction, animals
form a traveling pulse. This figure shows that a larger attraction zone decreases the likelihood of the group
to be in the mobile phase ((b),(c)). Parameters used for bothfigures: q̃a = 10, n = 100, p = 0.001, mr =
1, mal = 1.
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The next aspect to investigate is how the animals’ behavior would vary according to the size of the

alignment zone,mal. Figure 5.9(a) shows that for a small alignment zone, animals remain stationary. As the

size of the alignment zone is increased, the group first transitions from stationary into semi-zig-zag pulses,

and then from semi-zig-zag into zig-zag pulses (see Figures5.9(b) and 5.9(c)). It is noteworthy that even

whenmal = 5.9, the animals do not form traveling pulses. This is due to the fact that the attraction zone

used is too large for a traveling pulse to be formed, a phenomenon observed in Figure 5.8. Hence, when the

attraction zone is reduced, the group forms a single traveling pulse (see Figure 5.9(d)).

Finally, we explore the effects of varying the size of the repulsion zone,mr. With a small repulsion

zone, animals are mobile. When the repulsion zone is sufficiently large, the animals no longer travel (see

Figure 5.10).

We summarize the results found from Figures 5.8, 5.9, and 5.10 in bifurcation diagrams (see Figure 5.11

and 5.12). These diagrams are not exact; rather, they are qualitative descriptions of how the behaviors

change according to the sizes of the interaction zones. For example, Figure 5.11 shows how the aggregation

behavior in the hybrid submodel M1 with interaction kernelschanges according to the sizes of the alignment

and attraction zones, which are given bymal andma. For a largemal and smallma, traveling pulses are

formed. For a largema, either zig-zag, semi-zig-zag, or stationary pulses are formed depending on the

magnitude ofmal.

Having explored how each interaction affects the behavior of submodel M1, we now discuss the patterns

produced by submodel M4. In submodel M4, we observe many of the same behaviors from submodel M1.

However, for most parameter sets, there is a noticeably larger number of strayers and the pulses become

more difficult to define. There are also a number of surprisingand counterintuitive outcomes that we have

not yet observed in previous implementations of the submodels. We discuss some of these below.

The first counterintuitive phenomenon is the transition from traveling pulses into a complete loss of

aggregation behavior when the attraction zone is increased. For submodel M1, a larger attraction zone

decreases the number of strayers (see Figure 5.8). For submodel M4, a sufficiently large attraction zone

results in the animals not being able to aggregate in groups at all (see Figure 5.13).

Consistent with the scenario above, the animals lose their ability to form groups when the repulsion zone

is decreased (see Figure 5.14). Whenmr is sufficiently large, stationary pulses are formed. An increase

in mr results in a larger distance between each pulse. Figures 5.14(b) and 5.14(c) suggest that the animals

prefer to form pulses that are spaced approximatelymr + mal apart, or where the attraction zone begins.

The threshold value ofmr where the behavior transitions from stationary pulses to unorganized motion is

approximately at 0.9. Whenmr is near this threshold, animals can be in any one of the two patterns. The
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(a) (b)

(c) (d)

Figure 5.9: Aggregation patterns for varying values ofmal in the Eftimie-Kolpas hybrid submodel M1 with
interaction kernels. (a) Stationary pulses with small alignment zone:mal = 0.1, ma = 1. (b) Semi-zig-zag
pulses with intermediate alignment zone:mal = 4.9, ma = 1. (c) Zig-zag pulses with large alignment
zone and large attraction zone:mal = 5.9, ma = 1. (d) Traveling pulses with large alignment zone and
small attraction zone:mal = 5.9, ma = 0.1. This figure shows that a smaller alignment zone decreases the
likelihood of the group to be in the mobile phase. Parametersused for all figures:̃qa = 10, n = 100, p =
0.001, mr = 1.
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(a) (b)

Figure 5.10: Aggregation patterns for varying values ofmr in the Eftimie-Kolpas hybrid submodel M1 with
interaction kernels. (a) Semi-zig-zag pulses withmr = 0.1. (b) Stationary pulses withmr = 0.5. This
figure shows that a smaller repulsion zone increases the likelihood of the group to be in the mobile phase.
Parameters used for both figures:q̃a = 10, n = 100, p = 0.001, mr = 1, ma = 1.

equilibrium configuration most likely depends on the randominitial conditions. Figures 5.13 and 5.14 give

two criteria for forming cohesive groups in submodel M4: a small attraction zone and a large repulsion zone.

If both requirements are not satisfied, the group does not exhibit any aggregation behavior. We would like

to emphasize that to encourage group formation, we can either decrease the attraction zone or increase the

repulsion zone. The effects from using a smaller attractionzone or a larger repulsion zone are similar since

the two interactions are essentially opposites of each other. The alignment zone was also varied to explore

its influence on the group behavior, but no noticeable changes in the patterns generated are found.

Having summarized the trends regarding the sizes of the attraction zones and the alignment zones, we

discuss and summarize the surprising trends of submodel M4 (see Figure 5.15). From the results of sub-

model M1, we observe similar phenomena where large repulsion zones produce stationary pulses and small

attraction zones produce traveling pulses. However, unlike submodel M1, submodel M4 cannot generate

semi-zig-zag or zig-zag pulses. Instead, when eithermr or ma is outside of the range where stationary and

traveling pulses are found, animals simply do not aggregate. Given that the number of neighbors considered

in submodel M4 are fewer compared to that in submodel M1, it isreasonable that the parameter space for

pattern formation is smaller.
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Figure 5.11: Two-parameter bifurcation diagram of the Eftimie-Kolpas hybrid submodel M1 with interaction
kernels. The two parameters aremal (size of the alignment zone) andma (size of the attraction zone). The
group forms a traveling pulse if the alignment zone is large and the attraction zone is small. For intermediate
sizes of alignment and attraction zones, the animals are in semi-zig-zag or zig-zag pulses. For a small
alignment zone and large attraction zone, stationary pulses are generated.
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Figure 5.12: Two-parameter bifurcation diagram of the Eftimie-Kolpas hybrid submodel M1 with interaction
kernels. The two parameters aremr (size of the repulsion zone) andma (size of the attraction zone). The
group forms a traveling pulse if both the attraction and repulsion zones are small. For intermediate sizes of
repulsion and attraction zones, the animals travel in semi-zig-zag pulses. For large repulsion and attraction
zones, stationary pulses are generated.
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(a) No attraction.ma = 0. (b) Small attraction zone.ma = 1.

Figure 5.13: Loss of aggregation behavior in the Eftimie-Kolpas hybrid submodel M4 with increased attrac-
tion zone. (a)ma = 0; (b) ma = 1. When there is no attraction (a), traveling pulses are formed. When a
small attraction zone is added (b), the individuals lose theability to form a cohesive pulse. Parameters used
for both figures:̃qa = 30, n = 100, p = 0.001, mr = 0.1, mal = 1.9.

(a) Small repulsion zone.mr = 0.5. (b) Intermediate repulsion zone.mr = 2. (c) Large repulsion zone.mr = 3.

Figure 5.14: Loss of aggregation behavior in the Eftimie-Kolpas hybrid submodel M4 with decreased repul-
sion zone. (a)mr = 0.5; (b) mr = 2; (c) mr = 3. When the repulsion zone is too small (a), the individuals
lose the ability to form a cohesive pulse. When the repulsionis sufficiently large ((b) and (c)), stationary
pulses are formed. Parameters used for both figures:q̃a = 30, n = 100, p = 0.001, mal = 1, ma = 1.
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Figure 5.15: Two-parameter bifurcation diagram of the Eftimie-Kolpas hybrid submodel M4 with interaction
kernels. The group forms a traveling pulse if the repulsion zone is in an intermediate range and the attraction
zone is small. For intermediate sizes of repulsion and attraction zones, there is no aggregation behavior. For
a large repulsion zone, stationary pulses are generated.
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5.4 Discussion

In this chapter, we built a hybrid model based on the Kolpas and Eftimie models and investigated what types

of behaviors the simulations would generate. We took the framework from the Kolpas framework and added

direction-dependent communication. We investigated the hybrid model without and with interaction kernels.

Because of the prioritization of repulsion, we find that in both versions of the Eftimie-Kolpas hybrid, the

sizes of the interaction zones, instead of the parameterq̃a, determine the behavior of the group. Also, in

the hybrid model with interaction kernels, the reference individual must be able to receive signals from both

sides to form patterns. This is a criterion that is not present in any other Lagrangian implementation in this

project thus far.

The general behavior of the Eftimie-Kolpas hybrid depends on a relatively small set of parameters, which

allows us to identify general trends easily. The results highlight the importance of the size of the interaction

zones, as the group favors either being stationary or traveling with different values ofmr,al,a. The results

establish that a large repulsion zone encourages the group to be stationary (see Figures 5.10 and 5.14), a

large alignment zone increases the likelihood of the group to be in the mobile phase (see Figure 5.9), and a

large attraction zone maintains the integrity of the group and keeps them in stationary pulses (see Figure 5.8).

This is contradictory to what has been found by Schonfisch ( [27]). The results from the cellular automata

simulations in [27] show that while alignment alone can influence the animals so that they are traveling in

one direction uniformly, no groups can be formed if attraction is not added. On the other hand, the Eftimie-

Kolpas hybrid shows that alignment alone can produce traveling pulses, but an increase in the attraction,

either by changing̃qa or ma, results in the disappearance of this mobile behavior with fewer strayers (see

Figures 5.8 and 5.4). This result is not surprising for the hybrid model since a stronger attraction means

that animals attempt to minimize the number of strayers, which does not require for the animals to be

traveling. Moreover, many of the traveling pulses producedfrom the rules of the Eftimie-Kolpas hybrid

contain strayers, which explains why animals choose to remain stationary to preserve the population within

the pulse when attraction is large. The optimal distance between each stationary pulse is determined by

where the attraction zone begins. Submodel M1 produces the most patterns, including stationary, semi-zig-

zag, zig-zag, and traveling pulses. This is most likely due to the fact that individuals in submodel M1 detect

more neighbors than any other submodels displayed in Figure2.1.

The Eftimie-Kolpas hybrid has produced many interesting results, some of which echo the findings from

the Lagrangian version of the Eftimie model. For example, a non-uniform interaction kernel is required for

the animals to exhibit interesting behaviors like zig-zag pulses. This discovery is encouraging because it
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suggests that animals may, in fact, require such a strategy to form the interesting patterns that we observe in

nature.
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Chapter 6

Conclusion

6.1 Introduction

In this thesis, we explored direction-dependent communication mechanisms introduced by Eftimieet al.

( [9], [10], [11]) in the context of Lagrangian approaches tomodeling animal movement. The models share

the common trait that individuals receive communication signals from neighbors in repulsion, alignment, and

attraction zones. We explored two implementations: the individuals in the first implementation consider the

signals in no preferential order, while the individuals in the second one prioritize repulsion over alignment

and attraction signals. In addition, we investigated an ODEmovement model with direction-dependent

communication mechanisms, which is an intermediate between the Lagrangian models and the Eftimie PDE

model.

One of our goals with animal movement modeling is to find the factors that determine what, if any,

patterns can be formed with the Lagrangian and ODE versions of the Eftimie model. For these simulations,

we assume that no communication signal is prioritized. Withthe Lagrangian models, we had the choice

of using different interaction kernels to vary the signal strength, depending on the distance between the

neighbor and the reference individual. Since the individual-based model was to be as similar to the Eftimie

PDE model as possible, we chose to work with triangular and cut-off Gaussian kernels, which share many

similarities with the original Gaussian kernels used by Eftimie et al. We also examined how different weights

of signal strengths can affect the patterns formed in the Lagrangian models. Using different parameter

sets, we were able to generate many of the patterns that Eftimie et al. found with the PDE model. Since

the incorporation of direction-dependent communication mechanisms in the PDE and Lagrangian models

generated such exciting results, we added the same communication rules in an ODE model. Here, we only

used the Gaussian cut-off kernels in our simulations. Compared to the Lagrangian implementations, the
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ODE model generated more patterns found by the Eftimie PDE model. This is due to the fact that the ODE

model is a closer translation of the PDE model.

Finally, we introduced a hybrid model that incorporates theEftimie model’s direction-dependent com-

munication rules in the Kolpas model, where repulsion is prioritized. Since repulsion is the only signal

considered whenever it is present, we can only vary the relative weighting between alignment and attraction

when there is no repulsion. As expected, a shift in this weighting has less of an influence when compared to

the Eftimie ODE and Lagrangian models. Therefore, for the hybrid model, we focus on how the sizes of the

interaction zones impact the behavior. The results show that alignment is very important for animals to form

traveling pulses, which echoes the findings of the original Kolpas model.

The results of this thesis confirm that many of the patterns found with the Eftimie PDE formulation can

be generated with a Lagrangian and ODE model. These include breathers, traveling breathers, stationary

and traveling pulses, traveling trains, and zig-zag pulses. Some patterns, like the breathers and traveling

breathers, have never been produced by any previous Lagrangian formulations. An alternating series of

traveling and stationary pulses represents a group of animals migrating in a consistent direction and taking

breaks in between.

In general, patterns generated with the models are anaglousto patterns observed for real groups of

animals as they interact with their surroundings. In fact, aggregating in groups offers many advantages. For

example, many types of fish, including guppies and pelagic fish, travel in schools for anti-predatory purposes,

as the per-capita predation risk is assumed to decrease according to the group size ( [19]). Therefore, being

able to aggregate in traveling trains and pulses is an important survival skill. An alternating series of traveling

and stationary pulses represents a group of animals migrating in a consistent direction and taking breaks in

between. Depending on the situation, the group may be more orless densely packed. For instance, the

groups may compress depending on whether vessels are passing above them ( [13]). In this case, the fish

are in the arrangement of a breather while the group expands and contracts continuously. In this formation,

those at the boundary may deviate momentarily before returning to the group. Birds have also been known

to display this type of behavior ( [8]). Zig-zag patterns, which have been found in the Lagrangian, ODE,

and Kolpas-Eftimie-hybrid models, are a part of the proteanphenomena, where animals show unexpected

movement and behavior so the predator cannot predict the prey’s location ( [15]). Buchananet al. describe

how dunlins escape predation from the merlins by rapidly switching orientation as an entire group ( [3]).

These biological examples highlight how important it is foranimals to be able to aggregate and exhibit

different patterns to adapt to the environment.

In the following section, we compare specific results from the Eulerian and Lagrangian formulations.

69



Finally, we discuss the implications and future work in Section 6.3.

6.2 Results from the Eulerian, ODE, and Lagrangian Formulations

Based on the interaction rules established by the Eftimie model ( [9], [10], [11]), we simulated animal

movement with both ODE and Lagrangian models. Each formulation has produced a different range of

results. The Lagrangian models have produced biased and unbiased zig-zag pulses, breathers, traveling

trains, and stationary and traveling pulses. Except for zig-zag pulses, the ODE model has generated all of

the patterns exhibited by the Lagrangian models. In addition, it can generate the traveling breather, which

could not be found with the individual-based simulations. This prompts us to ask when we should apply

each model. In particular, we should consider the specific situations where these aggregation patterns are

displayed in nature.

The Lagrangian formulation models the process where each animal senses its neighbors, decides whether

or not to turn, and moves along the domain. There are several advantages that the Lagrangian approach has

compared to the Eulerian one. First, instead of being able toreceive signals from those who are infinitely

far away, animals cannot sense their neighbors if they are not within a defined area. Second, by avoiding

the use of any Taylor series to derive a PDE system, nonlinearinteractions are included. Third, we factored

in stochastic effects with the use of a uniformly generated random variable to decide if an animal changes

direction.

In Chapter 3, we thoroughly explored the Lagrangian implementation of Eftimie’s PDE model with three

different interaction kernels: the uniform, triangular, and cut-off Gaussian kernels. With a uniform kernel,

only stationary and traveling pulses were found. The pattern range using triangular and cut-off Gaussian

kernels is much larger. By varyingqr,al,a, weights of the repulsion, alignment, and attraction signals, we

found breathers, traveling, stationary, and zig-zag pulses, thus largely reproducing the results obtained with

Eftimie’s PDE model. We note that the groups generated by theLagrangian formulation show a significant

number of strayers, which is not the case for those generatedby the Eulerian formulation. This emphasizes

that stochasticity plays an important role in the individual-based formulations.

In Chapter 5, we further explored the role of direction-dependent communication mechanism in another

Lagrangian model, namely the Kolpas model. In the resultingEftimie-Kolpas hybrid, repulsion is prioritized

over alignment and attraction. We generated patterns with and without interaction kernels using the hybrid

model. The main parameters that we varied are the sizes of theinteraction zones. A general trend that we

have discovered from these simulations is that attraction plays a central role in maintaining the integrity
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of the group, while alignment is crucial in forming traveling pulses. When a cut-off Gaussian interaction

kernel is used, reference individuals must observe neighbors from both sides to lower the number of strayers

and preserve the aggregation behavior. Moreover, the hybrid model has led us to discover interesting links

between the interaction zones and the aggregation pattern.In general, a large attraction zone encourages

animals to form groups, while a large repulsion zone has the opposite effect of increasing the number of

strayers from groups. With a large alignment zone, animals are more likely to be traveling. We found many

patterns with the hybrid model, including stationary, semi-zig-zag, zig-zag, and traveling pulses.

While the results are biologically relevant for both the hybrid and the Lagrangian Eftimie models, one

important limitation they share is that animals are restricted to moving only at certain times. This is not

the case for most organisms, which leads us to look for another method to model animal movement in

Chapter 4. The ODE formulation using assumptions from the Eftimie model removes this restriction by

making time continuous and keeping space discrete. We can view the spatial step as a representation of the

species’ average stride length. Similar to the Lagrangian model, the cut-off Gaussian interaction kernels have

compact support, defining a specific neighborhood where neighbors can exert an influence on the reference

individual’s movement. Using different values ofqr,al,a, this model has produced traveling and stationary

breathers and pulses along with traveling trains. Both traveling and stationary breathers and pulses are

common in nature. Traveling trains are simply when an entiregroup travels one direction in several files.

The PDE formulation with only continuous variables has produced the largest range of aggregation

patterns. Continuous space is suitable for describing simple animals like fish and snakes who do not move

forward in steps. Those unique to the PDE model are feathers and ripples. When animals are in the feather

formation, they are stationary, but individuals at the boundary are lost slowly, traveling away from the group

until they return to the group due to the periodic boundary conditions. This may not be biologically realistic,

as departing from the main group is usually not beneficial forgroup animals. In fact, it is shown that many

predators tend to attack those who stray far away from the group ( [3]). The biggest benefit of using the PDE

formulation is that it is effective in determining the effect of each parameter on pattern formation, using

analytical results from bifurcation theory and dispersionrelations.

Having fully exploited the use of continuous and discrete variables in the Eftimie animal movement

model, we now have an improved understanding of the model, and obtained further insight into the effect

of such direction-dependent communication mechanisms. Ingeneral, the inclusion of direction-dependent

communication mechanisms significantly enriches model behavior in the sense that a broader range of ag-

gregation patterns can be obtained. Many of the simulated patterns can be found in nature. This underscores

the likely importance of direction-dependent communication mechanisms.
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6.3 Future Work

In this thesis, we continued the work of Eftimieet al. in modeling animal movement with direction-dependent

communication mechanisms. Similar to its Eulerian predecessor, the ODE and Lagrangian models have suc-

ceeded in producing a wide range of behaviors. This is, however, only a small part in fully understanding

how the individual social interactions may influence the global group structure. In this section, we will

discuss some unanswered questions and possible future research directions.

In Chapter 3, we translated the Eftimie model into a discrete-time Lagrangian model. While the main

features of the original model have been preserved, others needed to be altered to accommodate the dis-

cretization and change in modeling perspective. One of the features that we modified is the interaction ker-

nel, which has been thoroughly introduced in Sections 3.7 and 3.8. The main modification from the kernels

used in the original Eftimie model is that the interaction zones are now bounded. Compared to the original

kernels, the modified kernels can be argued to be a more realistic representation of what is found in nature

because animals cannot sense neighbors from infinitely far away. However, the cut-off of the originally

infinite interaction kernel domain may have altered the numerical results of the Lagrangian formulation, and

perhaps explain why we found a smaller range of patterns compared to the Eulerian model. More work is

needed to confirm this. Second, the representation of discrete interaction kernels is not limited to the two

that we have chosen for this project, and there are many more that we could explore. Currently, the neigh-

bors who are adjacent to the reference individual exert the smallest repulsion force. This is not biologically

realistic, providing a motivation to explore interaction kernels which are not similar to the Gaussian kernel.

Another question that remains to be answered is how exactly do the nonlinear interactions and stochastic

effects incorporated in the Lagrangian implementation affect our results?

In Chapter 4, we modeled how animals move on a gridline in continuous time. Again, we followed the

basic principles from the Eftimie model with the exception of space discretization. Here, we see a larger

range of results produced from one implementation comparedto both the Lagrangian implementations with

two different interaction kernels. This is expected because this formulation incorporates less changes into

the system by avoiding time discretization. However, we should note that the ODE formulation is no longer

a Lagrangian implementation because the model tracks the number of animals at each location instead of

the individuals themselves. An interesting variation to consider for future research is if a model in discrete

time and continuous space is possible. For such a system, it would be possible to track each individual in

continuous space.

In Chapter 5, we added components of the Eftimie model into the Kolpas Lagrangian model, which has
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a similar framework to the Lagrangian model in this project.We assume that the communication between

animals is direction-dependent and repulsion is the most important social interaction. Using the five different

submodels introduced in Figure 2.1, we are able to find stationary, semi-zig-zag, zig-zag, and traveling

pulses. Interestingly, submodels 3 and 5 are not able to produce any aggregation patterns at all when cut-off

Gaussian interaction kernels are added. This suggests thatwhen repulsion is prioritized, the ability to receive

signals from all directions is important in forming groups.Moreover, the results reflect the general trend that

a large alignment zone encourages the animals to travel while a large attraction zone helps animals aggregate

in groups. For the Kolpas model, there is a statistical measure that helps quantify the effects that the size

of the alignment zone has on the model behavior. It would be interesting to introduce a similar measure to

the hybrid model to define the influence of each interaction quantitatively, as we now only have a qualitative

description for the impact of each parameter.

Finally, there are more possibilities in how we choose the communication mechanisms. Eftimie sug-

gests extending the model to higher dimensions, which is a component not explored in this project ( [8]).

Modeling in higher dimensions raises complications in determining which neighbors send communication

signals according to their orientation and location. On theother hand, this is a very important step because

animals like fish that exhibit behavior generated by the Eftimie model move in 3-D space. Also, we have

not exhausted the possibilities for the rules dictating thedirection-wise communication mechanism. Having

extended the model to higher dimensions, we are no longer limited to only differentiating the neighbors at

the front or the back. In fact, in the example of fish, many can only see on the side but not at the front

because of the position of their eyes. Therefore, we may incorporate more factors into how signals from

the side may be stronger than the signals from the front and back. There are many areas that remain to be

explored on this topic, and the consideration of additionalfactors will allow us to find more patterns formed

by animals in different situations.
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